AN237

SILICON LABORATORIES

TCP/IP LIBRARY PROGRAMMER’S GUIDE

Relevant Devices

This application note applies to the following devices:

C8051F120, C8051F121, C8051F122, C8051F123, C8051F124, C8051F125, C8051F126, C8051F127,
C8051F130, C8051F131, C8051F132, C8051F133, C8051F020, C8051F021, C8051F022, C8051F023,
C8051F340, C8051F341, C8051F342, C8051F343, C8051F344, C8051F345, C8051F346, C8051F347

1. Introduction

The Silicon Laboratories TCP/IP stack is designed to add network connectivity to the ‘F12x, ‘F13x, ‘F02x, and ‘F34x
family of microcontrollers. It is highly configurable and has a small memory footprint. The TCP/IP stack is packaged
with a Configuration Wizard that can generate the framework code required to develop a networked application and
numerous examples to jump-start development and minimize time to market.

The TCP/IP stack includes the following features:

m HTTP web server with CGI scripting, SMTP e-mail client, FTP server, TFTP client, Netfinder, DNS
client, and virtual file system.
m Up to 127 simultaneous TCP or UDP sockets. Direct access to sockets allows custom application
development.
m Support for Ethernet with DHCP/BOOTP capability. Interfaces to a CP220x through the external
memory parallel interface. Custom driver support allows any Ethernet controller to be used.
m Support for PPP and SLIP with customizable modem settings (C8051F12x only). Interfaces to an
Si2457 modem through the serial port. Supports any standard "AT" serial modem.
The TCP/IP stack is freely available for use with a Silicon Laboratories MCU and can be downloaded from the
Silicon Laboratories web site. It is also included in the Embedded Ethernet Development Kit (Ethernet-DK) and the
Embedded Modem Development Kit (Modem-DK), which include:

m CB8051F12x Target Board, USB Debug Adapter, and Universal Power Supply.

m AB4 Ethernet Development Board or the Si2457FT18-EVB Modem Board and AB3 Modem Adapter
Board. Note: A direct telephone line or phone simulator is required to communicate with the modem.

m Evaluation version of the Keil C51 toolchain limited to 4 kB object code generated from application
code. TCP/IP library code does not count towards the 4 kB limit with BL51 linker Version 5.15 or higher.

m TCP/IP Configuration Wizard to generate custom libraries and example projects that demonstrate how
to set up an HTTP web server, send an e-mail, and send and receive TCP and UDP packets.

2. API Function Overview

The TCP/IP stack provides a set of functions that implement an application programming interface (API). These
functions provide the microcontroller an Ethernet or dial-up network interface via the CP220x (Ethernet) or Si2457
(Modem). All low-level hardware details and protocols are handled by the API and do not require management by
application code. The APl is provided in the form of a library file pre-compiled under the Keil C51 tool chain. (Device
firmware must be developed using the Keil C51 tool chain.) Some commonly-used API functions are listed below:

mn_init() Initializes all sockets and stack variables
mn_send () Sends data using a TCP or UDP socket
mn_recv() Waits for data to arrive on a TCP or UDP socket
mn_server () Starts an HTTP or FTP Server
mn_smtp send mail () Sends an e-mail to an SMTP mail server

Rev. 0.6 6/06 Copyright © 2006 by Silicon Laboratories AN237

AN237

®
2 Rev. 0.6 @

SILICON LABORATORIES

AN237

TABLE OF CONTENTS

T.Introduction e e e e 1
2. APIFUNCtion OVerVIeWttt i ittt ettt nnnnnnnnnaeesns 1
3.Getting Started i e 5
3.1. Project Directory Structure 5
3.2. TCP/IP Configuration Wizard Output 5
3.3. Using the TCP/IP Examples e 6
3.4. Getting Additional Help 6
4. TCP/IP Stack API Referenceottt ittt eaaaaannenneens 7
4.1, Funclion GrouUpsSo 7
4.2, Data TYPES . oo 7
4.3. Important Notes 8
4.4.Socket FunCtions 10
44 1. MmN init .o 10
4.4 2. NN 0PN .ttt 11
4.4 3. MN_SEeNd 12
444 MN_TECV . o vttt e et e e e e e e e e 13
4.4.5. mn_recv_Wwail 14
4.4.6. MN_ClOSE 14
4.4.7. mn_abort ... 14
448 mn_find_socket 15
4.5. Ethernet Functions 16
451.ether_reset_low 16
4.5.2. ether_reset_high 16
453. mn_ether_init 17
454. CPFLASH ByteRead 18
4.5.5. CPFLASH _ByteWrite 18
4.5.6. CPFLASH_PageErase 18
4.6. Modem FuncCtions 19
4.6.1. mn_modem_CONNeCt e 19
4.6.2. mn_modem_diSCONNECt 19
4.6.3. mn_modem_send_String 20
4.6.4. mn_modem_wait_reply 20
4.7. PPP FUNCiONS 21
0 I o o T o] o o T o o= o X 21
4.7.2. MN_PPP_CloSE 21
4.7 3. MN_PPP eSSt . . e 21
4.7.4. mn_ppp_add _pap _USert 22
4.7.5. mn_ppp_del_pap _user 22
4.8. DHCP/BOOTP Funclions e e e e 23
4.8.1. mn_dhcp start 23
4.8.2. mn_dhcp_release 24
4.8.3. mMn_dhCp_renew 24
4.8.4. MmN _boOtp 25

@ Rev. 0.6 3

SILICON LABORATORIES

AN237

4.9. Application Layer Functions 26
4.0, 1. MN SEIVEI . oot e e 27

492. mn_http_find_value 28

493. mn_tftp get file 28

4.94. mn_smtp start_session 28

4.9.5. mn_smip_end_SesSiON 29

4.9.6. mn_smtp_send_mail 29

49.7. mn_dns _get addr 29

4.10. Callback Functions e 30
4.10.1. callback_app_process _packet 31
4.10.2. callback_app_server_process packet 31
4.10.3. callback_app_recv_idle 31
4.10.4. callback_app_server_idle 32
4.10.5. callback_socket empty 32
4.10.6. callback_socket closed 32

4.11. Virtual File System (VFILE) Functions 33
411 1. mn_vf get entry e 34
411.2.mn_vf set_entry 34
4.11.3. mn_vf set ram_entry 34
411.4. mn_vf del_entry e 35
411.5. mn_pf get entry 35
411.6. mn_pf set entry 35
411.7. mn_pf del_entry 36

4.12. Support Functions 36
4.12.1. mn_ustoa—unsigned inttoascii 36
4.12.2. mn_uctoa—unsigned chartoascii 36
4.12.3. mn_getMyIPAddr_func 37
4.12.4. mn_atous—asciitounsigned int 37

5. Netfinder Protocol i i i i e 38
6. Custom Driver SUPPOrtot e e 40
6.1. Modifying the Custom Driver Header File 40
6.2. Modifying the ether_init() Routine 40
6.3. Modifying the ether_send() Routine 41
6.4. Modifying the ether_recv() or ether_poll_recv() Routine 41
6.5. Modifying the ether ISR() InterruptHandler 42
Appendix A—TCP/IP Stack UserConstants, 43
Appendix B—TCP/IP Stack Data Structures i iiinnnnnn. 47
Appendix C—Firmware Library Memory-model Compiler Settings 50
Appendix D—Connecting the Embedded SystemtoaPC 51
Appendix E—Error Codes Definedinmn_errs.ht 52
Document Change List i i ittt i eaanaanannnnnnnns 54
ContactInformation i i s sttt e a e 56

®
4 Rev. 0.6 @

SILICON LABORATORIES

AN237

3. Getting Started

Starting a new project that uses the TCP/IP stack is simple. There are five ways to get started.
m Modifying an HTTP Web Server Example.
Modifying an SMTP Mail Client Example.
Modifying a TCP Socket Example.
Modifying a UDP Socket Example.
Modifying a DHCP/BOOTP Example (Ethernet Only).
Using the TCP/IP Configuration Wizard to generate a custom library and framework code.

3.1. Project Directory Structure
A typical TCP/IP project directory consists of the following files and sub-directories:

Group 1 - User Files:

main.c Contains the main routine and callback functions.
mn_callback.c Contains additional callback functions.
mn_userconst.h Header file containing user settings.

TCPIP Project.wsp Project file that can be opened from the Silicon Labs IDE.

Group 2 - TCP/IP Stack Files:

mn_defs.h Contains type definitions used by the TCP/IP stack.
mn_errs.h Contains error code definitions.

mn_funcs.h Contains function prototype information.
mn_stackconst.h Contains constants required by the TCP/IP stack.
mn_vars.c Contains global variables used by the TCP/IP stack.
mn_stack common 000.1lib TCP/IP common library. Note the three digit library number.
mn_stack bank 000.1ib TCP/IP banked library. Note the three digit library number.

Group 3 - Optional Files:

VFILE DIR Optional subdirectory containing HTML files, images, and other content.
VFILE DIR\html2c.exe Optional html2c.exe utility that converts content to file arrays.
VFILE DIR\update.bat Optional batch file to automate conversion to file arrays.

VFILE DIR\mn defs.h Optional header file required only if using file arrays.

VFILE DIR\index.html Optional main HTML page for web server.

VFILE DIR\index.h Optional main HTML page converted to file array using himl/2c.exe.
VFILE DIR\index.c Optional main HTML page converted to file array using himl/2c.exe.
custom ethernet.h Optional header file for custom ethernet driver.

custom ethernet.c Optional source file for custom ethernet driver.

netfinder.h Optional header file for Netfinder customization.

netfinder.c Optional source file for Netfinder support.

3.2. TCPI/IP Configuration Wizard Output

The TCP/IP Configuration Wizard generates two custom libraries with a unique three-digit library number that
describes the selected protocol configuration. When the TCP/IP project is configured for code banking, the common
library is placed in the common area, and the banked library is placed in a code bank. In non-banked TCP/IP
projects, both libraries are included in the build and automatically located by the linker. The Wizard also generates
the supporting directory structure and framework code required to start a new TCP/IP project. Note that the frame-
work code generated will change based on the library number, and libraries with different three-digit library numbers
cannot be interchanged between projects without regenerating the supporting code. To start using the code gener-
ated by the Wizard, open the TCPIP_Project.wsp file using the Project—>0Open Project... command from the Silicon
Laboratories IDE.

@ Rev. 0.6 5

SILICON LABORATORIES

AN237

3.3. Using the TCP/IP Examples

The TCP/IP code examples are a good starting point for new projects. If the protocols used in an example meet the
needs of an end application, such as the HTTP Web Server, the example can be easily modified to include addi-
tional application code and the HTML files changed to suit the application. If a different combination of protocols is
needed, a new library and supporting code can be generated using the TCP/IP Configuration Wizard. See the
Embedded Ethernet Development Kit User's Guide or the Embedded Modem Development Kit User’'s Guide for
step-by-step instructions on setting up the hardware and running the code examples.

3.4. Getting Additional Help

If you have any questions or run into any problems while using the TCP/IP Stack or the TCP/IP Configuration
Wizard, contact MCU Applications by visiting www.silabs.com and clicking on the "Support" link. If you are
designing an application that requires features or protocols not currently available in the TCP/IP Library, please
contact us, and we will be glad to help you find a solution.

®
6 Rev. 0.6 @

SILICON LABORATORIES

http://www.silabs.com
http://www.silabs.com

AN237

4. TCP/IP Stack API Reference

4.1. Function Groups
The TCP/IP stack functions are divided into the following groups:

Socket Functions Open, close, and manage sockets.

Ethernet Functions Initialize the Ethernet controller and provide direct register access.
Modem Functions Manage the connection between the MCU and the modem.

PPP Functions Open, close, and manage a PPP connection.

DHCP/BOOTP Functions Used to obtain a dynamic IP address and boot file.

Application Functions Start and use application layer services (HTTP Web Server, FTP Server,
TFTP Client, SMTP Mail Client, and DNS client).

Callback Functions Event handlers called by the stack to notify the application layer.
VFILE Functions Add and remove files or CGl scripts to the virtual file system.
Support Functions Convert between various data types.

4.2. Data Types

The following data types are used by the TCP/IP stack. See "Appendix B—TCP/IP Stack Data Structures" on page
47 for detailed data structure information.

byte 8-bit unsigned char

SCHAR 8-bit signed char

wordl6 16-bit unsigned integer

word32 32-bit unsigned integer

PCONST BYTE Pointer to a constant byte (const unsigned char®)

Socket Data Types:
PSOCKET INFO Pointer to a SOCKET _INFQ_T structure

Virtual File System Data Types:

VE_PTR Pointer to a VF structure
POST FP Function pointer to a CGI content creation function
PF_PTR Pointer to a POST_FUNCS structure

SMTP Mail Client Data Types:
PSMTP_INFO Pointer to an SMTP_INFO_T structure

DHCP/BOOTP Data Types and Global Variables:

ip src_addr Global 4-byte array containing the IP address

eth src hw addr Global 6-byte array containing the Ethernet MAC address
subnet mask Global 4-byte array containing the Subnet Mask

gateway ip addr Global 4-byte array containing the default Gateway IP address
dhecp_info Global variable of type DHCP_INFO_T

dhcp lease Global variable of type DHCP_LEASE T

PBOOTP_ INFO Pointer to a BOOTP_INFO_T structure

@ Rev. 0.6 7

SILICON LABORATORIES

AN237

4.3.

