THE COMPUTER JOURNAL"

For Those Who Interface, Build, and Apply Micros

Issue Number 2 Vol. 1, No. 2 $2.50

- File Transfer Programs for CP/M.....

- Part Two of a Series:

The RS-232-C Serial Interface ...

Part One:

Build a Hardware Print Spooler
- A Review of Floppy Disk Formats

- Sending Morse Code With an Apple][

_ page 16

Beginner’s Column, Part Two’:

~ Anyone For a Little “°KISS"* Electronics?

- page 19

WHAT IS A HACKER??

The September fifth issue of Newsweek contains a
six page article “Beware: Hackers at Play,” with a
cover picture and the headline “Computer Capers.”
Several months ago, Wall Street Journal also ran a
front page article about how Hackers break into
computer systems.

I consider myself 8 Hacker, but I have no interest in
breaking into computers (it takes more time than I
have available to try to figure out what's going on in
my own computer). I object to the fact that the press
has defined hacking as breaking into computer
systems. The press is giving all hackers a bad name
because of the trespasses of a very few who call
themselves Hackers. When I mention computer
hacking, people ask ‘How many computers have you
broken into today?‘ I tell them that this is not hacking;
but when they ask what hacking is, I have a hard time
trying to explain it.

And so I put the question to our readers, ‘What is
Hacking?' What is it that Hackers do? We at The
Computer Hacker would like to generate some good
press about hacking, and need ideas and information
from our readers. We will use this information to
prepare press releases and an information packet for
the press.

In order to get the information needed,The
Computer Hacker is announcing a contest for Hackers.
We'll award some prizes (perhaps logic probes or
breadboarding kits) for the responses which are most
useful. There will be two categories:

1) What is a Hacker?

2) A description of a useful hacker project, such as
interfacing a micro so that a disabled person can
control their world.

The final result, which will be submitted to the
press, will probably be a blending of many responses.
WE NEED YOUR INPUT!!

THE “HACKER STANDARD INTERFACE”

In this issue, we continue the series on the RS-232-C
interface. The first part explained the standard's
definitions. Part two covers the standart
configurations and describes real world examples of
the RS-232-C interface as used with microcomputers,
and recommenations for hacker standards. A future
article will cover the use of UART and USART
integrated circuits with the RS-232.C serial interface.
It may seem that we are spending a lot of time on the
RE-232-C interface, but many hacker projects (at least

B P ;
i e iy

The Computer Hacker 1

s o e o s

f LK

G S T M e g

s

the ones I get involved with) require the transfer of
data, and a good understanding of the standard
interfaces is vital. We suggest that most hacker
projects be built as separate stand-alone devices using
a standard interface instead of being built to operate
only with a specific computer.

The problem with a computer specific peripheral is
that the device will probably not work with another
computer. Computer technology is changing very
rapidly, and most of us will eventually get a different
(or an additional) computer which will not be able to
use the same computer specific peripherals. There is
also the possibility that you will want to lend (or sell)
your project to someone with a different computer.
The decision to use either a computer specific or a
standard interface design is not always clear-cut.
There are advantages and disadvantages to both
approaches, and you'll have to decide on a case-by-case
basis. When you do design something which is not
meant to be computer specific, you should use a
standard interface if at all possible.

In future issues we will continue coverage of the RS-
232-C interface, and will also cover other standard
interfaces suitable for the hacker. We are interested in
feedback from the field, so please tell us about your
experiences with interfaces (both the good and the
bad). If you would like to write an article, perhaps
something on A/D and D/A or the factors to consider
when deciding between using a computer specific
versus a standard interface design, send us an outline.®

Editor/Publisher........................ Art Carlson
Art Director........................ Joan Thompson

Production Assistant Judie Overbeek
Technical Editor Lance Rose

TechnicalEditor.c.ccovvenen. Phil Wells

The Computer Hacker® s published 12 times
a year. Annual subscription i $24 in the U.S,
330 in Canada, and $39 in other countries.

Entire contents copyright © 1988 by The
Computer Hacker.

Postmaster: Send address changes to: The
Computer Hacker, P.O. Box 1697, Kalispell,
MT 59903-1697.

Address all editorial, advertising and subscription
inquiries to: The Computer Hacker, P.0O. Box
1697, Kalispell, MT 59908-1697.

2 The Computer Hacker

FILE TRANSFER PROGRAMS FOR CP/M

by Lance Rose, Technical Editor

Bypassing Incompatible Diskette Formats

Although CP/M has by now established itself as the

“standard”8-bit microprocessor operating system, this

doesn't mean by a long shot that programs are easily

transferrable from one computer running CP/M to another.
" The CF/M operating system includes within it a section
- known as the Basic I/Q System or “BIOS" for short. This part
of the system is very machine-dependent and is what adapts
the other (standars) parts of CP/M to the particular hardware
it is being used on. These machine-dependent parameters
include things like the port addresses for keyboard and
printer, the disk controller type and the size and format of the
particular disk system involved. For this reason a version of
CP/M with a BIOS written for, say, the North Star Horizon
would be of no use on a Morrow Micro Decision or other
system with even a slightly different hardware configuration.
Since it is often necessary and desirable to move a program
from one system to another, a way must be found to overcome
the differences in all these versions of what is the “standard”
operating system. One way that allows a speedy transfer is to
simply have a version of CP/M with a custom BIOS written
for multiple disk systems. This would be used in a machine
with two or more disk controllers operating at the same time.
Each controller could have a drive connected to it and
assigned a logical drive name, for example an 8-inch single
. density floppy might be Drive A, a North Star minidisk drive
might be Drive B, a TRS-80 CP/M format disk drive might be
Drive C, and so on. I think you can see right away that this
isn't a very practical setup. One would have to have all these
types of disk controller active in the same machine at the
same time (a near impossibility considering the various
schemes used for addressing disk controllers). Also, it's
guestionable whether any machine has enough slots for all the
- different types of hardware required, and the BIOS would be
quite long and involved.

Another way of moving files around which, while slower, is
at least more practical, is to simply transmit the file from one
computer to another via some sort of interface. This method
has the advantage of not requiring the same disk system, in
fact it doesn’t require the same anything except the interface
convention (i.e. RS-232, Centronics, Etc.) and that both
machines have CP/M running on them. The connection
between the two systems may be a simple interface cable or it
may have a pair of modems and a telephone line between
them, thus allowing remote transfer of files. The modem
method is, of course, much slower since it is no problem at all
to send files from one machine to another on an RS-232 cable
at 9600 baud (some 32 times faster than most modems are
capable of!) Still, it is sometimes impossible to place the
computers physically side-by-side and modems may have to
be used.

Transfer Conventions

With transfers between machines using a hardwired cable,
it isn't usually necessary to add a checksum to insure data
integrity (it doesn't hurt, however), since interface reliability
in the absence of a phone line should be quite good. However
the case of transfer via modems is much different. Telephone
line quality can vary from good to atrocious (more often the
latter than the former) and some means must be adopted to
make sure that what arrives at the receiving end is the same
information that started out at the sending end. This is where
the checksum comes in. For each block of data sent the sum of
the bytes transmitted is calculated and at the end of
transmission of the block, this “checksum” is also
transmitted. At the receiving end the computer is adding up
the values of the bytes received one by one as they come in.

~ When the fina] data byte has been received, the checksum is

transmitted and examined by the receiving machine. It then
compares the checksum received with the one it has been
calculating and, if these are the same, it is assumed that the
block has been transferred correctly.

While an in-depth explanation of error-detecting and error-
correcting codes is not appropriate here, suffice it to say that
the probability that there will be two errors in transmission
which cause equal and opposite results is so minute as to not
be worth worrying about. In a case where something like
national security is involved, more elaborate error-detecting
and correcting codes are available to cover this possibility but
for our use they are not needed. In addition they would slow
down what is already a painfully slow method of moving data
between computers.

Choices of Data Format

There are basically two ways that data can be represented
during transmission from one computer to another. The first
of these is simple ASCII coding. This works fine for text files
but runs into a bit of a snag for machine-language or
executable programs. ASCII is defined as a 7-bit code with a
parity bit added as the 8th bit. However, binary files may
have any combination of bit patterns making up the byte and
can't afford to waste the 8th bit as a parity bit. In the case of
some existing file transfer programs, a binary file must first
be converted into a form that is representable by ASCII
characters (a HEX file) before transmission. It is then
transmitted and reconverted intc a binary file at the
receiving end. While this works, it forces the transmission of
two bytes of data for each byte of binary information that
must be transmitted, thus in effect cutting the transmission
speed in half. Using this method would limit the effective data
transfer rate on a modem to around 15 bytes/second. As I
mentioned above, even 30 bytes/second is irritatingly slow
especially when transferring long programs, not to mention

the expense if this is happening long distance. The alternative
to this, which I am using here, is to make sure the serial port
used is configured for 8-bit words and no parity bit. Most any
serial port can be configured this way with a little snooping in
the user’s manual. In fact I have found that most hardware
manufacturers use this is the default configuration for their
serial data ports. With this accomplished, a binary byte can be
transmitted as is, and any error-detecting can be left to the
checksum rather than the parity bit.

The Programs

The programs presented here are designed to work with
each other in moving files between CP/M machines. The basic
method of transfer is to have the receiving machine in control
of the situation. The transmitting machine waits until the
receiving machine is ready before sending anything. This
allows for the case where the receiving machine may have a
slow disk system and a large file is being transferred that
can't be buffered in memory in its entirety. The receiving
machine must pause to dump its buffer to the disk, and during
this period the transmitting machine must wait to insure that
it will not be transmitting when the receiving machine is busy
with its disk work. Upon dumping the buffer, the receiving
machine can signal that it is ready to begin accepting data
again and the transmitting machine can start sending at that
time.

An additional feature present is a certain amount of error-
correcting. The term “correcting” is a bit of a misnomer
because it is accomplished here by simply retransmitting a
garbled record until it is received correctly. There is a two-
way communication between the machines (full duplex) so
that they can decide when a record has been correctly
received. The number of retries for a badly-transmitted
record is 4 here but can be altered to any other value to suit
the user’s purpose. Aborting a transfer is also possible since
the program polls the console device using a BDOS call, and if
the operator types a control-C, the transfer is terminated and
a message so stating is printed on the screen. As each record
is transmitted and received, 2 message is printed on the
screen so that the operator can monitor the process. If a
record must be transmitted, the word “again” is appended
to the message. When the entire file has been finally
transferred, the message “Transfer Complete” is printed and
the program reboots.

Procedure for Transferring a File

The procedure to follow in using these programs, once they
have been entered into the machine, is quite simple. First of
all, the user must identify the port numbers and input and
output flag bits for the serial port concerned. This
information is almost always available as part of the user
documentation for the system. These values must then be
inserted into the source listing for the programs and the
programs assembled.

If the connection is a hardwired cable it must connect the
serial interface on the first machine to the serial interface on
the second. In most cases a cable may be needed that reverses

The Computer Hacker 3

pins 2 and 3 of the DB25 connector on one end since it will
probably be the case that both machines are wired to connect
directly to printers and will use pin #2 for received data.
If the connection is being made via a phone line and
modems, each machine should have a cable suitable for
connecting it to a modem. Most computers are wired as DCE
(Data Communications Equipment, i.e. they emulate a
modem) and will probably need a crossover cable to connect to
an actual modem, but this is not universal so consult your user
manual on this.
. Since the receiving program is in control of the process, the
transmitting computer should begin first with the operator
typing ‘TX (drive:Milename(.filetype) where the items in
parentheses, the drive and filetype, are optional. The quotes
are not entered. If the filename is omitted, an error message
results and the program reboots. After waiting a few seconds
for the computer to open the file and load the buffer, the
receiving operator types ‘RX (drive:)ilenamel.filetype). His
computer then erases any old file by that name, opens a new
file and signals the transmitting computer to begin. At this
point the computers may be left alone until the process is
complete barring any unrecoverable error conditions.
In practice, even though the receiving computer is calling
the shots, I have found that it doesn't seem to matter who
actually types his carriage return first, the sending or the
receiving party. The handshake link is established
satisfactorily either way and the transfer proceeds normally.
So don’t worry too much about counting to five or whatever
before hitting return.

Multiple File Transfers

In order to keep the complexity of the programs down, it
was necessary to limit the transfer to a single file for each
execution of the program. This is not really a problem in the
case of long files since one would want to check on the
progress of the transfer periodically and re-executing the
program for the next long file wouldn’t be a burden. In the
case of a large number of small files, I have found that the
best procedure to accomplish this is the SUBMIT utility of
CP/M. Making up a submit file such as:

TX PROG1.TY1

TX PROG2.TY2

TX PROG3.TY3

TX PROG4.TY4
and calling it SEND.SUB allows the whole thing to operate by
typing in SUBMIT SEND. The SUBMIT program then
executes each line in turn until all files have been transferred.
The receiving end computer must of course have a similar file
but with the letters RX in place of TX on each line. Our
procedure here is to first send the submit file with a manual
command, then have the receiving end operator edit it and
replace the TX's with RX's. This helps insure that the order
of the programs being transferred will be the same on both
ends. The receiving computer operator can then type
SUBMIT RECEIVE (assuming he has named the file
RECEIVE.SUB). We have used this procedure to transfer
series of files that take an hour or more via modems and,

4 The Computer Hucker

except for checking the machine every ten minutes or so, both
operators can work on something else during the transfer
process.

