~ THE COMPUTER JOURNAL

For Those Who Interface, Build, and Apply Micros

issue Mumber 16 $2 50 UD

Debugging 8087 Code ...

Using the Apple Game Port ...

BASE:

Part Four in a Series on
How to Design and Write Your Own Database .

Using the S-100 Bus
and the 68008 CPU ...

Interfacing Tips and Troubles:
Build a “Jellybean” Logic-to-RS232 Converter s

Trne Computer Jour~a 1

THE COMPUTER JOURNAL
P.O. Box 1697

Kalispell, Montana 59903
406-257-9119

Editor/Publisher
Art Carlson

Art Director
Joan Thompson

Art Assistant
Lois Cawrse

Production Assistant
Judie Overbeek

Circulation
Donna Carlson

Contributing Editor
Ernie Brooner

Contributing Editor
Neil Bungard

Technical Editor
Lance Rose

The Computer Journal® is a mon-
thly magazine for those who interface,
build, and apply microcomputers.

The subscription rate for twelve
issues is $24 in the U.S., $30 in Canada,
and $48 airmail in other countries.
Please make payment in U.S. funds.

Entire contents copyright © 1985 by
The Computer Journal.

Advertising rates available upon
request.

To indicate a change of address,
please send your old label and new ad-
dress.

Postmaster: Send address changes
to: The Computer Journal, P.O. Box
1697, Kalispell, Montana, 59903-1697.

Address all editorial, advertising and
subscription inquiries to: The Com-
puter Journal, P.O. Box 1697, Kalispell,
MT 59901

Editor’s Page

Small Company Comeback?

Back in the seventies — before
micros — when people mentioned com-
puters they meant the huge, expensive
mainframes. These systems were
almost always designed for batch
processing where you would punch a
card deck for your program, submit it
to the data processing department to
be run at their convenience, and wait
hours or days for a printout of the
results. If your program bombed, you
had torevise it and reenter the long
cycle to try it again. The development
of minicomputers with interactive ter-
minals was a great improvement
because the programmer could work
directly with the computer, but these
systems still cost millions of dollars and
required a lot of space and tons of air
conditioning.

At that time computers were con-
structed of discrete components using
thousands of individual resistors,
capacitors, and transistors, and the
equipment could not be made small or
inexpensive. When the integrated cir-
cuit microprocessor was developed
people started talking about the
possibility of smaller systems, but the
manufacturers wouldn’t even consider
the idea of an individual having a com-
plete computer on their desk. They felt
that the future of the computer market
was in larger, more expensive systems,
with batch type processing or possibly
time sharing.

The only way to get your own com-
puter at that time was to build it, so the
hardware hackers scrounged around
for parts and helped each other get
their systems up and running. It wasn't
long before small companies offered
kits, and it mushroomed into the
microcomputer industry of today. It is
important to note that the initial
development was done by very small,
previously unknown businesses. MITS
started with an idea and was swamped
with orders for kits. Bill Godbout star-
ted selling kits out of an old hanger and
developed the business into CompuPro.
Steve Jobs and Steve Wozniak sold a

VW Van and a HP calculator to start
building Apples in a garage. The large,
established companies didn't enter the
market until long after it had been
founded and proven by the pioneers.
The spectacular technological advances
were made by individuals or small
start-up businesses; the big boys just
added a few enhancements and a lot of
promotional marketing when they
decided that the field was ripe for
picking.

“..It takes a minimum
promotional budget of
ten million dollars

to bring out a major
program in the
business market.”

The entry of big name companies
established the microcomputer as
legitimate for the business office en-
vironment, and opened the possibility
of selling extremely large quantities of
micros to a technically unsophisticated
audience. These companies built fac-
tories for high volume production of a
conservatively designed system inten-
ded to serve a wide variety of users,
and spent millions on promotion. The
result was that anyone competing with
them in this market had to follow the
same plan targeted towards large
quantites and high promotional expen-
ditures.

At this point it was no longer
possible to start from the garage with a
few dollars, at least not if you wanted
to battle the big boys for a share of
their market. One of the software
publishers has said that it takes a
minimum promotional budget of ten
million dollars to bring out a new major
program in the business office market.
This means that only programs with
(continued on page 4/

2 The Computer Journa

DEBUGGING 8087 CODE

by Lance Rose

C alling all number crunchers! The
good news is that the price of the 8087,
Intel’s floating point numeric
_ processor, just fell again and it can now
be bought for about $150. (Compare this
with its initial price of $400.) In ad-
dition, you can now buy an 8MHz ver-
sion of the chip (the standard version is
rated at 5MHz), although the price is
quite a bit steeper ($275). The bad news
is that in order to use the chip, you need
an assembler or compiler that will
generate the floating point opcodes for
it. So far, the compilers available that
will do this have a pretty steep price
tag attached to them ($300 and up) and
for those of us on a limited budget, it
may come down to a choice between
buying either the math chip itself or the
compiler without the math chip. Since
the latter choice doesn’t make any sense,
we might look at some ways of using
the 8087 that don't involve compilers.

I think it's only fair to say here that
for math, science or engineering ap-
plications, a high level language is
much better than assembly language,
unless running the program at
maximum speed is your primary goal.
Debugging applications programs writ-
ten in assembly language is tedious and
frustrating and the program listings
tend to be much longer (by about a fac-

. tor of 6-10 in my experience) than the
high level language equivalent. Still, if
you don't have unlimited funds this may
be your only choice.

My own system uses a Compupro
8085/8088 Dual Processor board which
has been modified to incorporate an
8087 floating point processor (see "Add
an 8087 Math Chip to Your Dual
Processor Board” in Vol. I, No. 3 of The
Computer Journal). My system runs
CP/M-86 which is file compatible with
CP/M-80, an important factor if you
have a hard disk and want to switch
back and forth between systems. CP/M-
86 comes with an assembler called
ASMB86 and a debugger called DDT86.
These function much the same as their
CP/M-80 counterparts. In addition

there is a macro library of 8087 instruc-
tions included with the system so that
you can write programs which include
floating point operations.

As an aside here, let me warn anyone
using this library that it does not en-
tirely agree with Intel’s instruction set
as far as the function of some instruc-
tions go. I have found it useful to fix up
the library so as to be compatible with
Intel's description of the opcodes as
described in the Intel “iAPX 86,88
User's Manual” which is available from
Intel Corporation, 3065 Bowers
Avenue, Santa Clara, CA 95051.
Anyone who is interested in the
changes required (they are minimal) can
contact me through The Computer
Journal for more information.

With the macro library available, it is
possible to write assembly language
applications programs. However,
debugging them is another matter, sin-
ce the DDT86 debugger has no way of
examining or modifying the 8087
registers the way it does for the
8086/88 registers. Also, during program
tracing all 8087 instructions show sim-
ply as ESC instructions with
meaningless operands rather than the
actual mnemonics (e.g. FADD ST,ST3
or FSQRT). While this latter problem is
not very easy to fix, it isn't too hard to
allow the display of the 8087's stack of 8
floating point registers as well as the
control and status registers.

Modifications

My original plan for incorporating
8087 code debugging into DDT86 was to
show all the 8087 registers along with
the 8088 registers whenever the latter
were displayed. Aside from the com-
plexity of this approach, it would make
it awkward to use the debugger for
8088-only code, thereby necessitating
two separate debuggers on the disk.
After some thought, I decided on a dif-
ferent method.