Important Notes

The mn_init () function must be called prior to calling any other stack function.

To ensure the project builds correctly, the TCP/IP Libraries must be the last two items in the
linker build list. The linker build list order can be viewed from the Project— Target Build Configuration
—Customize Button —Files to Link Tab. Projects generated by the TCP/IP Configuration Wizard
automatically place the library files at the end of the linker build list; however, any additional files added
to the project or any overloaded library functions may be inserted before or after the library. The user
should check the linker build list order after adding any new files or after overloading any library
functions.

If the framework code generated by the TCP/IP Configuration Wizard is built without adding additional
application code, warnings about uncalled callback functions should be expected. These warnings will
not appear if application code contains calls into the application layer stack functions, such as
mn_server (). If application code does not call into any application layer stack functions, the uncalled
functions can be deleted to remove warnings.

If the total program code size is greater than 64 kB, the project must be set up for code banking.
In a code banked project, the total code size of the common area cannot exceed 32 kB. See application
note “AN130: Code Banking Using the Keil 8051 Tools” for more information about code banking. The
TCP/IP Configuration Wizard can automatically configure the project for code banking if the code
banked project option is selected.

In a code banked project, any code constants accessed by the virtual file system (e.g. HTML content,
binary files, etc.) must reside in the common bank or in the same bank as mn_stack_bank_000.lib.

To locate code constants in a code bank, the BANKx (x = 1,2,3) directive must be used. By default, the
linker places all code constants in the common area. When the code banked project option is selected,
the TCP/IP Configuration Wizard automatically places the file array for "index.html" in code bank 1 by
adding the following to the linker command line:

BANK1(8000H, ?CO?INDEX (8000H))

See the linker manual for additional information about the BANKXx directive.

In order for the TCP/IP project to build correctly, the linker command line must include NOOIL XD (10h).
The NoOL command line option may be removed if HTTP is not enabled.

The default buffer sizes have been optimized for performance. To recover some of the memory used by
the buffers, the buffer sizes can be reduced by changing the configuration constants in the
mn_userconst.h header file.

The TCP/IP stack uses interrupts and automatically enables interrupts. Functions in the TCP/IP stack
should never be called from a high priority interrupt. It is also not recommended to call stack functions
from a low priority interrupt.

On devices that have SFR Paging, the SFR page is changed and restored by hardware when an
interrupt occurs. This feature should not be disabled.

If an MCU in the 'F34x family is used, and the c8051F340 _usb_fifo bit in mn_userconst.h is setto 1, the
transmit buffer is located in USB FIFO space starting at address 0x400. When this option is selected,
the transmit buffer cannot be made larger than 1024 bytes. Note that if this option is selected, the
system clock must be 24.5 MHz or less.

®
Rev. 0.6 @

SILICON LABORATORIES

AN237

If using Ethernet as the physical layer:

The mn_ether_init () function must be called after mn_init (), before calling any other stack
function.

The TCP/IP stack uses TimerO and sets the prescaler shared by both Timer0 and Timer1 to SYSCLK/
48 ('F12x, 'F13x, 'F34x) or SYSCLK/12 ('FO02x). Timer1 is available for use by application code but is
limited to using SYSCLK or the same prescaler as TimerOQ for its time base. The SFRs affecting Timer0
should not be changed after mn_init() is called.

If the system clock is changed from the default value, the th0_flash:tl0_flash variable in
mn_userconst.h must be adjusted to allow the TCP/IP stack to accurately maintain time. The
th0_flash:tl0_flash variable is used as the reload value for Timer0Q, which should overflow every 10 ms.
On 'F12x, 'F13x, and 'F34x devices, this 16-bit value should be set to (-SYSCLK/48/100).

On 'FO2x devices, this 16-bit value should be set to (-SYSCLK/12/100).

The TCP/IP stack contains device-specific code. The device id constant in mn_userconst.c must
specify the correct device for the TCP/IP stack to operate properly. The device_id may be set to
C8051F120, C8051F340, or C8051F020 to specify a device in the 'F12x or 'F13x, 'F34x, and 'FO2x
family, respectively.

If the CP220x is selected as the Ethernet controller, Interrupt 0 must be configured as a level-triggered
interrupt. The TCP/IP stack automatically enables the interrupt (as low priority), but the initialization
code should ensure that INTO is enabled in the Crossbar ('F02x, 'F12x, 'F13x) or the ITO1CF register is
properly configured ('F34x).

If using a dial-up modem as the physical layer:

Modem support is only available for the C8051F12x and C8051F13x devices.

The TCP/IP stack uses Timer0O, Timer1, UART1, and PCAO. SFR registers related to these peripherals
should not be modified after calling mn _init ().

The TCP/IP stack enables the PCAO interrupt in normal priority and the UART1 interrupt in high priority.
These interrupts are not available to application code.

The TCP/IP Configuration Wizard automatically configures the UART baud rate and system time base
based on the selected system clock frequency. If the system clock initialization routine is modified to
change the system clock frequency, the following constants in mn_userconst.h must be manually
changed:

e th0_flash:tl0_flash—The TimerO0 reload value in MODE1 (16-bit timer) with a time base of system clock divided
by 48. This 16-bit value should be set so that the timer overflows in 10 ms (100 Hz). For example, if the system
clock is 98 MHz, this value would be set to (-98000000/48/100) = —20416 = 0xB040.

e uart_reload—The 8-bit UART1 reload value derived from Timer1 in 8-bit auto reload mode. The time base for
UART1 is the system clock. The recommended baud rates and reload values for selected system clock
frequencies are shown in Table 1.

Table 1. UART1 Baud Rate Selection

System Clock Baud Rate Reload Value
3.0625 MHz 245760 bps OxFA
24.5 MHz 307200 bps 0xD9
49 MHz 307200 bps 0xB1
98 MHz 307200 bps 0x61
Note: The TCP/IP Configuration Wizard can generate the appropriate reload values for any system clock
fc;giguration. To prevent overwriting an existing project, direct the Wizard’s output to a temporary

@ Rev. 0.6 9

SILICON LABORATORIES

AN237

4.4. Socket Functions

The TCP/IP stack uses sockets to send or receive data over the network. A socket is a data structure that contains
information about the data that is sent or received. When a packet is received, the TCP/IP stack verifies the destina-
tion IP address and port number. If it finds an open socket that matches the protocol (UDP or TCP) and port number,
it will add the received data to the socket's buffer and notify the application software. Otherwise, the packet will be
discarded. The socket data structure SOCKET_INFO_T is defined in <techpubs: add link (Section + Page Number)
to SOCKET_INFO_T paragraph in appendix B >.

The TCP/IP stack is initialized, and sockets are opened and closed through the following functions:

mn_init() Section 4.4.1 on page 10
mn_open () Section 4.4.2 on page 11
mn_send() Section 4.4.3 on page 12
mn_recv() Section 4.4.4 on page 13
mn_recv _wait () Section 4.4.5 on page 14
mn_close() Section 4.4.6 on page 14
mn_abort () Section 4.4.7 on page 14
mn_find socket () Section 4.4.8 on page 15

Note: The only required socket function in all projects that use the TCP/IP stack is mn init (). When
using application layer services, such as HTTP Web Server, FTP Server, or TFTP client, sockets are auto-
matically opened and closed as needed without management from application code.

4.4.1. mn_init

Description: Performs all initialization required by the TCP/IP stack.

Note: This function should be called prior to calling any other stack function.
Prototype: int mn _init (void);
Example Call: mn init();

Return Value: Returns TRUE if initialization was successful or negative number on failure.

®
10 Rev. 0.6 @

SILICON LABORATORIES

AN237

4.4.2. mn_open

Description: Allocates and optionally opens a TCP or UDP socket.

Note: Modem and PPP connections must be established prior to opening a TCP socket if using a
modem as the physical layer.

Prototype: SCHAR mn_open (byte[] ,wordl6, wordlé, byte, byte, byte, byte *, wordl6);

Example Call: socket no =
mn_open (dest ip,src port,dest port,open mode,proto,type,recv _buff,buff len);

Parameters: 1. dest _ip—Destination IP address to which packets are being sent.

2. src_port—The port number used by the application. This must be a well known port number
(see RFC 1700) or a number larger than 1024. If set to 0, the TCP/IP stack will not automatically
assign a random port number.

3. dest_port—The port number used by the remote side, if known. If the remote port number is not
known, dest port should be set to zero. If the destination port is set to zero, it will be filled in
automatically by the TCP/IP stack.

4. open_mode—Used only by TCP sockets. Can be one of the following values:

e ACTIVE_OPEN—A TCP connection is initiated by the TCP/IP stack.

e PASSIVE _OPEN—The TCP/IP stack waits for the remote side to initiate a TCP connection.

e NO_OPEN—The TCP/IP stack places the socket into a listen state, but does not wait for a TCP
connection. Select this mode for UDP sockets.

5. proto—Defines the socket type. Can be one of the following values:

e PROTO_TCP—A TCP socket is opened.
e PROTO_UDP—A UDP socket is opened.

6. type—Should be set to STD_TYPE.

7. recv_buff—Address of the buffer used to store the received data.

8. buff_len—Size of the buffer used to store the received data.

Return Value: If successful, returns a valid socket number between 0 and 126. The MK SOCKET PTR () macro
can be used to obtain a pointer to the newly-opened socket. Otherwise, returns one of the following
error codes:

m NOT_SUPPORTED—A socket was requested for an unsupported protocol.
m NOT_ENOUGH_SOCKETS—No sockets are available.
m TCP_OPEN_FAILED—Attempt to open a TCP socket has failed.

@ Rev. 0.6 11

SILICON LABORATORIES

AN237

4.4.3. mn_send

Description: Sends data on a previously opened socket. When sending a TCP packet, this function does not
successfully return until an acknowledgement for the sent packet has been received.

Notes:

1. If the socket is TCP, a call to this function may cause data to be received. The socket’s
recv_len field should be checked for values greater than zero after each call to this function.

2. If using a dedicated socket in addition to application layer services, such as HTTP or FTP, this
function should not be called after adding data to the socket. The socket will be checked, and
data will be automatically sent by mn_server(). If this function is called from a callback function
while mn_server() is running, it will result in the same packet being transmitted twice.

Prototype: int mn send(SCHAR, byte *, wordlé6) ;
Example Call: status = mn send(socket no, msg ptr, msg len);

Parameters: 1. socket_no—The socket number returned from mn_open ().
2. msg_ptr—Address of the buffer containing data to send.
3. msg_len—Number of bytes to send.

Return Value: If successful, returns the number of bytes sent. If the number of bytes sent is zero, the packet
needs to be resent. Otherwise, returns one of the following error codes (all negative values):

m BAD SOCKET_DATA—An invalid socket number was passed to the function.
m SOCKET_NOT_FOUND—The socket number passed belongs to an inactive socket.

m TCP_ERROR—The packet was sent more than TCP_RESEND_TRYS times without receiving
an ACK (TCP sockets only).

m TCP_TOO_LONG—An attempt was made to send a packet that is larger than the available
TCP window (TCP sockets only).

m TCP_NO_CONNECT—Cannot send because a TCP connection is not established.
m DHCP_LEASE EXPIRED—The DHCP lease has expired.

®
12 Rev. 0.6 @

SILICON LABORATORIES

AN237

4.4.4. mn_recv

Description:

Prototype:
Example Call:

Parameters:

Return Value:

Receives data on a previously opened socket with a fixed wait time of SOCKET_WAIT_TICKS.
The wait time is in units of 10 ms system ticks. This function is typically not called if mn_server() is
running. Application code can process received packets using the
callback_app_server_process_packet() callback function.

Notes:

1. This function will loop until a packet is received on the passed socket or a timeout occurs. The
callback app recv idle () callback function will be continuously called while waiting for
a packet to arrive. This function will stop waiting and return immediately if
callback app recv idle () returns NEED_TO EXIT.

2. When a TCP or UDP packet is successfully received, the sender's IP Address and Port
number are copied into the socket's dest _ip and dest_port fields. To read this information, a
pointer to the socket can be obtained by calling the MK SOCKET PTR () macro with the socket
number as an argument. When a TCP or UDP packet is successfully received, the socket is
bound to the sender's IP address and Port number. The socket cannot send or receive data to/
from any other sender until the socket is reset. A socket may be reset by closing and re-
opening it using the mn_close() and mn_open() library routines.

3. For TCP sockets, responses to TCP control packets, such as SYN and FIN, will be
automatically sent. This function may return NEED TO_LISTEN indicating that the socket
should listen for a reply from the remote side rather than send another packet. This routine
only waits for packets on the specified socket. Any packet received which is not addressed to
the specified socket will be discarded. For multiple socket applications, we recommend using
mn_server() and the callback_app_server_process_packet() callback function to receive data
on multiple sockets simultaneously.

int mn recv (SCHAR, byte *, wordl6);
status = mn _recv(socket no, buff ptr, buff len);

1. socket_no—The socket number returned from mn open ().
2. buff _ptr—Address of the buffer to hold received data.
3. buff_len—Size of the receive buffer.

