SILICON LABORATORIES

AN292

EMBEDDED ETHERNET SYSTEM DESIGN GUIDE

Relevant Devices

This application note applies to the following devices:
CP2200, CP2201

1. Introduction

Embedded systems today are small, fast, and very
powerful. Embedded connectivity stands at the forefront
of harnessing the power of today’s embedded systems.
The CP220x is an Ethernet Controller that integrates
Ethernet functionality into a single 5 x 5 mm package.
When placed in an embedded system with an MCU, it
provides the system with Embedded Ethernet
Connectivity as shown in Figure 1.

This design guide discusses the benefits of Embedded
Ethernet and walks you through three easy steps to add
Ethernet connectivity to your embedded system:
System Definition, Hardware Design, and Software
Development. It also provides timesaving tips and
suggestions to simplify the implementation of
Embedded Ethernet. No previous knowledge of
Ethernet or TCP/IP is required to use this guide for
Embedded Ethernet Development.

2. Embedded Ethernet Connectivity

Imagine if you could remotely monitor the status of your
embedded system using a web browser, or if the
vending machine could send out an e-mail alert when it
needs service or is sold out of specific items. These
things are all made possible with Embedded Ethernet.

The key benefits of Embedded Ethernet Connectivity
are described in the following paragraphs.

MCU + CP220x

Remote Monitoring and Control - Once an
embedded system is on a network, it can be
accessed from any PC on the same network. The
user does not have to be in the same room or
building in order to access and control the
embedded system.

No PC Software Development Required - In most
systems, the user interface on the PC will use a Web
Browser, HyperTerminal, or the embedded system
will directly send the user an e-mail. Some systems
will implement custom PC applications to perform
specific tasks not easily implemented using
commonly available software.

Utilizes Existing Infrastructure - Ethernet is the
most widely implemented networking standard. Most
commercial offices and industrial factory workfloors
are already wired for Ethernet connectivity. When
wireless LAN is used across a factory floor, low cost
bridges are available to connect wired ethernet
devices to a wireless network.

Low Cost and Easy to Implement - With MCUs
such as the C8051F34x and Ethernet controllers
such as the CP220x, Embedded Ethernet can now
be integrated into cost sensitive applications. Using
the TCP/IP Configuration Wizard and other Silicon
Laboratories development tools, Embedded
Ethernet is now easy to implement.

Figure 1. Embedded Ethernet Connectivity

Rev. 0.2 6/06

Copyright © 2006 by Silicon Laboratories

AN292

AN292

3. How to Use This Design Guide

This design guide was developed for both beginners
and experienced Embedded Ethernet system
designers. Figure 2 shows the typical system design
flow for Embedded Ethernet development. The
structure of this document is based on Figure 2.

Each of the boxes in Figure 2 is discussed in detail and
additional information about the basics of TCP/IP is
included in the appendix on page 26. Since the content
is modularized, advanced users may skip directly to the
sections that will provide them with the most added
benefit.

In addition to this design guide, the following design
resources are essential for developing Embedded
Ethernet with the CP220x:

m “AN237: TCP/IP Library Programmer’s Guide” -
contains the API reference for the TCP/IP Library
based on the CMX Micronet (TM) TCP/IP Stack.

m Embedded Ethernet Development Kit User’s
Guide - contains information on how to setup the
development kit and gives a hands-on tutorial of
using the TCP/IP Configuration Wizard.

m CP2201 Evaluation Kit User’s Guide - contains
information on how to setup the evaluation kit and
gives walks through the CP2201EK demo. The
CP2201 Evaluation Kit allows you to quickly test
drive the most common network interfaces.

m CP220x Datasheet and the Target MCU Family
Datasheet - Contains the pinout, electrical
characteristics, and specifications of the selected
MCU and Ethernet controller.

System Definition
Section 4

A 4 A 4

Software
Generation

Section 6

A 4

Hardware
Design

Application
Development

Section 5 Section 7

A 4

Embedded System
Personalization

Section 8

Y

Debugging Embedded Ethernet
Section 9

Figure 2. Embedded Ethernet System Design Flow
Diagram

Rev. 0.2

&~

SILICON LABORATORIES

AN292

4. System Definition

There are four steps to defining a system with
Embedded Ethernet Connectivity. Throughout the four
stages, we will consider the embedded system to be a
black box. Having a clear definition of the properties
and characteristics of the embedded system prior to
starting hardware and software development is
essential to achieving a final result that matches its
target specifications.

4.1. Specifying Required Functionality

The first question that should be answered when
creating the definition is: What do | want my embedded
system to do? The answer to this question varies by
application and can encompass virtually anything that
can be done with a high-speed MCU.

Figure 3 shows the black box representation of the
embedded system. Based on the diagram, an example
answer to question 1 is: Monitor progress of the milling
machine, control a motor, and keep an average of the
number of boxes passing per minute.

Monitor
Progress
(UART)

Advance Conveyor Belt H

(motor control) 50006

Embedded

System

Count Boxes
(light sensor)

Figure 3. System Functionality Example

Please write down your answer to the first question in
the system definition.

Q1: What do | want my embedded system to do?

4.2. Specifying Access Method

The second system definition question is: How do |
want to access my embedded system? The answer to
this question can be one or more of the most
commonly used access methods:

mUsing a web browser.

mUsing HyperTerminal.

mHaving the embedded system send e-mail.
mUsing a custom application.

Figure 4 shows the black box representation of the
embedded system and how the various access
methods can be used to monitor and control the
embedded system. See the CP2201 Evaluation Kit for
a demonstration of each interface.

Web Browser
(HTTP)

HyperTerminal
(Telnet)

Embedded
System

Direct Socket Interface
(TCP or UDP)

Custom
Application

Figure 4. User Interface Options

Please write down your answer to the second question
in the system definition.

Q2: How do | want to access my embedded system?

SILICON LABORATORIES

Rev. 0.2 3

AN292

4.3. Specifying Configuration Method

Every device connected to a network requires both a
MAC address and an IP address to communicate with
other devices. Embedded systems using the CP220x
only need to obtain an IP address because the MAC
address is factory pre-programmed in Flash memory.

The third system definition question is: How do | want
to configure my embedded system? There are four
common configuration methods:

m Automatic Network Configuration.

m Automatic Network Configuration with Netfinder.

m Static Network Configuration.

m Static Network Configuration with Netfinder.
4.3.1. Automatic Network Configuration

Automatic Network Configuration allows a device to
use the Dynamic Host Configuration Protocol (DHCP)
to acquire an address from the network. This assumes
that the network has a DHCP server that can assign an
IP address. DHCP servers are typically found inside
routers or other network equipment.

Embedded systems wusing automatic network
configuration can access the network (e.g. to send an
e-mail message or log in to a server with a known
address); however, the user will not be able to directly
access the device from a web browser or a telnet client
without knowing the IP address assigned to it. This
limitation can be overcome by adding additional
hardware such as an LCD screen or using Netfinder.

4.3.2. Searching for Automatically Configured
Embedded System Using Netfinder

Enabling Netfinder capability on an embedded system
that uses DHCP allows the user to easily find out the IP
address assigned to the embedded system. This is
done by searching for the embedded system using the
Netfinder PC utility.

When a new search is started, the Netfinder utility
broadcasts an “Identity Request” message to all nodes
on the network. Each embedded system that supports
Netfinder replies with information that identifies and
differentiates itself from similar embedded systems.
This information can include: IP address, Elapsed time
from an event (e.g. Time Powered, Time on Network),
MAC Address, and a text description of the device.
This information can be customized for each
application.

4.3.3. Static Network Configuration

For networks that do not have a DHCP server, each
network node including embedded systems must be
assigned a static IP address. To prevent multiple
devices from using the same IP address, the network
administrator keeps a database of each device on the
network and the IP address assigned to it.

There are a number of ways to assign a static IP
address to a device. First, the IP address can be hard
coded in firmware. This method is not user friendly
since the device must be reprogrammed in order to
change its IP address.

x|

Search for Embedded Devices

1 devices found

Clui

=Py
[~ Show MAC Address [v Show Time Powered [v Show Time on MNetwork Sort By: |Unsorted -
ok
uWeb 2.0 Embedded Sensor IP Address: 10.30.1.28
Cancel R el o = TN—_— " — R ——

9 seconds remaining

[~ Reload Timer

[v¥ Close this window when searching completes

Stop

Web Browser

Hyperterminal

I

Bootloader

Figure 5. Searching for an Automatically Configured Embedded System Using Netfinder

Rev. 0.2

&~

SILICON LABORATORIES

AN292

Second, it can be assigned through the serial port and
stored in Flash memory as demonstrated in the
Embedded Ethernet Development Kit User’s Guide.
This method provides the flexibility to change the IP
address after the system is in the field but requires the
embedded system to implement a UART interface.
Unless the UART interface is required by the
application, there are smaller and more cost effective
ways of programming the IP address.

4.3.4. Assigning an IP Address Using Netfinder

Enabling Netfinder capability on an embedded system
that uses static network configuration allows the
Netfinder utility to both search for the embedded
system and assign it an IP address. If the embedded
system does not have an IP address, it will default to
the invalid address “0.0.0.1” until the user assigns it an
IP address using the Neffinder utility.

Design Suggestion: If maximum compatibility with
different networks is desired, the embedded system
can be designed to use multiple configurations. For
example, the CP2201 Evaluation Board first attempts
to acquire an IP address through DHCP. If it fails to
acquire an IP address after 4 attempts, it will go into
static IP address mode and wait for the user to assign it

an address using the Neffinder utility. As a result of
including Neffinder capability in firmware, the
embedded system supporting both static and dynamic
network configuration measures only 1.25” x 1.5”.

Please write down your answer to the third question in
the system definition. If static network configuration is
chosen, then please provide an answer to Part B.