DDT86, like ordinary DDT, accepts
single-letter commands, with or
without arguments, to do things like

Display memory, eXamine registers,
Set memory and so forth. There isa
jump table located within DDT86 that
vectors to the proper routine
corresponding to the letter of the com-
mand entered. Since many of the let-
ters of the alphabet are unused by
DDTB86, it is a simple matter to ap-
propriate one of them to display the
8087 registers. All that is required is to:
(1) patch the jump table at the position
of the desired letter code to jump toa
new routine, (2} write the display
routine and (3) merge it with the
original DDT86 to get a new debugger,
which I call DDT87.

The additional code necessary to im-
plement the 8087 register display is the
program listing shown in Figure 1. It is
pretty straightforward and uses the
8087 instuctions FSAVE and
FRESTOR to put the entire 3087
machine state into memory where it
can then be examined and displayed by
the 8088.1 used the letter ‘Z’ as the in-
struction to do this, simply because it is
positioned near the ‘X’ on the keyboard
and I'm used to displaying the 8088
registers with the ‘X’ command. If you
prefer a different letter it's a simple
matter to patch the corresponding
word in the jump table once you know
where to find it. (It begins at 0369H
relative to the beginning of the DDT86
file). Just make sure you don't choose a
letter that's already in use or you will
lose one of DDT88's standard functions.

After you have entered the patch
program with a text editor or word
processor, simply go through the
procedure shown in Figure 2. This
figure is simply a copy of the console
commands required to assemble the
patch, merge it with DDT86 and test its
function. Once it is known to be
working you can remove DDT86 from
your working disk (not your archive
diskette) and use DDT87 instead. When
not examining 8087 registers it will
function just as DDT86 would. The only
difference is the ‘2’ command.

Summary

I have found that the hardest thingin
debugging 8087 code is not being able
to see the floating point registers. This
makes it hard to find floating point
stack overflows and the like. This
debugger patch rectifies this and
makes floating point program
debugging much easier. Some ad-
ditional enhancements that might be
nice would be to display the 8087

12/15/84

CSEG

ORG 3660H

FSAVE STATE
FRSTCR STATE

register values in floating decimal in-
stead of hex, allow alteration of in-
dividual 8087 registers and display
floating point opcodes with their proper
mnemonics. I might decide in the future
to add some of these, but the ability to
actually examine the 8087 registers
seems to solve the majority of the
debugging problems. In retrospect, the
patch is so simple that I wonder why I
didn’t add it sooner.

Patch to allow DDT86 display of 8087 registers

;End of DDTB6

;Save 8087 state
;Now restore it

MOV LX,O0FFSET HDC1

MOV CcL,9

INT 224 ;Display first heading

CALL SPACE

MOV AX, STATE

CALL DISPW ;Display control word

CALL SPACE

MOV AX, STATE+2

CALL DISPW ;:Display status word

CALL SPACE

MOV AX,STATE+4

CALL DISPW ;Display tag word

CALL SPACE ;:Add an additional space

MOV SI,OFFSET STATE+22

MOV CX,3

CALL DISPFP ;Display ST@,ST3,STé

MOV DX, OFFSET HDG2

MOV CL,9

INT 224 ;Display second heading

MOV S1,0FFSET STATE+32

MOV CX, 3

CALL DISPFP ;:Display ST1,ST4,ST7

MOV DX,OFFSET CRLF

MCV CL,9

INT 224 ;Do a CRLF

MOV AL,BYTE PTR STATE+9

MOV CL, 4

SHR AL,CL

CALL DISPN ;Display high nybble of 1P

MOV AX,STATE+6

CALL CISPW ;Display low word of IP

CALL SPACE

MOV AX,STATE+8

AND AH,Q7H

OR AH, @D8H

CALL DISPW ;Display opcode

CALL SPACE

MOV AL,BYTE PTR STATE+13

MOV CL, 4

SHR AL,CL

CALL DISPN ;Display high nybble of OP

MOV AX,STATE+10

CALL DISPW ;Display low word of OP

MOV SI,OFFSET STATE+42

MOV CcX, 2 ;Display ST2,ST5S
DISPFP: PUSH CX

PUSH SI

CALL SPACE ;One leading space

POP SI

MOV CX,5 ;Five words per register

DISPFl: STD

:Set to decrement

continued

Tre Comouter jourral 9

FOR TRS-80 MODELS 1,344
IBM PC, XT, AND COMPAQ

DATABASE
WITHOUT THE WAIT!

DATAHANDLER and DATAHANDLER-PLUS are
fast, sasy dstabese programs which accept any
length of field, sort and key on any fieids, never pad
with useless blanks. And they integrate with FORTH-
WRITE, FORTHCOM, and the rest of the MMS-
FORTH System.

The power, speed and compactness of MMSFORTH
drive these major applications for many of YOUR
home, school and business tasks! imagine a sophis-
ticated database management system with flexibii-
ity to create, maintain and print mailiing lists with
muttipie address iines, Canadian or 9-digit U.S. 2!P
codes and muttiple phone numbers, plus the speed

1o load hundreds of records or sort them on several
fieids in 5 seconds! Manage inventones with selec-
tion by any character or combination. Balance
checkbook records and do CONDITIONAL repont-
ing of expenses or other calculations. File any
mcords and recall selected ones with optional
upper/lower case match, in standard or custom
formats. Personnel, membership lists, bibliogra-
phies, catalogs of record,. stamp and coin coliec-
tions —you neme it! All INSTANTLY, without wasted
bytes, and with cueing from screen so good that
nON-programmers quickly master its use’ With man-
ual, sample data files and custom words for mail list
and checkbook use.

DATAHANDLER is available on all MMSFORTH
Systems, uses 64K or less of memory, and includes
source code. DATAHANDLER-PLUS requires MMS-
FORTH for IBM PC, uses all but 84K of availabie
RAM for large-file buffering, and adds advanced
features: active editing window, optional spraad-
sheet data display, user-trainable function keys,
and much more.

DATAH{-'\dNDLE R
| a
DATAHANPLER-PLUS

M/ (SFORT!

The total software environment for

1BM PC, TRS-80 Model 1, 3, 4 and

close friends.

®Personal License (required):
MMSFORTH Systom Disk (IBMPC) §240.95
MMSFORTH Sysom Disk (TRS-201.30rd) 129.95 '

ePersonal License (optional moduies):
PORTHCOM communications

module § 30.98
UTRUITES 30.95
QGAMES 0.9
EXPERT-2axporisystom ®u.y
ODATAHANDLER ”
DATAMANOLER-PLUS (PConly, 120Kreq) O
PORTHWRITE word processor b M

sCorporate Site License

Extensions rov

eSome recommended Forth br

Shipping/nandiing & tax extra. No &/
Mzwrdnbrmahowyc
MMSFORTH, or request o
MILLER MICROCOMP ;
§1 Lake Shore Roed,

®1nes

q The Computer Journa

Editor's Page, continued
the potential for very large sales can be
considered.