If successful, returns the number of bytes received. Otherwise, returns one of the following error
codes (all negative values):

BAD SOCKET_DATA—An invalid socket number was passed to the function.
SOCKET_NOT_FOUND—The socket number passed belongs to an inactive socket.
SOCKET _TIMED OUT—A socket timeout occurred without receiving a packet.

NEED_TO_LISTEN—A reply to the received packet was automatically sent, and the socket
should wait for an answer (TCP sockets only).

m NEED TO_EXIT—The callback function callback app recv idle () returned
NEED_TO_EXIT.

m LINK_FAIL—The CP220x has been disconnected from the network

m Any other negative number; there was a checksum or FCS error or the TCP connection is
closed.

@ Rev. 0.6 13

SILICON LABORATORIES

AN237

4.4.5. mn_recv_wait

Description: Same as mn recv () except uses the wait time passed as the fourth parameter.
Prototype: int mn recv _wait (SCHAR, byte *, wordl6, wordl6);
Example Call: status = mn recv wait (socket no, buff ptr, buff len, wait ticks);

Parameters: 1. socket_no—The socket number returned from mn_open ().
2. buff _ptr—Address of the buffer to hold received data.
3. buff_len—Size of the receive buffer.
4. wait_ticks—Number of system ticks to wait before a timeout.

Return Value: See description for mn_recv ().
4.4.6. mn_close

Description: Closes a previously opened socket.
Prototype: int mn close (SCHAR) ;

Example Call: status = mn close(socket no);

Parameters: 1. socket no—The socket number returned from mn_open ().

Return Value: If successful, returns FALSE. Otherwise, returns one of the following error codes
(all negative values):

m BAD SOCKET_DATA—An invalid socket number was passed to the function.
m SOCKET_NOT_FOUND—The socket number passed belongs to an inactive socket.

4.4.7. mn_abort

Description: Immediately closes a previously opened socket without negotiating a close or sending a FIN (TCP
only). The mn_close () and mn_abort () functions are identical for UDP sockets.

Prototype: int mn abort (SCHAR) ;
Example Call: status = mn abort (socket no);
Parameters: 1. socket no—The socket number returned from mn_open ().

Return Value: If successful, returns FALSE. Otherwise, returns one of the following error codes
(all negative values):
m BAD SOCKET_DATA—An invalid socket number was passed to the function.
m SOCKET_NOT_FOUND—The socket number passed belongs to an inactive socket.

®
14 Rev. 0.6 @

SILICON LABORATORIES

AN237

4.4.8. mn_find_socket

Description: Used to obtain a pointer to a socket matching the passed source port, destination port, destination
IP address, and socket type.

Prototype: PSOCKET INFO mn find socket (wordl6, wordl6, byte*, byte);
Example Call: socket ptr = mn find socket (src port, dest port, dest ip, socket type);

Parameters: 1.src_port—The local port number.
2. dest_port—The remote port number.
3. dest_ip—The IP address of the remote machine.

4. socket_type—The socket type specified when opening the socket. Can be one of the following
values:
e PROTO_TCP—A TCP socket.
e PROTO_UDP—A UDP socket.

Return Value: If successful, returns a pointer to the matching socket. Otherwise, returns PTR_NULL.

@ Rev. 0.6 15

SILICON LABORATORIES

AN237

4.5. Ethernet Functions

When using Ethernet as the physical layer, the TCP/IP stack requires initializing the Ethernet controller prior to
calling any other functions. The following functions and global bits are provided by the TCP/IP stack to manage the
physical layer Ethernet controller:

Functions

ether reset low()
ether reset high()
mn_ether init ()
CPFLASH ByteRead ()
CPFLASH_ByteWri te()
CPFLASH PageErase ()

Global Bits
link_status
ether_reset
link_lost
flash_busy

4.5.1. ether_reset_low

Description:

Prototype:

Section 4.5.1 on page 16
Section 4.5.2 on page 16
Section 4.5.3 on page 17
Section 4.5.4 on page 18
Section 4.5.5 on page 18
Section 4.5.6 on page 18

See description for mn_ether_init()
See description for mn_ether_init()
See description for mn_ether _init()
See description for CPFLASH_ByteWrite()

Sets the CP220x's reset pin low. This function allows the user to change the port pin used to reset

the CP2200. This function is defined in main.c and called from mn_ether_init() by the TCP/IP

stack.

void ether reset low(void);

Example Call: Call: ether reset low();

4.5.2. ether_reset_high

Description:

Prototype:

Example Call: ether reset high();

Sets the CP220x's reset pin high. This function allows the user to change the port pin used to reset

the CP2200. This function is defined in main.c and called from mn_ether_init() by the TCP/IP

stack.

void ether reset high (void);

16

Rev. 0.6

&~

SILICON LABORATORIES

AN237

4.5.3. mn_ether_init

Description:

Prototype:
Example Call:

Parameters:

Return Value:

Resets and initializes the Ethernet controller.

If the CP220x is selected as the Ethernet Controller, the following tasks are performed:

m The CP2200 is reset, and reset initializations are performed.

Specific CP220x registers are read to verify presence of the Ethernet Controller.

CP2200 Interrupts are enabled.

The MAC address is programmed.

The device is configured for half or full duplex operation, or auto-negotiation is started.

The global link_status bit is set to indicate a good link or cleared to indicate that the device is not

plugged into a network. The link_status bit is only valid after mn_ether_init() has been called for

the first time. After this, it is always valid as long as Interrupt 0 and global interrupts are enabled.

m The global ether_reset bit is cleared. This bit will be set any time the CP220x enters, then exits
the reset state. If ether_reset is ever set, the link status bit becomes invalid until mn_ether_init()
is called. User code should not perform any network operations until the Ethernet controller is
re-initialized. If this bit is frequently set, then check the board and verify that the power supply
meets the current demands of the Ethernet controller.

m The global link_lost bit is set to indicate that the CP220x has lost link. It remains set if the link
returns. This bit is cleared when mn_ether _init() succeeds.

int mn ether init (byte, byte, byte);
status = mn_ether init (duplex mode, num_autoneg attempts, loopback);

1. duplex_mode—Selects Full-Duplex, Half-Duplex, or Auto-Negotiation. Can be one of the
following values:
e FULL_DUPLEX—The Ethernet controller is configured to full-duplex mode.
e HALF_DUPLEX—The Ethernet controller is configured to half-duplex mode.
o AUTO_NEG—Auto-Negotiation selects between full-duplex and half-duplex modes.

2. num_autoneg_attempts—Specifies the number of times to attempt autonegotiation. If set to 0,
and autonegotiation is enabled, it will not return until autonegotiation is successful.

3. loopback—Set to TRUE to enable internal loopback. Set to FALSE to disable internal loopback.

If successful, returns FULL_DUPLEX or HALF_DUPLEX. Otherwise, returns one of the following
negative error codes:

m INVALID_DUPLEX_MODE — A duplex mode other than the three allowed values was passed
in parameter 1.
m INVALID_MAC_ADDRESS — Returned if the MAC address is FF:FF:FF:FF:FF:FF.

m LINK_FAIL — A valid link was not detected. The global link_status bit can now be polled to
determine when the Ethernet controller has been plugged into a network.

m ETHER_INIT_ERROR — A hardware error has occurred.

@ Rev. 0.6 17

SILICON LABORATORIES

AN237

4.5.4. CPFLASH_ByteRead

Description: Reads a single byte from the specified Flash address in the CP220x.
Prototype: byte CPFLASH ByteRead(wordlé6) ;

Example Call: flash value = CPFLASH ByteRead (addr);

Parameters: 1. addr -- The address of the Flash byte to read.

Return Value: Returns the value of the Flash byte at address addr.

4.5.5. CPFLASH_ByteWrite

Description: Writes a single byte to the specified Flash address in the CP220x.
Note: This function initiates a Flash Write operation and sets the global flash_busy flag to true.
The flash_busy flag can be polled to determine when the Flash operation is complete.

Prototype: void CPFLASH ByteWrite (wordl6, byte);
Example Call: Call: CPFLASH ByteWrite (addr, flash value);

Parameters: 1. addr -- The address of the Flash byte to write.
2. flash_value -- The value to write to Flash.

4.5.6. CPFLASH_PageErase
Description: Erases a single 512-byte Flash page at the specified address in the CP220x.

Note: This function initiates a Flash Erase operation and sets the global flash_busy flag to true.
The flash_busy flag can be polled to determine when the Flash operation is complete.
Prototype: void CPFLASH PageErase (wordl6, byte);

Example Call: CPFLASH PageErase (addr) ;

Parameters: 1. addr -- The address of the Flash page to erase. Any address on a Flash page will erase the
entire 512-byte page.

®
18 Rev. 0.6 @

SILICON LABORATORIES

AN237

4.6. Modem Functions

When using a modem as the physical layer, the TCP/IP stack requires establishing a connection with the modem
prior to establishing connections using higher level protocols, such as PPP or TCP. Establishing a connection with
the modem causes it to dial and log in to a remote network or accept incoming calls. The following functions are
provided by the TCP/IP stack to manage the physical layer connection with the modem:

mn_modem connect () Section 4.6.1 on page 19
mn_modem _disconnect () Section 4.6.2 on page 19
mn_modem send _string() Section 4.6.3 on page 20
mn_modem wait reply () Section 4.6.4 on page 20

4.6.1. mn_modem_connect
Description: Establishes a connection between the MCU and the modem and performs modem initialization.
Modem initialization sequence for Answer Mode:

1. Initialize country code and protocol; then, send the MODEM_INIT_ANSWER string.
2. Wait for “OK”, “RING”, and “CONNECT” string sequence.

3. If USE_PASSWORD is setto 1 and USE_PAP is set to 0, the ANS_LOGIN_PROMPT and
ANS_PASSWORD_PROMPT will be sent, and the return strings will be verified against the user name
and password stored in LOGIN_NAME and PASSWORD.

Modem initialization sequence for Dial Mode:

1. Initialize country code and protocol; then, send the MODEM_INIT _DIAL string.
2. Wait for “OK”; then, send MODEM_DIAL.
3. Wait for “CONNECT”

4. If USE_PASSWORD is set to 1 and USE_PAP is set to 0, the user name and password stored in
LOGIN_NAME and PASSWORD will be used to log in to the remote server

Note: This function initializes the modem using the strings defined in mn_userconst.h.
The default maximum string length is 10 characters.

Prototype: int mn modem connect (byte);
Example Call: status = mn modem connect (connect mode) ;

Parameters: 1. connect mode—Determines whether the modem will be configured to answer incoming calls or
initiate outgoing calls. Can be one of the following values:
o ANSWER_MODE—The modem is configured to answer incoming calls.
e DIAL_MODE—The modem is configured to dial into a remote server or ISP.

Return Value: If successful, returns TRUE. Otherwise, returns a negative number to indicate that a connection
could not be established.

4.6.2. mn_modem_disconnect

Description: Closes the connection between the MCU and the modem and causes the modem to disconnect
from the phone line.

Note: All TCP sockets and PPP connections should be closed prior to calling this function.
Prototype: void mn modem disconnect (void) ;

Example Call: mn modem connect() ;

@ Rev. 0.6 19

SILICON LABORATORIES

AN237

4.6.3. mn_modem_send_string

Description:

Prototype:
Example Call:

Parameters:

Sends a variable initialization string to the modem.

Note: The string must end in a carriage return (\r’).

void mn _modem send string (PCONST BYTE, wordlé6);
mn_modem send string(str, len);

1. str—Address to the first character in a constant byte array (e.g., “ATM1L1\r").
2. len—The number of bytes in str, including the carriage return (\r’).

4.6.4. mn_modem_wait_reply

Description:

Prototype:

Example Call:

Parameters:

Return Value:

Waits for a specific response from the modem with a specified timeout.
Note: The timeout is specified in 10 ms system ticks.

int mn modem wait reply (PCONST BYTE, wordlé6, wordl6);
status = mn _modem wait reply(str, len, timeout);

1. str—Address to the first character in a constant byte array. The response received from the
modem is compared to this string to determine success or failure.

2. len—The number of bytes in str, including the carriage return (‘\r’).

3. timeout—The maximum number of 10 ms system ticks to wait without receiving a response from
the modem. This function will return failure on a timeout condition.

If successful, returns TRUE. Otherwise, returns a negative number to indicate that a timeout has
occurred or the modem response did not match the contents of str.

20

®
Rev. 0.6 @

SILICON LABORATORIES

AN237

4.7. PPP Functions

The TCP/IP stack allows a choice between PPP and SLIP for the data link layer when a modem is used as the
physical layer.

mn_ppp_open () Section 4.7.1 on page 21
mn_ppp_close() Section 4.7.2 on page 21
mn_ppp reset() Section 4.7.3 on page 21
mn_ppp_add pap user() Section 4.7.4 on page 22
mn_ppp del pap user() Section 4.7.5 on page 22

Note: If Password Authentication Protocol (PAP) is enabled, application code should add username and password
entries to the PAP table prior to opening a PPP connection. If PAP is disabled, authentication should be enabled at
the modem level. See Section 4.6.1 on page 19 for more information about authentication at the physical layer.

