THE COMPUTER JOURNAL

For Those Who Interface, Build, and Apply Micros

Vol I, Mo. 4 $2.50 U5

" Build a VIC-20 EPROM Programmer e

Multi-user:
CPINET page B

Build a High-Resolution S-100
Graphics Board

Part Three:Construction sase 0

System Integration
Part Three: CPIM 3.0 a7

Linear Optimization with Micros wu»

LSTTL Reference Chart sz

The Computer Journal 1

.relations

Editor’s Page

The Customer is Tired of Being Ignored!

Many of the companies in the microcomputer
industry have developed a very simple customer
policy — they just ignore
correspondence and phone calls. This may have
been a cost-effective way of handling the problem
in an expanding market filled with eager and
unsophisticated buyers, but experienced business
people will not put up with this shoddy
treatment in the current buyer’s market.

The microcomputer industry is still structured

“around the pioneer companies started by a

technically oriented entrepreneur with little cash
and no business experience who ran the business
out of a spare bedroom. These undercapitalized,
understaffed enterprises made millions because
there was no competition, and because the
owners were too busy taking money to the bank
to worry about the customer. Their problem was
how to expand fast enough to meet the unfilled

“demands. It didn't matter if the customer was

unsatisfied because the product was already paid
for (they don’t give refunds if the product doesn’t
work), and there were dozens of new buyers to
replace every lost customer.

Good documentation and customer support are

‘extremely important for business equipment and

software. With the large number of vendors
competing for your dollar today, your decision to
buy any micro product should be largely based
on how you will be treated by the company after
the purchase. In order to help you compare
customer support policies, The Computer
Journal is surveying vendors and will publish the
customer relations policy with the addresses and
phone numbers. We will also encourage them to
submit bug fixes, customization notes, and
interfacing information for publication.

Realizing that what happens in the real world
is often different than the published policy, we
will also publish the experiences of our readers,
after giving the vendors the opportunity to

respond. We do need your experiences with
vendors (both the good and the bad) to help
others avoid the companies with poor products
and miserable customer relations.

Our loyalty is to our readers, and not to any
possible advertisers. We will not hesitate to
report bad products and poor customer support,
but we will need copies of correspondence and
records of phone calls which we can present to
the vendors prior to publication.

We have had a bad experience with a
computer system we purchased recently. We
wrote twice for information on an upgrade, but
they have not answered our letters. We liked
their product, but will not purchase any other
equipment from them or recommend their
equipment to anyone else. We are sending copies
of the letters to the vendor for their reply before
publishing the details.

This magazine is published for you, and it will
only be as good as you make it. Take time to tell
us about your vendor experiences, and share
your bug fixes, customization patches,
interfacing information and technical tips with
the other readers. []

Editor/Publisher................... Art Carlson
Art Director................... Joan Thompson
Technical Editor................... Lance Rose
Production Asststant Judie Overbeek
Contributing Editor............. Ernie Brooner

The Computer Journal® s published 12 times
a year. Annual subscription is $24 in the U.S,
$30 in Canada, and $48 airmail in other
countries.

Entire contents copyright © 1984 by The
Computer Journal

Postmaster: Send address chenges to: The
Computer Journal, P.0. Box 1697, Kalispell MT
59908-1697.

Address all editorial, advertising and
subscription. tnquires to: The Computer Journal
P.O. Box 1697, Kalispell MT 59903-1697.

2 The Computer Jour-a

BUILD A VIC-20 EPROM PROGRAMMER

by Neil Bungard

Introduction

About a month ago I was presented with an interesting
problem. I had acquired a Z-80 based S-100 bus
" mierocomputer which had no operating software installed on
it. I had an operating system stored on paper tape, but I
needed the operating system on an EPROM before my
system would run it. The EPROM programmers that I
looked at were too expensive to justify buying simply to
program one EPROM, so I looked for an alternative
solution. It so happened that I had recently purchased a
VIC-20, so 1 decided to design an EPROM programmer
attachment for the VIC-20 and use the VIC-20 to transfer
the Z-80 operating software from the paper tape to the
EPROM. The VIC-20 solved my EPROM programming
problem with exceptional grace. With the VIC-20 and ten
dollars worth of additional hardware, 1 was able to enter,
inspect, program, and verify data on both 2716 (2K by 8) and
2732 (4K by 8 EPROMs. In addition, the VIC-20 EPROM
programmer has features not found on even the most
expensive EPROM programmers. Data to be programmed
into the EPROM can be entered from cassette tape, 5”
diskettes, any RS-232 device, from the VIC-20 keyboard. or
even from another EPROM.

Circuit Description

The VIC-20 EPROM programmer circuit diagram is shown
in Figure 1. This circuit was designed to program 2716 (2K
by 8) EPROMs, but with minor circuit modifications the
VIC-20 can program 2732 (4K by 8 EPROMs as well. These
modifications will be explained in detail, and can be hard
wired or wired so that “personality modules” can be
inserted to select between programming 2716s or 2732s.

The VIC-20 EPROM Programmer performs four basic
functions:

1. It can set the address of where data trasfers are to begin
on the EPROM.

2. It can read data from a “read only” EPROM. This is used
in the EPROM duplicate mode.

3. It can read data from a “programable " EPROM. This is
used in the program verification mode.

4. It can program an EPROM. This, of course, is used in the
program mode.

To obtain an understanding of the operation of the EPROM
programmer circuit in each mode, let us look at these four
basic functions separately.

The first function, address selection, is accomplished by
loading three presettable counters with the beginning
address of where you wish to store or retrieve data on the
EPROM. The counters are 74LS193s (IC 1, 2, and 3 in Figure
1). The inputs of the counters are tied through buffers to the

data bus of the VIC-20. The outputs of the counters are
connected to the address lines of the 2716s so that the
values loaded into the 74LS193s will be present on the
address lines of the EPROMs. With an address value loaded
into the 74L.S193s and present on both EPROMs, a memory
read from either EPROM or a memory write to the
programable EPROM can be accomplished. Once the data
transfer operation is accomplished, the selected address can
either be advanced in increments of one, or a new address
can be loaded into the counters.

Values are loaded into selected counters by the VIC-20 via
an Input/Output (I/O) device code generator (IC4). The
device code generator (a 74LS138) is a three line to eight
line decoder. Its three input lines are tied through buffers to
the three lowest order address bits of the VIC-20 address
bus. When the VIC-20 wants to accomplish an information
transfer {either Input or Output) it places the address of
where the data exchange is to take place onto pins 1, 2, and
3 of the 74L.S138. The VIC-20 then pulses “BLK1" to a logic
0. This generates a device code pulse on one of eight output
pins on the 74LS138 which accomplishes a data transfer
to/from one of eight unique address locations defined by the
values of A0, Al, and A2. Table 1 shows the eight data
transfer pulses generated on the EPROM programmer.
Figure 2 is the timing diagram of the device code pulse
generated.

With reference to Table 1, the following software is
required to operate the device select hardware and set a
given address location for a memory transfer:

10 POKE 8195,0

20 POKE 8192,0
This program addresses memory location 0 (decimal) on the
EPROMs. 10 POKE 8195,0 loads the four higher order bits
of the 12 bit address into address counter IC3 by placing the
high order address value on data bus bits DO through D3
and pulsing pin 11 of IC3 to a logic 0. 20 POKE 8192,0 loads
the eight low order address bits into counters IC1 and IC2

Device OQutput
Code Pinof
Address 7415138 Use of Device Code Pulse

8192 15 loads the 8 lower order bits of the address counter

8193 NA NA

8194 13 transters data from ‘‘programmable’’ EPROM to the VIC 20
8195 12 Loads the 4 higher order bits of the address counters
8196 11 transfers data from ‘‘read only'' EPROM to the VIC 20
8197 10 programs EPROM and increments the address counters
8198 NA NA

8199 NA NA

Table 1

The Computer Journal 3

ot 5¥ v
AN b
w v 10 Fraisos)
x ar T R
sss oo 1o
wio B tsoms? 2 Cl
7 [7
. . o s oy <r I
M ° [N 2l s i3
373
(21 ° X s 1 L1 ‘:
v g 2 LA
VPP o+ 28V |] R g 3
. 193 (LVN'SW b} s P
. " Power Consections
NI 4 Y
4 ¢ 5 one +8 N
- 3 ® 748373 20 10
910, z o 5 Sz 745193 68
I Py — . e — il
L
i o, 7‘l"5 2 ["“° s (14] 4 7405138 1% 8
13 by 2718 7415367 16 8
T4L8245 16 3
3 ozes 2 74508 “ 7
I 373
<+ sV
G rd 6
2o, i 4 5
2 [} GND
Dy Ag Ip v Mamory
1 Dy 12 & z St 9 Exponsion
a8 |, R 5 1 Port
04 193 2 0y 85, agf2 2o
sl 5 ho 17 3 3 D°
il
o o . il o + 4l
SN 2
Al s £)3 15 |5 s1 o,
2 3 173 Y3 o
6 6|0
d s 4
) !
- 18 7 3 Ms |7 7|05
Yooes 9 i3 12] s 06
B 2 ﬁ s 17 e, 4a;|s 9|0,
K3 5 Ao Ké 'y
| s 27]
20
3 X3
) o] TeLs08
.GND
Lio, o, jrit1ee
Mamory) H @nsllsic, opfld (8194
§uponsien ® f, osheimer 2
Bix 2 a2 S E
L ! 19 741504
Az fp S 3 Ay
m§367 ica| 748138
a e s z A Figure 1
Acie ﬂ 9 4o

by placing the EPROM address value on the data bus and
pulsing pin 11 of IC1 and IC2 to a logic 0. To advance the
counters, which increments the selected address, the
" following instructions are required:

10 POKE 8197,0

20 FOR 1=0 TO 50: NEXTI

POKE 8197,0 generates a device code pulse on pin 10 of the
741,138 (IC4). This low going pulse triggers a monostable
multivibrator (IC10), which is configured to generate a 50ms
high-going pulse. This 50ms pulse is required in the EPROM
programming sequence which will be discussed later. The
output of the monostable (pin 3, IC10) is connected, through
an inverter, to the “upcount” input of ICl. If the
READ/PROGRAM switch (S1, Figure 1) is in the READ
position (open), the selected address will be advanced by one
when the monostable times out, but no EPROM memory
location will be programmed. However, if the
READ/PROGRAM switch is in the PROGRAM (closed)
position when the POKE 81970 instruction is executed,
address location 0 (decimal) on the programmable EPROM
will be loaded with a 0 before the address counter (IC1) is

advanced. Details of this sequence will be discussed further
in the explanation of the programming mode.

The important thing to remember in our discussion thus
far is that for the purpose of reading either EPROM, the
READ/PROGRAM switch must be in the READ position.
The second instruction 20 FOR I=0 TO 50: NEXT I is a
software time delay to allow the monostable to time out
before any other instructions are executed. Even though the
50ms pulse is only used in the programming mode it is still
generated in the read and verify modes to advance the
counters. It is the trailing edge of this pulse that always
advances the address counters and thus must be accounted
for in all the modes of operation.

The second basic function performed by the EPROM
programmer is reading data from the “read only” EPROM.
In order to do this, the memory address of where the read
operation is to occur is loaded into the memory address
counters as previously explained. Next, a memory read
operation is performed by the VIC-20 which generates an
input device code pulse on pin 11 of the device code pulse
generator IC4. Pin 11 of IC4 is connected to the chip select

4 The Computer Journal

s -
BLK 1 [s —_—L_____I_
Device Coos Migh 2

Aaressed Outout Data . (mosm D

Oata
D G T
1}
‘data transter]

Figure 2: Device Code Pulse Timing.] Figure 3: 2716 Read Timing.

(CS) input of the read only 2716 (IC6). When the CS input
(pin 20) is pulsed low (with pin 18 tied low and pin 21 held
high) data flows from the memory location addressed on the
EPROM into the VIC-20. Figure 3 shows the timing diagram
of the 2716 read operation. The following software is
required to perform the read only EPROM read operation:

10 POKE 8195,0

20 POKE 8192,0

30 A = PEEK(8196)
The BASIC instructions in lines 10 and 20 set the memory
address of where the read operation will occur. These two
instructions have been previously explained. The instruction
30 A = PEEK(8196) generates a device code puise on pin 11
of IC4 which inputs the data from the addressed memory
location, and assigns the data to the variable name “A”.

The third basic function performed by the EPROM
programmer, reading data from the programmable EPROM,
is accomplished in exactly the same manner as reading from
the read only EPROM. The only difference is that a device
code pulse is generated on pin 13 of IC4 instead of pin 11 as
in the case of the read only EPROM. Pin 13 of IC4 is
connected to the CS input of the programmable EPROM (pin
20, IC5) and to the output enable (OE) of an octal tristate
buffer (pin 1, IC8). Data flows out of this EPROM and
through the buffer when pin 13 of the 74LS138 is pulsed low.
For the read operation to be accomplished, pin 18 of the
2716 must be at a logic 0 and pin 21 at +5 volts. The
software required to read data from the programmable
EPROM is:

10 POKE 8185,0
20 POKE 8192,0
30 A = PEEK(8194)

The fourth and last function performed by the EPROM
programmer is programming an EPROM. To enter the
program mode, the READ/PROGRAM switch must be
placed in the PROGRAM position. This applies + 25 volts to
pin 21 of the EPROM (IC5), and configures the EPROM to
be programmed. Be sure that the 25 volt supply is stable
and at no time fluctuates higher than 26 volts. A veltage
greater than 26 volts on pin 21 of the EPROM will
immediately destroy the EPROM. Next, as was the case
when reading the EPROMs, the memory address of where
the data transfer is to take place must be loaded into the
address counters. By applying an address to the EPROM,
placing pin 21 at + 25 volts, and insuring that the CS input
is at a logic 1, the EPROM is ready to be programmed.
Applying a data byte on DO through D7 of the EPROM, and
pulsing pin 18 (PD/PGM) to a logic 1 for 50ms completes the
programming operation. The timing diagram for the 2716

programming sequence is shown in Figure 4. The data is
applied to the EPROM by the VIC-20 through a memory
write operation to location 8197 (decimall. This memory
write operation generates a device code pulse on pin 10 of
IC4 which latches the outputted data byte into IC7 and
triggers the monostable multivibrator (IC10). = The
monostable applies a 50ms high-going pulse to pin 18 of the
EPROM and programs the applied memory address with the
data byte latched in IC7. The falling edge of the 50ms
programming pulse automatically advances the counters and
prepares the next memory address for programming. The
following software is required to program address location 0
with decimal value of 100:

10 POKE 8195,0

20 POKE 8192,0

80 POKE 8197,100

Application Software for the VIC-20 EPROM
Programmer

The software required to read, verify, and program 2716
EPROMs will be presented in the following discussion on
application software. To perform an EPROM duplication, the
contents of a previously programmed EPROM is transferred
into the VIC-20's RAM memory. Here the data can be
inspected and/or modified if desired. The data is then
transferred to a blank EPROM, and a verification is
accomplished to ensure that no error occured in the data
transfer. The following software reads the 2048 memory
locations of a 2716 and places the data into the VIC-20's
RAM memory between locations 5000 (decimal) and
7048(decimal). Insure that the READ/PROGRAM switch is
in the READ position, and that the EPROM to be read is
inserted into the read only EPROM socket:

10 PRINT **" /clear screen

20 PRINT *'SET SWITCH TO""

30 PRINT *‘READ POSITION" /ensure that

40 PRINT /READ/PROGRAM
50 PRINT *"HIT RETURN" /switch is in

60 PRINT 'TO START" /correct position
70 INPUT X

80 POKE 8195,0

90 POKE 8192,0

100 FOR 1 = 5000 to 7048
110 A = PEEK(8196)

120 POKE |.A

130 POKE 8187,0

140 FOR 7= 0 to 50:NEXT T

/load high-order 7415193
/load low-order 74LS183
/set 2048 RAM spaces
/read EPROM

/store value in RAM
/advance counters

/wait for 50ms pulse

150 NEXT | /10 read next location
160 PRINT''READ COMPLETE" /prompt user
170 STOP

*Do not enter comments in right hand column as part of
program.

Once the data is in RAM memory, the user can check the
code to ensure that the correct 2716 is being duplicated,
and/or make minor modifications to the code. Once satisfied
with the data in RAM, the data is transferred to a blank
EPROM which has been inserted into the programmable
EPROM socket. Before the transfer takes place, the
READ/PROGRAM switch must be placed in the

PROGRAM position. The following software loads the data
which is in the VIC-20's RAM memory space, between
address 5000 (decimal) and 7048 (decimal), into a 2716
EPROM:

200 PRINT **"

210 PRINT'*SET SWITCH TO"
220 PRINT''PROGRAM POSITION"
230 PRINT

240 PRINT''HIT RETURN"

250 PRINT**TO START"

260 INPUT X

270 POKE 8195.0

280 POKE 8192,0

290 FOR | = 5000 to 7048

/clear the screen

/ensure that
/READ/PROGRAM
/switch is in
/correct position

/ioad high-order 74LS193
/load iow-order 74L51983
/set 2048 RAM spaces

300 A = PEEK(I) /read data from RAM
310 POKE 8197 ,A /write data to EPROM
320 FOR T= O to S0:NEXT T /wait for 50ms pulse
330 NEXT | /go read next location
340 PRINT''PROGRAMMING COMPLETE' /prompt user

350 STOP

When the programming is complete, you should run the
following verification program to ensure an accurate
~EPROM copy:

400 PRINT **"

410 PRINT'*SET SWITCH TO"’
420 PRINT 'READ POSITION "
430 PRINT

440 PRINT''HIT RETURN "’
450 PRINT'TO START"

455 INPUT X '

460 POKE 8195.0

470 POKE 8192,0

480 FOR | = 5000 to 7048
490 A = PEEK(8194)

500 B = PEEK(I)

510 IF AC>B THEN 570

520 POKE 8197.0

530 FOR T = 010 50:NEXT T

/clear the screen

/ensure that
/READ/PROGRAM
/switch is in
/correct position

/load high-order 74L5193
/load low-order 745193
/set 2048 RAM spaces
/read programmabile EPROM
/read data from RAM

/it no match then stop

/if match, advance counters
/wait tor 50ms pulse

540 NEXT | /go do next comparison
550 PRINT''DUPLICATION GOOD™ /prompt user
560 STOP

570 PRINT''DUPLICATION BAD"
580 PRINT*'ERROR IN"’
590 PRINT''ADDRESS ;!

/prompt user

As mentioned in the introduction, EPROMs programmed
by the VIC-20 EPROM programmer can receive their data
from a number of sources. The only modifications necessary
to input data from other sources would be between lines 80
and 160 of the BASIC code. These lines of code move data
from some source (another EPROM in the above case) and
place the data in the VIC-20's RAM memory. Using the
EPROM programmer for my own application, I was required
to take data from the VIC-20's RS-232 interface port. The
following software accomplishes a data transfer from the
RS-232 serial port and places the data into RAM memory
locations 5000 (decimal) through 7048 (decimal):

80 OPEN 2,2,3 CHR$(163) + CHR*(160)
2 stop bits
. 90 FOR | = 5000 to 7048
100 GET 2,AS

/set 2048 RAM spaces
/turn on receiver channei

/open the channel, 110 baud,

The Computer Journai S

110 IF AS = """ THEN 100
120 A = PEEK(667)

/ignore a null
/ind serial byte in butfer

130 B~ A+ 7423 /define butfer location

140 C = PEEK(B) /get data trom serial port butter
150 POKE |.C /put data in RAM memory

155 NEXT | /go get next data byte

Another possibility for entering data is through the VIC-
20's keyboard. This is not practical for larger data bases, but

in many cases the data is
o

less than a few hundred

bytes. For that amount of]om wabl aidau
data the keyboard is not a ‘
bad option. The following [© — L—
software will load data]

PO/PGM

into RAM memory starting
at location 5000 (decimal),
via the vic-20's keyboard:

Enter an "S"” to terminate the entry program.