Those of us whose interests do not
coincide with the business office
market have been ignored, especially if
we use an older system such as CP/M-80
which is not compatible with the IBM-
PC. Yet there are thousands of people
with fully-paid-for systems who are
satisfied with what they are using. and
do not want to buy one of the new
systems just to be able to use the
newest software. These people cannot
be served by the large, high budget
companies because of their diverse
needs, but their business is attractive
for smaller companies who can tightly

“There are thousands of
people with tully-paid-for
systems who are satistied
with what they are using...”

target a specific market niche. There
are indications of a strengthening
market for speciality programs which
are not limited to just the IBM-PC
market. Some examples are the
engineering programs from BV
Engineering, multitasking MTBASIC
from Softaid, ZB0OASM assembier from
SLR Systems, and SMAL/80 from
Chromod. There is also a lot of activity
in single board computers for the Z-80,
68000, and other CPUs, and in the area
of enhancement boards for the Apple
and other systems. Many of the people
developing new products are those who
have created something to fill their own
needs, and are not necessarily em-
ployees of a large company. While
these may not be garage shop
operations, they are definitely not
major corporations.

Ifeel that we have seen a peak in the
growth of the “computers for
everybody” market and that it will split
up into several different fragments,
among which will be the major business
office portion for corporations and a
smalier share for individuals and minor
businesses. Perhaps it’s time to clean
out the spare bedroom, or the garage,
and work on the products which are
needed by the smaller markets. @

LODSW
PUSH CcX
PUSH S1
CALL DISPW
POP s1
POP cx
LOOP DISPF1
POP CcX
ADD S1,40
LOOP DISPFP
RET
DISPW: PUSH AX
MOV AL, AH
CALL DISPB
POP AX
DISPB: PUSH AX
MOV CL, 4
SHR AL,CL
CALL DISPN
POP ax
DISPN: AND AL, @FH
CMP AL, 10
JB DISPN1
ADD AL, 7
DISPN1: ADL AL,'Q"’
MOV DL, AL
MOV CL, 2
INT 224
RET
SPACE: MOV pL, '
MOV CL, 2
INT 224
RET
ENDCS EQU OFFSET §
DSEG
ORG ENDCS
HDG1 DB ©DH, OAH,' Cw SW
DB : ST3-ST5S
CRLF DB @DH, 8AH, 'S’
HDG?2 DB ©DH, @AH,' 1P ocC

MAXCOD EQU (OFFSET $+@FH) SHR 4

STATE RW 47

MAXPAR EQU (OFFSET S$+0OFH) SHR 4

.
‘

INCLUDE 8087.LIB

END

A>ASMB86 PATCH $SZ PZ

CP/M 8086 ASSEMBLER VER 1.1
END OF PASS 1
END OF PASS 2
END OF ASSEMBLY. NUMBER OF ERRORS:
A>GENCMD PATCH 8080

BYTES READ @12F
RECORDS WRITTEN 71

A>DDT86
pDT86 1.1
-RPATCH.CMD

START END
20090: 0000 2000:387F

;Display word

:Display byte

;Display nybble

;Display a space

ST@-ST2 '
ST6-ST7'

s

;New code size

;Area for 8087 state

;New total size

. USE FACTOR: 5%

Tre (oputer scurma 8

\neuP of

a\)mg P
ers:

(Ogram_

T tBP“ C,Ost’5
! 531 ontro!

j -"c
| A>DDT86
-, ' DDTS86 1.1
I -RDDT86.CMD
START END
i 2000:0000 2000:367F
- -S0
i 2000: 0000 01
‘ 2020:0001 60 79
2000: 0002 03
— 2000:€003 00
_ 2000:2004 00
f 2000:90085 66 TF
2000: 0006 03 .
-S1BE
2000:21BE 36 37
, 2000:01BF 20 .
-S39B
2090:0398 DF 60
- 2000:239C 82 36
° 2000:€39D CD .
-WDDT87.CMD, @, 387F
! -C
-, A>DDT87
; DDT87 1.1
-2
CW SW Tw ST@-ST2 ST3-ST5 ST6-ST7
_ P3FF 4100 FFFF FFF6D5555575115C7555 FFF6D5555575115C7555 FFF6D5555575115C7555
IP OC OP FFF6D5555575115C7555 FFF6D5555575115C7555 FFF6D5555575115C7555
09000 D8PV PPPEP FFFE6D5555575115C7555 FFF6D5555575115C7555
- C ¥

A>

6 The Computer journal

USING THE APPLE GAME PORT

by Art Carlson

w hen Woz designed the Apple®
he included a very useful port to inter-
face the joysticks, paddles, and swit-
ches used for games, and named it the
game port. This port can be used for
many other applications, and it is un-

" fortunate that because of its name
people do not consider it for other uses.

The game port, which is available
from a 16 pin DIP (Dual Inline Package)
socket on the motherboard, contains
four analog inputs which respond to
variable resistance, four one bit out-
puts called “annunciators” which can be
used as an input to some other device,
three one bit inputs which can be used
to sense the position of a switch or the
state of an electronic device, and a
strobe output. These features can be
used from either assembly language or
BASIC and can provide many inter-
facing functions without the added ex-
pense or slot space of a plug-in board.

The pin-out for this connector is
shown in Figure 1 as viewed from the

top of the motherboard. You can make
the connections directly to the socket,
but for experimental work where you
will be changing the parts frequently, it
is more convenient to use a 16 conduc-
tor jumper cable (Radio Shack #276-
1976A) to bring the connections outside
of the computer to a prototyping
breadboard (Radio Shack #276-174).
This also saves wear and tear on the
motherboard socket. A permanent cir-
cuit for a small device could be assem-
bled on a 16 pin header and plugged
directly into the socket after being
tested on the breadboard.

A Simple Starter Project

The first project, as shown in Figure
2, demonstrates the use of the annun-
ciator outputs to control a device. It is a
very simple project which almost
anyone can do. The experienced har-
dware hackers can just skim over this
section, but if this is your first attempt,
roll up your sleeves and get started.

1 +5v NC 16

2-1 PBO ANG 15

3 PB1 AN1 14

44 PB2 AN2 13

54 STROBE AN3 [-12

6 GC@ GC3 -1t

74 8C2 GC1 (10

8- GRND NC 9

FUNCTION HEX DEC READ OR WRITE
PBO FLAGINPUT ZERO $Co61L 49249 R
PB1 FLAGINPUT ONE $CP62 49258 R
PB2 FLAGINPUT TWO 8Co63 49251 R
ANG ANN. ZERO OFF +Ca58 49249 R/W
ANG ANN. ZERO ON $Ca59 49241 R/W
AN1 ANN.ONE OFF $COSA 49242 R/W
AN1 ANN.ONE ON $CO5SB 45243 R/W
AN2 ANN. THO OFF $Ca5C 49244 R/W
AN2 ANN. THO ON $COSD 49245 R/W
AN3 ANN.3 OFF $COSE 49246 R/W
AN3 ANN. I ON SCOSF 49247 R/W
GCo ANALOG INPUT sCo64 49252 R
6C1 ANALOG INPUT $CA65 49253 R
6C2 ANALDOG INPUT 8CB66 49254 R
8Cc3 ANALOG INPUT sCo67 49233 R
STROBE sCo49 49216 R
ANAL OB CLEAR sCo70 49264 R/W

Figure 1

Our philosophy is to have you start at a
level where you can succeed and build
from there, rather than start you on
something way over your head and
have you fall flat on your face.

The first step is to acquire a
prototyping breadboard, a 16 pin jum-
per cable, two LEDs, and two 330 chm
resistors. Although I have occasionally
used wires poked into the socket with
the other end clipped or soldered to the
components, I do encourage you to get
the breadboard and cable. They can be
used over again for other projects, and
are a small investment (about $15)
which will make things much more con-
venient.

