
MyForth

REFERENCE MANUAL

Revision 8.4
January 24, 2011

Prepared By: Bob Nash (Bob.Nash1@Gmail.com)

Document: MyForth_Reference_Manual.doc

MyForth Reference Manual iii

Contents

iv MyForth Reference Manual

INTRODUCTION .. 1

PURPOSE .. 1
VIEWPOINT .. 3
DEVELOPMENT ENVIRONMENT.. 4
SCOPE .. 5
CONVENTIONS ... 6
TERMINOLOGY... 7

Host and Target...7
Tethering..8
Turnkey ..8
Standalone ...9
Words ...9
Code Words..9
Macros..10
In Line Assembly ..10

INSTALLATION.. 11

OVERVIEW .. 11
WINDOWS DEVELOPMENT .. 12

Command Prompt ...12
Startup..13

APPLICATION DEVELOPMENT ... 14
EDITING .. 15

Vim ...15
Usage ..15
Path ..16
Tags ..16
Navigation..17
Colors ...18

PROJECTS... 19

OVERVIEW .. 19
NEW PROJECT .. 20

Project Directories ..20
System Configuration ...20
Processor Configuration ..20
Quick Configuration...21
Rationale ..22
Examples Directory ..23

JOB CONTROL... 24
COMMAND FILES ... 25

Comments Section...25
Source Path ...26
COM Port Settings ..26
Job File ..27
Target Communication ..27

Contents

MyForth Reference Manual v

JOB CONTROL... 28
Processor Configuration ..29
System Compilation ..31
Bootloader Image..32
Interpreter ..33
Application...34
Reset Vector ...35
Dictionary ..36
Build Statistics...36

COMPILING.. 37
DECOMPILING.. 40

see ...40
sees..42
decode ...43

DUMP ... 43
SCRIPTS ... 44

Basic ...44
Advanced..45

DOWNLOADING.. 46
TETHERED OPERATION .. 47

Passing Parameters ..47
Stack Display ...47
Defined Words ...47
Exiting Forth...48

TURNKEYING ... 48

COMPILER ... 49

OVERVIEW .. 49
MEMORY ... 50

Overview...50
Processor RAM ...51
Boot Loader ...51
Programs..52
Stacks ...52
Variables ..52
XRAM...53
Flash...55

IMPLEMENTATION .. 57
Threading...57
Vocabularies ..57

WORDS... 58
MACROS ... 59
REGISTERS ... 61
DATA STACK... 63

Implementation ...63
#, ~# and ## ...63
#@, (#@), #! and (#!) ..64
Stack Initialization..64

Contents

vi MyForth Reference Manual

RETURN STACK... 65
Implementation ...65
push and pop..65

ADDRESS REGISTER.. 66
a and a! ..66
@, @+, !, (!) !+ and (!+) ...66

DATA POINTER .. 67
|p, |@p, and |@p+...67
p+, p! and ##p! ..67

VARIABLES AND CONSTANTS ... 68
NUMBERS AND LABELS.. 69
INTERRUPTS .. 71
CONDITIONALS .. 73

Overview...73
if and 0=if...74
if. and 0=if..75
if’ and 0=if’ ..77
-if and +if ...78
=if and <if ..79

LOOPS .. 80
Overview...80
Counted ..80
Nested ...81
Conditional ..82
again...82
until and 0=until..83
=until ..84
<until ..84
until. and 0=until...85
-until ...86

ARITHMETIC AND LOGIC... 87
ior, xor, ior! and xor! ..88
and and and! ...88
+ and +’ ...89
1+ and 1- ...89
1u+ and 1u- ..89
negate and invert...90
2*, 2*’, 2/ and 2/’..91
|*..91
|um*..92
|u/mod ...93

Contents

MyForth Reference Manual vii

ASSEMBLER ... 95

OVERVIEW .. 95
ASSEMBLY DEFINITIONS .. 96
IN LINE ASSEMBLY .. 97
PUSH AND POP... 98
SET AND CLR ... 98
PINS AND BITS .. 99
MOV .. 103
MOVBC AND MOVCB ... 104
[SWAP] ... 104
NOP .. 105
INC AND DEC.. 105
RETI .. 105

BOOT LOADER ... 107

OVERVIEW .. 107
Purpose ..107
Advantages...108

INSTALLATION ... 108
Overview...108
AM Research ...109
Silicon Laboratories..109

OPERATION... 111
Location ...111
Overview...111
Interrupt Vectors ...111
Startup..112
Example ...113

ADVANTAGES .. 113
Interactive Test and Verification...113
Code Reliability and Re-Use ..113
Reduced Program Size ...114

TETHERED TARGET .. 115

OVERVIEW .. 115
BASIC OPERATION... 116
TARGET INTERPRETER ... 116

execute..117
quit ..117

DEVELOPMENT WITH THE DEBUG ADAPTER 118

Contents

viii MyForth Reference Manual

STANDALONE TARGET... 119

OVERVIEW .. 119
INSTALLATION ... 120
OPERATION... 120

Dumb Terminal ...120
Stack ...121
Words ...121

INTERPRETER .. 122
Basic Definitions ...122
tib ..124
quit ..125
Interpret ...127
find..128

DICTIONARY .. 129
Location ...129
Structure ..129

EXAMPLES .. 131

OVERVIEW .. 131
RANDOM SEQUENCE GENERATOR .. 132

Pin Assignments ..132
Shift Register Setup & Initialization...133
Shifting...133
Display..134
Initialization & Test ..135

LCD ... 136
Pin Assignments ..137
Pin Configuration ...138
Delays ...139
Character Output ..139
Initialization ..140
String Output ...141

TROUBLESHOOTING ... 143

OVERVIEW .. 143
TERMINAL ERRORS.. 143
STACK ERRORS .. 144

Numbers Left on the Stack...144
Stack Underflow ..145
Numbers on the Target Stack ..145

LOCATING DEFINITIONS ... 146

Contents

MyForth Reference Manual ix

SERIAL PORT .. 147
Hangup ..147
Comm Errors ...147
Downloading Problems ..148

IMPROPER EXITS ... 150
SEES ... 151
CONDITIONALS .. 152

PROGRAM LISTINGS ... 153

COMMANDS & FILES ... 161

VIM BASICS ... 165

Contents

x MyForth Reference Manual

MyForth Reference Manual 1

1
Introduction

Purpose

This manual provides general and technical information for MyForth, an 8-bit
Forth for 8051 family processors written in GForth. Because MyForth is hosted
by GForth, it can run in both Windows and Linux environments.

MyForth was written by Charles Shattuck and is based on his many years
experience in programming in Forth on 8051 processors, primarily while working
at AM Research.

Although AM Research’s amrForth provides a very mature, robust and full-
featured 16-bit Forth for microprocessor development, Charley designed MyForth
to explore and apply several of his ideas about 8051development that were not
feasible within the context of amrForth.

One reason for the departure from amrForth is that it uses a 16-bit Forth model:
Charley is convinced that an 8-bit model is more appropriate for an 8-bit
machine. Although 16, 32 and larger bit operations are sometimes needed for
tasks such as scaling, these can be considered as special cases to be coded as
needed. Mostly, 8051 programming deals with 8-bit numbers and operations.

Another reason that MyForth has been developed separately is that many of its
features are implemented in a “non-standard” way. This may be of concern to
some, but the intent is more to explore new territory than to produce a
commercial product.

Introduction

2 MyForth Reference Manual

The objectives of MyForth are to:

· Implement a development environment specifically designed for 8051
family processors

· Retain the advantages of a Forth development environment while
improving the performance of the compiled code

· Simplify the development environment and the underlying system code so
that it can be easily used, understood and changed

· Provide a simple user interface that can be easily learned and used in
both Windows and Linux environments

Charley has been greatly influenced by Chuck Moore and many of the ideas in
MyForth are based on Chuck Moore’s Color Forth. MyForth is a very small and
simple Forth implementation, also reflecting Chuck Moore’s philosophy.

The result is a high performance Forth in a very small package that provides all
of the tools needed for professional 8051 development.

Introduction

MyForth Reference Manual 3

Viewpoint

This manual instructs the new user in the structure, use and practical application
of MyForth. The manual also provides some insight into the rationale and
methodology behind various implementation features.

To use this manual effectively, you should be familiar with Forth and the 8051
instruction set.

The manual is written from the viewpoint of a Forth programmer who wants to
use MyForth to develop applications but needs to know how to get started. The
manual also provides reference information for more experienced users and for
those who want to understand more about how the system works.

This manual was produced by a new user of MyForth, Bob Nash, with the help
and encouragement of Charley Shattuck. Although Charley has reviewed the
text for general accuracy, the organization and content are entirely those of the
author.

The reader is hereby cautioned: this manual is written primarily to meet the
author’s need to understand and use MyForth and may not meet the needs of a
broader audience. Like MyForth, it is not intended as a commercial product.

Although the author is enthusiastic about the capabilities of this system, his
viewpoint is independent enough to caution users about unusual and non-
standard usages that he encountered while learning MyForth.

Throughout the manual, the user is encouraged to try coding examples and
“learn by doing” -- this soon reveals the power and simplicity of the tools.

Although Charley uses MyForth in a Linux environment, the author works in
Windows. Thus, this manual was prepared primarily for readers working in a
Windows environment. However, Linux users should find that most of the
information in this manual is directly applicable to a Linux environment.

Introduction

4 MyForth Reference Manual

Development Environment

Although MyForth can be used with many different 8051 compatible processors,
this manual describes its use with Silicon Laboratories processors.

A convenient platform for starting out with MyForth is one of the Silicon
Laboratories (SL) development systems. These provide the EC2 serial adapter
or USB Debug Adapter and the software needed to load the MyForth bootloader
with the SL Integrated Development Environment (IDE).

After the bootloader is installed, the USB Debug Adapter and its software are no
longer needed: all MyForth programming is thereafter performed via the serial
port.

If you already have a debug adapter, you can simply buy a Silicon Laboratories
Target Board and use it. These boards are very inexpensive, some selling for
$50 or less. The Target Boards for “top of the line” chips such as the
C8051F120, are available for approximately $100.

Another excellent development option is to use Silicon Laboratories’ Toolstick
line of development products. These can be programmed with the standard
Silicon Laboratories IDE and a USB programming adapter that costs under $20.

The Toolstick daughter (Target processor) cards are very compact (about 1.5” x
1 3/4”) and provide a processor and a surprising amount of support circuitry. For
example, the Toolstick for the C8051F362 processor contains a 100 MHz
processor with three 8-bit I/O ports. The Toolstick I/O is available on 0.1” spaced
pads and on-board circuitry includes a voltage regulator, SMD power and status
LEDs, and a test pushbutton. All of this costs about $10 in single quantities and
is available from vendors such as Mouser and Digikey.

MyForth can also be used with the AM Research Gadget Development System
(no longer sold commercially). The MyForth serial bootloader is compatible with
the AM Research Boot Loader that is loaded on every Gadget board.

Introduction

MyForth Reference Manual 5

Scope

It is assumed that the user is already somewhat familiar with the 8051 instruction
set, assembly language programming and the basics of Forth. With this
background, this manual provides a guide to the coding and interactive testing of
both assembly language and Forth routines.

The manual provides:

· An overview of the initial installation process that is primarily intended for
Windows users

· The basic use of the development tools
· An overview of the system architecture
· A description of basic coding techniques, including Forth, assembler,

macros, interrupts and in-line assembly
· Reference material, such as command summaries

The following are outside the scope of this manual:

· Descriptions of the Forth computer language or the GForth
implementation used to host MyForth

· Operations that apply primarily to a Linux environment

Introduction

6 MyForth Reference Manual

Conventions

File names, directories, command sequences and Forth Words appear in either
boldface type or within quotation marks. The intent of boldface type is to make it
easier to identify useful file and command information in the text. Where the
intent is to refer to Words or sequences within a code example, the sequences
are generally enclosed in quotation marks.

Because directories, file names, command sequences and Forth Words are
already emphasized in boldface type, they generally appear in lower case.

The terms “directory” and “folder” are used interchangeably.

The terms “directory”, “folder”, “file”, “path”, “Word”, “command”, “character”,
“byte” and “number” are omitted when the context is clear.

Command parameters are denoted by the “< ... >” sequence, similar to that used
in Unix documentation.

Introduction

MyForth Reference Manual 7

Terminology

Host and Target

Throughout this manual, the term “Target” denotes the Target processor. For
example, the Target processor for a C8051F120-TB Target Board (TB) from
Silicon Laboratories (SL) would be the Silicon Laboratories C8051F120 chip or
other chips in its family for which the Target Board is intended: the Target is the
chip that will ultimately run your application.

The Host is the PC-based system “Hosting” GForth and the MyForth system. It
consists of the PC hardware and various programs and facilities working together
to provide a development environment. Most references to the Host are
generally references to GForth or the MyForth system implemented with it.

The programs and facilities residing on the Host include the MyForth system
files, GForth, an editor and the operating system.

The Host compiles MyForth statements into 8051 assembly code stored in a
Target image residing in the GForth memory space. This image can be
examined and downloaded to the Target via a serial port and the Boot Loader.
The image is also stored in image files that can be downloaded to the Target,
either by the MyForth downloader or by the Silicon Laboratories IDE and USB
Debug Adapter, EC2 Serial Adapter or Toolstick programmer.

Introduction

8 MyForth Reference Manual

Tethering

The Host interactively communicates with the Target via a simple mechanism
called a “tether.” This term is used because the Target is connected or “tethered”
to the Host facilities by a serial communications link and a simple tethering
protocol running on both the Host and Target.

The Target code is minimal because it relies on the Host to provide most of the
user features.

To maintain the tether, the Target runs a program that executes a single
command. When this command is executed, the Target provides a status
feedback to the Host. The command executed by the Target receives two
address bytes from the Host and then executes code at that address. When the
code at the address has been executed, the Target sends a “done” byte back to
the Host to terminate the exchange. The Host’s Target interpreter manages the
interaction between the Target and user.

Because the Target only knows how to execute code located at addresses
specified by the Host, the Host must maintain the Target’s context, such as the
names of the Words to be executed on the Target and their Target addresses.

Tethering provides convenient user interaction while minimizing overhead on the
Target (e.g., no Target-based dictionary or complex interpreter are required).
Tethering is explained in more detail in a later section.

Turnkey

If the Target application needs to execute autonomously without user interaction,
the Target image can be configured as a “Turnkey” system that starts up
executing user code in a continuous loop. This mode is commonly used when
the final application is deployed.

The turnkey, standalone and tethered (interactive) options are set up in a job
control file which also controls the loading of Target source and Target
configuration.

Introduction

MyForth Reference Manual 9

Standalone

The Target can also be configured as a standalone Forth system by compiling a
standalone system. The standalone system is most often configured as a
turnkeyed application that interacts with a user or remote processor over a serial
link.

Words

For those somewhat unfamiliar with Forth, the word “Word” designates what in
other languages is called a subroutine, procedure or function.

Because a colon precedes Forth Words, they are also called “Colon” definitions.

Normally, Forth Words execute when they are entered at a Forth interpretive
command prompt. Although Words can be executed interactively via an
interpreter, they can also execute independent of an interpreter. In most
applications, you will test Words interactively with the Target tethered to the Host.
Later, when your application is ready to be deployed, you can define a startup
Word that will run your application automatically when the chip is powered up or
reset (turnkey operation).

Code Words

The function of Code Words is the same as Words. They can be executed from
the Forth command prompt. But, unlike Colon definitions, Code Words are
defined with assembly language mnemonics or macros.

In more conventional Forth systems, Code Words are often defined by preceding
definitions with the Word “code.” MyForth handles this differently. Code Words
or in-line assembly definitions are determined by changing vocabulary search
orders. This is explained in later sections.

Introduction

10 MyForth Reference Manual

Macros

Macros are Words that compile assembly language instructions into the Target
image (residing on the Host PC) when they are executed. MyForth handles
macros by changing search orders. Macros are defined using the :m <name> …
m; sequence. Later sections explain this in more detail.

The important thing to know about macros is that, when executed, they assemble
instruction sequences. The instruction sequences assembled by Macros cannot
be executed standalone at a MyForth prompt. Because of this, they must be
included inside a MyForth Word and executed as a Forth Word (e.g., from a
command line).

In Line Assembly

MyForth also handles in-line assembly language sequences by changing
vocabulary search orders with special Words to encapsulate assembly language
instruction sequences. This process and the special Words are explained later.

MyForth Reference Manual 11

2
Installation

Overview

To use MyForth you must first install GForth, a mature, free, LPGL Forth that is
commonly available on the Internet. Installation is straightforward. MyForth
assumes that Gforth is installed to the default directories.

It is also recommended that you install the Vim (GVim) editor, also widely
available on the Internet, as described below in the Editing section.

The installation of GForth and Vim should be smooth as long as you install to the
default directories. When you are finished installing them on a Windows
machine, GForth and Vim will both be installed in the normal C:\Program Files
directory.

Install MyForth by unzipping the distribution file in the root directory. This will
make a directory named MyForth with several subdirectories. You are then
ready to go.

You can get a copy of MyForth by sending an email request to Bob Nash at
Bob.Nash1@gmail.com .

If you are reading this manual, you probably have a copy of MyForth because it
is usually distributed with the MyForth system files.

Projects

12 MyForth Reference Manual

Windows Development

Command Prompt

Because MyForth was developed in a Linux environment, it is designed to
execute from a command line. Windows compatibility must be provided with the
Windows Command Prompt. This is probably not an environment most Windows
programmers prefer or are familiar with.

We encourage you to give command line development a chance: there are only a
few commands to be entered at the Command Prompt and the typical
development session will mostly occur within the context of the GVim editor or
the MyForth command prompt.

Operating in a simple environment using a few commands makes development
easier and more productive than the more traditional use of a GUI and a custom
Integrated Development Environment (IDE). For one thing, your fingers will
mostly stay at the keyboard and your focus will be the task at hand.

Windows development can be reasonably convenient with a few simple changes.
This section describes these changes and provides an overview of the Windows
development process.

You can find the Command Prompt program in the Start/Accessories menu. It is
labeled “Command Prompt” and its icon looks like a Window with a black
background with a white “C:\” prompt on it. We suggest that you put it on the
desktop and change the default startup directory.

To change the default startup directory, first right click on the desktop icon and
select the “Properties” menu option. Next, edit the “Start In” path to be
“C:\MyForth\Projects” so that you will always start up ready to navigate to one of
your projects. You may also want to create a batch file, as described below, to
easily navigate to a particular project.

The default black background of the Command Window can be changed. We
highly recommend changing it to white. Because MyForth uses colors to improve
readability, they look better on a white background.

To change the background, right click on the Command Prompt icon and select
the “Properties” option. When the Properties dialog opens, select the Colors tab
and change the background to white and the text to black or blue.

Projects

MyForth Reference Manual 13

Startup

To start up in one of your project directories ready to start development, you can
create a batch file that automatically takes you to a particular project directory.

If you have changed the Command Prompt to start up in the Projects directory,
we recommend putting the batch file in the C:\MyForth\projects directory. Here
is an example of a batch file, psr.bat, that will take you to the psr Project
directory and display the files therein in a compact format:

cd \MyForth\projects\psr
dir /w

A more elegant way to automatically start up in your project directory is to create
a batch file that takes the name of your project and changes to its project
directory with “switch” statements. This “switcher” batch file should be put in your
path statement.

Here is an example of typical statements from a “switcher” batch file:

SET LOCAL=c:\myforth\projects
SET DEVDRIVE=c:

:: ----- LOCAL DEVELOPMENT -----

if "%1" == "eput" (
 %DEVDRIVE%
 cd %LOCAL%\eput
 GOTO:EOF
)
if "%1" == "300-dev" (
 %DEVDRIVE%
 CD %LOCAL%\300-dev
 GOTO:EOF
)
:END

Projects

14 MyForth Reference Manual

Application Development

Development commands consist of four batch files that are contained in a local
application development directory. There are only four batch commands: c, d,
run and sees.

The c, d and sees batch commands are used to compile, download and
decompile code, respectively. During routine application development you will
mostly use the c and d commands.

The run command allows you to run MyForth and GForth commands in a script.
This is quite useful when producing formatted reports to document testing.

The sees batch allows you to decompile your application; it is rarely used and is
primarily invoked with command line redirection to generate a listing file to
document the decompilation of a section of code.

For Windows users, the above batch commands invoke Gforth with command
line options to load MyForth files. For Linux users, the same functionality is
performed by command files with the same name as the Windows batch files, but
without “.bat” extensions.

MyForth uses the command line approach because the added complexity of a
GUI and a custom IDE is entirely unnecessary for such a simple and direct
development environment. Using a command line also makes development in
Windows and in Linux almost identical.

We think you will find that a command driven system is both much simpler to use
and to understand than a custom Windows application. It is also much easier to
support under both Windows and Linux.

Projects

MyForth Reference Manual 15

Editing

Vim

MyForth is best used with the GVim editor (the Vim editor using a GUI). GVim is
a free Vi-compatible editor that allows you to edit text in both GUI and command
line modes. It also performs operations such as shelling out for command
execution and editing definitions from multiple files. GVim can also be configured
to perform color highlighting based on language syntax. This feature is used by
MyForth to help interpret both source code and decompiled code.

Besides being free, GVim is also available for both Windows and Linux and
works the same in both environments.

MyForth can be used with other editors. But, if you use another editor, some of
the editing operations described in this manual will be unavailable or accessed
differently: you must handle these differences yourself. Also, syntax highlighting
is easily implemented with GVim but may be more difficult with other editors.

GVim is widely available on the Internet. In Windows, install it in the default
directory (C:\Program Files). Afterward, install, replace or edit a few
configuration files, as described below. Except for the change to autoexec.bat,
all necessary configuration files are supplied with MyForth.

Usage

If you have never used Vim, GVim or a Vi style editor, do not be intimidated by
the prospect of learning “yet another editor.” Although Vim is designed and
optimized for those familiar with Vi, it can be used like a conventional Windows
editor with highlighted cut and paste operations and mouse navigation.

GVim also has pull-down menus for most functions that are normally performed
from the editor's command line in a Vi environment. The new user can function
quite well by simply remembering to use the i command to insert text and to use
the escape key to exit the text insertion mode; this takes a little getting used to,
but the adjustment is not particularly difficult.

One of the more useful features of GVim is its ability to easily navigate between
files by placing the cursor on the file name and executing the gf (go file)
command.

Appendix B contains a summary of commonly used GVim commands.

Projects

16 MyForth Reference Manual

Note that this manual tends to use the terms “Vim” and “GVim” somewhat
interchangeably. This is because there are two executables furnished with the
Vim installation, Vim.exe and GVim.exe. You can use either but will probably
prefer to use GVim, which is the “GUI” version of Vim. Also, Vim lacks some of
the features discussed in this manual.

Path

Because development with GVim requires executing it from a command line or
using batch file shortcuts, you should edit the Windows path to include Vim,
GForth and Cygwin (if used). On Windows XP, you can edit the path by
selecting the Control Panel on the Start menu and then selecting “System.” In
the System panel, select the “Advanced” tab and click on the button labeled
“environment variables.” There you can select and edit the “path” environment
variable.

With this addition, you can now edit MyForth files using the “e.bat” shortcut (e.g.,
e job.fs). Note that you may need to reboot Windows for the path command to
become effective.

Tags

An important feature of GVim when used with MyForth is that it can use the tags
file, tags, that GForth automatically updates whenever a Word (or header) is
defined. Using this feature, you can switch to the file defining a Word (or macro)
by putting the cursor on Word and pressing Ctrl-] (go back with Ctrl-T).

You can also request a search for a specific tag at the GVim command line. For
example, to search for the Word “init”, enter: :tag init.

To use tags with Vim and GForth, you may need to change the default GVim
settings. The default behavior of GVim is to assume that the tags file is sorted.
However, GForth writes the tags file as it compiles definitions. This causes
GVim to issue a “tags file not sorted” error message.