Q3: How do | want to configure my embedded system?

Q3B: If a static IP address is assigned, do | want the
embedded system to permanently store the address or
attempt to refresh it each time | plug it into a network?

K] |

[Show MAC Address ¥ Show Time Powered

x|
Sort By: |Unsorted o

[v Show Time on MNetwork

o]

]

Assign IP Address

e
Running on a {

Cancel Time Powered

Configure

IP Address | 169 . 254 .

Agsign [P

Subnet Mask: | 255 . 255 .

Default Gateway
Search

Pl

[Reload Timer

[~ Close this window on success

Cuick Launch

el Browser

| 255 . 255 .

Success — Device Programmed

Hypererminal

i

Bootloader

Figure 6. Assigning a Static IP Address Using Netfinder

SILICON LABORATORIES

Rev. 0.2 5

AN292

4.4. Specifying Field Re-Programmability
Requirements

The final part of the system definition is determining the
field re-programmability requirements of the embedded
system. The options for field reprogrammabilty are:

m No support for field re-programmability.

m Re-programmability using a 3 or 5 pin header.

m Re-programmability using a 10-pin header.

m Re-programmability using a bootloader.
Figure 7 shows the black box representation of the
embedded system and the available field re-
programmability options.
4.4.1. Updating Firmware using a Header

Firmware on the device may be updated by placing a
programming header on the board. If a 10-pin header
is used, the USB Debug Adapter can plug directly into
the embedded system for debugging or updating
firmware. If a custom header is used, then C2 devices
will need at least 3 pins (C2CK, C2D, and GND) and
JTAG devices will need at least 5 pins (TCK, TMS, TDI,
TDO, and GND).

Embedded

System

3 or 5 pin
Adapter Network Bootloader
10-pin (no hardware required)

USB DEBUG ADAPTER USB DEBUG ADAPTER

Run Run

Figure 7. Field Re-programmability Options

When designing the embedded system for field
reprogrammability, one criterion that may be used to
select the best field re-programmabily option is the
requirement of the USB Debug Adapter. Depending on
the application and the cost of the embedded system,
end customers may not have access to a USB Debug
Adapter.

For end customers who do not have a USB Debug
Adapter, the only option will be to purchase one or to
send the entire system back to the factory for re-
programming. This may be feasible in low quantities,
but low cost, high volume applications will require an
easier way of updating firmware in the field.

4.4.2. Updating Firmware over the Network

Using a TFTP Bootloader, firmware may be remotely
updated over the network using any PC with a TFTP
client. A TFTP client comes as a core utility in most
operating systems including Windows 2000/XP.

A TFTP bootloader does not have any hardware
requirements and is easy to use by the end customer.
The drawback to using a TFTP bootloader is that it
requires approximately 10 kB of code space. Other
types of bootloaders, such as UART, SMBus, etc. may
also be used to update firmware.

Timesaving Tip: The CP2201EK uses a TFTP
bootloader to allow remote firmware updates over the
network. If you are using the ‘F340, the source code for
the bootloader is available for use in your design. If you
are using a different device, then the TFTP bootloader
may be easily ported.

Please write down your answer to the fourth question
in the system definition.

Q4: How do | want to update firmware in my embedded
system?

Rev. 0.2

&~

SILICON LABORATORIES

AN292

4.5. Translating the System Definition to
Protocol Requirements

One of the benefits of having a formal definition is that
a list of required protocols can be made and used
during hardware and software development.

Table 1 shows the mapping of protocol acronyms to
requirements in the system definition. Please make a
list of the protocols needed by your embedded system
because they will be used for MCU selection and
software generation.

Note: For simplicity, some advanced protocols have
been omitted from Table 1. They are described in the
appendix on page 26.

Table 1. System Definition to Protocol Mapping

If the System Definition Specifies... You need the following protocol(s):
Automatic Network Configuration DHCP

Netfinder Search or Assign Capability NETFINDER

Web Browser Interface HTTP
HyperTerminal/Telnet Interface TCP

E-mail Interface SMTP

Custom Application Interface TCP or UDP depending on application

@ Rev. 0.2 7

SILICON LABORATORIES

AN292

5. Hardware Design

With a system definition in place, it is now time to start
designing the hardware. The hardware design flow
consists of 5 steps corresponding to the 5 sections of a
schematic for an embedded system with Ethernet
connectivity. The hardware design flow is shown in
Figure 9. Each schematic section is described below:

m Custom application circuitry - sensors, indicators,
and other application-specific circuitry.
MCU - the main system controller.
Ethernet Controller - provides the MCU with the
capability to send and receive data over a network.

m Ethernet Connector - the RJ-45 connector,
magnetics, and link/activity LEDs.

m Power circuit - provides the embedded system with
regulated 3.3 V power.

Timesaving Tip: The CP2201 Evaluation Kit
schematic found in the CP2201EK User’s Guide can
be used as a starting point for most designs. Figure 8
shows the 5 blocks of the CP2201EK schematic.
Notice that they match the 5 sections outlined above.

Power Circuit Custom Application Circuitry

Unregulated Supply to 3.3V Light Sensor and Yellow LED

MCU Ethernet Controller Ethernet Connector

‘F340 CP2201 Integrated RJ-45

with LEDs

Figure 8. CP2201EK Schematic Blocks

5.1. Custom Application Circuitry

The custom application circuitry includes any
application-specific sensors, control circuitry, interface
headers, etc. that are required to perform the required
system functions specified in the system definition. As
the circuitry is being designed, the system designer
should estimate the power requirements of this section
for use when designing the power circuit.

5.2. Designing the MCU Section

Designing the MCU section involves determining the
required analog peripherals (such as ADCs, DACs,
Comparators, etc.) and estimating the memory and
speed requirements. Based on these requirements, the
most appropriate MCU can be selected and the
circuitry surrounding the MCU can be designed.

System
Definition

Hardware
Design
Software
Generation
A 4
Custom Application Circuitry
MCU Circuit

Application

v Development
A 4

Ethernet Controller Circuit

A

Ethernet Connector Circuit

Embedded System
Personalization

A 4

Power Supply Circuit

Debug

A 4

[]

Figure 9. Hardware Design Flow

5.2.1. Determining MCU Peripheral Requirements

The analog peripheral requirements of the MCU wiill
come directly from the system definition. If the MCU
needs to sense an analog voltage, then an ADC will be
required. If the MCU needs to drive an analog output
such as a speaker, then a DAC will be required.

8 Rev. 0.2

&~

SILICON LABORATORIES

AN292

5.2.2. Determining Flash Memory Requirements

The TCP/IP Library requires 16 to 50 kB Flash
depending on the interfaces selected. Figure 11 shows
the Flash requirements of the TCP/IP Library for
various common configurations. The configuration
needed for your embedded system comes directly
directly from question 2 and 3 in the system definition.

5.2.3. Determining RAM Requirements

The TCP/IP Library also requires 3-5 kB of RAM
depending on the protocols enabled. Since buffer sizes
are configurable by the user, RAM requirements will
depend on the user’s desired performance. All
configurations shown in Figure 11 can be implemented
with less than 4 kB RAM except for the largest
configuration on the far right. The largest configuration
requires 4.5 to 5 kB RAM.

5.2.4. Determining MIPS requirements

Any Silicon Laboratories 25 MIPS or greater MCU will
have more than enough CPU bandwidth to run both the
TCP/IP Library and application code. If the application
being developed will benefit from increased CPU
bandwidth, the TCP/IP Library supports high
performance MCUs with up to 100 MIPS.

5.2.5. Selecting an MCU

Any Silicon Laboratories MCU with 32 kB Flash or
higher can be interfaced with the CP220x from a
hardware standpoint. In order to use the TCP/IP
Configuration Wizard and TCP/IP Library, the MCU
must be in one of the following device families: ‘F12x—
‘F13x, ‘F02x, and ‘F34x.

Figure 10 shows a comparison of the three supported
device families. The most full-featured device from
each family was selected for the comparison. Reduced
functionality devices are also available in each family.

See the MCU family datasheet for a description of the
reduced functionality devices.

‘F12x
‘F34x
128 kB Flash
‘F02x
64 kB Flash 8 kB RAM
100 MIPS
5 kB RAM
64 kB Flash oD o
4 kB RAM
25 MIPS
ADC/DAC
ADC/DAC ADC

Figure 10. MCU Family Comparison

The TCP/IP Configuration Wizard is always being
updated to add features and support for additional
devices. Check the Silicon Laboratories Website at
www.silabs.com/ethernet for the latest updates.

5.2.6. Adding Additional Memory

Some applications require more volatile or nonvolatile
memory than available in the MCU. For such
applications, external memory may be added to the
system. The CP220x has 8 K of on-chip Flash that may
be used for storing web server content or as general
purpose nonvolatile memory. Note that nonvolatile
memory added external to the MCU can be used for
data storage, but cannot be used for code execution.

5.2.7. Adding the MCU to the Embedded System

Once the MCU has been selected, it is time to integrate
it into the embedded system. The MCU integration
guidelines on page 12 list the key points that should be
followed when designing the MCU section of the
schematic.

30 kB
25 kB
16 kB HyperTerminal Web Browser
or Custom
Interface
Cufstorln Application (HTTP)
Application Interface
Interface (Telnet/TCP)
(UDP)

50 kB
Web Browser,
38 kB E-mail, and
HyperTerminal
Interfaces
30 kB Web Browser (HTTP, SMTP,
Interface and Telnet)
(HTTP) o
+ Automatic
E-Mail Automatic Network
Interface Network Configuration
(SMTP) Configuration (DHCP, UDP)
(DHCP, UDP)

Figure 11. Flash Requirements for Various Interfaces

SILICON LABORATORIES

Rev. 0.2

http://www.silabs.com/ethernet

AN292

5.3. Ethernet Controller Section

Designing the Ethernet controller section involves
selecting an Ethernet controller and integrating it into
the embedded system.