Figure 4: 2716 Program Timing.

*voltage on pin 21 of the 2716 mus! be + 25Voits

80 PRINT "

85 FOR | = 1 t0 2048

90 PRINT"'ENTER DATA™
85 PRINT 'BYTE'";

100 INPUT AS

105 IF A$ = "'S"" THEN 160
110 A = VAL(AS)

115 J = 1+ 5000

/clear the screen

/input up to 2048 times

/prompt user

/to enter

/data byte

/enter S to stop

/convert input string to a number
/define RAM storage location

120 POKE J.A /put data in RAM memory
125 PRINT "' /clear the screen
130 NEXT | /go input next data value

135 PRINT''NO MORE ROOM ™
140 PRINT'ON EPROM ™
145 STOP

/prompt user

A Word About Bus Buffering

My original VIC-20 EPROM programmer design did not
have Data and Address bus buffers, but I encountered some
problems when inserting and removing the EPROMs. When
I inserted or installed the “read only” 2716 EPROM, the
VIC-20 operating system would crash. I installed the 74 245
data bus buffer and the 74LS367 address bus buffer and the
problem disappeared. In general it is a good idea to buffer
all of your interface projects. This ensures that you have
good “drive” from your computer, and buffering isolates the
CPU and other ICs in your computer from your circuit,
which could avoid damage to the computer as a result of
wiring errors.

Programming 2732s On the VIC-20 EPROM
Programmer

So far only 2716 (2K by 8) EPROMs have been mentioned
with reference to the VIC-20 EPROM programmer. The
programmer can also program 2732 (4K by 8) EPROMs.
There are only three pins which differ between the two
EPROMs. These are pins 18, 20, and 21. Figure 5 shows the
connection changes necessary to use the VIC-20 EPROM
programmer with 2732 EPROMs. These connections can be
hard wired to configure the EPROM programmer for 2732s
only, or a 14 pin wire wrap socket can be placed on the
EPROM programmer board and wired so that jumper wires

6 The Computer Journal

T4L504

from pin 3 —Dx)——|
of 1010 19

O/ PGM
Ao

Ay By
A2 4]
A3 L]
A 4 O4

A5 Ds
' Dg

TTTTTTI

SESERNEEENE

Ay Dy IN914
A g 2732 47K
o ¢ 120 ~ +25V
from pin 7 An
ot iC3 from pin 13
SV IGND mo7 o4

Figure 5: 2716 to 2732 connection changes.

can be used to choose between programming 2716s and
2732s. Using this method, personality modules can be
constructed which plug into the 14 pin socket. These
modules determine whether the programmer is configured
for 2716 or 2732 EPROMs by providing the correct jumper
wires across the 14 pin socket. Figure 6 shows how the
socket is wired to achieve the EPROM selection using the
‘personality modules. Also in Figure 6 are the wiring
configurations necessary to construct both the 2716 and the
2732 personality modules. The modules themselves are
constructed from 14 pin DIP headers, with jumper wires
soldered in place on the header to configure the module.

from pin 13 Na

ot 1510 741504 Parsonaiity
Moduie to pir 18 0t 2716 o
Socke!

2732 EPROM sockets

NA NA

+25V

topin 210 27160
2737 EPROM socxets
NA

from pir 7 10 pir 20 of 271€ or
of IC3 7407 2732 EPROM sockets
from pir *1 NA
of IC4 47
IN914
+5V
2716 2732

IV-
T
L

1

*TOP ViEW

s

Personality Socket

| 1]
l
L]

Personality Socks!

Figure 6: Personality Modules and Socket

1 used wire wrap techniques to construct the EPROM
programmer. There are no critical wiring considerations,
and the project took less than five hours to construct. A
photograph of the VIC-20 EPROM programmer is shown in
Figure 7, and a pin assignment of the VIC-20 expansion port
is shown in Figure 8 to aid in construction of the
programmer. '

It should be noted that an external 25 volt power supply
is required to program the 2716 and 2732 EPROMs.

The software routines used to program the 2716s will also
work with the 2732s. The only changes required in the
software routines are in the instructions which account for
the 2716's 2048 memory locations. To program 2732s on the
VIC-20 without expanding the VIC RAM memory, the 2732's
4K memory should be considered as two 2K blocks. Each 2K
block would be programmed separately, which would
require two passes through the software routines. On the
first pass the address counters should be loaded with a
starting address of zero and the first 2K locations would be
programmed the same as a 2716. On the second pass the
address counters should be loaded with a starting address of
2048 and the next 2K locations would be programmed.

Conclusion
The software routines presented in this article are what I
would consider utility routines. They make the VIC-20
EPROM programmer work, but they are neither instructive
nor “friendly” to the user. Providing only the required
utility routines allows you to develop an “operating system”
to suit your particular needs.

Construction of the VIC-20 EPROM Programmer
The VIC-20 EPROM programmer can easily be

constructed on a perforated Vectorboard equipped with
edgeboard fingers. The edgeboard fingers must be double
sided and the pin spacing must be 0.156 inches. The
Vectorboard is standard equipment, and can be purchased
from most electronic parts distributors.

. .
y ;
- s ; H o . Y
Yo R B
LI) = Jn
. e -
- A
. . .
. S PO
B [
scesvvsnbace 4 . - N
. .
.
¥ . * .

assssessse s
.

b2

T T o

evecenen
edoewoeen ¥}
.o
sy

.
e e
s et ms i el sB e® e e, 0

.0
e
.e

8

1

Figure 7

If you want to use the VIC-20 EPROM programmer as a
general purpose programming tool for both 2716 and 2732
EPROMs, I would suggest a “prompt and queue” operating
system. By “prompt and queue” I mean that the computer
prompts the user and asks the user what he/she would like
to do. The user in turn enters the proper queue which
instructs the computer to perform a specific task. This type
of operating system can be implemented nicely with the use
of menus. For example, you might have the VIC-20 ask the
following question:

WHICH TYPE OF EPROM DO

. YOU WISH TO CONSIDER?

If you input *2716", the VIC-20 might print the following
menu:
WHAT FUNCTION DO YOU WISH TO PERFORM?

1) EXAMINE CODE ON A 2716 EPROM

2) PROGRAM A 2716 EPROM

3) DUPLICATE A 2716 EPROM

4) ENTER CODE THROUGH KEYBOARD

5) ENTER CODE FROM TAPE

6) ENTER CODE FROM RS232 PORT

T) ENTER CODE FROM DISK

8) QUIT
INPUT YOUR SELECTION?
This menu allows you to perform all the functions which are
possible on the VIC-20 EPROM programmer. Selecting a
desired function might result in another menu being printed
which would help the user choose the proper parameters
used in a utility routine. In addition to helping with
parameters, the VIC-20 could instruct the user as to which
“personality module” to use and when to insert it. Your
imagination is your only limitation when designing an

- operating system for the VIC-20 EPROM programmer. Have

The Computer Journal 7

12345867 8910111213141516171818202122
ABCDEFHJKLMNPRSTUVWXY?Z
PIN #! TYPE PIN# TYPE
1 |GND 12 |Bxs
2 |CDo 13 |BLKS
3 |cD1 14 |RAMT
4 |co2 15 |RAMZ
5 |cD3 16 |RAM3
6 |CD4 17 |VRW
7 |CD5 18 |CAW
8 (cD6 19 [IRC
9 €07 20 |NC
10 BLKY 21 |+5v
11 |BLK2 22 {GND
P|N # TYPE PlN # TYPE
A GND N |CA10
B CAO P |CA11
c CA1 R [CA12
D | ca2 s |ca13
E | CA3 T |02
F | CA4 U |03
H | CAs v |so2
J CA8 w RMI
K | CcA7 X |RESET
L CA8 Y INC
M | Cas zZ |eND
Figure 8

fun with it and drop us a line to let us know what you come
up with, []

[R s e 2 o -
Did You Miss Any of These Issues?

Te order back ssues senc §3 25 (includes postage: to The Computer Journal PO Box 1697. Kalispe! MT 59903 Aliow 3 to 4 weeks for delivery

Volume 1, Number 1:

¢ The RS-232-C Seria! Interface, Part One

¢ Teleco: g with $e Apple]: Transferring Binary Files
. Bogiéer'l ColunkD} Part One: Getting Started

© Build an “Epram”

Volume 1, Number 2:

® File Transfer Programs for CP/M

¢ The RS-282-C Serial Interface, Part Two

¢ Build a Hardware Print Spooler, Part One:Background and Design

® A Review of Floppy Disk Formats

¢ Sending Morse Code With an Apple]

* Beginner's Column, Part Two: Basic Concepts and Formulas in Electronics

Volume 1, Number 3:

¢ Add an 8087 Math Chip to Your Dua! Processor Board
¢ Build an A/D Converter for the Apple]

e ASCII Reference Chart

¢ Modems for Micros

¢ The CP/M Operating System

¢ Build s Hardware Print Spooler, Part Two:Construction

Volume 1, Number 4:

* Optoelectronics, Part Ope: Detecting, Generating. and Using Ligbt in Electronics

¢ Multi-user:An Introduction

o Making the CP/M User Function More Useful

¢ Build a Hardware Print Spooler, Part Three: Enhancements
o Beginner's Column, Part Three: Power Supply Design

Volume 2, Number 1:

o Optoelectronics, Part Two: Practical Applications

« Multi-user: Multi-Processor Systems

¢ True RMS Measurements

s Gemini-10X: Modifications to Allow both Serial and Paraliel Operation

Volume 2, Number 2:

o Build a High Resolution 5-100 Grapbics Board, Part One: Video Displays
s System Integration, Part One: Selecting System Components

¢ Optoelectronics, Part Three: Fiber Optics

¢ Controlling DC Motors

¢ Multi-User: Local Area Networks

* DC Motor Applications

Volume 2, Number 3:

» Heuristic Search in HiQ

« Build a High-Resolution S-100 Graphics Board, Part Two: Theory of Operation

o Muiti-user: Etherseries

» Bystem Integration, Part Two: Disk Controllers and CP/M 2.2 System Generstion

8 The Computer Journa

Multi-user

A Column by E.G. Brooner

CPINET is Digital Research’'s answer to the

networking problem. It is in some ways not a complete
network (in fact, it is only the software for one), but it is
probably the cheapest way for a clever computer user to
“get into" networking. CP/NET can be thought of as an
extension of CP/M and MP/M. It takes advantage of the
existing features in these very popular operating systems.
Using CP/NET is just Lke using either of its parent
systems—all of the same commands are used along with a
few new ones to take care of network communication tasks.
Basing the network software on what is already there
greatly simplifies the entire process.

The latest brochure listed the cost of the CP/NET
software at around $200 for each “workstation,” which can

'be almost any micro equipment running CP/M. Actually, one

station has to be MP/M equipped —there is no way around
that restriction. And if only one station is so equipped, you
really have something similar to & multiprocessor or a very
good timesharing system. CP/NET becomes more “network-
like” as more MP/M workstations are added.

In talking about other milti-user systems, especially
networks, we have made mention of the centrally located
disk and printer peripherals that can be accessed by the
secondary users. In network terminology these “intelligent”

‘devices are referred to as servers; i.e., disk servers and

print servers. A server is usually a dedicated
microcomputer handling the communication to and from the
peripherals, or between the peripherals and the
workstations.

In CP/NET, the server function is performed by part of
the additional network software. The MP/M equipped micro,
which must be part of any CP/NET, acts as a server for the

‘rest of the network in addition to performing any other

functions assigned to it. The MP/M equipped micro can
accomodate up to a total of 16 users. If they are terminals,
you have a time sharing system; if they are micros with
their own processors, the system can be a network.

Let's take a look, first, at MP/M. A time sharing system
would consist of one micro running MP/M and some number
of terminals sharing its one CPU and its memory, as well as
the peripherals. You might find that as you add more than
the first two or three terminals, the speed of each user
begins to suffer, especially if all of them are quite busy.

If you replace the terminals with individual complete
micros, each running CP/M, the situation can be somewhat
better. It will not be any better when they are working
through or with the main computer, but if they were to
disconnect themselves temporarily, they would have the
ability to function independently. This is what happens in
the simplest possible configuration of CP/NET. The

replacement of terminals with complete computers is
basically the dividing point between time sharing and
networking.

At this point the CP/NET resembles its more
sophisticated brethren in that the users are capable of
working by themselves when not accessing the central
peripherals. In an ordinary MP/M system, the additional
users have to share the same CPU and memory system as
well as the peripherals.

A CP/NET with only one shared MP/M server will display
many desirable network features and lack some others such
as a high speed communication system (communication is by
way of ordinary I/O ports) or a sophisticated error-detection
and correction capability. It can be favorably compared to a
multi-processor system, since the users operate
independently when not accessing the host system's
facilities.

More network features appear when more than one of the
workstations is equipped with an MP/M operating system
rather than ordinary CP/M. Two or more such installations
can access each others’ peripherals, while communieation
between one MP/M and one CP/M station is more of a one-
way operation. However, the communication in either case
is at the inherently slow speed of an I/O serial port, and you
might have to write or alter part of the software to have the
kind of communication you really want.

How it Works

Knowing CP/NET's terminology is important in
understanding the system. Any MP/M equipped machine (or
machines) rate the title of master and the CPM
workstations are called slaves. This fairly well describes
their relationship as far as sharing facilities is concerzed.

Easential elements of any CP/M system are the BIOS (I/0
system) and BDOS (disk operating system.) When we
graduate to MP/M we find that the BIOS is replaced by an
XIOS (eXtended 1/0) to handle multiple users, and that the
BDOS is augmented by an “eXtended” XBDOS. This is the
part that handles the time sharing chores. Figure 1 shows
the relationship of these elements to system memory and
the rest of the MP/M system. The configuration shown here
would permit several terminals to share the MP/M-equipped
computer. An MP/M system would normally share a single
computer with several terminals.

CP/NET allows the slave users to be complete computers
rather than simply terminals—thus, they are spared from
having to all share the same CPU. The CP/NET operating
system is a logical extension of the elements just discussed.
Figure 2 shows the added elements and their relative
position in the CP/M system. One of these new elements is

The Computer Journal 9@

Y10 BIOS (CP/M)

BDOS (CP/M)

XDOS SNI0S (NET)

8005 NDOS (NET)
MP/M CP/M

program area program area

Figurs 1 Figure 2

. the NDOS, or network system; another, the SNIOS is the

slave 1/O software.

Notice now that the application program communicates
directly with the NDOS; this is shown in flowchart form in
Figure 3. The NDOS “decides” whether a particualr system
call should be routed to the resident BDOS (as it ordinarily
would be) or to the network, via the SNIOS. If the user has
addressed one of his local peripherals, the 1/O is handled by
his internal CP/M system. If he has addressed a remote
device, the I/O is routed to the network and thus to its
ultimate destination. The slave user operates independently
of the MP/M master except when accessing its peripherals.

Using CP/NET

If you're familiar with CP/M you already know about the
software linkage of “physical” and “logical” devices; these
include the CON: or console, and the LST: or printer, among
others. You also have available, in CP/M, several disk drive
assignments. These various devices can be reassigned
{(within limits) by commands from the console.

CP/NET extends this capability. In CP/NET you can
reassign some of the master's devices in a similar way. For
example, NETWORK H: = C:(01) assigns disk drive H: of the
master for use as drive C: by user number 1. Drive H: might
be a single floppy or a segment of a shared hard disk.
Similarly, a printer driven (served) by the master can be
assigned to be the LST: device of one or more users.
Following these assignments the user simply calls for drive
C: or LST: just as he would if they were a physical part of
his own installation. In a moment we'll look at how this is
actually handled by the software.

The access of 2 master facility may not be instantaneous,
because of the sharing that might be taking place. These
delays, which hopefully will not be excessive, are handled by
a “queuing” arrangement in the master’s network software.
User requests line up and wait their turn, if necessary.

Implementation

There is some software modification to be made whenever
a new CP/NET is placed in service. User and device
assignments have to be made, to name the most important
task. These assignments are entered into the software and
become part of status tables. These tables have to be
accessed by the individual user operating systems, to guide
the routing of communication from one point to another.

Another important software task is the automatic

application

program

local user
facitities

network [intertace
logic

Figure 3

construction of “messages,” within which the actual data or
command (being transmitted from-here-to-there) is only one
section. The source and destination addresses and some
other control information are also appended. Figure 4
outlines a typical CP/NET message. Remember that you
don't have to put this message together —the system does it
for you. The real “data,” which may be just a CPM
command line, is all that the user has to provide.