Summing Up
These programs offer the hacker a good way to move files
between CP/M machines, even with toatlly different disk

systems. The only requirement is that each have a serial port. -

Transfer can be made with either a direct interface cable or a
pair of modems. (Why is it I always want to make the plural of
modems moda?) The programs are very tolerant of timing and
contain the facility for retransmitting records containing
.transmission errors. We have been using them in this area for
_ quite some time now and found them to be very satisfactory
for our purposes. The listings are included here for those who
want to key them in. If you would rather avoid the effort and
errors involved with keyboarding the data, send $15 to The
Computer Hacker for an 8-inch single-density floppy disk
containing a CP/M copy of the source files. '

Listing 1
Program to transmit a CP/M file

H Program to trarsmit a CP/M file througl a seria) port
: Accesses port directly, byps ng the BILCS
: Assumes an 6-bit word length and no parity
: Version of 9/2/83
BCOT EQU peeer :CP/™ reboct address
BDOS EQU [7424 sCP/M BICS entry pcant
TFCP EQL 885CH sFCE tor file to be transmitted
S10STA EQU 874 :51C status port
SIOCLAT EQU 1] 1837 data port
1FLAG EQU [i :Ir. + flag for serial port
OFLAG EOL (23] ;Cutput flag for seraal port
BUFREC EQU 12¢ ;Bufter size {CP/M records)
ORC 1eer
H 1f required, piace serial port initiajization code here
TA: LDA TFCE~1
[of 21 Tt :Check tfcr filename
JINZ OPEN
Lx1 T, FNMLF :Print error message anc reboot
ABORT: MVl c.9
CALL BDCS
(4% E,04F
CALL XMTBYT :Send ECT character
ImMP BOOT i Returr. tc CF, M
OPEN: LXx1 C.TFCE
MVi c,1t
CALL BILCS ioper fale
1NR A
JINZ FCUNL tFile present
LXx1 C.FNEEF :PCint at error message
JIMP ABCRT :Prant anc¢ rebcct
FOUNL:. XRA A
STA TFCE«3Z :Set next reccrc tyte tc gerc
MoV Cc.r :Set reccrc ccurt ar buffer teo zero
KEARLY: PUSK F ;S5ave reccrc count
MV c, 11
CALL BDOS :Get console status
POP B
OR2 A
Jz REACY) :NC key pressed
PUSH E
LA C,1
CALL BrOS
PCF B
cPI [-K1.]
JINZ REALY)
ENCAMT: LX] L, LOTMEC :Frint ECT message and abcrt
JMP ABCRT
REALY]1: 1M SIOSTA :Reacd serial status port
AN] IFLAC
a2 REALY ;Wait for character tc be received
18 Bl1OLAT :Get received character
AN TFH :Mask off bat 7 for ASCll codes
[21 4K
Jz EXCXMT tEnd transrission
CP1 B1H
Jz XMTRLC :Trersmit next recorc
CP1 a2¥
JINZ RERTY :lgncre other characters
LHLD crTPT
LxI U, -eeser
Car 3 :Point at last record
SHLL LATPTEK .
INF c ;:Go back ore recorc
XMTREC: DCk A
S5TA KPTHLG :Save repeat flag
cz CCLNT :lncrease reccré message 1{ new recoro
XMTRC1: DCR [:Decrease record count
S XMTRCZ iMcre in bufter
LT ECFFLG
ORA A
Jz REALF L :Mere an fale
Lx1 j 98185 TN continued

READFL:

READ:

NOMORE :

XMTRC2:

XMTRCI:

XMTRC4:

NEXTLN:

COUNRT:
COUNT1:

XMTBYT:

FNMER:
FNFER:
EOFMSG:
ECTMSG:
RECMSG:
RECCNT:

AGAIN:
CRLF :
DATPTR:
EOFFLG:
RPTFLG:
DATBUF

DB
DB
b

DB
EQU

c.9
BLCOS
E,B3H
AMIBYT

H, DATBUF
DATPTR

NOMORE
H, BPBOH
D

<
A, BUFREC
<

EEMgE comx>
Hod » » xT®

D,AGAIN
c, 9
BDOS
C,CRLF
c,9
BDOS

B

READY

H, RECCNT+4
L]

A9
M

" e
H
AM

COUNT1
M, 0"
COUNT)
B10STA
OFLAG
XMTBYT
AE
SIODAT

:Print EOF message

:Send LOF byte

;Point at beginning of Gatas butter

:lnitialize recoré count to gero

:Set DMA address

1Read next record

1Z0F detected

:Point at next record in buffer

i1lncrease record count

:Btop at end ot extent

t6et EOF flag

:5end response to request for record
tPoint at next record to transmit
sCharacter count for record
iChecksum for record

1Get next byte to send

1Update pointer

:Save in E

1Update checksum

;More ir record

:Send checksum

15end 4 NULs to replace any missed bytes

i15ave pointer to next record

:Print record message

i8kip ‘sgain’ if sucessful tirst time

1Print 'again’ if record repested

sPrint CRLF

160 wait for next prompt to send

3Over 97

sPut @ in message
t1Transmit character through serial port

‘File name missing',BDH, BAH, 'S’

'File not found’,®DH, BAH, '§°
‘Transfer complete' ,BDH, BAK,@7H, 'S "
‘Transfer terminated’, bDH,BAE,@7H, 'S’

‘Recozrd ¢
. o

' transmitted$’
' sgain$’

@DH, BAH, *'§ '
DATELF

[

[
§

tRecord § transmitted

1Repeated record

t1CRLF sequence

rPointer to next .data byte to send
1Flag for ECF read

1Flag for repeated record

tData buffer

Listing 2

Program to receive a CP/M file

BOOT
BDOS
TFCB
S10STA
S1CDAT
1FLAC
OF LAG
BUFREC
RETRY

Prograr to receive a CP/M file through & serial port
s port directly, bypassing the BDOS
Assumes an B-lit word length and no parity

Access

Version of 9/17/83

zZOU
EQU
ECU
EOQU
ECL
EQU
EQU
EQU
ECU

ORG

[I
P0O5H
885CH
e
B6H
e2n
eln
128
4

1901

:CP/M reboot address

:CP/M BDOS entry point

;FCB for file to be transmitted
1810 status port

:S1C data port

;lnput flag for serial port
;Output flag for serial port
;Buffer size (CP/M records)
;Number of retries before quitting

contmued

The Computer Hacker 5

Listing 2 continued
. nv c,9 peint CAL
: sl It initislization code here CALL 5 1 nt
: 1f required, place ser PO X1 N, RPICTR
— Rx: LA TFCB+1 =) L) 1Decrement repeat counter
CP1 cot :Check for filename rOP v
Iz OPEN JNz START Unsuccessful read
Lx1 T.FNMEF :Prant error message and reboot 121 A, RETRY
ABORT: MV1 c.9 8IA RPTCTR 1Reset counter for next record
CALL BDOS Lx] H,RECCNT +4
mv] E #aH CCUNT: INR [
CALL XMTBYT 16end EOT character vl A9
— mp B00T :Meturn to CP/MW OMP " 1Over 97
OPEN: X1 T, TFCB JNC BUFCHK
NVl C.19 nvi e
. CALL 8DOS :Delete ©ld file if present £ox "
Lx1 L.TFCE ncv AP
" c,22 cPl e
CALL BLOE tMake new file INZ counT
INR A MVl LIS
—_ LXx1 C,PLFER (Point 8t eIror message IMP COUNT Put 8 in message
Jz ABCRT 1Print and reboot BUFCHA: LHLD DATPTR
START: MVl c, e :5end some NULs first LX3 C,~ (DATBUP +BUFREC*}1 28)
nv1 E, BRH CAD o
NULS: CALL XMTBYT cc FLUSH sFlush bufter if full
ICR c NP REALY 160 look tor next record
Lt BULS FLUSH: LXI C.DATBUF s$tart at dbeginning of buffer
* 1 $10DAT ;Clear serial data port FLUSH1: LBLD DATPTR
- REACY: LDA RPTCTR nov A,D 1Compare to see it empty
<Pl RETRY Cnp M
' vl L, 8lH INZ FLUSH2 thore to go
J2 REALY1 ;First time for this record MOV AL
ISR E :Change request character to 82H onp L
ORA A :Test repeat counter JINZ FLUSHZ
In2 READY) iTry agsin i$ not zero Lxl H, CATBUF
— ENDXMT: LX1 D, EOTHEG sPrint EOT message and exit BRLD DATPTR 1Reset dats pointer
JmpP ABORT RET
REALY1: CALL XMTBYT 1Send prompting byte FLUSH2: PUSH 12
RBADYZ2: MV] €. 11 B MVl C,26
CALL Bros 1Get consocle status . CALL BLCS 18et DMA address
ORA A Lx1 T, YFCB
J2 READY 3 : " :No key pressed nvl Cc,. 21
[324 c.1 CALL BpOS Write record
J— CALL BDOS POP T
CP1 23K ORA A
Jz ENDXMT tTerminate if control-C pressed oz FLUSHI 1Go0d write
READY2: 1b S105TA :Pead serial status port LXI D,OLFER sDask error
N1 JFLAG IMP ABCRT
Jz READY2 iWait for character to be received FLUSH3: LXx1 H, DOBOLH
N BIOCAT ;Get received character CAL D sPoint to mext record
. AN1 IFH ;Mask off bit 7 for ASCl] codes ACHG
—_— CPl 834 IMP FLUSH1 :1Go write it 1f present
Jz CLOSL iFlush buffer and close file CLOSE: CALL FLUSH 1Flush butfer of data
CP1 84k LX] LC,TFCB
J2z ENDXMT :End transmission Myl C,16
CPl eln CALL BRPOS ;Close tile
Jz RCVREC iReceive next record Lx1 L, LOMSG
CP1 [F1] L2 c.9
JNZ REACYZ iIgnore other characters CALL BLOS iPrint EOF message
bt RCVREC: MV1 B, bbH :Byte count for receord IMP BOCT 1 Reboot
A% r.e ;lnitialize checksur RCVBY1: 1N BIOSTA 1Receive byte from serial port
LHLL DATPTR ;Prepare to store data AND 1FLAG
RCVRCl: CALL RCVBYT ;1Get » byte Jz RCVBYT
nov oA :Store in data buffer N S10DAT
18X H RET
AL 1 3
. fove L.A ;Update checksun XMTBYT: ::1 g?jzA ;Transmit byte to serial port
R B 32 XTBYT
INZ RCVRC1 iContinue for 126 bytes nov AE
CALL RCVEYT ;Get checksum ouT S10DAT
cup T RET
PUSH PSw sSave status :
JINZ RCVRC2 :Bac read FNMER: DB ‘Pile name mimeing',ODH,SAH, '§°
$SHLD DATPTR :6ave new record pointer DDFER: DB ‘Disk or directory full',®DH,BAH
— T RCVRC2: LXI D, REQHSG EOFMSG: DB ‘Transter complete',BDH,BAH,87H, 'S
MVI .9 EOTMSG: DB ‘Transfer terminated',SDH,BAH,87H, 'S’
CALL BDOS Print received record message RECMSG: DB ‘Record ¢
LDA RPTCTR RECCNT: DB M 1 thecord § received
CPI RETRY e ‘ receiveds’
Jz RCVRC 3 iFarst try AGAIN: DB * again$’ 1hepeated recoré
LX} L.AGAIN CRLF: DB SDH, 8AH, '§ ' 1CRLF sequence
MVl c.9 , . CATPTR: DW DATBUF sPointer to next storage locstion in buffer
—_— CALL BDCS (Print 'sgain RPTCTR: DB RETRY ;Counter for repeated record
RCVRC3: LX1 L, CRLF DATBUF EQU $ 1Data buffer
7
. ENT .
continued

A Challenge to FORTH Advocates...

Our readers are involved with interfacing and control, and are interested in hearing more about
FORTH. Here is your chance to convince them of the advantages of FORTH.
_ Submit your outline or articles (SASE appreciated) for prompt consideration. Author’s guide
available. Write to:
The Computer Hacker
- P.O. Box 1697, Kalispell, MT 59903-1697

6 The Computer Hacker

THE RS-232-C SERIAL INTERFACE

by Phil Wells—Technical Editor

Introduction
The first part of this article discussed the electrical,
mechanical and functional specifications of the EIA RS-232-C
serial interface standard. Part two will briefly discuss the
"standard configurations” defined in RS-232-C, then describe
some real-world configurations and present several
‘suggested “hacker” standards.

Standard Configurations
The RS-232-C standard defines 13 “Standard Interfaces,”
called “Interface Type” A through M, with a fourteenth
catagory called Interface Type Z for specials defined by the
manufacturer. I think every “RS-232-C compatible” interface
I've ever seen in microcomputer equipment has been “Type
2,” including those found on typical low-cost modems.

The standard interface types are defined in terms of which
interchange circuits are implemented. All standard
configurations include a number of circuits required for that
type, plus possibly some circuits required for switched
service, some required for synchronous service, and some
optional circuits.

Keep in mind that the standard defines a serial interface
between a computer or terminal (Data Terminal
Equipment—DTE) and a MODEM or Data Set (Data
Communications Equipment—DCE). RS-232-C was not
‘intended to define an interface between a computer and
printer, or directly between two computers.

Some often-misused terms apply to the interface type
descriptions:

Simplex: One-way-only transmission. Not reversible.

Half Duplex: Two-way transmission, but only one way at a
time.