5.4. System Level Benefits of the CP220x

The CP220x provides many system level benefits for
embedded systems with Ethernet connectivity. Below
are some of the key features of the CP220x:

m Small (5 x 5 mm) package - minimizes system
size.

m High speed parallel interface - minimizes CPU
bandwidth spent on transferring data.

m Autonegotiation - allows the use of full-duplex
communication without manually configuring
routers and switches.

m 8 kB Flash with Pre-Programmed MAC Address
- provides additional non-volatile memory in the
system and simplifies product serialization.

m TCP/IP Configuration Wizard - auto generates a
TCP/IP Library and framework code based on the
CMX Micronet(TM) TCP/IP stack.

Currently, two Ethernet controllers are available in the

CP220x family. Table2 outlines the differences

between the two devices.

Table 2. CP220x Comparison

5.4.1. Adding the Ethernet Controller to the
Embedded System

After an Ethernet controller has been selected, it is time
to integrate it into the system. The CP220x integration
guidelines on page 13 list the key points to follow when
designing the CP220x section of the schematic.

5.5. Ethernet Connector

The CP220x interfaces to an Ethernet cable through an
RJ-45 connector and isolation transformers as shown
in Figure 12. The connector, transformers, and optional
link/activity LEDs can be discrete components or can
be part of an integrated connector.

Ethernet Connector

8Q 1:2.5
TX+ TXP

T |
- "] 560pF . RUd5
8Q 1
CP220x OT%TFE :
4
5
RXP 1:1 6
RX+ 7
% 100Q H 8
RX RXN ‘
RCT e % L
0.1uF Chassis
g Ground

Figure 12. CP220x Connector Interface

Feature CP2200 CP2201 To achieve the smallest board area, an RJ-45
connector with integrated magnetics and LEDs can be
Package TQFP-48 QFN-28 used. The following should be checked when selecting
Footprint 9x 9 mm 5x5mm a connector.
m Transformer Turns Ratio: The transformer turns
Parallel Multiplexed or | Multiplexed Only ratio must be 1:2.5 for the transmit side and 1:1 for
Interface Non-Multiplexed the receive side.
Mode = Availability: Connectors with integrated magnetics
have typical lead times from 4 to 16 weeks
Parallel 30 Mbps 25 Mbps depending on the supplier. Please check connector
Interface availability and lead time before designing the
Speed hardware. Note that connectors from different
LED Controls 2 1 vendors typically do not share the same footprint.
Table 2 shows a partial list of Ethernet connectors that
Link/Activity Separate LEDs | Combined LED are compatible with the CP220x. It also shows the part
Indicators numbers for discrete magnetics in case an integrated
connector is not the best choice for the application.
®
10 Rev. 0.2 @

SILICON LABORATORIES

AN292

Table 3. Example Part Numbers for Integrated Connectors and Discrete Magnetics

Manufacturer Website Part Number (Integrated) Part Number (Discrete)
Halo www.haloelectronics.com HFJ11-1041[E]-[L12RL] TG41-2006N
Tyco www.tycoelectronics.com [1-]16605752-1 HB724
Pulse www.pulseeng.com J00-0063 E2023
Bel Fuse www.belfuse.com S1-40047 LM01509

5.6. Power Circuit

The power supply circuit should be designed to provide
a regulated 3.3V DC output capable of delivering
enough current to meet the demands of the entire
system at peak loads. Since the CP220x requires a 3.1
to 3.6 V supply voltage, a 3.0 V regulator cannot be
used. To provide adequate power to the system, the
power supply should be capable of providing the MCU
with at least 1 mA/Mhz and the CP220x with 150 mA
(peak current). The maximum current capacity of the
regulator should always exceed the peak current
requirements of the system.

There are three options for powering the system: 9 V
wall adapter and 3.3 V LDO, power over ethernet, and
battery power. These options are described in the
following paragraphs.

5.6.1. 9 V Wall Adapter and 3.3V LDO

This method is the simplest to implement and is often
the lowest cost. However, because the efficiency of
linear regulators is low, a large amount of heat may be
generated. To dissipate the heat, a multi-layer board
with solid supply and ground planes may be used. An
alternative is to use a switching regulator instead of a
linear regulator.

5.6.2. Power over Ethernet

With the introduction of VolP phones, powered
ethernet switches are becoming mainstream and are
falling in price. A powered ethernet plug delivers power
to the embedded system through the 4 unused wires in
the CAT5 ethernet cable. To design the power supply
circuit to accept power directly from the ethernet cable,
two functions are needed:

m An IEEE 802.3af compliant powered device (PD)
interface - this interface provides a signature to the
power sourcing equipment during PD detection and
programs the correct classification mode according
to the 802.3af specification.

m A 48-3.3 V switching regulator to convert the
48 VDC power on the ethernet cable to 3.3 VDC.

5.6.3. Battery Power

Due to the nature of most network enabled monitoring
and control applications, the embedded system must
be continuously powered. This does not lend itself well
for batteries because batteries will need to be
frequently replaced. If an application only requires
ethernet connectivity for a few hours at a time, then
battery power may be used. A typical 9V Alkaline
battery can provide 625 mAH @ 9V leading to a
typical battery life of 4—10 hours depending on the
application and the amount of power used by the
embedded system.

SILICON LABORATORIES

Rev. 0.2 1

http://www.haloelectronics.com
http://www.tycoelectronics.com
http://www.pulseeng.com
http://www.belfuse.com

AN292

MCU INTEGRATION GUIDELINES

m Pinout - Each MCU'’s pinout is determined by a
Crossbar, which is configured from software. It is
important to verify that the desired device pinout is
possible before finalizing the hardware design.

m Port Input/Output Configuration - When

assigning /O pins to specific functions, it is -
important to check if the selected 1/O pins are

capable of being configured to the desired mode.

Some pins are digital only, some are analog only,

and some can be used for both digital or analog .

signals.

Timesaving Tip: On C8051F02x devices port 4
through port 7, each set of 4 adjacent bits must be
configured to the same output mode. See the
P47MDOUT register description in the C8051F02x
datasheet for more details.

m Special Signals - The port pin selection for special
signals should be chosen carefully to ensure that
the desired functionality is achievable. These
special signals include:

e CP220x Reset Pin (/RST) - This signal should be
connected to a pin configured as an open-drain output
because it may be driven low either by the MCU or by
the CP220x. The port pin selected for this signal should
have the capability of generating a interrupt. This
allows software to detect if the CP220x ever goes into
reset due to a brownout or oscillator-fail condition.

e CP220x Interrupt Pin (/INT) - This signal should be
connected to a digital input pin capable of becoming
External Interrupt 0. This is required by the TCP/IP
Stack Library as outlined in the important notes section
of “AN237: TCP/IP Library Programmer’s Guide”.

e /RD, /WR, ALE, and Address/Data Pins - These
signals should all be configured as push-pull outputs.
During a read operation, the external memory interface
automatically turns off the output drivers (making the
pins high impedance) for the duration of the read
operation.

m Voltage Reference - If the device has an on-chip
voltage reference and the analog peripherals are
used, then VREF decoupling capacitors should be
added to the VREF pin.

m Power and Ground Pins - All power and ground
pins on the device must be connected to power or
ground. Also, be sure to provide adequate power
supply decoupling.

Monitor. Some devices also require input from
software to turn on the Vpp Monitor. For example,
the ‘F12x and ‘F13x family have a MONEN pin and
require input from software. See the datasheet for
the selected device to determine how to enable the
Vpp Monitor.

Reset and Debug Pins - We recommend placing a
1-5 K pull-up resistor on the reset pinand a 1 K
pull-up on TCK (for JTAG devices). Do not add a
capacitor directly on the debug pins as this may limit
the ability to perform in-system debugging.
Testpoints - At a minimum, testpoints should be
provided for the debug interface signals C2CK,
C2D, GND and the UART signals TX and RX.
Design Example: The CP2201 Evaluation Board
does not have a programming header, however, it
supports in-system debugging by providing
testpoint access to the C2 Interface debug signals.
The testpoints are located close to the edge of the
board to allow large sized clips to easily connect to
the debug signals without installing actual
testpoints. A custom cable was built that converts
the 10-pin USB Debug Adapter cable to 3 large
clips that connect to C2CK, C2D, and GND on the
CP2201EB.

Design Example: The CP2201 Evaluation Board
gives testpoint access to the UART pins to allow
debugging while the MCU is running. Often, if the
MCU is halted to examine registers and memory,
then devices waiting to receive packets from the
MCU will time out. UART based debugging can
allow the MCU to continue processing packets while
printing system status to a UART terminal. Since
packets are transmitted every 100 to 200 ms on
average, the debug messages do not significantly
impact the performance of the MCU.

® Vpp Monitor - If the MCU has a MONEN pin, thenit Figure 13. CP2201 Evaluation Board with Testpoint

should be tied directly to Vpp to enable the Vpp

Access to C2 and UART Signals

12 Rev. 0.2

&~

SILICON LABORATORIES

AN292

CP220X INTEGRATION GUIDELINES

Typical Connection Diagram - The CP220x
datasheet has a typical connection diagram for both
multiplexed and a non-multiplexed configurations.
Please follow the typical connection diagram when
designing the CP220x section of the schematic.

Clock - The CP220x requires a 20 MHz = 50 ppm
clock with a 50% duty cycle. This can be derived
from a crystal or from a CMOS clock source.
Power and Ground Pins - All power and ground
pins on the device must be connected to power or
ground. The power supply should be capable of
sourcing 150 mA at a supply voltage of 3.1-3.6 V.
Also, be sure to provide adequate power supply
decoupling.