To fix this problem, edit the _gvimrc file, adding this line: set notagbsearch.
This line is included in the sample _gvimrc file supplied with MyForth.

Note that GForth automatically generates a tags file in each MyForth project
directory whenever you execute a c (compile) or d (download) command.

Projects

MyForth Reference Manual 17

Navigation

Vim allows you to navigate easily between files and the definitions in them. We
suggest starting your editing sessions with gvim job.fs even if you know the
name of the file or Word that you want to edit.

For convenience, the file j.bat is included in the MyForth files that are copied to a
new project. To use it to start up editing your project’s Job file, go to your Project
directory and enter the j command at the command prompt. Note: there is no j
command file for Linux.

From the Job file, job.fs, you can easily navigate to just about any file in your
application. To do this, assuming you are in command mode, put the GVim block
cursor on the name of the file to be edited and enter the gf (go file) command. If
you have navigated to a file this way and want to go back, press Ctrl-6.

If you are in a file and want to go to the file that defines a particular Word, put the
cursor on the Word and press Ctrl-]. The editor will go to the file and position the
cursor near the Word’s definition.

Another useful GVim operation that uses the tags file is the ability to edit a
particular definition without having to know where it is defined. To do this,
execute: gvim –t <word>, where <word> is the name of the definition you want
to edit. For example, to edit the definition for “emit”, execute: gvim –t emit. To
simplify the process of editing a tagged word, the MyForth system files include
the t.bat file.

To use the t command (batch), execute it followed by the Word you want to edit.
For example: t emit. GVim will search the tags file for the name of the file
containing the definition of “emit” and open the file with the cursor just below it.
Of course you must have compiled your application earlier so that the Word
appears in the tags list.

To recompile your application and refresh the tags file, transfer to your project’s
Project directory and enter the c command at a Windows Command Prompt.
After recompiling, enter “bye” at the MyForth command prompt and use t <word>
to edit your Word. Note that the d command also recompiles your application
and refreshes the tags file, but this command normally precedes a download, not
an editing session.

Projects

18 MyForth Reference Manual

Colors

The use of color highlighting greatly improves the readability of MyForth source
code and can be considered a “poor man’s” version of Color Forth’s use of
colors.

To use MyForth’s color highlighting conventions (highly recommended), move
the custom version of forth.vim from the MyForth\vim directory to the syntax
directory in the Vim installation directory.

The tag and color features can be used with other languages, but how to do that
is not covered in this manual.

If you want to use the MyForth syntax coloring with other Forth systems, such as
SwiftForth, you may have to add a file that tells Vim about the extension used for
Forth source code files. In the case of SwiftForth, the source extension is “.f” and
it can be specified by copying SwiftForth.vim in MyForth’s vim directory to the
C:\Program Files\vim\vimfiles\ftdetect directory.

All of the syntax highlighting files can be found in the MyForth\vim directory.
This directory also contains a VimNotes.txt file that covers the installation and
function of the files in the vim directory.

MyForth Reference Manual 19

3
Projects

Overview

The following describes how to start a new MyForth project. The process is
mostly manual, but there is very little to it. Essentially, you will be establishing a
project directory, copying system files to it and editing configuration information in
the Job file.

The process of compiling and downloading a new project is quite straightforward
and is explained in the Job Control section below.

Project organization is a matter of taste and the following sections describe the
way that the author normally organizes small projects. For larger projects, a
different organization may be required. The following discusses several project
initiation and development approaches and the rationale behind the organization
recommended by the author.

For new users, using the recommended organization provides a simple way of
getting started with the examples and projects given in this manual.

Projects

20 MyForth Reference Manual

New Project

Project Directories

MyForth projects are contained in project directories. These directories are
normally created in subdirectories under the MyForth\projects directory.

For example, a new project named “myproject” would reside in the
\MyForth\projects\myproject directory.

System Configuration

Once you have created a new project directory, copy all of the system files from
the \MyForth\system directory into it. This establishes the system files needed
for a new project. Some of these files may have to be edited before you can
interact with your Target processor, as described later.

After copying the system files into your project directory, you have all of the
system files you will need for development, but your project will not be configured
for a particular Target processor.

Processor Configuration

To configure for a particular Target processor, you will need three processor
specific files:

1. The bootloader file
2. The Special Function Register (SFR) file
3. The job template file

Copy these three files from the \MyForth\chip directory to your project directory. For example, if
you want to create a project for the Silicon Laboratories C8051F300 chip, copy the files
bootloader300.fs, sfr300.fs, and job300.fs from the chip directory to your project directory.

Projects

MyForth Reference Manual 21

Quick Configuration

A quick project configuration option is to copy the files from an existing project
that uses a configuration that is similar to the one you will be using for your new
project.

This is somewhat easier than copying files from two separate directories, but
does not guarantee that you will be using the latest distribution versions of the
system and configuration files.

If you copy files from a previous project directory, they may not contain the
versions from the most current release or may contain files that have been
modified for a particular application. Perform a quick configuration only if
you know that the template application was developed with the current
release files and with compatible modifications.

After copying files from the system and chip directories or from a previous
project, you can develop using just the files in your project directory;
development will be independent of the files in the system and chip
configuration directories.

Projects

22 MyForth Reference Manual

Rationale

The two configuration procedures described above ensure that when changes
are made to the system and chip files, your old code will still work. Because
every project directory contains all of the files needed to generate and download
a working application, your application will always work, regardless of any later
changes to the MyForth system or processor (chip) files.

Copying the system files to a project directory for each new project may seem to
be wasteful but this is not much of a problem because of the small size of a
complete development image (about 200K and 35 files).

Note that both Linux and Windows command and serial configuration files are
copied to each new project directory. This allows you to easily change
environments later.

Using a single central directory for system files would save memory and ensure
that all projects use the latest revisions of the system files. Version changes in
system files can be handled with a backup or version control system, per normal
practice. However, the total size of MyForth is small enough that using a local
system directory does not require much additional memory.

For larger projects a central system directory and a version control system (such
as Subversion) are recommended. This method has been used for one large
MyForth project and works well. But, for small single-processor projects that can
be contained in one directory, the “atomic” method described above is
recommended.

One final note: MyForth is relatively mature and there have been only a few
minor changes to system files over the past few years. There is little risk that a
project will not operate properly if system files are compiled from the system and
chip directiories.

The major configuration risk is in the chip files. The most common change is in
the bootloader to accommodate a different baud rate (several alternatives are
commonly shown but commented out. Also, the SFR files are periodically
upgraded; the current versions do not define all SFRs and may need to be
upgraded for a new project that uses new chip capabilities.

Projects

MyForth Reference Manual 23

Examples Directory

To make it easier for you to compile and disassemble examples given in this
manual, MyForth is distributed with an examples project directory (e.g.,
\myforth\projects\examples). In this directory, various example definitions are
contained in examples.fs.

The examples project directory is configured for a C8051F300 Target and
illustrates a project directory that has been configured for a specific processor as
described above.

If you are connected to a 300 Target such as the Silicon Laboratories
C8051F300 Target Board, you can interactively compile and test the examples in
this manual.

Because the examples.fs file does not contain any processor-specific code, it
can be used with other processors by creating and configuring a project
directory, as described above, and copying examples.fs to it.

To make it easier to change to the examples directory, you may want to put the
gg.bat file from the system directory in a directory that is included in the “path”
environment variable. This batch file is an “application switcher” that was
mentioned above. With this file in the path, you can change to the examples
directory by entering “gg examples” any command prompt.

Whenever you create a new project directory, you may want to edit the gg.bat
file to include the new project. This way, you can navigate to the project directory
with the “gg” command.

Projects

24 MyForth Reference Manual

Job Control

The compilation of a MyForth application is controlled by the c and d commands
and the job control file, job.fs.

The c and d commands are very similar in structure. The c command compiles
the application and brings up a MyForth interactive session with the Target. Like
the c command, the d command compiles the application, but it also downloads
it to the Target before bringing up an interactive session.

Both the c and d commands load the Job file to compile the MyForth application.

To understand how a new application is compiled and downloaded, it is useful to
understand how these three components work. The following sections describe
their operation in more detail.

Projects

MyForth Reference Manual 25

Command Files

The c and d command files are implemented with the c and d scripts on Linux
systems and by the c.bat and d.bat command files on Windows.

Examining the c and d command files reveals a long and complicated-looking
command line. This line, although it looks intimidating, can be quite easily
understood by looking at the individual tasks it performs:

1. A comments section provides a revision history and an overview of path
ordering and how to change the file for different com ports and baud rates.

2. The command line invokes GForth to perform all of the job control tasks,
including setting the GForth path variable, so that system source code
files can be found.

3. Com port and baud rate variables are established before calling GForth’s
serial communications facilities to set up an interactive serial link with the
Target.

4. The Job file loads to compile the application.

5. After compilation, the pre-configured com port is opened, the compiled
code is downloaded to the Target (d command only), and the tethered
interactive session is established with the Target. If the commands
execute correctly you should see the MyForth prompt.

Comments Section

The comments section provides information on how to change the c and d
command files for different com ports and baud rates.

Often, applications use different com ports and baud rates. Putting the command
files is the root project directory ensures compatibility with the communication
rates used by the project (e.g., as established in the bootloader source file. Note
that the bootloader establishes the baud rate. If there is a configuration problem
check that the c and d command files are using the same baud rate established
in the bootloader.

By executing the c and d commands from the project directory, you are assured
that the baud rate is compatible with the application’s serial settings established
in the bootloader.

Projects

26 MyForth Reference Manual

Source Path

Following the comments section in the c and d command files, the command line
invokes GForth, using the “-e” option to execute GForth code contained in the
following parentheses. The fpath command is used to establish the GForth
search path set by the “path=” statement. This statement specifies a number of
paths, in path search order, separated by vertical bars.

For example, the statement “fpath path= ./|./system|C:\PROGRAM~1\gforth”
would specify that GForth should first search the local project directory (./)
followed by a local system directory and, finally, the GForth directory.

Once the source code search path is established, GForth executes .fpath to
display the path when the application is compiled.

COM Port Settings

Following the display of the search path, another “-e” option is invoked to set the
com port and baud rate variables, com? and current-baudrate. Values for
these are given in the comment lines of the command files.

The com variables are used when GForth executes the statements included in
the serial-windows.fs or serial-linux.fs source files. The serial configuration
file is loaded by simply including it on the GForth command line. When loaded,
this file establishes the serial port commands to be invoked later.

Projects

MyForth Reference Manual 27

Job File

The next item in the GForth command line is “./job.fs” which specifies that the
Job control file, job.fs, should be loaded from the current (project) directory. The
Job file does the heavy lifting in the compilation process, as described in a
following section.

Note that, when copying processor-specific files from the chip directory, the job
file contains the name of the processor (e.g., job300.fs). This is necessary to
distinguish between different processor configuration templates in the job file.

Before using the command files, the job file name must be edited to be
“job.fs.”

Target Communication

The last sequence executed in the d command file is “open-comm download
target talking” which tells GForth to open the comm. port, download the
executable image to the Target, and establish communication with it.

The c command file is identical except that it does not execute the “download”
command to download to the Target.

Thus, the “c” command can be used to re-establish communication with a
program running on a tethered Target. This command can also be used to
perform a test compile, and does not require an operating Target. Typical use
would be to check for compilation errors or to examine compiled code with the
“see” or “decode” commands.

Projects

28 MyForth Reference Manual

Job Control

The Job file controls the configuration and compilation of each application. The
following sections describe the items that you will likely find in the Job file and
their functions. See the Job file for one of the distributed applications for a better
understanding of what a typical Job file looks like.

An noted above, job file templates for various processors are contained in the
chip directory. For a new project, the template file, such as job300.fs, is copied
to the new project directory. Before first use, this file must be renamed to
“job.fs.”

Using the Job file to include all major functional components is a convenient way
to configure your application, to load it in the proper sequence and to organize it.

A convenient way to navigate to all parts of an application is to start editing
sessions by executing gvim job.fs or by executing the shortcut command files, j
or j.bat to perform the same command sequence.

Doing this, you can easily navigate to your application’s source code files by
placing the cursor on the source code file name and typing gf (go file). You can
nest this command as deeply as you wish to access other files defined in the
target file. You can also back out through the editing file chain by entering Ctl-6.

Projects

MyForth Reference Manual 29

Processor Configuration

The first items at the beginning of a Job file are definitions for constants that
determine the interpreter type, turnkey option and the compilation of local
headers.

Typically these would include a definition such as “true constant tethered” to
specify that a tethered interpreter should be used instead of a standalone
interpreter.

The first processor-specific definition is for “start”, the cold start reset vector. This
is used later in the Job file to patch the reset vector. It is discussed in more detail
later in this section.

Following the definition for “start” are allocations for the remapped interrupt
vectors. MyForth application code starts at the location specified by “rom-start”,
which is always just after the last-allocated (relocated) interrupt vector.

For example, if the last interrupt vector starts at $20B (timer 0), then “rom-start”
could start at $20D, two bytes after it (to allow for the jump vector code).

If you have interrupts vectors other than the Cold Start vector (start), you
must change the ROM start location to allow for them. This manual re-
allocation of interrupt vectors could be automated, but the price would be added
complexity and wasted memory resources.

Projects

30 MyForth Reference Manual

The MyForth rationale for manually changing the start of your code to be after the
last interrupt vector is that the application programmer will certainly be aware of
the addition of an interrupt vector. Consequently, the requirement to change
system files to match the current interrupt configuration is not particularly
onerous.

Not reserving a block of memory for all possible interrupt vectors also saves
memory. Most programmers wouldn’t bother, but MyForth programmers have
the choice to either waste memory or tighten their code.

The last processor-specific configuration value is “target-size.” It specifies the
amount of flash contained in a chip so that the compiler knows how much
memory to allot for a code image.

MyForth does not check for compilation past the end of ROM. It does
display the total ROM used at the end of each compilation and the Host
stack. You can use these indicators to determine if there is a compilation
error needing your attention, such as exceeding available ROM.

To properly configure your project, it is useful to examine the Job files for projects
that have previously used the same processor. The Job files for these projects
can be used to provide a starting point for your project’s configuration.

For projects using the same processor, configuration generally consists of editing
the interrupt and “rom-start” locations and choosing the appropriate interpreter.

Note that the largest configuration difference you will find will be between the
C8051F120 processor and other smaller processors such as the C8051F300,
310 and 410. This is because the page size for the 120 chip is larger and the
reset vector must be remapped to $400 instead of $200 for the other smaller
iprocessors.

Projects

MyForth Reference Manual 31

System Compilation

After the configuration statements, the Job file includes loader.fs (the Loader file
or Loader). The Loader compiles the MyForth system using the configuration
information previously set in the Job file.

The Loader first sets up terminal color options and then “includes” all of the files
needed to build MyForth. The following is a list of the files included by the
Loader with some comments describing what they do:

include gforth/vtags.fs use-tags
\ part of GForth: tags file

include ./compiler.fs \ load the MyForth compiler
include ./saver.fs \ code to write chip.bin and chip.hex
include ./dis5x.fs \ the 8051 disassembler
include ./download-cygnal.fs

\ downloader definitions
include gforth/dumb.fs \ command line dumb terminal,

\ useful when talking to an
\ application with a standalone
\ interpreter

\ Forth primitives.
include ./misc8051.fs \ MyForth 8051 compiler
rom-start org \ needed by following code

Some of these files are discussed more detail in later sections.

Projects

32 MyForth Reference Manual

Bootloader Image

Except for special cases, code images compiled by MyForth include a
Bootloader. Bootloader code is normally included in every programming image
(e.g., the chip.hex and chip.bin files). This allows this file to be used with the
Silicon Laboratories debug adapter and IDE to initially program a chip that does
not have a MyForth Bootloader.

The Bootloader image is compiled by including the bootloader for the chip used
in your project. For example, if the project is for a C8051F410 chip, then the Job
file would load bootloader410.fs . Before loading the bootloader, definitions for
the special function registers are needed. These are defined by loading them in
the job file with a statement such as: include ./sfr410.fs .

A “rom-start” statement follows the compilation of the Bootloader to ensure that
following code is compiled at the start of program code, just after the remapped
interrupt vectors, as set by earlier statements in the Job file.

The bootloader code is compiled just after the last possible re-vectored interrupt
in low memory. For example, if the last remapped interrupt vector is at $083,
then the bootloader begins at $08B. The bootloader size is approximately 250
bytes.

You can find the start of the bootloader code by examining the bootloader file for
your processor and looking for the comment that says something like “Code
starts here, after interrupts.

You can also find the location of the cold start vector (the Word “start”) by
examining the contents of location $0000 (e.g., using the SL IDE) and observing
the jump location. A typical jump location would be to $00BD.

Projects

MyForth Reference Manual 33

Interpreter

Before loading the application, you should choose an interpreter. The Job file
includes code that looks like this:

\
\ -----[Choose an interpreter]
tethered [if] include ./system/tether.fs [then]
standalone [if] include ./system/standalone.fs [then]

If the “tethered” constant is set to “true” at the start of the job file, then a tethered
interpreter will be loaded; if “tethered” is set to “false” and if “standalone” is set to
true, then the standalone interpreter will be loaded.

Note that you can have both a standalone and a tethered interpreter. Typically
this is done during development of an application that will use a standalone
interpreter but requires interactive debugging during development.

Projects

34 MyForth Reference Manual

Application

At this point in the Job file, the base MyForth system has been installed,
complete with a bootloader and an interpreter. Your application can now be
compiled by using “include” statements to load your application modules.

To build a complex application, you will “include” several files, using an “include
<filename.fs>” command sequence for each file “included” in the Job file. These
include files load your application’s source code files, including library files,
device drivers, utilities and application source code.

Normally, you will want to include the file debug.fs at the start of your application
to provide useful debug tools. These include utilities such as “h.”, “dh.”, “u.”, and
“ud.” to display numbers from the Target’s stack in a convenient format (e.g., as
hex or double numbers).

Your application’s source code modules follow the debug definitions. After the
project is complete, you can comment out the debug definitions to save memory.

It is suggested that every application include an initialization file (e.g., init.fs) that
is loaded after all other application code is compiled. This file initializes your
entire application and typically provides the following:

1. A comment section containing a complete list of all chip I/O assignments
and types. This list should be updated as application code is added that
consumes processor resources or requires special configuration (e.g.,
analog inputs).

2. A master initialization Word that sets up the crossbar, sets the port I/O
configuration, etc. This Word should also include initialization Words for
all application resources. A “standard” used for many MyForth
applications is to name the master initialization Word “/chip” or “init”.
Words that initialize hardware for a particular device should be defined in
the module for that device and executed as part of the master initialization
Word (e.g., /lcd for lcd I/O).

It is also suggested that every Job file contain a main.fs file that defines the main
application loop and the turnkey Word, go.

After the Main definitions, most MyForth applications include a file named
interactive.fs . This file contains a number of definitions that are useful when
exercising applications interactively. It can be commented out after the
application is complete.

Projects

MyForth Reference Manual 35

Reset Vector

The processor’s normal reset vector at $0000 is patched to jump to MyForth’s
boot loader. Thus, when the processor is reset (e.g., via the reset switch), the
bootloader is the first to execute. It checks for download requests and, if there
are none, it times out and jumps either to the tethering code (to establish a
tethered session) or to the start of the turnkeyed application (i.e., the “go” Word).

To patch the processor reset vector, it is necessary to remap all of the other 8051
interrupt vectors. At each of the old interrupt vector locations in low memory
MyForth installs a jump to an interrupt vector located elsewhere in low memory.

The remapped vectors can reside at several different locations, depending on the
Target processor. For most Silicon Laboratories chips, the remapped reset
vectors will start at location $200, as discussed earlier. Because of the larger
page size for the C8051F12x series processors, the remapped reset vector
location is $400.

The reset vector, also called the cold start vector, is patched after your
application is loaded. If your application is turnkeyed with a “go” Word, then the
cold start vector is patched with the following statement:

start interrupt : cold stacks go ;

The “interrupt” Word takes the “start” location (set earlier in the Job file) and
installs a jump to the Word “cold”, which is defined following “interrupt.”

In the example above, cold clears the Target stacks and executes the turnkey
Word, “go”, which is usually defined in main.fs . The “go” Word performs
application initialization (e.g., with /chip) and then executes the main application
loop.

Projects

36 MyForth Reference Manual

Dictionary

For projects compiled with a Standalone Interpreter, a local dictionary is compiled
and downloaded. So that the Standalone Interpreter can access the dictionary
headers, the start of headers location must be patched into the dictionary pointer,
dict, which is defined in the Standalone Interpreter. This patch is implemented
by the following statement:

headers] here [dict org heads ##p! org]

This is conditionally compiled depending on the setting of the “tethered” constant
set earlier in the Job file.

For tethered operation, the dictionary is not required but some utilities that
facilitate number entry are conditionally compiled, as follows:

:m # number emit-s m;
:m ## [dup 8 rshift $ff and swap $ff and] # # m;

Note that it is possible to compile a Standalone Interpreter but debug definitions
interactively with a Tether. In this special case, the dictionary location can be
patched after the number utilities are defined.

Build Statistics

At the end of each Job file the following sequence executes:

report
save
[.(Host stack=) .s cr

This provides a post-compilation report of how much memory is used by the
application, saves the programming image files (chip.hex and chip.bin) and
display’s the Host PC’s stack.

One key purpose for displaying the Host stack is to reveal compilation errors.
Any items left on the Host stack indicate a compilation error.

Projects

MyForth Reference Manual 37

Compiling

To compile an application, first ensure that all of your source code is contained in
the Job file or in application files that are “included” in the Job file. To compile
the Job file, execute the c command from the PC’s Command Prompt.

The following shows a typical compilation report generated by executing the c
command:

C:\work\jay\co\branches\private\projects\WARB4>C:\PROGRA~1\gfor
th\gforth.exe -e "fpath path=
./|c:\work\jay\co\trunk\source|C:\PROGRA~1\gforth" -e ".fpath" -e " 2
value com? " -e " 13 value current-baudrate "
c:\work\jay\co\trunk\source\amr\serial-windows.fs ./job.fs -e 'open-
comm target talking'
./ c:\work\jay\co\trunk\source C:\PROGRA~1\gforth

HERE=2546
Host stack= <0>
Talk to the target

Note that the first lines echo the contents of the c.bat file. You can see that it
invokes Gforth, loading the appropriate serial communications file and the Job
file, as described earlier.

After the “noise” of the command file echo, the most important parts are the
amount of flash program memory used by the application and the Host stack
contents.

For this example, the application ends at hex location $2546 (HERE refers to the
Target). The location of HERE on the Target is measured from address 0 and
includes the boot loader, interrupt vector tables, the MyForth system code, debug
utilities (if loaded) and your application code.

The Host stack shows that there are zero items on it, as is required for a
successful compilation.

After compiling (or downloading with d) you can verify communication with the
Target by entering .s (print stack) to request the Target to display its stack
contents (e.g., <0>).

Projects

38 MyForth Reference Manual

You may also want to execute words at the MyForth command prompt to display
the words that were just compiled. You can enter the commands listed by words
at the MyForth command line and they execute on the Target.

After downloading your application, you can immediately start testing it. You can
also test your application immediately after you power up a Target with a
downloaded project in it. This is because your project code is already stored in
the Target’s Flash memory, along with the tethering code needed to talk to the
Host PC.

Thus, you may just want to use the c command to establish the tether and test
existing code in the Target. Also, you can use c to recompile the application and
disassemble some code: the Target does not have to be active.

If you are using the tethered interpreter, the tethering routine is active whenever
the Target is active. If your program “hangs up” while executing some errant
code, you can press the reset button or cycle power to the Target board to
restore control at the Target interpreter. In some cases, you may have to kill and
restart the Command Prompt window.