4.7.1. mn_ppp_open

Description: Establishes a PPP connection with a remote PPP client/server.

Notes:

1. All modem connections and stack initialization must be complete prior to calling this function.

2. The USE_PAP constant determines whether or not password authentication protocol will be
used. If USE_PAP is set to TRUE, the mn ppp add pap user () must be called prior to
calling this function. If USE_PAP is set to FALSE, login information is handled by
mn_modem_connect () using the information specified in mn_userconsts.h.
int mn_ppp_open(byte);

Example Call: status = mn_ppp_open(open_mode);

Parameters: 1. open_mode—Determines if the local PPP will be a server or a client. Can be one of the
following values:

e ACTIVE_OPEN—The local PPP client attempts to establish a connection with a remote PPP server. The
first username/password combination added using mn_ppp add pap user () will be used to login to
the remote server.

e PASSIVE_OPEN—The local PPP server waits for a remote PPP client to initiate a connection. All
username/password combinations added using mn_ppp add pap user () will be checked.

Return Value: If successful, returns TRUE. Otherwise, returns FALSE.

4.7.2. mn_ppp_close

Description: Closes a PPP connection without waiting for a response and resets the PPP state machine.
Note: This function should only be called if a mn _ppp open () was successful.
Prototype: void mn ppp close (void) ;

Example Call: mn ppp close();

4.7.3. mn_ppp_reset

Description: Resets the PPP state machine.
This function should only be called if an error condition exists that does not allow a mn_ppp_close.
Prototype: void mn_ppp reset (void);

Example Call: mn ppp reset();

@ Rev. 0.6 21

SILICON LABORATORIES

AN237

4.7.4. mn_ppp_add_pap_user

Description: Adds a username/password pair to the password authentication protocol (PAP) table.
Note: The default maximum string length is twenty characters including the null terminator.

Prototype: byte mn ppp add pap user (char*, char*);

Example Call: status = mn ppp add pap user (username, password) ;

Parameters: 1. username—Null terminated character string containing the user name.
2. password—Null terminated character string containing the password.

Return Value: If username/password pair is successfully added, returns TRUE. Otherwise, returns FALSE.

4.7.5. mn_ppp_del_pap_user

Description: Removes a username/password pair from the password authentication protocol (PAP) table.
Note: The default maximum string length is twenty characters including the null terminator.

Prototype: byte mn ppp del pap user (char*);

Example Call: status = mn ppp del pap user (username);

Parameters: 1. username—Null terminated character string containing the user name of the username/
password pair to be deleted.

Return Value: If username/password pair successfully removed, returns TRUE. Otherwise, returns FALSE indi-
cating that the user name was not found.

®
22 Rev. 0.6 @

SILICON LABORATORIES

AN237

4.8. DHCP/BOOTP Functions

When using Ethernet as the physical layer, the TCP/IP stack allows the MCU to specify or obtain an IP address in
three ways:

m Specifying the static IP address in mn_userconst.h.

m Changing the IP address in the 4-byte global array ip src addr/[].

m Obtaining a dynamic IP address using the DHCP or BOOTP functions described in this section.
|

Obtaining a static IP address through ping gleaning. Ping gleaning allows the MCU to set its IP address
to the address inside a ping packet if and only if the first byte of the current address is zero and the
device is pinged directly using its MAC address. Note: The device must be inside mn_server() to accept
and respond to Ping packets.
If DHCP is used, application code should monitor the state of the IP address lease in the global structure
dhcp_lease and renew the lease as needed. If application code calls mn send() or mn_server (), the DHCP
lease will be automatically renewed. Below is a summary of the DHCP/BOOTP functions available:

mn_dhcp start() Section 4.8.1 on page 23
mn_dhcp release () Section 4.8.2 on page 24
mn_dhcp _renew () Section 4.8.3 on page 24
mn bootp () Section 4.8.4 on page 25
Notes:

1. The MAC address for the Ethernet controller specified in mn_userconst.h is overwritten by the actual
MAC Address if the CP220x is selected as the Ethernet Controller.
2. DHCP/BOOTP cannot be used if a modem is selected as the physical layer.

4.8.1. mn_dhcp_start

Description: Obtains a new IP address using DHCP and writes it to the 4-byte global array ip src addr/[].
The global gateway ip addr[] and subnet mask[] arrays are also updated with data from
the DHCP transaction.

If the DHCP server provides a boot file name, it is copied into the global dhcp_info structure. After
this function returns successfully, the boot file contents can be retrieved from the server using
TFTP. See “Appendix B—TCP/IP Stack Data Structures” on page 47 for a definition of the global
dhcp_info structure.

Note: If multiple boot files exist on the network, a specific boot file name can be specified as the
first parameter to mn dhcp start (). DHCP servers typically discard the request if the passed
file name does not exactly match the name of an existing boot file. In most implementations,
PTR_NULL will be passed as the first parameter.

Prototype: int mn dhcp start (byte*, word32);
Example Call: status = mn dhcp start (boot file name, request time);

Parameters: 1. boot file_name—Null-terminated character array containing the requested boot file name. This
parameter should be set to PTR_NULL unless a specific boot file name is known.

2. request_time—The requested lease time in seconds. The actual lease time provided by the
DHCP server can be read from the global dhcp_lease structure after this function returns. See
“Appendix B—TCP/IP Stack Data Structures” on page 47 for more information on the global
dhcp_lease structure.

Return Value: Returns TRUE if successful. Otherwise, returns one of the following error codes:

m DHCP_ERROR—AnN error occurred while processing the DHCP packets.
m Any Negative Number—Could not establish a connection with a DHCP server.

@ Rev. 0.6 23

SILICON LABORATORIES

AN237

4.8.2. mn_dhcp_release

Description:

Prototype:
Example Call:

Return Value:

This function is used to release a lease obtained with a successful call to mn dhcp start () and
may be called any time before the lease expires. After the lease has been released or has expired,
packets cannot be sent or received until a new lease is obtained using mn_dhcp_start ().

int mn dhcp release (void);
status = mn _dhcp release();

Returns TRUE if successful. Otherwise, returns one of the following error codes:

m FALSE—Could not find an active DHCP session.
m DHCP_ERROR—An error occurred while processing the DHCP packets.
m Any Negative Number—Could not establish a connection with a DHCP server.

4.8.3. mn_dhcp_renew

Description:

Prototype:
Example Call:

Parameters:

Return Value:

This function is used to renew a lease obtained with a successful call to mn dhcp start () and
may be called any time before the lease expires. After the lease has been released, or has
expired, packets cannot be sent or received unti a new lease is obtained using
mn_dhcp start ().

Note: Software monitoring the global dhcp lease structure should use the lease time member
variable to determine the number of seconds remaining in the lease and renew the lease before it
expires.

int mn dhcp renew(word32) ;

status = mn_dhcp renew (request time);

1. request_time—The requested lease time in seconds. The actual lease time provided by the
DHCP server can be read from the global dhcp_lease structure after this function returns.
Returns TRUE if successful. Otherwise, returns one of the following error codes:

m DHCP_ERROR—An error occurred while processing the DHCP packets.
m Any Negative Number—Could not establish a connection with a DHCP server.

24

®
Rev. 0.6 @

SILICON LABORATORIES

AN237

4.8.4. mn_bootp

Description: Uses BOOTP to obtain an IP address, gateway IP address, subnet mask, and, optionally, a boot
file name from a BOOTP server when first starting up. The 4-byte global gateway ip addr(]
and subnet mask[] arrays are updated with data from the BOOTP transaction.

The global ip src addr[] array is not automatically updated. After the BOOTP transaction,
application software should copy the assigned address stored in the yiaddr field of the
BOOTP_INFO_T structure to the ip src addr[] array.

BOOTP allows the MCU to request a specific IP address from the BOOTP server. The address in
the ip src addr[] array prior to calling this function will be requested if the bootp request ip
constant in mn_userconst.h is set to 1. Otherwise, the MCU will request the next available
address. If the requested address is not available, the BOOTP server assigns any available
address.

If the BOOTP server provides a boot file name, it is copied into the BOOTP_INFO _T structure
passed as the second parameter. After this function returns successfully, the boot file contents can
be retrieved from the server using TFTP. See “Appendix B—TCP/IP Stack Data Structures” on
page 47 for a definition of the BOOTP_INFO_T structure.

Note: If multiple boot files exist on the server, a specific boot file name can be specified as the first
parameter to mn dhcp start (). BOOTP servers typically discard the request if the passed file
name does not exactly match the name of an existing boot file. In most implementations,
PTR_NULL will be passed as the first parameter.

Prototype: int mn _bootp (byte*, BOOTP INFO T*);
Example Call: status = mn bootp (boot file name, pBOOTP INFO) ;

Parameters: 1. boot file_name—Null-terminated character array containing the requested boot file name. This
parameter should be set to PTR_NULL unless a specific boot file name is known.

2. pPBOOTP_INFO—Pointer to an empty BOOTP_INFO_T structure. This structure will be filled if
the BOOTP transaction succeeds.

Return Value: Returns TRUE if successful. Otherwise, returns one of the following error codes:

m FALSE—Did not receive a reply from the BOOTP server.
m DHCP_ERROR—AnN error occurred while processing the DHCP packets.
m Any Negative Number—Could not establish a connection with the BOOTP server.

@ Rev. 0.6 25

SILICON LABORATORIES

AN237

4.9. Application Layer Functions

The TCP/IP stack provides access to application layer services, such as HTTP Web Server, FTP Server, TFTP
Client, and SMTP Mail Client, through the following functions:

mn_server () Section 4.9.1 on page 27
mn _http find value () Section 4.9.2 on page 28
mn tftp get file() Section 4.9.3 on page 28
mn_smtp start session() Section 4.9.4 on page 28
mn_smtp end session() Section 4.9.5 on page 29
mn_smtp send mail () Section 4.9.6 on page 29

These functions, in conjunction with callback and virtual file system functions described in the next two
sections, provide complete control over application layer services. Figure 1 shows the typical software flow

for starting application layer services.
(START)

]
Y
mn_init()
Establish Network Connection
Wait for Link Good or Hardware Error
CP220x Reset while(1);
while(llink_status && lether_reset); i ’
i v
mn_ether_init
(AUTO_NEG, X, 0)
LINK_FAIL ETHER_INIT_ERROR
PASS (retval > 0)

Y
Obtain IP Address

mn_dhcp_start(...)

Override DHCP
Use Static IP Address

v
mn_server
- 0 callback_app_server_idle
TRUE FALSE
Return: Return:
NEED_TO_EXIT 0

Figure 1. Typical Software Flow when Using mn_server()

®
26 Rev. 0.6 @

SILICON LABORATORIES

AN237

4.9.1. mn_server

Description: Used to start application layer services. When called, all enabled server applications, such as

Notes:
1.

HTTP Web Server and FTP Server, will be started. Client applications, such as SMTP Mail Client
and TFTP Client, are started using the functions described in this section. This function will not
return until a DHCP Lease Expires, a PPP error occurs, or a
callback function (callback app server idle() or

callback app server process packet ())returns NEED TO EXIT.

This function will automatically open and close sockets as needed to handle incoming requests. Any additional sockets,
such as UDP sockets, that are used by application software when the HTTP or FTP server is idle should be opened prior

to calling this function.
If the TCP/IP Library contains DHCP, mn_server() will not start unless the device has been able to acquire an IP address
through DHCP or DHCP has been overridden. DHCP may be overridden as follows:

dhcp_lease.infinite_lease = 1;
dhcp_lease.dhcp_state = DHCP_OK;

Important notes about the FTP Server:

m The FTP server has been designed to work with Windows GUI and command-line-based FTP clients.

The FTP server returns directory listings in Unix Standard Format. If multiple formatting options are
available in the FTP client, Unix Standard Format should be selected.

FTP commands supported are USER, QUIT, RETR, STOR, DELE, PORT, TYPE, MODE, STRU,
NOOP, PWD, LIST, and, optionally, PASS. The FTP server will always check for the user name and
password defined in the ftp_user array in the mn_vars.c source file. This array must be initialized with all
the allowable user names and passwords at the time of compiling.

The virtual file system does not use subdirectories; therefore, PWD always returns "/", and CWD is not
allowed.

The FTP server uses a buffer for temporary storage whose size is set by the fip_buffer_len constant in
mn_userconst.h. This buffer should be large enough to hold the largest file you expect to receive. After
a file has been received, memory is allocated for it using malloc (), and a virtual file system entry with
the memory segment, VF_PTYPE_DYNAMIC, is created for that file. Deleting a file from the virtual file
system will free any dynamically-allocated memory associated with the file.