You might also wish to have some sort of customized
hardware interface at each machine to permit the use of a
communication protocol other than what is a part of your
“normal” 1/O ports. None of this should be very terrifying to
experienced persons, but neither can the installation be
considered just a “plug it in, turn it on” kind of operation.

Format Destination Source Functior Data patz |
Coge Adaress Adgress Code Length
Figure 4
s
Evaluation

I must confess to having never used either MP/M or
CP/NET, so this report is based on information released by
Digital Research as well as reports found in other
publications. It has been reported by others that
implementing MP/M, either as a timesharing gystem or as
part of CP/NET, is not a trivial task.

Based on my own experience with CP/M, and the general
reputation of Digital's products, I would expect the system
to be all that is claimed, and perhaps more. One
expectations would be that current revisions might differ
from, and be superior to, the original release. The price is
attractive. I would expect that any CP/M compatible
software would work with either MP/M or the network,
which could be a valuable asset if you are already using such
software.

My best guess is that “network” is stretching the term a
bit if you compare this system to some of the more
expensive ones such as Ethernet, but that it is a worthwhile
compromise for the small-budget user of desktop computers.
Because of rapid developments in networking technology,
too, some of my source material might be obsolete by the
time this column is printed. To be on the safe side, if you are
interested, please research the matter in detail and make
your own evaluation of whatever version is currently
available. B

For more information on MP/M and CP/NET, contact
Digital Research Inc., Pacific Grove, CA 93950.

10 The Computer Journa:

Build a High-Resolution $-100 Graphics Board

Part Three: Construction

by Lance Rose, Technical Editor

In the first two parts of this series, we described what is
needed to display a video image, and discussed the present
circuit in depth—now it’s time to get down to the actual
construction details.

Figure 1 shows a photograph of the front side of the

"graphics board. Figure 2 shows a view of the back side
which should help suggest some wire routings. These are
not all that critical and if you prefer a different routing, go
ahead and use it. Figure 3 is a drawing of the front side of
the circuit board identifying each of the ICs on it along with
the pin #1 locations.

The first obvious thing is that there are plenty of chips to
find a place for, so there is no wasted space. Although the
layout shown here is not the only possible one, I did

" experiment with several other variations and this one came
out on top. The rationale behind the layout is as follows: The
state ROMs and clock oscillator are all located near each
other to minimize long connections. Most of the small
LSTTL chips are also placed to minimize long connections
and reduce clutter. The crystal is mounted near the top of
the board to facilitate changing. Although this probably
won't be a factor for you, during development I tried a
couple of different crystals and wanted to be able to access
it easily. Also, the crystal is mounted in a piece of socket cut
‘from & DIP wire-wrap socket. This can be done with a small
hacksaw or coping saw. Alternatively, you can solder it in if
you're sure you won't have to change it. Personally, I am a
fan of flexibility.

The DIP switch for address selection is also at the top of
the board where it can be reached when the board is in the
card cage. Once again, if you know you'll be setting the
switches once and never again, you can move it down. You
can even go further and eliminate the switch and wire wrap
the inputs to the open-coliector NOR gates to either + 5V or
ground. It saves one IC position but makes changing the
address a bit of work.

All the bus interface chips are mounted near the bottom

N

of the board (near the bus, naturally). The address decoders
and some of the other chips are in something of a
compromise location. Since the RAM chips take up a lot of
space, choosing a layout for them took quite a while. I tried
layouts with the 24-pin sockets in a horizontal position but
they didn’t work out as efficiently.

If you have had some experience in board layout or just
want to strike out on your own, by all means do so. There
may be other layouts that are a hair better but I think most
of you will be quite satisfied with this one.

You can see that the TO-3 type regulator takes up some
room, but I'm a believer in adequate power supplies. I
wouldn't feel good about using only a single TO-220 5-volt
regulator even though on paper it has the same current
capacity as the larger metal one. And two of the T0-220s
take up as much space as one of the TO-3s when you include
heat sinks for them, so....

The complete parts lists for the board is found in Table 1.
As I stated in Part I of this series, you should be able to buy
all the parts for around $200, or even a bit less since the
price of 6116 RAM chips has come down a little since I
bought mine. If you were to try using soldertail sockets
instead of wire-wrap and solder all the connections, the price
would be even lower. However, being conservative, I
wouldn't recommend that approach.

The basis of any layout you choose is, of course, the
prototype board itself. There are a number of these to
choose from. Some have pre-etched traces for power and
ground, some have one pre-etched pad per hole, some have
only an area for a voltage regulator (usually a T0-220) and
some have nothing at all but the holes. The problem with
any of those that have traces or pads laid out on them is
that most of them assume you'll be using only 14 and 16-pin
IC packages. Designs with a lot of 24-pin sockets don't seem
to be able to take as much advantage of these pre-etched
prototype boards. The good thing about them is that they
usually have heavy traces for running power and ground

The Computer Journal 11

TS

\;i;i\fiinih:inuu}u;m'n;s:-é

Figure 2

Figure 1

" connections.

1 normally use the completely blank boards, not just
because they are the least expensive but because they offer
the most flexibility in layout. Using one of these does
require that you pay due attention to providing adequate
power and ground “busses”. A single strand of 30 gauge
wire-wrap wire is a bit marginal in my experience. All
power and ground leads should be doubled if at all possible.
Alternatively, you can use some heavier wire for the power
and ground leads and connect all the sockets to these busses
with short lengths of 30-gauge wire. This approach is
probably the best but requires more soldering, at least until
you get the power and ground leads laid out. If you choose
to distribute power and ground with wire-wrap wire, try to
lay them out in a grid pattern to approximate a ground
plane.

Another thing to watch is bypass capacitors. Be sure to
use enough here. There are a lot of high-frequency signals
running around, and one bypass cap per chip is not too

. much. This can be stretched a little in the RAM portion of

the board since CMOS is more tolerant of noise. The RAM
chips are crammed together pretty tightly and you might
not be able to fit one in for each chip.

Before beginning the actual construction, let me warn you
about the 24-pin sockets. Some brands are sized such that
they can be placed side-by-side on & board with no blank
rows of holes between them. Others require a small gap.

" You'll have to obtain the former kind in order to get

everything to fit on this board. I got mine from Jameco, but
I'm sure they are available from other sources as well
These particular ones have a “CA” stamped on the top of
the socket. I don’t know if this is the brand name or not, but
if you order sockets remotely, be sure to ask for ones that
will fit side-by-side. This only applies to the 24-pin sockets.
With the others, there is always at least one row’s spacing
between them.

As a general procedure, I think it's best to begin by
mounting the voltage regulator and tantalum electrolytics
along with the connections to the S-100 8-volt and ground
fingers. At the same time, you can do any other mechanical
work necessary with a drill or file. The RCA phono jack
shown here is mounted on & small L-bracket that has been
drilled out to size. If you use a different type of connecter,
do the appropriate work here so that when you get the
sockets on the board you won't have to be drilling, sawing,

filing and sanding around them.

With a hefty TO-3 regulator you can afford to use one of
the low-profile heat sinks. This will make it easier to get the
finished board into your card cage. Once this is done, you
can plug the board in and check out the regulator for proper
voltage.

Following this, my own habit is to place all the sockets on
the board and fasten them down by connecting the power
and ground leads to them. At the same time I solder in the
bypass caps. Powering up at this point will detect any
shorted caps and it will be easier to find them without all
the signal leads running around the board.

Perhaps I ought to say a word or two about color coding.
I've seen projects built with only a single color of wire-wrap
wire but debugging has to be more difficult that way. Even
if all you have nearby is a Radio Shack store, you can still
get 4 different colors - red, blue, yellow and white. If you're
willing to mail order, you can get about another 4 or 5
colors. That may be going overboard. I usually use red for
power supply, blue for ground, yellow for address lines and
white for data and signal lines (actually five colors would be
just right). This is just a personal preference on my part and
if you would rather use all one color, by all means go ahead.
As long as you can find your way around the board, that’s all
that matters.

After all the sockets are located on the board you can go
ahead and start connecting the signal leads. The suggested
order of wiring is as follows.

First wire the oscillator circuit, which includes the 7404,
the crystal, and the necessary resistors and capacitor. You
can then power up and check for oscillation. You should be
able to detect this with a reasonably good scope or logic
probe. Once oscillation is verified, the next section to wire is
the state machine. This includes the 2732 EPROMs, all the
74L.S193 counters, and two of the 74LS393s—U8 and U9,
and the 74LS174.

If you are going to program your own EPROMs, the
program listing in Figure 5 is the one to use. It requires the
use of either Digital Research’'s MAC® macro assembler or
a recent version of Microsoft's M80 assembler. If you don’t
have either one of these or can't get access to one, you can
either rewrite the program in BASIC or order a set of
ROMs from The Computer Journal The price is $25 per pair
preprogrammed. If you have the facilities for programming
and would like a machine-readable copy of the program, we

12 The Computer Journa!

can provide one on 8" single density CP/M for $15. This also
includes the test program and sample use program whose
listings appear in Figures 6 and 7 here. We may also be able
to provide some 5.25" formats but you'll have to check with
us and see if it's one that we can make.

Once this is done and you have either programmed your
own EPROMs or obtained them from us, you can plug the
board in and look at the outputs of the 74LS174 to see if the
timing is about what you would expect. This would mean
blanking and sync outputs at approximately the horizontal
sweep frequency and RAM counter reset (pin 15) once every
- 1/60 second. If these outputs look about right, the state
machine is probably working fine.

Next go ahead and wire up the 74L.S165 shift register and
any necessary gates associated with it. Wire the transistor
and the rest of the output circuit as well. Although I used a
9Nb5450 transistor in my version, it was mostly because I
happened to have a bunch of them in my junk box. Almost
any small-signal transistor with a decent gain and
bandwidth should work, so try using what you have handy.

You can now connect the board to your video monitor for
further troubleshooting. With the power on, the video
screen should display a uniform bright raster with no
tearing or lack of synchronization. If you can't get the image
to lock in with the monitor's horizontal and vertical hold
controls, something is out of whack. Try looking at the
composite video output with an oscilloscope. The waveform
should appear much as in Figure 2 in Part I of this series.
Check both voltage levels and timing. The signal level can
be off quite a bit and still work by adjusting the brightness
and contrast accordingly, but the timing should be very

close. If it isn't, stop and check all connections in the timing
s

circuit US-UB as well as the state ROM address counters U8
and U9. Also check the dot clock and byte clock outputs for
proper frequency.

Once you get a display that will lock in on the screen, go
ahead and, using a clip lead, ground each of the parallel data
inputs to the 74LS165 in turn. This should result in a series
of thin, dark vertical lines in the bright field. Grounding two
adjacent data inputs will produce wider dark lines. If this is
what you get, so far so good.

Next try wiring up the local RAM address counters U186
and U17, buffers U18 and U19 and any necessary gates that
go with them. Wire up at least one of the 6116 sockets,
preferably one adjoining U18 or Ul9. This will let you
display information from the video RAM without having to
have all the sockets wired. You should also wire up the
address decoders U27, U28 and U29a and U20d, but only
connect the chip select line for the one RAM socket you
have in at the present. You'll also need Ul4b and U12d (you
can leave pin 9 on the latter open for now).

On powering up you should get an all-white (green) display
except for a small area where the single 6116 is. In that area
the screen should show random dots both on and off. In all
likelihood, the pattern will be somewhat regular and
probably look like alternating white and black bars about 8
dots wide each. This is simply due to the power-up
characteristics of the 6116 and has no other significance.
There will be a few random areas anyway. If you don't get
alternating bands, don't worry. The important thing is to
identify at least a few features attributable to random bits.

If things are working here, you're over the hump. Go
ahead and make the connections for all the bus interface

logic. This means wire everything else except the remaining

[] [] {] [J L] [] L] []
s1-87
J)
5 v3e v3l v32 v33 U3w v3s v3e vu37
VRI
vas
X} l_
[] [] * L [] ® *
]
o [[J
vag v3g vyo vel U4 U43 Uty Uy
ur | [V luis] Juac
[] [[]
v3 vyY vs O L] ® r]
[L]) [J
L) Ul vt J L vay vasg vat
. . * vao| v 2 = U ver | uwe
O] [® ®) *
10
ve | v? |F ‘1 Ir
vio vigl lvie] juar| jvaaj jvas)| jvay
uvg viz) vy vié

Figure 3: Component layout for board.

The Computer Journa' 13

v§ vorTy(ED) Tgosk s
il o
* +
N
-7 3 ‘”TC* 0 Tc;'c"
& Rouwp(py,my T GNp

Figurs 4:Power Supply.

RAM chips. Also, put in the DIP switch if you're going to
use one. If you like you can place it in & socket, as I did.
Double check all but the remaining RAM connections and
you're ready for an actual test.

Plug the board into your bus and power up. Of course if

. your machine won't operate at this point, you have a

problem. Most likely you made a connection to a wrong bus
pin or accidentally grounded a bus line or something of that
nature. I have found that about 90% of all errors in
prototype circuits can be found by visual inspection,
checking the wiring against the schematic. Another thing
you should be checking on a regular basis here is the output
from the regulator. If it is more than about a quarter of a
volt off, you probably should try another regulator.

After you get the board in and the machine running, the
easiest way to check the board out is from BASIC. The
general procedure for writing a byte to the video RAM is as
follows:(Assume the board is addressed at locations 100, 101,
102 decimal)

(1) Output the low byte of the desired video RAM address to
port 100.

(2) Output the high byte of the desired video RAM address
to port 101.

{3) Output the desired date byte to be placed in video RAM
to port 102.

You should be able to tell what addresses are active by
which RAM socket you wired up. Outputting a byte of 0 will
make a dark line 8 dots wide appear at that location. A byte
of 255 will make a bright line of the same size. Intermediate
values will turn on or off all other possible combinations. If
it doesn't appear to work right away here, double check to
see that the single RAM chip you have wired up is at the
address you think it is. If you're not sure, you can always go
shead and wire up all the rest of the RAM sockets and
install the chips. However, that’s a lot of connections and if
you know you already have a working board and just have
to mechanically run the wires, it seems to be psychologically
easier.

If you just can't get any effect from trying to write into
the video RAM, you'll need a logic probe to do some tracing.
Check for the WE* pulse on pin 21 of the RAM during the
write operation. If you think it will help, you can disable the
arbitration circuitry and allow constant access to the video
RAM from the bus by temporarily removing the wires from
pins 10 and 12 of U10 and grounding them. This should
constantly select the bus address latches as the address
generators for the RAM chips. Just don't forget to change
this back after you find the problem. Make sure that U18
and U19 are not being enabled at the same time as U21 and
U22. Check for the usual things like bent-under pins on

[o} 220 pf ceramic disk

c2 470 pf ceramic disk

c3,c4 4.7 uf/25V tantalum electrolytic
c5—Cn 0.1 uf ceramic disk (bypass)

J1 RCA phono jack

[+3% 2N5450 or equivalent

R1,R2 470 ohm, 1/4 watt

R3 100 ohm, 1/4 watt

R4 220 ohm, 1/4 watt

RS, R6 150 ohm, 1/4 watt

R7-R14 2.2 kohm, 1/4 watt

$1-87 7-position DIP switch

Ul 7404 hex inverter

y2-us 74LS193 presettable binary counter
ue,u? 2732 4Kx8 EPROM

u8,uU%,uUl6,Ul7 74LS393 dual binary counter

ulo 74LS174 hex D flip-flop

Ull 74L5165 shift register

ul2 74LS02 quad NOR gate

ul3 74LS32 quad OR gate

ul4 741508 quad AND gate

Uls 7406 hex driver, open collector
U18,U19,U23,U24 74LS244 octal buffer

u2e 74LS00 quad NAND gate

U21,U022 74LS374 Octal D flip-flop, 3-state
u25,U26 74LS266 quad exclusive NOR, open collector
v27,u28 74L5138 one of eight decoder

v29 74LS139 dual one of four decoder
U30-u48 6116-4 2KxB8 CMOS RAM

VR1 7805K 5 volt regulator, TO-3

X1 16 MHz crystal

Table 1: Parts List

chips, bad chips (very unlikely) or wiring errors (much more
likely). It's hard to give specific instructions here since there
are so many variations. As I said above, most of my own
errors have been due to accidentally leaving a connection
out or making it to the wrong pin. When you're staring at
about a thousand pins upside down and backwards, it's not
too hard to do.

After debugging the write portion, try reading the byte
back. You can skip steps 1 and 2 above if you're accessing
the same location. For step 3, input a byte from port 102 and
see if it's the same as what you output. If not, use similar
debugging techniques on the read portion of the bus
interface logic. Note here that you can do either 1 or 2
above without the other. You only need to change the
portion of the address that is different from the last address
accessed.