Unused Pins - If using the CP2201, there should
not be any unused pins and no input pins should be
left floating. If using the CP2200, only pins marked
N.C. can be left floating.

Chip Select (/CS) - The chip select input should be
driven low when the CP220x is being accessed by
the MCU. Tieing /CS to the most significant bit of
the address bus A15 makes the CP220x occupy off-
chip external memory addresses up to Ox7FFF.
Addresses 0x8000 to OxFFFF may be used for
adding other devices (such as an external RAM or
Flash) to the external memory bus.

ALE - The ALE output of the MCU must be
connected to the ALE input of the CP220x if using
the multiplexed bus mode. It is not required if using
the non-multiplexed bus mode.

Reset Pin - We recommend placing a 4.75 K pull-
up resistor on the reset pin. This is both an input
and an output for the CP220x.

Interrupt Pin - The interrupt pin is optional if writing
a polled mode driver. The TCP/IP Library uses an
interrupt driven driver, therefore, this signal is
required if the TCP/IP Library is used.

MOTEN/MUXEN - The MOTEN pin enables the
Motorola bus format when tied high. This pin should
be tied to ground when using a Silicon Laboratories
MCU. The MUXEN pin enables multiplexed mode
on the CP2200 and is not available on the CP2201.

Link, Activity, Link/Act LED Drivers - The
CP2200 has two LED drivers: Link and Activity. The

CP2201 has a single LED driver that turns the LED
on when there is a link and blinks it when there is
both link and activity. The LED drivers have push-
pull outputs. See the CP220x datasheet for an LED
control example.

Layout Considerations:

The following guidelines should be followed when
laying out the hardware. Figure 14 shows an example
PCB layout for the CP2201.

Figure 14. CP2201 Evaluation Board Layout

The traces used for the parallel memory interface
should be matched. The difference in propagation
delay through the address/data, /RD, /WR, /CS, and
ALE signals must not vary by more than 5 ns.

m The CP220x should be located close to the
Ethernet connector.

m The crystal should be located within 1 inch of the
CP220x.

m The traces used for TX+/TX- should be short, thick,
matched and run on the same side of the PCB.
These traces carry current, therefore, using thick
traces minimizes signal loss.

m The traces used for RX+/RX- should be short, thick,
matched, and should run on the same side of the
PCB (if possible).

m The TX+/TX- and the RX+/RX- traces should not
have 90 degree corners and should be shielded by
the ground plane (if possible).

m The Ethernet connector and the rest of the system
should have separate ground planes. The Ethernet
connector’s ground plane can be connected to the
connector chassis.

@ Rev. 0.2 13

SILICON LABORATORIES

AN292

6. Software Generation

In this step of the system design process, we will be
generating the software that interacts with the CP220x
to provide the embedded system with Ethernet
connectivity. Figure 15 shows the software generation
flow. Using the TCP/IP Configuration Wizard, this step
is one of the easiest steps in the entire system design
process. The TCP/IP Configuration Wizard is available
for download from www.silabs.com/ethernetand is also
included in each MCU development kit.

System
Definition

Software
Generation

A 4

Launch
TCP/IP Configuration Wizard

I

Select Checkboxes

I

Generate Project

!

Run Generated Project
using Silicon Labs IDE

Hardware
Design

Application
Development
v

Embedded System
Personalization

A 4

Debug

A 4

[]

Figure 15. Software Generation Flow

6.1. TCP/IP Configuration Wizard

When the TCP/IP Configuration Wizard is first
launched, the user is presented with an option tree as
shown in Figure 16. Clicking on an option will show
additional settings in the right-hand pane. In Figure 16
the TCP option is highlighted; therefore, the settings
pane shows the protocol settings for TCP. Enabling the
checkbox next to an option adds support for that option
to the custom library that will be generated.

2 TCP/IP Configuration Wizard (=9
File Help
E= Hardware Seftings A Settings
T Communication Adapter :
CP220x TCP Window Size:
[siz4sx 512
[0 Use Passward
U Custom Ethemet Device TCPresend delay (10ms ticks)
O Polled Mode
O Interrupt Mode 100
T Device Selection
Ca051F12x TCP retransmit atlempts:
[J Code Bank Project I
[C3051F02x
[CB051F34x
[USE FIFO Support
&= Protocol Settings
T Link/Physical Layer Settings
Ethernet .7
Oree Pane
O Pap
OsupP
T Internet Layer
P
:::::E Cade Size
T Transport Layer Used Space: 2 k8
Ol e 0
O uoP 3 Free Space:) (4
. Estimated Code
Option Tree)
Size Pane

Figure 16. TCP/IP Configuration Wizard

The checkboxes needed for your application come
directly from the protocol list generated from the
system definition. Recall Table 1 on page 7 which
maps required protocols to items in the system
definition. Please have your protocol list handy as we
describe the TCP/IP Configuration Wizard option tree.

6.2. Selecting Checkboxes

The TCP/IP Configuration Wizard has three main
categories of checkboxes: Hardware Settings, Protocol
Settings, and System Settings. A full listing of all
available options is shown in Figure 17.

6.2.1. Hardware Settings

The first group of checkboxes labeled Communication
Adapter select the device driver that will be added to
your custom library. The default selection is the
CP220x. The TCP/IP Configuration Wizard also allows
you to generate a library that supports the Si245x dial-
up modem or provide your own custom driver.

14 Rev. 0.2

&~

SILICON LABORATORIES

http://www.silabs.com/ethernet

AN292

&= Hardware Settings
T Communication Adapter
CR220x
O Siz4mx
O Use Passward
O Custom Ethemet Device
O Folled Mode
O Interrupt tode
T Device Selection
CAO5TFT 2x
O Code Bank Project
O cans1F02x
O CanR1F34x
O USE FIFD Support
= Protocol Settings
T Link/Physical Layer
Ethernet
O PR
O PaP
O suP
T Internet Layear
IF
FIMNG
ARF
T Transport Layer
OTcr
O uopP
T Application Layer
O eooTP
O oHCP
O oNs
OFmeP
O HTTF
O NETFINDER
[SMTF
O TFTP
E= System Settings
T irtual Files
0 Sockets
) SYSCLK
B P Addresses
B MAC Addresses

Figure 17. TCP/IP Configuration Wizard Options

The second group of checkboxes labeled Device
Selection is used to generate a TCP/IP project and
framework code. The framework code includes
initialization routines that configure the custom TCP/IP
Library and initialize the MCU for communication with
the CP220x. The checkbox selection for this group
must match the MCU being used to ensure that the
proper initialization code is generated.

6.2.2. Protocol Settings

The first three checkbox groups under Protocol
Settings are automatically filled in by the TCP/IP
Configuration wizard. The user may choose to select
advanced settings for these protocols or leave them at
their default values. Let us now skip down to the
Application Layer checkboxes, where we will use our
required protocol list to specify our requirements.

You may notice that some protocols in the option tree
are not listed in Table 1 on page 7. These protocols are
more advanced and are described in detail in the
appendix on page 26. Application Note “AN237: TCP/
IP Library Programmer’s Guide” also describes how
these protocols can be used in your embedded system.

6.2.3. System Settings

All customization options under System Settings are
optional. If the system will be using static network
configuration, a default IP address and subnet mask
may be assigned to the embedded system now, or may
be assigned in mn_userconst.h after the project is
generated.

6.3. Generating a Project

After the protocols required to meet your system
definition have been selected, it is now time to
generate the custom TCP/IP Library and supporting
project files. In the TCP/IP Configuration Wizard, press
the File>Generate Project command as shown in

Figure 18.
&2 TCP/IP Configuration Wizard
I8 Help

New
Open... e
Save

Save As...

Select Project Directory...
Generate Project...
Exit

O FPPP
O PaP
O sup

Figure 18. Generate Project Command

SILICON LABORATORIES

Rev. 0.2 15

AN292

6.4. Running the Generated Code

The TCP/IP Configuration Wizard generates a TCP/IP
Library and supporting code for execution on an MCU
target board with an attached CP2200 Ethernet
Development Board (AB4). This allows immediate
evaluation of the wizard’s output and provides a stable
platform for software development. The AB4 board is
compatible with the ‘F12x, ‘F34x, and ‘FO02x Target
Boards.

Once the project has been generated, it may be
managed in the Silicon Laboratories IDE as shown in.
A step-by-step tutorial which shows how to manage the
generated project in the Silicon Laboratories IDE can
be found in the Embedded Ethernet Development Kit
User’s Guide. A detailed description of the generated
project files can be found in “AN237: TCP/IP Library
Programmer’s Guide.”

After testing the code on a development board, the
code may be ported to your hardware by changing the
initialization routines. The following items need to be
modified to run the software on new hardware:

m External Memory Interface Initialization - The
EMIF_Init() routine should be modified to configure
the MCU into the correct duplex mode.

m Port Input/Output Initialization - The Port_Init()
routine should be modified to specify the location of
the interrupt pin and configure the input and output
mode of each pin.

m Reset Pin Control Routines - The
ether_reset_high() and ether_reset_low() routines
should be modified such that the reset pin of the
CP220x can be controlled by the library.

& silicon Laboratories IDE - [mn_callback.c]

« Eile Edit View Project Debug Tools Options Window Help
Dl 2@ & [T e

=x]
7z —
/7 mn_callback .e
z
/7 Copyright 2005 §ilicon Laboratories, Inc.
s

ons from the TCP/IP stack.
ed by the user.