Prototype: int mn server (void);

Example Call: status = mn server();

Return Value: The following are valid return values:

m FALSE—Either callback app server idle() or
callback app server process packet () returned NEED TO_EXIT.

m PPP_LINK_DOWN—PPP connection was terminated.
m DHCP_LEASE EXPIRED—The DHCP lease has expired.

@ Rev. 0.6 27

SILICON LABORATORIES

AN237

4.9.2. mn_http_find_value

Description:

Prototype:
Example Call:

Parameters:

Return Value:

Searches “field-name=field-value-&” pairs for the passed field-name and copies the decoded field-
value into the passed buffer. CGI content creation functions use this routine to determine the value
of variables sent from the web page.

Note: In most cases, the source_ptr parameter will be set to the global variable BOD Yptr.

int mn http find value (byte*, byte*, byte*);

status = mn _http find value (source ptr, field name, field value);

1. source_ptr—Address to buffer containing the message body to be searched.
2. field_name—Null terminated search string containing the field-name.
3. field_value—String buffer where the field-value is copied.

Returns TRUE if the field-name is found. Otherwise returns FALSE.

4.9.3. mn_tftp_get_file

Description:
Prototype:
Example Call:

Parameters:

Return Value:

Gets a file from a remote TFTP server and stores it in the specified buffer.
long mn_tftp get file(byte*, byte*, byte*, long);
num _bytes = mn _tftp get file(ip addr, filename, buffer, buff len);

1. ijp_addr—Pointer to a 4-byte character array containing the IP address of the TFTP server.
2. filename—Null-terminated search string containing the file name.

3. buffer—Pointer to a buffer in RAM to hold the file.

4. buff_len—Number of bytes in the buffer.

Returns the number of bytes received. Otherwise, returns a negative number.

4.9.4. mn_smtp_start_session

Description:

Prototype:
Example Call:
Parameters:

Return Value:

Opens a TCP connection with the SMTP server specified in mn_userconst.h.

Note: The physical layer must be initialized prior to calling this function.

SCHAR mn_smtp start session(wordl6);

socket num = mn_smtp start session (port);

1. port—The port number to be used by the SMTP socket. Can be between 1025 and 65535.

Returns a socket number on success or a negative number on error.

28

®
Rev. 0.6 @

SILICON LABORATORIES

AN237

4.9.5. mn_smtp_end_session

Description: Closes the connection to an SMTP server opened with mn_smtp start session().
Prototype: void mn smtp start session (SCHAR) ;
Example Call: socket num = mn smtp end session(socket num) ;

Parameters: 1. socket_num—The socket number returned from mn_smtp start session().

4.9.6. mn_smtp_send_mail

Description: Sends an e-mail message with an optional attachment to an SMTP mail server.

Note: A callto mn smtp start session () mustreturn successful prior to sending an e-mail.
Prototype: int mn smtp send mail (SCHAR, PSMTP INFO);
Example Call: status = mn smtp send mail (socket num, mail info ptr);

Parameters: 1. socket num—The socket number returned from mn_smtp start session().
2. mail_info_ptr—Address of a SMTP_INFO_T structure that has been initialized.

Return Value: Returns zero or a positive number on success and a negative number on error.

4.9.7. mn_dns_get_addr

Description: Issues a domain name service request to the DNS server specified in ip_dns_addr[]. The domain
name service provides the IP address of the specified domain name. A domain name uses
numbers and letters. An IP address uses only numbers.

Note: Recursive DNS searches are not supported.

Prototype: int mn dns get addr (char*, byte~*);
Example Call: status = mn dns get addr (name, addr ptr);
Parameters: 1. name—Pointer to a null-terminated string containing the domain name to look up. The string

must not contain any "' characters and should include the length of each segment at the
beginning of the segment. For example,

The string: www.silabs.com
Should be encoded as: 0x03, w, w, w, 0x06, s, i, |, a, b, s, 0x03, ¢, o, m, /0
2. addr_ptr—Address of the buffer that will receive the IP address. This buffer should be at least
4 bytes long.

Return Value: Returns zero or a positive number on success and one of the following negative error codes on
error:

SOCKET_ALREADY_EXISTS—The specified DNS socket is already opened.

NOT_ENOUGH_SOCKETS—There are no available sockets for the DNS query.

DHCP_LEASE_RENEWING—DHCP is renewing or rebinding, so only DHCP packets may be sent.

DNS BUFFER_OVERFLOW—The DNS buffer is not large enough to hold the response.

DNS_NOT_FOUND—The server did not respond with a Host Address.

DNS_COUNT_ERROR—There were no answers in the DNS response from the server.

DNS_ID_ERROR—The Identification field of the response did not match the Identification field of the

query.

SOCKET_TIMED_OUT—The socket timed out without receiving a response to the DNS query.

m UDP_BAD_CSUM—There was a bad checksum on the UDP packet received from the DNS server.

@ Rev. 0.6 29

SILICON LABORATORIES

AN237

4.10. Callback Functions

The TCP/IP stack uses callback functions to notify application code of various events. Figure 2 shows the callback
function code execution flow. The following four callback functions should be defined in every project that uses

application layer services provided by the TCP/IP stack. The callback functions should contain the appropriate
event handling code.

callback app process packet () Section 4.10.1 on page 31

callback app server process packet () Section 4.10.2 on page 31

callback app recv idle() Section 4.10.3 on page 31

callback app server idle() Section 4.10.4 on page 32

callback socket empty Section 4.10.5 on page 32

callback socket closed Section 4.10.6 on page 32
mn_server()

On-page Wait For Packet callback_app_recv_idle
Connector mn_recv()

Exit Conditions:

1) Packet Received
2) Socket Timeout
3) NEED_TO_EXIT

4

Check PPP Link Link Failure
Status

On-page
Connector

Check if Active
Socket contains [«
data to transmit

No Valid Packet Yes
Received?

No

4

UDP or TCP?
Select next socket
as Active Socket

On-page
Connector

v callback_app_

Cleanup Memory —»@
NEED_TO_SEND process_packet
callback_app_server_idle | —

A
Send Data No Yes
mn_send()

On-page

Connector
NEED_TO_EXIT callback_app_server_ Form Response
J process_packet Fill Socket

Prepare for Exit 4—@ i

On-page
Connector Check if Active Socket No N
return contains data to transmit
l Yes

Send Data
mn_send()

|

Figure 2. Callback Function Flow Diagram

®
30 Rev. 0.6 @

SILICON LABORATORIES

AN237

4.10.1. callback_app_process_packet
Description: Called by the TCP/IP stack after any TCP or UDP packet is received.

Note: The return value is ignored for UDP packets.
Prototype: byte callback app process packet (PSOCKET INFO) ;
Example Call: status = callback app process packet (socket ptr);
Parameters: 1. socket ptr—Pointer to the socket that contains the data.

Return Value: The following are valid return values:

m NEED IGNORE_PACKET—The TCP/IP stack will not ACK the TCP packet.
m Any Other Value—The TCP/IP stack will ACK the TCP packet.

4.10.2. callback_app_server_process_packet

Description: Called by the TCP/IP stack after any TCP or UDP packet that is not HTTP or FTP is received.
HTTP and FTP packets are automatically handled by the server.

Prototype: SCHAR callback app process packet (PSOCKET INFO) ;
Example Call: status = callback app process packet (socket ptr);
Parameters: 1. socket ptr—Pointer to the socket that contains the data.

Return Value: The following are valid return values:

m NEED TO_EXIT—The mn server () routine will exit immediately, returning control to the
main () routine.

m Any Other Value—The server will discard the packet.

4.10.3. callback_app_recv_idle

Description: Called repeatedly while mn recv () is waiting for data. This function should only be used for low
priority tasks. Any high priority tasks should be placed in an interrupt service routine.

Prototype: SCHAR callback app recv_idle(void);
Example Call: status = callback app recv_idle();

Return Value: The following are valid return values:

m NEED TO_EXIT—The mn_recv () routine will exit immediately. If the server is running, it will
stop waiting for data and advance to the next state.

m Any Other Value—The mn _recv () routine will continue to wait for data.

@ Rev. 0.6 31

SILICON LABORATORIES

AN237

4.10.4. callback_app_server_idle

Description:

Prototype:

Example Call:

Parameters:

Return Value:

Periodically called from mn server () when it is not transmitting or receiving data. This function
should only be used for low-priority tasks. Any high-priority tasks should be placed in an interrupt
service routine.

SCHAR callback app server idle (PSOCKET INFO*) ;
status = callback app server idle(psocket ptr);
1. psocket_ptr—Pointer to a pointer to a socket that can be used for transmitting data.

Note: The socket handle may be reassigned to a different socket
(e.g., *psocket _ptr = new_socket ptr;).

The following are valid return values:

m NEED TO_SEND—The TCP/IP stack will immediately send the data stored in the socket.

m NEED TO_EXIT—The mn server () routine will exit immediately, returning control to the
main () routine.

m Any Other Value—The mn _server () routine will continue to function normally.

4.10.5. callback_socket_empty

Description:

Prototype:
Example Call:

Parameters:

Called after all data in a TCP socket has been sent. This callback function allows the user's
application to send additional data using the same TCP connection.

Note:This callback function allows application code to send large amounts of non-contiguous data
using a small memory buffer.

callback_socket_empty(PSOCKET _INFO);
callback_socket_empty(socket ptr);

1. socket _ptr-Pointer to a socket that can be used for transmitting data.

4.10.6. callback_socket_closed

Description: Called after a TCP socket has been closed. This callback function alerts the user's application that
the TCP connection to the remote host is closed and that the socket may now connect to a
different host.

Note:If used in conjunction with callback_socket_empty to send non-contiguous data, application
code should free resources associated with the closed socket.

Prototype: callback_socket closed(SCHAR);

Example Call: callback socket closed(socket no);

Parameters: 1. socket no-Socket number for the closed socket.

®
32 Rev. 0.6 @

SILICON LABORATORIES

AN237

4.11. Virtual File System (VFILE) Functions

The TCP/IP stack includes a virtual file system accessible by application code or application level services, such as
the HTTP Web Server and FTP server. The files added to the file system can be requested by a web browser or
FTP Client and are stored as binary arrays in Flash or Ram. This allows images, applets, and other content to be
embedded inside static or dynamic HTML pages.

To add static content to the virtual file system, it must first be converted to a file array using the HTML2C utility. The
HTML2C utility reads a content file (e.g., image.gif) and generates two files (e.g., image.c and image.h) that can be
added to the project. The static content file can be added to the file system in three steps:

1. Include the header file (e.g., image.h) at the beginning of main.c using the #include directive.

2. Add the C source file (e.g., image.c) to the project build.

3. Add the file to the file system during runtime using the mn_vf set entry () or
mn_vf set ram entry (). These functions map the starting address and length of the file array to a
file name that is accessible from a web browser or FTP client.

4. Modify the num_vf_pages constant in mn_userconst.h such that the value is greater than or equal to the
total number of files arrays added to the file system.

The following functions can be used to add, remove, or access static files in the file system.
HTTP/FTP Server File System Functions:

mn_vf get entry() Section 4.11.1 on page 34
mn_vf set entry() Section 4.11.2 on page 34
mn vf set ram entry() Section 4.11.3 on page 34
mn_vf del entry() Section 4.11.4 on page 35

The virtual file system allows dynamic web page content creation through CGI scripting. When the HTTP Web
Server receives a recognized script name, it calls a “content creation” function to generate the requested content.
Requests to the HTTP Web Server can be sent in as part of an HTML form or directly in the URL. Below is an
example of a web browser requesting dynamic data from a script called “get data”:

http://10.10.10.163/get_data?type=temperature

In a CGl script request passed through the URL, all text after the question mark is interpreted as arguments passed
to the script. In the above example, “type” is considered a field-name, and “temperature” is the field-value. Multiple
field-name/field-value arguments can be separated by an ampersand. The script name, get data, is recognized by
the HTTP Server because it has been added to the file system by application code. CGl scripts can be added and
removed from the file system using the following functions:

CGl Script Functions:

mn _pf get entry() Section 4.11.5 on page 35
mn_pf set entry() Section 4.11.6 on page 35
mn_pf del entry() Section 4.11.7 on page 36

The mn_pf set entry () function maps a script name to a “content creation” function pointer that is called each
time the script name appears in the URL or in the ACTION field of an HTML form. The “content creation” function
uses the arguments following the question mark to generate the requested data. Once the function is finished gener-
ating data, it specifies the starting address and length of the data it wishes to send back to the browser. The TCP/IP
stack handles all further communication with the web browser until a new request is received. See “AN292: Embed-
ded Ethernet System Design Guide" for a discussion of application development with the TCP/IP Library.

@ Rev. 0.6 33

SILICON LABORATORIES

AN237

4.11.1. mn_vf_get_entry

Description: Used to obtain a pointer to the VF structure corresponding to a file in the virtual file system. The VF
structure contains information about the file, such as starting address, file size, and memory
segment. See “Appendix A—TCP/IP Stack User Constants” on page 43 for a definition of the VF
structure.

Note: This function should not be called from an ISR.
Prototype: VF PTR mn vf get entry (byte*);
Example Call: pVF = mn vf get entry(filename);
Parameters: 1. filename—Null terminated string containing the name of the desired file (e.g., index.html).