The final step, once the board is working with a single
chip, is to add the other RAMs. It just takes some time.
With all the RAM chips plugged in, you're ready for final
checkout. A simple test program in Microsoft BASIC is
shown in Figure 6. It writes random bytes to random screen
locations and then attempts to read them back. Make sure
the DIP switch on the board is set for 100 decimal (64H) or
else change the port numbers in the test program to
coincide with what you have the switches set for. If an error
is detected, the program reports it. When the program is
running the screen should display a speckled random
pattern that changes slowly, one speckle at a time. No hash
should be seen in the display at all. If there is hash, suspect
the interlock circuit that is supposed to keep the processor
waiting during scan lines. Also check the wait state circuitry
on the CPU board to make sure it's functioning properly.
Most newer memories don't require any wait states so yours

14 The Computer Journa

Figure 5: Program for T.V. signal ROMs.
2732 ROM program to generate TV waveforms
Used for] C-mapped graphics board
Version of 2/3/64
BLANK EQU 200801 PPE :Generate blanking level
SYNU EQU eeespecH ;Generate sync level
COUNT EQU f|pp10000P ;Count up RAM pointer with dot clock
WAIT EQU fBledeect ;Generate walit state
DISABL ECQU 2)88e0R2: ;Maintain wait state and disable MWRITE
oL EOL [- 3981 [I3y ;Keer wait, MWRITE disabled, use RAM pointer
M RESET EQU 108088888 :Reset RAM pointer
i TCP EZQU 2" ;Scan lines in blanked top of frame
VERT EQU 488 :Scan lines in view area
LINE EQU 121¢ ;Dote in line
HSYNC EQU €0 :Dots in horizontal sync pulse
LEFT SET 174 ;Dots in left border
HOR12 SET €48 ;Dots in view area
RIGKT SET 122 :Dets 1n right border
EQPLSE EOQU aB :Dots in equalizing pulee
FINISPE EQU i sbots to finish current access
WRTOPF ECU e :Dots to turn off MWRITE
' SWITCH EQU 1@ ;Dots tco change multiplexer inputs
Low byte ROM
REPT TOP/2 :Blanked lines at top of first field
DF HSYNC -1
DR LEPT-1]
TP HOY1Z/4-1
DB HORI12/4-1
o RORiZ/4-1
DB KOR12/4-1
Db RIGHT-1
ENDM
REPT VERT/2 ;Visible lines in fairst field
DF BSYHT-1
DR LEPT-PIN]SH-WRTOFF-SWITCH-1
193 FINISH--1
DB WRTOFF -1
CE SWITCH-1
bB HORIz-1 AND BFPH
Ik SWITCH-)
DB FIGHT-SWITCH-1
ENDM
DE ESYNC-] Elanked half lipe
Lr LINF/Z-HSYNC-1 ANI @FFH
REPT ¢ ;Equalizing rulses
3 EOPISE~-1
DR LINE/J-FOFLSE-1 AND BFFH
ENDM
REPT € ;Verticsl retrace
313 LINE/Z-HSYN(-! AN[RFIMH
DB BEYNC -1
ENDM
REPT < ;Equaiizing pulses
Di- EQPLSE -1
DR 11INE/2-EQPLSE-) AND BFFh
ENDM
Ty FOPLSE-1 :Full equalizina line
DB LINF-FCTLSE-1 AND BFPH
REPT TCP. D ;Flanked ines at top ©f second field
ju3 HSYNC-1
Db LEFT-)
Dk HOF17 4-1
DB HOR1?Z /4-1
DE HOK1:,/4-1
DB ROR1Z/4-}
D RIGHT-1
ENDH
REPT VERT/Z ‘:visible lines in second field
DE HSYN -1
DB LEFT-F INISH-WRTOFF-SWITCE- 1
rr FINISK-1
DB WPTOFF-1
DE SWITCH-1
DB HOR1Z-] AND' @VFH
jug SWITCH-)
LB KIGHT-SWITCH-1
ENDM
REPT € ;EQualizing pulses
DE EQPLSE -1
DB LINE/Z~EQPLSE-]1 AND BFFE
ENDM
REPT € :Vertical retrace
DB LINE/Z-HSYN"-1 ANT @FFRH
DB ESYNC-1
ENDM

REPT 5 ;Zqualizing pulses

DB BOPLSE-)

DB LINE/2-EQPLSE-1 AND @FFH

ENDM

DB EQPLSE -1 :Balf equelizing line
b8 LINE/2-EQPLSE-1 ANL #YFH

High byte ROM

REPT TOP/2 ;Blanked lines at top of first field
DB BLANK+SYNC

DR BLANK

DR BLANK

DB BLANK

DB BLANK

LB BLANK

DR BLANK

ENDM

DB BLANK+SYNC ;Visible lines in first fielc
DB BLANK

DR BLANK+WA1T

DB BLANK4D1SABL

DB BLANK4LOCL

LE LOCI + (HOR12-1) /256

rs BLANK+D1SABL

Db BLANK

REPT VERT/2-1

DF BLANF +SYNC+COUNT

LB BLANK

193 BLANF +WAIT

B ELANK+C1SABL

DE BLANK +LOCL.

B LOCL+ (HOR1Z-1}/256

TB BLANK+D1SABL

DR ELANK

ENDM

DB BLANK+SYNC :Blanked half line
DE BLANK+{LINE/2-HSYNC-1)/256

RLPT [3 ;Equalizing pulses
Lk BLANF +4SYNC

233 BLANK+ (LINE/2-EQPLSE-1}/256

ENDM

REPT € ;vertical retrace
a3 BLANK+SYNC+ (LINE/2-HSYNC-1)/256

DR BLANK

ENDM

RE PT 3 ;Equalizing pulses
CF BLANK+SYNC

rR ELANK+ (LINF/Z-EQOPLSE-1,/25€

ENDM

Ih BLANK+ SYNC sFull eaualizing line
Ck BLANLF +RESET+ (LINE-EQPLSE-})/256

RF PT TCE2 ;Blanved lines a: top of second field
Cr BLANK4SYNC :(Includes blanked halt line)
PR FLANF

83 HLANH

B FLANK

DE ELANK

rB ELAN}

LR ELANK

ENIM

RE PT VERT/Z ;Visible linee in second field
it BLAN: + SYNC+COUNT

o ELANY

i RLANS +WA 1T

re ELAN +[1SAB}

re BLAN- 41.0C]

DB LOCL » (HGR1Z-11 /256

DE ELANK+TISABL

DB BLANEK

ENDM

REPT 6 :Baualizing pulses
DE BLAN} 4SYNC

DB BELANK+{LINE/2-EOPLSE-1;/256

ENDM

REPT € :Vertical retrace
Dk BLARK4SYNC+(LINF, Z-HSYNL =1} /256

DB ELANK

ENDM

RLPT 5 :Egqualizing puiscs
D BLAN} 4SYNC

] RLANK+ (LINE/2-EQPLSE-1} /256

ENDM

DB ELAN} +SYNC :Half egualizing line
Lt BLANK+KESET+ (LINE/2-EQPISE-1)/256
END

may not be working and you won't have known it. If every
byte comes back an error, something is wrong in the read
portion of the bus interface logic. Check wiring. If only
occasional errors oceur, check for good grounding and power
connections. Also, make sure there are enough 0.1uf bypass

caps.

When the board passes the GTEST program, you can then
try out the sample plotting program included here in Figure
7, also in Microsoft BASIC (but easily convertible to another
BASIC). A screen menu lets you choose a variety of
functions to test the board. The scale is assumed to be linear
in both directions and the left, right, upper and lower limits

can be changed with the “Set Limits” option. After that you
can set an individual point, draw a straight line, an arc or a
sine curve (arguments in degrees).

The program is designed mostly for fooling around and as
an example of how to use the facilities of the graphics board.
The painful slowness of BASIC is amply evident here. Any
truly useful graphics programs simply must be written in
assembly language to operate with any kind of reasonable
speed. Compiled BASIC or FORTRAN are improvements
but still not as good as assembly. If you aren’t doing at least
some assembly language programming yet, this may be the
impetus you need.

The Computer Journal 15

Figure 6: BASIC test program.

1880 A=-INT(383991°RNT)

1818 OUT 18¥, A-INT{A/256)°256

1820 OUT 18),INT{A/256)

1838 C=256°RNT MO 256

1848 OUT 182, DL:EV=INP(182)

185@ 1F DV=EYL THEN 1002

1068 AS=HEXS(A)

187¢ IF LEN{AS)<4 THER AS="$ +A$:GOTC 1078
188€ DS*HEXS(CU):1F LEN(D$)=1 THEN D§="8°+D$
1098 ES=MEXS(EV):)F LEN(ES)=] THEN E$=“B"+E§
118@ PRINT "ERROR AT "A$:"., ®:D$;:™ READ AE “:ES
1118 GOTO 1888

Figures 7: BASIC program to draw some shapes with the board.

1088 REM CDEFINE 1/0 PORT ADDRESSES

1918 PO=188:P1=PB+]:P2:PBe2

1828 REM SPT DEFAULT LIM1TS FOR SCREEN

18386 Xi=-1.33333:X9=1.33333:Y)=-1:Y9=)

1848 REM CLEAF SCREEN, DISPLAY MENU AND 1INPUT CHOICE

1858 PRINT CHRS$(27):°% (1) CLEAR SCREEN":PRINT ° (2) REVERSE VIDEC™
1860 PRINT * (3) SET POINT®:PRINT * (4) DRAW LINE"

187 PRINT ° (5) DRAW ARC™:PRINT © {6) SET LIMITS®

1888 PRINT " (7) LOAD SCREEN':PRINT " (B) SAVE SCREEN®

1898 PRINT * (9) DRAW SINE CURVE":PRINT *(1@) EXIT*:PRINT:INPUT ©:PRINT
1188 REM EXECUTE PROPER SUBROUTINE ANL THEW RETURN TO MENU

111@ ON O GOSUF 1148,1178,120€,1278,1370,1458,1488,1558,1610,1638
1128 GoTC 185¢

1138 RE¥ CLE*R SCREEN

1148 FOR Hi=@ TG)49:0UT F),BV:FOR L¥=2 TO 25%

J158 CUT i8,1.8:0U7 F2,@:NEXT LY:NEXT HY: RETURN

116@ FEW KEVERSE VIDEC TOGGLF

1198 FLF PU=@ TC 149:0UT PJ,HUL:FCR L¥=0 TO 2955:0UT FO,1%

1180 OUT FZ,NOT 1INP({P2; AND 255:NEXT LY:NEXT HY:FETURN

1198 REm S:T A POINT CN THE SCREEN

128€ INPUT “COORDINATES(X,Y}: ".X.¥

1Z1@ 1F X<x1 OF X3X9 OF Y<Y1 COR Y>Y9 TRHEN RETURN

1228 H¥={X-X]}/{X9-X1)*63¢

1230 V‘r(\»‘lg,/(YJ—Y‘.‘)‘479:#:V"BII4H\\B:B=:'(Hi MCD E)

1242 OUT P2, M-INTIM/256)%256:00T P1,INT(M/25€)

125¢ OUT F. INFIF2Z} OR B:RETURN

1260 REM DFAw LINE

127@ INPUT *STARTING POINTI(X,Y): °,X2.Y2

128€ INTUT "ENIING POINT{X,Y): ", X8B.Y8

}J298 DX=X6-X2:DY=YE-Y2:]F DX=@ ARD FY=@ THEN XeX2:Y¥=Y2:GOTC 121¢#
}38€ 1IF Cx«>@ THELN S=DY/DX ELSE S$=8:GOTC 1348

1318 1F £¢(X9-X1,%479/(Y9-Y1, ¢39>) THEN 8§=1.6:GOTC 1348

132@ FCF x=Y2 T XF STEF SCGNINF-X2)}*(39-X1}/1278

1338 Y=Y2+4!¥-X2)*S:GOSUB 12)8:NEXT X:RFTURN

134@ FOF Y=Y2 TC Y8 STEF SGN(YB-Y2)*{Y9-Y))/9%8

1358 X=X2+4(Y-Y2)%5:GOSURB 121@:NEXT Y:RETURN

136f Rr». DRAw APC

1378 INPUT “CENTER(X,Y}: ",XC,YC

136@ INFL HAPIUS: 'R

1398 J LIMITS(PFGIN END : ", k). A2

j4ce 33;AT=A2% . 2174533

341f 5 9:1F (YS-Y1)/479<5 THERN £=1Y9-Y1 /47¢

142f S=5, PYR):FCK As:] TO AZ STEP SGN{A2-A1)%S

1437 2=2P% S(2 . 4XT:¥=RYEIN(A . +1C:GOSU! 1218:NEXT A:RETURM
J44B RtV SET OLIMITE

1at@ IKSUT CACKIZONTAL LIMITS: ®.X)1.¥@

lae@ IMi *VERTIVP! LIMITS: ", %1, Y4:RETURN
j47@ KEM L_OAD SCREEN FROM FILE
14+C INFUT CERIIT ONAME: ° F$:0PEN "R",1,FS:FIEL] 41,1268 AS P$

1498 FOR &v=f TC 14%:0UT P1,HV:GET 4.

15@¢ FIT _¥=f T. JIT:0U7 PP,LY:OUT P2,ASC(MITS(IS,L841,1})
151¢ NEYT L¥:GF7 91:FOF L¥=12F TO 255:0UT Fe, 1%

192¢€ (7 S, ASCIMITE(DS,L8-027,1)) :NEXT L3 :NEXT Ht

153# CLOST #i:RETURN

1548 KE~ SAVE SCRFEN)N FILY

1556 INPUT “FILF NAML: * FS:OPEWN *R*,1,F$:FIELT 41,12t AS D§

1568 - 149:0UT P1,HY:FOF L¥=) TC 126:00UT PP, LY-]

1%7¢ LI%. 1)=CHRS{INP(F2)):NEXT LV:PUT 41
15p¢ SLf¢ 128:0U% PB,LN4127:MIDS(DS, LY, 1)=CHRS(INP(P2))
159¢ 1Y:PUT #1:NEXT H¥:CLOSE:RETURN

168¢ RE¥ DRAn SINF CUEVE

J63@ INT.T "ARGUMENT (FICIN,ENC,STEF): ", X2,X8,[X

1€2f F.: »x=xz T. X& STEP DX:Y=SIN{X/57.2958)}:C0SUBb 1218:NEXT X:RETURM
1638 ENT

MicroMotion

MasterFORTH

It's here — the next generation
of MicroMotion Forth.

If you have gone this far and actually built the board, you
probably had some ideas of what you wanted to use it for.
Some of the things 1 wanted to do were to plot 3
dimensional figures, plot orbital data from my astronomy
programs, generate Fourier waveforms and use it to display
alphanumeric data in any one of a number of character fonts.
Since the board is programmable on the dot level, you can
make up characters in any shape you like (APL, Chinese,
Arsbic, Hebrew, Greek, etc) You can do proportional
spacing. You can plot in rectangular or polar coordinates. Its
uses are limited only by your imagination.

Although this concludes the series of construction articles
on this board, there may be other articles on specific
applications in the future if interest warrants it. We'd like
to hear your views on it. If you build the board, we'd also
like to hear your difficulties, if any, and your reactions to
the corpieted product. []

o The input and output streams are fully redirectable.
e Theeditor, assembilerand screen copy utilities are

e Available for APPLE II/lI+/lle & CP/M 2.x users

Meets all provisions, extensions and experimental
proposals of the FORTH-83 International Standard.

Uses the host operating system file structure (APPLE
DOS 3.3 & CP/M 2x).

Built-in micro-assembier with numeric local labels.

Afull screen editor is provided which includes 16 x
64 format, can push & pop more than one line,
user definable controls, upper/iower case key-
board entry, ACOPY utility moves screens within &
between lines, line stack, redefinable control
keys, and search & replace commands.

includes all file primitives described in Kemigan
and Piauger's Sottware Tools.

provided as relocatable object modules. They
are brought into the dictionary on demand and
may be released with a single command
Many key nucleus commands are vectored. Error
handling. number parsing. keyboard transiation
and so on can be redefined as needed by user
programs They are automatically returned to
their previous definitions when the program is
forgotten.

The string-hondling package is the finest and
most complete available.

A listing of the nucleus is provided as part of the
documentation.

The language implementation exactly matches
the one descriped in FORTH TOOLS, by Anderson
& Trocy. This 200 page tutonal and reference
manual is included with MasterFORTH.

Floating Point & HIRES options available.

MasterFORTH - $100.00. FP & HIRES -540.00 each
(tess 25% for FP & HIRES).

Publications

e FORTH TOOLS - 520.00

¢ 83 Intemational Standord - $15.00

e FORTH-83 Source Listing 6502, 8080. 8086 -
$20.00 each.

< f MicroMotion
g 12077 Wilshire Bivd, Ste. 506
/ . Los Angeles, CA 90025

Contact:

(213) 821-434C

interconnects.

HB-1210

One socket and one buss strip
with self-adhesive backing and
metal ground plate.

Big nine 14-pin DIP capacity.

Competition Price: $18.50!

“B'§:|395 by

Holds enough IC’s to meet any quick-fix
- situation. Includes: 2 sockets
3 buss strips « 3 binding posts
and is mounted on an 8.7°x5 9" aluminum
ground plate. 18 14-Pin DIP capacity.
Competition Price: $51.50!

HB-2313 $ 00
=531

Mali Orders: Please add $3 (Canada & int'i add $5)
to cover cost of shipping.hangting

HB-2112

workbench.

Each buss strip contains four
groups of labeled contact
points {25 per group) pro-
viding multipoint distribu-
tion for Vcc, ground and
signal paths. When inter-
connected, HB-0100's can
simulate Micro-Processor’s
data or address busses
simplifying ROM, RAM,

UART, etc. to processor

Competition Price: $3.00!

A compact breadboard ideal for beginners, students, professionals and hobbyists. It's
quick and easy to use and immediately becomes the most useful tool on your
Includes: = 2 sockets 1 buss strip

« 2 binding posts and is mounted on an 8.7"x5.4" HB-2112
aluminum ground plate. 18 14-Pin DIP capacity.

HB-1000
Socket

With HANDY sockets,
breadboarding 1s easy
because you always know
where you're at. Each group

of 5 contacts is labeled from
1-64 and each position within a
group is labeled from a-). With 64
groups of 5 contacts each you have
more then enough room for infield
and lab mock-ups that always come
up when you least expect them.

Competition Price: $12.50!

$995

#B-1000

HB-1110

One socket and two buss strips
with self-adhesive backing and
metal ground plate.

Big nine 14-pin DIP capacity.

Competition Price: $15.49!

"$11% //

ORDER

HB-3514

ideal for light industrial as well as secondary
level educational and hobbyist experimentation.
includes: 3 sockets
» 5 buss strips « 4 binding posts
and is mounted on a 9.4"x7.7" aluminum
ground plate. 27 14-Pin DIP capacity
Competition Price: $66.00"

HB-3514

(4

$2495
HB-4714

Largest HANDY breadboard available today. Complete PCB or even
system mock-ups can easily fit on this breadboard. This high capacity.
heavy duty board is a must for industrial users where time is money
_..Great for advanced educational and hobbyist applications.
includes: «4 sockets <7 bussstrips =4 binding posts

and is mounted on a 10.3"x9.5” aluminum ground plate.

Giant 36 14‘P|n pIP capacity. competitioﬂ Price: sagom

HB-4714 $63 95

Charge Cards: (Mir $15) Piease include Acct No . Exp Date,
Bank No (M/C only) and your signature

Checks: Drawn in U S Dotiars on U S. banks only

Conn Residents: Add 7'z% Sales Tax Sorry' No C O D orders

z a ‘

To order...call 1-800-34-HANDY
' ...charge with VISA, MasterCard or American Express.
All items off-the-shelf for Immediate Shipment!

a division of RSP Electronics Corp.