Remember that the interpreter is talking to your application via a simple tether
routine executing on the Target.

If you edit the Job file so that the compiled program executes the “go”
turnkey Word, your processor will automatically start up executing the
turnkey Word.

Generally, you will not be able to interactively test with a turnkeyed
program because it is executing your project code within an infinite loop
and it will not respond to the tethered interpreter.

However, you can interact with a turnkeyed program over the serial port if
you configure your application to run with a Standalone Interpreter and a
dumb terminal program. A later section explains this process in more
detail.

Projects

MyForth Reference Manual 39

Here are some compiling facts:

1. The c.bat file calls gforth.exe, which includes the Job file. System
configuration and compilation are then controlled by the Job file.

2. The compiler always produces two auxiliary files, chip.bin and chip.hex.
The chip.bin file is a binary load image and chip.hex is an Intel Hex
representation of the image. This file can be used with the SL debug
adaptor and IDE to program a chip. Note that GVim can display files in
hex so you can examine chip.bin with it. The chip.hex file is text file in
Intel hex format and can also be examined directly with GVim.

3. The 2546 bytes used in the example includes the entire MyForth system
residing on the Target. Normally, applications will grow very slowly past
this point because many of the Forth routines in the Target image can be
re-used by calling them from your application.

Projects

40 MyForth Reference Manual

Decompiling

see

After compiling, you can view the assembly code for a definition by entering see
<word> at the MyForth command prompt, where <word> is the name of the
definition in your application. To test this, try disassembling one of the words
listed in the words dump.

The disassembly of the definition is displayed one line at a time. To display the
next line, enter n, the space bar, or any key except the terminator keys. The
terminator keys are q, escape (Esc key) or the Ctrl-c key combination. The
display will continue until you reach the end of the processor memory (whew!) or
until you terminate it.

Try decompiling the definition for emit by entering see emit . The following
shows the output of the see decompiler:

---------- emit
0403 30 99 FD jnb SCON.1,0403 emit if.
0406 C2 99 clr SCON.1
0408 F5 99 mov SBUF,A #!
040A E6 mov A,@R0 (drop
040B 08 inc R0 drop)
040C 22 ret ;

Observe that the definition starts at Hex location $0403 and ends at $040C.
Most of the definition consists of macros, many of which are designed to perform
operations needed to build MyForth.

Note the absence of calls. This is because macros are executed when named
within a definition to lay down code; thus they appear in your Target code when
needed. This provides in-line insertion of code sequences: they are not defined
elsewhere in the Target image and then called from within the definition like a
subroutine. This is one significant difference between MyForth’s approach and
that of more conventional Forth systems.

Projects

MyForth Reference Manual 41

Of course you can define routines and call them. If a routine is used often and
the overhead of a call does not reduce your application’s performance, this may
be desirable. However, with increasing amounts of flash memory available in
modern 8051 processors, this is less important than in the past.

Also note how little memory is consumed in this definition (10 bytes).

Last, observe the use of color to visually aid the interpretation of the
disassembly. The name of the disassembled word is listed in red after some
dashes. This helps identify the location of entry points.

Addresses are listed in black and the compiled bytes are listed in blue. The
actual decompiler output is in green, followed by the compiler’s attempt to identify
the name of the macro that produced the code (in black).

Projects

42 MyForth Reference Manual

sees

It is sometimes more useful to see a specified number of lines without having to
press keys to make additional lines appear, as is needed with see. Also, it is
often necessary to generate a listing of a decompiled word. MyForth provides
the Word sees to do both of these tasks.

When entered at the MyForth command prompt, the format of sees is:

n sees <word>

In the above, “n” is the number of lines to decompile and “<word>” is the Word
you want to decompile.

A more common use of sees is to generate a listing. You can do this from a
Windows command prompt by using the sees.bat command script. It compiles
the current application and displays the decompiled Word in the Windows
command window.

Normally, you will want to redirect the decompiled output to a file. Here is an
example showing how to execute sees.bat from a Windows command prompt,
displaying 25 lines, starting at the definition for “init” and redirecting it to a file
named “init.txt”:

sees 25 init > init.txt

You may first want to execute sees without redirecting the output to a file to make
sure that the listing is what you want. Generally, you will need to adjust the
number of lines to get the listing you want.

When executing from the Windows command prompt, the parameters for sees
come after the command (in the normal way for batch scripts).

CAUTION: A Word to be decompiled with sees must not contain a file redirection
operator such as “>” or “<” .

Projects

MyForth Reference Manual 43

decode

To decompile starting at a specific address, use <address> decode, where
<address> is the address of the start of the disassembly. The default mode is
Decimal; to specify a Hex address, prefix the address with “$” (or “\$ for Linux
users).

As with the see command, each line appears as you enter keys such as the
space bar or n (next). Terminate the decode display by entering q (quit), escape
(Esc) or Ctrl-c.

For example, assume that you want to decompile your application starting at Hex
location $400. Entering $400 decode would display the results given in Figure 2
above, but with the following additional line at the beginning:

0400 02 08 7B ljmp 087B cold ;

Now you can see that emit is the first definition after the Cold Start vector. In this
example, the processor is a C8051F120 and its startup code is at $400 because
of its larger flash page size.

This example starts at a known entry point. The decompiler is somewhat smart,
aligning decode operations at sensible start points, but entering an arbitrary
address or starting at an address containing data may yield raw code without
reference to named code entry points.

Dump

You can request the Target to send you a line at a time dump by putting a Target
address (a double number) on the Target’s stack and executing the d command
from a MyForth (not Windows) command prompt.

For example, to dump starting at $0123, enter: $0123 ## d. The d command
works in much the same way as see, outputting one line at a time, but only
accepts an “n” to display the next line of the dump.

The next section shows how you can use a script file to perform a dump from the
Command Prompt and save it to a file.

Projects

44 MyForth Reference Manual

Scripts

Basic

You can execute commands that you would normally enter on the MyForth
command line by putting them in a text file and executing them from a Command
Prompt with the run command (also see run.bat).

Here is an example taken from script.fs in the MyForth distribution:

\ script.fs
\ An example script which dumps the first 256 bytes of memory.
\ Use redirection to capture in a file.
0 ## d
[: lines] 0 do cr n loop [;]
15 lines cr

This example may not be clear just yet – you may have to read ahead to
understand the usage of the left and right bracket, the function of ##, etc.

The line containing “0 ## d” puts a double (16 bit) number (0) on the Target’s
stack and performs a dump with the d command. In response to the d
command, the Target outputs one dump line and waits for another command.

The code arranges for the next command to be a “cr” and then executes an “n” to
progress to the next line. Because this code is being executed in a script file,
there is no user to press “n” to request more than one line. Thus, lines is defined
(in GForth) to execute “cr n” 15 times.

Projects

MyForth Reference Manual 45

Advanced

Advanced users may wonder why the sequence “0 do cr n loop” appears just
after the right bracket. The right bracket establishes the Target vocabulary:
Words following the right bracket are searched for in the Target vocabulary first,
followed by the Forth vocabulary.

Because do … loop is not a MyForth looping construct, it may seem strange to
have it follow a right bracket. In this example, most of the “0 do cr n loop” will
be defined on and executed by the Host, GForth. This is because most of the
Words such as do and loop will not be found in the Target vocabulary: they will
be found and compiled when they “fall through” to the Forth vocabulary.

However, n and cr are defined as Target Words: they send characters to the
Target to signal “send a carriage return character” and “deliver the next line of a
dump.

When lines executes, GForth loops, requesting the Target execute “n.” Note
that the “cr” in “15 lines cr” is executed on the Host, but has the same effect as
executing on the Target (if you can wrap your mind around that).

Normally, of course, you would execute d from a MyForth command prompt and
not a script. The above shows how a dump can be performed from a Command
Prompt window so that its output can be redirected to a file for printing or
documentation (e.g., run script.fs >mydump.txt).

Projects

46 MyForth Reference Manual

Downloading

To compile and download your application to the Target, connect your PC's serial
port to the Target development board (e.g., a Silicon Labs Target Board) and
enter the d command from the PC’s Command Prompt.

If this does not work, check that the Target board is plugged in and that the PC’s
serial baud rate is set to the same as that of your Target. The Target’s baud rate
is set in the bootloader file (e.g., bootloader300.fs) and the GForth download
rate is set in the d and c command files. The normal baud rate for MyForth
applications is 9600, except for a C8051F120 Target board running at 98 MHz.
In this case, the baud rate is four times normal (38.4k baud).

Also check to see if the com port specified in the c and d files is the same as the
PC’s com port. With USB-based serial adapters, the com port can be just about
anything. To verify the com port, use a terminal program such as Putty with a
hardware wrap of pins 2 and 3 of the serial connector. If the com port specified
in the terminal program echoes characters through the wrapped pins, then the
com port number is the same as the terminal’s com port.

As the d command executes and the download proceeds, you will be prompted
for actions at each stage (e.g., press and hold the reset button). As your project
code downloads, the downloader will display the number of pages of flash
memory that have been downloaded to the Target.

When the download has finished, you will be talking to the Target (try executing
“.s” to see if there is a response).

Note that the compilation and Command Prompt interactions of the c and d
commands are identical, except that the d command also downloads your
compiled application to the Target before starting to talk to it.

If you are still having trouble with the download, verify that the Target contains a
bootloader. If it doesn’t, use the Silicon Laboratories debug adapter and IDE to
program the chip with the chip.hex file from an application that uses the same
Target processor. If your application compiles error free with the c or d
commands, the chip.hex file in your project directory can be used to initially
program the Target.

To work with MyForth, every Target chip must have a bootloader
programmed into it.

Projects

MyForth Reference Manual 47

Tethered Operation

Passing Parameters

You can pass parameters to the program residing in the Target by putting
numbers on the Target's stack. To do this, just enter the numbers on the
command line followed by a # sign. The # is a GForth Word that executes to
compile code in the Target’s image that will put a byte on the Target’s stack
when the Target executes the Word.

To enter a 16-bit value (e.g., an address), follow the number with ## (also a
Target Word).

Using these Words following a number is a bit different from most Forth systems
that put numbers on the stack without a # or ##. The reason for using these
Words after numbers is that it greatly simplifies the compiler and tethered
interpreter. It also allows you to specify which stack is being referenced (i.e.,
Target or GForth).

Stack Display

As with most Forth systems, you can display the stack contents with .s. Entering
.s at MyForth’s ok prompt is a convenient way to verify that the Target is
responding.

Defined Words

As mentioned earlier, you can display the Words defined on the Target by
entering words at the ok prompt.

Projects

48 MyForth Reference Manual

Exiting Forth

To exit the Target interpreter invoked by the c or d commands, simply type bye
at the ok prompt.

Note that, if your application appears to “hang up”, you are probably no longer
communicating with the Target (reset it or cycle power to it). However, you may
still be able to execute some commands from the command line – these are
usually Words, such as bye, .that are defined in GForth.

In some cases, you must restart the Command Window (e.g., if the serial port
hangs up). This is an unfortunate side effect of running the serial port in the
Command Window. This is normally not required when running under Linux.

Serial port hang-ups seem to be more prevalent when using USB to serial
adapters. Some are almost unusable. If possible, use a port such as COM1 or
COM2 that may be tied to your PC’s internal hardware and do not have to
interface through a USB link.

Turnkeying

To turnkey a compiled and tested application, edit the job.fs file so that the
application starts up executing the turnkey Word named go. Here is the
pertinent code:

\ --- Finally patch the reset vector --- /

\ Turnkey or interactive.
start interrupt : cold stacks init-serial go ;
\ start interrupt : cold stacks init-serial quit ;

The Word to start and run your turnkeyed application, named go, is usually
defined near the end of your Job file or as the last definition in your main
application file (e.g., main.fs).

MyForth Reference Manual 49

4
Compiler

Overview

This chapter describes how to develop a program using a few simple commands
entered from a Command Prompt. Normally, you will develop your program and
compile it with the c command. If you want to compile and download your
program to the Target, you can use the d command.

Although there are a few other utility commands that you can execute from the
Command Prompt, you will mostly be using either c or d.

The following sections also describe the usage, implementation and mapping of
processor resources. Topics covered include:

· Memory and stack mapping
· Forth implementation
· MyForth programming

Although assembly language statements can be easily incorporated into your
Forth or macro definitions, this topic is covered in the Assembler chapter.

Compiler

50 MyForth Reference Manual

Memory

Overview

The following sections describe the mapping, allocation and access for the
following types of memory:

1. Processor RAM – This is RAM that can be directly addressed by
processor instructions without the use of a 16-bit data pointer. Because of
this direct addressing capability, data bytes in this block of RAM are often
called “direct cells.” The first 8 direct cells are special processor registers.
Their use is explained more fully in the Register section.

2. Flash – Flash memory consists of non-volatile processor memory used to
store programs and data. For processors with a large amount of Flash
memory, such as the C8051F120, this memory may be addressed as
“banks” of memory with bank switching controlled by special processor
registers. This bank switching is not directly supported by MyForth (as it is
processor specific), but code examples are available in the Project
Directories.

3. XRAM (External RAM) – XRAM can reside either in the processor chip or
in an external RAM. When XRAM is contained within the processor chip,
it is generally accessed by dual mapping. When XRAM is truly external, it
is accessed using port pins as address and data registers.

Generally, for each type of memory, memory access examples are provided.
However, these examples use MyForth Words that are not covered until later
sections.

The examples for each type of memory are primarily intended as a quick
reference for users who are generally familiar with MyForth but need a refresher
on how processor memory resources are mapped, allocated and accessed.

If you are reading this manual for the first time, you may want to skip these
examples until you are more familiar with MyForth.

Compiler

MyForth Reference Manual 51

Processor RAM

MyForth uses processor RAM (cpu memory) for registers, variables and the
Forth data and return stacks. The following sections describe where these are
located and how they are used.

Note that Processor RAM is also referred to as “direct memory” and bytes within
this RAM are often called “direct cells.” This is because the RAM can be directly
addressed. It should not be confused with flash memory or “external” memory
(XRAM).

The direct cell memory map for each processor is a bit different, depending on
the amount of RAM available. All of the Silicon Laboratories processors have at
least 256 bytes of direct RAM, but MyForth supports processors with as little as
128 bytes of RAM.

The first 8 cells of direct memory are used for processor registers. Registers 0
and 1 are used for the “A” or address register and for the Forth stack pointer.
Other registers from 2 to 7 are commonly used for looping and are generally not
used for general purpose memory.

Direct cells from 8 to the top of the return stack are available for general use and
are often used where access to XRAM is not desirable. The stack locations and
use of XRAM are discussed below.

Refer to the Registers section below for more information on the use of the first 8
direct cells.

Boot Loader

The MyForth Boot Loader is located in low memory, just past the relocated
interrupt vectors. A typical start address for bootloader code is location $008B.
The bootloader requires approximately 240 bytes of memory.

Because the Boot Loader occupies memory that is normally used by the
processor interrupt vectors, the Boot Loader re-maps the interrupt vectors to start
at $200 (or $400 for the C8051F120). The Boot Loader is explained in more
detail in a later chapter.

Compiler

52 MyForth Reference Manual

Programs

MyForth programs are stored in Flash memory starting just after any re-mapped
interrupt vectors. This will be just past location $200 (512) in most Silicon
Laboratories chips or just past location $400 (1024) on the C8051F120. A typical
start address for program code is $022D.

You can find the exact location of your program code using the see, sees,
decode or d (dump) commands on one of your definitions. Note that programs
will start just after MyForth system definitions.

Stacks

The location of the data and return stacks varies, depending on the number of
direct cell RAM that is available.

For chips with just 128 bytes of RAM, the return stack starts at $21 (33), to leave
room for variables and bit variables, and grows upward (increasing addresses)
toward the data stack. The data stack for these chips starts at $80 and grows
downward toward the return stack.

For chips with 256 bytes of RAM, the return stack starts at $7f (127), also to
leave room for variables and bit variables, and grows upward (increasing
addresses) toward the data stack. For these chips, the data stack starts $fe (254)
and grows downward toward the return stack.

Variables

As mentioned above, the area from the top of the return stack to register 7 (e.g.,
7 to $7e or approximately 120 bytes) is available for general use such as variable
allocation. Variables are allocated using the MyForth Words cpuHere and
cpuAllot. Here is an example of how a double variable is allocated and used:

cpuHERE constant my2var 2 cpuALLOT \ allocate two direct cells

: @my2var (- lsb msb) [my2var 1+] #@ my2var #@ ;
: !my2var (- lsb msb) my2var #! [my2var 1+] #! ;

: ?my2var (- adr) my2var # ; \ see where it was allocated

In the above example, note how the left brackets are used to invoke GForth to
calculate the address of the most significant byte (a typical is value is 8).

Compiler

MyForth Reference Manual 53

XRAM

Many of the Silicon Laboratories (SL) processors support “external” or XRAM.
On many of the processors, this “external” RAM is located on-chip and mapped
on top of processor memory starting at location 0.

Often, a large amount of memory is needed for structures such as arrays or
buffers and it is not desirable to use the limited amount of direct memory
available between location 8 and the top of the return stack. In these cases,
XRAM can often be used to preserve variable space.

A relatively large amount of on-chip XRAM is generally available on SL
processors. For example, 1024 bytes of XRAM is available on the C8051F310
and C8051F362, 2048 bytes on the C8051F410 and 8K (bank addressable)
bytes of XRAM are available on the C8051F120.

This on-chip XRAM is addressed using the movx instruction after loading the
data pointer, p, with the desired address.

Some chips may also support addressing of true external memory using two of
the 8-bit I/O ports for addressing. This is also accessed via the movx instruction
but the data pointer requires special configuration (see the applicable Silicon
Laboratories manuals).

There are no MyForth words that directly support external addressing but it is
relatively straightforward to implement definitions that can handle external
addressing.

The data pointer is set with !p and ##p!. Once the pointer is set, data can be
written or read with !x and @x .

To read or write sequential addresses in XRAM, use the @x+ and !x+
instructions: they automatically increment the data pointer after a byte has been
fetched or written.

Compiler

54 MyForth Reference Manual

Here are some examples showing how to access XRAM data starting at location
$22:

: @$22 (- n) $22 ## p! @x ;
: !$22 (n -) $22 ##p! !x ;

$22 constant start-byte

:m mybytes start-byte ##p! m;

: @mybytes (- n1 n1 n3 n4) mybytes @x+ @x+ @x+ @x+ ;

The disadvantage to using XRAM over using variables allocated in direct cells is
the extra code and time needed to set the XRAM address.

Compiler

MyForth Reference Manual 55

Flash

Flash memory is normally used to store your program or to store static data.
However, Flash can be written, using the Words +write and –write to enable and
disable Flash access. Note that flash bytes must be written into blocks of
memory that have first been erased. Otherwise, access to bytes in flash is
similar to that used for XRAM.

Here is a code snippet from the C8051F410 bootloader showing how the
program image is written to flash:

\ --- accept bytes and write them into flash, starting at $200
.
.
$200 ##p!
begin

0 # 6 #for
'KEY +write (!x) -write p+
'KEY +write (!x) -write p+

6 #next
7 (#@) 'EMIT

7 #next

Note that the flash block must first be erased before writing data to it. Here is an
example of how to save and restore from flash (for the C8051F362):

cpuHERE constant interval-choice 1 cpuALLOT \ allocate direct cell

\ note: on the 362 chip, the 1K block starting at $7C00 is reserved!
$6C00 constant config-block (config page is $6C00 to $7000)

\ note: in erase mode, writing any byte to the block erases it.
\ Write $ff so bits are 1 (once zero, it can’t be set back without erase)
: erase-config config-block ##p! $ff # +erase !x –write ;
: save-interval

interval-choice #@ config-block ##p! +write !x -write ;
: get-interval (- n) config-block ##p! |@p ;
: restore-interval get-interval interval-choice #! ;

Compiler

56 MyForth Reference Manual

Flash can also be used to store static data. The data can be allocated when the
program is compiled into the program image. Allocation is performed using here,
org and allot. Data is compiled in the Flash image with “,” (comma).

Here is a simple example of creating and accessing a two-item table in Flash:

: table-start ; \ use with “see” to look at table entries

here constant flash-table 2 allot \ allocate space for table
(definitions)
(more definitions)

here \ put current compilation pointer on the stack
flash-table org \ set compilation pointer to start of flash-table
$aa , $bb , \ store the data in the program image
org \ restore current compilation pointer

This example may seem a bit cryptic. Here is what is happening:

1. The table-start definition is a dummy to be used with “see” to look at the
data that has been compiled in the table (it is optional for debug).

2. The second line assigns the current compilation pointer to the constant
“flash-table” and moves the pointer two locations forward using “allot”

3. After a number of program definitions, “here” puts the current compilation
address on the stack so that it can be restored.

4. The next instruction sequence sets the compilation pointer back to the
table address (i.e., with “flash-table org”) and compiles (“commas”) two
bytes of data there.

5. The last “org” instruction takes the compilation pointer savedon the stack
and uses it to reset the compilation pointer.

Here is a definition to read the contents of the table:

: @flash-table (- n1 n2) flash-table ##p! |@p+ |@p ;

Compiler

MyForth Reference Manual 57

Implementation

Threading

MyForth is a subroutine (call) threaded Forth. Note that many named sequences
are defined as macros (with the defining Word “m:”) and are used very much like
you would normally use Forth Words. Macros are compiled directly into the
Target image without a call and thus cannot be executed standalone like a Word.

When a call is immediately followed by a return (ret instruction), the call is
changed to a jump and the return is not compiled: the called routine performs the
return. This optimization saves memory and increases speed. This is efficient
tail recursion, but also works as a “goto” (jump with no explicit return).

Vocabularies

Don’t skip over this section!

Very much like early ColorForth, MyForth has only two vocabularies: Forth and
Target. When Forth is searched, Words found are executed by Gforth; when
Target is searched, the MyForth Target compiler executes the Words (or
macros).

Vocabulary search order is controlled by two Words, [and] . The secret to
MyForth’s simplicity and power is largely due to the judicious use of these two
Words.

For Forth aficionados, here are their (GForth) definitions, taken from the file
compiler.fs listed in Appendix A:

:] only forth also target also definitions ; immediate
: [only target also forth also definitions ; immediate

From these you can see that] establishes the Target vocabulary first in the
search order, followed by Forth. Of course, [does just the opposite: Forth is
searched first, followed by Target.

Compiler

58 MyForth Reference Manual

Recommended MyForth programming practice is to use these two Words
explicitly when the intent is to find Words in the Host (GForth) or Target
vocabularies.

However, this is just a recommended practice. If a Word is defined only in
GForth or only in the Target vocabulary, there is no harm in searching both.

If you examine the source for MyForth, you will see that [and] are used in a
variety of ways to flexibly reference either the GForth compiler or the MyForth
Target compiler.

These two Words can be invoked both inside and outside definitions to control
what is compiled or executed and to select the compiler that performs the
operations.

If you understand [and], you will understand most MyForth definitions.

In MyForth source code you will mostly encounter these two vocabulary
switching Words and the “:” and “:m” defining Words. Almost everything else is
defined using these four Words. As you use MyForth, you will learn how they
can be used to efficiently and flexibly control the generation of 8051 code.

Words

Forth definitions (Words) can be coded as you would code them with most other
8-bit Forth implementations. To define a new MyForth Word, use the :
<name>… ; defining sequence.

The body of Colon Words defined in MyForth consists of a combination of
previously defined MyForth Words or macros. With the judicious use of the [and
], you can also access the assembler and the GForth compiler.

Remember, that Colon Words execute on the Target. Normally, the Target
interpreter on the PC exercises these Words interactively, but MyForth also
allows you to put the name headers on the Target to build a Target that has its
own standalone interpreter. This type of operation is described later.