Full-Duplex: Two-way simultaneous transmission. Often
mistaken for “"Echo” or “Echoplex”. An echo is when the
characters you type on your keyboard are not immediately
displayed on your screen; instead they are sent to the remote
computer which echoes or returns them to your terminal
which then displays them. This is a simple but very good
means of error checking for character-at-a-time transmissions.
If your terminal sends your typed characters directly to
your screen and the remote system is echoing, you will
see a double of every character you type. If your terminal
software requires a remote echo but the remote computer is
not set up to provide an echo, you will see nothing on your
screen when you type; in this case your modem may provide a
local echo if you switch it to Half Duplex.

Switched Service: Additional control circuits are required
if the link includes switched communication circuits.
Generally, this means that if you have a dedicated (non-

Part Two

switched) set of wires connecting the two Data Sets, you do
not need complete handshaking between the DTE and DCE.
However, if you are connected to the PSTN (Public Switched
Telephone Network) or to some other arrangement where the
data sets might not always be connected, you are required to
include the additional control interchange circuits.

The simplest standard type requires four wires (figure 1):
Signal Ground, Transmitted Data, Clear To Send, and Data
Set Ready. Data Terminal Ready and Ring Indicator are
required for switched service. This configuration, Type A, is a
transmit-only Simplex (meaning one-way only) type interface.

DTE DCE
{terminal) (modem)
SIGGND 7 7 SIGGND
TxD 2 > 2 TxD
€18 5 - 5 CTs
DSR 6 < 6 DSR
Figure 1: Standard interface type A. Simplex transmit-only.

The handshaking here is strictly one-way. Before
transmitting, the DTE must check for an “on” (high) level on
the CTS and DSR lines. DSR “on” means the DCE is
connected to a communication channel, is not in test, talk or
dial modes, and has completed any answer tone and timing
functions. CTS “on” means the data set (DCE) is ready to

* transmit data to the communication channel.

Interface type B (figure 2) is the same as type A with the
addition of the Request to Send line, by which the DTE can
tell the DCE that it wants to transmit. This allows the DCE to
disconnect from the channel between transmissions. Ring
Indicator is required for switched service.

DTE DCE
SIGGND 7 7 SIGGND
TxD 2 > 2 TxD
RTS 4 - 4 RTS
C1s 5 - 5 CTS
DSR 6 < 6 DSR

Figure 2: intertace type B. includes RTS handshake iine

The other four-wire interface is Type C, a Simplex receive-
only interface using Signal Ground, Received Data, Data Set
Ready, and Received Line Signal Detector (Data Carrier

Detector). See figure 3. There is no handshaking involved
here, except that if either DSR or DCD is false, the DTE
knows the DCE will not transmit data.

Interface types A-E define primary channel only
interfaces; the rest include a secondary channel.

DTE DCE
(terminal) {modem)
SIGGND 7 7 SIGGND
RxD 3 < 3 RxD
DSR 6 < 6 DSR
D0CD 8 <- 8 DCD

Figure 3. Standard interface type C. Simplex receive-only

The simplest full-duplex (two-way simultaneously)
configuration is interface type E (figure 4). This requires six
wires: Signal Ground, Transmitted Data, Received Data, Clear to
Send, Data Set Ready, and Received Line Signal Detector.

DTE DCE
SIGGND 7 7 SIGGND
TxD 2 > 2 TxD
RxD 3 € 3 RxD
CTS 5 — 5 CT1S
DSR 6 ~: 6 DSR
DCD 8 < 8 DCD
Figure 4: Standard interface type £ Full duplex

The remaining standard configurations are much more
complex than needed for most simple tasks. In the real world
of low-cost microcomputer equipment we seldom see any of
these “standard” types.

The Real (Micro) World.

The remaining discussion concerns communication
between a computer and printer or between two computers,
etc.; not between a computer and a modem.

The purpose of the control lines is to ensure that nobody tries
to send data unless someone is ready to receive. if the control lines
are not used, things go all right until the receiving device's
input buffer overflows. Figure 5 shows a very common three-
wire interface between a computer and a printer. Note that
the leads between pins 2 and 3 “cross over” since both the
computer and printer are set up internally as DTE. THis works
if the printer can print faster than the computer sends data.
For example, a Tally 1805 printer printing at 200 characters
per second can stay ahead of a computer sending at 1200
BAUD (about 120 characters per second). But if an 80-character
per second printer (or a higher BAUD rate) is used, large chunks
of text will not be printed; when the printer’s input buffer
overflows, data is simply lost. Some printers will sound a warning
buzzer, turn on an indicator light and stop printing when an
input buffer overflow occurs.

The Computer Hacker T

Computer Printer
(DTE) (DTE}
SigGnd 7 7 Sig Gng
XD 2 > 3 RXD
RXD 3 < 2 XD

Figure 5: Simple 3-wire printer cable, where the camputer 15 DTE.

Notice in Table 1 there are two circuits for the DTE
(printer) to send control signals to the DCE: RTS and DTR.
The Request to Send line, when high, tells the DCE that
the DTE wants to send data; the DCE usually responds with a

Pin RS-232-C CC!TT Mneumonic Description
1 AA 101 GND Protective Ground
2 BA 103 TxD Transmitted Data
3 BB - 104 RxD Received Data
4 CA 105 RTS Request to Send
5 cB 106 CT1S Clear to Send
6 cC 107 DSR Data Set Ready
7 AB 102 GND Signal Ground
8 CF 109 DCD Revd Line Signal Det.
19 SCA 120 SRTS Secondary RTS
20 CcD 108.2 DTR Data Terminal Ready
22 Ct 125 RI Ring Indicator
Table 1

Clear to Send. When the DTE is ready to receive data (printer's
buffer is empty, paper and ribbon are 0.K.) it raises the Data
Terminal Ready line high. The simplest and most common way
to add a hardware handshake line to the three wire interface
shown in figure 5 is to add a DTR/DSR line, as in figure 6.

Notice also that the DCE uses five control lines to signal
conditions to the DTE (primary channel only). These are Clear
to Send, Data Set Ready, Data Carrier Detect, Signal Quality
Detector, and Ring Indicator. The last three only make sense
in the context of a modem, but you'll find that many RS-232-C
DTE ports will not send unless CTS, DSR and DCD are all
high (which is actually what the standard says).

Given these sets of control lines, we find some common config-
urations which are different designer’s attempts to find a reasonably
cost-effective simplification of the formal standard.

We find that the Data Terminal Ready/Data Set Ready and

the Request To Send/Clear To Send pairs are the most often
implemented lines, with Data Carrier Detect appearing less

Computer Printer
(0Te) (DTE)
SIGGND 7 7 SIGGND
TxD 2 > 3 RxD
RxD 3 < 2 TxD
DSR 6 < 20 DTR

Figure 6: Handshake line added to 3-wire cable

& The Computer Hael:o

frequently. The remaining lines are very rare on low-cost (and
some not-so-low cost) equipment.

When the DTR/DSR pair is used, the procedure is for a
DTE to set DTR high when it is prepared to listen, and to
check that DSR (from the DCE) is high before talking.

When the RTS/CTS pair is used, the procedure is for a
DTE to set RTS high when it wants to send and to make sure

-the DCE has responded with CTS high before sending.

The Data Carrier Detect (Data Carrier Detected) control
line often causes complications when a DTE computer is connect-
ed to a DTE printer, since there is no “complimentary” line
as there is with the DTR/DSR and RTS/CTS pairs. Comput-
er or terminal serial ports often include a DCD input because
most MODEMs use a DCD output to signal that they are
receiving a carrier — essential to communication between
MODEMs. Again, when you want to connect two computers,
both DTE, using a "MODEM eliminator” or “null MODEM"
cable as shown in figure 6. '

Several printers use the Secondary Request to Send
(SCA —also called Reverse Channel Request to Send) line to
signal the host computer that the printer wants to transmit a
message — usually status or an error message —back to the
computer. Although SCA is officially pin 19, at least one
device calls pin 11 SCA (pin 11 is officially unassigned).

NOTATION INTERCHANGE VOLTAGE
Binary State -310-15 +31t0 +15
1 0
Signal Condition Mark Space
Contro! Function Off On

Table 2

Some Real Examples

Let’s start with an example of what passes for a
“complete” set of leads in the micro-world. Figure 7 shows the
signal leads implemented in the IBM Asynchronous
Communications Adapter for the IBM PC and XT models.
This is about as complete as you are likely to find in personal
computers. Machines designed for use in master-slave multi-
station systems will have more control Jeads, but that is a
different world. This is an "“RS-232-C-like” interface
permanently configured as Data Terminal Equipment.
Connecting this to a Hayes SmartModem 300 is simplicity
itself; a straight-thru cable works fine — but watch out! IBM
put a current loop interface on pins 9, 11, 18 and 25 of its DB-
25P connector. You need to be sure the device you're
connecting to doesn't use these pins if you use a 25-wire cable.
1 just used a 9-wire cable.

Note that IBM is one of the few to actually use a male
connector on the DTE, as specified by RS-232-C. Now, if only
they hadn't stuck on that current loop, and if only they had
used a Centronics-style connector on their parallel printer
port instead of a DB-258S.

It is not possible to know exactly how the control lines on
this port behave just by examining the documentation
accompanying the adapter card, since this card is highly
software-controlled. To know which lines are used for

“handshaking”, which lines generate interrupts, and which
lines are ignored, you need to examine both the hardware and
the software. Since you rarely have access to both (on both
equipments, remember), there can be a lot of cut-and-try in
the cabling.

DB25P

Output —_— 2 Transmitted Data
Inpyt ————————3 3 Received Data
Output —ﬁ 4 Reguest to Send
inp{ =——————3 5 Clearto Send
fnpit, ————> 6 Data Set Ready

-3 7 Signal Ground
Input ————> 8 Carrier Detect

Outpt —————> 20 Data Terminal Ready
Inpyt{ ——————= 22 Ring Indicator

Figure 7: IBM PC and XT Asynchronous Communications Adapter —
*RS-232-C-like' interface

Figure 8 shows the cable recommended by Apple to
connect a Qume Sprint 5 or DEC LA120 printer to an Apple
1IT computer. This illustrates several common problems. The
Apple III's built-in serial port is hard-wired as DTE; so is the
printer. The “MODEM eliminator” or “null MODEM" cable
crosses some leads so that each device appears to the other as
a DCE. Note that DTR and DSR are paired, but crossed over.
Also note that the DCD inputs are driven by RTS, and that
each device's CTS input is driven by its own RTS output.

Apple Wl Qume Sprint 5. DEC LA120
ChassisGnd | ¢———————a= 1 Chassis Gnd
Signal Gnd 7 &—————e 7 Signal Gnd
Trans. Data 2 &——p»——e 3 RcvdData
Revd Data 3 &——<e%——e 2 Trans. Data
RTS 4 eg DCD
CTS 5 m g 5 (IS
DCD 8 4 RTS
DSR 6 o—e———e2) DTR
DTR 20 ¢—p——eo 6 DSR

Figure 8: "Modem eliminator cable between Appie I and Qume Sprint

5. where both devices are DTE.

Figure 9 shows Apple's recommended cable for connecting
an Apple III to the IDS 440, 445, 460 and 560 line of printers.
These printers do not provide software handshaking. Their
serial interfaces are receive-only. They are also unusual in

Apple HI 1DS 440,445,460 560

ChassisGnd 1 @——eseer——g Not Used
Trans. Data 2 e=—p——e3 Rcvd Data

DSR 6:3—4—020 DTR
DCD 8

Signal Gnd 7 @&—————e7 Signal Gnd

Figure 9: Cable between the Apple [!l's built-in serial interface and iDS
printers. Data goes one way only. so the handshake is one-way only. The
IDS DB-25P includes a paraliel interface

that the circuit-board mounted connector is a male DB-25, and
contains a parallel interface as well as the “RS-232-C” pins.
These printers signal an input buffer-full condition with the
Data Terminal Ready line; this is the most commonly used
line for this purpose.

Figure 10 shows an Apple III to Okidata 82A printer
connection. The Okidata printer manual calls pin 11 “SCA", or
“BUFFER BUSY/FULL". This pin is offically unassigned in
the RS-232-C standard, which calls pin 19 SCA or “Secondary
Request to Send”. The excellent Mannesmann-Tally 1805
printer also provides a READY/BUSY signal on pin 11, but
covers the spec by providing the same signal on pin 19. Notice
that the Okidata printer is using its own DTR output to drive
its DSR input. This satisfies the printer’s requirement for an
external pull-up on its DSR line.

Apple 11| Okidata B2A

FrameGnd 1 @e———v 9 1 Frame Gnd
TXData 2 ¢&——>»———o 3 RXData
Signal Gnd 7 @——————u=® 7 Signal Gnd
DSR 6 e~————e————e11 Butfer Busy/Full
6 DSR
20 DTR

Figure 10: Both ends are DTE Note use of pin 11 (unassigned by the
standard) as Bufter Busy/Fuli signal from printer.

Figure 11 shows Okidata’s suggested connecting cable
between an 82A printer and a Radio Shack Mode! II's built-in
serial port. Notice that the printer's busy signal (11) is
connected to the computer’s CTS (5) input, with the DTR/DSR
pair crossed over. Compare this with figure 9.