It may appear to be overkill to use a
computer to flash a couple of LEDs, but
they are used here because they are
cheap, easy to get, and provide visual
feedback on what is happening while
avoiding the additional complications
involved in driving more demanding
devices. In an actual application you
would be controlling a motor, relay,
heater, or some other device.

The annunciators are controlled by
soft switches, with two memory
locations assigned to each annunciator.
Reading or writing to one location will
turn the switch on, and reading or
writing to the second location will turn
the switch off. The value written toor
read from the location is meaningless; it
is the action of referencing the location
which sets the switch.

In this example we use ANO to con-
trol an LED connected to pin 15 of the
game port, and AN1 to control an LED
connected to pin 14 (see Figure 1). ANO
is turned on from location 49241 (Hex
$C059), and is turned off from location
49240 (Hex $C058). The Apple uses the
$ symbol to identify a hexadecimal
number. AN1 is turned on from 49243
($C05B), and off from 49242 ($CO5A).

The annunciator outputs are stan-
dard 74LS series TTL (Transistor-
Transistor Logic) outputs from a
T4LS259 addressable latch on the
motherboard, and the Apple reference
manual states that the outputs must be
buffered if used to drive other than

ANC //

PIN 15 E]; BN L
PIN 1

f/

330~ .5
PIN
AN

PIN 14

Figure 2

TTL inputs. TTL is called current-
sinking logic because it can absorb or
sink current to ground in the low state,
but it can source or supply only a very
limited current in the high state. The
74LS259 is rated as being able to source
0.4ma in the high state or sink 8ma in
the low state. Since common LEDs
require about 6ma, you have to either
use the current sinking capability of the
low state or use a buffer to drive the
LED from the high state. Because of my
early training on tube type equipment,
I have had difficulty adjusting my
thinking to turning something on with
the logic in the low state, which is nor-
mally considered “off.” Another alter-
native would be to use an inverter so
that the device would be turned off

POKE statements to control the an-
nunciators it doesn’t have any useful
applications. However, by using an
analog input to read the value of a
variable resistance you can vary the on
and off times depending on this
resistance.

Assembly Language Program-
ming of the Annunciators

Before tackling the game controller
input, I want to cover using the annun-
ciators from assembly language. I know
that there were a lot of moans and
groans when you saw the frightening
words “assembly language,” but it is
not the intimidating beast that
everyone thinks it is, and the speed of
assembly language programs will be
necessary for real time control in more
advanced projects. Another advantage
of assembly language programs is that
you can place small driver programs in
memory below HIMEM and call them
from BASIC or other assembly
programs.

Most assemblers can use either
decimal or HEX addresses, but HEX
addresses are much easier to use,

Tre Compute Lourra 7

especially since the memory pages
break on HEX boundaries. A page in
memory is the first byte of a two byte
number. In other words, $0300 to
$03FF is page three and covers $100
bytes (remember the Apple convention
of defining a number preceeded by the
$ symbol as a HEX number). The game
port soft switches are located in page
$CO0 and are shown along with the
decimal numbers in Figure 1 so that
you can use them without doing any
conversions.

The assembly language program in
Figure 4 includes a nested delay loop so
that the LEDs flash slowly enough for
you to see. The HEX dump listing can
be entered directly from the monitor if
you do not have an assembler. The
assembler source code is for the S-C
Macro Assembler, but should work
with most assemblers by changing the
pseudo-opcode directives to suit your
assembler. Lines 1050 thru 1080
establish the equates for addressing
the four annunciator switches so that
you can use the labels instead of the
addresses in the source code. The
assembler replaces the label with the

. Y S —
| with the TTL Output low, but that also telg » CYCLE VERSION 1.2
i adds more parts for a simple LED 192¢ * PROGRAM TO CYCLE AN@ AND AN1
- driver. 1 have chosen to use the low }gi:; : 17/16/85 RAC
state LED.driver as shown in Figyre 2. casa- 105¢ OFF0 .EQ sCasa
For more information on TTL logic, Cos9- 186G ON@ -EQ $COS%
- . refer to page 7 of Interfacing ngg‘ W’;s OFF1 -EQ sCasa
. CASE- 1480 ON1 .EQ sCOSE
Microcomputers to the Real World by @800~ BD S8 CO 1990 CY@ STA OFFQ TURN AN& OFF
Sargent and Shoemaker, page 6 of TTL #803- 2¢ 1E 28 1120 JSR DELAY
Cookbook by Lancaster, or page 394 of @806~ 8D 59 Co 1110 STA ON@ TURN AN@ ON
— . . 9805~ 28 1B @8 1120 JSK DELAY
rowitz and
The Art of Electronics by Horowitz an #B0C- 8D SA CO 113d CY1 STA OFF1 TURN AN1 OFF
Hill. PBOF- 20 1R @8 1140 JSK DELAY
3 The Applesoft BASIC program in @#812- 8D SB Co 115¢ STA ON1 TURN AN1 ON
o Figure 3 will flash the two LEDs with 0815~ 26 1B 08 1160 JSR DELAY
d off times d ined by th 9818~ 4AC 8 68 1170 JMF CY®
the on and off times etermined by the @81R- A2 FF 1180 DELAY LDX ®$FF
FOR-NEXT delay loops in lines 40 to #81D- A@ FF 119¢ LOOF1 LDY W#S$FF
50,70 to 80, 100 to 110, and 130 to 140. ggi"" gs D 1266 LOOF2 DE; o
. o 20~ D@ 121a ENE LOOF2
While this demonstrates the use of @822- cA 1220 DE X
9823~ D@ FB 123@ ENE LOOF1
bl o T
LisT 8825- &0 1240 RTS
b 16 REM CYCLE AN@ AND AN1
‘ 20 REM 1/16/8% SYMBOL TABLE
30 POKE 49248,0: REM TURN ANG OFF
42 FOR I = t TO 2%@
58 NEXT 8800- CY@
; 6@ POKE 49241,8: REM TURN ANS ON 286C— CY1 *B@G.82S
- 26 rom =170 2% @81B- DELAY
96 POKE 49242,0: REM TURN aNi OFF 881D- LOOF1 9680¢- 8D S8 C& 20 1B @8 8D 59
18¢ FOR 1 = 1 TO 250 @81F- LOOF2 9808- Co 20 1B 28 8D SA CoO 20
118 NEXT . ; COS8- OFF@ 2816~ 1B 08 8D SB C@ 20 1B @8
— 130 PORE 47243.0: TEM TURN ANt ON CoSA- OFF1 2818- 4C @0 08 A2 FF AD FF 88
149 NEXT Co59- ON@ 0820- D@ FD CA DO F8 @
1S¢ GOTO 3@ C@SB- ON1 o
_ Figure 3 280¢ ERRORS IN ASSEMBLY Figure 4

8 The Computer Journai

data established by the equate at
assembly time as you can see in the
HEX code in Figure 4. If you are not
familiar with assembler listings, the
first column is the target address, the
next three columns are the actual HEX
data being stored in those locations, the
fifth column contains the line numbers
used by the assembler for editing pur-
poses (these line numbers are not a part
of the program as in BASIC), the sixth
column is the label, the seventh column
is the op-code, the eighth column is the
operand, and anything after that isa
comment — similar to a REM statement
in Basic.