Return Value: Returns a valid pointer to a VF structure or PTR_NULL if the search string did not match any file
names added to the file system.

4.11.2. mn_vf_set_entry

Description: Used to add a file stored in on-chip Flash to the virtual file system.
Notes:
1. This function should not be called from an ISR.
2. If storing files in the CP220x Flash, only addresses less than Ox1FFA should be used. The address range
0x1FFA to Ox1FFF contains the pre-programmed MAC address. Addresses 0x2000 and above are invalid.

Prototype: VF _PTR mn vf set entry(byte*, wordl6, PCONST BYTE, byte);
Example Call: pVF = mn vf set entry(filename, file size, file ptr, mem seg);

Parameters: 1. filename—Null terminated string containing the file name (e.g., “index.html”).
2. file_size—Number of bytes in the file.
3. file_ptr—Pointer to the start of the file.
4. mem_seg—Type of memory where the file is stored (should be set to VF_PTYPE_FLASH).
m VF PTYPE FLASH—The file is stored in MCU Flash.
m VF_PTYPE CP2200_FLASH—The file is stored in CP220x Flash.

Return Value: Returns a valid pointer to a VF structure or PTR_NULL if the maximum number of files has already
been added to the file system.

4.11.3. mn_vf_set_ram_entry

Description: Used to add a file stored in RAM to the virtual file system.
Note: This function should not be called from an ISR.
Prototype: VF _PTR mn vf set ram entry (byte*, wordlé, byte*, byte);
Example Call: pVF = mn vf set ram entry(filename, file size, file ptr, mem seg);

Parameters: 1. filename—Null terminated string containing the file name (e.g., index.html).
2. file_size—Number of bytes in the file.
3. file_ptr—Pointer to the start of the file.
4. mem_seg—Type of memory where the file is stored (should be set to zero).

®
34 Rev. 0.6 @

SILICON LABORATORIES

AN237

Return Value: Returns a valid pointer to a VF structure or PTR_NULL if the maximum number of files has already
been added to the file system.

4.11.4. mn_vf_del_entry

Description: Used to remove a file from the virtual file system. Files removed from the virtual file system will not
be visible to the HTTP or FTP server. The FTP server stores received files in dynamically allocated
RAM. If a deleted file is stored in dynamically-allocated RAM, the memory buffer will be freed.
Note: This function should not be called from an ISR.

Prototype: SCHAR mn_vf del entry (byte*);

Example Call: status = mn vf del entry(filename);

Parameters: 1. filename—Null terminated string containing the name of the desired file (e.g., index.html).

Return Value: Returns one of the following values:

m TRUE—The file was successfully removed.
m FALSE—The file was not found.
m VFILE ENTRY_IN_USE—The file was in use and could not be removed.

4.11.5. mn_pf_get_entry

Description: Used to obtain a function pointer to a CGI content creation function.
Note: This function should not be called from an ISR.
Prototype: POST FP mn pf get entry (byte*);
Example Call: function ptr = mn pf get entry(function name) ;
Parameters: 1. function_name—Null terminated string containing the name of the desired function.

Return Value: Returns a valid function pointer to a CGI content creation function or PTR_NULL if the search
string did not match any function names added to the file system.

4.11.6. mn_pf_set_entry

Description: Used to add a CGI content creation function to the virtual file system.
Note: This function should not be called from an ISR.

Prototype: PF PTR mn pf set entry(byte*, POST FP);

Example Call: pPFStruct = mn pf set entry(name, function ptr);

Parameters: 1. function_name—Null terminated string containing the name of the desired function.
2. function_ptr—Pointer to the start of the function.

Return Value: Returns a valid pointer to a POST_FUNCS structure or PTR_NULL if the maximum number of
functions has already been added to the file system. See “Appendix A—TCP/IP Stack User Con-
stants” on page 43 for a definition of the PF structure.

@ Rev. 0.6 35

SILICON LABORATORIES

AN237

4.11.7. mn_pf_del_entry

Description: Used to remove a CGI content creation function from the virtual file system.
Note: This function should not be called from an ISR.
Prototype: byte mn pf del entry (byte*);
Example Call: status = mn pf del entry(function name);
Parameters: 1. function_name—Null terminated string containing the name of the desired function.

Return Value: Returns TRUE if the function was removed or FALSE if the function name was not found.

4.12. Support Functions

The TCP/IP stack provides the following support functions used for string conversion:

mn_ustoa () Section 4.12.1 on page 36
mn_uctoa () Section 4.12.2 on page 36
mn_getMyIPAddr func() Section 4.12.3 on page 37
mn_atous () Section 4.12.4 on page 37

4.12.1. mn_ustoa—unsigned int to ascii

Description: Converts an unsigned integer to an ascii string.

Note: This function should not be called from an ISR.
Prototype: byte mn_ustoa (byte*, wordlé6);
Example Call: num bytes = mn ustoa(dest buff, source);

Parameters: 1. dest buff—Address to a character array to store the null-terminated string result.
2. source—The unsigned integer that will be converted to a string.

Return Value: Returns the number of bytes added to dest buff.

4.12.2. mn_uctoa—unsigned char to ascii

Description: Converts an unsigned character to an ascii string.
Note: This function should not be called from an ISR.

Prototype: byte mn_uctoa (byte*, wordlé6);

Example Call: num bytes = mn uctoa(dest buff, source);

Parameters: 1. dest buff—Address to a character array to store the null-terminated string result.
2. source—The unsigned char that will be converted to a string.

Return Value: Returns the number of bytes added to dest_buff.

®
36 Rev. 0.6 @

SILICON LABORATORIES

AN237

4.12.3. mn_getMyIPAddr_func

Description:

Prototype:
Example Call:
Parameters:

Return Value:

Fills a string with the current IP address in the following format: “255.255.255.255”.

Note: This function should not be called from an ISR.

wordlé mn getMyIPAddr func (byte**);

num bytes = mn _getMyIPAddr func(dest buff);

1. dest_buff—Pointer to pointer to a character array to store the null-terminated IP address string.

Returns the number of bytes added to dest_buff.

4.12.4. mn_atous—ascii to unsigned int

Description:

Prototype:
Example Call:
Parameters:

Return Value:

Converts an ascii string to an unsigned integer.

Note: This function should not be called from an ISR.

wordl6 mn_atous (byte*);

result = mn_atous (src_buff);

1. src_buff—Address to a null-terminated string that will be converted.

Returns an unsigned integer representing the value in the string.

@ Rev. 0.6 37

SILICON LABORATORIES

AN237

5. Netfinder Protocol

The Netfinder protocol allows a PC application to search for embedded systems on a network. The PC application
finds the embedded systems by broadcasting an "ldentity Request" packet to all nodes on the local network. Each
embedded system that supports Netfinder replies with an "ldentity Reply" packet which contains information that
identifies and differentiates it from other embedded systems on the network. This information includes: IP address,
Elapsed time from an event (e.g. Time Powered, Time on Network), MAC Address, and two text descriptions of the
device. This information can be customized for each application.

The primary benefit of the Neffinder protocol is to reduce the amount of hardware required to place an embedded
system on a network. For DHCP enabled systems, it eliminates the requirement of an LCD to display the IP
address. For embedded systems on a static network, Netfinder can eliminate the need for a separate UART inter-
face or push-button switches used to program the IP address.

The preferred port for Netfinder is UDP 3040, however, any available UDP port may be used. Table 2 lists the packet
format for the Identity Request and Reply packets:

Table 2. Broadcast Identity Request—4 Bytes

0(1/2/3|4|5/6|7|8(9/10|11/12|13|14|15|16|17|18|19|20|21/22|23|24|25|26|27 |28 |29 3031

Version/Type Reserved Random Sequence Identifier
0x00 0x00

Table 3. Identity Reply—Variable Length

0/1/2/3/4/56|/7/8/9|10/11]1213|14|15|16|17|18|19]|20|21|22|23|24|25|26|27|28|29|30| 31

Version/Type Alert Level Replication of Random Sequence ldentifier
0x01 0x00 — Device OK
0x01 — No Address/Warn
OxFF — Device Failure

Event 1 Days Event 1 Hours Event 1 Minutes
Event 2 Days Event 2 Hours Event 2 Minutes
Event 1 Seconds Event 2 Seconds MAC Address (Most Significant Octets)

MAC Address (Least Significant Octets)

IP Address

Subnet Mask

Default Gateway

Four Variable Length Null-Terminated Strings
String A — Name/Type of Embedded System (~ 20 characters)
String B — Description/Miscellaneous Text (~ 30 characters)
String C — Event 1 Description, String D — Event 2 Description

®
38 Rev. 0.6 @

SILICON LABORATORIES

AN237

When using Netfinder in an embedded system on a static network, an IP address may be assigned to the embedded
system. The PC application sends an identity assignment packet to the embedded system. The embedded system
replies with an acknowledgement stating success or failure.

In order to send a packet to an embedded system that does yet have an IP address, it may be necessary for the PC
application first assign it an IP address using Ping Gleaning. Ping Gleaning is a method of specifying an embedded
system's IP address by pinging it. It can be used by adding a static ARP entry to the PC's ARP table, then pinging
the embedded system. If the MAC address matches the embedded system's MAC address, then the embedded
system will respond to future packets sent to the new IP address.

The benefit of using Netfinder, instead of only Ping Gleaning, is that the PC application receives an acknowledge-
ment from the embedded system and is able to program other important fields such as the subnet mask and the
default gateway.

Table 4. Identity Assignment—24 Bytes

0/1/2/3/4/5/6/7/8/9/10|11|12|13|14|15/16|17|18|19|20|21 22|23 |24 |25|26|27 2829|3031

Version/Type Reserved Random Sequence Identifier
0x02 0x00

IP Address

Subnet Mask

Default Gateway

MAC Address (Most Significant Octets)

MAC Address (Least Significant Octets) Reserved — All Zeros

Table 5. Identity Assignment Acknowledgement—4 Bytes

0/1/2|3/4(5|6/7(8/9/1011/12|{13|14(15|16/17|18|19|20|21|22|23|24|25|26|27|28|29|30 |31

Version/Type Response Code Replication of Random Sequence Identifier
0x03 0x01 — Address Accepted
0x00 — Address Rejected
due to MAC mismatch
OxFF — Other Error

@ Rev. 0.6 39

SILICON LABORATORIES

AN237

6. Custom Driver Support

The TCP/IP library supports a custom driver mode that allows the TCP/IP stack to be used with any Ethernet
controller. The custom driver mode can be selected in the TCP/IP Configuration Wizard by checking the “Custom
Ethernet Device” option as the communications adapter. Both polled mode and interrupt-driven drivers are
supported. When the custom driver mode is selected, the TCP/IP Configuration Wizard outputs two additional files
containing a custom driver template: custom_ethernet.c and custom_ethernet.h. These files are automatically
added to the generated project.

The generated files are provided as a template and will not compile until all the missing pieces have been filled in
by the user. The sections of the generated files that require modification by the user can be identified by a large
comment block with instructions inside. The steps required to turn the custom driver template into a functioning
driver are described in the following paragraphs.

6.1. Modifying the Custom Driver Header File

The custom_ethernet.h file should be modified to include the register names and addresses of the Ethernet
controller. The Ethernet driver communicates with an Ethernet controller over the external memory interface
(EMIF). The EMIF is driven by reading and writing to a pointer in pdata space named ETHER_RDRW. This pointer
points to the first direct mapped register in the Ethernet controller. For example, if the first direct mapped register is
at 0x2000, the address high byte (named BASE_ADDRESS and defined in mn_userconst.h) is set to 0x20, and the
address low byte (hamed ETHER_RDRW and defined in custom_ethernet.h) is set to 0x00.

During initialization, the TCP/IP stack writes the value of BASE_ADDRESS to EMIOCN. ETHER_RDRW is defined
as a constant using the compiler directive “#define”. The remaining register definitions (such as TX_PORT,
RX_PORT, etc.) are defined as offsets from the ETHER_RDRW and can be accessed using the following notation:

Example Read from RX_PORT:
temp_data = ETHER_RDRW|[RX_PORT];

Example Write to TX_PORT:
ETHER _RDRWI[TX_PORT] = temp_data;

6.2. Modifying the ether_init() Routine

The ether init () routine should be modified to reset and initialize the Ethernet controller. Device initialization
may include:

1. Reseting the Ethernet controller using its reset pin or a software reset.

2. Verifying communication with the Ethernet controller.

3. Enabling/disabling features of the Ethernet controller as desired. This includes configuring the Duplex
mode (half/full duplex) or enabling Auto-Negotiation, enabling transmission/reception, and configuring
the receive filter.

4. Writing the MAC address stored in eth src_hw_addr[] to registers on the controller. If a different
MAC address is used, the eth src hw addr[] array should be changed to reflect the new address.