Radio Shack Model Il Okidata 82A

Frame Gnd 1 ¢————~® {1 Frame Gnd
TX Data 20——>——e 3 RXData
CTS 50—<———e 11 Bufter Busy/Full
Signat Gng 7 &—————e 7 SignalGnd
DSR 6 —<—v—e 20 DTR
DTR 20 &———>»——o 6 DSR

Figure 11: Two-way handshake for one-way data? Not really. the printer's

DSR requires external pull-up

Figure 12 is from an Apple Serial Interface card manual,
purporting to show how to connect this card to a printer.
Notice that the printer’s control outputs are fed back to its
inputs. This is because the Apple serial card contains no
driver circuitry (or receivers, either). No handshaking is going
on here; the jumpers are needed to satisfy the printer's
control input requirements. If the printer’s input buffer fills,
data will be lost, so the BAUD rate must be set low enough
that the printer can stay ahead of the computer. Apple has
replaced this older card with the Super Serial Card, probably
the best example of a universal (in terms of flexibility) serial
interface card I've ever seen. Far superior to the Apple III's
built-in serial port.

The Computer Hacker 9

Apple 1l Serial Card Printer
Frame Gnd { ¢————e 1 FrameGnd
Trans. Data ? ¢——tp——e 3 RcvdData
Revd Data 3 em——a———@ 2 Trans Data
4 ¢~—»——o 4 CTS
5 ¢—e———=e 5 RTS
6 ——>r——e 6 DSR
Signal Gnd[7 &——— 7 Signal Gnd
§ &——>»——o 8 DCD

Lpe—<——e2 DR

Figure 12: Real-world nearly useiess interface. Notice the control lines
on the Apple Serial Intertace Card are simply jumped together There 1S
no handshaking capability. If the printer’s input butfer fills. data will be
lost. The BAUD rate must be set so siow that the printer can always
stay ahead

Figure 13 is from the NEC 7700 series Spinwriter printers.
It illustrates the implementation of a complete DTE RS-232-C
interface designed to connect to a modem with additional
printer control functions on the two test lines and three
unassigned lines. The five additional functions are provided
for use in direct-connect (no modem) situations to provide

‘more complete control of the printer. A “standard” computer

serial port would not be able to take advantage of these lines,
but they would be very useful in an OEM (custom) design.

Transmitted Data —»—o 2 XD BA
Received Data «——e 3 RXD BB
Request to Send —»—eo 4 RTS CA
Clear To Send «—=e 5 C1S CcB8
Data Set Ready «——o 6 OSR cC
Signal Gnd ———e 7 SignalGnd AB

Carrier Detect «——eo 8 DCD CF
*Reset «——e 11
*Keyboard Inhibit «——e 18

Reverse Channe! ~——»—ae 19 SCA
Data Terminal Ready —»——e 20 DTR
*Print Inhibit «—e@ 21
*Buzzer «———=o 22 Ct

*Paper out/ Ribbon eng ~—»—=e 23
*Interrupt/ Break —s»—e 25

Figure 13: NEC 7700 series Spinwriter “Only used with keyboard version

Figure 14, the Qume Sprint 5 serial port, illustrates what 1
think is an excellent idea. This looks like a fairly typical RS-
232-C port, but it has a usefu} twist. A switch just behind the
front panel of the printer but accessible without removing
screws can be set to MODEM or NO MODEM. In the NO
MODEM position, the CTS and DSR (and presumably DCD)
inputs are ignored and cither the RTS or DTR output line
can be used for "hardware nandasnaking I1n a wirect
connection to a computer. These lines will be turned off
(negative) when the input buffer is within two characters of
being full and will be turned back on only when the input

10 The Computer Hacker

buffer drops to within ten characters of empty. If the printer
is connected to a modem, the switch is set to the MODEM
position and RTS, DTR, CTS, DSR and DCD become standard
RS-232-C control lines.

shown in parentheses. Data is received on pin three; the RS-
232-C line receiver (inverting) meets the termination
requirements. The interface signals that it is busy by putting
a negative voltage on the DTR line.

DTE DB25S
Frame Gnd ——g 1
Trans. Data ——=—< 2 Output: Software Handshake
Rcvd Data ———— 3 Input. Data to Print
Request to Send =——~———< 4 Output
Clear to Send ———= 5 Input: Must be High
Data Set Ready ————< 6 Input: Must be High
Signal Gnd ———< 7
Data Carrier Detect———< 8 input: Must be High

{Rcvd line signal detector)
Data Terminal Ready——< 20 Output. High = Ready.
Low = Busy

Figure 14: Qume Sprint 5 Inputs 5.6 and 8 are ignorec wnen the Sprint 5
1s switched to *"No Modem -

Recommendations for Hacker Projects

We will find three and possibly four serial interface
situations in our construction projects: simplex send-only,
simplex receive-only, full duplex and possibly half-duplex.
Recall that half-duplex means two-way communication, but
only one direction at a time. Full-duplex means two ways at
the same time.

Most serial interfaces today use an integrated circuit
called a UART or USART. This device provides most of the
circuit functions needed to convert a microprocessor's
paralle]l data to serial, to buffer the received and transmitted
data, and to control at least a few of the interface lines
{(USARTS). These devices will be covered in detail in a future
article. For now, be confident that one of these devices, a few
support chips and a little software makes it easy for us to
implement any of the three or four configurations needed.
The limitation is that these chips usually provide at most
three or four of the RS-232-C Control Interchange functions,
so we need to decide which ones to use and keep these to a
minimum.

We need signal ground, transmit data or receive data or
both, and some way for a receiving device to indicate a busy
eady status. For a design where we don't know what will be
on the other end of the cable, we should provide more of the
control lines. We can save effort by using a jumper
arrangement to “configure” the port.

To avoid confusion over lead names, Table 1 gives the RS-
232-C names, the common-use mnemonic names, the CCITT
names, and the descriptive names of the interchange circuits
we will be using. Table 2 should remind you that an ON
condition on a control line is a positive voltage.

A simple receive-only design recommendation is shown in
figure 15a. I'm going to assume we are making Data Terminal
Equipment; if your design is for a DCE, connect the pins

Looks Like DTE(DCE)

|
Reva Data ——@——K 3 R0 Data In
(2) TxD

(RS-232-C Line Recewver MC1488}

|

I

I

I
Busy/Ready {>o K 20 O

|~ (6 Dsk

{

|

t

Ready/Busy -

{RS-232-C Line Driver MC1489A)

—

Logic Gna

Figure 158: Pin numbders i (1 a-e for DCE

Figure 15b is a suggestion for making this receive-only
design more flexible. The jumper blocks can be the dual rows
of pins spaced 0.1 inch apart, available from Radio Shack and
many mail order firms. These are conveniently jumpered with
small, two-pin female blocks, or with wire-wrap wire. These
jumper blocks allow you to configure the hardware as either
DTE or DCE. The dashed lines indicate the “most standard”
connections. Note that you can get away with driving more
than one line (e.g., CTS, DSR and DCD) from one MC1489A,
even though this might not exactly meet the RS-232-C specs.

DTE (OCE;

ST
—_— . !
Reve Data — b———(‘: O——L(3 RxD
N !

O

Data in
(2) TXD

N

!

O——~——+j 20 DTR
O———71 4 RIS
O

51 €T Reagy/Busy

O—— 4 6) DSR
& O————L ® obco

Busy/Ready = ———
y y i

Figure 150" Simpiex receive-only with UTR Ready /Busy Pin numbers in () are for OCE

Figure 16 is a suggestion for a transmit-only interface.
Eliminate the jumpering if you have a dedicated situation;
this arrangement makes it possible to accidentally short
multiple line driver outputs together (e.g., CTS, DSR and
DCD outputs from a DCE). The DTR and SCA ready/busy-
lines are provided in case this port must be configured as
DCE to drive a printer which signals buffer full on pin 20 or
19. Unfortunately, a fair number of printers use the SCA
(Secondary Request to Send) as a “handshake” line.

The full or half duplex (controlled by software) general-

Looks Like DTE (DCE)

Transmitted Data {>C

Request to Send

!
2 XD
T
" 3) RXD 3 Data Qut
|
I

A
O——— 4 RIS

o2 + 20 OTR
O 8 DD
o—I 5 c1s

(6) DSR

o—-L
é__—:(7 Signat Gnd
|

A
d——K s s
o——K ¢ oss
~(< DSH | o————K 8 oo
< 119) sca

O
O—4< (200 OTR
I

$—(>-<2omn

Ready/Busy -

Figure 16: Simplex send-onty Preferred connection = dashed line. 1t would be a good idea to
provide a separate driver ang recewver for the DTR and DSR iines

The Computer Hacker 11

available to you. The most commonly omitted input is the
Ring Indicator, since this is only used with a direct-connect
modem. Figure 18 is a suggested layout for use with USARTs
having only two control inputs and two control outputs.

Given the variety of configurations of both DCE and DTE
with which your general-purpose DTE interface may have to
work, it may be simpler to forget the jumpering and
build custom cables such as those shown earlier in this article.

purpose DTE interface in figure 17 assumes you are using a
USART which provides two output and four input control
signals. These are inexpensive and readily available today.
For most applications, one output and one input control will
work; which ones you select depends on what parts are

™0 O—AH—(2 TXD
—+——<

r 3 RXD

/’_\‘ |
RXD

I
o— |
. l
OTR {>o d—e—t
|

—-1——< 6 DSR
DSR 3 E l
|
I o— |
]

RTS 1 o—e—4 4 RIS

—{—(5 CTS

C1s

20 DTR

N l
RI —C})——bd—-'—(zzm

Figure 17: Full duplex general purpose DTE can be jumpered to a DCE configuration

/
X0 __.I)O—I
4 N

OTR 20 DTR

O-——‘—((6) DSR

>
o Ee L ams
!

() C18

o— <
. 0—«{—({8) DCD
0——

DSR

O (20} DTR
N

()—1—($ CIs

—(F
c1s ___G

|
o——+—< @ n18

Figure 18: Full dupiex general purpese jumperabie as either DTE or (DCE.) for use with USARTs
with only two control inputs

Parts one and two of this series have examined the
RS-232-C standard from the viewpoint of the microcomputer
user. The standard was written long before the invention of
the micro, so it takes a bit of shoe-horning to make it fit our
needs. It is often mistakenly thought that this standard
describes methods of encoding data to be transmitted. Not
s0; several other standards cover the ASCII code, start bits,
stop bits, parity, synchronous and asynchronous techniques
and handshaking protocols.

Part three of this series will describe methods for actually
transmitting information over the TxD and RxD interchange
circuits, and part four will present some of the integrated
circuit chips needed to build a working serial interface.ll

12 The Computer Hacker

BUILD A HARDWARE PRINT SPOOLER

Part One: Background and Design

- by Lance Rose, Technical Editor

Most users of microcomputer systems would probably
agree that printing hard copy is the slowest process occurring
.in their systems. Due to its highly mechanical nature, the
printer simply can’t keep up with the flow of data coming
from electronic circuitry where processes occur in milli or
microseconds. If you're like me, you've probably spent hours
just watching your printer chug through a long program
listing or print an endless series of statements or reports.
With few exceptions, there simply isn’t anything to do except
watch the printer during these long outputs.

Since this isn’t by any means a new or unique problem with
_computer systems, ways have been devised to keep the
printer busy but still allow the user-operater to continue to do
something useful with the computer while the printing
process is going on. This is done by a method known as
“spooling”

There are two general types of spooling used which I will
call “software spooling”and “hardware spooling” . In the
software version, instead of the computer sending each
individual character to the printer, a slow process that occurs
at printer speeds, the entire output to be printed is sent to a
disk file known as the “spool file”. Since writing to even a
floppy disk is much faster than writing to a printer, this
happens quite fast and the CPU is then free to perform some
other task. But wait a minute. How does the output get from
the disk file to the printer? This is done with some special
software built into the operating system. This software
knows when the spool file has something in it that needs to be
sent to the printer. When this condition exists the software
allows interrupts from the printer to occur whenever the
printer is ready to accept a character. When each interrupt

occurs, the interrupt handling routine retrieves one character
from the spool file (actually from a buffer containing perhaps
a sector at a time of the spool file) and sends it out to the
printer. This takes very little time since the printer is already
known to be ready and the CPU doesn’t have to sit around
waiting for this to happen. The result is that the time used for
printing can overlap with useful time for doing another job
with the system.

This method of spooling is widely used on mainframes and
minicomputers where there is usually ample disk space (more
often than not a hard disk or two) and where the operating
systems include the necessary software to handle the
spooling process. There is even a program available for
CP/M® which will perform this process, albeit in a somewhat
simplified manner, called DESPOOL® , available from Digital
Research. Its use in microcomputers has been limited by the
lack of true interrupt-driven operating systems as well as a
lack of disk space in many systems thus denying the user a
place to temporarily store large files to print.

The hardware spooling method is something that has
become popular only in the last year or so in the
microcomputer area. In this method the output is sent to a
separate hardware print spooler which is most often simply a
box containing a chunk of memory and a microprocessor. The
communication to this device is performed at very high serial
data transfer speeds (9600 or 19200 baud). The spooler
performs two simultaneous functions. First, whenever a
character is received from the computer it is input and stored
temporarily in the spooler’s RAM for later printing. Second,
whenever the printer is ready and there is something in the
RAM that should be printed, the spooler outputs this to the

printer. In addition, due to the fact that the memory of the
spooler may be exceeded by the size of the printing job, the
spooler must handshake with the computer and let it know
when to stop sending characters. Similarly the spooler must
be able to handshake in the other direction with the printer to
keep from overflowing the printer’s buffer in the case where
the data transmission rate to the printer exceeds the actual
physical printing speed. Since a number of handshaking
conventions are in existence, the program used to run the
spooler (contained in a ROM) must be able to determine or be
preset to use a particular handshake convention. In the case
of printers using the RS-232 serial interface standard, many
use the DTR line (pin 20} to indicate a printer busy condition.