Lines 1000 thru 1040 are comments
to identify the program, and lines 1050
thru 1080 set up the equates. Line 1090,
which is the start of the actual program
{located at $800 in this example), uses
the op-code STA (STore the Ac-
cumulator) to write to $C058 and turn
off ANO. The HEX code for this is in
columns two through four, where 8D is
the code for STA, and 58 CO is the ad-
dress. The 6502 CPU used in the Apple
stores two byte addressess, with the
low byte (58) first followed by the high
byte (C0). This is the opposite of the
way you enter it in the assembler sour-
ce code. You don't have to worry about
this — the assembler takes care of it for
you—but it can be confusing when you
look at the HEX code memory dump.
Line 1100 uses JSR (Jump to
SubRoutine) to transfer operation to
the address in the operand field. The
assembler very conveniently replaced
our DELAY operand with the address
for DELAY in the label field. Lines
1180 and 1190 load the X and Y
registers with the value $FF (when the
operand is preceded by the symbol # it
means load this number instead of the
number in this address). Line 1200,
DEY (DEcrement the Y register), sub-
tracts one from the Y register. Line
1210, BNE (Branch Not Equal) LOOPZ2,
executes the branch if the preceeding
operation did not result in zero. If the
result is zero, the program continues on
to the next line. After the Y register
has been decremented to zero line 1220,
DEX (DEcrement the X register), sub-
tracts one from the X register, and line
1230 loops back to line 1190 to reload
the Y register with $FF and keeps on
repeating this sequence until the X
register has been decremented to zero.
Then in line 1240, RTS (ReTurn From

Subroutine), the program goes back to
where the subroutine was called. After
the first delay period, we store the ac:
cumulator in $C059 to turn ANO on, and
jump back to the delay loop. I'll leave it
to you to follow the rest of the program.

The program is not elegant — for
example, the only way to stop itisto
use the reset — but it does show how to
program the annunciators from assem-
bly language.

Using The Analog Inputs

The four analog inputs were
designed to read the position of
joysticks by using variable resistance
potentiometers attached to the
joystick. Each analog input is connected
to one section of a 558 quad timer in-
tegrated circuit on the motherboard
(see the article 555 Timer Breadboard”
in issue 12 for information on the timer
IC). The reading subroutine simply
counts the number of cycles required
for the 558 to time out with the time
determined by the variable resistance.
Woz designed the circuit with a 0.022
microfarad capacitor in each section so
that the count can be varied between
zero and 255 with a 150 kilohm poten-
tiometer.

To use the input, you connect a
resistance between CGO (pin 6) and five
volts (pin 1), and read the value from
BASIC with the command Y = PDL(0).

Then the value in Y can be used by your
program. The BASIC program in
Figure 5 shows how a variable resistan-
ce, such as a thermistor, can be used to
control temperature regulating
devices.

One of the problems in controlling
temperature is that if you use large
heaters to bring the load up to tem-
perature rapidly from a cold start and
then switch the heater off when the
proper temperature is reached, the
temperature will continue to rise past
the set point because of the stored
energy in the heaters. When the tem-
perature drops below the set point and
you switch the heaters back on, the
temperature will rise above the set
point again. In a typical on-off ap-
plication the temperature will continue
to oscillate above and below the set
points, and the fluctuations can be
large. In servo control pariance this
type of system where the power is
either completely on or completely off
is called a bang-bang control, and I like
to compare it with trying to drive in
city traffic with either the accelerator
to the floor or the brakes completely
locked with no in-between partial con-
trol. The program in Figure 5 provides
much more advanced control thana
simple on-off switch such as a ther-
mostat because it allows you to propor-
tion the response to the amount of

niIsT

11 RAC - -1 /19 /7 85

140 X = PDL (8): REM
15@¢ PRINT X

160 M = 5: REM MULTIPLIER
17&¢ IF X > 125 GOTO 210

180 IF X < 120 GOTO 329

196 FOR I = @ TO 500: NEXT I
200 GBOTC 140

210 H = M » (X - 125)

220 J = M & (255 - X): PRINT

p o
[

1280 POKE 49241,0: POKE 49243,8:
13¢ REM THE LEDS ARE OFF WHEN THE ANNUNCIATORS ARE ON
READ GCe

188 REM CYCLE AN@ AND AN1 PROPORTIONAL TO ERROR

REM START WITH BOTH LEDS OFF

238 POKE 49240,0: REM TURN ANG OFF
248 FOR 1 = @ TO H
250 NEXT I
268 POKE 49241,0: REM TURN ANE@ ON
270 FOR I = @ TO J
286 NEXT 1
292 06OTO 140
300 L = M =« X
J1O N = M # (120 - X): PRINT L,
32¢ POKE 49242,08: REM TURN AN1 OFF
33 FOR I = @ TON
340 NEXT 1
350 POKE 49243,08: REM TURN ANI ON
36 FOR I = & TO L
3760 NEXT 1
3860 0GOTO 149
Figure 5

— The Computer Journai 9

FREE SOFTWARE
RENT FROM THE PUBLIC DOMAIN!

User Group Software isn't copyrighted, so there are no fees to
pay! 1000's of CP/M and IBM software programs in .COM and
source code to copy yourseif! Games, business, utllitles! All
FREE!

QUALITY SOFTWARE AT
- REASONABLE PRICES

CP/M Software by
Poor Person Software

- Poor Person’s Spooler $49.95
All the function of a hardware print buffer at a fraction of the
¢ ' cost. Keyboard control. Spools and prints simultaneously.

— Poor Person’s Spread Sheet $29.95

Flexible screen formats and BASIC-like language. Pre-
programmed applications include Real Estate Evaluation.

, Poor Person’s Spelling Checker $29.95
— Simple and fast! 33,000 word dictionary. Checks any CP/M
text file.

aMAZEing Game $29.95

Arcade action for CP/M! Evade goblins and collect treasure.

1 Crossword Game $39.95

Teach spelling and build vocabulary. Fun and challenging.

Mailing Label Printer $29.95

Select and print labels in many formats.

Window System $29.95

Application control of independent virtual screens.

— ’ All products require 56k CP’M 2.2 and are available on 8" IBM and 57
Northstar formats, other 5” formats add $5 handling charge. California
residents include sales tax.

: Poor Person Software

! 3721 Starr King Circle

bt ’ Palo Alto. CA 94306

CP/M USERS GROUP LIBRARY
Volumes 1-92, 46 disks rental—$45

SIQ/M USERS GROUP LIBRARY
Volumes 1-80, 46 disks rental—$45
Volumes 91-176, 44 disks rental—$50
SPECIAL! Rent all SIG/IM volumes for $90

K.U.Q. (Chariottesville) 25 Volumes—$25

IBM PC-SIQ (PC-DOS) LIBRARY
Volumes 1-200, 54 " disks $200

174 FORMATS AVAILABLE! SPECIFY.

Public Domain User Group Catalog Disk $5 pp. (CP/IM only)
(payment In advance, piease). Rental is for 7 days after receipt,
3 days grace to return. Use credit card, no disk deposit.
Shipping, handling & insurance—$7.50 per library.
(819) 914-0026 information,(9-5)
(818) 727-1015 anytime order machine
Have your credit card ready! VISA, MasterCard, Am. Exp.

Public Domain Software Center
1533 Avohill Dr.
Vista, CA 92083

N DISK DRIVE MANUALS 3.

DISK SERVICE MANU COMPUTER PHREAKING!