@ TCPIP_Prject
=1 B HeaderFies

i
iy
EEE § D m m

Lvarsc .
=1 [3 VFLEDR 5L
Z

[indexe

il [»
B Fie.. [Esymeo |

Ll

[T T> 1\ Buitd £ List 7, Tool }x Findin Fies.
Ready Target: C805Dooo |PC: 2222 |Watchpoints Disabled Not Connected [Ln 1, Col 1

Figure 19. Project Management Using the
Silicon Laboratories IDE

7. Application Development

The TCP/IP Configuration Wizard generates the
framework code for basic network functionality. We will
now start developing the application code that gives
the embedded system its required functionality.
Figure 20 shows the application development flow.

System
Definition

Software
y Generation

Application
w Development

Understand TCP/IP
Configuration Wizard Output

Hardware i
Design
Add Custom Application Code
Add Network Interface

Add Bootloader

Embedded System
Personalization

Debug

A 4

L 1

Figure 20. Application Development Flow

7.1. Application Structure

The application code that will implement the required
system functionality specified in the first question of the
system definition must co-exist and share resources
with the TCP/IP Library. To develop the code, we will
need a good understanding of how the TCP/IP Stack
operates.

16 Rev. 0.2

&~

SILICON LABORATORIES

AN292

Figure 21 shows the main application loop for projects
generated using the TCP/IP Configuration Wizard. On
reset, the MCU is initialized then an attempt is made to
establish a network connection. Once the embedded
system is on a network, the mn_server() library routine
is called and typically does not exit unless the device is
disconnected from the network.

The mn_server() routine handles many network tasks
as shown in Figure 22. This includes automatically
responding to web server, ping, and virtual file system

requests.

MCU Initialization

A

Establish Network
Connection

'

Start mn_server()

v

Connection Lost

Figure 21. Main Application Loop

7.2. Adding Application Code

Application code can be inserted in three places as
shown in Figure 22. Each of these ‘application code
holders’ are described in the paragraphs below.

7.2.1. Interrupt Service Routines

The MCU has multiple interrupt sources including
external pin, timer overflow, ADC end-of-conversion,
etc. Application code that requires accurate timing,
such as an ADC sampling engine, should be placed
inside a high or low priority interrupt service routine.
Note that the TCP/IP library uses a low priority interrupt
for communication with the CP220x.

7.2.2. Callback Functions

The TCP/IP Library uses callback functions to notify
application code of certain events such as packet
received, server idle, waiting to receive packet, etc.
Application code that interfaces with the TCP/IP Library
or does not require accurate timing should be placed
inside a callback function. Application Note “AN237:
TCP/IP Library Programmer’s Guide” has a complete
description of all available callback functions.

7.2.3. Common Gateway Interface (CGl) scripts.

The Common Gateway Interface (CGI) is a standard
protocol for communication between a web browser
and a web server. A CGI script is a firmware routine
residing on the embedded web server that may be
executed by clicking on a link or button inside a web
browser.

CGl scripts are capable of accepting data from a web
browser and returning dynamically created web pages
for display in the web browser.

MCU CP220x
Pilnsert Application Code Here—ﬁ ‘ ¢ ¢

Interrupt Callback cal Virtual File MCU 8 kB

Service Functions Scripts System Flash Flash

Routines Memory Memory

Y
\ 4 Y \ 4
> Eth t
mn_server() - MA(?/EI—eiY e —
Network

Figure 22. Application Code Model For MCU Firmware After mn_server() is Started

SILICON LABORATORIES

Rev. 0.2 17

AN292

7.3. Developing a Web Browser Interface

The application code added to the embedded system
should allow it to meet the required system functionality
specified in question 1 of the system definition. We will
now develop an example system and demonstrate how
to build a network interface.

Our example system will provide remote monitoring

capability for a light sensor. A block diagram of the
example system is shown in Figure 23.

Web Browser

et oo e v e e e e |

E
mbedded =

System

Light
Sensor

Figure 23. Example System Block Diagram

The software for this system can be generated by the
TCP/IP Configuration Wizard. The only required
application layer protocol is HTTP. After generating the
basic project, we have added an interrupt-based ADC
sampling engine. From this point, we will assume that
we always have access to a global variable called
ambient_light.

7.3.1. Creating Common Gateway Interface (CGl)
Scripts

Our goal in this section is to view the ambient_light
variable from a web browser. To exchange data with a
web browser, we will need to use the common gateway
interface. Thanks to the TCP/IP library, this task is as
simple as placing application code inside an empty
function stub.

The first step to creating a CGl script is to create a new
function stub as follows:

// Prototype:
void get data (PSOCKET INFO socket ptr);

// Definition:
void get data (PSOCKET INFO socket ptr)
{

// Insert application code here.

}

To make our new CGI script visible to a web browser,
we must add it to the virtual file system. The following
code adds the CGI script to the virtual file system:

void main (void)

// Initialization Code

// Add CGI Script to Virtual File System
mn_pf set entry(

(byte*) "get data",

get data
)i

// Start mn_server ()
}
Note: (byte*)

the web browser will use to call
script.

“get data” is the string which
our CGI

Note: <get data> is a function pointer to our
new CGI script.

The last step to creating our new CGl script is making
sure we have enough empty slots in the virtual file
system to add our new CGI script. Open the
mn_userconst.h header file and scroll down to the
num_post funcs constant. This value should be
greater than or equal to the number of CGI scripts
added to the file system.

7.3.2. Adding Application Code to a CGI Script

Our new CGl script should now be executable from a
web browser. To test this functionality, we can place a
breakpoint on the CGI script and call it from a web
browser. Assuming our embedded system has an IP
address of 10.10.10.163, we can call the CGI script
from a web browser as follows:

http://10.10.10.163/get data?

This should cause code execution to stop at the
breakpoint. To pass data to the CGI script, we can call
it from a web browser as follows:

http://10.10.10.163/
get data?type=htmlé&setbgcolor=yes

When text is passed after the question mark following
the IP address and script name, it is automatically
copied by the TCP/IP library to the global BODYptr
buffer. The size of this buffer can be set by modifying
the body_buffer _len constant in mn_userconst.h.

18 Rev. 0.2

&~

SILICON LABORATORIES

AN292

The TCP/IP library provides the mn_http_find_value()
function to parse the incoming data. Application code
can parse the information in the BODYptr as shown in
the following example:

byte msg buffl[52];
byte msg buff2[52];

// Search for the “type” field and store the

// result in <msg buffl>.

statusl = mn_http find value (BODYptr,
(byte*) "type", msg buffl);

// Search for the “setbgcolor” field

// and store the result in <msg buff2>.

status2 = mn _http find value (BODYptr,
(byte*)"setbgcolor",msg_buffZ);

// Check statusl and status2 to determine if
// msg_buffl and msg buff2 are valid.
if (statusl && status?) {

}

Using the data passed in msg_buffl and msg_buff2,
application code can perform an application-specific
task, then fill a memory buffer with data it wishes to
return to the web browser.

7.3.3. Sending a Web Page to the Web Browser

Once we have received the browser’s request, we can
generate a web page containing the value of
ambient_light and return it to the web browser. We do
this with the following code:

static byte html buffer[256];

// Write the HTML code to a buffer.
sprintf(html buffer, “<HTML>%$i</HTML>",
ambient light);

// Fill the socket with data to send.
socket ptr->send ptr = html buffer;
socket ptr->send len strlen (html buffer);

// Return from the CGI script
return;

The above code makes a very simple HTML page
containing the value of ambient_light and stores it in a
buffer. The buffer is sent to the web browser using the
socket pointer provided by the TCP/IP library as the
first parameter in the CGI script. A socket is a data
structure that allows application code to send and
receive data using the TCP/IP library.

Data is sent using the socket by specifying its starting
address and length. As soon as the CGI script returns,
the TCP/IP library will check the socket’'s send_len field
for a value greater than zero and send the html page to
the web browser. Note that the temporary HTML buffer

must be a global variable because it is accessed after
the CGl script returns.

7.4. HyperTerminal (Telnet) Interface

We will now add a Telnet interface to our example
embedded system to allow access from Telnet clients
such a HyperTerminal, PuTTy, Microsoft Telnet, etc.
The TCP/IP library provides callback functions which
make implementing a Telnet interface very easy.

The TCP/IP library functions used for implementing a
Telnet server interface are:

mn_open()
callback_app_server_process_packet()
callback_app_server_idle()

mn_send()

callback_socket_closed()

m mn_close()

7.4.1. Starting the Embedded Telnet Server

The first step to creating a Telnet server is opening a
passive TCP socket at port 23, the well known port
number for Telnet. This can be done using the
mn_open() routine. A passive socket means that it will
wait for a client to connect, rather than actively trying to
establish a connection. It is the most suitable type of
socket for implementing a server application.

Once the user starts a Telnet session (e.g. by pressing
the “connect” button in Hyperterminal), the Telnet client
will attempt to establish a TCP connection with the
embedded Telnet server. If the connection attempt is
successful, the TCP/IP library will alert application
code using the callback_app_server_process_packet()
callback function. Below is an example of application
code placed inside this callback function:

callback app server process packet
(PSOCKET INFO socket ptr)

{
// Check if the incoming packet
// was addressed to Port 23
if (socket ptr->dest port == 23){

if (TELNET STATE == WAITING) {
// Change Telnet State Variable
TELNET STATE = CONNECTED;

// Display Welcome Message
mn_send (telnet socket no,
TELNET WELCOME STR,
sizeof (TELNET WELCOME STR));

}
}
The mn_send() routine used in the above example can

be used to send data back to the Telnet client that has
just established a connection.

SILICON LABORATORIES

Rev. 0.2 19

AN292

7.4.2. Communication During the Telnet Session

Now that the Telnet connection is fully working, either
the server or the client may send data to the other
device. The client sends data to the embedded system
when the user types characters into the keyboard, and
the embedded system may update the client’s screen
using the mn_send() routine. The two callback
functions used in the “connected” state are:

m callback_app_server_process_packet() - called by
the TCP/IP library when a packet is received from
the client. Application code can access the received
data by reading from socket_ptr->recv_ptr up to
socket _ptr->recv_len bytes.

m callback_app_server_idle() - periodically called
when the TCP/IP library is not sending or receiving
packets. Application code, including calls to
mn_send(), may be placed in this callback function.