The main advantage of hardware spooling is that no
changes to the software or operating system are necessary.
As far as the computer is concerned, it is simply sending data
to a very fast printer with a very large storage buffer. All
that needs to be done is to reconfigure the serial port
hardware for a faster baud rate than if it were communicating
with the printer directly. Another advantage is that the
method is not limited to any particular hardware or operating
system. Any computer that has, for example, an RS-232
interface can output to a hardware spooler instead of a
printer. The same would hold true if a Centronics interface
were being used.

Of course there are some minor disadvantages to this
spooling method. The only serious one is that there may be
printing jobs that exceed the spooler memory size. If this
happens then there is no appreciable speedup in printing
since the computer must wait for the spooler to send some of
the text to the printer before filling up its (the spooler’s)
memory again. This may occur a number of times before the
last portion of the data to be printed is finally sent to the
spooler. During the time that the spooler is emptying its
memory to the printer, the computer is still waiting to send
more output to the spooler and is thus prevented from
beginning another task. Of course, since it is simple to provide
a hardware spooler with up to 64K of RAM this should not be
too much of a limiting factor except in the case of enormous
printouts! In fact, in most applications much less than 64K of
RAM can be used with a savings in expense. Most commercial
spoolers on the market today start at 16K versions and go up
to 64K in 16K steps. With a suitable design, a spooler can be
built with as little as 1K or 2K RAM at a much lower cost.

So in fact, the main disadvantage of a hardware spooler,
namely the limited RAM, can actually be an advantage if most
printing jobs are relatively small allowing the construction of
a smaller, less expensive piece of hardware. If it were
absolutely necessary to design a hardware spooler with a
capability of more than 64K, it would be possible to base it on
one of the new 16-bit microprocessors that can address at
least a megabyte of RAM. The cost of the microprocessor
would not be too much more than that of say a Z80, but the
additional cost of RAM would be substantial.

With all this in mind, I will present a design for a hardware
print spooler that should be adequate to handle most printing
jobs and allow simultaneous printing and computer use by the

The Computer Hacker 13

operator. Let me address each major point of the design
separately:

(1) Microprocessor:

Although the program executed by whatever
microprocessor is chesen will be relatively simple, in order to
allow for upgrades the microprocessor should have a capable
architecture. It should also be a low cost device and be in wide
use. The Z80 fulfills these criteria and is widely available in
different versions for as little as $5.

(2) Memory:

Here we have the choice of static vs. dynamic RAM. Each
has its advantages. Dynamic memories are less expensive for
the same storage capability and take up less board space for a
full 64K. They are, however, more sensitive to noise on the
power supply lines, require in most cases 3 supply voltages
and are somewhat less reliable than their static counterparts.
Static memories are easier to design with, more immune to
noise and operate from a single supply. One other factor is
that most inexpensive dynamic RAMs are available in a 16K
or 64K x 1-bit architecture whereas static RAMs are available
in 1-bit, 4-bit and 8-bit widths. The choice I have made here is
the 6116 2K x 8-bit CMOS static RAM chip. Its architecture
allows any size spooler to be built from 2K up to 62K (I'm
allowing 2K for the program ROM). It has a low power
consumption, is quite reliable and is easy to design with. Cost
is somewhat more than dynamic RAM for a full 64K version
but due to the fact that the dynamic RAMs need all the timing
and control circuitry even for a small amount of actual
memory, & spooler with a small or moderate amount of
memory should cost the same or less to build with static RAM
than with dynamic. I have estimated the crossover point at
about 32K bo:h in cost and in board layout space so that is the
size I have chosen to present in this series of articles.

Although the EPROM type is not too important, the 2716
has virtually the same pinout as the 6116 RAM chip so the
chip select logic is simplified if it is used.

(3) Interface:

There are a number of interface standards in use today:
RS-232, Centronics, IEEE-488 to name just a few. I chose the
RS-232 interface to use in this design simply because most of
the letter quality printers I work with use it and I'm more
familiar with it than any other. It may be the most widely
used standard but I'm not aware of any statistics to that
effect. I'm assuming a DTR handshaking protocol here, that
is, pin 20 is used to signal a printer busy condition by going to
a logic low state (approximately -12 volts). This will be used
both by the printer to tell the spooler to stop sending, and by
the spooler to tell the computer likewise. In the last part of
this series of articles I will show how to modify the spooler to
use a Centronics interface or software handshaking
(ETX/ACK or X-on/X-off). That will also allow interface
conversion to occur during the spooling process. For example
a computer with only a parallel Centronics interface could
still send output to an RS-232 printer via a spooler with a

continuedon p. 15

14 The Computer Hacker

A REVIEW OF FLOPPY DISK FORMATS

by M. Mosher

Whenever the subject of software exchange comes up, as it
often does, the question arises of “Why can't I just take my
diskette from system A and put it into a drive on system B
and have it work?” To answer this question a discussion of

" the differences in floppy disk format “standards” is in order.
* What I'll do here is take the characteristics of a floppy disk

one at a time and point out the similarities and differences.

‘ Size

This one is pretty obvious. If you try to put a 5.25-inch
diskette into an 8-inch slot it's going to just flop around in
there (no pun intended). Conversely you just aren't going to fit
an 8-inch diskette into a 5.25-inch slot at all unless you use a
pair of scissors and I'm not even going to begin to address

~ that issue. To add to the variation, Sony has recently

introduced a 3-inch “microfloppy” drive which should be
entering production very soon.

Number of Tracks

Most manufacturers have pretty much standardized on this
parameter though there are some variations. Full-size (8-inch)
floppies almost always have 77 tracks to the diskette,
minifloppies (5.25-inch) have mostly had 35 tracks in the past

-but many are showing up now with 40 tracks. Of course a

floppy that has 40 tracks of data on it can't be read on a
system whose hardware can only read 35 tracks from the
diskette. Yet another variation are floppy drives whose
tracks are packed twice as closely on the diskette allowing 80
tracks on a minifloppy.

Number of Sides

Early floppies used only one side of the diskette to record
data on, leaving the second side blank. Many hobbyists saw
this as a waste and took to punching another hole and write-
protect notch in the diskette jacket to be able to use the
second side of the diskette as well (most diskettes have a
magnetic coating on the second side as well as the first). To
get at the second side, however, you have to remove the
diskette from the drive, turn it over and re-insert it into the
slot. More recent drives have a second head to read the
second side, making it unnecessary to modify the diskette
itself or turn it over to get at the data on the second side.
Something to watch out for here — a double-sided diskette
made on a true double-sided drive won't work on a single-
sided drive by just turning the diskette over and trying to
read the second side. The sense of rotation is opposite in each
case. Think about it for a while.

Sectoring

This takes a little explanation. Within each track the data
is subdivided into “sectors”, a sector being simply a fraction
of the total track. One obvious variable is simply the number
of sectors a track is divided into. Various disk formats have
anywhere from 8 to 32 sectors per track. Since the sectors
may be different sizes (anywhere from 128 to 1024 bytes per
sector) this introduces incompatibilities.

A second aspect of this is in the form the sectoring may
take — either “hard” or “soft.” In hard sectoring the
beginning of each sector on the diskette is marked by a small
hole punched in the diskette near the large center hole. As
the disk rotates, these small holes pass under a light source
with a photodetector on the opposite side of the diskette. A
short electrical pulse is generated by the photodetector as
each hole exposes the light source. This indicates to the
computer that the beginning of a sector is present. One
additional hole called the index hole is punched midway
between two of the sectors. A pulse coming halfway between
two sectors tells the computer that the next sector pulse will
be the first one on the track.

In soft sectoring quite a different method is used. Only a
single hole is punched in the diskette — the index hole. It
tells the disk controller that the track begins immediately.
Here, however the beginning of each sector and the
boundaries between them are actually written onto the track
as information. The computer finds a sector by reading the
track continuously until it comes to a “header™(a short piece of
coded information) that indicates the start of the desired
sector. It can then begin to read the actual data contained in
that sector.

Both types of sectoring have their advantages and
disadvantages. In hard sectoring the diskettes can usually be
taken and used immediately without the need for preparing or
“formatting” them. Hard sectoring also is usually a little
simpler than soft sectoring since all the circuitry has to do is
detect a pulse rather than decode header information. This is
really a minor difference though. A more important
advantage is that without the need for sector headers, more
space on the track can be allocated to storing actual data.

Although soft sectoring has the additional overhead of
sector headers with the need to format a diskette before

using it (formatting simply writes the sector headers onto
each track), it does have some advantages. By detecting
sectors by reading the header which contains, among other
things, the track number and sector number, the computer
can verify that it is on the correct track and reading the correct
sector. This usually isn't done with hard sectoring and

. encoding).

provides an additional protection against errors. Also, since
the sector boundaries (and thus sizes) are recorded in the
same way as data on the track, the boundaries can be almost
anywhere, thus allowing a variety of sector sizes and number
of sectors per track. This flexibility can sometimes be useful.

Density -

This has to do with the amount of data that can be packed
onto a given space on the diskette. Originally all floppies used
single-density encoding methods (also known as FM
In this the data pulses and clock pulses are
combined and both recorded onto the diskette surface. When
read back, the clock and data are separated by appropriate
circuity and the latter passed on to the CPU. To keep up
nwith the demand for larger databases and such, other
encbding methods have been developed to pack more
information into the same space on the diskette. In double-
density encoding (known also by the term MFM), the data is
written onto the diskette without any clock pulses. This in
effect allows each pulse on the track to be a data bit rather
than alternating data with clock. The only problem here is
that when the data is read back in, the clock pulses must be

The Computer Hucker 15

resurrected from the data. How this is done is beyond the
scope of this article but suffice it to say it can be done, but
with some difficulty relative to single-density encoding. This
makes the timing requirements and disk rotational stability
more eritical in double density, but with development it has
become quite reliable and many disk systems sold today are
capable of recording in both single and double density.

In Summary

I think you can see by now thaf there are a lot of variables
involved in diskette formats. If we take the three possible
sizes, three different values of tracks-per-diskette,
two possibilities for number of sides, two values for type of
sectoring, perhaps five different values for number of sectors
per track and two different densities, we have something like
3x3x2x2x5x2=360 different formats that are possible.
Although in practice the situation isn't this bad there are at
present maybe a dozen different diskette formats in popular
use. So the next time you wonder why your Apple diskette
won't work in a Radio Shack or S-100 machine, just realize
that it only has one chance in 360 of doing so; something like
Y/30f one percent. []

"Build a Print Spooler,” continued from p. 13

Centronics input and an RS-232 output. Other conversions

. would be possible, too.

4) Serial Communications IC:

Having chosen the Z80 for a microprocessor, there are
several choices for a serial I/O chip. One is the Z80 SIO.
However, it is an expensive chip and is so flexible as to be
confusing to the average user. The Intel 8251 is cheaper and
not as complicated but still requires some understanding. The

~ variety of UARTSs available are the least expensive, require

no software initialization and are adequate for the task here.
They are readily available from a number of sources for $4
and up. Needless to say, the UART was chosen here.

(5) Support Circuitry:

The choices here may not be so clear-cut. Since I live in an
area where it’s not possible to walk or drive down to the
corner chip shop for something I may need, I tend to design
most circuits around common, easily available chips. Most
chips used in this circuit are available, if absolutely necessary,
at Radio Shack. In addition I believe simplicity to be a virtue
and try to design accordingly.

I think you can see some of the reasons for my design here.
Not all would necessarily agree with everything I've said but
I can say that this design approach leads to a circuit that is

fairly easy to build and troubleshoot and works well when
complete.

In Part 2 I will present the hardware construction layout
and schematics for the spooler along with some suggestions
for a power supply and case to put it in. Also I'll give a
flowchart and listing for the spooler’s operating program
along with some additional comments on the software. a

Correction

The September Computer Hacker
contained an error in the RS-232-C article.
On page 4, in the section titled “Hacker's
View of the Mechanical Requirements,”
the first requirement reads *“The DTE
must provide a female connector..” The
sentence should read “The DTE must
provide a male connector...”

We regret any inconvenience this error
may have caused. Please don't hesitate to
write if you find something which you
believe to be an error.

16 I'he Computer Hacker

SENDING MORSE CODE WITH AN APPLE ||

by Marvin L. De Jong

Introductien

Using a computer to send Morse code is a clean, well-defined
programming problem, and it has always been one of my
favorite real-time control applications. Receiving Morse code
Wwith the aid of a computer is a more difficult task, especially if
any serious attempt is made to approach the capability of a

"human being using a modern communications receiver. The
latter problem is not associated with the computer or the
program, but rather with the analog circuitry that converts
the tones into logic levels. In this article we will confine
ourselves to the problem of sending Morse code, a task for
which a machine can easily outperform a human being.

Program Features

1. Morse code can be sent from the Apple keyboard at
rates, selected from the keyboard, from 8 to 100 wpm (words
per minute.)

2. A ring buffer allows the typist to type up to 225
characters ahead of the one being sent.

3. Three messages, totalling 256 characters, may be stored
‘and sent with commands from the keyboard. Characters from
the keyboard may be inserted in these messages as they are
being sent, a desirable feature for contest operation.