Compiler

MyForth Reference Manual 59

Macros

Often, in-line assembler sequences are not the best way to code for readability or
efficiency. If there is a sequence of assembly instructions that performs a
specific operation or that is used repeatedly, it is often better to code the
sequence as a macro.

Macros, although they have a name, cannot be executed except within the
context of another definition.

A macro is just a sequence of instructions that has a name. When this name
appears in a definition, the macro executes immediately to compile instructions
or data into the Target image.

The Target image is a block of memory residing on the Host starting at the
location named target-image. It is an image of the bytes that are compiled by
the c and d commands. This image is downloaded to the Target when you
execute the d command. The image is also written to chip.bin and chip.hex
whenever you compile using c or d.

Similar to the sequence used for defining Colon Words, macros are defined with
the :m <name> … m; sequence.

We suggest looking at misc8051.fs in Appendix A to see examples of how
macros are defined and used. Note that a large part of MyForth is built with
macros.

Here are some simple macro definitions listed under “Stack Operations” in
misc8051.fs:

:m dup s dec $f6 , m;
:m swap $c6 , m;

In the definition of dup, the code for decrementing s, the stack pointer, is laid
down in the Target image, followed by a one byte instruction, $f6, that is also put
in the Target image with a “,” (comma). Decrementing s changes the stack
pointer to point at the next (added) stack item.

The $f6 instruction code decompiles to mov @R0, A. This moves the top of
stack into the new cell that s now points to; this cell is now the second item on
the stack. Thus, to duplicate the top of stack (contained in t), the stack pointer is
decremented and the byte contained in t is moved into the cell pointed to by s.

Compiler

60 MyForth Reference Manual

You may have observed that the instruction byte for the indirect move was put
directly in the Target image without resort to an assembler sequence. This is in
keeping with MyForth’s theme of simplicity: it is a one-time look-up for the
programmer and should not require an assembler. In MyForth, most of the effort
is put into the disassembler, which you can use to verify your coding.

Moving to the definition of swap, you can see that it too consists of an instruction
byte that is laid down in the Target image. The instruction is xch A, @R0. This
sequence exchanges the contents of t (top of stack, the accumulator) with the
contents of the cell pointed to by s (R0, the stack pointer).

Looking at other macro definitions near the definitions of these two macros, you
will notice a number of things that you undoubtedly don’t understand right now.
These will be explained later.

But, before leaving the macro definitions, it may be instructive to examine the
definition of nip near the definitions for dup and swap. You can see that code
within a macro can contain assembly instructions: not all system macros are built
by directly writing bytes into the Target image. The assembler definitions
available to you are covered in the Assembler chapter.

You may be wondering how definitions like dup can be executed from the
interpreter if they are defined as macros. They can’t. Typically, when your
application is compiled, a file named interactive.fs is loaded after your
application definitions are compiled. It contains normal colon definitions for
common macros such as dup, swap and drop so that you can execute them
from the command line.

If you compile an application containing interactive.fs, you will see that
definitions like dup are in the list produced by words and thus can be executed
at the Target interpreter’s ok prompt.

If you decompile one of the definitions for dup, drop or swap, you will see that
the definitions contain the exact code given above for the macro versions but the
code for each is terminated with a ret (return) instruction.

This makes the definitions callable routines. If your application is complete and
you no longer intend to exercise it from the tethered interpreter, you can
comment out the line that loads interactive.fs.

Compiler

MyForth Reference Manual 61

Registers

Here are the definitions for registers and Special Function Registers (SFRs) as
they are defined in misc8051.fs :

\ ----- Virtual Machine ----- /
\ Subroutine threaded.
 0 constant S \ R0 = Stack pointer.
 1 constant A \ R1 = Internal address pointer.
$e0 constant T : .T T + ; \ Acc = Top of stack.
\ DPTR = Code memory address pointer, aka P.
\ B is used by um*, u/mod, and over, not preserved.

\ ----- 8051 Registers ----- /
$82 constant DPL $83 constant DPH
$98 constant SCON : .SCON SCON + ;
$99 constant SBUF
$80 constant P0 : .P0 P0 + ;
$90 constant P1 : .P1 P1 + ;
$a0 constant P2 : .P2 P2 + ;
$b0 constant P3 : .P3 P3 + ;
$81 constant SP
$d0 constant PSW : .PSW PSW + ;
$88 constant TCON : .TCON TCON + ;
$89 constant TMOD
$8a constant TL0 $8b constant TL1
$8c constant TH0 $8d constant TH1
$8f constant PCON
$a8 constant IE : .IE IE + ;
$b8 constant IP : .IP IP + ;
$f0 constant B : .B B + ;
\ $fd constant SP0 $80 constant RP0
$100 constant SP0 $80 constant RP0

Note that definitions starting with a “dot” allow you to specify individual bits within
ports and cells.

Compiler

62 MyForth Reference Manual

Here is a summary of MyForth register and pointer usage:

0 R0 (s) 8 bit stack pointer.
1 R1 (a) addressing index register – naming is from Color Forth
2 R2 Scratch register
3 R3 Scratch register
4 R4 Scratch register
5 R5 Scratch register
6 R6 Scratch register
7 R7 Scratch register

Acc (t) Top of stack
b Can be used as a scratch register, but it is used by

um*, u/mod and over (it is not preserved)
DPTR (p) Data Pointer – can be used as a scratch register

Assembly definitions or macros must preserve or knowingly and carefully change
the virtual machine registers t (accumulator) and s (stack pointer, R0).
Generally, the a (address) register, R1, is used as an indirect address pointer
and does not need to be preserved between definitions. However, you should be
aware that it may contain a pointer that you may want to preserve within your
definition.

Note: The naming of a was taken from Color Forth – it should not be confused
with the Accumulator, which is named t (for top of stack).

All other registers may be changed freely and need not be restored, but these
registers should not contain static data: any register may be used and modified
by any other Forth or assembler definition. Static data should be kept in direct
cells.

Compiler

MyForth Reference Manual 63

Here is a list of other processor resources that have been defined for use by your
definitions:

DPL and DPH
SCON, SBUF, TCON, TMOD, PCON
IE, IP
TH0, TL0 and TH1, TL1
SP, PSW, SP0, RP0

Refer to the listing for misc8051.fs in Appendix A for more detail on the definition
of the above resources. They are defined in the sections near the top of the file
named “\ ----- Virtual Machine ----- /” and “/ ----- 8051 Registers ----- \.”

Data Stack

Implementation

The top of the Forth data stack is held in the accumulator. The MyForth
designation for the top of stack is t (for top). The following sections describe
some Data Stack operations.

#, ~# and ##

If you want to put a number on the Target’s data stack at run time, put # after the
number. The action of # Word is to use a number on the GForth data stack to
create code that will put the number on the Target’s data stack when the
definition is executed (i.e., # compiles a literal).

To put a bit inverted version of your constant on the stack, use ~#. This Word is
often used to perform logical operations on Special Function Registers, setting
and clearing individual bits.

The Word ## will put a 16 bit literal, often an address, on the Target’s stack as
two bytes, with the MSB in t (i.e., on the top of the stack). Here is an example:

: tadr $0123 ## ;

This will put $01 in t and $23 under it.

Compiler

64 MyForth Reference Manual

#@, (#@), #! and (#!)

To fetch data from a direct cell, use #@; to store data to a direct cell, use #!.
Here are some examples:

: set5 $23 # 5 #! ; \ store $23 in direct cell 5
: get5 (- n) 5 #@ ; \ fetch contents of direct cell 5

Executing set5 will store $23 in direct cell 5; get5 will fetch $23 from direct cell 5
and put it on the Target’s stack.

You can use (#@) to move data directly into t from a direct cell without first doing
a dup. This is equivalent to performing a move of direct data with the assembler.

Similarly, you can use (#!) to move data to a direct cell without affecting t: it does
not perform a drop after moving data from t. In the set5 example, the use of (#!)
instead of #! would leave $23 on the Target’s stack.

Stack Initialization

To reset both the data and return stacks, include the stacks macro in your
definition. Note that this is a macro and is not directly executable from the
MyForth command line.

Compiler

MyForth Reference Manual 65

Return Stack

Implementation

The return stack is contained in internal RAM and uses the 8051’s Register 0 as
the stack pointer. The return stack is named s.

push and pop

The Target Words push and pop move values between the data stack and the
return stack and may be considered synonymous with the Forth Words >R and
R>, respectively. Although Chuck Moore has used push and pop for the past 20
years or so, these are not ANSI Forth Words.

Note: push and pop are also 8051 assembly language instructions that are
defined in the MyForth assembler. These act on the 8051 processor’s stack
pointer, SP, and do not involve the Target’s stack. To choose between these two
versions in an application, you can use [and] to set up the appropriate
vocabulary.

For example, here are the definitions for push and pop for the assembler:

[\ These are 'assembler', not 'target forth'.
: push $c0] , , [; : pop $d0] , , [;

And, here are the definitions for push and pop for the Target:

:m push [t push] drop m; :m pop ?dup [t pop] m;

The assembler definitions put the 8051 instruction bytes for push and pop on the
Host’s stack and then change to the Target vocabulary to place them in the
Target image.

These instructions can act on any direct cell, moving it according to the 8051’s
stack pointer. Note that the Target versions of push and pop act only on t (the
accumulator).

Compiler

66 MyForth Reference Manual

Address Register

a and a!

MyForth uses Register 1 (R1) as the “address register”, a. When a is used in a
definition, the byte contained in the direct cell address in a (R1) is moved to the
data stack. Usually, the contents of a will be a direct cell address that is used to
indirectly access data.

You can use a! to load a with a value (e.g., register number), as shown in the
example below.

@, @+, !, (!), !+ and (!+)

If you have a direct cell address in a, you can fetch data from that cell and put it
on the data stack using @. Similarly, you can store data from the data stack
indirectly to a cell using !. Accessing data this way is very useful, especially if
you are manipulating data in sequential cells.

To make this process of sequential access even easier, @+ and !+ can be used
to fetch and store while auto incrementing the contents of a. Here is an example
of how to store and fetch three sequential bytes, starting at direct cell 5:

: put3 5 # a! $aa # $bb # $cc # !+ !+ ! ;
: get3 (-- n1 n2 n3) 5 # a! @+ @+ @ ;

Note that the macros (!) and (!+) are variants of ! and !+. Like most MyForth
macros defined within parentheses, they do not drop the stack after they
complete.

This behavior is useful during operations such as initialization, where the
contents of the stack does not need to be preserved.

For example, this is how to initialize a four-byte data array, starting at direct cell
location 8, to a value of $A5:

8 constant array \ start array at direct cell 8
: init-array array # a! $A5 # 4 # 7 #for (!+) 7 #next ;

Compiler

MyForth Reference Manual 67

Data Pointer

|p, |@p, and |@p+

MyForth uses p to designate the 8051 data pointer and provides several macros
and Words for managing it. The macros for managing p are preceded by a
vertical bar to indicate they are “inline” or “macro” definitions. Normally this is
how you will use them, but you can make them callable by making them colon
definitions (e.g., to save memory if they are referenced several times in your
code). Refer to the source code listing in the chapter on the Standalone Target
for examples.

The |p macro puts the 16-bit contents of the data pointer on the Target’s stack.
Often this will be used to save contents of the data pointer prior to changing it so
that it can be restored later (e.g., with “|p push push”). This is illustrated in the
definition of interpret in the code for the Standalone Interpreter in a later chapter.
In interpret, the contents of p are changed in the process of searching the
dictionary; when the operation is complete, p is restored.

To get data from the location contained in p, use |@p or |@p+. These will both
put a data byte on the stack from the location in p, but |@p+ increments the data
pointer after the fetch. Examples of how these are used are contained in the
definitions of match, find and interpret in the Standalone Interpreter.

p+, p! and ##p!

To increment p, use p+. To store a new pointer in p, use p!. Caution: both of
these definitions are macros: they can be used within definitions but cannot be
executed directly from the command line.

If it is your intent to compile code that directly sets p to a particular value, use
##p!. This is commonly used when you do not intend to manipulate p using the
Target’s stack, just ensure that the data pointer is set to a particular value. An
example of this is contained in the chapter on the Standalone Interpreter in the
definition of dict.

Here is a simple example showing how to use ##p!:

here constant choice $30 , \ embed value for choice in flash

: get-choice (- n) choice ##p! |@p ;

Compiler

68 MyForth Reference Manual

Variables and Constants

MyForth does not have any dedicated Target Words for defining variables or
constants.

There is no “constant” because you can define a Word on the Target that
behaves like a constant using existing MyForth components. For example:

: five 5 # ; or :m five 5 # m;

The above definitions are not very useful and you would not typically use them in
your code when you just want the convenience of using a named constant.

Note that constant is available on the Host (GForth) and can be useful in
defining Target Words when your intent is just to have the convenience a named
constant or variable (direct cell).

Although not all of the Words below have been discussed yet, here is a simple
example using the Host word constant to define some Words. We suggest that
you download, disassemble and test these definitions, which are contained in the
examples.fs source file:

\ -----[variables and constants]

$0a constant con1
$0b constant con2
5 constant cell5

: test1 cell5 # a! con1 # ! ; \ indirectly load cell5 through “a”
: test2 con2 # cell5 #! ; \ directly load cell5 with con2
: .cell5 cell5 #@ h. ; \ display contents of cell5 in hex

Compiler

MyForth Reference Manual 69

In reading the above, it is helpful to know the following:

1. Numbers to be stored in the Target’s top of stack, t, must be followed by #
– it compiles the code needed to put the number on the Target’s stack
when the definition is executed.

2. The Word ! stores a number that is on the Target’s stack into a cell,
indirectly through a.

3. The Word #! stores a byte from t into the specified cell address and #@
fetches a byte from the specified cell address and puts it on the Target’s
stack.

Numbers and Labels

There is no special construct, such as “label”, to define a named memory location
in MyForth. However, MyForth allows you to do this if it is needed. You can
attach a name to a sequence of bytes, for example, by doing this:

cpuHERE constant mycells 8 cpuALLOT

In this example, cpuHERE returns the current pointer to the next available direct
cell. The constant mycells is defined on the Host (GForth) and acts as a label
for the start of mycells. The “8 cpuALLOT” allots 8 cells after mycells by
moving the cpuHERE pointer forward 8 bytes. Of course, you must use mycells
within a Target definition if you want to use it on the Target. For example:

: ?mycells (- n) mycells # ;

If you want to define a Target Word that will put a direct cell address on the
Target’s stack, you can simply do this:

: cell7 7 # ; \ put a 7 on the stack, representing a direct cell adr

It is important to remember that numbers in MyForth put a number on the Host’s
data stack; if you want to put a number on the Target’s stack when the definition
is executed, you must use #, ##, or ~#.

If you want to label a location, here is an example taken from misc8051.fs that
assigns a label to the reset code at location zero: 0 org : reset

Compiler

70 MyForth Reference Manual

Here is an example of a Target definition that, when executed, will put the
address of the current Target compilation address on the stack. This is normally
how a “label” is employed:

: iamhere here [dup $ff00 and 8 rshift] # # ;

In the above, here puts the Target’s compilation address on the Host’s stack.

The left bracket ensures that the following operations occur on the Host (GForth):
they put the upper and lower address bytes on the Host’s stack in the proper
order (MSB on the top of stack).

The right bracket ensures that the following operations occur on the Target: the #
sequence puts the two bytes on the Target’s stack when iamhere executes.

Normally you would use ## to put the double number on the Target’s stack in the
correct order, but this example illustrates how you can manipulate data on the
Host before using it for a Target definition.

Definitions like iamhere are seldom necessary. One reason for presenting it
here is to illustrate that here refers to the Target’s compilation address, not the
Host’s.

To get the location of here on the Host, use [here]. The above also illustrates
how you can use left and right brackets to change between Host and Target
operations.

Compiler

MyForth Reference Manual 71

Interrupts

The most important thing to remember about interrupts in MyForth is that
you may have to edit the Job file, when you define a new interrupt.

The application’s interrupt vectors are defined near the top of the Job file using
statements such as “$208 constant TIMO” which establishes the remapped
vector address for the Timer 0 interrupt.

Editing the Job file to add a new interrupt vector and changing the location of
rom-start ensures that the Target compiler will start your application code after
the last interrupt in the remapped interrupt area. For most Silicon Laboratories
chips, the remapped interrupts start at $200; for the C8051F12x and C8051F362
family of chips, they start at $400.

To define an interrupt, use interrupt. Here is an example:

start interrupt : cold stacks init-serial quit ;

Compiler

72 MyForth Reference Manual

To explain how interrupt works, the components of the above code and the
definition of interrupt are explained individually. Here is the definition of
interrupt:

: interrupt (a -)] here swap org dup call ; org [;

The start before interrupt is the address of the start of the remapped interrupt
vectors (e.g., $200 or $400). The Word interrupt first saves the current pointer
to the Target compiler’s image. This address is on put on the Host’s stack before
interrupt is executed, as indicated by the blue stack picture comment in the
definition of interrupt.

The] turns on the Target compiler. The here puts the Target image pointer on
the Host’s stack. The Target image pointer is the location at which any new
definition will be compiled.

The “swap org” sets the Target image compilation pointer to start.

The dup saves a copy of the previous Target image pointer and then compiles a
call to it. Thus, a call to the previous compilation address is compiled at start.

The copy of the previous compilation pointer is now used to reset the Target
compilation address back to where it was before interrupt started to execute.

Finally, the cold start definition, cold, is compiled into the Target image; thus, the
interrupt vector at start will point to it.

Note that the definition for cold that follows interrupt is the actual code that will be
executed when the interrupt arrives.

The example above shows how the “cold start” interrupt vector is defined and
installed. For this example, start is defined as the location of the remapped
interrupt vectors at location $200 (see any Job file for a 300 processor).

If you look at the compiled application you will find a jump to the code for cold at
location $200 (start). You can examine the code at cold and note its address by
entering “see cold” at the MyForth prompt.

Compiler

MyForth Reference Manual 73

Conditionals

Overview

The following sections describe the MyForth conditionals. There are not many.

In MyForth, the if … then construct uses the value in t, the top of stack, as you
would expect, to conditionally execute code. MyForth also provides special
conditionals such as if’, 0=if’, if., and 0=if. to conditionally execute code based
on bits or carry being set or clear in t.

The following sections describe each of these and the code they produce in more
detail.

Note that MyForth does not provide an “else” conditional. By examining some
MyForth system code and application examples, you will see that it is not
necessary.

Also, there are not many “if” statements used in the system code or examples.
This follows Chuck Moore’s practice. It is surprising how seldom “if” is needed.

Compiler

74 MyForth Reference Manual

if and 0=if

Here is an example of how you might use if to conditionally execute code:

: iffy1 if drop $0a # ; then drop $0b # ;

This will put $0a on the Target’s stack if t is not zero and a $0b otherwise. Here
is how it decompiles:

---------- iffy1
06FA 60 03 jz 06FF if
06FC 74 0A mov A,#0A #
06FE 22 ret ;
06FF 74 0B mov A,#0B #
0701 22 ret ;

This example illustrates a few important MyForth concepts. First, you have
probably noticed the semicolon in the middle of the definition. In MyForth it is the
equivalent of “exit” and just compiles a ret instruction. Now you can see why
“else” is not part of MyForth: there are ways to code so that it isn’t needed.

Next, look at the drop in front of $0a and $0b. Like the examples with until (next
chapter), t is not automatically dropped. Another way to say this is that if does
not consume its argument.

One reason for leaving the top of stack alone is the same as noted for until:
often you will need to preserve t; if not, then the penalty for coding a drop is no
more inefficient than always coding it. Along these same lines, including an
“else” conditional would make most definitions less efficient by having to include
code to jump around the “else” condition rather than just exiting the definition.

Compiler

MyForth Reference Manual 75

One other reason for not consuming an argument is that it is very cumbersome to
consume it and then make the jump. It can more than double the number of
cycles and the code looks very bad when you decompile it.

Also, you have removed the cause of the jump, the state of t, and you may need
to save it (e.g., the carry bit) if it is needed in later processing. It is much simpler
and clearer to jump on the state of t and clean up later: if the value that caused
the jump is needed, there is no need to get it. If it isn’t needed it can be dropped.

What about 0=if? Most of the “if” conditionals have a counterpart that acts in the
opposite sense. In the case of 0=if, it executes if t is zero.

if. and 0=if.

The if. conditional executes code based on a bit being set. Here is a reworked
version of iffy1 based on checking a bit.

: iffy2 1 .t if. $0a # ; then $0b # ;

This puts $0a on the Target’s stack if bit one of t is set and a $0b otherwise.
Here is how it decompiles:

---------- iffy2
081B 30 E1 05 jnb ACC.1,0823 if.
081E 18 decR0 (dup
081F F6 mov @R0,A dup)
0820 74 0A mov A,#0A #
0822 22 ret ;
0823 18 dec R0 (dup
0824 F6 mov @R0,A dup)
0825 74 0B mov A,#0B #
0827 22 ret ;

Compiler

76 MyForth Reference Manual

The previous definition is a contrived example. Usually you would be checking
and branching on something like a bit on an I/O port. Here is an example:

: iffy3 1 .P0 if. $0a # ; then $0b # ;

Here is how it decompiles:

---------- iffy3
06BC 30 81 05 jnb 80.1,06C4 if.
06BF 18 dec R0 (dup
06C0 F6 mov @R0,A dup)
06C1 74 0A mov A,#0A #
06C3 22 ret ;
06C4 18 dec R0 (dup
06C5 F6 mov @R0,A dup)
06C6 74 0B mov A,#0B #
06C8 22 ret ;

From the above, you can see that a more efficient (but less clear) definition
would be:

: iffy3 1 .P0 dup if. drop $0a # ; then drop $0b # ;

If you decompile this, you will see that the dup makes room for $0a or $0b on the
stack and the drops eliminate the redundant dup that # compiles.

The operation of 0=if. is the same as if. except that it executes code based on its
bit argument being clear. To see how it works, try defining iffy3 using 0=if.
instead of if. and compare the resulting code with that shown above.

Compiler

MyForth Reference Manual 77

if’ and 0=if’

The if’ (if carry set) conditional executes code if the carry bit is set. Here is a
simple example that always puts $0a on the stack:

: iffy4 [clrc] $80 # 2*’ drop if’ $0a # ; then $0b # ;

From the above you can see that it would have been more efficient to use 2*’
instead of 2*. Because the state of carry before multiplying by two (rlc) is not
important, the carry does not need to be cleared.

As you would expect by now, 0=if’ (if carry equals zero) conditionally executes
code if carry is clear. Here is an example that always puts $0B on the stack:

: iffy5 clrc $80 # 2*’ drop 0=if’ $0a # ; then $0b # ;

The code compiled by iffy5 is similar to that shown above for iffy4, but a jc (jump
if carry) instruction is compiled instead of a jnc (jump if not carry).

As you can see, the conditional jump instruction that is compiled is just the
opposite of what you might expect based on the name of the MyForth
conditional.

Compiler

78 MyForth Reference Manual

-if and +if

The –if and +if conditionals execute code based on the state of bit 7 of t. In
other words, they execute based on t being a negative or a positive 8-bit integer.

Here is a simple example of how to use –if in a definition:

: iffy6 (n – n’) -if drop $0a # ; then drop $0b # ;

If you compile and interactively exercise iffy6, you will see that putting a positive
number such as $7F on the stack and executing iffy6 will result in a $0b being
put on the stack. Try entering the following at the MyForth prompt:

$f7 # iffy6 .s

This will put $0a on the stack.

The +if conditional acts just the opposite of –if and will execute code if the value
on the stack is positive.

Compiler

MyForth Reference Manual 79

=if and <if

The =if and <if conditionals are used differently from the conditionals described
above.

These two conditionals require a literal value, supplied at compile time, for
the comparison value; they do not operate on a stack value supplied at run
time.