S Disk drives MUST be periodically cleaned and fubri- | According to the FBI, less than 5% of all DISCOVERED com-
s cated, and repaired as needed. Malfunctions can be Rore gorimes result v conviction' - Computer crime, o
NN devastating in lost programs, data and text; loss of m‘"“'"z costs § Billions per year, and is clearly ore of
business; upset customers; down time; uncertainty; | 1€ MIST Jangerous - yet most profitable and least cisky - of
i’ 5 i Yi | all crimes’ COMPUTER PHREAKING describes in detarl:
unexpected high expenses. YOU can maintain. trog- !) Dozens of computer crime methods. Schemes inc'ude:
bleshoot, and repair drives WITHOUT EXPENSIVE Input Transaction Manipulation, File Alteration and Subst,tu-
OR DELICATE EQU[PMENT OR DIAGNOSTIC | tion, Unauthorized Software Modification, Code Bus!: g
SOFTWARE - often in situ and in less time than 11 | Wiretapping, Electronic Trespass, etc. Plus many actua! ex-
takes you to remove, pack, ship, receive, unpack, in- aenr(wpleds‘ a'nd a detaiied c‘a‘se\cnrslorxcb:;edcupon actual coyrt
b stall, re-configure, and retest drives sent to drive | [SCOF9% of a maior group o nd mow Goverament bus:
repair shcps'Y thppmg drives is riskyi Self-suffi- ;isrse:knsd hinancCiat institutions are easily victim. zed by sassa
ciency makes sense. !f you want the job done right, 2) Numerous countermeasure, profection and sec.sit
with pride, on time, and at minimal expense - DO-1T- | schemes - passwords to public ke encrypl.or metne sy
- ’< YOURSELF! State-of-the-art techniques. Foil even the sharpest Phrea.
) . . ; ter It GENERAL. Chapter H: OPERATION 3) Definitions of popular computer crime tesms, inc)uc-
i v . & TIPS. Chap!er 1II: ERROR MESSAGES | 'ng PIRACY, TROJAN HORSE, LOGIC BOMB, TRAPDOOR,
| a ps (and what the mean). ter IV: DIAGNOSTICS GODFATHER, MUTANT, ZOMBIE, BODY SNATCHER, SI-
LA y * LENT ALARM, CHEESEBOX, CANDYMAN, CODE 10, etc.
: X & TROUBLESHOOTING w-10, step-by-step). 4) Thorough anaiysis of why computer crimes are the
1o Ox) e ng]’_MVE:NePAINTEN?NCVEiI RCh:p:-chA\g: AS:,IE(‘,ND least risky and most profitable of all crimes.
Phow resuced Sbvertiomment . Chapter : R- -

j Learn how to become a computer crime tighter' Corrpre-
ALL NEV DISK DRIVE MANUAL! - NOW TWO MANUALS! [MENT (includes hysteresis and eccentricity). Chap-~ | hensive, llustrated, frank. ONLY $15.
Botn books are exhaustive and comprehensive - each has

VIIL: udes -
DOZENS OF LABELED PHOTOS AND ILLUSTRATIONS, rer ELwErLIESomeNstCsfeg R::img)z‘s ('& or C‘l’)‘(: SUPER RE-INKING METHOD
LLAN
Sec

tel 415-493-3735

CPM s areqistered trademark of Digital Research

rect
AND TABLES! Idea! for dealers, schools, businesses, and MISC] OUS REPAIRS (TOO Sensor, T00 End
ciubs. SPECIAL QUANTITY DISCOUNTS: Stop, tor Index, Write-Protect, Head Loader,
Compliance, Cone Assembly,
Module Assembly, Logic Boards, Spindle Motor,

New printer/typewriter cartridge ribbons are costiy, arc ve:
may produce less than 5 hours of qualulyccop) F ADf\d T‘;;Ean
inconvenience to order - WHEN YOU CAN FIN M
Now, you can re-ink your own cloth ribbons to iast about i2
Door). Chapter X: DRIVE TEST STATION (protes- hours of quality use for about 50 genls‘and 10 minutes of =£<

ional shop X Chap . HOP fort per ribbon. Not anv ink will do' We developed the right
The deta:led theory and practicai facts of {loppy 'sl:ECHNIQUESplm)Cha ter ';;l_ ’I()lﬁlsgp?\ISAEYSIS (ambﬁahon of clav-free ink ana carrier - both com~orh
Cisk drives, diskettes, FDCs, interfacing, format- SOFTWARE C.RlTl P o " anc inexpensiveiy avuiiable from stores in black and + co-
ung, and disk-stored software. A must for the Stu- FIC, QUE. Chapter XIli: DRIVE MODI- | {0 "Toeliads complete plans for your cwn el cheape mater-
dent, Programmer, and Computer Shopper (save ATIONS. Appendix A: GLOSSARY. ONLY $20. driven re-imker. Completely descr: ustrates.

bed anc
$$S8) Relates 10 drives of every manufacture, and MORE PUBLICATIONS {ONLY $15 eoch)! STOP WASTING MONEY ON RIBBONS'' ONLY $5.

used 1n [BM, IBM-Compatibles, APPLE, TANDY, ’----------—----—-~

SOMMODORE, KAYPRO, Th ATARIL HP, NORTH ISV R IR RO R W VN VXM 4™ Consumentronics Co. B.0- Drwarsar:

STAR, DEC. etc. systems: Alamogordo, N.M. 88310 \
ter I: GENERAL. Chapter II: DISK DISK DRIVE TUTORIAL [

. IN: DISKETTES. ve :
gﬁ%ﬂmcxﬁ?‘e&a ter V: FORMAng‘Ef""Q,ap OplER MANUAL Name DISK SERVICE MANUAL[]

Spindle Assembly,

ter Vi: SOFTWARE (compatibility and protection). | MUSIC TO YOUR EARSY By Jow Willims, Elecrromcs ener. | FamTER & rLoTTER L] |
Chapter VIl: RECOMMENDATIONS. Appendix A: | eer. fotmer Computer Science professar NNSU - WE PAY s corEr manuaL O3 |
DDRESSES. Appendix B: GLOSSARY. ONLY $i2. ALL U.S. SHIPPINGY (10X, $3 min. foreign orders). Pleose ol-
A low 4-4" weeks for check-paid orders, else 1.4 weeks. Deolers, COMPUTER PHREAKING [|
C rironies Co. " CRESCENT DR . P O DRAWER 537, g‘l‘s‘g “Tssﬁwdc&r'ms :‘:km - S\ESYANTI:.L' W;LNETPS;] SUPER RE-INKING METHOO [] §
—_ nsume| . OR: P 8620 OUNTS! witom i or tity ordera!
o ALAMOGOROC ORDER TODAY! FREE CATALOG wifh ordes (else $1). ' Stote Zlp Enclosed...$ 7
-

N - = - - e .

10 The Computer Journa:

error.

Line 140 sets X equal to the reading
from GCO, and line 150 prints the value
to the screen. Line 160 is a multiplier to
increase the length of the cycle. In a
real world control situation, you will
probably want to control from both
sides of a set point to correct errors in
either direction, so lines 170 and 180
determine if the resuit is above or
below the set point, with a “dead band”
created between 120 and 125. This
. “"dead band” means that no control ac-
tion will take place between 120 and
125, allowing us to avoid rapid cycling
from heating to cooling. If the value is
between 120 and 125 the program ad-
vances to the delay loop in line 190,
then returns to line 140 to repeat the
cycle.