7 Business Park Drive ® P.O. Box 699 e Branford, CT 06405 e (203) 488-6603 ® TWX: (910) 997-0684
Easy Link Mail Box: 62537580 ¢ CompuServe: 71346, 1070
U.S. and Canadian Distributor inquiries welcomed.

SYSTEM INTEGRATION

Part Three: CP/M 3.0
by Bill Kibler

In the first part of this series, we discussed factors to
keep in mind when choosing components for system
integration. In part two we looked at how SDSystems
Versafloppy II was set up to run CP/M 2.2. I hope that most
readers will have at least a 2.2 system running at this stage.
If you have not yet used a 2.2 system, a complete reading of
this article and other books will be necessary before
considering CP/M 3.0. To help the novice and weekend
hacker, let's first review what a 2.2 system does.

CP/M 2.2

CP/M is the interface between the hardware of your

individual system and the generic types of software you will
run. This program, known as an operating system, provides
standard interfaces in two directions, one to transient
programs and one to fixed hardware. CP/M advanced
through many variations and stabilized for some time at
version 2.2. This version is intended to run on an 8080 or
280 CPU with 84K of memory, using fixed peripherals for
1/0. An assembler, a debugger, an editor, and several other
utilities are provided with the purchase of CP/M. This entire
operating system makes it possible to change, modify, and
generate new operating systems, in addition to running
purchased programs with few problems.
* The ins and outs of 2.2 are well known, and for those
looking for more knowledge, your local computer store has
many books on the subject. 2.2's structure is extremely
straightforward. The relationship between the three
modules that make up the program are fairly easy to
explain. The CCP is the command processor and handles
communications with the operator while in the system mode
{not running any generic programs). The BDOS (basic disk
operating system) is the next module, and does most of the
work. It works with running programs by the use of function
calls. The function calls are separate routines that together
form the BDOS and allow canned programs to operate on
different hardware. The BDOS takes a function call and
talks to the next module, the BIOS (basic in/out system) as
many times as necessary to make the hardware perform the
requested function.

2.2 has been around for so long now that other products
are available that can enhance or replace all or portions of
CP/M. With the books and software base available, this
operating system has little equal and allows me to
recommend it without question as the choice of hackers.
However, like most manufacturers, DRI (Digital Research
Inc.) felt that an improved version of CP/M that

incorporated most of the enhancements would allow them to
take back control of their product. An improved version
would also present an opportunity to work out the

The Computer Journa 17

incompatibilities between 2.2 and DRI's multiuser operating
system, MP/M. The cost of memory has decreased in
quantum leaps, reducing the expense of having more than
64K, and a system was needed that could make use of this
cheap memory. So CP/M 3.0 was born.

CP/M 3.0

CP/M 3.0 or “PLUS,” as it is sometimes called, is little
different from 2.2. It is still the operating interface between
the hardware and software, but with some new wrinkles.
Memory can now be in multiple banks, outputs from
programs can be changed or redirected, additions to the
operating system can be created and tacked on, there are
help programs and command line editing, and lastly, the
system is supposed to be faster. What has been lost is a
simple BIOS program and a lot of disk space. Although the
gains may seem to outweigh the losses, closer investigation
is needed.

To utilize CP/M 3.0 more fully you will need more than
one bank of memory. In the non-banked mode most of the
enhancements are lost,as well as part of the transient
program area (TPA). Current programs require up to 56K of
temporary program RAM to run, and the non-banked TPA
of 50 or 51K may not work. Once the BIOS has been
generated for banked operation the TPA expands to over
60K, which can be more than most 2.2 versions. The extra
banks contain the larger BDOS, a copy of the CCP program
(3.0 CCP is a transient program and not resident like 2.2),
and data buffers. Higher operating speeds are possible for
programs that use high disk access by locating the most
highly and currently used sectors in the disk buffers (other
banks). These buffers are assigned and managed by the
BDOS and are not controlied in any way by the operator.

Inputs and outputs are normally assigned through fixed
BIOS definitions or routines. In 3.0, tables of I/O types and
requirements are maintained, which allow the system
configuration to be changed without rewritting the BIOS.
This operator freedom of choice is made at the expense of
memory (banked RAM) and speed (the whole table is
scanned for each output of a character). 2.2 has an 1/0 byte
that has now been expanded to several bytes to take into
consideration the different possible ways of redirecting the
data flow. A new program type, the RSX module, has been
added. This program technique is helpful for those who want
to add some special function that the BDOS doesn’t
currently support. The new module is put below the BDOS
and the inputs to the BDOS are redirected through it. In 2.2
this was not possible except for enhancements to the BIOS
routines as is done in RAM DRIVE modifications.

The banked version aliows the command line to be edited

18 The Computer Journa

instead of completely rewritten as is necessary with 2.2.
This is made possible by larger command line buffers and
the addition of more control functions to the CCP. HELP
programs, although listed as a feature, are really not much
more than the CPMUG or SIG/M version of HELP.COM.
This disk program has help files that explain parts of the
operating system's syntax usage. The help files are usually
one line statements which tell what form the command must
take to do the named function. These HELPs are in no way
to be considered “tutorials,” but are simply quick reference
“cards.” As for speed, the system can take longer to boot (it

. must load more information in different banks) but once

booted, should require less disk access (the slowest part of
the operation) and result in faster operations. The
controlling factor, however, is still the speed of disk reading
and writing,—if the information is not in a disk buffer area,
it must be loaded into & buffer and then into the TPA.
Depending on the type and nature of the programs, this
buffering can be faster than 2.2. Also, for warm boots, the
CCP is reloaded from a bank and not from the disk as is
done in 2.2

The Implementation

With the brief introduction out of the way, it is now time
to “bite the buliet” and get to the “how-to” part. A word of
caution is needed for those who found the previous
discussions somewhat confusing: don't try to implement
8.0—buy it already done or get 2.2 first. Writing a banked
BIOS and deciphering the DRI manuals is not for the novice
programmer. In November of 1983, DRI changed its support
policy to match that of most other big time software houses,
mainly, no FREE support. They now charge a $250 yearly
subscription fee to get in-depth information on their
programs. Anything not covered in their manuals (and there
is a lot not covered) must be explained through your own
efforts or by a member of the subscription service.

The first confusing topic is the many subroutines (see the
listing for what is on DRI's disk). CP/M 3.0 is composed of
many macro files (these are short assembly listings) that will
be linked together to form the complete program. To make
things worse for those doing the SDSystems
implementation, they have their own version of these same
programs for their hardware. SD's hardware is the SBC 300,
and unfortunately, their programs are so hardware
dependent that they are useless to anyone who does not own
the defined hardware. The absence of the ASM files of the
FLPDRVR and MOVE routines add to the problem. What
this leaves for the programmer is the original DRI files and
the disk controller routines from the SD VFII manual for
generating a running system. On closer examination, I have
found that the DRI files, with modifications, are a good
source for a running system. Time has not permitted me to
fully explore the use of DRI's files directly, but those who
feel lost should consider starting there. I did use the
BIOSKRNL and the 2.2 BIOS routines as the disk file, and
was able to make it work in a non-banked mode. The manual
indicates that a 3.0 BIOS can be made from a 2.2 BIOS, but
it also says that two modules are supposed to be the root

modules and should not be changed. A 2.2 BIOS will work
for a non-banked system with some major changes, and the
root BIOS is the starting point for the banked version. The
SCB module adds more trouble due to the equates and
vagueness. This macro has an equate of OFE00 hex, which
would make you think that this is the exact address it will
end up at. Wrong. Hidden in one line of the GENCPM
discussion is a statement which points out that GENCPM
will relocate "FE" locations into the BDOS and link the
other references to them. If you check after GENCPMing,
you will find this list of values located directly before the
beginning of the BIOS (the last bytes of the BDOS).

While covering linking of modules, you ahould check the
listing; I have shown the terminal dialog for the necessary
generations. CPMLDR is the program that loads the system,
as it is a separate file listed in the directory. The BIOS
portion needed for CPMLDR can be the same BIOS as used
in the full system, just take care that BOOT is a RETurn if
all the initialization has been done. The order of events is
not well explained in the manual, but the loader will call the
boot entry of the LDRBIOS first, then start loading and
displaying data. While debugging my BIOS, I used the print
message routine to help tell me at what point it would go
into never-never land. The use of statements like “now
reloading CCP” would tell me that I was in the warm boot
routine and not the cold boot. Make it a point to read the
discussion of “debugging CP/M" in the “systems guide,” and
thoroughly review the programmer’s guide. Many of the
necessary facts are spread out over many headings and
books, making it hard to keep track of them.

In last month's article I listed a BIOS routine and
mentioned & similar one in SIG'M 26. Both of these 2.2
BIOSs will use the addresses shown for storing disk data
(these are the original addresses chosen by SD in DDBIOS
listing). These addresses are in the page 0 area, 040 hex to
07F hex, and must be the same in all three programs
{monitor, BOOT, BIOS). Two problems of 3.0 demand that
they be relocated; first, 050 hex is the location of several file
control blocks. Banked operation will require that certain
stacks, buffers and disk values be located in the fixed
portion of memory. These locations can be above the PROM
when it is located at FOOh or just below it if an F800h PROM
is chosen. GENCPM asks for the last free space of memory,
so any location could be used and GENCPM will move the
system to it.

The fixed memory locations will cause some problems
because the write and read routines would normally get
their data from the SCB files (which are public) and not from
the memory locations that SD uses. For PROMS that have
been written before understanding this problem, new
routines will be needed to read the SCB data and then fill
the monitor's buffer location for that data. A lot of these
special problems arise from trying to keep the PROM in
memory and fit CP/M around those parameters. Using a
parallel port to turn the PROM on and off could make life
simpler. Here's how; simply modify the boot loader routine
so that the BIOS is complete and used for all operations
(don't call any PROM entries—include the disk portion in

the BIOS). Now make the BOOT routine output to your port
and turn off the PROM. The RETurn instruction jumps back
to the CP/M 3.0 loader which loads the system file into
upper memory. A master reset will always put you into the
monitor if reset forces the parallel port back to the normal
state. These steps will also solve the problem of clashing
memory usage by removing the PROM and allowing buffers
to be in the BIOS. However, any of SD’s older programs
that called the PROM BIOS entry points directly (format)
will not work.

It can be rather hard to determine what procedure to

_follow first in setting up the system. If using DRI's

programs, an attempt to bring up the banked unit first may

' not be too foolish. Non-banked operation with the PROM

will be easier through the simpler routines (calls to PROM)
but will be more confusing due to memory conflicts. A non-
banked non-PROM system will require more programming,
and will also demand that the PROM phantom operation be
set up. For system integrators this is normal; considerable
time must be spent deciding on the trade-offs of system
configurations. Try and understand your limits in both time
and skill, and study what must be done. After examining the
problems at length, experiment with several of the solutions
to discover further problems that you may have missed. The
SCB relationship is one that is hard to understand, and is
just the kind of problem that haunts beginning
programmers. I found the DRI information on the SCB to be
rather short and confusing. It is not clear whether the
source of data is the SCB or the called routines in the BIOS.
I believe it to be the latter with the SCB used as a reference
data source.
Relations and Assemblers

The relationship between modules is confusing at first,
and will require several practice assemblies. First, assemble
a new BIOS unit. Using RMAC (A> RMAC BIOS.ASM),
find any errors and correct them. Next, assembie the
modules (if there are any) and link them. Remember that the
order of linking is controlled by the order of the entry line.
In other words, if BOOT is listed before BIOS, it becomes
the main program instead of BIOS (as it should be)

- Generally speaking, only the major program need be first.

The others are called from the main and need not be in any
order after that, except that the SCB is usually last (and
must be a separate file for GENCPM to link properly).
Check the listing for more information on this topic. Public
and external items need to be marked as such and declared
in the beginning of the file. To find out if a declaration was
missed, assemble the file and then link it; undeclared items
will be shown as errors in the linking and will send you
looking for them. It is best to use many short routines in
programming, as it is easier to link routines than to handle
excessively large files. At first, however, and if the shorter
BIOS that calls the PROM is used, the simplest method may
be to include the needed routines with a word processor. To
boot from a 2.2 system, a CPMLDR.COM file is used. This is
called like any COM file and will then load the CP/M system
files into memory. Later, the LDR files are put on system
tracks and called through the monitor boot command. The

The Computer Journal 19

loader will need to be linked with an [L100] option to make a
COM file for use at 100h. The BIOS is linked with the BOOT
and SCB (CHARIO, FLPDRVR and others if needed) using
the [B] switch to form an SPR file. This file will then be
linked again by GENCPM to form the system files. The
symbols or links that are established between the BDOS and
the BIOS are not shown (normally a printed statement is
displayed after linking).

The procedure will be to write or change the BIOS,
assemble it, link it, GENCPM, run CPMLDR, and then test
it. Once a working CPMLDR is obtained, it can be used ever
after, even though the BIOS may have many major changes.
The system files contain a header entry that instructs the
loader where to put the system. At this point it is up to you
to keep at it until the system works.

Review

These three articles are in no way a complete discussion
of system integration or of what it takes to make advanced
programmers out of novice hackers. I started out trying to
cover it all, only to find that “all” would take many books.
To even summarize what 1 have learned about the system
and CP/M 3.0 is difficult. Documentation is still the most
important aspect of any system. DRI has improved their
documentation somewhat. Since I had not paid the $250 for
professional help, I was unable to uncover all of the
relationships within CP/M 3.0. I leave some of that for the
reader, both as a challenge, and as a possibility for future
articles for The Computer Journal.

I still find the Versafloppy I11/696 to be a good product
while operating under CP/M 2.2. However, the manual and
documentation for implementing 3.0 are some of the worst
that I have seen. It may work fine, but if the manua! is any
indication, I have my doubts (write and let us know if I am
wrong). CP/M 3.0 is a good program if already implemented,
and a real bear if not. I like 2.2 and have been able to master
all of its strange relationships. 3.0 is new and undocumented
other than by DRI. I hope this will change in time, but with
all the pressure on CP/M86 and MSDOS, it looks to me like
3.0 will die a slow death. Those who now use 2.2 will
probably not change for many reasons. Like myself, most
users have developed a large library of utilities. Many of
these utilities use the disk parameter data to display
information — these programs will need changing for the new
data tables. Disk usage is usually low with 2.2 but becomes
higher in 8.0, although you do gain the ability to make
changes and additions to the system more quickly and
easily.

To conclude this discussion I would like to remind users
that it is necessary to define your needs and desires before
buying anything. As one can tell by the previous paragraph,
I am not overly enthusiastic about 3.0. The enhancements
and structure have become that of a programmer’s
operating system. Unix, although being touted as the
operating system of the future, is now getting a lot of flack
because of its complex nature. One must remember that
these systems are written by programmers, for
programmers, and not for the general public. An operating