Here is an example of a definition that correctly uses <if:

:m |1char (n - n') dup 48 # <if drop !err ; then drop adjust m;

Note that a “bar” symbol precedes “1char” in the above definition. There is
nothing mystical about it: it is just a convention used in many MyForth definitions
to indicate that the definition is a macro, not a Word. Because macros cannot be
executed interactively, you will often see a definition like this:

: 1char (n - n') |1char ;

Typically, you would use a definition like the one above to interactively test the
macro from the console with values supplied from the stack (e.g., via # or ##).

Compiler

80 MyForth Reference Manual

Loops

Overview

The following sections describe how to code loops in MyForth. As you will learn,
there are only a few constructs to do this, but they are powerful enough to be all
you will need.

Counted

MyForth provides a simple way to implement loops with counts up to 255. The
loop counter is held in a cell that must be specified as part of the loop definition.

Counted loop definitions start with <cell> #for and terminate with <cell> #next,
where <cell> is the register or direct cell to be used as a loop counter. The loop
count is assumed to be on the stack when the loop starts. The count is put on
the stack with #, like any other MyForth number.

Of course <cell> cannot be R0, the data stack pointer (unless preserved). But it
can be any other register, direct cell, special function register or even an 8-bit
port. The range of the loop is limited to $FF. Here is an example to loop 5 times
using Register 7:

: init 5 # 7 #for 0 .P2 toggle 7 #next ;

This decompiles as follows:

---------- init
0691 7F 05 mov R7,#5 #!
0693 B2 A0 cpl A0.0
0695 DF FC djnz R7,0694 #next
0696 22 ret

Compiler

MyForth Reference Manual 81

You can also pre-load t with a number and execute this definition of init:

: init 7 #for 0 .P2 toggle 7 #next ;

It will perform the same function as the first init, but it will load R7 from t; this
definition is slightly less efficient because the top of stack pointer must be
adjusted after R7 is loaded from t.

If you examine the definition for #for and #next, you will see that #for compiles a
mov to a direct address or a register and #next compiles a djnz instruction to a
direct cell or register, as illustrated in the decompilation above.

Nested

To execute longer loops, you can nest #for … #next loops. Here is an example:

: delay
0 # 7 #for

0 # 6 #for
50 # 5 #for 5 #next

6 #next
7 #next ;

Here is how this decompiles:

0700 7F 00 mov R7,#00 #!
0702 7E 00 mov R6,#00 #!
0704 7D 32 mov R5,#32 #!
0706 DD FE djnz R5,0706 #next
0708 DE FA djnz R6,0704 #next
070A DF F6 djnz R7,0702 #next
070C 22 ret ;

Compiler

82 MyForth Reference Manual

Conditional

In MyForth, conditional loops are formed with a begin … again conditional
looping construct. Loops can use t, as you would expect, to test for loop
termination. However, unlike most other Forth implementations, t is left
untouched when the loop terminates. If you want to leave the stack clean, you
must specifically code a drop following until.

You may ask why MyForth does not just drop the top of stack after ending a loop.
Although it isn’t obvious from the simple examples given below, there are many
cases when you need t for subsequent calculations. For example, when a loop
terminates because t is non-zero, you may want to use the value of t that
stopped the loop for subsequent calculations.

By explicitly coding a drop, you are only making the loop perform the same as it
would if the drop was automatically compiled for you. However, if you need t
after the loop terminates, you do not need to do anything special within the loop
to preserve it and, after exiting, you don’t have to do anything to restore it.

MyForth provides the following loop termination conditionals: until, 0=until,
again, <literal> =until, <literal> <until and until..

Note that most of these can operate on resources other than t.

The following sections describe each of the remaining conditionals in more detail.

again

Using again as the loop conditional forms a loop that does not terminate. This is
particularly useful in defining the startup Word (e.g., a Word named go) for an
application that will be turnkeyed.

Also note that again can operate over a range that exceeds that of an sjmp: it
compiles ajmp or ljmp, as appropriate. The range of conditional jumps is
shorter: they abort if out of range.

The definition of again is:

:m again call ; m;

Note that the ; after the call is used to optimize the call to a jump, if possible.
Thus, again can be used alone, to perform this operation, as illustrated in
bootloader120.fs.

Compiler

MyForth Reference Manual 83

until and 0=until

A begin … until loop operates as you might expect, looping until t is non-zero.
This construct codes a jz instruction. Note that you may need to do a drop
before exiting your definition, depending on what you want to do with the
conditional value that terminated the loop.

If you want a loop that terminates when t is equal to zero, you can use begin …
0=until . Here is an example:

: bloop $10 # begin dup . 1- 0=until drop ;

This decompiles to:

---------- bloop
06A1 18 dec R0 (dup
06A1 F6 mov @R0,A dup)
06A3 74 0A mov A,#0A #
06A5 18 dec R0 (dup
06A6 F6 mov @R0,A dup)
06A7 91 BD acall 048D .
06A9 14 dec A 1-
06AA 70 F9 jnz 06A5 0=if
06AC E6 mov A,@R0 (drop
06AD 08 inc R0 drop)
06AE 22 ret

From the above you can see that the loop termination value is kept in t. On
entry, MyForth executes its usual dup to preserve t. Next, t is loaded with $0A
by the sequence $10 # (mov A,#0A). Next a dup is executed so that t is not
lost when . (dot) executes to emit the ASCII value of t back to the Host over the
serial port.

The 1- decrements t and the 0=until checks to see if t is zero. The loop
terminates when t is zero, leaving a 0 (the depleted loop counter) on the data
stack. Finally, the drop removes the loop counter so that t will contain whatever
was on the stack before bloop was executed.

Compiler

84 MyForth Reference Manual

=until

Like the =if and <if conditionals, =until and <until (see below) require the
comparison value to be specified when the definition is compiled.

Here is an example of how =until might be used to count up in a loop:

: bloop1 0 # begin dup . 1+ $0A # =until drop ;

This will display 0 1 2 3 4 5 6 7 8 9 when it executes. We suggest that you
define, download, execute and decompile this definition to become more familiar
with the kind of code that will be compiled.

You will see that it compiles code that is similar to that of the previous example,
but it takes one more byte and it compiles a cjne instruction instead of jnz.

Please note the use of the # after the $0A; this is required for literals used with
the =until and <until conditionals.

<until

If you code the above example using <until instead of =until, as shown in the
definition of bloop2 below, the loop will terminate based on the value of t being
less than minus 10.

If you decompile bloop2, you will see that MyForth compiles code that is similar
to that produced by the definition of bloop1 above but two more bytes are
required for the definition. Here is a definition using <until:

: bloop2 0 # begin dup . 1- -10 # <until drop ;

When executed it will display 0 –1 –2 –3 –4 –5 –6 –7 –8 –9 –10 .

Compiler

MyForth Reference Manual 85

until. and 0=until.

The until. loop terminator operates on a bit being set. The bit can be in any
8051 register, direct cell or port, including t. Here is an example:

: bloop4 1 # begin dup . 2*' 5 .t until. drop ;

Note that the bit number, 5 in this example, does not need a # after it. This is
because until. compiles the appropriate looping instruction using the data on the
Host’s stack; the number is not used by the Target at run time, only by the Host
when it compiles the code into the Target’s image. Executing bloop4 will display
the following: 1 2 4 8 16.

Here is a more useful example:

#F8 constant SPI0CN
[: .SPI0CN SPI0CN + ;]

:m wait-SPI begin 7 .SPI0CN until. m;

The above example shows how you can loop until a bit is set in a special function
register. It also illustrates that until. does not need to be used to check bits in t
but can be used with other 8051 resources. Note how the bracketing in the
definition of SPI0CN is used to access the Host to define the address to be used
with until..

Of course, 0=until. operates in the opposite sense from until., terminating when
the specified bit is clear.

Compiler

86 MyForth Reference Manual

-until

The –until conditional terminates a loop when the accumulator is negative (i.e.,
the most significant bit is set). Here is an example:

: bloop6 1 # begin dup . 2* -until drop ;

This decompiles to:

---------- bloop6
0682 18 dec R0 (dup
0683 F6 mov @R0,A dup)
0684 74 01 mov A,#01 #
0686 18 dec R0 (dup
0687 F6 mov @R0,A dup)
0688 91 8D acall 048D .
068A C3 clr C
068B 33 rlc A 2*
068C 30 E7 F7 jnb ACC.7,0686 if.
068F E6 mov A,@R0 (drop
0690 08 inc R0 drop)
0691 22 ret

The above code will display 1 2 4 8 16 32 64. Notice that this example uses
2* instead of 2*’ used in bloop4 above. If you compare the disassembly of the
two definitions, you will see that the difference is that 2* clears the carry bit
before shifting. This was done in the example to ensure that you would get the
same results as given here; if the carry had been set in a previous operation, the
number sequence would be different.

Now, for the action of –until. Notice that the loop is formed by performing a jump
based on whether or not bit 7 of t (the accumulator) is set. The intent of the
minus in front of the “until” is to indicate ‘negative’ and should be thought of as
“negative until.”

Compiler

MyForth Reference Manual 87

Arithmetic and Logic

MyForth provides various operands to perform logical operations on stack items,
direct cells and special function registers.

The following sections provide more detail, but key points to remember are:

· Operations on Special Function Registers, I/O ports and direct cells
use logical Words ending with a “!” that do not require the “#” after
them.

· Conversely, operations on the stack are performed by Words that do
not end in a “!” -- these do require the used of “#” to put their
arguments on the Target’s stack.

This difference is because direct cell or port addresses are typically defined on
the Host as constants (e.g., “$a4 constant PRT0CF”). Thus, when they are
named in a definition their value is put on the Host’s stack, not the Target’s stack.
The value on the Host’s stack is then used by following Word to compile the
appropriate instruction.

If this seems a bit confusing, read on. Hopefully the examples given in the
following sections will make things clearer.

Compiler

88 MyForth Reference Manual

ior, xor, ior! and xor!

The ior Word performs a logical or operation. The “i” in the Word’s name stands
for “inclusive” to distinguish it from xor, the “exclusive or” Word. Here is a simple
example of “oring” two constants:

: ior1 $aa # $55 # ior ;

The xor Word is used in the same way as ior, but performs an “exclusive or”
operation.

The use of ior! and xor! is similar to that of ior and xor, but the operand
immediately preceding the instruction does not require a # after it. These Words
are typically used with Special Function Registers (SFRs), direct cell addresses
or port addresses. For example:

$a4 constant P0MDOUT
:m push-pull $ff # P0MDOUT ior! m;

This example perhaps makes it clearer why SFRs are special cases: they are
defined as ordinary constants in GForth and thus do not need to be put on the
Target’s stack with #.

This example uses ior! in a macro that sets the outputs of a C8051F300 chip to
push-pull. This macro would typically be used within an initialization Word.

and and and!

The and and and! Words perform a logical “and” operation and are used in the
same way as the “or” Words.

Compiler

MyForth Reference Manual 89

+ and +’

Use + to add two numbers. If you need to add with carry, you can use +’. For
example:

: addem (n1 n2 – n3) 4 # 5 # + ;

1+ and 1-

Use 1+ and 1- to add or subtract one from t. These operations assume that t
contains an 8-bit signed integer.

1u+ and 1u-

Use 1u+ and 1u- to add or subtract one from the second item on the stack.
These two Words should be thought of as “one under plus” and “one under
minus.”

Here are two Words defined in examples.fs that you can try:

: incunder (n1 n2 – n3 n2) 1u+;
: decunder (n1 n2 – n3 n2) 1u- ;

22 # 33 # .s 2> 33 22
incunder .s 2> 33 23
decunder .s 2> 33 22

Note that 1u+ and 1u- are equivalent to INC @R0 and DEC @R0.

These Words are useful in manipulating the least significant byte of a double
number (for example) but do not do a full 16-bit increment or decrement.

Compiler

90 MyForth Reference Manual

negate and invert

MyForth does not have a “-“ Word to subtract two numbers but two numbers can
be subtracted by negating one number an adding the two together.

Use negate to change t to a negative number. Here is an example:

: negate-example (– n) 44 # 5 # negate + ;

Use invert to invert all of the bits in t.

Because inverting all of the bits in a constant is a common operation for logical
manipulation of port or SFR bits, MyForth also provides ~#, as described
elsewhere in this manual. You can use either invert or ~#, depending on what
you are doing.

You would typically use invert to manipulate a value that is already on the stack
while ~# is more useful (and efficient) if you just want to invert the bits in a
constant prior to performing a logical operation.

As shown below, the two operators have the same stack effects but compile
different code.

Here is an example

: invert-example (– n1 n2) 5 ~# 5 # invert ;

invert-example .s 2> -6 -6

This decompiles to:

---------- invert-example
076B 18 dec R0 (dup
076C F6 mov @R0,A dup)
076D 74 FA mov A,#FA #
076F 18 dec R0 (dup
0770 F6 mov @R0,A dup)
0771 74 05 mov A, #05 #
0773 C3 cpl A invert
0774 22 ret ;

Compiler

MyForth Reference Manual 91

2*, 2*’, 2/ and 2/’

You can multiply or divide an item in t by two (left or right shift by one bit) using
2*and 2/, respectively. If you need to use the carry bit, use 2*’ or 2/’.

Here is an example using the carry bit:

: leftwith (- n) [setc] $c0 2*’ ;

In this example, the assembler is first used to set the carry bit, then the value $c0
is put in t and multiplied by two with carry (left shifted one bit with carry). The
number $81 is left in t after the definition is executed.

|*

Use |* to multiply two 8-bit integers. The bar indicates that this definition is an
inline macro that can be used within a colon definition or macro, but is not a
callable Word. Here is an example:

: * (n1 n2 – n3) 3 # 5 # |* ;

After executing *, 15 will be in t.

Compiler

92 MyForth Reference Manual

|um*

The inline definition |um* multiplies two unsigned bytes on the stack, leaving the
double precision (16 bit) result on the stack with the most significant byte in t and
the least significant byte in the second stack cell.

As usual, the bar in the name indicates that |um* is a macro definition which can
be compiled in a definition but is not callable. Of course, you can make |um* a
callable definition by including it in a MyForth colon definition.

For example, this following is defined in examples.fs to make |um* a callable
definition:

: um* (n1 n2 – n3 n4) |um* ;

Executing 33 # 2 # um* from the MyForth command line would put 0 in t and 66
under it in the second stack cell. The MyForth stack display would be: 2> 0 66.
Executing ud. after this operation would display 00066.

Compiler

MyForth Reference Manual 93

|u/mod

The inline definition |u/mod performs a divide operation on the two unsigned
bytes on the stack, leaving the quotient in t and the remainder in the second
stack cell.

It is defined as an inline definition (indicated by the “bar”) because you may just
want to use it to compile the code for u/mod within a definition without calling it.
Of course, you can make it a callable definition by defining it as a colon definition
as described in the previous example for |um*.

The debug.fs file contains an example of how |u/mod can be defined as a
callable definition and how it is used to define u. for interactive testing of Target
definitions:

: space 32 # emit ;
: digit -10 # + -if -39 # + then 97 # + emit ;
: u/mod |u/mod ;
\ Avoid leading zeroes in (u.)
: three digit
: two digit digit ;
: (u.) 10 # u/mod 10 # u/mod if three ; then drop if two ; then drop

 digit ;
: u. (u.) space ;

The above shows how |u/mod can be made callable, for example, to save
memory when used multiple times in a definition. In (u.), u/mod is used two
times with a divisor of 10 to put three numbers on the stack.

Compiler

94 MyForth Reference Manual

Depending on the number to be converted, some of the values on the stack may
be zero. Because it is not necessary to display these one or two leading zeroes,
(u.) has logic to suppress them. The first “if” checks t to see if it is non-zero,
indicating that there are three non-zero digits on the stack. In this case, it calls
three which converts the number in t to an ASCII digit and emits it back to the
Host. Because three is not terminated with a semicolon, a call to it falls through
to two which converts two more digits.

If the first “if” finds that t is zero, then t is dropped and the second “if” checks the
next stack item for zero. If it isn’t zero, then two is called to convert the
remaining two digits. If the second number is zero, t is dropped and digit is
called once to convert the single valid digit. Note that three and two in the
definition of (u.) are followed by semicolons which normally compiles a ret (return
instruction). Disassembling (u.) reveals that these are optimized to jumps to
eliminate redundant returns.

MyForth Reference Manual 95

5
Assembler

Overview

This chapter describes how to use the assembler. Be forewarned: there isn’t
much to it. It provides most of what you need and, if you need more, you can
extend it.

The assembler is defined in the files named misc8051.fs listed in Appendix A.
The assembler definitions are in the section starting with “---------- assembler.”
Please refer to this listing when reading this chapter.

Like the rest of MyForth, the assembler is simple. Instead of providing a full-
blown RPN assembler, MyForth provides some basic assembler definitions that
are sufficient to accomplish MyForth’s mission: the efficient generation of 8051
code without the need to learn a complex system.

The assembler provides the essential tools you need. These tools are flexible
enough, once they are understood, to allow you to code transparently and
efficiently.

Note that there is no “special” assembler file that must be loaded: the assembler
definitions are included when you load misc8051.fs.

Assembler

96 MyForth Reference Manual

Assembly Definitions

In a typical Forth system, Code Words consist of a named set of assembly
language statements and/or macros that define a Forth Word. In such an
implementation, Code Words would start with a Word such as “code” and
terminate with a Word such as “end-code.”

Forget all that. In MyForth, there is no special defining sequence for Code
definitions: Words defined in the Target vocabulary with a colon (Colon
Words) are actually Code Words. MyForth Colon definitions can contain
macros, bracketed assembly language sequences or references to other
Colon Words.

The secret is now out: MyForth is essentially an 8051 macro assembler in
disguise. MyForth definitions read like Forth but their secret mission is to
efficiently compile 8051 assembly language definitions.

You may think that an RPN assembler and Code definitions are needed to
efficiently compile 8051 assembly language. Although MyForth provides some
useful assembler definitions, efficient coding is provided as a natural feature of
MyForth’s Colon and macro definitions. If this sounds strange, read on.
Hopefully it will become clearer as the operation of assembly definitions are
explained.

For those attached to an assembler, this chapter explains how to use the
MyForth assembler definitions. It also describes how to translate some standard
8051 syntax statements into assembly language statements.

Assembler

MyForth Reference Manual 97

In Line Assembly

Like using Code Words, most Forth programmers are accustomed to executing
in-line assembly within their Colon definitions to improve efficiency or to directly
access processor resources.

In MyForth, you normally code assembler definitions using the […] sequence
within a Colon definition in much the same way you would using special “in-line”
encapsulation with a conventional Forth system.

However, because of MyForth’s ability to code definitions as macros, this “in line”
approach to efficiency is seldom needed. As mentioned earlier, MyForth is
primarily a macro assembler implemented within a Forth conceptual framework.
Thus, you are always in an “assembler” environment.

When you use the […] sequence to compile assembly language instructions,
you are actually changing to the Host vocabulary and executing ordinary GForth
Words that directly lay down assembly instructions in the Target’s image.

This is also what macro definitions do. In fact, it is often unnecessary to use
brackets to denote assembler definitions; this is recommended practice to clarify
the programmer’s intent but you may have observed that it is omitted in many of
the MyForth system definitions.

One common example is the “nop” instruction – there is no MyForth Word with
that name so, when it is invoked, it is “found” as an assembler definition. Thus, it
may be used outside the brackets usually associated with an assembly code
sequence.

But, some caution must be observed: there are several assembler definitions that
have the same names as MyForth Words. These include push, pop and swap.
These are 8051 assembly language instructions and are also MyForth Words
that manipulate the stack.

The use of the assembly language versions are explained in the following
sections.

Assembler

98 MyForth Reference Manual

push and pop

In the context of the assembler, push and pop act on a register or direct cell.

Do not confuse the assembler versions with the Target versions: the Target
versions act on the contents of the accumulator, t.

In the Compiler chapter, the section describing the return stack shows how the
assembler versions of push and pop are used to define the MyForth definitions
of push and pop that apply to the data stack. In the MyForth definitions, the
assembler versions of push and pop are applied specifically to t, the top of
stack, and thus push and pop only the top of stack.

In the assembler, push and pop can be used with any direct cell; in MyForth,
push and pop apply only to the top of stack.

set and clr

Use set and clr to set and clear bits within a register, port or direct cell. MyForth
provides a number of operators beginning with “dot” to help specify bits within
ports and registers such as t. For example, to set or clear bits in t, use .t. Here
are two examples:

: set-example1 (- n) 5 # [1 .t set] ;
: set-example2 (- n) 5 # 1 .t set ;

In both cases, the result left in t is 7 (the bits are zero referenced). In the second
example the “1 .t set” sequence does not need to be bracketed because .t and
set do not exist in the Target vocabulary and are thus found and executed in the
Host vocabulary.

The format shown in set-example1 is perhaps preferable because it shows the
intent of the coding. It is also a safer form to use when you are not sure whether
or not a Word is defined in both vocabularies.

The “1” in the above just puts a 1 on the Host’s stack which is used by the
following definitions to assemble instructions to set bit 1 of the top stack item.
Outside the brackets, 5 also goes on the Host stack, but the Word # following it
assembles code that puts a literal 5 in t when the definition is executed.

Assembler

MyForth Reference Manual 99

Pins and Bits

The following assembler Words are available to set, clear and toggle bits:

setc, clrc (set and clear the carry bit)
set, clr (set and clear bits and port pins)
toggle, .P0, .P1, .P2, .P3 (port pins)

A previous section illustrated the use of set and clr with t. The syntax for setting
and clearing port bits is similar.

Here is how to use set and clr to change port bits:

:m enable [3 .P2 clr] m;
:m disable [3 .P2 set] m;

Note that the assembly sequence is bracketed within the macro definition. This
is because the macro compiling Word, :m establishes the Target vocabulary first
in the search order so that macro definitions are compiled directly into the Target
image.

The [before the assembler definitions establishes Forth first in the search order.
This is because assembler definitions are GForth definitions that execute
to lay down code in the Target image. In the enable example, “3” puts a
number on the Host’s stack and “.P2 clr”, executed by the Host, assembles
instructions in the Target image.

Assembler

100 MyForth Reference Manual

Here is a more detailed description of how the bracketed instruction sequence
(shown above) operates:

1. The left bracket establishes Forth as the first vocabulary in the search
order,

2. The “3 .P2” puts a bit address on the Host’s stack,
3. Either $C2 (clrb) or $D2 (setb) is put on the Host’s stack,
4. The Target compiler is turned on and either $C2 or $D2 is placed in the

Target image on the Host PC,
5. The byte compiled by “3 .P2” that was placed on the Host’s stack is

written to the Target image,
6. The Target vocabulary is set as the first vocabulary in the search order.

To see what is compiled, use the see command to decompile the definition.

Assembler

MyForth Reference Manual 101

Note that the brackets in the definitions of enable and disable are not really
necessary and are coded more as comments than directives. This is because
the bracketed items are not defined in the Target vocabulary. When the Host’s
dictionary is searched, they will be found and executed.

In the case of enable, a 3 will first be put on the Host’s stack; in fact, all numbers
not followed by a # will be put on the Host’s stack. The .P2 converts the number
on the Host’s stack to a bit address appropriate for use by clr and then puts it on
the Host’s stack. The clr instruction, defined on the Host, will execute to compile
an instruction into the Target image.

All of this will be a bit bewildering at first, but the secret to MyForth’s simplicity
and efficiency is that you can use a few well-understood tools to achieve the
results you want.

You should be prepared for some initial frustration and the frequent use of the
decompiler to see what strange things you have asked the compiler to do.

However, the adjustment period is shorter than the one needed to understand a
complex “kitchen sink” environment that provides a bewildering array of options
that you are forced to wade through each time you try to do something.