4. The computer can also be operated as an electronic keyer
that operates at the speed entered on the keyboard.

5. In its keyer mode the program reads what is sent and
prints it on the video monitor. You can use this feature to
monitor what you are sending, provided you send it correctly.

6. The Apple) speaker provides a sidetone, making the
program useful for code practice.

7. The game i/o connector is used to interface the computer
to the transmitter with simple components.

Hardware

The hardware required to use the program consists of a
simple interface between the game i/o connector and the
transmitter, a 1500 Hz source of interrupts, and a simple
keyer interface if you wish to use the program in the keyer
mode. The circuit to key the transmitter is shown in figure 1.
The optional keyer circuitry is shown in Figure 2. As far as a
source of interrupts is concerned, we used a John Bell
Engineering 6522 board in slot seven.

The interrupts occur at a 1500 Hz rate. For those who are
inclined to build circuits, a less expensive source of interrupts
is a 555 timer, multivibrating at 1500 Hz, and connected to a
74LS121 one-shot wired to produce a 10 microsecond logic-
zero pulse on the IRQ line. The IRQ line can be accessed on a
peripheral card connector. The program initializes the John
Bell 6522 card for proper operation, but the program is
transparent to the source of interrupts. It is important that

they occur at a 1500 Hz rate. The program assumes the John
Bell card is in slot seven, the 6522 labelled Ul is used, and a
jumper is added to the card to connect the IRQ on the 6522 to
the IRQ line in the Apple. Holes on the card are provided for
this jumper.

Magnecratt 107 DIP Relay tor sqpuivalamt)

vy g 5 1 \ c-nu:D

Figure 1
A circuit to key a transmitter from the game i/o connector.

Program Operation

Load all the programs in the listings. Type in RUN and
press the RETURN key. The computer responds by
requesting the code speed. Enter this and then press return.
The screen will go blank and you can start typing. Type some
letters, numbers, and punctuation marks. You should hear
Morse code coming from the speaker. If there is a problem,
check your disassembled version of the program against the
listings. Also make sure that the MORSE TABLE and the
ASCII TABLE are loaded. Asssuming that everything is
running correctly, you can practice sending at the keyboard.
The reverse arrow key allows you to delete characters
entered in the buffer provided they have not yet been sent.
Try typing ahead, then delete some characters with the
reverse arrow key.

To change code speeds simply press the ESC key and the
program will return to the BASIC routine to allow you to
enter a new speed.

To load messages press CTRL L. Type in message A. For
example, message A might be CQ CQ CQ DE KOEI KOEI K.
When message A is complete type RETURN. Now enter
message B followed by RETURN, and then enter message C
followed by RETURN. Now you are back in the code sending
mode.

To send message A,B, OR C, simply type CTRL A, CTRL B,
or CTRL C. ANy message may be interrupted from the
keyboard, but you must be alert. It will help to insert an extra
space or two in the message where you with to interrupt it.

To use the program as a keyer you must construct the

The Computer Heekor 17

circuit in Figure 2 and make the connections to the game i/o
connector. Try this and see how you like the keyer operation. e oz Eou see
— Note that what you send is what you see. The program AL ol
. 19 SNDABC EQU s1094
converts your characters from Morse to alphanumeric 2 Comons Eau siesa
21 1100
1 i 18@: 78 22 maIN sE1 PREVENT INTERRUPTS
CharaCters on the Vldeo monltor' :ll&'l: 8D %9 Ce 23 STA eCP59 :'HRN RELAY OFF
1104; D8 24 cLp
11PA5: A9 FF 25 LDA @SFF
- . 1107: 8D @4 C7 26 STA TiLL
+5 (pin 1) 1104 A9 82 27 LDA weo>
11eC: 80 &5 C7 28 STA TILH
. 1106 : AT 49 29 LDA #sa@
1111: 8D 2P C7 hJ STA ACR
. 1114: A9 C@ 31 LDA esCe .
1116 8D M C7 32 STA IER SENABLE INTERKRUPTS EROM T1
11319: 20 58 FC 33 JSR HOME SCLEAR SCREEN
- 111C: A9 &0 34 LDR esoe $SET UP THE INTERRUPT VECTOK
111E: 8D FE @3 35 STA S83FE
11212 A% 12 36 LDA #8107
31123 BD FF @83 37 STA S@3Ff
DOT 1126 A% 99 38 LDA &P $CLEAK VARIDUS REGISTERS
4 1128: 85 Eb 3% . STA FIFD
i 24: B85 ED aQ STA PNTR
— ' PBﬁ (pm 2) :lll’C: 85 69 a1 STA CNTR2
112€: 85 CE L g STA CONTR}
1130: 85 @7 43 STA FLAG
1132 85 e8 44 STA SPCFLG
1134;: A% 91 a5 Lba e8]
13136 65 EF 4 STA CHAR
1 a9 7 DA
DASH 113a: @5 €€ 48 o v
IC: 85 E 49 574 FIFOe
- PB! (pin 3) ::xg a0 eg se LDy eee !
1i4d: 58 51 cLI SALLOW INTERRUPTS
1145 AS EB 52 BRE DA FIFD
GND (pin 8) 1543: CS €D 53 o PNTR
1145: F@ 8o 54 BEQ DOWN
1147: 20 @9 18 55 JSR SNDKEY
t14a: BB s6 cLv
- 114B: 50 F4 s7 BVC BKS
. 114D: 2a DOWN CHAK -
Flgul'e 2 114F: 1@ :&7: :g .;’: ;l(.x:gx :c';?:ln«x ACTER
. 1151: A% 7F &0 DA @87F
Circuit diagram of the keyer. Pin numbers refer to the N e o oo Flac SELEAR CONTROL FLas
H 2 A FLAG
x N 3 1157: AD #@ Ci
Apple) game ilo connector. My circuit worked very well s 8 % o e LDa scese IREAD XEYBORKD AGATN
e . : 115D: C9 96 5
without the more or less standard pull-up resistors (2.2 kohm.) 15 b @5 s e b iEscare
1161: 78 &7 SE} IPREVENTS INTERRUPTS WHILE
IN BASIC
1162: &8 b8 RTS
llb}i C? Ba &9 BR& Ok asBa SCONTROL A.B,0k C™
The listings have extensive comments, enough to make the s pees e BCs BRS
- . . 1169: 2@ 94 18 72
program understandable. During each interrupt the keyboard 116c BB 7 Goy CTURRC. . SEND The messace
116D: 5@ D2 74 BvC BRE8
1 1 116F: €9 8C 7
is tested to see if a character has been entered. If a dot or 11eF: €9 e 75 e cre wsec
dash is being sent the speaker is togged to produce a 750 Hz S 44 SEl o [PREVENT INTERRLPTS waice
. 1177: S8 79 3
— tone. Two counters are incremented or decremented to keep 1178: B8) av ALLOWS INTERRUBTS AGAIN
1179: 5@ Cé a1 BACK BVC BK8
track of the number of 1500 Hz pulses that have occured. The 17s: A3 81 B2 Downi Lda eses SCHECK DOT FLAG
pushbutton inputs, PB0 and PB1, are tested to see if the keyer HASEA SO Yer post oA bOT anD A seact
. 1184: 8& EF
is being used. Various bits in a register called FLAG are set Hae: Co @7 8y bec Fiae ToLEaR Tre Dor iag oSN
- leared dependi hich t r: key down, PBI at Hoa: a e B~ LDa e SCLEAK THE COUNTER
: ‘ 1
or cleared depending on which events occu y] +PBla e & 6 &7 sTA ONT ret srece rim
: 11 H [.1:] 1 T]
lOglC zero, speaker to be t‘Oggled’ etc. This memory ocation is 1198: DO AF $2 STEP Sn: xﬂr $FORCE A JUWP BACK TO BRS
. . 1192: A% @2 93 PAST
then analyzed by the main program so that it can take the thea: 24 87 ea T b1t reas FOHECK THE DaSK FLAG
. . B 1196: F8 oF 95 BEQ OUTPUT
- 1 1 1198: 26 4F 18 9 ;
appropriate action. Once the flow of the action is appreciated, 1198: 28 4F 10 %6 Jse pasn SN A Das
the comments, labels and subroutine names should make the j1e: 2307 38 D FLAG
. 11A1: @6 EF 106 Al CHAK
operation understandable. 11a%i £ EF ey e Crian
11AS: D8 E1 102 BN [V 2 3JUME UP, THEN BACK T BRE
— 11A87: AS @8 183 OUTPUT LDA SPCFLG $CHECE On SFACES
. e . . 11A5: F@ %6 184 BEQ BRS INDT TIME FOR A CHARACTER
Listing 1. The BASIC Driver Routine. 1188: RS CE 105 Lba ENTHI
11AD: C5 #s 186 Ccr TIMOUT $HAS ONE DOT YIME FASSED™
i1R7: 99 9@ 187 BCC BRS $NO
JLIST 11b)1: AS 88 196 LDA SPCFLG IYES, OUTPUT CHARACTER O SFACE ™
11B3: C9 @1 189 [, BN T3}
— S REM MORSE DRIVER ROUTINE 11B5: D@ o 118 BNE WDSF
1@ POrE 18,76: PO-E 11,80: POrE 12,17 11B7: Eb4 BB 11 INC SPCFLG
20 PRINT AT WHAT SPEED WOULD YOU LIKE TO SEND™" 11B9: As EF 112 LDX CHAR $GET CHARACTER
3P PRINT "TYPE A NUMBEF BETWEEN 8 AND 18&, THEN PRESS RETURN, " 118B: BD B8 #€ 113 LDA ASCII, X ILOOK UF ASCI! REPRESENTATION
48 INPUT SPEED 11BE: #% B2 114 ORA #%6¢ 1SET Bl1T SEVEN
3¢ DOT = 18®#¢ / SPEED 11C®: 20 F& FD 115 JSR COUY $OUTPUT 1T
6® POKE 6,007 11C3: A% o8 116 LDA osp
78 ¥ = USF (@) 11C5: 85 CE 117 STA CNTR1
— 8e ©GOTC 20 11C7: A% #1 118 HERE LDA o8
9¢ END 11C9: 85 EF 119 STA CHAR SRESET CHARACTER REGISTER
11CB: DO C3 128 BNE STEF
11CD: AS ®8 121 wDSP LDA SPCFLG ICHECK SPACE FLAG AGAIN
11CF: C9 o4 122 CrF #e4a
11D1: F# #8 123 BEQ OUTPUT2
isti 1D3: a9 o0 2
Listing 2. The MAIN PROGRAM. jps: as ee ize Loa wee ICLEAR CNTRI
—_— 11D7: E&6 #8 126 INC SPCFLG
ASM 11D9: D& BS 127 BNE STEF
1 TILL EOU sC704 11DE: A9 Ae 128 OUTPUTZ LDA @sAe SOUTPUT A SPACE
2 TiLH EQUu eC78% 11DD: 2@ F6 FD 129 JSR COUT
b1 ACK EQU $C7@F 11EP: A% o0 136 LDA ese ICLEAR SPACE FLAG
4 1E# EQU $C78¢ 11E2: B85 8 13 STA SPCFLE
5 SNDrE Y EOU 81009 11EA: F8 E1 132 BEQ HERE $CLOSE THE LOOF
& FIFO EQUu SEB 133 @
—_— 7 PNTH EQU SED
e FLAG EQu 887
L SPCFLG EQU $08 ~~End assembly--
1T TImOUT EQU sPo
11 CouT EQU SFDF & 238 bytes
12 ASCI1 EQU e@EBS
- 13 CHAK EQU SEF Errors: &
14 poT EQU s102P
— 1S DASH EQU #184E confinued

I8 LFhe Compater Hackser

Listing 3. The SUBROUTINES.