20 The Computer Journa:

0042 CIDNOO JMP DRVTBL IDRIVE TABLY
system should allow you to use other programs freely and PIOHIREENN S A L
. Y] c30901 Janr rLuSH IFLUSH DISK BUFFFRS
not require a lifetime of study to run. CP/M 3.0, 86, and careso e wove Wove DATA
N i . 004E €310} JnP TINF INF RETURN —_
MSDOS are being influenced by Unix’s structure, so many of 0051 CI1101 Terkeli JHP STLMEM [SFLFET mrnDRy
00%4 €30C01 INP BELBNK EL MEM BANK
: : : 57 €3180 :
the newer versions may not be that desirable. One thing toen Santor b Bomyer ENTER shmewove
. . . . PR o . e M J0S5 CIACOY JMP NOTYET :
that I have tried to do in this article is “tell it like I see it." 1 2080 Caace: e wotver
. .
too often see articles that gloss over the bad points only to ; D15k TABLFS TOR 8 DRIVES
: : : : dse
get inexperienced users into trouble. To those readers who : sey
. 2043 « DPBASE: FQU] :BASF OF DISK PARAMPT
: ' : : . : FR BLOCKS
have found many of the industry’s hidden and sometimes 00s3 2210 v sapromeeh
.) . ow sdprome27r
dark secrets, please write articles and send them in. I have s0e7 Daoe o woart -
s : : 004k 0000 v 0,0
dealt with BIOSs for some time now, and am still amazed at 006F A%000000 ODPEC: DW XLT0,0000M ITRANSLATE TABLE
. . 0073 00005000 ow 0000H,0000H ISCRATCH ARFA
how many secrets they contain that I have yet to find... 0075 000008000 ow 000K, 0000
0079 €30 pw DB 1 PARM BLOCK
0076 €902i802 ow C5VO,ALVD
. 007F FEFFFEFF o DISBCH, DTABCH
Listing tor System Integration vons 05 | oo o
g YS! '] 008 05 o 0 I HBANK
. 0086 24FD bW sdpromeah
Tris listing is to show what 1s on the DRIs two 608y 27F0 OW sdprome27r
fioppy disk es recieved fror DRI. 000A £aG3 DW MORET
resbdos).epr 2k :brabdosl.spr lek .com an 008C D40D oW NORET
boomld.spr 10k :device.con T* 00LF 0id0 L1 1.0
gercom.com 1% ilit.cor 0070 29600000 DPFi: Dw XLT0,0000M ITRANSLATE TABLF
: Ferame.com Ik irmac.cor 909¢ 90000000 pw 0000K,0000M ISCRATCH ARFA o
B giribl.rex 2x :cpmior.vel 209y 09000000 Dw 00J0H,0000H
copy®ys.com 2x :device.com iec.com 10k 909C Cl0¢ D DPBO 1 PARM BLOCK
ezase. com iinitdir.com 32k icate.com 3k 009F 81027905 ow €5V1,ALV) :CHECK, ALLOC VECTORS
sercge. com tpater.cor et.com 11w SSAD FFFEFEFF on DIRBCE, DTABCE
dump.com iget.com imac.sor 12k oA FFFF Pw HASH
£1p.con Goae 89 0k 0 HBANK
disn: fale :
Lioskrvi.aew ix iboot.asr Ik cseg -
crario.aem Ik repmi.liar 4k i
1x ihelp.com T - XLTO: FQv s ITRANSLATE TABLF
. thexcor. com 2% :dump 0397013319 Db 1.7,13,19,25,%,11,17,23
modecmsa.11p s irandom.sev 11v ihelg. c3oasFLecl N 3,9,1%,21,2,8,14,20,2
setdef.com ax irist.ut: 2% imove.asn CAaPTi 21804 OB #,13,18,24,4,10,16,22
: ports.lat In :scb. Ix 1sid.com 113 - OPBO: £V H :ST DISK PARM BLOCK
. subrit.cor 6k :trace.utd 2 ixref.com 18k ino03 . Dw 2¢ ISFC PER TRACK
type.com Ik bx 03 0B k) IBLOCK BNIFT 7
sevsrsevsssseannes e o DB 7 +BLOCK MASY
1f all of the atove cis» files are rnoOt present on N oE [DEXTNT MASK
your CB/M2 didep-=yco Fave not recievec s full Fico Pw 242 :DIBX BIZF-1
vers.or ~d asx for tre rest cf vre fises: . ': arsl r» L¥] IDIRFCTORY MAX
The following 1s the aalog trat 18 necessary v 19 1ALLOCE
tc oererate & runing ror-bansed cF~ syster. Farst oy Db ° :ALLOCE
listed below sheuls be createc or mod:ified ssee D 1 JCHFCK SIZF ,f
existins fiie. By locein, 4t jast monthe (255 P H JOFFSFT
S you. sro ce atle tc see the cranges and £2d Db] i PSK
rare corresuorndiny cne to yGuT Own VeIsict.. EN oB o i PHm
AMr-at Dpio " ;
A>rmac sct - RS e KOKFT: |FT
holivx viosliple=zios.ect e
Araencer T DIRBCE: EQY OFFFER
.. J{icvs of texts answer as followe FFFF = DTAECE: EQU OFFFIF —_
{¥,y.,cr,sr.¢r,cr,er, 00, EF N to enc FFFF = HASH £30 OFFFfr
(Casplay wiil srow map, recsri for posss 63cc = WBAKK ¢ tor cooor
L.akl thrat’e feecel reow 1§ CprLoT .
LLiUI,mCpridr. Ei08, 350 080s 23700 DRVTBL: LXI K, xDTbL
A>si3 tpTidr.cor ocre co RET
A (Pet ¢ recizii 1v tre BOTT entry: 60603008 xdtbi: dw dpei.dpel
. 66005CTE00 dv 0,0,0,%,0,C -
: 0000000000 v 0,0,0,6,0,0,0,C
Rrssve 1% cprldér.con (‘er ciow mize of zeiow p3r .
Azprisr 03FS 32FDCC MULTIC: eta BCNT
Tris shouid ~cw Load trhe files ard tring ufp QOF: €9 "ET
CP,™i.. 1f nct start locming tor typoce or otrer OCFD ¢O sent: dp on
o type errors. I raz to dour.e tre aljocatior .
ve rO maxe w ¢ wOra. P LF L H :
Ceteiescenraniran vesessevednates 20FE FB iovr s xene .
APASTFD VFREION FCOR CFM3 1/C 0GFF EDBO D5 OFDK,OBOR ;ldar
CR/® EASIT INPUT/CUTHUT OPFRATING SYSTEM (BICS) 0101 £B XCHE
T ¥ris versior coots ir sincie de=sit, anc cails 0162 €9 RET
ALE sirole (f1r i
varities anc mtacs are ir FRI 7 space to be ‘ixel 0102 CIACLE DEVTbL: INP WOTYET
irn cars itcres moces, space 1s se* agsile for otrer 5
pOssitie Frocrare, le:RAMDISE, TIMF 010¢ CIACO: DEVINI: JMP NOTYET
FoCo = sopaim oracor JLOCATION OF &1 Fa2M[® 8. ally F3iCI) 010° CIACE: FLUSH: IMP NOTYFT
03T = MEIZF LYY JMFMIRY SI2F IN XEYTF:. .
010C 231003 SFLorx: sta #dbnk
PUT ELUATFS FOR 1,0 OF CThFW NON PSO™ SPFIZIFIC ITFME 0107 €% ret
sse 0fciO~ as oftset for oricinal s gr-- 0110 06 edbnx : b or
p.ffer Locatione :
Foaz = UR3T © ofcdz JONIT BYTE POV BIsh SELFCT 6131 DIFF SELmem: OUT OFFH
0113 321701 STA #CENX —
Q02F = CeEn TRERIAL TATA FUAT 0116 C9 nFT
002F = 02FY JSERIAL FOWT IONTRIL 0117 00 NK b3 oH
extrrn Emxt pa 0118 C3ACO: AMOVE : JIMP NOTYET
csFs 011B CIACC Time: NP NOTYET
TEFF = BTSTH FLU O OTBFER 011F 3I1FFFB BOOT: LXI SP,BTSTK :SFT STACK POINTER, -
: H wher. using the bios for cpmldr rep.ace
ORS JSTART OF E1CE. : above line with sn “RET®
iJUME TABLF :
Q0oL C31633 JMr BOCT SFROM CUL™ START LOATFS. 8123 AF XRA A
0003 C3Ti0L IWEDCT: JIMF JFROM wmi&w BOCT. 0127 120400 ata 4
2006 CrECC. JIME SCHECR CLNZOLF 3B ETAT' S 012% 32030¢ sTA 3 c10BYTE
0085 €903 2coran: JWF IREAT CONSLLT CHASRCTER, 0126 3243FC STA unit
000C €3940i JRE (WRITE ZOKSTLE CHAERITEN. 0138 CDIFI} SETCPM: CALL SETUP ISET UP JUNPS, -
0001 £3c902 Ine JWRITE LISTING CHAR. 0i2F ziC201 LXX ¥,SKSG
cels CIAOL InE SWEITE FLNCF A&, 0131 CDAECS CALL wMSC
0014 C3A3D: smp {RFAD RFANFS CrAG, 6i3e €ODICL CALL 7INIT
QCié CIeAl] IMF TMOVF 18K TO TRAIK IF 0137 CODEC2 CALL ILOCTE
QCip C2%4C) ImF $SFLFOT 1Sk PAIVE. Cl3% DEIF IN CORDTA ;CLEAR CONSOLE STATUS,
0C1F €55 F SETTNE. JMP waprowsler ;SFFr 70 TRAINF Ia &T_ AL 0132 €I066i JMP 0i00KM SJUMP 1O CCP.
0021 C32iF¢ JMF soprome2ih :SFT SFOTGE KLwmEFW. ,
0Cie CI24F2 JHP sdpromeldar ;SET 01S» STARTIN. ATE, SET TP JUMPS TC CP/M -
002> €327F0 JmE SDPROMe:TH REAT STLFCTF. SECT L. ;
‘ C02A CI2AFO JRF SDPROM< 2AN WRITF SFLFCTFT SFOT_ &, SETVP:
002r £30:cs JMP PRETAT CLIST STAT L CrFlE . w1 Al . for barked operstior
0030 C30F02 JMP SECTHAN LSECTCE TRANZLATE R : eaLL
0033 Jmr CoONOST ;CONS ™ £Tat 0137 3FC3 Vi A, 00N
0036 JmMP AUXIST ; 0141 32000¢ £TA D LADR AT ZERC.
‘ ao], JmF AUADEY SAUX OUT D144 320%CC STA osm —
003C JWF DEVTBL DEVICF Tablhb 0ieT 212300 LXI M, 7WBDOT
D03F L3080, IMF CEVIND CDFVICE IwNIT co't"ﬂud

The Computer Journal 21

olan 220100 $HLD 1
RN HE e gram e VERSATILE DATA REDUCTION,
0153 C9 net CRFTURN TROM SETUP. D'SPLAY AND PLO l l lNG SOFTWARE
: temposry diesn select routines *
FOR YOUR APPLE" i
01%4 210000 LXxl w,0
e tres b STRIPCHARTER — Tums your APPLE and Epson MX
01%A DG ”NC series printer into an economical 4-pen chart recorder.
:i;: ;;::" ;:: U:;g" Prints and displays continuous 1 to 4-Channe! strip-
8160 219000 Lx! w,DPEL charts of any length. ideal for large data sets. Numerous
:::: : :u ﬁ ;: . pser-setectable graphics options enhance output quai-
e tanoo N worEo ity. Includes 5 demos on disk with 37-page manual $100
@148 CS RET
: VIDICHART — Proven too! for lab data management.
orem ozoe0 O L aae Fast plots of 4 data sets with scrofling in 4 directions,
0140 £31F30 smp wertrk zoom scaling on X and Y axes. 2 types of graphic
: cuE)sors and on-screen STAATD us SEB HT(.::ven pk1>’ts
: - A'D input while sampling. D. SUBTRACT, MULTI-
T ies. Tuw ome 10 e PLY. DIVIDE. INTEGRATE, DIFFERENTIATE, AVER-
: AGE or NORMALIZE data sets with SIMPLE COM-
SIT3 Inie veooTr L Srpy RTT sTAer remwnR. MANDS. Ideal for spectra. chromatograms. rate curves,
HEE s trer etc. Includes SAMPLE DATA on disk with 28-pa
0173 ar XKA A MANUAL . et $75
017a)2‘2"? ll'l unx't'
A N seecs SCIENTIFIC PLOTTER — Draws professional-looking | . ===, .
ol a2 jaa temp graphs of your data. You choose data format, lengthand | J .
0189 €3000: JMP 0100k 16C BACK 10 CCP posttion of axes. 20 symbols, erfor bars, labels any- | .
where in 4 orientations. Includes 5 demos on disk plus | .4 N
© curcx CONSOLF 1/0 STATIS. 30-page manuall $25 | .4 .
. i se. . . . ! " {For DIF file and Houston Instrument or H-P 7470A “arran .
SN CATATE NS O O ruaw Faom CoNere plotter adaptations, add $25 for each option selected.)
; R CURVE FITTER — Select the best curve to fit your data.
i READ A CHARACTER Fiom CORSCET- Scale. transform. average. smooth, interpolate (3
CoMIN: types). LEAST SQUARES fit (3 types). Evaluate un-
SINs Lpoere apohr sDPROMeORY knowns from fitted curve. includes 5 demos on disk with
. 33-page manual ... $35
; WRITF & CHARACTFR TO TnF CONECLF REVICE.
: SPECIAL: VIDICHART. SCIENTIFIC PLOTTER,
0194 CDCCFO CONCT: CALL SDPROM«3CH CURVE FITTERON 1 disk $120
k])
102 < e Add $1.50 shipping on all U.S orders VISA or MASTERCARD orders accepted
0lse DBLF éoncs'!-. I~ CONCTL :nOt ir OIGAnAl prow “Trademark of Apple Computer. inc
019A F&02Z AK1 aan
et e’ A = Y= INTERACTIVE MICROWARE, INC.
er o _ lwl P.O. Box 139, Dept. 226, State Coliege, PA 16804
0IAGC C3ACC. AUXCUT: JMP NOTYET CALL (814) 238-8294 for IMMEDIATE ACTION
Cin3 CIACC, R Jms NCTYET
Q1A% TIACLL JHMFP O NITYET

GiAS CIATT. JMP NITYFT

CiAT AF ;c-”n, XRA A dseg ; init done from banked memory
01AD €5 RFT
. ?irae:
- - - . 0257 212502 1xi1 h,sagnornSmeg
PRINT STAGF AT HeL UNTIL LT
Tri MF LA 1Y NTIL & 2F $2DA CDAEO) call ?pmsg ; print eignon wmessage
9 9
TPMSS: 020D €9 Tet
GIAF re (LTI puer d
OLAF C= pust € : cong
[553 oN ALM JGET < . ¢
:i:) ,: pusss ;,: i " ‘,:: ,;-2”;::5"“ : This version of the boot losder loads
0iBZ CABFOL Y epreg CRETIRN, B the CCP from a file
01BS 4F PSRRI LOTHERWISF, H called CCP.COM or the system drive (A1),
o184 F* pust
ie? i . ?ldcep: .
T ere “ : .
:;:\ i—; o c: fONO'I PPRINT 3T PRLCCP: : Firet time, losd the AtCCP.CONM file iato TPA
01BE &2 ‘z’».i N JINCRFMENT Hel 02DE AFJ26C03 xra a ! sts ccplfcpels ; zero extent
: - : . - 02E2 210000227T 1xx h,0 ! ehld febbnr : start at begannin
01BC C2B0OCI JHE PMSGY IAKD GFT ANCThFK. e
0iBF C1 epmey: — ! Q2E$ 115DO3CD1IL lxa d,ccpSfcb ! call open ; open ccp flle
01¢o D1 i P;F @ O2FE ICCA050) ier a 1)z noSTCP : error Af no file...
0icy C3® f.'{ 02F2 110001CD14S Ixg 4,0100r ! call setdmax : start of TPA
. 02F8 1L18000CD1B Ixt d,128 ! call setmulti : allov up to 16k byte
: CBIOS MFSSAGES O02FE 115D03CD20 1xi d,cepsfchb ! call readx : load the thing
: < : now,
01C2 ODCAMISG2ITSKES: DE ODR,OAH, CP/M 3.0 PLUS SN SYSTFMS=KIBLFR 0304 C9 ret
G1E? ODOAEZ2%2 Db ODH,GAR, "8°SD ARE e £ tre
01T 0DOA3&IC OF ODH,0AR,MSIZF, 10+ 0°,MSIZE MOD 10 + “C° noscCe: : h-r: 1f we couldn’t fand tre file
OlFé 4220%6332F DB K V3.0 of 3/0is84 7.0 030% 213COICDAE 1xi h,ccpsmeg | Call ?pmay : report thas...
. 0308 CDCYOO call ?conin : get & response
. WRITE A CHARACTER ON LIST PEVICE. 03CE €IDEOZ 3mp ?idccp : and try agair
09 CDOFF L18T: L
ggn: C:or ¢ L i;"; SoPRoReGFn : CP/M BDOS Function Interfaces
3200 AF PRSTAT: XRA A open:
0i0F €% et IRETURN ALWAYS NOT READY 6311 OEOFCIO%00 mvi €,1% t ymp bdow ; oper. file contral blnck
; setdmax:
0316 OEL1ACIOSOL mvi €,26 ! Imp bdos ; est transfer adaress

PSECTOR TRANSLATION ROUTINF FOLLOWS

0207 4% SECTRAN: MOV L,C satmulta
80 o u
:;:: TA :g: A’,; 0)1p OE2CCHON00 mvi €, 44 ! jJmp bdos : set record count
0212 83 ORA F
@213 CB "2 resdx:
0214 Fb XCHG 0320 OE1l4C30%00 mvi €,20 !)mp bdos ; resd records
021% 0% oAn B
€236 6F [- . R
O§i7 ;Aoo n\,o\x' :,c 8325 O0DOAODOAGCeiIgnOnSmsg db 33,10,13,10, loading 3.0 B1057,12,10.0
[] . .
oms < : " 033C ODOA424%4FCcpimeg da» 13,10, BICS Err Or A: No CCP.COM fale’, &
o21n TEMP: os 1
.ece T,TCOM",0,0,0,0
. bisx BUFFERS double normal velues 035D 0143435020ccpsfcd ae :A cc
- teasesesvessrrRInIeTesanRIPRRTREPRTES Q6D ds
eale ALV ns 62 037D 000600 fepsnr dab 0.,0,0
02%9 csvo: 05 32
0279 ALV]: ps 62
8287 csvi: DS 6300 ond .
Lesvesssesscscrsrtevene .

.
title “Boot losder module for CP/W 3.0
: from DRI's file ctut down to necesssry stuff only

000" = raos oqu

22 The Computer Journal

THE MCPU-800

FULL-
BLOWN

8-BIT

Microcomputer system on STD card

i

e

pwa
-t

I e

(/o actual size)

Completely STD BUS
compatible.

4MHz Z-80A

64K RAM
2K/4K/BK/16K/ROM or
£PROM.

Memory map under
software control.

24 bit parallel{/O-canalso
serve as SASI interface for
hard disk control.

Serial 1/0 with B bits of

170 for terminal or modem
control.

Three 10MHz counter/
timer channels.

Completely programmable
serial UART.

1797 Floppy disk controller
handles four 5” or 8" disk
drives. Standard drive
connectors for both sizes
on board. Single or double
sided. Single or double
density supported Al
digita! data separator.

Paralle! printer interface -
Centronics type.

On board interrupt
handling togic.

RAM is DMA controllable.

MEMEX and IOEXP lines
are fully implemented.

Power-on and pushbutton
reset circuitry.

100 hour burn-in.
Excellent software support.

$795 Single Quantity

ILLER 4
l Technology Inc. gy Inc.

647 N. Santa Cruz Ave
Los Gatos, CA 35030

{408) 395-2032

Industry News

Computer Pioneer Days Conference

SYBEX Computer Pioneer Days, a new two-day
conference to be held in San Francisco, June 15-16, 1984,
will, for the first time, honor the “living legends” of the
microcomputer industry, on the 10th anniversary of the
microcomputer. (The Altair computer was introduced in
1974.)

The pioneer speakers represent most areas of the
personal computer industry, from hardware, software, and
venture capital to microchip design and development. They
will discuss the growth of the microcomputer industry from
their own experiences —how they started their companies or
developed their products; who, if anyone, was with them
from the beginning; how their first projects were financed;
what their early successes, failures, and motivations were.
They will offer their own perspective on the melding of
entrepreneurship and “high technology,” for themselves and
for other people who may have wondered “what it takes” to
strike out on an independent path. Awards for outstanding
microcomputer industry achievements will be presented at a

special reception on Friday, June 15, 1984, at the Hyatt
Regency, from 7:00 to 9:00 p.m. For more information write:
SYBEX Computer Pioneer Days, 2344 Sixth Street,
Berkeley, CA 94710; or call (415) 848-8233.

3'2” Microfloppy New Standard?
A paper from Hewlett-Packard entitled “Why the 312~

Microfloppy Will Be the Next Industry Standard” is
available to those interested. The document outlines the
peed for standardization in the sub-5% " disk drive market,
and explains why the 3% " is ideally positioned to be the
industry standard. Currently, Hewlett-packard leads the
trend and has incorporated the 3%:” in its entire line of
personal computers. The paper presents a comparison of
Hewlett-Packard's 3Y:" disk drives with the current 5%
products, and provides technical specifications at the end of
the document. It can be obtained be writing: Kathy Kimball,
Hewlett-Packard, Greely Division, 700 71st Ave, Greely, Cco
80634. a

The Computer Journal 23

LINEAR OPTIMIZATION WITH MICROS

A Product Review
by The Computer Journal Staff

The Computer Journal has been reviewing a very
interesting software package called LO, which is short for
Linear Optimization. The statistical technique on which this
program is based has traditionally been done by hand; it

.involves the simultaneous solution of a group of linear
_ equations, hence the name. It was called linear programming

before the term “programming” became associated with
computers.