If the value is above 125 the program
goes to line line 210 where we set H
equal to M times X minus 125 to
establish the ON portion of the cycle. In
line 220 we set J equal to M times 255
minus X to establish the OFF portion of
the cycle, and print the values of H and
J to the screen. The purpose of these
two lines is to maintain the total length
of the cycle equal to M times 255, but
vary the ratio of the ON time to the
OFF time with the ON time propor-
tional to the difference between 125
and X. Line 230 POKES location 49240
" to turn ANO off, lines 240 and 250 are
the delay loop using the value of H
determined in line 210. Line 260
POKES location 49241 to turn ANO on,
lines 270 and 280 are the delay loop
using the value of J determined in line
220, and line 290 returns the program
to line 140 to repeat the eycle. I'll let
- you trace the section of the program for
values less than 120 which starts in line
300.

You can tailor the program for your
application by making a few minor
revisions. For example, if controlling a
relay you'll probably want to increase
M in order to lengthen the cycle to
avoid rapid cycling of the relay. You
could raise H and J to some power so
that the correction would increase
more rapidly than the linear propor-
tional control in the listing. You could
also establish additional set points to
activate an alarm or initiate some other
action if the error exceeded certain
limits. This BASIC program is fine for
experimenting with the LEDs or for
controlling something slow like a

heater, but you'll need to use assembly
language to control high speed motors,
so fire up your assembler and tackle the
next section.

In order to read GCO from machine
language, you load X with a number
from 0 to 3 to determine which con-
troller to read, and then use the
monitor routine PREAD at $FBIE,
which returns with a number between
$00 and $FF in the Y register. (Note:
the contents of the accumulator are
scrambled during this process.) The
assembly language listing in Figure 6
demonstrates reading GCO and using
the value to control an LED attached to
ANO. Lines 1060 to 1080 establish the
equates for the PREAD routine and the
ANO soft switches. Line 1090 calls
PREAD to read the controller input,
and line 1100 stores the value in a
memory location. Line 1110 writes to
$C058 to turn ANO off (which turns the
LED on}, and line 1120 jumps to the
delay routine. Line 1200 loads the value
$FF in to X register, and enters a delay
routine similar to that already encoun-
tered in Figure 4 except that we use the
value in register Y obtained from the
PREAD routine.

The portion of the program starting
with line 1130 controls the off period of
the LED. The first step is to turn the
LED off by writing to $C059. Next we
want to get a value equal to the dif-
ference between $FF and the value ob-
tained from PREAD, so we load the ac-

FEIE- AD 7@ Co LDA sCd7e
FE21- A o0 LDY #so0
FE23- EA NOF

FE24- EA NOF

FE2S- BD 64 C@ LDA $C@64.x
FE2B- 1d ¢4 BFL $FE2E
FBE24- C8 INY

FEZE- DO Fg@ BNE $FE2S
FE2D- 88 DEY

FB2E- 6@ kTS

Figura 7

1000
1012
102¢
1038
1040 «»

19050 »- --
1860 PREAD .EQ SFBIE
18790 OFF .EQ sCo38

CYCLE.PROP.ML1.6
1/19/85

* %2

1680 ON .EQ $Co39
1998 CYCLE JSR PREAD
1100 STY TEMF
1110 CYON STA OFF
112¢ JSR DELAY
1130 CYOFF STA ON
1140 LDA W#SFF
115¢ SEC

1168 SBC TEMP
1178 TAY

1180 JSR DELAY
1190 JMP CYCLE

1200 DELAY LDX @SFF
1210 LOOP DEX

1229 BNE LOOP

1239 DEY

1240 BNE DELAY

125¢ RTS

12460 TEMP .B8 1
Figure 6

cumulator with the value $FF in line
1140, set the carry in line 1150, and
then in line 1160 we subtract the value
in location TEMP. In line 1170 we tran-
sfer the value in the accumulator to
register Y, and then jump to the delay
routine. We had stored the value ob-
tained from PREAD in the temporary
memory location TEMP so that it
would be available for use in CYOFF
because both the X and Y registers
would be decremented in CYON and we
needed to load $FF into the ac-
cumulator before the subtraction.
There are other ways to accomplish
this, but I chose this method because it
is simple and easy to follow.

One of the nice things about the Ap-
ple is the many subroutines in the
monitor which are available for our use.
In the above example we just used
PREAD without concerning ourselves
with k. w it works, but if you really
want to learn assembly language you
should examine the routine in order to
understand what it does. You can use
the monitor to display the routines in
ROM by entering the monitor from Ap-
plesoft with the command CALL-151.
The prompt will change to an asterisk
and you can enter FB1EL (you don't en-
ter the $ symbol because the monitor
only understand HEX). This command
will disassemble and list 20 memory
locations starting with location FB1E
as shown in Figure 7, and you can send
the listing to your printer by entering
the slot number for your printer card
followed by a “control P" before the list
command.

The first command at $FB1E is LDA
$CO070 which resets bit seven of the four
locations $C064 thru $C067 to 1. Then it
loads the Y register with 00 and follows
with two NOP (No OPeration)
statements to pad out the routine for
the desired time. Next it loads the ac-
cumulator with the value in location
$C064 indexed by the value in the X
register which selects the controller to
read. The line BPL FB2E returns to the

calling routine if bit seven of the value
continxed on page 13

-CO.

ShiolpP

&8 @ulcls

Products for the ELECTRONIC & COMPUTER Mdlntry

J1)