5. Returning TRUE on success or ETHER_INIT_ERROR to indicate an initialization failure.

®
40 Rev. 0.6 @

SILICON LABORATORIES

AN237

6.3. Modifying the ether_send() Routine

The ether send () routine is called by the TCP/IP stack when it needs to send an Ethernet packet. An Ethernet
packet consists of a preamble and start of frame delimiter, 14-byte Ethernet header, and the payload. The preamble
and start of frame delimiter are automatically generated by most Ethernet controllers. The ethernet header and pay-
load are provided to this function by the TCP/IP stack.

The ether send () routine has access to the following four pieces of information:

Starting address of the Ethernet header (send_out_ptr, a global pointer).

Length of the Ethernet header (head_buff len, calculated from send _out ptr- send_in_ptr).
Starting address of the payload (data_buff_ptr, obtained from passed socket).

Length of the payload (data_buff len, passed as an argument).

The ether send () routine should be modified to perform the following functions:

1.

O g~ WODN

Send the Ethernet header by writing head_buff_len bytes starting at send_out _ptr to the Ethernet
controller. The global send_out_ptr should be incremented after each byte is transmitted.

. Send the payload by writing data_buff _len bytes starting at data_buff ptr to the Ethernet controller.

. Initiate packet transmission.

. Wait for the transmission to complete.

. If writing a polled mode driver, call the MN_XMIT_BUSY_CLEAR macro to clear the transmit busy bit.
. Return the number of bytes transmitted on success or ETHER _SEND_ERROR on failure.

6.4. Modifying the ether_recv() or ether_poll_recv() Routine

Depending on the polled-mode/interrupt-mode selection in the TCP/IP Configuration Wizard, different receive func-
tions will be generated. The ether poll receive () function will be generated in both modes but should only be
modified if using polled mode. The ether recv () will only be generated in interrupt mode.

When using polled mode, the ether poll recv () routine is periodically called by the TCP/IP stack to determine
if the Ethernet controller has received any new packets. The function polls the Ethernet controller for the time inter-
val defined by ETHER_WAIT_TICKS then returns SOCKET_TIMED_OUT if a packet has not been received. The
user should modify the routine with code that checks if a packet has been received.

When using interrupt mode, the ether recv () function is called by the interrupt handler after a packet has been
received and should perform the functions below. The ether poll recv() should also perform the functions
below in addition to checking for received packets.

1.

2,

Determine if the packet was received with any errors. If errors are detected, discard the packet from the
Ethernet controller’s buffer and return ETHER _RECV_ERROR.

Determine the length of the received packet. The Frame Check Sequence (FCS) field should not be
included in the length calculation. Write the length to the variable recv_len. The code provided in the
template will determine if there is space in the TCP/IP stack’s receive buffer for the new packet. If there
is no space in the buffer, the packet will be discarded and the function will return
ETHER_RECV_ERROR.

. If there is sufficient free space in the receive buffer, code execution will vector to a loop which will guide

the user’s code to copy the packet into the receive buffer. The user needs to provide a single line of
code in three places to copy a byte from the Ethernet controller into the address pointed to by
recv_in_ptr.

. Perform any finalization if required by the Ethernet controller. This may include clearing a valid bit,

discarding any extra bytes, such as the FCS, etc.

. Return the number of bytes received. This step will only be reached on successful execution of the

above steps.

@ Rev. 0.6 41

SILICON LABORATORIES

AN237

6.5. Modifying the ether_ISR() Interrupt Handler

The ether ISR () routine is only generated when interrupt mode is selected in the TCP/IP Configuration Wizard.
This interrupt is mapped to /INTO but can be changed to another interrupt by modifying the initialization code and the
interrupt number of the function. The interrupt handler should perform the following functions:

1. Determine the cause of the interrupt.

2. Call ether recv /() if a packet has been received.

3. Call the MN_XMIT_BUSY_CLEAR macro to clear the transmit busy bit if a transmit complete event has
occurred.

4. Service any other Ethernet controller specific events (e.g. link failure, FIFO Overflow, etc.).

®
42 Rev. 0.6 @

SILICON LABORATORIES

AN237

APPENDIX A—TCP/IP STACK USER CONSTANTS

The TCP/IP stack user constants located in the mn_userconst.h header file allow the user to customize the stack
according to the requirements of the application. Most of the constants in the mn_userconst.h header file are also
configurable using the TCP/IP Configuration Wizard.

The number of user constants in the mn_userconst.h file will vary based on the generated library. Tables 6 and 7 list
all possible constants; however, the header file generated will only contain constants that are applicable to the gen-

erated library.

Table 6. IP and MAC Address Configuration Constants

Constant Name

Description

IP_SRC_ADDR IP address for the MCU.
IP_DEST_ADDR IP address for the destination, if known.
IP_SMTP_ADDR IP address for the SMTP server.

ETH_SRC_HW_ADDR

MAC Address for the Ethernet controller. Not applicable for the CP220x.

ETH_DEST_HW_ADDR

Destination MAC address if not using ARP.

GATEWAY_IP_ADDR

IP Address of the default gateway or router.

SUBNET_MASK_ADDR

Subnet mask for the network used to determine whether an address belongs to
a device connected to the local network or must go through the router to an
external network.

Table 7. Default Modem Settings

Constant Name

Description

MODEM_COUNTRY_CODE

Modem initialization string to set the country code. Usually contains AT com-
mands and must end in a carriage return (\r’).

MODEM_PROTOCOL

Modem initialization string to set the protocol. Usually contains AT commands
and must end in a carriage return (\r’).

MODEM_INIT_DIAL

Modem initialization string used when making an outgoing call. Usually contains
AT commands and must end in a carriage return (\r’).

MODEM_INIT_ANSWER

Modem initialization string used when configuring the modem to receive calls.
Usually contains AT commands and must end in a carriage return (‘\r’).

MODEM_DIAL Modem initialization string containing the outgoing phone number. Usually con-
tains AT commands and must end in a carriage return (‘\r’).

LOGIN_NAME Login name to use when logging into a remote modem or the login name to
check for when a remote modem is logging into the local modem. This constant
is only used if PAP is disabled.

PASSWORD Password to use when logging into a remote modem or the login name to check

for when a remote modem is logging into the local modem. This constant is only
used if PAP is disabled.

DIAL_LOGIN_PROMPT

Login prompt to expect from a remote modem when logging in. This constant is
only used if PAP is disabled.

SILICON LABORATORIES

Rev. 0.6 43

AN237

Table 7. Default Modem Settings (Continued)

Constant Name

Description

DIAL_PASSWORD_PROMPT

Password prompt to expect from a remote modem when logging in. This con-
stant is only used if PAP is disabled.

ANS_LOGIN_PROMPT

Login prompt to provide to a remote modem when answering a call. This con-
stant is only used if PAP is disabled.

ANS_PASSWORD_PROMPT

Password prompt to provide to a remote modem when answering a call. This
constant is only used if PAP is disabled.

Table 8. TCP/IP Stack Adjustments

Constant Name

Description

arp_auto_update

When set to 1, the ARP cache is updated after every valid packet is received.
The ARP cache is always updated on PING requests.

arp_cache_size

Number of entries in the ARP cache.

arp_keep _ticks

Number of system ticks to keep entries in the ARP cache.

arp_resend_trys

Number of times an ARP packet is retransmitted.

arp_wait_ticks

Number of system ticks to wait for an ARP packet.

BASE_ADDRESS

The high byte of the Ethernet controller base address on the external memory
interface bus. For example, if the controller is at address 0x2000,
BASE_ADDRESS should be set to 0x20. This value is written to EMIOCN.

body buffer_len

Size of the buffer to hold characters from an HTTP GET request following the
question mark.

device_id

Specifies the MCU. Can be C8051F120, C8051F340, or C8051F020 if Ethernet
is used as the physical layer. Must be C8051F120 if a modem is selected as the
physical layer.

dns_buff_size

Size of the DNS receive buffer. This should be set to the maximum expected size
for received DNS packets. The DNS specification specifies a maximum length of
512 bytes, however, this buffer may be set to a smaller value if the actual maxi-
mum packet size is known.

dns_send_trys

Number of times DNS should attempt to send a query before returning a failure.

dns_wait_ticks

Number of 10ms system ticks to wait before retransmitting a DNS query. This
value should be set between 2 to 5 seconds. The default value is 400 (equivalent
to 4 seconds).

EMIF_TIMING

The value written to EMIOTC to set the external memory bus timing.

ether_wait_ticks

Number of system ticks to wait for an Ethernet packet.

ftp_buffer_len

FTP Receive Buffer Size. Must be large enough to hold the largest expected file
size.

44

®
Rev. 0.6 @

SILICON LABORATORIES

AN237

Table 8. TCP/IP Stack Adjustments (Continued)

Constant Name

Description

ftp_max_param

Size of the buffer to hold received command line parameters. This value must be
at least 23.

ftp_num_users

Number of username/password combinations to store. If set to zero, authentica-
tion will not be performed.

http_buffer_len

Buffer used to process HTTP includes. Should be the same size as TCP window.

ip_time_to_live

Sets the “time to live” field in the IP packet.

mem_pool_size

RAM memory pool available to the malloc () function.

multicast_ttl

Sets the “time to live” field in an IP packet for multicast packets.

num_post_funcs

This value is the number of entries in the post-function table in the virtual file sys-
tem. The value can be 1 to 255.

num_sockets

Sets the number of sockets that can be used. The value must be between 1 and
127. Each socket uses approximately 46 bytes of XRAM.

num_vf_pages

The number of entries in the directory table in the virtual file system. Can be 1 to
255.

pap_num_users

Number of entries in the PAP table.

ping_buff_size

If PING is enabled, this value is the size of the data from a PING request that can
be stored. Nine bytes are added to this value to store part of the PING request
header. If the PING request contains more data than the specified value, the
packet will be discarded and no reply sent. The default value is 32.

ppp_resend_ticks

Number of system ticks to wait before retransmitting a PPP packet.

ppp_resend_trys

Number of times to send a PPP packet before terminating connection.

ppp_terminate_trys

Number of times to a PPP-Terminate request is sent before resetting connection.

recv_buff_size

Sets the size of the buffer used for reception.

smtp_buffer_len

This value is the size of the temporary buffer for SMTP commands, it must be at
least 46. The recommended value is TCP_WINDOW.

socket_wait_ticks

Number of 10 ms system ticks to wait for a packet.

tcp_resend_ticks

Number of system ticks to wait before retransmitting a TCP packet.

tcp_resend_trys

Number of times a TCP packet is transmitted before aborting the connection.

SILICON LABORATORIES

Rev. 0.6 45

AN237

Table 8. TCP/IP Stack Adjustments (Continued)

Constant Name

Description

tcp_window

This value is both the amount of data you are willing to accept from the remote
connection and the amount of data you are sending in a single packet. This value
must be greater than 0 and less than or equal to 1460. A larger value yields bet-
ter throughput but requires larger buffers. Note: The TCP/IP Stack uses a fixed
window when receiving, not a sliding window as specified in RFC 793. If using
PPP, the RECV_BUFF_SIZE and XMIT_BUFF_SIZE should be at least double
the TCP window to allow for escaped characters. If using ethernet, the
RECV_BUFF_SIZE and XMIT_BUFF_SIZE should be at least TCP_WINDOW +
58.

tftp_resend_trys

Number of times a TFTP packet is transmitted before terminating the connection.

tl0_flash Timer 0O reload values such that Timer 0 overflows in 10 ms. This defines a sys-
th0_flash tem tick.
uart_reload Reload value for the UART. The maximum standard UART baud rate is automat-

ically selected by the TCP/IP Configuration Wizard.

uri_buffer_len

Size of the buffer to hold characters from an HTTP GET request preceding the
question mark.

use_password

When set to 1, user authentication is performed at the modem level. Should be
set to zero if PAP is used for authentication.

xmit_buff_size

Sets the size of the buffer used for transmission.