Although the methods have been adapted to computers
before, this is the first version your editors have seen that is
specifically designed to run on a modest size computer. The
version we reviewed runs under CP/M and will work fine in
as little as 48K of memory. Considering the memory
requirements of much current software, this is indeed a
“plus” factor for the package. It is also available for MS-

" DOS, IBM-DOS, and possibly for other formats.

The purpose of LO, briefly expressed, is to optimize the
use of scarce resources. It can be used either to maximize
some desirable quality (such as profit) or minimize some
other factor (such as cost). It is a decision-making tool which
allows the user to weigh several variables against one
another for optimum results.

In business and industry we often find that several
variables work against one another. The amount of labor
available to produce a product, and its cost, are important

' factors. Another might be the shortage of some necessary

material, or the amount of some product which can be
successfully marketed. To illustrate this principle, we made
up an example of 8 small computer company which builds
CPU boards, memory boards, and video boards. The number
of chips each requires differs, as does the number of hours
labor to produce each, and the wage that has to be paid the
technicians for doing the different kinds of work. Finally, we

" decided that our imaginary company has only 500 chips on

hand (which, for our example, are all alike and will work in
any position on any board). Our manufacturer has only $1000
in the bank to meet the payroll, and wants the three
available technicians to finish the job this week.

LO problems are described in terms of “bounds” which
are the desired product, “goals” which are the optimization
of the bounds, and “constraints”, or limits, which determine
the final outcome. In this example we need to produce some
number of each of the possible products; we have a limited
number of chips with which to do so, a limited number of
working hours, and a limit on the money we can spend for
labor.

The “goal” is to produce the “mix” of boards that will
most effectively use our resources and yield the maximum
profit.

This problem is simple enough to follow but too
complicated to be worked by hand in any reasonable length

A
LINEAR « TIMIZATION

Hacker Products Unlisited, prodg. ‘tion schedule
Linear Optimization 1.0 (c) 1982 The Acee Computer Company

option titles"Hacker Pro. «cts Unliaited, production schedule”,list)
bounded #cpu,dsencry,®vic. ol

limit chips by 2088cpu + +Steaemory +1230videc <=500;

limit hours by B888cpu + S Ssbmemory +3.888video <=120)

limit cost by (S88)88cpu : (635.5)s0memory + (733.8)88videc <=1000;
max P088cpu + 12338mesory ¢+ 7588videoc;

PUBUN

Nuster of ttersations: 2

Soal function value 2440,

VARIABLE OPTIMAL ERROR MARGINAL cosT

NAME VALUE ESTIMRIE RETURN REGION

scpu 0.000 0.00% -64.76 ~INFINITY .. 154.0

SSmenory 4.381 0.00% 125.0 108.6 .. 281.2

sevidec 25.24 ©0.00% 75.00 47.80 .. 86.36

LIMIT SURPLUS ERROR MARG INAL LImIT

NAME EBTIMATE VALUE REGION

chips ©.000 0.00% 0.%932 370.9 .. L TW]

hours 0.000 ©0.00% 17.86 e1.11 .. 164, 1

scowt 184.1 0.00% 0.000 015.9 . <INFINITY
Figure 1

of time. Figure 1 is the solution that LO produced in less
than 60 seconds. Lines numbered 1 through 6 are the source
file. We'll explain it line by line.

Line 1 allows us to specify the title and instruct the
program to list the source along with the results; this line is
optional. Line 2 sets as bounds the number &) of CPU
boards, memory boards, and video boards. The solution of
the problem will be expressed in terms of the number of
each board we should build.

Line 3 says that we need 20 chips for each CPU (20*#CPU)
45 for a memory and 12 for a video board, and that the total
cannot exceed 500 (< = 500).

Line 4 similarly limits the hours that can be used—so
many for each kind of board, for a total of, or less than, 120.

Line 5 is the tricky one. It expresses the labor cost for
each kind of board in terms of hours times pay rate (i.e.; $5
per hour times 8 hours) and sets $1000 as the maximum that
we can spend.

Line 6 states our goal, which is to make the maximum
number of CPU boards at $90 each, and/or memories at
$125, and Jor video boards at $75, and to produce these in a
proportion that will yield the maximum sales volume.

As the printout shows, it would be uneconomical to
produce any CPU boards under the given conditions, but we
can produce 4.381 memories and 25.24 video boards for a
total of $2440 (goal function).

The other columns have various interpretations. For
example, they show that this solution would use all of our
chips and all of the work hours but leave a small balance of
our money ($184.10). Other columns give us clues as to the
value of increasing the labor, or number of chips, or
whatever we have to work with. After gaining experience
with the program, these columns might enable us to modify
our inputs and find alternate solutions.

For example, it might seem strange that although
memory boards are the most profitable item, we are told to

28 Tne Computer Journa:

make fewer of them. Why? The marginal value of chips is a

clue. Let's run the problem again pretending that we found

250 more chips down in the basement. The result is Figure

2. Notice that we were able to produce more memory boards

with no increase (actually a decrease) in our labor costs!

Evidently the number of chips we started with had a severe
- effect on our production.

LINEAR OPTIMIZATION

Hacker Products Unlimited, production schedule
Linear Optimization 1.0 (&) 1982 The Acee Computer Company

option title=“Hacker Products Unlimited, production schedule®,listy

}
2 bounded @cpu,®eesory,®viden)
3 limit chips by 2088cpu + 4SSémemory +1288videc <=750)
4 limit hours By BRecpu + %.5t6memory +3.888videc (=120)
, S limit cost by (3538)88cpu +(6335.5) sGmemory + (783.8)38videc <=1000)
6 w®max 9088cpu + 12588semory + 7T3R@video)
Nusber of tterstions: 2
Boal éunction value: 2389,
VARIABLE OPTIMAL ERROR MARGINAL cosT
NAME VALUE ESTIMATE RETURN REG 10N
Scpu 0.000 0.00% -64.76 ~INFINITY .. 1%4.8
EBmenory 13.43 0.00% 12%.0 108. 6 .. 281.2
evideo 12.14 0.00% 78.00 47.80 .. 86.36
LIMIT BURPLUS ERROR MARG INAL. LMy
NAME ESTIMATE VALUE REGION
chips 0. 000 0.002 0.39582 376.9 .o 9e1.8
hours 0.000 0.00% 17.86 91.67 .. 180.7
scost 233.9 0.00% 0.000 766.1 +INFINITY

Figure 2

Getting greedy, we now raise the price of video boards by
$10 and reduce the price of CPU boards to make up for it.
The result is Figure 3; LO tells us to make the same mix of
boards as in Figure 2, but at the new price we will make a
little more profit.

The documentation that comes with LO explains the
formulation of problems quite well, and provides example
problems and solutions from several kinds of activity —from

. farming (livestock feeding) to finance (stock market
investment).

Our impressions of the program follow: first of all, it
works as advertised, is modestly priced, and the
documentation is very good. It is fast and runs in a small
memory. It can be very useful to anyone who has to make
the kind of decisions it is designed for. It permits the use of
sophisticated mathematical techniques by persons who

_ would not otherwise be able to solve them.
On the negative side, LO requires you to be familiar with
your CP/M utilities. Computer users who do not work

LINEAR OPTIMIZATION

MHacker Procucts Unlimited, production schedule
Linear Optimization 1.0 (c) 1982 The Acee Computer Company

1 option title="Hacker Products Unlimited, production schedule”,list
2 bounded Scpu,®memory,$video)
3 limit chips by 2088cpu + 458Smemory +1Z8#videc <=730)
4 limit hours by 838cpu + S.5%ememory +3.88#.1de0 <(*=120;
8 limit cost by (S538)8#cpu +(685.3)%emenory <+ (783.8)88videc <=1000)
& sax BOSSCcpu + 12588memory + G538 ideo;
Nueber of jterationm: 2
Boal function value: 2711,
VARIABLE OPTIMAL ERROR MARG INAL CoSsY
NAME VALUE ESTIMATE RETURN REGION
*cpu 0.00C 0.00% -96.57 ~INFINITY .. 178. 6
10menOr y 13.42 0.00% 12%. 0 123.0 ‘e 316.7
s$evioeo 12.14 0. 00% 8s5.00 43,60 .. 86.38
[S 130 BURPLUE ERROR MARG I NAL LImMIT
NAME ESTIMATE VALUE REGION
chips 0. 000 ©0.00% 0.07143 378.9 .. 981.8
hours 0. 00C ©,00% 22.14 91.67 .. 150.7
Scost 233.9 0.00% 0.000 Te6. 1 .. +INFINITY
Figure 3

¢ Interactive Microware's general-purpose ADALAB™ data ac-
quisition and control system interfaces with virtually any lab in-
strument using a recorder or meter, including GC and HPLC sys-
tems, spectrophotometers, pH meters, process control apparatus.
thermocouples, etc.

e Lab Data Manager™ software facilitates single or muiti-
channel acquisition, storage. display and chart recorder style out-
put of lab instrument data. IMI QUICKI/O software operates within
easy-to-use BASIC!

e Thousands of scientists currently use IMI software and or
ADALAB products worldwide!

*Price includes 48K APPLE- I+ CPU, disk drive with controller.
12° monitor. dot matrix printer with interface, IMl ADALAB™ inter-
face card

TTragemarr 0 Adple Computer ing

IMI's ADALAB INTERFACE
" CARD IS AVAILABLE
SEPARATELY FOR ONLY $495

finciudes 12-bit A D 12-b1D A Bdigita'sense inpuls 8
digna’ control oulputs. 32-bit reai-ime €10ck. two 16-bit
timers plus QUICKI O data acquisition sofiware

INTERACTIVE MICROWARE, INC.
P.0. Box 771, Dept. 226
State College, PA 16801 (814) 238-8294

directly with their operating system might not be ready for
this. You write the source input with ED (or any similar
editor) and the solution goes back onto the disk in a new file
with an LIS extension. The only way to view the output is
by way of the TYPE or PIP features of CP/M.

We feel that a more “automatic” printout would be useful.
A real bonus would be the ability to enter the variables
interactively rather than having to compose the formulae by
hand and write the source with the editor. Another nice
feature (not necessary, but perhaps helpful) would be some
“action” on the screen while the program runs. These are
cosmetic suggestions—we are otherwise very enthusiastic
about this software product. It is available from Acme
Computer Co., Box 51193, Seattle, WA, for about $150.

The level of manufacturer support is a very important
consideration when selecting software, and we are favorably
impressed with Acme's support of their products. One
month after we received the program, they sent a
questionaire with a stamped addressed envelope to obtain
information for future revisions. Later, we received an
announcement of a revision which can be obtained by either
returning the original disk or sending $5 to cover the cost of
material and handling.

We sent Acme our comments on the program, and they
responded by return mail to advise that most of these
improvements are already in progress for the next revision.
It is very unusual to find this level of support in the
microcomputer industry, and we do Dot hesitate to
recommend Acme as a supplier. |

The Computer Journal 2%

LSTTL Reference Chart

74LS00

n ¥

: i

2
3 4 5 -]

74LS01

1 8

3 12 1
3

=

1
1 2 4

GND

74LS02

=

0 9
5 6

4

T74LS09
*Open Collector Outputs

12 n 10 9

26 The Computer Journa —

74LS10 T4LS14 -

3 4 5 6

74L811 74L815
*Open Collector Outputs

n 10 9 8 13 12 n 10 9

LD

3 4 5 [}

74LS12
*Open Collector Outputs

13 12 1

1

3 4

4} 9 8
5 6

7

The Computer Journal 27

‘STD Bus Interfacing

by Christopher A. Titus, Jonathan A. Titus, & David G.
Larson.

Another book in the BLACKSBURG Continuing Education
Series®

Published by Howard W. Sams, Inc.

286 pages, 52 x 8'1 softbound, $13.95

What do you do when you need a microcomputer for a
specific application and the medium cost appliance
computers do not have the features you need, the larger
business computers are too expensive and still don't have
the I/0 features you need, and an S-100 bus system is
overkill? A STD Bus system may be a good choice because
there is a wide variety of cards available so that you can
‘tailor a system to have the special features you need
without paying for a lot of unnecessary frills. It is also
relatively easy and inexpensive to modify the system by
adding or replacing cards.

This book explains the STD Bus, but even more
importantly, it contains a very thorough explanation of what
a microcomputer bus is, what signals are needed, and how
these signals are used.

The information on accumulator I/0 versus memory-
mapped 1/0, addressing and address decoding, 1/0
interfacing, and interrupts is especially helpful. The book is
written in an easy to follow manner. A good example of the
care taken in the writing is the sample programs, which are
written in assembly language for the 8085, Z-80, 6502, and
6800 CPUs to make the book useful to people working with
different CPUs.

The contents are as follows:

oChapter 1 What Is The STD Bus?. Other
Control Signals, Physical Standards, Why Use
the STD Bus?, STD Bus Processors, Memory,
Read-Only Memories, Read/Write Memory,
Control Signal Generation, Memory Maps, 1/0
Devices, Memory-Mapped 1/O, Accumulator 1/0,
CPU Compatibility, Data Transfer Timing, Chip
Incompatibility, and Nonstandard Signals.
oChapter 2 /O Device Addressing. Address
and Control Signals, Device Addressing, Using
Gates for Address Decoding, Using Decoders,
Larger Decoders, Using Comparators, Memory-
Mapped 1/0, and Using PROMS.

eChapter 3 Output Port Interfacing. Output
Timing, Latches in Output Ports, A Traffic Light
Controller, LED Displays, Digitalto-Analog
Converters, Data Displays, Other DAC
Considerations, 1/0 Chips, and Memory-Mapped
Output Ports.

Bo_oks of Interest

e e e e ————————

oChapter 4 Input Ports. Designing Input Ports,
An ASCII Keyboard Interface, Flags, Another
Keyboard Interface, An Analog-to-Digital
Converter Interface, A Simple Logic Tester, and
Memory-Mapped Input Ports.
sChapter 5 Interrupts and Direct-Memory
Access. Basic Interrupt Operation, STD Bus
Interrupts, The 8085, The 8088, The Z-80 and
NSC800, Serial Priority, The 6800, 6809, and
8502, 6809 Improvements, An Interrupt Review,
Interrupt Software, Interrupts and the Stack,
Interrupt Timing, Direct-Memory Access,
Requesting the Bus, Direct-Memory Access
Controllers, and DMA Software.
eChapter 6 General-Interest Interface Cards.
The Mostek DIOB/BIOP, The Enlode 214
Display System, The Analog Devices RT1-1260,
The Atec 710 Thumbwheel Switch Interface, The
Matrix 7911 Stepper-Motor Controller, and the
Pro-Log 7304 Dual UART Card.
eAppendix A The STD Bus Standard. Organiza-
tional and Functional Specifications (With Pin
Definitions), Electrical Specifications, and Mech-
anical Specifications.
eAppendix b Voltage Input Contigurations.
Input Multiplexer Guidelines, and Analog Input
Multiplexer.
eAppendix C Index of STD Bus Manufacturers.
The detailed information on how a bus is organized is
worth the price of the book even if you never intend to use a
STD bus, because this knowledge can be applied to other
computer buses. B

This book is available from Group Technology, Ltd., P.O.
Box 87, Check, VA 24072, for $13.95 plus $1.00 shipping.

AUTHORS WANTED!

The Computer Journal is
interested in technical articles.
Query with SASE or send for
our Author’s Guide.
PO Box 1697, Kalispell, MT 539903

28 The Computer Journal

CP/M Primer
Helps microcomputer veterans and novices alike find the answers about CP/M in a
complete, one-stop sourcebook that's a Sams best-selier! Gives you complete CP/M

IC Converter Cookbook

Discusses and explains data conversion fundsmentsls, hardware, and peripherals. A
valuable guide to belp you understand and use d/a and a/d converter applications. Includes

terminology, hardware and software concepts, startup details, and more for this popul

facturers’ data sheets. By Walter G. Jung. 576 pages, 52 x84, soft. ©1978. ...$14.95

8080/8085/Z-80 operating system. Helps you begin using and working with CPM
immediately, and inciudes a list of compatible software, too. By Stephen Murtha and
Mitchell Waite. 96 pages, 8'1x11, comb. ©1980............c.iviieiniiennannnan. $16.95

Soul of CP/M: Using and Moditying CP/M's Internal
Features

Teaches you how to modify BIOS, use CP/M system calls in your own programs, and
more! Excellent for those who have read CP/M Primer or who otherwise understand
CP/M's outer-layer utilities. By Mitchell Waite. Approximately 160pages. 8x8':, comb.