Digging yet a little deeper, here are the definitions of set and clr contained in
misc8051.fs:

[\ these are assembler, not Target Forth
: set $d2] , , [;
: clr $c2] , , [;

The [ensures that the Host’s compiler is used to define set and clr. The $d2]
and $c2] sequences put bytes on the Host’s stack and turn on the Target
compiler by establishing it first in the vocabulary search order.

The first comma writes either a $d2 or $c2 byte in the Target image; the second
comma writes the byte assembled by 3 .P2 from the Host’s stack to the Target
image.

The [ensures that Forth is established first in the vocabulary search order before
exiting.

Assembler

102 MyForth Reference Manual

The above illustrates how MyForth manipulates the two vocabularies, Forth and
Target, to control how things are compiled.

Finally, here is another example of how you might use set and clr in a definition:

:m SCLK 0 .P2 m;
:m (+P2.0) SCLK set m;

or

: ~P2.0 [SCLK toggle] ;

Of course, you will not be able to see the decompiled code for (+P2.0) unless you
put it in a definition. Remember that macros are not executable and can’t be
decompiled by see – they simply compile code in the Target’s image (on the PC)
when executed.

Again, the brackets in the definition of ~P2.0 are not strictly necessary and serve
mostly to indicate that they are assembler definitions.

Assembler

MyForth Reference Manual 103

mov

The most general of the MyForth assembler definitions is the mov instruction. It
can be used in most of the ways that the mov instruction is used in an 8051
assembler. The following sections provide specific usage examples.

As mentioned previously, MyForth designates registers by their numbers, 0
through 7. Numbers above 7 are assumed to be direct cell addresses.

The following examples show how to use mov to move data between registers
and direct cells.

\ Move data in a direct cell to a register

:m direct-to-register [$15 3 mov] m;
: testdr (- n)

$15 # a! 22 # ! \ move 22 into direct cell $15
direct-to-register \ move contents of $15 to R3
3 # a! @ ; \ put contents of R3 on the stack

\ Move data in a register to a direct cell

:m register-to-direct [3 $15 mov] m;
: testrd (- n)

3 # a! 33 # ! \ move 33 into R3
register-to-direct \ move contents of R3 to direct cell $15
$15 # a! @ ; \ put contents of $15 on the stack

\ Move data in a direct cell to another direct cell

:m direct-to-direct [$15 $16 mov] m;
: testdd (- n)

$15 # a! $a5 # ! \ move $a5 into direct cell $15
direct-to-direct \ move contents of $15 to direct cell $16
$16 # a! @ ; \ put contents of $16 on the stack

Assembler

104 MyForth Reference Manual

Note that there is no assembler sequence shown for moving a literal into a direct
cell. You can perform this operation using #! or (#!), as described in the
Compiler chapter. The Words #@ and (#@) are special cases that move data
from a direct cell to t. If you decompile definitions using these Words, you will
see that they compile mov instructions.

movbc and movcb

Use movbc to move a bit into the carry bit; use movcb to move a bit in carry to a
bit address.

Here is an example:
i

:m @P2.3 3 .P2 movbc m; \ move bit 3 of port 2 into carry

Note that the definition is a macro defined using the assembler but it is not
bracketed. This is because movbc and movcb are not MyForth (Target) Words
and thus are found in the Host vocabulary. When executed by the Host, like all
assembler definitions, they compile assembly language statements into the
Target image.

Putting the “3 .P2 movbc” sequence within brackets would emphasize that this is
an assembly language definition.

[swap]

Use [swap] to swap nibbles in t: it is equivalent to the “swap A” assembly
language statement. Because [swap] is not a Target Word, there is no need to
include it within brackets unless your intent is to clarify your coding.

Assembler

MyForth Reference Manual 105

nop

Use nop to compile a “no operation” instruction in the Target’s image. Here is a
simple example to pulse a port pin:

:m pulse-P2.3 [3 .P2 set nop nop nop nop nop 3 .P2 clr] m;

Again note that the brackets are optional.

inc and dec

Use inc and dec to increment or decrement the contents of a direct cell or
register. For example:

: bump-R7 (- n) $aa # 7 #! 7 inc 7 #@ ;

Executing bump-R7 will leave $ab on the stack. Note that it is not necessary to
bracket “7 inc” because inc is not a Target definition. Of course, you could code
the definition as follows to emphasize the in-line assembly sequence:

: bump-R7 (- n) $aa # 7 #! [7 inc] 7 #@ ;

reti

The reti macro assembles a return from interrupt (reti) instruction.

Assembler

106 MyForth Reference Manual

MyForth Reference Manual 107

6
Boot Loader

Overview

Understanding the Boot Loader (bootloader) is not needed for normal use of
MyForth. The information in this chapter is provided to help you understand
more about the operation of MyForth.

Purpose

The Boot Loader's sole purpose is to do basic initialization of the chip and
download your application code into the processor’s flash memory. Thereafter, it
is no longer used.

The Boot Loader does not execute commands interactively with the user.
This function is performed by the combination of the tethering code on the Target
and the Forth routines on the Host.

The Boot Loader is invoked with the d (d.bat) command. This command
compiles your application and downloads it to the chip.

Note that the only difference between the c command and the d command is that
the d command downloads to the chip after compiling the application. Thus, if
you do not need to download to the chip, you can immediately interact with the
chip after recompiling with the c command.

This is typically what you will do after powering up your chip to start a new
programming session. In that case, your program is already stored in the chip’s
flash and all you need to do is re-establish the connection to the chip.

Boot Loader

108 MyForth Reference Manual

Advantages

The primary advantage of using a Boot Loader is that it allows you to program
the Target via the serial port instead of programming the Target using the Silicon
Laboratories EC2 Serial Adapter or USB Debug Adapter and the Silicon
Laboratories IDE.

This simplifies the hardware needed for normal programming operations and also
reduces the number of operations needed to program your chip.

Installation

Overview

All MyForth boot loaders are coded to be compatible with the AM Research Boot
Loader. Although AM Research does not provide standard support for the
C8051F12x or C8051F41x chips, the MyForth Boot Loader uses the AM
Research handshaking protocol for its native Boot Loaders.

In the future, as MyForth adds native boot loaders, they will continue to be
compatible with the AM Research Development System

For chips supported by a native MyForth Boot Loader, you can use the chip.hex
and chip.bin files in your application directory to establish the Boot Loader.
These files are written each time you compile your application with the d or c
commands.

Installation of the MyForth Boot Loader for Silicon Laboratories chips requires a
hardware debug adapter and the IDE software furnished with a development
system from Silicon Laboratories, as described below.

Boot Loader

MyForth Reference Manual 109

AM Research

The AM Research Gadget modules support various Silicon Laboratories chips
such as the C8051F300 and C8051F310. The chips on Gadget boards are
furnished with an AMR Boot Loader already installed: you can use one of these
with MyForth without any additional programming.

The AMR Development System also has a JTAG/C2 loader facility that will write
a Boot Loader in any of the Gadget chips or any Silicon Laboratories chip
connected to a 10-pin program adapter. How to do this is explained in the AM
Research 8051 Reference Manual distributed with the AMR Development
System.

Installation of a Boot Loader via the JTAG/C2 interface is adequately covered in
the AM Research Reference Manual and is not covered here.

Silicon Laboratories

Installation of the Boot Loader using a Silicon Laboratories Development System
requires the following:

1. An EC-2 Serial Adapter or a USB Debug Adapter connected to a 10-pin
JTAG/C2 interface connector on a Silicon Laboratories Target Board (or
wired to the JTAG pins of your own Target processor)

2. The Intel HEX download function of the Silicon Laboratories Integrated
Development Environment (IDE).

The EC-2 Serial Adapter or USB Debug Adapter and IDE are furnished with
Silicon Laboratories development systems. The use of the Intel HEX download
function from the IDE is straightforward: just bring up the IDE and select the
appropriate menu options.

The following page provides a detailed procedure for downloading.

If you have purchased a development system for a newer chip, such as the
C8051F410, then Silicon Laboratories will provide a newer IDE and a USB
Debug Adapter. We recommend using the USB Debug Adapter, if you have it.

Boot Loader

110 MyForth Reference Manual

Here is a detailed procedure for downloading the Boot Loader using either the
EC-2 Serial Adapter or the USB Debug Adapter and the Silicon Laboratories IDE:

1. Connect a serial port to the EC-2 or a USB port to the USB adapter and
connect the JTAG/C2 cable to the 10-pin JTAG connector on the Target
Board (it is the 10-pin shrouded connector).

2. Power up the Target Board (power is not required for the EC-2, although a
power connector is provided).

3. Bring up the IDE. On an older IDE such as V1.85, select the
Options/Debug Interface menu items and then select either the JTAG or
C2 (Cygnal 2-wire) option, as appropriate. For a newer IDE that supports
the USB Debug Adapter, select the Options item on the
Options/Connections menu and then select either the EC-2 or USB Debug
Adapter. On the same options panel, also select either the JTAG or C2
interface, as appropriate (e.g., JTAG for 12x chips and C2 for 41x chips).

4. Select the Debug/Connect menu option (this is the same for older and
newer IDEs). The connection to the processor should be indicated on the
bottom of the screen.

5. Select the “Download code” option by clicking on the “DL” icon on the
toolbar or by pressing Alt-D (this is also the same for both IDEs).

6. On the dialog box that will pop up. For an older IDE, select the “not
banked” option. Then, select the “Erase all code space” option (probably
not required, but …)

7. Select the Browse button to browse to the directory containing the
chip.hex file you want to download. This can be any application directory
for that processor, provided that the c or d commands have been used to
compile the application

8. You may also have to select the file type you are looking for (it is Intel-
HEX

Once a program is downloaded to the chip via the JTAG/C2 interface, the EC-2
or USB Adapters and the IDE are no longer needed.

Note that when a chip.hex file is programmed into a Target processor, the
target processor will have a bootloader – all chip.hex (and chip.bin) files
contain a bootloader in addition to application code.

Boot Loader

MyForth Reference Manual 111

Operation

Location

For Silicon Laboratories chips, the Boot Loader resides in the first page of flash
RAM starting at $0000.

Overview

The Boot Loader consists of a very small amount of code (about 240 bytes) that
performs the following:

1. Sets up basic chip resources such as the watchdog interrupt, cross bar,
oscillator and serial port

2. It establishes new interrupt vectors to supplant those on page 0.
3. Checks to see if there is an active download request from the Host and, if

so, downloads code from the Host over the serial port
4. After downloading or after a timeout period, it jumps to your application

(turnkeyed systems) or to the Target’s tethering software (interactive
development).

Interrupt Vectors

The Boot Loader re-maps the interrupt vectors to Page 1. For most Silicon
Laboratories chips, these the re-mapping starts at location $200. For the
C8051F12x chips the vectors are mapped to $400 because of the larger page
size.

If you disassemble your code starting at location $200 or $400, you will see a
jump to cold, the Cold Start vector. Other interrupt vectors may or may not
follow this, depending on which ones your application needs.

The MyForth system code starts immediately after the last remapped interrupt
vector (see rom-start in the job.fs file for this location). In some cases, if there
are no other interrupts used, this will be immediately after the Cold Start vector.

Boot Loader

112 MyForth Reference Manual

Startup

Normally, the MyForth system code consists of definitions needed to implement
the tether and a few definitions useful for interactive development. These are
contained in debug.fs and interactive.fs (see the Job file).

Your application starts after the MyForth system code. For turnkeyed systems,
the Cold Start vector points to the “go” definition for your application. For
tethered application code, the Cold Start vector points to the tethering code (i.e.,
quit).

You can see all of the above by starting MyForth with the c command and then
disassembling starting at “cold” (i.e., see cold). Alternatively, you can use the
decode command to disassemble starting at location $200 or $400 (e.g.,
decode $0200).

The bootloader source code is contained in files such as bootloader300.fs,
bootloader310.fs, bootloader410.fs and bootloader120.fs. This code is
“included” in job.fs (e.g., see job300.fs in the \MyForth\chip directory). Thus, you
can examine the remapped vectors starting at $0000, the bootloader code
(starting around $ab) and the application, starting just after the remapped vectors
at $200. We suggest you compile an application and examine code at these
locations using the see, sees, or decode commands.

You can examine the bootloader code by entering decode $0000 (you might also
try entering “see boot”). For any system, however, you can examine the actual
content of these locations using a dump.

As mentioned above, your application starts immediately after the MyForth
system definitions. You can see where this is by defining a small test Word and
then disassembling the resulting code with see. If you have compiled a
turnkeyed application, you can examine your application code by entering see
go.

The see decompiler will show where your program starts. If your test program
includes calls to routines such emit, you can see where these are located too.

Boot Loader

MyForth Reference Manual 113

Example

You can see bootloader code by examining the bootloaders in the MyForth\chip
directory (e.g., the bootloader120.fs or bootloader300.fs files).

Advantages

To some, the overhead of the bootloader and the debug definitions that MyForth
may optionally load seems wasteful of processor resources. We feel that the
small overhead is worthwhile. The following sections provide more perspective
on the use of an interactive environment.

Interactive Test and Verification

The Forth system Words allow you to interactively exercise your code. Thus, you
can interactively examine the operation of your new code without relying on a
simulator or JTAG debugger.

There is no substitute for the real machine, especially if you need to examine
outputs at various pins or the behavior of connected hardware.

Remember that you are seldom just verifying the operation of the chip; you are
often verifying its interaction with connected hardware.

Code Reliability and Re-Use

All of the routines defined in the MyForth system are available for use by the
programmer, either as Forth Words or as assembly code.

Because of the multiple use of these routines, it is unlikely that they have any
hidden bugs: they are used by various routines before you select them for re-use:
if they were not reliable, your application would not work reliably.

Boot Loader

114 MyForth Reference Manual

Reduced Program Size

You will observe that programs do not grow very fast after a certain point. This is
because you are mostly re-using code that is already written and functioning
reliably.

This is especially true if you have factored your application properly so that useful
functions are available for re-use. Thus, the MyForth code is not simply
overhead you tolerate to get the benefits of interactivity; it is a reservoir of
powerful routines that make your programming easier.

For non-trivial applications re-use of code can significantly reduce the size,
reliability and coherency of your application; for small programs, perhaps using
macros for speed, program size is not an issue.

MyForth Reference Manual 115

7
Tethered Target

Overview

This chapter describes how the MyForth tether to the Target processor works. It
is provided for those who wish to know more about this important function.

However, it is not necessary to know how the Tether works to perform normal
programming operations.

Tether

116 MyForth Reference Manual

Basic Operation

The Host connects to the Target via a serial port and interacts with it using a
simple protocol that tells the Target what code to execute. Such a system is
usually called a "Tethered" Forth because the Target is tethered to the Host via a
communications link.

With a Tethered Forth, the Host PC performs most of the Target interpreter’s
work. Although it appears to the user that the Forth system is executing on the
Target, most commands are executing on the Host, which then tells the Target
what to execute. Thus, the Host only communicates to the Target when it needs
it to execute some code.

To implement a tethered Forth, the Target only needs to be able to execute
code at a specified address. Because of the simplicity of this requirement,
the code overhead on the Target is minimal.

Target Interpreter

The following describes how the Host interacts with the Target processor to
implement an interactive Forth test environment. The source code for the Target
Interpreter (tethered interpreter) is contained in tether.fs. Because the Target
only needs to be able to execute code at a specified address, the required
definitions are few and deceptively simple. Here is the entire source code listing
for the Target Interpreter:

] \ Target Forth
: emit begin 1 .SCON until. 1 .SCON clr SBUF #! ;
: key begin 0 .SCON until. 0 .SCON clr SBUF #@ ;
: ok 7 # emit ;
: number ok key ;
: execute swap push push ;
: quit key emit key key execute ok quit ;

Following sections describe the operation of the two fundamental definitions in
this listing, execute and quit.

Implementation 117

MyForth Reference Manual 117

execute

The number and function of the commands in a tethered Forth can vary. The
MyForth Target uses only one command, execute, to do the Tether’s heavy
lifting. This command takes two bytes on the Target’s data stack and pushes
them on the Targets return stack in the proper order.

In the code given at the start of the chapter, the semicolon at the end of execute
compiles a ret instruction, as usual. Thus, execute, when it completes, “returns”
to the address just pushed on the return stack. This performs the equivalent of a
jump (not a call) to the specified address. After the code at the address is
executed, it executes a ret, thereby returning to the code following execute.

In the above example, where execute is contained in the definition of quit, the
ok that follows execute will be called. This may seem a bit confusing or weird,
but is worth understanding.

quit

To get the two execution bytes on the stack, the Target sits in an endless loop,
defined by quit, that looks for execution addresses transmitted from the Host
over the serial link. When these are received, execute jumps to the specified
address.

Examining the code for quit, the sequence “key emit” simply waits for a byte to
arrive from the Host on the serial link and then echos it back. This signals the
Host that the Target is listening for the next address to execute.

When the Host receives the echo, it sends the two address bytes. The sequence
“key key execute” gets the two bytes sent by the Host and jumps to them, as
described above.

The “ok” signals the Host that the Target has executed the code by sending it a
“7.” The quit at the end of quit is a tail recursive call, returning execution back to
the beginning of the quit code (i.e., it is an endless loop).

The definitions of key and emit use the standard 8051 serial port flags and
registers to wait for a character (key) or send a character (emit).

Tether

118 MyForth Reference Manual

Development with the Debug Adapter

In some cases, you will experience problems downloading via the serial port and
the bootloader. Most of these problems are caused by USB to serial adapters.
This is especially true of adapters that buffer data and thus interfere with
bootloader handshaking.

If you have trouble downloading over the serial port, you can develop
interactively using the Silicon Laboratories USB Debug adapter and the IDE.
This still requires the use of the serial port but the timing requirements are more
relaxed.

For example, to develop using the IDE and a Silicon Laboratories Target Board,
connect the USB Debug Adapter to the board and use the IDE to download the
chip image (in chip.hex) to the chip. Note that you must first compile a current
program image in chip.hex using the “c” command.

To do this, select the “Connect” option on the Debug menu. This should connect
the Debug Adapter to the chip. When connected, the target connection pane at
the bottom of the window should (for example) change from “Target: ????????”
to “Target: C8051F300” to indicate that the adapter is connected. The code
image of the target at the right of the window should also indicate memory
contents.

Once the chip is connected, use the “Download Object Code” option on the
Debug menu to download the chip.hex image to the Target. After downloading,
disconnect from the Target using the “Disconnect” option on the Debug menu.

To begin interactive development via the serial port, reset the Target and bring
up the tether with the “c” command. You can verify that the Target is talking via
the tether by executing “.s” – this should produce a display of the Target’s stack
(e.g., 0>). To further confirm interactive operation, try putting a value on the
Target’s stack (e.g., “5 #”) and displaying the stack – the value should be
displayed on the stack after executing “.s” a second time. Executing “.” removes
the value from the stack and displays it.

Interactive development via the serial port can continue normally once the Target
is talking. Note that the method outlined above will work only if the serial port is
operating and is intended as a workaround for serial adapters that cannot reliably
interact with the downloader.

MyForth Reference Manual 119

8
Standalone Target

Overview

MyForth allows you to install a Forth system on the Target and interact with it
with a dumb terminal. This Standalone Target has the basic features of a Forth
system including an interpreter, a dictionary and stacks. With a Standalone
Target, you can communicate with your application without having a MyForth
system installed on a Host PC.

Thus, a Standalone Target is useful for interacting with a system over a serial
port when a tethered interaction is not practical. These applications would
include control, monitoring and testing of a deployed target.

120 Standalone Target

120 MyForth Reference Manual

Installation

To install a Standalone Target, edit config.fs in your project directory so that the
tethered constant is false (zero):

false constant tethered \ Standalone Target

After making the above change, compile and download your application using d,
as you would normally do for a tethered application. Afterward, you can interact
with your application using a dumb terminal at the same baud rate that you used
to download your application (e.g., 9600 or 38.4K baud).

Operation

Dumb Terminal

A dumb terminal is needed to exercise the standalone interpreter. To make it
easier to test the Standalone Interpreter, MyForth provides a dumb terminal that
can be executed from a MyForth command line. This terminal program,
dumb.fs, is loaded in loader.fs. Of course, you can use another terminal
program, such as Putty, to exercise a Standalone Target; in this case, you can
comment out the line that includes the MyForth dumb terminal.

To use MyForth’s dumb terminal, simply type dumb at the MyForth prompt. You
can escape from the dumb terminal with Ctl-C.

Standalone Target 121

MyForth Reference Manual 121

Stack

Entering numbers on the Standalone’s stack does not require them to be
followed by a #. This is because there is no need to distinguish between Host
and Target stack operations.

Because of the limited size of the Standalone’s terminal input buffer (tib),
numbers and Words are immediately interpreted after you enter a space or
carriage return. Also, remember that Standalone numbers are only 8 bits wide.
All numbers are assumed to be in decimal; you cannot enter Hex numbers by
prefacing them with a “$.”

To display the Target’s stack, type .s. The Word depth is available to check the
current stack depth.

Words

Forth Words that you have defined in MyForth can be executed by entering them
on the dumb terminal. However, because of the limited size of the Target’s
terminal input buffer, Words must be entered one at a time (you cannot have
multiple entries on a line).

Target dictionary entries consist of the first three characters of the Word and a
count. Thus, it is possible to have name conflicts. This is usually not a problem,
but duplicate names are not flagged as errors: you must avoid this on your own.

When entering a Word to be executed, pressing the backspace key will abort the
current entry and require you to re-enter the entire Word (or number).

122 Standalone Target

122 MyForth Reference Manual

Interpreter

The following describes how the Standalone interpreter operates, including the
structure of the Target’s dictionary.

The Standalone Target’s code is contained in standalone.fs and is also shown
below. The descriptions in this chapter are based on this listing.

Basic Definitions

First, observe that some Words are defined with”-:” instead of “:”. These “dash”
Words are callable by other Words, but their headers are not compiled on the
Target. Although these Words cannot be executed interactively from a terminal
their advantage is that they do not up any dictionary space on the Target.

The listing starts off by defining some basic building blocks for character I/O such
as key, emit, echo, space, cr and ok. These Words perform the same functions
as in any standard Forth system.

Similarly 2dup, clip, min and max manipulate and clip stack items. These will
not be discussed in detail, but note that they are all defined in terms of the
MyForth constructs covered in other parts of this manual. In particular, note the
use of the until. and –if in the definition of key, emit and clip.

The three Words to manipulate that data pointer are worthy of note only in that
they are defined with versions beginning with a “bar.” For example, p, which puts
the low and high bytes of the data pointer on the stack, is defined with |p.

In MyForth, whenever a Word begins with a “bar”, it indicates that this is an
“inline” or macro definition. These “barred” definitions just lay down instructions
and are often used within a normal Forth Word to make them callable.

The depth, huh? and ?stack Words perform basic stack checking and abort
functions and do not need much explanation. Note that the stack pointer is s.

Standalone Target 123

MyForth Reference Manual 123

] \ Target Forth
: emit begin 1 .SCON until. 1 .SCON clr SBUF #! ;
: key begin 0 .SCON until. 0 .SCON clr SBUF #@ ;
-: echo dup emit ;
: space BL # emit ;
: cr 13 # emit 10 # emit ;
-: ok space [char o] # emit [char k] # emit cr ;
: 2dup (over) (over) ;
: min 2dup swap
-: clip negate + -if push swap pop then 2drop ;
: max 2dup clip ;
: p |p ;
: @p |@p ;
: @p+ |@p+ ;
\ : depth [SP0 -2 +] # S #@ negate + ;
: depth S #@ invert ;
-: huh? [char ?] # emit cr reset ;
-: ?stack depth -if huh? ; then drop ;
2 constant tib \ begins after S, and A.
-: match (? - ?) @+ @p+ xor ior ; \ 0 if still a match.
-: word 0 # tib # a! match match match match ;
-: ?digit

[char 0 negate] # + -if huh? then -10 # + +if huh? then 10 # + ;
-: number

tib # a! 0 # @+ 3 # min begin swap 10 # (*) @+ ?digit + swap 1-
0=until drop ;

-: find
@p if drop word if drop p+ p+ find ; then invert ; then drop 0 #
here constant dict \ Patch this later with real dictionary.