7.4.3. Ending a Telnet Session

The Telnet session may be ended by either the client or
the embedded server. The Telnet session is considered
closed when either end of the TCP connection is lost.
On the embedded server, the TCP connection may be
closed by calling the mn_close() routine. The Telnet
client closes the TCP connection when the user clicks
the “disconnect” button or the window is closed.

If the Telnet client closes the connection, application
code is notified using the callback socket closed()
callback function. In case the client loses power and is
unable to cleanly close the TCP connection,
application code may not receive notification that the
connection has been lost. To handle this case,
application code may implement a timeout.

7.4.4. Data Rate Considerations

Since Telnet uses the TCP transport protocol, each
packet sent must be acknowledged by the receiver
before further packets may be sent. This causes the
transfer rate to be dependant on how fast the receiving
device can acknowledge a packet.

If the Telnet connection uses uni-directional data flow,
then it may be affected by a congestion control
algorithm called TCP delayed acknowledgement. This
algorithm causes most PCs to withhold packet
acknowledgement until it needs to send data back to
the embedded system or a 200 ms timeout expires.
This phenomenon limits the data rate of uni-directional
TCP traffic to 5 packets per second. Most applications
such as Web Server, E-mail, etc. that use bi-directional
data flow are not affected by this phenomenon.

More information is available from Microsoft
Knowlegebase Article 214397 available from
http://support.microsoft.com/.

7.5. Transferring Data By Email

E-mail transmission across the Internet requires a
network infrastructure. The network infrastructure for e-
mail consists of outgoing mail servers (SMTP) and
incoming mail servers (POP, IMAP, HTTP). The
incoming and outgoing mail servers handle the routing
and queuing of e-mails as they are sent across the
Internet.

E-Mail Infastructure

Incoming Mail Server Outgoing Mail Server
(POP, IMAP, HTTP) (SMTP)

Figure 24. E-Mail Transmission

The TCP/IP stack implements the SMTP protocol
which allows the MCU to communicate with an
outgoing mail server. Several pieces of information are
required for an MCU to send e-mail. These are:

e |P address of the SMTP server.
e Destination e-mail address (TO field).
e Return e-mail address (FROM field).
Subject.
Message Body.
Attachment Name.

e Attachment Contents.
Each of the information fields above can be stored in
dynamic RAM buffers or in static code constants. The
only restriction on the information in the buffers is that it
must be plain text (ASCII). Binary files such as images
can only be sent if the MIME protocol is used to convert
the binary attachment to ASCII.

If an SMTP server is not available on your network,
then software SMTP servers, such as the PostCast
server available from www.postcastserver.com allow
any PC on the network to become an SMTP server.

A firmware example of sending e-mail is located in the
Ethernet examples folder. For a typical IDE Installation,
this folder’'s path is “C:\Silabs\MCU\Examples\
C8051F...\Ethernet.

20 Rev. 0.2

&~

SILICON LABORATORIES

http://support.microsoft.com/
http://www.postcastserver.com

AN292

7.6. Custom Application Interface

The TCP/IP Stack allows opening TCP and UDP
sockets for communication with custom applications.
The firmware required to implement the custom
interface is very similar to a Telnet interface. If the
custom application chooses to use UDP, then the
maximum data transfer rate will increase and the
application may use broadcast packets; however, the
reliability and connection-oriented nature of TCP will be
lost. See the Appendix on page 26 for a detailed
comparison between TCP and UDP.

Timesaving Tip: If a listening UDP socket receives a
packet from a device, the socket is automatically bound
to the IP address and port number of the sender. This
means that the embedded system may only send
packets to and receive packets from the device that
has sent it a packet. To allow packet transmission and
reception to/from other devices, the socket must be
reset by closing and re-opening it. See Application
Note “AN237: TCP/IP Library Programmer’s Guide” for
a complete description of the TCP/IP Library API.

7.7. Running without a Network

The TCP/IP Library can detect when the CP220x has
been disconnected from a network and causes the
mn_server() routine to exit. In most systems, the library
will immediately be re-initialized using mn_init() then
software will enter the establish_network_connection()
routine. This routine does not exit until a network
connection has been established.

The establish_network_connection() routine can be
customized to perform specific system functionality
while waiting for a network connection.

7.8. Managing RAM

On devices with 4 kB RAM, the RAM usage should be
managed as the application is being developed to
ensure that the RAM usage does not exceed the
amount of physical RAM on the device. If using the
‘F340 MCU and not utilizing the USB interface, the
USB FIFO RAM may add up to 1 kB of additional RAM
for use by the TCP/IP Library or application code.

All buffers used by the TCP/IP Library are adjustable

by the user. The buffer sizes can be configured in the
mn_userconst.h header file.

Timesaving Tip: DHCP requires a large RAM buffer
(548 bytes) for acquiring and renewing the embedded
system’s |IP address. Since this buffer is used only
during initialization and seldom otherwise, some of the
RAM can be temporarily recovered. For example, in
the CP2201EB, the last 504 bytes of the DHCP buffer
(starting with the sname field of the dhcp_info
structure) are used as a general purpose buffer for
dynamically creating web page content using sprintf().

7.9. Saving Data to Flash

If the system definition requires storing a static IP
address in Flash, either the Flash on the MCU or the
Flash on the CP220x may be used. Note that using the
CP220x Flash to store an IP address or other data will
allows more of the MCU’s Flash to be used as
executable program memory.

Application Note “AN201: Writing to Flash from
Firmware” provides pre-written routines for writing the
MCU’s Flash. The TCP/IP library also provides routines
for reading and writing the CP220x Flash. The TCP/IP
Library API can be found in “AN237: TCP/IP Library
Programmer’s Guide.”

7.10. Implementing a Network Bootloader

To update firmware over the network, a TFTP
bootloader can be used to transfer a new firmware
image to the embedded system. To use a bootloader to
update firmware, a special build of the TCP/IP Library
is required. This library is located at address 0x2400 in
code space to allow room in Flash for a bootloader.

The special libraries can be found in a folder
named “ExtraLibraries” typically found in
C:\SiLabs\MCU\TCP-IP Config\ExtraLibraries.

An example project which uses the bootload libraries is
located in C:\SiLabs\MCU\Examples\C8051F34x\
Ethernet\CP2201EK_SOURCE\CP2201EK_AB4 BL.

For more information about the bootload libraries,
please see the MCU Knowlegebase, available from
www.silabs.com/support.

SILICON LABORATORIES

Rev. 0.2 21

http://www.silabs.com/support

AN292

8. Personalizing the Ethernet
Enabled Embedded System

Now that the application has been developed, it is time
to add personalized content (e.g. web pages, images,
etc.) to the embedded system. The two primary areas
that require customization are network configuration
and web server interface. Figure 25 shows the
embedded system personalization flow.

System
Definition

Software
v Generation

Application
v Development

Hardware
Design ¢

Embedded System
Personalization

\ 4

Customize Network
Configuration

|

Add HTML Web Pages
to the Web Server

Debug

A\ 4

L1

Figure 25. Embedded System Personalization Flow

8.1. Customizing Network Configuration

If the embedded system has Netfinder enabled, then
the TCP/IP Configuration Wizard will generate two
additional files in the project directory: netfinder.c and
netfinder.h. These files may be used as-is or modified
to suite the application requirements.

Figure 26 shows a screenshot of the Neffinder utility
after finding an embedded system that has been
loaded with the default netfinder.c and netfinder.h files.
The following fields can be customized by modifying
the customization strings in netfinder.h:

m Device Name.

m Text Description.

m Definition of Event 1 (e.g. Time Powered).

m Definition of Event 2 (e.g. Time on Network).

“/Netfinder v1.0
[Show MAC Address [v Show Time Powered [v Show T me onNetwork. SortBy: |Unsorted >
CK

uWeb 2.0 Embedded Sensor IP Address: 10.30.1.38
Funning on & CaUs17240 and CRE201

Cancel

Configure

Assign P

Quick Launch:

Web Browse:

Hypertrminel

Bootloader

i

Figure 26. Netfinder Utility Screenshot

If Netfinder capability is needed in your system, you
may use the dedicated Netfinder utility or integrate
Netfinder functionality in your own custom application.
“AN237: TCP/IP Library Programmer’s Guide” provides
the information required to search for Netfinder-
enabled devices on a local area network.

8.2. Customizing the Web Server Content

The TCP/IP Configuration Wizard generates a basic
“Hello World” web page when web server functionality
is included in the generated library. The single-page
“Hello World” website can be modified as shown in the
Embedded Ethernet Development Kit User’s Guide or
a multi-page website with images and javascript can be
developed and stored in the embedded system.

8.2.1. Adding Web Pages and Images

Recall our example embedded system described in
Section 7.3 on page 18. We will now develop and add
web pages to display our light sensor data inside a web
browser.

We will be designing the HTML pages on a PC and

adding them to the embedded system using the

procedure illustrated in Figure 27 and summarized

below:

1. Develop the HTML content and preview on a PC. Make a
note of the file sizes as you are developing the content.
An image that is 3 kB on the PC will consume 3 kB of

22 Rev. 0.2

Flash memory.
>4

SILICON LABORATORIES

AN292

2. Use the HTML2C utility to convert the HTML content to
file arrays. For each file array, the HTML2C utility
generates a (.c) source file and a (.h) header file.

3. Include the header file at the beginning of main.c.
Add the source file to the project and to the project build.

5. Add each file array to the virtual file system using the
mn_vf_set_entry() function. See “AN237: TCP/IP Library
Programmers Guide” for more details.