Listing 4. The INTERRUPT Routine.

asm
1000: AY 8o
1992: B> 99
1894: a5 99
198s; DP FC
1000: &8
S o0
b1 ED
Es ED
AL
BD 80 #C
Fe 41
: 80 80 oC
. SE 89 AC
: Fe 35
: Be 8s
I 20 20 18
: B8
: 58 F2
20 &E 10
Be
1 S ED
;A2 @)
! BE 58 C#
i AT 4
D es e7
: 85 97
P20 08 10
1 CA
: D@ Fa
o€ 59 Co
: A? BF
25 @7
: 85 a7
: A2 81
220 80 1P
1 cA
D2 Fa
[4
A2 9T
D® DB
A2 82
: D8 F1
A2 84
D® ED
P AZ e
I AS o8
2 94 Fe
198
1 4B
© 28 #C FD
: 28 F& FD
: C9 88
: Dé #a
)
I A8
: 88
i A% Ce
299 e @9
: DB EA
: C9 8D
: Fe eC
i 8% FF
B
1 AB
I AS FF
;99 e 89
1 ce
: D& DA
1 o8
"L AR
;B8
94 FB
ce
Fo 25
E8
£@ oa
9% CB
1093: &R
1094: An
1095: B4 F8
1097: BA
1998: a8
1#99: B9 9 @9
189C: 28 oF 18
109F: 98
1800: 4B
1#A1: AS EB
18AY: CS ED
IAS: FP Bs
18R7: 2¢ 89 18
18Ra: BS
18AB: 5¢ Fa
18AD: 48
184E: A8
18RF: &8
18E6: AA
18B1: 98
10B2: DS FE
18B84: Bo -
19Bs: B
18B7: 99 DE
1969: &0
——€no assesbly--
186 bytes
Errors: @

OO NS U~

187

189
110
111

12
113
114
11
1es
117
118
119

121

T1MOUT
FLAG
CNTR2
CNTR3
F1FQ
PNTR
ABCBUF
TEME
START
END
RDKEY
CODE
TIMER

AT

ENTRY

REST

DoT
HERE

SFACE
MORE

DASH

CHSPCE

NEXT
OVER

BR

PAas)

FINISH

LDx
LDY
STy
Tva

JSkK
T

PLA
TAY
DEY

STa

BEQ
S51A
FLA
Tay
LDA
STA
INY

LA
Tay
DEY
STy
Iny
BEo
INX
CPx

KIS

RIS

REST

KEST™

@)
*CO58
0s4Q
FLAG
FLAG
TIMER

L9859
SpF
FLAG
FLAG
L 1331
TImEwR

esCa
ABCBUF | v

#4980

PAST
TEMF

TEMF
ABCBUF ¥

END-1,x
ouT

*fa
NEXT

STarT-1,x

ABCBLF , ¥
ENTRY

F1FO

PNTR
BR1@
SND+ E ¥

BRY

END-1.2
FINISH

LOOF

$START COUNTING DOWN
5IN INTERRUPT RDUTINE

$Y=0 TO READ RING BUFFER

IGET A CHARACTEK

IUPDATE POINTER TD RING BUFFER
$ASCIT TO X REGISTER

370 LOOw UF MORSE CODE

$ZERC I5 A WORD SFACE

ISTORE CHARACTER

ISHIFT IT INTO CARRY

$2ERO MEANS CHARACTER 15 SENT
ICARRY SET IMPLIES DASH
SOTHERWISE SEND A DOV

IFORCE A BRANCH BACK 0 GET
STHE REST OF THE CHARACTER
1SEND A DASH

§FORCE A BRANCH BACK

iX IS NUMBER OF DOTS
FTURN RELAY ON
ISET UF MASr FOK FLAG

iSET SPEAKEK BIT IN FLAG
SMAIT FOR ONE DOT TIME

STURN RELAY OFF
$CLEAR SPEARER BIT IN FLAG

iADD A SPACE

ISFACE COMELETE
iDASKH 15 THMKEE DOTS

FCHARACTER SFACE

I WORD SFACE

SSTARTING INDEx FOR MESSAGES

ISAVE v ON THE STACH

ET A CODE FROM THE +EYBDAKD
OUTFUT 17 TO THE MONITOR
IWAS 1T A BACY SFACE

INO.
3YES,

BET ¥ RACH

§DELETE THE CHARACTER Ev LOAD ING
iTHE BUFFEF WITH A SFACE

SFORCE A JUMF TO GET A NEw LEY
iWAS 1T A "RETURN""

$YES. END THE MESSAGE

FS5TORE CHARACTER FOR A MOMENT
iGET ¥ BACH

SGET CHARACTER BACH
TSTORE IT IN THE MESSAGE BUFFER

GO BACK FOF QNOTHER CHARACTE K

SSTORE INDEX FOR THE ENL OF
TEARCH MES5AGE

GET OUT IF v=¢

I6ET ANOTHER MESSAGE UNLESS
SWE HAVE THREE ALKEAL Y

SINFUT THE NEXT MESSAGE

FALL THE MESSAGES ARE 1N ME MORY

$CONTRODL hEY CODE TO x
PPICH UF THE STAKTING INDE X
iSAVE x

$ON THE STar

IFETCH THE MESSAGE

$SEND A CHAKACTER

ISAVE v

INEED TO SEND A CHARACTEK FROM
iTHE RING BUFFER™
NG

$YES

IGET ¥ BACK

tEET X
SFROM THE STACH
JEND OF MESSAGE

{YES.SO QuIY
$NO.GET ANCTHEK CHARACTER

IASH
1 FLAB EQU w87
2 TiCL EQU eC7e4
3 Lo EQU 8C#s1
4 Lg 3] EQU eCes2
5 FIFD EQU ®EB
& PNTR EQU e&D
7 couT? EQU oFDFs
e CONTR1 EQU eCE
L4 ONTR2 EQU e89
10 ORG si120e
= 1 IRORTN TYAR
48 12 PHA
AD ®4 C7 13 wa TICL JCLEAR T1 INTERRUPT FLAB
24 97 14 BIT FLAB ITEST THE FLAG
56 o3 13 C PR3 1 9PEAKER FLAB OFF
AD 38 Co 146 LDA sCe3e 3 TOBGLE SPEAKER
Es CE 17 R INC CNTRt S INCREMENT COUNTER ONE
Cs 99 18 DEC ONTRZ } DECREMENT COUNTER TwD
AD 8 C86 19 LD: sCese SREAD KEYBOARD
18 3F 20 BPL BR2 INO KEY
1215: C9 Ae 21 O ssas $IS 1T A CONTROL CMARACTER?
1217: 98 1p 22 BCC BRI SYES
1219: Ad #0 23 LDY ese
121B: 91 EB 24 8Ta (FIFO),Y $STORE THE CMARACTER IN T™E
121D: €& EB 25 INC FIFQ IRING MFFER
: 28 F6 FD 26 BACK JSR COUTZ SOUTPUT THE CHARACTER
: 8D 10 CS 27 HERE STA sCele S3CLEAR STROBE
AL 24 28 LDY 24 BADVANCE THE CURSOR
B 28 29 LA (sz28),v
1 29 3F 39 AND @S3F
T 09 40 31 ORA esap
: 9128 32 8Ta (s28),v
68 33 our PLA $EBEY Y FROM THE STACK
I A8 34 TAay
: AS a5 35 LDa sas IBET & FROM MEMORY
HEE) 36 RTI $RETURN
ce es 37 BR3 O es8s $DELETE KEY™>
: DO eE 38 BNE NEXT)
: 28 F& FD 39 JSR CouTz
: A5 EB 49 DA FIFOD
: CS ED 41 CMP PNTR
: F8 E) 42 BEQ HERE
Cé EB 43 DEC FIFD
B8 448 av
58 DC 45 BVC MERE
€% 8D 46 NEXT1 Cv #s8D ICARRIABE RETURN
De ez 47 BNE MNEXT2
F& D3 48 BEQ BACX
1 A9 B 49 NEXT2 LDA esBe
03 87 59 ORA FLAG
1 85 87 51 STA FLAG
: D® DB 52 ouT
AS o7 53 BR2 Lba FLAG JCHECK THE DOT anND DASH FLAGS
29 83 54 AND @83 IGET OUT IF THEY ARE SET
: D DS 35 BNE OUT
T 2C 61 CO® Be BIT PB® SREAD THE PUSH BUTTON
D38 e 57 BMI MEXT3 3 INPUTS
£ 97 58 INC FLAG ISET THE DOT FLAG
: D® CC 59 BNE OuT
2C 62 CO o8 NEXTS BIT PpB) $CHECK FOR A DASH
: 38 C7 &1 BmI OuUT
I A9 82 &2 LDa es2
L - ¥4 &3 ORA FLAG $SEY TME DASH FLAG
:as #7 o4 STA FLAG
D® BF 65 BNE OUT
——End sssembly--
112 bytes
Errors: @
Morse Table
#L8E- &Y B3 368 @9 B3 96 @ CE
vC8E- @¢ o 38 or CE 8C S&6 94
_ - — =~ S
gLyd- FC 7C = 1C &C ¢4 84 Cc4
I - - P—
PCI8—~ E4 F4 16 3I2 gig 8C au 32
BCAB— @8 40 88 AR 9& 43 28 D@
e . —_ -
PLAB- #8 26 16 32 CE 8C 546 94
- -~
SCeE3—- FC 7C 3C 1C @C 94 84 C4
e - S
VCRE- E4 F4 146 32 29 8C 28 I2
BCCH~ 63 &8 88 A8 9@ 44 28 D@

BCLE-
BCD&—
wCD8-
BCEG—
ACEB8-
BCF @ -
BCF8-

1245
68
98
2 7]
217
oy
aa

26
D8
Eg
By
¢
7232}
219

oo
747
aa
4]

Bo
12
80
a3
2 JC]
a9
Jo]

48
Co
e
20
o0
a3
417]

E@
39
2 1%)
21
g3
o
o0

AY
18
217
o0
a3
o
o

Fa
70
@y
o8
215]
g
210

continued on p.22

Beginner’s Column, Part Two:

The Computer Hacker 19

ANYONE FOR A LITTLE “‘KISS’’ ELECTRONICS?

by Phil Wells, Technical Editor

How much electronies theory do you have to know to be.

able to design your own computer-related projects? A dozen
. or so basic concepts and formulas will get you started.

Beyond that, one of the great things about this hobby is that
" you can dig into theory just as far (or as little) as you want.
It just helps a lot to be able to learn it “hands-on.” That's
what this column is for.

As discussed in last month’s KISS, you will need at least
a VOM (Volt-Ohm-Milliammeter) and some small tools and
parts. I'm using a Radio Shack #22-204 multitester and a
Radio Shack #22-191 digital multimeter. These are not the
best but are widely available, very low cost, and have
worked well for me for several years.

Electronies at our level is all about what happens when
we push electrons through circuits.

We will talk about simplifications of the real world, make
calculations based on idealized components, then construct
real circuits and make measurements to test our simplified
models. What we care about is being able to put together a
project that does something useful or interesting. You
should understand from the beginning that real components
won't always match our simplified models, that real
measuring devices have built-in sources of errors and that
most of the time a measured value that comes close to our
calculated value is a success. Don't expect a 4700 Ohm
resistor to measure exactly 4700 Ohms, and don't waste
time trying to get 5.000 volts when we need 4.8 to 5.2 volts.

Getting Started: Ohm’s Law

We can easily measure current, voltage and resistance.
These are most beautifully related by Ohm’s Law (figure 1).
This formula says that if we connect a one ohm resistor
across an ideal one volt battery, one ampere of current will
flow through the resistor (figure 2).

The battery supplies electrons, each carrying one
negative electrical charge. A battery is a chemical device
which produces a potential difference, or voltage. The

potential difference represents an ability to do work. The
work is performed by moving charges from one side of the
battery to the other, through a‘conductor connecting the
two terminals. If there is no conductor, no work is
performed, but the potential remains. When the battery
runs out of charged particles, there will be no more
potential difference, and no more work. The battery’s
voltage will be zero and it is said to be discharged. We've all
seen this kind of action, if only by forgetting to turn off our
car's headlights.

To understand figure one, we need to define some terms.

Charge is one of the basic properties of matter. It is a
measure of one of the ways in which two pieces of matter
exert forces on each other (gravity is a similar property). A
quantity of electric charge is measured in “coulombs.” One
coulomb of charge is about 6.24E18 (6.24 times 10 to the
eighteenth power) electrons. The charge on a single electron
is -1.60E-19 coulomb.

The number of charges which flow between our battery
terminals in one second is the “current”, measured in
amperes or milliamperes (thousandths of an ampere). One
ampere of current is one coulomb of charge flowing in one
second, or about 6,240,000,000,000,000,000 electrons per
second.

The amount of current which flows through our resistor
depends on the electrical force supplied by the battery.
There must be an imbalance of charge or a potential
difference between two points to sustain a current between
them. The potential of the battery is called its
“electromotive force”, or emf. Electrical potential is defined
in terms of work. Two points are at a potential difference of
one volt if one joule of work is required to move one
coulomb of charge between them. A joule is the amount of
work performed when a force of one newton moves a point
one meter (one joule = one newton-meter of work or
energy).

The resistor in our circuit is not a perfect conductor; it

Voitage = Current times Resistance

VelRor E=iR

‘v i=V/R Ra=V/i

— | . 1ampere

current

I
+ .ﬂ = constant
Vo4 R« 1o0hm current
T resistor
1 volt battery
/=R YOy ohm

T amp

Figure 1. Ohm's Law Use the diaggram as a memory aic f you don't like aigebra

Figure 2. Onm's Law circuit Isn't 1t convenient that ohms. amps and volts all equal one”
Resistance is gefined as the ratio of voltage to current

20 The Computer Hacker

resists the flow of electrons to some degree. The amount of
opposition to electron flow is the measure of the resistor's
“resistance”, measured in ohms. You can also look at a
resistor as a conductor; its “conductance” is the reciprocal of
its resistance. Conductance is measured in Mhos (yes, that's
Ohms spelled backwords).

What George Simon Ohm (1787-1854) discovered was that
if he connected the terminals of a battery (actually a
chemical wet-cell) together using various kinds of
conductors, the ratio of the voltage across the conductor to-
current through it was constant. That is, more voltage
caused more current to flow. The ratio of voltage to current
is a measure of the electrical resistance of the conducting
material. One ohm is the electrical resistance when a
potential difference of one volt causes a current flow of one
ampere. This is what we now know as Ohm's Law.

Getting Practical

How much resistance does a resistor or other conducter
offer? Connect the resistor to a battery, measure the
voltage across the resistor and the current through it (see
figure 3), then calculate the resistance through it with Ohm’s
Law:R = V +1 Then measure the resistor's resistance with
your ohmmeter. You will find some error because the
milliammeter itself has some resistance, so less current
flows when the meter is in the circuit in series with the
resistor. Additional error stems from the meter's limited
accuracy and from less-than-perfect measuring technique.
Try different resistors but don't try resistor values much
lower than 500 ohms; they'll get too hot, and a 9-volt
transistor-radio type battery can't supply enough current.

| = 009 amperes
=@
Ammeter
M +
9 voit battery _—_ R 9 volts
-7 1000 ohms voltmeter
V=1/R

Figure 30 Try out Opms Law If you have Oitterent batteres or a vanabie-output
power supply try different voitages Keep R greater than 50 ohms

Ohm’s Law says that if we increase the voltage, more
current will flow. If we increase the resistance, less current
will flow. Usually, we have a fixed voltage source and we
control the current flow by varying the resistance.