-: dictionary 0 ##p! ;
-: interpret

p push push a push dictionary find if drop @p+ @p pop a! pop
pop p! push push ; then drop number pop a! pop pop p! ;

-: tib! (c) a push tib #@ 1+ tib #! tib # dup a! @ + 6 # min a! ! pop a! ;
-: 0tib tib # dup a! 0 # dup !+ dup !+ dup !+ dup !+ ! a! ;
-: query 0tib
-: back

key 8 # =if drop cr query ; then BL # max echo BL # xor if
BL # xor tib! back ; then drop ;

-: quit query interpret ?stack ok quit ;

124 Standalone Target

124 MyForth Reference Manual

tib

The start of tib, the terminal input buffer, is defined with a constant. It starts at
register 2, just after the stack and address pointers, s (register 0) and a (register
1).

The first cell in tib holds the count for the Word in tib to be interpreted. As
described in the section below on the dictionary, each dictionary entry consists of
a count and the first three characters of the Word to be interpreted.

When tib contains a complete entry the first four values have the identical
structure. Thus, for a complete entry, the first tib cell (register 2) contains the
Word count and the following three cells contain up to the first three characters of
the Word to be interpreted.

Note that there are five cells in tib; the last cell is used to store the last character
entered in excess of three characters. This avoids having to handle excess
characters: they are always stored in the last cell of tib.

To fill tib, query calls 0tib to initialize tib. Here is how 0tib works:

1. The location of tib is put on the stack (tib #), duped and stored into the
address pointer (a!). This sets things up for storing five zeroes into tib.

2. Five zeroes are stored in sequential tib locations with “0 # dup !+”. Note
that “!+” stores a value in the cell pointed to by the address register and
increments the address register. The sequence ends with a simple !
(store) because there is no need to increment after the last store.

3. Lastly, the address of tib is restored in a.

Standalone Target 125

MyForth Reference Manual 125

The other tib Word to be explained is tib!. This takes a character from the stack
and stores it in tib, updating the tib count. Here is how it works:

1. After preserving a with “a push”, the count is updated with “tib #@ 1+ tib
#!”.

2. Next, “tib # dup a! @” is used to get the updated count, saving the address
of tib on the stack with a “dup”. The “+” adds the address of tib to the
count to obtain the address of the next available location, using “6 # min”
to clip the address so limit the number of characters stored in tib.

3. The calculated address is stored in a with a! and a subsequent ! stores
the current character. Note that the clipping ensures that any characters
entered after the first three characters is sloughed by storing it in the fifth
tib cell, which is not used in dictionary matching (i.e., by match). The “pop
a!” restores the previous contents of a.

quit

The definition of quit is somewhat similar to that of more conventional Forths in
that it is an infinite loop, querying for user input, interpreting or aborting as
appropriate and then returning for more.

The first thing to note about quit is that it is defined using efficient tail recursion
instead of as a begin … again loop. This illustrates another way that MyForth
allows you to loop.

The first thing that quit does may seem a bit strange: it calls query, which simply
clears the tib and falls through to the next definition (i.e., there is no semicolon to
compile a return).

The mystery of query is solved by examining the following definition, back. One
function of back is to restart tib when it encounters a backspace. If back sees a
backspace, it just jumps back to query to start over. Note: pressing backspace
does not remove characters from the tib; it aborts the current entry and requires
the user to re-enter the entire Word. This is much simpler than keeping track of
backspaces.

Assuming that back gets a valid character, it next checks to see if a blank has
been entered. It does this by performing an xor with the entry. If a blank is
entered, then back returns: its job is done and some characters are in the tib
ready to be interpreted. If the user has not entered a blank to signal the end of
an entry, another xor recovers the character, storing it in tib and returning for
more characters.

126 Standalone Target

126 MyForth Reference Manual

Following sections describe the processing of the characters captured at tib.

After the input characters are processed, the result is one of the following: 1. A
jump to the Word at tib, 2. A number put on the Target’s stack resulting from the
execution of number, or 3. A stack error. The “found” and “number” actions are
discussed below.

If there is a stack error (e.g., as a result of processing by number), the stack
pointer will be positive. The execution of depth fetches the stack pointer and
inverts it to form a flag for –if. Thus, a stack error will result in the execution of
huh?. This Word simply emits a question mark and jumps to the reset vector.
The reset vector is defined as location zero at the end of misc8051.fs.

If there are no stack errors (i.e., a Word was executed or a number was put on
the Target’s stack), then an “ok” is sent to the Host to signal successful execution
and the tail-recursive quit is executed to continue the indefinite quit loop.

Standalone Target 127

MyForth Reference Manual 127

Interpret

Interpret looks a little intimidating, but is really quite simple. The first few Words
just save the data pointer (p) and address register (a) prior to loading the data
pointer with the address of the start of the Target’s dictionary.

Note that the data pointer is apparently zeroed. But, the address of the start of
the dictionary is patched after your application is compiled. To see how this is
done, refer to the job.fs file. At the end of it you will see the following:

tethered [if] \ For interactive testing, entering numbers.
:m # number emit-s m;
:m ## [dup 8 rshift $ff and swap $ff and] # # m;

[else] headers] here [dict org heads ##p! org] [then]

The part we are interested is the [else] condition that is executed if the
application is standalone (i.e., not tethered). The “headers” copies the dictionary
from its separate address space over to the end of the dictionary, setting the
value of heads to point to the beginning of the dictionary.

Then, “here” is invoked put the Target’s dictionary pointer on the stack for later
restoration. The “dict org” phrase sets the Target image compilation address to
the address at which we previously compiled the “0 ##p!” instruction. The “heads
##p!” recompiles (and over writes) the instruction at that address using the
correct address of the start of the dictionary. Finally, “org” restores the Target’s
compilation pointer to the address that it had before performing the dictionary
patch.

The interpret Word next uses find to find a potential dictionary entry. The
operation of find is explained below.

Assuming that a dictionary entry is found, DPTR (p) points to the byte
immediately following the found header. When interpret executes @p+, it
fetches the first byte at the address pointed to by DPTR (p) and also increments
the data pointer to the following byte.

This byte is the second byte of the execution address for the definition just found.
The @p instruction gets this byte and puts it on the stack together with the
previous byte; at this point the execution address of the found Word is on the
Target’s stack.

128 Standalone Target

128 MyForth Reference Manual

Next, the phrase “pop a! pop pop p!” restores the address and data pointers that
were saved at the start of the definition. Last, interpret pushes the execution
address of the found Word on the return stack and executes. This compiles a ret
instruction that will result in a jump to the execution code for the found definition.

If a match is not found in the dictionary for the characters at tib, then number is
executed to try to convert the characters to a number. Following this attempt, the
address and data pointers are restored.

find

The find Word searches through the Target code until it finds a non-zero value.
During the search, the data pointer is incremented. When it finds a potential
dictionary entry, it drops the value and proceeds to word.

First, word puts a zero on the stack to act as a “found” flag and loads the
address of tib into the address (a) register; this will be used to fetch characters
from tib that will be used by match.

To see if the dictionary candidate matches the contents of tib, match performs
an xor; if the items match, the value will be zero. This value is “ored” into the top
of stack to maintain the “found” flag.

The match is performed four times to coincide with the four-cell size of a
dictionary entry. When all four matches are complete, the “found” flag (top of
stack) will be zero if a match was found or non-zero if there was no match.

Standalone Target 129

MyForth Reference Manual 129

Dictionary

Location

The dictionary for the Standalone Interpreter can be located by first executing
“see dict” and noting the address loaded into DPTR at that location. The
decoding will look something like this:

---------- dictionary
02FF 90 03 CC mov DPTR, #03CC ##p!
0302 22 ret ;

Note that the definition of “dictionary” in standalone.fs compiles a “dummy” load
of DPTR. This is patched later, in job.fs with the following code:

headers] here [dict org heads ##p! org]

Structure

Each dictionary entry consists of the following:

1. The length of the Word’s name
2. The first three ASCII characters of the Word’s name
3. The MSB of the location of the Word’s compiled code
4. The LSB of the location of the Word’s compiled code

Using the example given above, entering “$02FF decode” will produce a
sequence of bytes like this for the dictionary entry for “cold”:

04 ß length of the Word
63 6F 6C ß first three ASCII characters “col”
03 ß MSB of Word definition
C4 ß LSB of Word definition

Entering “$03C4 decode” will confirm the vector does point to the “cold”
definition.

130 Standalone Target

130 MyForth Reference Manual

MyForth Reference Manual 131

9
Examples

Overview

The following example applications are all loaded by the job.fs file in their project
directories. The Job file manages the loading of source code files that support
the application such as the Special Function Register definitions and the
bootloader.

The examples that follow concentrate on the code that implements the
application. Because the support functions and application management are
given elsewhere in this manual, they are not included in the following application
descriptions.

The applications represent two processor extremes. The Pseudo Random
Sequence Generator application, in the PSR Project directory, uses a
C8051F120 chip to illustrate what a fast processor can do.

The LCD driver application, in the LCD Project Directory, uses a tiny and
inexpensive C8051F300 processor to illustrate how it can function as a
peripheral controller.

132 Examples

132 MyForth Reference Manual

Random Sequence Generator

The code that follows is for a 32-bit Pseudo Random Sequence generator. It
was coded for the Silicon Laboratories C8051F120 processor running at 98 MHz.

The code for this example is contained in the PSR Project Directory and the
application is loaded by the job.fs file. The source code for the application is
contained in the source code file psr.fs. We suggest that you take a quick look
at both of these files before reading further.

Pin Assignments

Only two pins are assigned for the register. The random output is assigned to
P1.6, which normally drives an LED. For fast random noise output, of course,
the LED does not visibly change; in this case, the outbit pin can be viewed on an
oscilloscope (or monitored on a crystal earphone connected to ground).

The Microsoft Word document PSR.doc, in the PSR Project Directory, provides a
more detailed description of the application and some photographs of the PSR
output captured on an oscilloscope.

\ psr.fs

:m outbit 6 .P1 m; \ LED
:m clue 7 .P1 m; \ For timing

:m +clue clue set m; :m -clue clue clr m;
\ :m +clue m; :m -clue m; \ all clues disappear!

Note that ~P1.6 (toggle Port 1, pin 6) and ~P.7 are defined at the end of the
application to help test it.

Examples

MyForth Reference Manual 133

Shift Register Setup & Initialization

cpuHERE constant sequence 4 cpuALLOT
\ XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
\ ^ bit 31 ^ bit 18
\ ^ sequence ^ sequence+2

\ If all bits are clear, reseed with $aaaaaaaa.
: ?seed

sequence # a! $aa #
dup !+ dup !+ dup !+ ! ;

Shifting

The following definition for psr is the heart of the application, shifting the register
once (from right to left in the diagram above) and applying the feedback bits to an
exclusive or to generate the bit to be shifted into the lower end of the register.

Note that the feedback bits, 18 and 31 were selected because they produce a
maximum length repetition cycles (232-1). How these are selected is beyond the
scope of this document.

The code below is reasonably straightforward and the purpose of each of the
operations are described in the comments. It may be instructive, however, to use
see to examine the assembled code.

One thing that may be a bit confusing are the “sequence” phrases within
brackets. The brackets are used to use the Host (GForth) to perform an address
calculation for one of the four bytes used to form the 32-bit register. The (#@) 2*’
gets the byte from the specified address and shifts it left one bit, accounting for
the carry (this is why 2*’ is used instead of 2*).

Note that the clue bit is turned on at the start of the routine and turned off at the
end of the routine. This provides a signal that can be observed on an
oscilloscope to monitor the timing of the psr routine. See the PSR.doc manual
in the PSR project directory for oscilloscope screen captures showing this signal.

134 Examples

134 MyForth Reference Manual

\ Shift once with feedback from bits 18 and 31.

:m psr +clue
[sequence 1 +] #@ \ get bit 18.
[2 .T movbc 7 .T movcb] \ move it to bit 7 of TOS.
sequence #@ xor \ xor bits 31 and 18.
2*' \ move xored bit into carry.
outbit movcb
\ Shift xored bit into sequence.
[sequence 3 +] (#@) 2*' [sequence 3 +] (#!)
[sequence 2 +] (#@) 2*' [sequence 2 +] (#!)
[sequence 1 +] (#@) 2*' [sequence 1 +] (#!)
[sequence 0 +] (#@) 2*' [sequence 0 +] (#!)
drop -clue m;

Display

The .psr Word provides a way of looking at the contents of the register. Output
is displayed in hex, unsigned decimal and as a double number, courtesy of h., u.
and d., respectively. Again, note the use of brackets to invoke the Host to
calculate byte addresses.

\ View current shift register
: .psr cr

[sequence 0 +] #@ h.
[sequence 1 +] #@ h.
[sequence 2 +] #@ h.
[sequence 3 +] #@ h.
space
[sequence 0 +] #@ u.
[sequence 1 +] #@ u.
[sequence 2 +] #@ u.
[sequence 3 +] #@ u.
space
[sequence 1 +] #@
[sequence 2 +] #@ d.
;

Examples

MyForth Reference Manual 135

Initialization & Test

The psr! Word takes four bytes, represented by n1, n2, n3 and n4 in the stack
diagram, and stores them in the register. Note how efficiently this can be done
by putting the start address of the byte sequence, sequence, in the address
register and then indirectly storing the bytes using !+, the auto incrementing store
operator.

The 0psr Word zeroes the register and then uses ?seed to initialize it to a
pattern of alternating ones and zeros. The init Word initializes the register and
shifts it 256 times to start with a scrambled bit pattern. To test, use t to shift the
register 13 times and then display the results.

To run continuously, use go, which initializes the chip’s crossbar switch,
initializes the register and then continuously executes psr.

\ Load a seed value in the shift register.
: psr! (n1 n2 n3 n4 -) sequence # a! !+ !+ !+ ! ;

\ Note that #@ and #! push and pop the data stack, but
\ (#@) and (#!) assume the top of stack is already free to be used, so
\ there is no need to push or pop.

: 0psr 0 # dup dup dup psr! ?seed ;
: init 0psr 0 # 7 #for psr 7 #next ;
: t 13 # 7 #for psr 7 #next .psr ;

: go init-xbr 0psr begin psr again

: ~P1.6 6 .P1 toggle ;
: ~P1.7 7 .P1 toggle ;

136 Examples

136 MyForth Reference Manual

LCD

The following code shows how to use a C8051F300 chip to drive an LCD display.

The code for this example is contained in the LCD Project Directory and the
application is loaded by the job.fs file. The source code for the application is
contained in the source code file lcd.fs. We suggest that you take a quick look
at both of these files before reading further.

Examples

MyForth Reference Manual 137

Pin Assignments

The LCD Application starts with a block of comments describing how the LCD
display is wired to the chip. There is nothing much to say about this except to
note the use of the “0 [if] … [then]” conditional, defined in GForth, to create a
comment block.

The comment block text is given below.

\ lcd.fs

\ Nibble mode LCD driver for C8051F300 -- 22Aug06 cws/rjn
\ based on working driver written in AMR Forth
\ SFR definitions are included in job.fs

0 [if]

LCD PORT 300 FUNCTION
PIN PIN
--- ------- ----- -------------------------------------
 1 ---- 11 GND
 2 ---- +5 Volts (used 78L05 on Gadget MB)
 3 ---- Contrast Voltage 0-5 Volts (10K pot)
 4 P0.7 10 RS - Instruction Register Select
 5 GND 11 R/W - H=READ L=WRITE Registers (GND)
 6 P0.6 9 E - Enable P0.6
 7 GND 11 byte DB0
 8 GND 11 byte DB1
 9 GND 11 byte DB2
10 GND 11 byte DB3
11 P0.0 1 byte DB4 - nibble DB0
12 P0.1 2 byte DB5 - nibble DB1
13 P0.2 4 byte DB6 - nibble DB2
14 P0.3 5 byte DB7 - nibble DB3
[then]

138 Examples

138 MyForth Reference Manual

Pin Configuration

The code below sets up the pin I/O for the LCD. The first thing to note is the use
of] to set the Target vocabulary. This is ‘belt and suspenders” programming but
does illustrate how bracketing can be used to note the intended vocabulary
context.

] \ Target Forth

Next is the I/O setup for the 300’s pins (11 of them, total, including power and
ground!). In this case, all pins will be used as outputs so the macro push-pull
sets all bits in P0MDOUT to ones with ior!, the “inclusive or” function of MyForth.

Following definitions provide convenient macro names for ports, special function
registers and output pins. The instruction and data macros set and clear bit 7
in Port 0 to signal either an instruction or data command to the LCD.

\ ---------- I/O
\ set all outputs as push-pull
:m push-pull $FF # P0MDOUT ior! m;

:m pins P0 m;
:m dirs P0MDOUT m;

:m .E 6 .P0 m;
:m .RS 7 .P0 m;
: instruction [.RS clr] ;
: data [.RS set] ;

Examples

MyForth Reference Manual 139

Delays

\ ---------- delays
: us (n -)

7 #for
 6 # 6 #for 6 #next
 7 #next ;
: ms (n -)
 7 #for
 100 # 6 #for
 81 # 5 #for 5 #next
 6 #next
 7 #next ;

\ 160 us may be ok at half the value given
: strobe [.E set] 100 # us [.E clr] 160 # us 160 # us ;

Character Output

The Word lcd is the heavy lifter in the LCD application: it takes a character on
the top of stack, t, and outputs it to the display a nibble at a time. Note the
difference in usage of and and and!: and performs a logical operation on two
stack items while and! performs a logical and on a port register.

The clear-lcd Word shows how output to the LCD can be combined with
signaling bits to perform a function, not display a character.

\ ---------- lcd words
\ $c4 swaps nibbles in the accumulator in one cycle

: lcd (c -)
$b0 # pins and! \ output high nibble first
dup $f0 # and [$c4] , pins ior!
strobe
$b0 # pins and! \ now output low nibble
$0f # and pins ior!
strobe ;

: clear-lcd instruction 1 # lcd data 100 # ms ;

140 Examples

140 MyForth Reference Manual

Initialization

The init-lcd Word initializes the display while init ensures that the pins are
correctly set up for output.

: init-lcd
\ instruction

$30 # pins #! \ RS=0, instruction mode
$cf # dirs ior! \ configure pins as outputs
30 # ms \ power on delay
$03 # pins #! \ initialization pattern
strobe 10 # ms

 strobe
 strobe
 $02 # pins #!
 strobe 10 # ms

$28 # lcd 10 # ms
 $0e # lcd
 $01 # lcd 10 # ms
 $02 # lcd
 data 10 # ms ;

: init push-pull init-lcd ;

Examples

MyForth Reference Manual 141

String Output

The lcd-type Word outputs a string located at the double (16-bit) address on the
stack. Note that the @p+ gets the string’s count, which is then used by the
begin … 0=until loop.

The definition of “ looks a little strange but once dissected isn’t too bad. The “34
parse” just parses the input stream using a quote as a delimiter. The “here there
place” phrase moves the parsed string from GForth’s “here” to the Target image.
The “here there [c@ 1 +] allot” phrase makes sure that enough room is allotted
in the Target image to accommodate the string (simple, huh?).

The string Word gets the two bytes specifying the address of greet, arranges
them in the correct order, and passes the address to lcd-type.

The greet Word, executes string to output the string compiled by the quoted
phrase that follows.

\ ---------- Strings.
: lcd-type (da) p! @p+ begin @p+ lcd 1- 0=until drop ;
:m " 34 parse here there place here there [c@ 1 +] allot m;
: string pop pop swap lcd-type ;
: greet string " It's MyForth!"

\ Example: init greet

142 Examples

142 MyForth Reference Manual

MyForth Reference Manual 143

10
Troubleshooting

Overview

Because MyForth does not have much extra code for error recovery, it must
depend heavily on the operating system (e.g., batch files), GForth and (you
guessed it) the user. Because the source of some errors may not be obvious,
the following discusses common problems and their resolution.

This section primarily consists of problems encountered and documented during
project development. Because of this, it is not organized in any particular order
(e.g., according to frequency of occurrence).

Terminal Errors

When compiling with the c and d batch files, an error message may appear that
includes the following:

the Terminal:0: File I/O exception

This normally indicates that an error has occurred before attempting to load the
job.fs file. Examine the c or d batch files for files that they load. For example, a
file such as loader.fs may be missing in a local directory or (more commonly) a
path to a file contained in the batch file may be wrong.

Troubleshooting

144 MyForth Reference Manual

Stack Errors

Numbers Left on the Stack

After compiling an application, always note the stack results. If there are
numbers left on the stack, this always indicates an error. One common source
for this kind of error is an incorrect use of the [and] compiler Words. Usually, an
argument put on the GForth stack and has not been consumed during
compilation of a MyForth Word.

One common error of this type is forgetting to use # or ## after constants
(literals) to be put on the MyForth stack at run time. Note that the action of these
two Words is to take a number off of the GForth stack and compile a definition
that will put the number on the Target’s stack at run time (i.e., to compile a literal
from a number placed on the GForth stack).

One way to see where errors of this kind occur is to look at the numbers left on
the stack and then examine recently-edited code for those same numbers. If you
have made a large number of changes to multiple files, then you can
troubleshoot by putting unique numbers in between definitions to force them to
appear on the stack display.

It is recommended that the troubleshooting numbers be put on lines by
themselves, perhaps separated by blank lines. After recompiling, you can then
see where the “bad” numbers appear in relation to the troubleshooting numbers.

One way to implement this technique is to use troubleshooting numbers that
correspond to the line number in the source file. This also makes them easier to
remove after the culprit is found. To isolate the problem down to a particular
Include file, put line numbers before and after Include statements in the Job file.

Another way to troubleshoot this kind of problem is to place the following phrase
in your code near the suspected problem definitions or “include” files, as follows:

[cr .(before the bad words) .s]
.
.
.

[cr .(after the bad words) .s]

The troubleshooting phrases use GForth to display an error message and the
GForth stack. These should help isolate the bad code.

Troubleshooting

MyForth Manual 145

Stack Underflow

If a stack underflow occurs during compilation, it is often caused by Words
expecting an argument that is not provided. For example, the phrase “[push]”
would cause an error because the left bracket has set the compiler up to search
the GForth vocabulary first. This is common for assembly language sequences.

In this case, the “push” instruction requires a register number as an argument.
The correct sequence would be something like: [5 push] . Note that the push
and pop Words in MyForth are not assembler Words and do not require an
argument.

One caution in using code from other applications is that the programmer may
have used a Word knowing that the compiler state is correctly set or unimportant.

For example, “nop” will compile a “nop” instruction whether on not it is enclosed
in brackets. Because it is an assembler Word, it is not defined in the MyForth
vocabulary and it will be found when the GForth vocabulary is searched. We
strongly encourage the explicit use of brackets to make the programmer’s intent
clear and avoid having to guess at the compiler state.

For example, the recommend phrase would be: [nop] . This explicitly specifies
that this is an assembler Word and that the GForth vocabulary should be
searched first (the GForth context is set by the first left bracket).

Numbers on the Target Stack

If you enter “.s” to look at the Target’s stack and notice numbers that should not
be there, check to see if you have loaded debug.fs .The debug file loads the
definition for “.s” for the Target. If you have patched out debug.fs for the final
application and forget to include it when going back to change or troubleshoot,
then you will be executing “.s” for GForth, not the Target. Usually, you can tell if
you are looking at the GForth stack if there are two stack items, both the number
4.

Troubleshooting

146 MyForth Reference Manual

Locating Definitions

MyForth does not provide a facility such as “locate” (“see” in some systems) or
“view” to locate the source code for a definition and automatically display or edit
it. It also cannot display a list of all Words that use the definition (like the “where”
command in some systems).