The S-100 and Other Micro Buses (2nd Edition)

Examines microcomputer bus syestems in general and 2] of the most popular systems
in particular, including the $-100. Helps you expand your computer system through a
better understanding of what each bus inciudes and how you can interface one bus with
snother. By Eimer C. Poe and James C. Goodwin, II. 208 pages, 51381, soft. ©1981$9.95

Interfacing &
Experiments

This book introduces you to the principies involved in transferring data using the
asynchronous serial data-transfer technique. It focuses on wusing the universal

Scientific Data Communications

asynchronous receiver'transmitter (UART! chip in order to help your understanding of
communication chips. Explores operation of teletype-writer interfaces and serial
transmission circuits. With experiments and circuit details. By Peter R. Rony. 160 pages,
B1ax8%r, 8001 C 1078, L e e e $7.95

Active-Filter Cookbook
A practical discussion of the many activefilter types and uses, written by one of Sams'
most popular authors. Teaches you how to construct filters of all types, including high-
pass, low-pass, and bandpass having Bessel, Chebyshev, or Butterworth response. Easy to
understand —no advanced math or obacure theory. Can also be used as s reference book
. {or analysis and synthesis techniques for active-filter specialists. By Don Lancaster. 240
pages, 6iaxBla, soft. ©1875. e $14.95

Regulated Power Supplies (3rd Edition}

Newest, most comprehensive discussior you'll find of regulated power supplies,
including their internal architecture and operation. Thoroughly explains how to use
regulation in your designs and projects when the need arises, and discuases practical
circuitry and components. A valuable book for any technician or engineer involved in
servicing or design. By Irving M. Gottlieb. 424 pages, 5'1x8'1, soft. ©1981......... $19.95

TTL Cookbook

Popular Sems author Dan Lancaster gives you s complete look at TTL logic circuits, the
most inexpensive. most widely applicable form of electronic logic. In po-nonsense
language, he spells out just what TTL is, how it works, and bow you can use it. Many
practical TTL applications are examined, ineluding digital counters. electronie
stopwatches, digital voltmeters, and digita] tachometers. By Don Lancaster. 336 pages,
BhxBl,moft. 1974 .. . e $12.95

IC Op-Amp Cookbook

Ap informal. easy-to-read guide covering basic op-amp theory in detail, with 200
practical, illustrated circuit applications to reflect the most recent tecknology. JFET and
MOSFET units are shown in both single and multiple formats. Includes manufacturers’
dats sheets, and lists addresses of the companies whose products are featured. By Walter
G Jung. 480 pages, 5'2x8%1,80ft. ©1980.................. ... iiiii . $15.95

IC Timer Cookbook (Second Edition)

Learn more ways to use the IC timer in this easy to use second edition that includes
many new IC devices with ready to use applications in practical, working eircuits. All
circuits and p relationships are fully defined and di d for clarity. By Walter

C. Jung. 984 pages, 65'4x8%, soft. ©1983...ottt $17.96

The Programmer’s CP/M Handbook

Ap exhaustive coverage of CP/M-80¢ , its internal structure and major components is
presented. Written for the programmer, this volume includes subroutine examples for
each of the CP/M system calls and information on how to cust CPM —~ plete with
detailed source codes for all examples. A dozen utility programs are shown with heavily
annotated C-language source codes. An invaluable and comprehensive tool for the serious
programmer. By Andy Johnson-Laird, 750 pages, 7¥1x8%, softbound.............. $21.95

Interfacing to S-100 (IEEE 696) Microcomputers
This book is a must if you want to design a custom interface between an S-100
microcomputer and almost any type of peripheral device. Mechanical and electrical design
is covered, along with logical and electrical relationships, bus interconnections and more.
By Sol Libes and Mark Garetz, 322 pages, 6'1x8%, softbound..................... $16.85

Microprocessors for Measurement and Control

You'll jearn to design mechanical and process equip using micropr -based
“rea! time” computer systems. This book presents plans for prototype systems which
allow even those unfamiliar with machine or assembly language to initiate projects. By
D.M. Auslander and P. Sagues, 310 pages, 7 3/8x9 1/4, softbound. $15.99

Osborne CP/M® User Guide {Second Editionj
A new revised edition which includes expanded sections on CP/M® 88 and CP/M® 80. as
well as CP/M® °s relationship to assembly language programming, MP/M® and CP/NET®
operating environments. By Thom Hogan, 292 pages, 6/2x9%, softbound. $15.95.

Discover FORTH
Whether you are a beginner seeking information on this muiti-faceted programming
language or a serious programmer already using FORTH, this book is a reference that

should not be overlooked. Long idered s puter language of building blocks,
FORTH has been optimized for speed and requires little computer support. By Thom
Hogan, 146 pages, 8% x8% , softbound..................ociiiiiiiiiiiiiiii, $16.95

68000 Assembly Language Programming

Each of the 68000's instructions is individually pr d and fully explained in this
assembly language tutorial. For experienced programmers, this book is also s complete
reference to the 68000 instruction set and programming techniques. By Lance A
Lieventhal, 614 pages, 8}1x9% , softbound.cooiiiniiiiiiiiiiii, $18.95

Z8000° Agsembly Language Progrunming

This book is filled with real-world progr: i ple probl and
troubleshooting hints that will guide the reader to mutery of this powerful new 18-bit
“super chip”. The entire ZBO0O® instruction set is described in detail. By Lance A
Leventhal, Adam Osborne, and Chuck Collins. 928 pages, 8/1x8%, softbound. $19.99

The 8086 Book

Anyope using, designing, or simply interested in an 8088-based system will be delighted
by this book’s scope and suthority. As the 16-bit microprocessor gains wider inclusion in
small computers, this book becomes invaluable as a reference tool which covers the

timing, architecture and design of the 8086, as well as optimal programming techniques,
interfacing. special festures, and more. By Russell Rector and George Alexy, 824 pages,
B AXD, BOMDOUDA. . ..ottt iet i et $16.99.

Z80® Assembly Language Programming
Programming examples illustrate software development concepts and actual assembly
language usage. More than 80 ple progr bl

pr witk solutions and a
complete 280% instruction set reference table. By Lance A. Leventhal, 640 pages,
BIAXP %, BOMDOUNA. . ..ottt $18.95.

8080A/8085 Assembly Language Programming

More quality programming exsmples and instruction sets than can be found in any
other book on the subj Information on blers, program loops, code conversion and
more. A must for B0B0A/B0805 programmers. By Lance A Leventhal, 448 pages, 6'1x9'%,
P TV . $18.95

Microprocessor-Based Robotics
. Introduees you Lo robotics—a dynamic new field of science that uses your computing
and electronic talents as well as your mechanical and electrical knowledge. First, you'll
Joarn the mechanics of robot hands, arms, and legs; then, tactile sensing, motion and
sttitude sensing, and vision systems. After that, you learn controlling with
microprocessors and BASIC programs, and finally. you learn to control the entire robot
system with voice ds! F: ing and not hine specific. By Mark J. Robillard,
224 pages, BYx11, 80fthound. . .. uiiii i $16.95

TV Typewritter Cookbook

Shows you how to quickly and easily project words and pictures from a common,
microprocessor-based system onto an ordinary TV set. You'll be introduced to TVT
communications by best-selling author Don Lancaster. who discusses basic TVT system
design. memory types, interface circuitry. hard-copy output, and color graphics. By Don
Lancaster, 256 pages, 5% x8i1, softbound.ot $12.95

Microcomputer Math

A step-by-step introduction to binary, octal, and hexidecimal numbers, and arithmetic
operations on all types of microcomputers. Excellent for serious BASIC beginners as well
as assembly-language programmers. Treats addition and subtraction of binary, multiple-
precision and floating-point operations, fractiona and scaling. flag bits, and more. Many
practical examples and self-tests. By William Barden, 160 pages. 548, softbound$11.95

Understanding Digital Logic Circuits

A working bandbook for service technicians and others who need to know more about
digital electronics in radio, television, audio, or related areas of electronic troubleshooting
and repair. You're given an overview of the anatomy of digital-logic diagrams and
introduced to the many commercial IC packages on the market. By Robert G. Middleton.
892 pages, 5'ax8i/, softbound. $18.95.

CMOS Cookbook

Obe of the best-selling technical books on the market. this cookbook gives you a solid
understanding of CMOS technology and its application to real-world circuitry. Explains
bow CMOS differs from other MOS designs, how it's powered, and what its advantages
are over other constructions. The final chapter shows you how to put all preceding
information to work constructing several large-scale, working instruments. Includes s
mini-eatalog of more than 100 devices, with pinouts and application notes. By Deon
Lancaster, 416 pages, 5/1x8%:, softbound.oioiiiii $13.95

The Computer Journal 29

Real Time Programming: Neglected Topics

This book presents an original spproach to the terms, skills, and standard hardware
devices ded to s P to numerous peripheral devices. It distills technical
kpowledge used by hobbyists and p ientists alike to ble, compreheasible
meothods. It explains such computer and electronics concepts as simple and hierarchical
interrupts, ports, PLAs, timers, converters, the sampling theorem. digital filters, closed
loop control systems, multiplexing. buses, commumication, and distributed computer
systems. By Caxton C. Foster, 190 pages, 6'%4x0%, softbound. $9.95

Interfacing Microeolnputen to the Red World

Here is a complete guide for using a micr P puterise the home, office. or
laboratory. It shows how to design and build the murflen Decessary to coanect s
mierocomputer to real-world devices. With this book, microcomputers can be programmed
to provide fast, accurate monitoring and control of virtually all electronic functions — from
controlling houselights, thermostats, sensors, and switches, to operating motors,
keyboards, and displays. This book is based on both the hardware and software principles
of the Z80 microprocessor (found in severa! minicomputers, Tandy Corporation’s famous
TRS-80, and otbers). By Murray Sargent III and Richard Shoemaker, 288 pages, 8'%4x9%,
PO VTV R T PR $15.66

Mastering CP/M

Now you can use CP/M to do more than just copy files. For CP/M users or systems
programmers —this book takes up where our CP/M handbook leaves off. It will give you
an in-depth understanding of the CP/M modules such as, CCP (Conscle Command
Processor), BIOS (Basic Input/Output System), and BDOS (Basic Disk Operating System).
Find out how to: incorporate additional peripherals with your system, use console 110, use
the file control block and much more. This book includes a speca) feature —a library of
useful macros. A comprehensive set of appendices is included as 3 practical reference tool.
Take advantage of the versatility of your operating systern! By Alan R. Miller, 398 pages.
6°x9°, softbound..... et et et r e et et ey $16.95

Designing With the 8088 Microprocessor

If you're searching for an introduction to software and hardware design using the 8088,
you will find this book to be indispensable. After describing the 8088, the author leads you
step-by-step through the complete aystem design of a powerful, yet inexpensive, single-
board eontroller. This single-board controller design illustrates a typical spplication of the
8088, using 84K-bit dypamic RAMs. the 8203 VLSI dyncamic RAM controller, and state-of-
the-art peripherals such as the 8264 programmable interval timer and the 8274 multi-
protocol serial controller. Controller software design is also described in detail —from the
basic assembly language test programs to high-level language interrupt control
procedures. In addition, the 80188 software and hardware enhancements are briefly
described. By John Zarrella, 304 pages, 6°x9°, softbound................connitns $19.95

FORTH Tools, Volume One

FORTH Tools is a comprehensive introduction to the new international FORTH-83
Standard and all its extensions. It gives careful treatment to the CREATE-DOES
construct, which is used to extend the language through new classes of intelligent data
structures. FORTH Tools gives the reader an in-depth view of input and output, from
reading the input stream to writing a simple mailing list program. Each topic is presented
with practical examples and numerous illustrations. Problems (and solutions) are provided
at the end of each chapter. FORTH Tools is the required textbook for the UCLA and IC
Berkeley extension courses on FORTH. By Anita Anderson and Martin Tracy, 218 pages.
BB, BORBOUDG.\ttt s $20.00

”

The Computer Journal
PO Box 1697 Kalispell, MT 59903

Qty Title Price Total

Order Date:

Print Name

Address

City State 2ip . _

Card No. Expires Please allow 4 weeks for delivery. Shipping
TOTAL

Signature for Charge

30 The Computer Journal

New Products

Port Expanders from Computer Accessories
Corporation

Computer Accessories Corporation (San Diego) now offers
a way to avoid the cost of added slotware when additional
devices need to be connected to a computer I/0
(input/output) port. The answer is a series of “port traffic
cops” —port expanders with A/B/C switch routing— that can
switch one port to any of three devices, or one device to any
of three ports. Six Data Director models are available: three
in stand-alone cabinets, available for $199 each (suggested
US resale), and three designed to fit inside Computer
Accessories’ Model P12 Power Director® (line-conditioning
power control accessory) cabinet, available for $189 each.

Three models in each series each meet a specific
connector need for a given port or system. For standard RS-
232 serial ports, Data Director offers DB25 female (models
Q13/Q23) or male (models Q14/Q24) connectors. For standard
parallel (printer) ports, Data Director (models Q15/Q25 offers
36-pin Centronics-stlye connectors.

Data Directors boast printed curcuit board construction
{which is more reliable than point-to-point wiring with
individual wires) and use sealed rotary switches (to avoid
data errors from the effects of contamination on switch
contact integrity). Each model is fully shielded, and a full
line of supportins -cables is available from Computer
Accessories. A P12 Power Director complete with a Data
Director is available for $388, or alone for $199. It's designed
to fit atop an IBM? PC system unit (or others with its 19
by 132 footprint).

For additional information, contact Computer Accessories
Corporation, 7696 Formula Place, San Diego, CA 92121; (619)
695-3773.]

Free Catalog From Group Technology
The Spring 1984 catalog contains descriptions of all of the
new and current books and products available from Group
Technology, Ltd. It is directed particularly to those who

wish to gain or teach hands-on experience in interfacing
external devices to microcomputers. The experiment-based
books that comprise the world-renowned Blacksburg Series
provide practical guidance in acquiring these skills. Topics
covered include the major 8-bit and 16-bit microprocessors,
analog and digital electronics, electronic data processing,
robotics, circuit design, machine design, electronic music and
speech synthesis, fiber optics, microcomputers in astronomy,
FORTH language, and more. Hardware described includes
interfacing and circuit design boards for the Apple II,
Timex/Sinclair, Commodore 64 and Vic-20, TRS-80 Models I,
111, 4, and Color Computer. Software listed includes utility
programs for the TRS-80; scientific software for the Apple
II + /e for a variety of curvefitting and parameter estimation
problems; and a LISP interpreter for the IBM PC.

Both novice and experienced microcomputer enthusiasts
will find a treasury of practical resource material in the
catalog. It is available without charge from Group Technology,
Ltd., PO Box 87, Check, VA 24072, tel. 703-651-3153.]

Computer Nostaigia:
How Personal Computers Have Changed

w hen micros first appeared, in the middle 1970s,
memory was precious. Microsoft made a 4K BASIC
(that's how much memory it occupied) and there was
even a smaller version, known as “Tiny BASIC,” which
would run successfully in computers having less than
4K of total memory. Many now-familiar features were
sadly missing; versions with only integer numbers and
no arrays at all were not unusual.

Nowadays, BASIC may occupy 16K or so of ROM, or
be loaded from disk into 32K or more of your available
memory. It usually comes free when you buy your
computer.

Altair (the first mass-marketed micro) in 1975
advertised 1K memory boards for $139, 4K boards for
$338, and a single disk drive for $1980. The 4K BASIC
was $350, the 8K version was $500. You could buy the
source listing of BASIC (in case you wanted to modify
it?) for $3000.

The Altair 8800, the original “S-100” computer, was
sold in 1975 for $439 in kit form or $621 assembled. It
came (in either version) with 4 slots and two boards.
One board was the CPU; the other was a 4K (that's
right, one fourth of a K, or 256 bytes) board that could
be expanded all the way up to a full 1K by adding six
additional memory chips! Kits were available to add
more S-100 slots; if you added enough you could cram
in enough memory to run one of those early versions
of BASIC. | |

LEARN MICROCOMPUTERINTERFACING

VISUALIZE SCIENCE PRINCIPLES

Using GROUP TECHNOLOGY BREADBOARDS with your
APPLE® ..COMMODORE 64%® .. TRS-80® ...TIMEX-SINCLAIR® ...VIC-20®

Versatile breadboards and clearly written texts with detailed experiments provide basic instruction in interfacing mi-
crocomputers to external devices for control and information exchange. They can be used to provide vivid illustrations of
science principles or to design interface circuits for specific applications. Fully buffered address, data, and control buses
assure safe access to decoded addresses. Signals brought out to the breadboards let you see how microcomputer signals
flow and how they can be used under BASIC program controlf to accomplish many useful tasks.

Texts for these breadboards have been written by experienced scientists and instructors well-versed in conveying
ideas clearly and simply. They proceed step-by-step from initial concepts to advanced constructions and are equally
useful for classroom or individual instruction. No previous knowledge of electronics is assumed, but the ability to program

in BASIC is important.

The breadboards are available as kits or assembled. Experiment component packages include most of the parts
needed to do the experiments in the books. Connecting cables and other accessory and design aids available make for
additional convenience in applying the boards for classroom and circuit design objectives. Breadboard prices range from
$34.95 t0 $350.00

The INNOVATOR® BG-Boards designed by the pro-
ducers of the highly acclaimed Blacksburg Series of books
have gained wide acceptance for teaching microcomputer
interfacing as well as for industrial and personal applica-
tions. Detailed. step-by-step instructions guide the user
from the construction of device address decoders and

" input/output ports to the generation of voltage and current

signals for controliing servo motors and driving high-
current, high-voltage loads. BG-Boards are available for the
Apple I, 11+, lie; Commodore 64 and VIC-20; TRS-80 Model
1 with Level 1i BASIC and at least 4K read/write memory,
Models it and 4. The books, Apple Interfacing (No. 21862)
and TRS-80 Interfacing Books 1 and 2 (21633, 21739) are
available separately.

The FD-ZX1 I/O board provides access to the Timex-
Sinclair microcomputer for use in automated measure-
ment, data acquisition, and instrument control applica-
tions. A number of science experiments have been
developed to aid teachers in illustrating scientific
principles. The operating manual contains instructions for
constructing input and output ports. A complete text of the
experiments will be available later in 1984. The FD-ZX1 can
be used with Modeis 1000, 1500, 2068, ZX81, and Spectrum.

The Color Computer Expansion Connector Breadboard (not shown) for the TRS-80 Color Computer makes it possible
to connect external devices to the expansion connector signals of the computer. Combined with a solderless bread-
board and the book TRS-80 Color Computer Interfacing, With Experiments (No. 21893), it forms our Model CoCo-100 in-
terface Breadboard providing basic interfacing instructions for this versatile computer. Experiments in the book show
how to construct and use a peripheral interface adapter interface, how to input and output data; and how digital-to-analog
and analog-to-digital conversion is performed.

Our new Spring Catalog describes the interface breadboards, dozens of books on microcomputer interfacing, pro-
gramming, and related topics including the famous Blacksburg Continuing Education Series, a resource handbook for
microcomputers in education, and a comprehensive guide to educational software; utility software for the TRS-80,
scientific software for the Appie Il, and other topics. We give special discounts to educational institutions and instructors.

Write for the catalog today.

Apple Il. 1+, and e are registered
trademarks ot Apple Computer Inc.:
Commodore 64 and VIC.20 are

PUTTING
st HANDS
registered trademark of Radio Shaci‘(. A ND
' s reptercs nagemann of e MINDS

TOGETHER

Computer Corporation

Group Technology, Ltd.
P.O. Box 87N

Check, VA 24072
703-651-3153

The Computerist’s Calendar

- June 07CO0