Figures 4 and 5 illustrate the use of Ohm’s Law. Knowing
any two of the three parameters, we can calculate the
unknown one. Give it a try.

Voltage Drops
Another way of looking at Ohm's Law shows that if we
apply a voltage to a complex circuit, the current which flows
through each resistance produces a “voltage drop” across

What 1s the current?

1= V/R=5/2000 = 00254 = 2 Sma

I = 10mA

+ What 1s the voitage?

R
ver = 4000 ohms V= 1R .01 x 4000 = 40V
| = 5mA
What is the resistance?
+
5V = Ra?

= ! ’ R=V/l=5/.005= 1000 ohms

Figure 4: Using Onm's Law. the textbook way

| 1
What is the current in
§ Part of compiex !
t the ircutt?
+ Circuit R H + VSV this pan of the ci
' | voltmeter
! 2000 chms2 | - 1= V/R=5/2000 = 00254 = 2.5 mA
¥
L -
| W 1 .
What is the voltage”?

: Circuit ; = 10mA
' -y Ammeter Ve 1Ra 01 x 4000 = 40V

1
LS
I 4000 ohms > |
]
' !
e o '
i What is the resistance?

Circuit

Measure | ang V

R=V/l=5/.055= 1000 ohms

Figure 5. Using Ohm's Law on the workbench Since resistors are labeled. you usually only
need a voltmeter to measure V and caicutate 1.

the resistance equal to the product of current and resistance
(see figure 6). More current produces a larger voltage drop.
This may make more sense if we measure the voltage across
each of two resistors connected in series (figure 7).

This figure contains a wealth of information. The total
resistance of two resistors in series is the sum of the two
resistance values. The same current flows through both
resistors. The voltage drop across each resistor equals the
current through it times its resistance. We have only one

Voitmeter
V=IR

current
source

O, R

Figure 6: Ohm's Law S3ys 2 current fiowing through a resistor produces a voltage drop
across the resistor equa: 1o | imes R

Am 49V 1= V/Rga
Ria = Ry+ Ry
VR, = iR,

Buw 4BV
VR, = 1R,

Rygqr = 1000 + 2000 = 3000 ohms

C=0v 1@ V/Rygy = 973000 = 003A

ER,= 003 1000 =3V ER,= 003 x 2000 = 6V

A
Figure 7: Voltage drops across resistors in series

current value (three milliamperes) but two voltages. If we
take the most negative point in the circuit as a “reference”
from which to make all voltage measurements (usually called
“ground”) then point A =9 volts and point B=6 volts. Do
you see the reason for the expression “There is a three volt
drop across R1 and a six volt drop across R2.”?7

A common convention is to use the most negative point in
a complex circuit as a reference; then the most positive
point has the “highest” potential or voltage. The voltage
“drops” across series resistances until we reach zero or
“ground.”

While we're on the subject of conventions, there is
sometimes confusion about the direction of current flow
through a circuit. There are both negative and positive
charges, and carriers of these charges. The two types of
charges move in opposite directions when forced through a
conductor by a voltage. In figure 8, electrons move from the
battery's negative terminal, through the resistor and into
the positive terminal. This is called electron flow. We will
indicate the direction of current flow as ‘“conventional
current”, in which current flows from a more positive to a
less positive potential. It doesn't really matter which is used
as long as we are consistent.

Power

To avoid having resistors go up in flame, you need to
know how to calculate power dissipation. When a source of
voltage pushes a current through a resistor, work is done,
energy is used and heat is produced. How hot a resistor gets
depends on its size and composition, but is proportional to

the rate at which work is done moving charges through it
. One joule of work is done moving one coulomb of charge
through a potential difference of one volt. Power is defined
as the rate of doing work, in joules per second. We more
commonly express electrical power in “watts”. One watt of
power (rate of doing work) is defined as one joule of work
per second. Power in watts is calculated as volts times
amperes:

Power (watts) = joules/second =
volts x coulombs/second = voits x amps

P=VxI

Figure 9 shows various ways of calculating power, found by
using Ohm’s Law and substition. Use these formulas on the
earlier examples to find out the power in the resistors.

The Computer Hacker 21

Resistors are manufactured in a wide variety of types
and sizes. Their specifications are in ohms (resistance),
accuracy or tolerance (%), temperature stability (ohms per
degree Celcius), and power dissipation rating. The last
parameter indicates how fast the resistor can get rid of the
heat caused by a current moving through it. A one-watt
resistor, for example, can safely handle the heat from one
joule per second (one watt) if it is in open air at about room

 temperature. Unfortunately, some types of resistors suffer

permanent changes in resistance if you get them too hot,
even within their wattage ratings. Most resistors run at
their rated wattage get hot enough to burn your fingers
(especially high-power ceramic resistors). Carbon
composition and some carbon film resistors can literally go
up in flames if their wattage rating is exceeded.

Before you install a resistor in a circuit and turn on the
power, you must calculate the expected power in the
resistor, with any of the three formulas in figure 9. Then
select a Y4 watt, Y% watt, or larger size resistor. Most
microcomputer circuits use a five volt power supply and
very low currents; since the wattage needed is the product
of voltage and current, you can usually use a Y% watt
resistor.

Etectron current Conventional current

Figure 8: We will use conventional current flow from positive to negative

Power in Watts = voltage times current

Pa VI (or PuEl)

PaVi/R [P=VleVxV/RaVI/R]

P=fR [P=Vie (IR)x!=FR]

Figure 9: Formulas for calculating power in a resistor

Resistors In Series And Parallel

You often won't have exactly the right value of resistor
called for by your calculations. You can “dummy-up” an
equivalent resistance by combining resistors in combination
as shown in figure 10.

Adding a series resistor increases the total resistance.
Adding a resistor in parallel decreases the total resisance.
Notice that putting two equal resistors in parallel gives you
an equivalent resistor of /2 of each resistor. Putting three in
parallel divides by three.

22 The Computer Hacker

100 ohms
nl
Resistors in Senes
ADD
1
Ry By 00 ohms 300 ohms
Ripa= Ry+ R+ Ry
Rs 100 ohms .

Figurs 10a: Series resistances sum to an squivalent resistance

1 .
P = 1/Rys 1/Ry+ 17R;
Resistors in Parallet
33v; ohms DIVIDE
10¢

three 100 ohm resistors

Figure 10b: Paralie! resistances divide equivaient parallel resistance is the reciprocal of the sum

of the reciprocais

2nd sig hgure
1st sig figure

multiplier
tolerance

Resistor Color Code

Color Significant Multiplier Tolerance
figure
Silver - .02 10%
Gold — .0t %
Black 0 1
Brown 1 10
Red 2 100
Orange 3 1000
Yeliow 4 10000
Green 5 100000
Blue 6 1000000
Violet 7
Grey 8
White g
No Color - 20%

Figurs 11

Remember that the power dissipated in each resistor is
the product of current through it times the voltage across it.
When you make up an equivalent resistor, the power is
spread among the individual resistors. You can make a high-
wattage equivalent resistor out of a number of lower
wattage ones by putting many higher-valued resistors in
parallel, or lower-valued ones in series. For example, 10
resistors of 100 ohms, '» watt each in parallel is the
equivalent of one resistor of 10 ohms with a power rating of
five watts. A series string of ten 10 ohm Y2 watt resistors
can handle 5 watts of power, but will have a resistance of
100 ohms.

Resistor Color Code
Carbon composition and carbon film resistors are marked
with color bands as shown in figure 10. The four color bands

are offset towards one end of the body of the resistor. To
read the resistance value, hold the resistor end nearest the
bands toward your left, then read the colors from left to
right. The first two colors are the more significant digit and
less significant digit of the resistance value. The third band
is the multiplier, or number of zeros to tack on after the two
significant digits. The fourth band indicates tolerance, or
how far from the indicated resistance the specific resistor
might be. Gold is 5%, silver 10%, and no band is 20%. A
1000 ohm, 5% tolerance resistor’s real resistance can be
anywhere from 950 to 1050 ohms.

Next Time
Next month we'll design a power supply. We'll go into
how to select the components and calculate the required
values for a five volt, 1.5 amp experimeter’s bench supply. B

continued from p. 18

ASCII Table

oERd— 28 28 45 54 49 41 4E 4D
¢E88- 5T 55 52 57 44 4E 47 4F
BEPd— 45 56 40 20 4C 2¢ 59 4A
VE?B- 42 58 43 59 S5A 51 28 20
OEAB— 35 34 20 33 20 20 20 32
BEAB— 20 2¢ 26 20 2¢ 208 28 31
GERG— 36 3D 2F 20 268 20 28 2

gERB- 37 28 288 24 38 20 39 I8
PECE— 23 200 20 20 20 20 20 20
PECS— 20 20 2¢ 20 3F 20 20 20
SEDy~ 26 26 20 20 200 2B 20 20
eED8- 20 2¢ 20 20 20 20 20 20
GEEG- 2id 200 20 20 20 20 20 20
PEES- 208 28 20 20 20 20 20 20
PEFS— 20 20 20 2C FF FF @9 09
igﬁ@EF8~ FF FF o0 60 FF FF 80 00 g

Any Computer Hacker Machinists
Out There?

We want to contact
anyone interested in
using micros to con-
trol machine tools
for personal use, or
on a small business
level. Contact us if
you are using a micro
for measurement or
control with a lathe,
milling machine, or
other machine tool.
We need to know what you are doing, how you are
doing it, what problems you have, and what additional
information would help you.

GRS gt s W s

B~ "

e s e e N e

Size 23 Stepper Motors from Clifton

Clifton Precision, Litton Systems, Inc., has expanded its line
.of size 23 1.8° stepper motors to include models with up to 170
oz-in holding torque and 120 oz-in dynamic torque. The

" motors operate with 200 steps per revolution.

The Clifton motors are compact; they are available in
lengths as short as 1.5°, excluding shaft. In addition, they are
quiet operating, making them ideal for office environments.
They are well suited to applications such as carriage wheels
for matrix and daisy wheel printers, paper-feed drives,
machine tool controls, disk drive head positioners, tape
readers, plotters, robotic systems — wherever precise
positioning is required ir an open-loop system.

These size 23 stepper motors offer standard accuracy of + 5
percent; accuracies of up to +3 percent are available. High
reliability is an advantage of the Clifton motors, achieved
through close-tolerance construction.

Special winding configurations, mounting, and other

"modifications can be produced to meet specific customer

The Computer Hacker 23

requirements.

For additional information on the Clifton size 23 stepper
motors, contact Clifton Precision, P.0O. Box 160, Murphy, NC
28906; (704) 837-5115, TWX 510-935-1068. n

—

Ma Bell Hits Modems With Tariff

The September issue of The Computer Shopper (P.O. Box F, Titusville, FL 32796), reported that
Southwestern Bell Telephone Company’'s Oklahoma tariffs call for the charging of an ‘Information
Terminal Service’ rate for anyone connecting a computer to the telephone lines via a modem.

This rate is approximately 500% higher than the standard residential base rate. Obviously, this taritf
dramatically affects the entire industry, as it practically prohibits noncommercial modem use.

The Computer Hacker considers easy access of communication lines thru modems to be very
important for micro users, and we would like to publish a report of how this access is handled in ditferent

parts of the country.

It you have had an experience with modem connections that would be helpful to others in similar
situations, please write and describe your experience and the solutions you arrived at. Include anything
that you feel would be helpful to someone faced with a similar problem. For your protection, no names

will be published, only the State will be given.

24 The Computer Hacker

Rate:$.50 per word, minimum charge $7.50. All classified

available issue. No checking copies or proofs are supplied.

WANTED: Teletyps KSR-35 manuals needed 1o
restore old teletype machine. Also need manuals
for paper tape punch and reader. The Computer
Hacker, P.0. Box 1697, Kalispell, MT 59903-1697.

FOR SALE: SSM 10/4 board for S-100 bus. Two
serial, two paraile! ports. $100. DEC LSi-11
minicomputer. Rack mount. KD11-F processor
with KEV11 harware math chip, DLVi1 serial
card, DRV11 parallel card. Total of 48K RAM.
Paper Tape 0.S. $995. Write Lance Rose. c/o The
Computer Hacker, Box 1697, Kalispell, MT
§9903-1697.

Authors Wanted! We are interested in publishing
specialized, well written, booklets for the serious
computer user. There is often need for information
which is too long or too specialized for a magazine,
and 1oo short for a major book. In order to publish
this information in a magazine it is shortened and
re-writien for a broad general audience. Or, it is
putfed up to fill a book. Neither of these

ads must be paid in advance, and will be published in the next

approaches fills the need of the hacker.
We will publish bookiets of approx. 10,000 to
60.000 words, in addition to our magazine. f you
have a manuscript which is too long for a
magazine and too short for a major book, contact
The Computer Hacker. Please query by letter
with an outiine and a self-addressed stamped
envelope before sending your manuscript.

“
——“““__

Advertise Where The Action Is

The Computer Hacker is THE place to advertise products for those who build, interface, and

control with microprocessors. Send for our advertising media kit.

Advertising Department
The Computer Hacker
P.0. Box 1697, Kalispell, Mt 59903-1697