6. Modify the num_vf _pages constant in mn_userconst.h
such that the value is greater than or equal to the total
number of files arrays added to the file system.

main.c
#include webpage.h
HTML Content
examples void main()
.html (web pages), {
.jpg, .gif (images), .
.class (Java), mn_vf_set_entry();
}
—|-[3 Source Fil
html2c
T —
< Remove index.c from project
H files .C files
ex. ex.

(webpage.h) (webpage.c)

mn_userconst.h

#define num_vf_pages 2

Figure 27. Adding HTML Content

For additional information, the Embedded Ethernet
Development Kit User’'s Guide has a step by step
tutorial which shows how to use the HTML2C utility.

8.2.2. Creating Basic HTML Content

HTML stands for Hyper Text Markup Language and is a
file format used to specify web page content. The
HTML language uses tags tell the web browser how to
display a web page. Below is an example of a simple
web page:
<html>

<!-- HTML comments take up code space -->

<head>

<title>Hello World</title>
<head>

<!-- Whitespace takes up code space -->

<body bgcolor="green">
<hl>Hello World!</hl>

This page is served from a
C8051F12x and uses the Silicon
Laboratories TCP/IP stack.

</body>

</html>

Designing HTML content will require some knowledge
of how web pages are created. If you are not familiar
with the HTML language used to compose web pages,
you can use applications such as Frontpage or
Microsoft Word to generate web pages. This method is
not preferred because the output of such applications
is not optimized and quickly fills up code space.

If you are willing to learn HTML, there are excellent
tutorials on the Internet. Below are some links to
websites that have HTML tutorials:

HTML Tutorials and Examples:
http://www.w3schools.com/html/default.asp*
http://www.htmlgoodies.com/primers/html/
http://www.pagetutor.com/

* Recommended as a starting point.
8.2.3. HTML Frames - A page within a page.

Now that we have a basic web page, we will add a
display showing the light sensor data. Since our CGl
script returns an HTML page, we will create a frame
inside our main HTML page to display the page
returned from our CGI script. Below is an example of
adding an inline frame to a web page:

<html>

<body bgcolor="green”>

<!-- Add an inline HTML frame -->
<iframe src="get data?type=html">
</iframe>
</body>
</html>

Notice that in the <iframe> tag, we have specified the
relative path of the CGI script, which will provide the

SILICON LABORATORIES

Rev. 0.2 23

http://www.w3schools.com/html/default.asp
http://www.pagetutor.com/
http://www.pagetutor.com/
http://www.pagetutor.com/
http://www.pagetutor.com/

AN292

content for the new frame. Example usage of inline
frames can be found in the CP2201EK.

&

Qe - © [¥] [@ O sexrch g Fovorites @ media € (- 12 [) B A

Address | @] http://10.30.1.254/sensordata. html v B

SILICON LABOLATORIES

Temperature
(deg C):

50.7

Ambient Light:

69%

&oone @ rternet

Figure 28. Displaying Data Inside a Frame

8.2.4. Using Javascript to Automate a Web Page

An inline frame is a good way to display sensor data;
however, the user must refresh the web page to update
the display. After several minutes, this can become
very tedious. The solution... Javascript.

Javascript is a browser scripting language that is used
to automate common browser tasks. The CP2201EK
uses Javascript to refresh the sensor data displayed
inside the inline frames. The javascript code used for
performing these operations in the CP2201EK can be
examined by selecting the “view source” command in
the web browser. Below is a simple example of
refreshing a frame using Javascript:

<html>

<head>
<script type="text/javascript">
var delay = 2000;
function refresh ()
{
document.getElementById ("framel")
.src="get data?type=html";
setTimeout ("refresh ()", delay):;
}
</script>
</head>

<body bgcolor="green” onload="refresh()”>

<!-- Add an inline HTML frame -->
<iframe id="framel" src="about:blank">
</iframe>
</body>
</html>

The webpage containing this Javascript example has a
single blank <iframe> and a single Javascript function

named refresh(). Once the HTML page is loaded by the
web browser, the refresh() function is executed
because we have added the onload = “refresh()”
statement to the <body> tag.

The refresh() function performs two tasks. First, it
forces a reload of the frame contents by setting its src
field to the relative path of the CGI script.

Second, it starts a timeout of delay milliseconds by
calling setTimeout(function, time). This Javascript
function allows a specified function to be called after
the specified time. In this example, each call to
refresh() triggers a new call to refresh() 2 seconds
later. This allows the sensor data to be continuously
refreshed every 2 seconds.

Below are some links to websites that have additional
Javascript tutorials and examples:

Javascript Tutorials and Examples:
http://www.w3schools.com/js/
http://www.htmlgoodies.com/beyond/javascript/
http://www.webteacher.com/javascript/

8.2.5. Collecting Data Using HTML Forms

HTML forms are another web page construct that may
be used for sending data to a CGI script. An HTML
form collects data in text fields on a web page and
passes it to the embedded system by calling a CGI
script. Below is an example of an HTML form:
<form action="get data" target=" blank">

SMTP Server:

<input type="text" name="server">

To:

<input type="text" name="to">

<input type="submit" value="Send">
</form>

Figure 29 shows this form inside an HTML page. When
the user presses the Send button (input type = submit),
the get_data CGl script will be called as follows:

/get_data?server={text}&to={text}

The fields labeled {text} come from text entered by the
user inside the HTML page. The farget="“ blank”
statement causes the data returned from the
embedded system to be displayed on a new page.

Send Sensor Data
By E-Mail:

SMTP Server:

To:

Figure 29. HTML Form

24 Rev. 0.2

&~

SILICON LABORATORIES

http://www.w3schools.com/js/
http://www.htmlgoodies.com/beyond/javascript/
http://www.webteacher.com/javascript/

AN292

9. Debugging Embedded Ethernet

Occasionally when developing an Embedded Ethernet
system, a problem is encountered. Debugging and
finding the cause of the problem can be simplified if the
problem can be isolated to specific part of the system.
There are four conditions that may be checked that
help isolate the problem to a specific piece of the
system. They are illustrated in Figure 30 and described
below:

Is the PC sending the correct data?
Is the embedded system receiving the correct data?
Is the embedded system transmitting a response?

Is the PC receiving the embedded system’s
response?

On the PC side, a packet capture utility such as
Ethereal can be used to view network traffic being
received and transmitted by the PC. Ethereal is a
widely used open-source utility available for download
from www.ethereal.com.

On the embedded system side, a UART terminal may
be used to view debug messages printed by the debug
version of the TCP/IP Library. Some of the messages
printed by the library are “packet received”, “packet
transmitted”, “packet skipped”, “device reset’, etc. An
example of a problem that may be solved by these
messages is a receive buffer that is sized too small. In

this case, the user would continue to see “packet
skipped” messages for every packet sent by the PC
larger than the receive buffer size.

The debug libraries can be used by adding UART
initialization code to the embedded system. This allows
the library to print messages using the printf() library
function. The debug libraries can be found in a
folder named “ExtraLibraries” typically found in
C:\SiLabs\MCU\TCP-IP Config\ExtraLibraries.

Example projects which uses the debug libraries are
located in C:\SiLabs\MCU\Examples\C8051F34x\
Ethernet\CP2201EK_SOURCE\CP2201EK_AB4_DBG
and C:\SiLabs\MCU\Examples\C8051F12x\Ethernet\
DEBUG.

If the embedded system does not have an RS-232
level translator, the level translator for any target board
may be borrowed to debug the embedded system.
Alternatively, the CP210x evaluation boards may be
used to convert TTL level UART signaling to a virtual
COM port on the PC.

An alternative method of debugging is halting the MCU
and viewing the CP220x registers in the Silicon
Laboratories IDE. The memory windows associated
with the CP220x allow the user to view the direct and
indirect registers, transmit buffer, receive buffer and
Flash memory.

UART Ethereal
Terminal Utility
Embedded
System @ Network @ PC
Figure 30. Embedded Ethernet Debug Setup
@ Rev. 0.2 25

SILICON LABORATORIES

http://www.ethereal.com

AN292

APPENDIX—THE BAsics oF TCP/IP

TCPI/IP refers to a set of standard protocols used for
communication over a network. The protocols are
based on the Open Systems Interconnection (OSI)
Model, a layered abstract description of network
communication. The layers specified in the OSI model
are structured such that each layer only depends on the
layers below it. Implementations of the OSI Model, such
as TCP/IP, result in a protocol stack as shown in
Figure 31 which describes functionality both at the
application layer and at the low level physical interface.

9.0.1. Physical Layer

The physical layer is typically implemented in hardware
and can use a wide variety of interfaces. This allows
networks to consist of Ethernet devices, wireless
devices, dial-up modem devices, or a combination of all
three.

9.0.2. Data Link Layer

The data link layer is implemented in both software and
hardware. It contains the low level device driver and the
Ethernet Media Access Controller (MAC). At this level,
data is exchanged in IEEE 802.3 Ethernet frames using
physical addressing.

The CP220x is a single-chip Ethernet controller
containing the physical and data link layers, buffer
space, and 8 kB Flash memory pre-programmed with a
unique physical address.

9.0.3. Network Layer

The network layer builds on top of the data link layer by
implementing logical addressing. Logical addressing
allows devices with different data link and physical
layers to communicate. It also allows devices to have a
temporary address that can be easily changed or re-
assigned as it moves between networks. The logical
address is also called an IP Address.

Devices with different data link and physical layers can
communicate using their logical addresses because of
the Address Resolution Protocol (ARP). ARP is a
protocol used to map the logical IP Address to a
physical address. For Ethernet, the physical address is
the MAC address, however, this can be different for
other types of networks such as dial-up networking.