46

®
Rev. 0.6 @

SILICON LABORATORIES

AN237

APPENDIX B—TCP/IP STACK DATA STRUCTURES

The following data structures are defined by the TCP/IP stack:
Struct: SOCKET_INFO_T

typedef struct socket info s {
wordl6 src_port;
wordl6 dest port;
byte ip dest addr[IP_ADDR LEN];
byte *send ptr;
wordl6 send len;
byte *recv ptr;
byte *recv_end;
wordl6 recv_len;
byte ip proto;
byte socket no;
byte socket type;
byte socket state;
#if TCP
byte tcp_state;
byte tcp resends;
byte tcp_ flag;
byte recv_tcp flag;
byte data offset;
wordl6 tcp unacked bytes;
wordl6 recv_tcp window;
SEQNUM U RCV_NXT;
SEQNUM U SEG_SEQ;
SEQNUM U SEG ACK;
SEQNUM U SND UNA;
TIMER INFO T tcp timer;
#endif
} SOCKET_INFO_T;

Struct: VF

typedef struct vi {
byte filename[VF NAME LEN];
wordl6 page size;
PCONST BYTE page ptr;
byte * ram page ptr;
byte page type;
byte in use flag;
#if CP220x

unsigned int CP2200 PAGE PTR;
#endif
} VF;

@ Rev. 0.6

SILICON LABORATORIES

47

AN237

Struct: POST_FUNCS

typedef struct post funcs {
byte func name [FUNC NAME LEN];
POST FP func ptr;

} POST_FUNCS;

Struct: SMTP_INFO_T

typedef struct smtp info s {
byte *from;
byte *to;
byte *subject;
byte *message;
byte *attachment;
byte *filename;
} SMTP_INFO_T;

Struct: DHCP_INFO_T

typedef struct dhcp info s {

byte op; /* opcode, request or reply */

byte htype; /* hardware type */

byte hlen; /* hardware address length */

byte hops; /* always zero for clients */

byte xid[4]; /* random transaction ID */

byte secs[2]; /* seconds elapsed since trying to boot */
byte flag[2]; /* broadcast flag */

’

IP ADDR LEN]; /* client IP address submitted */

byte ciaddr]

IP ADDR LEN]; /* client IP address returned by server */
]
]

byte yiaddr
byte siaddr
byte giaddr

IP ADDR LEN]; /* server IP address returned by server */
IP ADDR LEN]; /* optional gateway IP address */

— — — —

byte chaddr [DHCP MAC LEN]; /* client hardware address */
byte sname [DHCP SNAME LEN]; /* optional server host name */
byte file[DHCP FILE LEN]; /* boot file name */

byte options[DHCP_OPT LEN]; /* options */

} DHCP_INFO_T;

Struct: DHCP_LEASE_T

typedef struct dhcp lease s {

word32 org lease time; /* last requested lease time */
volatile word32 lease time; /* seconds left in current lease */
word32 tl renew time; /* time to make renew request */
word32 t2 renew time; /* time to make rebind request */
volatile byte dhcp state; /* current dhcp state */

byte infinite lease; /* infinite lease TRUE or FALSE */
byte server id[DHCP_ SERVER ID LEN]; /* DHCP server IP address */

} DHCP_LEASE_T;

®
a8 Rev. 0.6 @

SILICON LABORATORIES

AN237

Struct: BOOTP_INFO_T

typedef
byte
byte
byte
byte

byte

byte
byte

byte
byte
byte
byte
byte

byte
byte

byte

struct bootp_ s {
op;

htype;

hlen;

hops;

xid[4];

secs[2];
flagl[2];

ciaddr
yiaddr
siaddr
giaddr

’

IP_ADDR LEN];
IP ADDR LEN];
]
]

’

IP_ADDR LEN
IP _ADDR LEN

’

— — — —

chaddr [BOOTP_MAC LEN];

sname [BOOTP_SNAME LEN] ;

file[BOOTP FILE LEN];

vend [BOOTP_VENDOR LEN] ;

} BOOTP_INFO_T;

/*
/*
/*
/*

/*

/*
/*

/*
/*
/*
/*
/*

/*
/*

/*

opcode, request or reply */
hardware type */

hardware address length */
always zero for clients */

random transaction ID */

seconds elapsed since trying to boot
broadcast flag */

client IP address submitted */
client IP address returned by server
server IP address returned by server
optional gateway IP address */

client hardware address */

optional server host name */
boot file name */

optional vendor-specific area */

*/

*/
*/

SILICON LABORATORIES

Rev. 0.6

49

AN237

APPENDIX C—FIRMWARE LIBRARY MEMORY-MODEL COMPILER SETTINGS

The firmware API library was created using the LARGE memory model. Using this library in a project with a default
memory model of SMALL or COMPACT can cause warnings to occur, depending on warning level settings. To
avoid this, set the default memory model to LARGE, and override this setting by defining each function with the
“small” compiler keyword.

®
50 Rev. 0.6 @

SILICON LABORATORIES

AN237

APPENDIX D—CONNECTING THE EMBEDDED SYSTEM TO A PC

For Systems that use Ethernet as the Physical Layer

The TCP/IP stack allows the embedded system to connect to an Ethernet network using a static or dynamically-
allocated IP address. The embedded system can also be directly connected to a PC (without being connected to a
network) using a crossover cable. When using a crossover cable, both nodes need static IP addresses in order to
communicate. Refer to the Embedded Ethernet Development Kit User’s Guide for step-by-step instructions on how
to configure the PC and the embedded system for Ethernet communication.

For Systems that use a Modem as the Physical Layer

The TCP/IP stack allows the embedded modem to be configured as a client or server. The embedded modem can
communicate with any other modem through a standard telephone line (POTS) or telephone simulator. Any PC
that has a modem and is running Windows 2000 or Windows XP can be configured to accept calls or dial into the
embedded modem. Refer to Appendix B of the Embedded Modem Development Kit User’s Guide for step-by-step
instructions on how to configure a modem on a PC.

@ Rev. 0.6 51

SILICON LABORATORIES

AN237

APPENDIX E—ERROR CODES DEFINED IN MN_ERRS.H

#define NOT ENOUGH_ SOCKETS -128 // OxFF80
#define SOCKET ALREADY EXISTS -127 // 0xFF81
#define NOT SUPPORTED -126 // OxFF82
#define PPP_OPEN FAILED -125 // OxFF83
#define TCP_OPEN FAILED -124 // OxFF84
#define BAD SOCKET DATA -123 // O0xFF85
#define SOCKET NOT FOUND -122 // OxFF86
#define SOCKET TIMED OUT -121 // OxFF87
#define BAD IP HEADER -120 // OxFF88
#define NEED TO LISTEN -119 // OxFF89
#define RECV_TIMED OUT -118 // OxFF8A
#define ETHER INIT ERROR -117 // OxFF8B
#define ETHER SEND ERROR -116 // OxFF8C
#define ETHER RECV_ERROR -115 // OxFF8D
#define NEED TO_SEND -114 // OxFF8E
#define UNABLE TO SEND -113 // OxFF8F
#define VFILE ENTRY IN USE -112 // O0xFF90
#define TFTP FILE NOT FOUND -111 // 0xFF91
#define TFTP_NO FILE SPECIFIED -110 // 0xFF92
#define TFTP_FILE TOO BIG -109 // OxFF93
#define TFTP_FAILED -108 // OxFF94
#define SMTP ALREADY OPEN -107 // OxFF95
#define SMTP_OPEN FAILED -106 // OxFF96
#define SMTP_NOT_ OPEN -105 // OxFF97
#define SMTP BAD PARAM ERR -104 // O0xFF98
#define SMTP_ERROR -103 // OxFF99
#define NEED TO EXIT -102 // OxFF9A
#define FTP FILE MAXOUT -101 // O0xFF9B
#define DHCP_ERROR -100 // OxFF9C
#define DHCP_LEASE EXPIRED -99 // O0xFF9D
#define PPP LINK DOWN -98 // O0xFFOE
#define GET FUNC_ERROR -97 // OxXFFI9F
#define FTP_SERVER_ DOWN -96 // OxFFAQ
#define ARP REQUEST FAILED -95 // O0xFFAl
#define NEED IGNORE PACKET -94 // OxFFA2
#define TASK DID NOT START -93 // OxFFA3
#define DHCP LEASE RENEWING -92 // O0xFFA4
#define IGMP ERROR -91 // OxFFA5
#define MN INIT ERROR -90 // OxXFFA6
#define MN VERIFY ERROR -89 // O0xFFA7
#define INVALID DUPLEX MODE -88 // OxFFA8
#define INVALID MAC ADDRESS -87 // OxFFA9
®
52 Rev. 0.6 @

SILICON

LABORATORIES

AN237

#define AUTO NEG FAIL -86 // OXFFAA
#define LINK FAIL -85 // OxFFAB
#define DNS_ID ERROR -75 // OxFFB5
#define DNS OPCODE ERROR -74 // O0xXFFB6
#define DNS RCODE ERROR =73 // OxFFB7
#define DNS COUNT ERROR -72 // OxFFB8
#define DNS TYPE ERROR -71 // O0XFFB9
#define DNS CLASS ERROR =70 // OxFFBA
#define DNS NOT FOUND -69 // OxFFBB
#define DNS BUFFER OVERFLOW -68 // O0XFFBC
// TCP error codes
#define TCP_ERROR -1
#define TCP TOO_ LONG -2
#define TCP BAD HEADER -3
#define TCP BAD CSUM -4
#define TCP BAD FCS -5
#define TCP_NO CONNECT -6
// UDP error codes
#define UDP_ERROR -1
#define UDP BAD CSUM -4
fdefine UDP_BAD FCS -5

®

@ Rev. 0.6 53

SILICON LABORATORIES

AN237

DOCUMENT CHANGE LIST

Revision 0.5 to Revision 0.6
m Added support for Netfinder.
m Added support for DNS.

m Added support for storing the transmit buffer in USB
FIFO space.

m Added support for serving web pages from the
CP220x Flash.

m Added "Appendix E—Error Codes Defined in
mn_errs.h" on page 52.

54

Rev. 0.6

&~

SILICON LABORATORIES

AN237

NOTES:

SILICON LABORATORIES

Rev. 0.6

55

AN237

CONTACT INFORMATION

Silicon Laboratories Inc.
4635 Boston Lane

Austin, TX 78735

Email: MCUinfo@silabs.com
Internet: www.silabs.com

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

56 Rev. 0.6

SILICON LABORATORIES

	1. Introduction
	2. API Function Overview
	3. Getting Started
	3.1. Project Directory Structure
	3.2. TCP/IP Configuration Wizard Output
	3.3. Using the TCP/IP Examples
	3.4. Getting Additional Help

	4. TCP/IP Stack API Reference
	4.1. Function Groups
	4.2. Data Types
	4.3. Important Notes
	Table 1. UART1 Baud Rate Selection

	4.4. Socket Functions
	4.4.1. mn_init
	4.4.2. mn_open
	4.4.3. mn_send
	4.4.4. mn_recv
	4.4.5. mn_recv_wait
	4.4.6. mn_close
	4.4.7. mn_abort
	4.4.8. mn_find_socket

	4.5. Ethernet Functions
	4.5.1. ether_reset_low
	4.5.2. ether_reset_high
	4.5.3. mn_ether_init
	4.5.4. CPFLASH_ByteRead
	4.5.5. CPFLASH_ByteWrite
	4.5.6. CPFLASH_PageErase

	4.6. Modem Functions
	4.6.1. mn_modem_connect
	4.6.2. mn_modem_disconnect
	4.6.3. mn_modem_send_string
	4.6.4. mn_modem_wait_reply

	4.7. PPP Functions
	4.7.1. mn_ppp_open
	4.7.2. mn_ppp_close
	4.7.3. mn_ppp_reset
	4.7.4. mn_ppp_add_pap_user
	4.7.5. mn_ppp_del_pap_user

	4.8. DHCP/BOOTP Functions
	4.8.1. mn_dhcp_start
	4.8.2. mn_dhcp_release
	4.8.3. mn_dhcp_renew
	4.8.4. mn_bootp

	4.9. Application Layer Functions
	Figure 1. Typical Software Flow when Using mn_server()
	4.9.1. mn_server
	4.9.2. mn_http_find_value
	4.9.3. mn_tftp_get_file
	4.9.4. mn_smtp_start_session
	4.9.5. mn_smtp_end_session
	4.9.6. mn_smtp_send_mail
	4.9.7. mn_dns_get_addr

	4.10. Callback Functions
	Figure 2. Callback Function Flow Diagram
	4.10.1. callback_app_process_packet
	4.10.2. callback_app_server_process_packet
	4.10.3. callback_app_recv_idle
	4.10.4. callback_app_server_idle
	4.10.5. callback_socket_empty
	4.10.6. callback_socket_closed

	4.11. Virtual File System (VFILE) Functions
	4.11.1. mn_vf_get_entry
	4.11.2. mn_vf_set_entry
	4.11.3. mn_vf_set_ram_entry
	4.11.4. mn_vf_del_entry
	4.11.5. mn_pf_get_entry
	4.11.6. mn_pf_set_entry
	4.11.7. mn_pf_del_entry

	4.12. Support Functions
	4.12.1. mn_ustoa-unsigned int to ascii
	4.12.2. mn_uctoa-unsigned char to ascii
	4.12.3. mn_getMyIPAddr_func
	4.12.4. mn_atous-ascii to unsigned int

	5. Netfinder Protocol
	Table 2. Broadcast Identity Request-4 Bytes
	Table 3. Identity Reply-Variable Length
	Table 4. Identity Assignment-24 Bytes
	Table 5. Identity Assignment Acknowledgement-4 Bytes

	6. Custom Driver Support
	6.1. Modifying the Custom Driver Header File
	6.2. Modifying the ether_init() Routine
	6.3. Modifying the ether_send() Routine
	6.4. Modifying the ether_recv() or ether_poll_recv() Routine
	6.5. Modifying the ether_ISR() Interrupt Handler

	Appendix A-TCP/IP Stack User Constants
	Table 6. IP and MAC Address Configuration Constants
	Table 7. Default Modem Settings
	Table 8. TCP/IP Stack Adjustments

	Appendix B-TCP/IP Stack Data Structures
	Appendix C-Firmware Library Memory-model Compiler Settings
	Appendix D-Connecting the Embedded System to a PC
	Appendix E-Error Codes Defined in mn_errs.h
	Document Change List
	Contact Information

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