If you are using GVim you can locate the source for a Word by placing the cursor
on the Word (e.g., in a definition) and then executing Ctl] (return with Ctl T).

Another work around for the lack of a “where” command is to use the “grep”
command to locate a Word’s definition and all the places that it is used. This
command is available on all Linux systems and can be installed with the Cygwin
tools on Windows systems. Within GVim you can shell out (using the “sh”
command) and execute grep from the command line.

For example, to find where the Word “test” is defined, enter: grep “: test” –n *.fs
This will list all of the instances of the Word “test” and print out the file name, the
line number (the “-n” option) and the contents of the line in which the Word
appears.

This is also very useful in searching for possible duplicate definitions (another
feature that MyForth does not have). If you cannot find a Word, remember that it
may be defined as a macro (e.g., grep “:m test” –n *.fs).

Another way to find where a Word is defined is to compile the system (using the
“c” or “d” commands) and then use “see” to observe what definitions are near the
Word you are interested in. Often the names of the Words defined nearby will
give a clue as to the name of the source file.

Troubleshooting

MyForth Manual 147

Serial Port

Hangup

By far, serial port hangup is the most common error you will encounter. This is
typically because something in the application causes an error or because the
application executes a non-terminating code sequence (e.g., begin … again).
This is discussed more fully in the Downloading Problems section below.

Unfortunately, there is no way to recover from this error except by terminating the
Command Window and restarting it. This is a reasonably fast operation if you
have set up batch files that will quickly return you to your application directory.

Comm Errors

When compiling and downloading your application, you may notice an error that
looks like this:

Problem downloading object code.
in file included from *the terminal*:0
evaluated string:-1: Aborted
open-comm download target talking

This text indicates there is a serial port communications error. To recover,
terminate the compilation (e.g., by executing bye), and then terminate the
Command Window (e.g., by executing exit). After restarting the Command
Window, the serial port should be reset and the application can be compiled and
downloaded in the normal way (e.g., by executing the d command).

This error may also indicate that the serial port is not connected to or
communicating with the processor. This could be because of a bad cable
connection, lack of power or other problems that would keep the processor from
communicating with the Host.

Troubleshooting

148 MyForth Reference Manual

Downloading Problems

A number of downloading problems have been traced to USB serial adapters. All
are not alike and some produce frequent connection problems during
downloading. The best one found so far for Windows is an adaptor made by
Keyspan. It is somewhat pricey but includes an LED indicator and software that
can be used to monitor serial and USB traffic. Low-cost adapters have proven to
be the most likely to cause problems.

One other very frustrating download problem is the inability to download after
multiple tries, even with new command prompt windows. Turnkeyed applications
performing high-speed I/O most frequently cause this type of problem.
Applications performing serial port I/O can also cause a problem, particularly if
they are turnkeyed.

The best way to prevent downloading problems is to avoid turnkeying an
application until close to the time of final release. It is recommended that, during
development, the “go” turnkey Word be executed manually after compiling and
that the application loop have some way of manual termination (e.g., a switch
press or power cycling).

One good way to produce an application that is very close to the final turnkeyed
product but that can still be manually terminated is to test for a switch closure in
the main application loop. Most of the Silicon Labs (SL) development boards
include a utility pushbutton that can be used for this purpose. Try to arrange your
I/O assignments so that this pushbutton remains mapped to the default port/pin
assignment on the development board. Here is an example “go” sequence for a
SL 310 development board:

:m sw [7 .P0] m; \ default assignment for on-board switch

: go .version init begin do-app sw 0=until. ;

Note that the loop terminates on a bit condition, hence the use of “0=until.” (the
period after “0=until” signifies that a bit condition is being tested, not the stack).

In the above example, the “sw” pin should be configured as an input. The switch
pin is typically tied high through a resistor with the switch wired between the port
pin and ground. The schematic for most of the SL development boards shows
how this is done.

Troubleshooting

MyForth Manual 149

If all else fails, use the SL IDE to reprogram the chip using the debug adapter, as
noted in the section titled “Development with the Debug Adapter” in the Tethered
Target chapter.

Whenever a “c” or “d” command is executed, the application is recompiled and
an Intel HEX file is generated as the chip.hex file (a code image in Intel HEX
format). Specify this as the download file in the SL IDE. Be sure to use the
chip.hex file in your application’s directory – the SL IDE will use the directory
that was last used which is not necessarily the directory in which your application
resides.

After programming the chip with this file and terminating the IDE, the application
can be run after a power reset. Generally, disconnecting the debug adaptor is
not necessary, but the chip should be disconnected before leaving the IDE.

Note that connecting to the chip, downloading the image file and disconnecting
the chip are all performed from the “Debug” dropdown menu on the SL IDE.

If the revised application is set as “tethered” in the Job file with a switch
termination in the main loop, as recommended above, the new program should
respond reliably to download requests after the switch is pressed to terminate the
“go” (turnkey) Word.

Using the SL IDE to download files will quickly convince you of the advantage of
interactive downloading and development.

Troubleshooting

150 MyForth Reference Manual

Improper Exits

The most frustrating type of error is caused by the unexpected consequences of
a “return” compiled in a definition that is used within another definition.

Often this is caused by using a conditional macro within another
conditional structure in a “colon” Word. An exit (;), defined in a macro,
can cause an unexpected exit from the middle of a definition that uses the
macro. Thus, it may “short circuit” the code following the macro. This is
because the exit will be from the routine using the macro.

One symptom of this is that arguments are left on the Target’s stack after
executing a “stack neutral” routine. To make matters worse, the number of
arguments left on the stack can vary, depending on conditional execution within
the definition.

Seemingly innocuous conditional phrases used within a definition are the most
common cause of this error. Here is an example:

\ --- check for option change or switch closure

\ note: ?cmd can't be a macro because the first “;” exits ?change
: cmd? (-- flag) sw 0=if. $ff # ; then $00 # ;

: ?change
option dup begin drop option |over xor cmd? ior until

 drop drop ;

In this example, cmd? is simply leaving a flag on the stack based on the
condition of a switch attached to an I/O pin. (sw).

A problem occurs if cmd? is defined as a macro. Then, the return instruction
compiled by the first “;” would cause a premature exit from ?change, not an exit
from cmd?, as intended.

With cmd? defined as a macro, the two drop instructions would not be executed
and there could be another argument left from intermediate results within the
begin … until loop.

Troubleshooting

MyForth Manual 151

Note that this “short circuit exit” can be very useful when correctly employed. If
you are getting some very strange results of this type, the simplest solution is to
closely examine your code and change some definitions from macros to Words.

Another (recommended) approach is to examine the code compiled by the
troublesome definition and see under which condition the loop exits – you will
usually find an unexpected (and unwanted) “ret” instruction. Remember, one of
the primary programming activities in MyForth is examining compiled code using
the see or decode instructions.

sees

As noted in the manual you can use the sees.bat file decompile a definition and
write the output to a file using the “>” file redirection operator.

For example, to decompile 20 lines of the Word 2tib, one could execute the
following at the Command Window prompt: sees 20 2tib >seeslist.txt .

Unfortunately, sees cannot be used to view the decompilation of any Word
containing the “>” character because Windows interprets it as a redirection
operator.

The easiest workaround for this problem is to rename the Word (e.g., from >tib to
2tib). Otherwise, you can use see or decode while at the MyForth prompt
(perhaps using a screen print).

Troubleshooting

152 MyForth Reference Manual

Conditionals

Most MyForth conditionals, such as 0=if or –if, operate on the current value of
the stack.

But, the following require a literal value supplied at compile time:

=if <if =until <until .

A compilation error will occur if these conditionals are used as if they are
operating on stack values supplied at run time. Here is an example of a
definition that correctly uses <if:

:m |1char (n - n') dup 48 # <if drop !err ; then drop adjust m;

Also note that some conditionals leave the condition value on the stack and
others, most notably conditionals based on bit tests, do not. One common error
is the use of a “drop” with a conditional that tests a bit without affecting the stack.

One example would be the if. conditional used to check the status of a bit. One
example of this would be the use of a phrase such as 4 .P0 if. to check the state
of a port bit.

The best way to avoid problems of this type is to examine working code
examples. This is the kind of problem that will occur frequently when you first
start coding but will rarely occur as you become familiar with how MyForth
handles conditionals (e.g., at first, look at how the definitions using conditionals
decompile).

MyForth Reference Manual 153

Appendix A

Program Listings

Appendix A: Program Listings

154 MyForth Reference Manual

Appendix A: Program Listings

MyForth Manual 155

\ misc8051.fs

0 [if]
Copyright (C) 2004-2006 by Charles Shattuck.

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For LGPL information: http://www.gnu.org/copyleft/lesser.txt
For application information: http://www.amresearch.com

[then]

nowarn

: hello ." Talk to the target " ;
' hello is bootmessage

variable talks 0 talks !
: talking true talks ! ;

\ ----- Virtual Machine ----- /
\ Subroutine threaded.
 0 constant S \ R0 = Stack pointer.
 1 constant A \ R1 = Internal address pointer.
$e0 constant T : .T T + ; \ Acc = Top of stack.
\ DPTR = Code memory address pointer, aka P.
\ B is used by um*, u/mod, and over, not preserved.

Appendix A: Program Listings

156 MyForth Reference Manual

\ ----- 8051 Registers ----- /
$82 constant DPL $83 constant DPH
$98 constant SCON : .SCON SCON + ;
$99 constant SBUF
$80 constant P0 : .P0 P0 + ;
$90 constant P1 : .P1 P1 + ;
$a0 constant P2 : .P2 P2 + ;
$b0 constant P3 : .P3 P3 + ;
$81 constant SP
$d0 constant PSW : .PSW PSW + ;
$88 constant TCON : .TCON TCON + ;
$89 constant TMOD
$8a constant TL0 $8b constant TL1
$8c constant TH0 $8d constant TH1
$8f constant PCON
$a8 constant IE : .IE IE + ;
$b8 constant IP : .IP IP + ;
$f0 constant B : .B B + ;
\ $fd constant SP0 $80 constant RP0
$100 constant SP0 $80 constant RP0

\ ----- Subroutines ----- /
\ : clean begin key?-s while key-s drop repeat ;
: listen begin key-s dup 7 - while emit repeat drop ;
: (talk) (a -) (clean) 0 emit-s key-s
 drop dup $ff and emit-s 8 rshift $ff and emit-s ;
\ Enabling the '[char] | emit' tags results coming from target.
\ Words executed only for the host won't do that. A debugging aid.
: talk (a -) >red ([char] | emit) (talk) listen >black ;

:m call (a -)
hint
[dup $f800 and] here [2 + $f800 and = if

dup 8 rshift 32 * $11 +] , , [exit
then $12] , [dup 8 rshift] , , m;

:m -: (-)
[>in @ label >in !
create] here [, hide
does> @ talks @ if talk exit then] call m;

:m : (-) -: header m;

Appendix A: Program Listings

MyForth Manual 157

:m ;a (-)
edge c@-t $1f and $11 = if

] here [2 - dup c@-t $ef and swap c!-t exit
then] $22 , m;

:m ;l (-)
edge c@-t $12 = if

$02] here [3 - c!-t exit
then] $22 , m;

:m ; (-)
edge here [2 - = if ;a exit then]
edge here [3 - = if ;l exit then]
$22 , m;

\ ----- Assembler ----- /
[\ These are 'assembler', not 'target forth'.
: interrupt (a -)] here swap org dup call ; org [;
: push $c0] , , [; : pop $d0] , , [;
: set $d2] , , [; : clr $c2] , , [; \ bit
: setc $d3] , [; : clrc $c3] , [; \ carry
: toggle $b2] , , [; : reti $32] , [;
: nop 0] , [;
: inc dup 8 < if $08 +] , [exit then $05] , , [; \ Rn or direct
: dec dup 8 < if $18 +] , [exit then $15] , , [;
: add dup 8 < if $28 +] , [exit then $25] , , [;
: addc dup 8 < if $38 +] , [exit then $35] , , [;
: xch dup 8 < if $c8 +] , [exit then $c5] , , [;
: ##p! $90] , [dup 8 rshift] , , [;
\ : mov $85] , swap , , [;
: mov dup 8 < if $a8 +] , , [exit then

over 8 < if swap $88 +] , , [exit then
$85] , [swap] , , [;

: movbc $a2] , , [; \ Move bit to carry.
: movcb $92] , , [; \ Move carry to bit.

Appendix A: Program Listings

158 MyForth Reference Manual

\ ----- Conditionals ----- /
:m then hide here [over - 1 - swap] c!-t m;
:m cond hide , here 0 , m;
:m if $60 cond m; :m 0=if $70 cond m;
:m if' $50 cond m; :m 0=if' $40 cond m;
:m if. $30 , cond m; :m 0=if. $20 , cond m;
:m -if 7 .T if. m; :m +if 7 .T 0=if. m;
:m begin here hide m;
:m end [dup >r 1 + - r> c!-t] hide m;
:m until if end m;
:m 0=until 0=if end m;
:m until. if. end m;
:m 0=until. 0=if. end m;
:m -until -if end m;
:m again $80 cond end m;

\ ----- Stack operations ----- /
:m nip [S inc] m;
:m drop hint $e6 , nip m;
:m dup S dec $f6 , m;
:m swap $c6 , m;
:m (over) $86 , B , dup $e5 , B , m;
:m 2drop nip drop m;

\ ----- Optimizing ----- /
:m ?dup (- ?)

edge here [2 - - if] hint dup [exit then
edge @-t $e608 = if

-2] allot here [there 2 erase exit
then] hint dup m;

:m ?lit (- ?)
edge here [4 - - if 0 exit then
edge @-t $18f6 =] edge [2 + c@-t $74 = and if

] here [1 - c@-t -4] allot here
[there 4 erase -1 exit

then 0] m;

:m =if ?lit [0= if abort then] $b4 , cond m;
:m <if =if then if' m; \ Is T <= literal?.
:m =until =if end m;
:m <until <if end m;

Appendix A: Program Listings

MyForth Manual 159

\ ----- More stack operations ----- /
:m # ?dup $74 , , m; :m ## [dup] # [8 rshift] # m;
:m push [T push] drop m; :m pop ?dup [T pop] m;
:m SP! $75 , S , , m; :m RP! $75 , SP , , m;
:m stacks SP0 SP! RP0 RP! m;

\ ----- Arithmetic and logic ----- /
:m 1+ $04 , m; :m 1- $14 , m;
:m u1+ $06 , m; :m u1- $16 , m;
:m invert $f4 , m; :m negate invert 1+ m;

:m logic (opcode) [>r] ?lit [if r>] , , exit [then r>] 2 + , nip m;
:m + $24 logic m;
:m +' $34 logic m;
:m ior $44 logic m;
:m and $54 logic m;
:m xor $64 logic m;

\ Don't use # after the SFR, a special case.
:m logic! (opcode) [>r] ?lit [if]
 [r>] , [swap] , , [exit then r> 1 -] , , drop m;
:m ior! $43 logic! m;
:m and! $53 logic! m;
:m xor! $63 logic! m;

:m (u/mod) swap $86 , B , $84 , $a6 , B , m;
:m (um*) $86 , B , $a4 , swap $e5 , B , m;
:m (*) ?lit [if] $75 , B , , $a4 , [exit then]

$86 , B , nip $a4 , m;
:m 2*' $33 , m; :m 2* clrc 2*' m;
:m 2/' $13 , m; :m 2/ [7 .T movbc] 2/' m;

\ ----- Memory access ----- /
:m (#!) [dup 8 < if $f8 +] , [exit then] $f5 , , m; \ No drop.
:m #! ?lit [if

over 8 < if swap $78 +] , , [exit then]
$75 , [swap] , , [exit

then] (#!) drop m;

\ :m #@ ?dup $e5 , , m;
:m (#@) [dup 8 < if $e8 +] , [exit then] $e5 , , m; \ No dup.
:m #@ ?dup (#@) m;

:m a ?dup $e9 , m;
\ Use of A is not reentrant, push and pop where needed.
:m a! ?lit [if] $79 , , exit [then] $f9 , drop m;

Appendix A: Program Listings

160 MyForth Reference Manual

:m @ ?dup $e7 , m;
:m @+ @ $09 , m;
:m ! $f7 , drop m;
:m !+ ! $09 , m;

:m #for (direct -) #! begin m;
:m #next (direct -) [dup 8 < if] $d8 or cond end exit [then]

$d5 , cond end m;

:m (p) ?dup $e5 , DPL , dup $e5 , DPH , m;
:m (@p) dup $e4 , $93 , m;
:m p! $f5 , DPH , drop $f5 , DPL , drop m;
:m p+ $a3 , m;
:m (@p+) (@p) p+ m;

\ ----- Definite loops ----- /
\ use, for example:
\ 0 begin dup . 1- 0=until drop
\ as a for next type loop. The loop counter rides on top of the data
\ stack.

\ ----- Special cases ----- /
\ :m ADuC816 0 # $d7 #! m; \ Sets clock at 12.582912 Mhz.

0 org : reset

:m see ' >body [@] decode m;

:m sees (n <word> -) \ see n lines of word disassembly 11Aug07 rjn
‘ >body [@] decodes m;

MyForth Reference Manual 161

Appendix B

Commands & Files

162 Appendix B: Commands and Files

162 MyForth Reference Manual

Appendix B: Commands and Files 163

MyForth Manual 163

Command Description

c Execute from a Command Prompt -- Compiles an application
contained in job.fs. Produces chip.bin and chip.hex image
files

d Execute from a Command Prompt – Compiles and
downloads the application to the Target processor.

decode <addr> Execute from a MyForth prompt -- Decompiles starting at the
specified address. Hex numbers must start with a “$” (or “\$”
for Linux users).

see <word> Execute from a MyForth prompt – Decompiles the specified
Word, one line at a time. To advance to the next line, use
the space bar, “n”, or any keys except the escape keys. To
escape, use q, Esc or Ctl-C.

sees <n> <word> Execute from a Command Prompt after compiling your
application with c or d – Decompile n lines of specified
Word.

n This is an alias for next. When used in the context of the
see or decode decompilers, it will display the next line of
decompilation. Any key except q and Esc will also display
the next line.

164 Appendix B: Commands and Files

164 MyForth Reference Manual

File Name Description

job.fs Contains the definitions and files to be included to make up
your application and also configures for your selected chip.
This is the file compiled when you execute the c or d
commands. Template files for this are in the chip directory
(e.g., job300.fs or job120.fs).

main.fs By convention, this is usually the main application file
included by job.fs. This file is optional. It is commonly used
to contain the bulk of your application. You can load your
application using job.fs without a reference to main.fs.

chip.bin Contains the binary for the compiled image of your
application.

chip.hex Contains an Intel Hex representation of chip.bin
tags.fs GForth source code file to produce a tags file. The tags file

contains the names of definitions and the names of the files
that define them.

Editors such as Vim or EMACS use the tags file to go to
definitions from the text editor.

For example, in Vim, placing the cursor on the word and
pressing “CTL-]” will go to the definition under the cursor.
For use with GVim (highly recommended), a reference to
this file must be put in the GVim program directory, as
described in the Editor section.

ansi.fs ANSI terminal Word definitions for GForth (used for coloring,
etc.)

MyForth Reference Manual 165

Appendix C

Vim Basics

166 Appendix C: Vim Basics

166 MyForth Reference Manual

Appendix C: Vim Basics 167

MyForth Manual 167

1. For Windows users, the normal cut, copy and paste shortcuts apply:
Ctrl-C Copy highlighted text
Ctrl-V Paste copied or deleted text
Ctrl-X Cut copied text
Ctrl-A Highlight entire document
Shift-End Highlight text from cursor to end of line

The Page Up, Page Down, Delete, Insert, Home and End work the
same as in Windows.

2. You can use the GVim pulldown menus to perform editing or to see the
equivalent GVim commands for various menu options
(e.g., “:w” for “save” on the File menu)

3. There are three GVim modes (these take some patience to learn):
INSERT Use this to insert text. It is invoked with the "i" or "a"

commands. It is also invoked automatically -- check to see
if you are in insert mode by looking for "-- INSERT --" at
the bottom left of the display. TO GET OUT OF THE INSERT
MODE, PRESS ESCAPE!

EDIT This is the mode when the cursor is not at the bottom of the
display or when "-- INSERT --" is not displayed at the bottom
left of the display. In the edit mode, you can use editing
and navigation commands such as "10gg" to go to line 10.

COMMAND You invoke command mode by typing ":" in the EDIT mode.
When you are in the command mode, the cursor will be at the
bottom left of the screen and the line will begin with a
colon. TO GET OUT OF THE COMMAND MODE, PRESS
ESCAPE.

168 Appendix C: Vim Basics

168 MyForth Reference Manual

================= EDITING COMMANDS ==================
----------------- Note: press Esc to exit edit mode ----------------------

a A append text after cursor; end of line (starts insert mode)
<nn>dd delete <nn> lines (dd - current line, use with p for cut/paste)
dw delete the word after the cursor
D delete the characters under the cursor to the end of line into x
d$ delete from cursor to the end of line
gf goto file under cursor
i insert text before cursor (starts insert mode)
I insert text at the beginning of the line
J Join the current line and the following line
O open a new line below the cursor (starts insert mode)
p place text from buffer (use with y to cut/paste) – very useful
. repeat last command, show file/directory list – very useful
u undo last change
x delete character under cursor
yy (yank) current line to buffer (use with p to cut/paste) – very useful

======================= COMMAND LINE ========================
:e open file
:m copy line
:x,ymz copy line range x,y to just after line z – very useful
:ls show buffers
:w save current file
:wq write file and quit
:wqa save and exit
:q quit (append a ! to discard edit buffer)
:qa! quit without saving
:sav save as
:s substitute (e.g., :1,200s/hello/goodbye or :%s/hi/bye/gc)
:! <cmd> execute the specified shell command (e.g., ":! dir")
ZZ write current file to disk and exit (caps are important) – very useful

================== SEARCH & NAVIGATION ======================
<line>gg goto line
w move forward word

/<str> search forward for specified string
?<str> search backward for specified string
------------ Note: use "\" before special characters in the search string.------------

Ctl-] Go to file & definition for the tag (Word, macro) under the cursor
Ctl-6 Go back to previous tag (Word, macro)
Gvim –t <tag> Open file containing tag for editing

Appendix C: Vim Basics 169

MyForth Manual 169

======================= OPTIONS =============================
:set <option>

nu -OR- number show line numbers – very useful
nonu no line numbers – very useful
autoindent indent to match previous line
ignorecase ignore case on searches
shiftwidth=width width of columns when using auto indent
tabstop=spaces tab stop size
wrapscan search from beginning of file when end is reached
nobackup eliminates automatic backup creation – very useful

Auto Commands:
au GUIEnter * simalt ~x opens in full window (alt space x)

To automatically detect file extensions, put something like this in the
C:\Program Files\Vim\vimfiles\ftdetect file:

au BufRead,BufNewFile *.f set filetype-forth

================ SPECIAL CHARACTERS, Etc. ===================
$ last line in file, end of current line
1,$ range from first line to last line
% all lines in file (same as 1,$)

====================== DISPLAY ==============================
:split <file> split window, specified file in new window
:split . split window, show file/directory tree
:split split window, Windows file selector

Ctl-Ws split window
Shift-G end of file
1G start of file
4G fourth page

===================== EXAMPLES =============================
:1,$s/x/y/g substitute y for every first instance of x in lines 1 to last
:s/x/y substitute y for first instance of x in current line
:%s/x/y/gc substitute y for x global, with confirm

170 Appendix C: Vim Basics

170 MyForth Reference Manual

===================== CONFIGURATION =========================
For Windows, put configuration information in C:\Program Files\Vim_gvimrc. For
example, you can put various “set” and “auto” commands in this file per the
OPTIONS section above.