The PING protocol allows a user to check if a device
assigned to a particular |IP address is responding. A
PING application sends a small packet to a device’s
logical address and measures the time it takes to
receive a response. This round trip time can be used to
estimate network latency.

9.0.4. Transport Layer

The transport layer builds on the network layer by
dividing each IP address into 65536 ports. This allows
multiple applications to run on a network node using a
single IP address. A packet’s full destination at the
transport level includes both an IP address and a port
number.

- HTTP FTP SMTP |TFTP | Netfinder BDOHOCTPP DNS
Transport TCP UDP
Network IP + ARP/PING
Data Link Hardware Device Drivers
- Hardware (Ethernet, Modem, etc.)

Figure 31. TCP/IP Protocol Stack

26 Rev. 0.2

&~

SILICON LABORATORIES

AN292

There are two types of ports (also called sockets) at the
transport level: TCP and UDP. Each is described
below:

m Transmission Control Protocol (TCP) - TCP is a
connection-oriented protocol providing a reliable
byte-stream between two devices. Data delivery is
guaranteed and always arrives in-order.

m User Datagram Protocol (UDP) - UDP is a
connectionless protocol providing fast, best effort
datagram delivery. A single node may broadcast or
multicast packets to multiple nodes.

Table 4 compares the TCP and UDP transport layer
protocols. Most network nodes implement one or both
of the transport layer protocols.

9.0.5. Application Layer

The application layer is the topmost protocol level and
directly implements the user interface. Each user
interface relies on either UDP or TCP at the transport
layer. Based on this, the application layer protocols can
be divided into two groups. The application layer
protocols below rely on UDP:

m Automatic Network Configuration (BOOTP/
DHCP) - These protocols allow the embedded
system to automatically acquire an IP address from
the network. A DHCP/BOOTP server must exist on
the network. BOOTP is an older and less efficient
version of the DHCP specification but is provided
for compatibility with older network hardware.

m Netfinder - The netfinder protocol allows a PC
application to search for embedded systems on a
network. When using DHCP, this saves space and
hardware costs because the embedded system
does not need to display its IP address on an LCD
screen. Multiple embedded systems can be
differentiated through an external event path.

If DHCP is not used, the Netfinder protocol allows a
PC application to assign a static IP address to an
embedded system. This also saves space and
hardware costs because static IP address
assignment occurs over the network. A second
interface (e.g. UART, keypad, etc.) is not required to
program the IP Address.

m Trivial File Transfer Protocol (TFTP) - The TFTP
protocol is a simple way to transfer files. It is
typically used to update firmware or download
configuration information from a TFTP server.

The application layer protocols below rely on TCP:

m Hyperterminal/Telnet Interface (TCP) - A
Hyperterminal/Telnet interface is the simplest
interface that can be implemented using TCP. Data
is transmitted in both directions and is displayed on
a terminal very similar to UART/RS-232.

m Web Server Interface (HTTP) - HTTP stands for
Hyper Text Transfer Protocol and is used to transfer
information (web pages, images, etc.) for display
inside a web browser. This protocol allows an
embedded system to be monitored and controlled
from a web browser.

m E-mail Interface (SMTP) - SMTP stands for Simple
Mail Transfer Protocol and is used to send e-mail
messages. This interface allows the embedded
system to send e-mail with or without attachments.

m File Transfer Protocol (FTP) - This protocol allows
the embedded system to become an FTP server
accessible from an FTP Client. Files may be
uploaded or downloaded to the embedded system.

m Domain Name Service (DNS) - This protocol
allows domain names such as www.silabs.com to
be resolved into an IP address.

Table 4. TCP/UDP Protocol Comparison

Feature TCP

UDP

Complexity High

Low

and retransmits lost packets.

Packet Delivery Guaranteed. Uses acknowledgements Best Effort. Lost packets are not retransmitted.

Speed Slow. Retransmitted packets and
overhead affect data rate.

Fast. Very low overhead since each packet is
transmitted only once.

to a virtual RS-232 cable.

Data Stream A TCP connection implements a byte Each UDP datagram is self-contained. Data
stream between two devices very similar | only arrives in-order if it fits inside a single

datagram.

connection.

Broadcast Capability | TCP requires two devices to establish a | Any network node may broadcast/multicast a

datagram to any number of devices.

@ Rev. 0.2 27

SILICON LABORATORIES

AN292

CONTACT INFORMATION

Silicon Laboratories Inc.
4635 Boston Lane

Austin, TX 78735

Email: MCUinfo@silabs.com
Internet: www.silabs.com

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories, Silicon Labs, and USBXpress are trademarks of Silicon Laboratories Inc.

Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

28 Rev. 0.2

SILICON LABORATORIES

	1. Introduction
	2. Embedded Ethernet Connectivity
	Figure 1. Embedded Ethernet Connectivity

	3. How to Use This Design Guide
	Figure 2. Embedded Ethernet System Design Flow Diagram

	4. System Definition
	4.1. Specifying Required Functionality
	Figure 3. System Functionality Example

	4.2. Specifying Access Method
	Figure 4. User Interface Options

	4.3. Specifying Configuration Method
	4.3.1. Automatic Network Configuration
	4.3.2. Searching for Automatically Configured Embedded System Using Netfinder
	4.3.3. Static Network Configuration
	Figure 5. Searching for an Automatically Configured Embedded System Using Netfinder
	4.3.4. Assigning an IP Address Using Netfinder
	Figure 6. Assigning a Static IP Address Using Netfinder

	4.4. Specifying Field Re-Programmability Requirements
	4.4.1. Updating Firmware using a Header
	Figure 7. Field Re-programmability Options
	4.4.2. Updating Firmware over the Network

	4.5. Translating the System Definition to Protocol Requirements
	Table 1. System Definition to Protocol Mapping

	5. Hardware Design
	Figure 8. CP2201EK Schematic Blocks
	5.1. Custom Application Circuitry
	5.2. Designing the MCU Section
	Figure 9. Hardware Design Flow
	5.2.1. Determining MCU Peripheral Requirements
	5.2.2. Determining Flash Memory Requirements
	5.2.3. Determining RAM Requirements
	5.2.4. Determining MIPS requirements
	5.2.5. Selecting an MCU
	Figure 10. MCU Family Comparison
	5.2.6. Adding Additional Memory
	5.2.7. Adding the MCU to the Embedded System
	Figure 11. Flash Requirements for Various Interfaces

	5.3. Ethernet Controller Section
	5.4. System Level Benefits of the CP220x
	Table 2. CP220x Comparison
	5.4.1. Adding the Ethernet Controller to the Embedded System

	5.5. Ethernet Connector
	Figure 12. CP220x Connector Interface
	Table 3. Example Part Numbers for Integrated Connectors and Discrete Magnetics

	5.6. Power Circuit
	5.6.1. 9 V Wall Adapter and 3.3 V LDO
	5.6.2. Power over Ethernet
	5.6.3. Battery Power

	MCU Integration Guidelines
	Figure 13. CP2201 Evaluation Board with Testpoint Access to C2 and UART Signals

	CP220x Integration Guidelines
	Figure 14. CP2201 Evaluation Board Layout

	6. Software Generation
	Figure 15. Software Generation Flow
	6.1. TCP/IP Configuration Wizard
	Figure 16. TCP/IP Configuration Wizard

	6.2. Selecting Checkboxes
	6.2.1. Hardware Settings
	Figure 17. TCP/IP Configuration Wizard Options
	6.2.2. Protocol Settings
	6.2.3. System Settings

	6.3. Generating a Project
	Figure 18. Generate Project Command

	6.4. Running the Generated Code
	Figure 19. Project Management Using the Silicon Laboratories IDE

	7. Application Development
	Figure 20. Application Development Flow
	7.1. Application Structure
	Figure 21. Main Application Loop

	7.2. Adding Application Code
	7.2.1. Interrupt Service Routines
	7.2.2. Callback Functions
	7.2.3. Common Gateway Interface (CGI) scripts.
	Figure 22. Application Code Model For MCU Firmware After mn_server() is Started

	7.3. Developing a Web Browser Interface
	Figure 23. Example System Block Diagram
	7.3.1. Creating Common Gateway Interface (CGI) Scripts
	7.3.2. Adding Application Code to a CGI Script
	7.3.3. Sending a Web Page to the Web Browser

	7.4. HyperTerminal (Telnet) Interface
	7.4.1. Starting the Embedded Telnet Server
	7.4.2. Communication During the Telnet Session
	7.4.3. Ending a Telnet Session
	7.4.4. Data Rate Considerations

	7.5. Transferring Data By Email
	Figure 24. E-Mail Transmission

	7.6. Custom Application Interface
	7.7. Running without a Network
	7.8. Managing RAM
	7.9. Saving Data to Flash
	7.10. Implementing a Network Bootloader

	8. Personalizing the Ethernet Enabled Embedded System
	Figure 25. Embedded System Personalization Flow
	8.1. Customizing Network Configuration
	Figure 26. Netfinder Utility Screenshot

	8.2. Customizing the Web Server Content
	8.2.1. Adding Web Pages and Images
	Figure 27. Adding HTML Content
	8.2.2. Creating Basic HTML Content
	8.2.3. HTML Frames - A page within a page.
	Figure 28. Displaying Data Inside a Frame
	8.2.4. Using Javascript to Automate a Web Page
	8.2.5. Collecting Data Using HTML Forms
	Figure 29. HTML Form

	9. Debugging Embedded Ethernet
	Figure 30. Embedded Ethernet Debug Setup

	Appendix-The Basics of TCP/IP
	9.0.1. Physical Layer
	9.0.2. Data Link Layer
	9.0.3. Network Layer
	9.0.4. Transport Layer
	Figure 31. TCP/IP Protocol Stack
	9.0.5. Application Layer
	Table 4. TCP/UDP Protocol Comparison

	Contact Information

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