r RS-232 DATA JUMPER BOX ADAPTER RS-232 DO IT YOURSELF KIT CENTRONICS
A Data Jumper Box used to customize RS-237 inter- This Do It Yourself Kit allows the creation of
face devices. All 25 pins of the Male and Female many RS-232 variations. The following com- RT ANGLE PC
connectors terminate to 25 soider pads. The ponents are included in the assortment: CONNECTOR
PC Board 1s aiready wired to the D-Subs
Supplied with 25 wires aiready stripped for lea. Male 25 pin D-Sub Connector
permanent wiring to sutt your needs. Many inter- lea. Female 25 pin D-Sub Connertor
faces could be butlt - Null Modems, Pin Reversers, 2ea. Snap-on half covers (LL 94 VOl
you name it! Supplied with all hardware unassembled. 1 set Hardware for Male & Female
MODEL DESCRIPTION -9 10-24 25 Connectors
DJB Jumper Box 22.45 20.43 17.96 MODEL _ DESCRIPTION 19 1024
D!y Do It Yourself kit 13.6S 2.42
[3 Croura
Ny.o.ud DLd 1€ : n-() P CENISF-RA
This ! 1.9 10-24 25
e 8.9 7.88 8.5C
rttine 0 :
RS-232 TG EE TRone COAXIAL CABLES
GENDER " W /Moldec BMC Cconnectors
CHANGERS On Each End
Needed when RS-232 cables won't mate. Qur 0 n
DC Series are compact and feature trouble 0 0 :ODE‘ " . "9 10-24 U 25-99
free PC Board construction and lower ¢ost - CCMSBC U1 - VJ"S‘S"”""”‘;;;" *3
Choice of shieided or unshieided. Keep some 0D . CCaaC 25 i 35 3(;§
for emergency needs. 00 . . - . .
MODEL VGENDEE 16 104 10 USEFUL RANGES CgSBCS 4,65 u} 4.0C
DC-25F (F-Filnsnieioed 16,95 15 42 11 T 16 :: B W SCs8C- 6.05 55 5.2¢
DC-25M (M-MUnshieloed 16,95 15 32 13.5¢ ° - r EE e-(r,, (gzggz’; 16;2 3,? g;z
: N ¢t 1eet 10- o B T e R ’ i .
DCS-25F (F-Fisheiges 1665 10,87 149 e P——_ - CCs8C-50 1725 1590 1484
DCS-25M (M-MIShieiged 18635 1€ EEN
57.95/ 47.60/1 9 0 CC58C- 00 3128 28.44 26.88
t 6 5% . ea . 0 “. g 0 RCS9B/AU - for Video & Ceneral Use
RS-232 DATA LINE MONITOR ‘ ',“ 55.55/3 42.85/25 $ 4N cesse: 365 132 314
A miniature Data Line Momitor that allcws the user CCS‘?B-;S o 5 i~09
to determine the status of the sever kev signals CC598'10 6-25 5.69 -
of the RS-232 adata patn. Al! 2% pins wired CCS‘?B:'IS 77% 305 2:?
through, and dedicated Rea LED's report CC398-2¢ .78 978 9-2’5
the status of: e - . e
Transmit Data (1D pin 2 SUPERIOR GRADE RS-232 CABLES PO II H S S
Receve Data (RC! pi~ 3 DIP-16 FLAT CABLES 25 CONDUCTORS RG62A/ - for Computer Aocllcauom
Request Te Serd (RTS pin 4
\ To Sena iCTS: pir & WITH CCo2a-1 3.60 3.2 .10
Clear To WS - MOLODED CC624-2.5 395 3. 59 3.4
Data Set Reaor (D52 o & . —_— ENDS CCbla-5 4.70 .28 4.04
Data Carrier Detect (DCD: pin ar 3v & draw o CCoiantc 61 560 P
Data Terminal Ready OTR: pin X oniy 3 ma a2y & CCb24-15 7.60 6.92 6.54
MODEL DESCTRIFTICH 1-9 10-24 . CCE24-2% 10.5C 9.56 9.03
DUM Data cine Monitor 3735 3389 \\ CCera s 177 1615 152
~ = 19 10-24 CC62A-%00 32.25 29.35 2774
Moided DIP- 13 CABLES MOODEL -1t 119 10-24 25 9.8 18.00 RGI74U - tor General Use
16 CONDUCT MLFI8PP-0.5 3.30 3.00 2.84 2118 19.2¢ CCie-1 3.6C 3.28 3
MLFIBPP-1 3.60 3.28 ERIS .78 2182 CC174-15 375 34 3.23
MUF 16PP-2 420 182 360 2836 2306 CC74-2 3.90 355 3.35
PSS MLF 16PP-3 4.80 w37 413 318 2877 CC174-25 4.05 3.69 3.48
MLF 16PP-4 5.40 4.1 ugu SPECIF Y. “are "'a'e or Maie Fem 5832; :£ :;9 i?;
PS PP e - 2 :
— CCV4- 6.35 578 5,46
MODEL-tt GENDER 19 1024 2599 BNC TEST ADAPTERS GENDER =7 CC1T4-15 >.%0 719 6.79
ML16PP- 1 M- A 6.85 623 589 CHANGERS —~ CC174-25 11,00 .01 9.46
ML16PP-2 M-M T8 6.51 6.15 . CCre-3e 1255 142 16"9
ML16PP-3 Mo 745 67 6.41 Y o -
ML 16PS-1.5 M-F 6.95 6.32 5.98 <
ML16PSS- 1.5 M- 1145 042 9.85 8ES .\ RS- 232 LL.?DC‘:(MQ&WSLG SCREWS
ML 16PSC -4 M-F 895 84 770 s ron Ly e ae | | PR
*Coried Cord 22" Unsirercned MODEL TYPE JTERMINATION 19 T - 300"
BC3D Plug Banana Plug 7.7% E o @fl
BCWO Plug Test Clip 8.95 NOER Yo 1026 . / D,:..
* BCSO Plug Alligator 70 || mODEL GENOER e N4 Y O 400
Y Molded DIP-16 CABLES SCEO Jack Banena Plug :;~ MG-25M Mo 2395 2179 ‘soG SOM
16 CONDUCTOR-One eng open C76 Jack Test Chp .85 e el 0w
8c80 Jack Alfigator 575 ATTRACTIVE Prices far CTY Users gé;&; "°1;’° ”‘f"W '?ﬁ‘; .
MODEL-1t GENDER 1-9 10-24 25-99 Order 10 each type - DEDUCT 10X - POPULAR - SDC - 40C 19 18 7
ML 16P- 1 Male 395 3.59 3.4C GENDER SOC - S00 .4 19 18
ML 16P-2 Male 425 387 366 AC LINE TRANSIENT , CHANGERS SO+ KL 0 09
ML16P-3 Male 4.55 4.4 39 SURGE PROTECTOR VNG § NOTICE: Multiples of 5¢ Only
ML 165-1 Female 3.95 3.59 3.40 , 4
ML 165-2 Female 4.25 3.87 3.66
ML 165-3 Female 455 414 331 +Absorbs Spikes 53 DATA COAXIAL SWITCH
«Safety Voltage Level 3
*Polarized Gnd d Receptacle N e Rugged Buile
- STS sRated: 15A 125VAC ::;"v 9;‘;'3': oo K
E MODEL #taps 14 5.9 1024 or ABC Tyoen 4
DEA%‘,%;""E‘.:UD 2 Single 17.95 15.98 13.82 oL ow C"’“:ﬂ Res
$S-3 Triple 19.95 17.56 15.36 eMounting Flenges
Discounts offered in larger quantities ehetal Construction
@BNC or TNC C Wang
SNC TEST CABLES eCenter cONOUCLOr Sawitches
OShieic 1s0istion MeNLsined
Test PARALLEL) MOOEL FUNCTION TERAM Eace |
—‘..... (Centronics CHANGERS DSize PDT aB BNC 8.00
0s228 DPOT AB NG 79.00
ik eE:DCE:rS?SA:r?lEIRpsnmu #OS2BT DPDT A8 BNC-TNC 85.00
! . DT ABC BNC 8.
cables that are of the wrong sex. Al 36 MOOEL GENDER 19 10 24 83;:: T ABC ;m
MG -9F F.F 15.95 1481 DPO L] 00
Sanama ruBs pins are wired through. Bright metal construction. T v asC T
TEAMINATION 19 10-24 MG-On [15,08 1u.81 #0S238T7 DPD BNC-TNC 99.00
WMODEL 2 G -9
Mating Centronics cables are shown beiow. '3 De -G T 14
eC-0! Temt Clip 8.9% 8.06 MODEL GENOER 1-9 10 24 BFor weng vices-Switches Tranemit
8C-02 Atugetor Clp 7.0 630 DGCS5-36F F le-F le .95 133.62 29.56 MG- 15F F- 18.9% 1729 | Receive Cadles Simulianecusly
L 8C-03 Banene Pivg 778 6.8 DCS-36M Maie- Male 36.95 33.62 29.56 MG-18M M-M 18.95 17.44 Qty. Dracounts L Custor Types Auual.J

MINIMUM ORDER $25.00 ® ADD $4.50 Sh

DATA PROD
[] 1755 Osgood St%?e 1255
NO. Andover MA 01845

& Handling ® You

F Ord
W2 R

‘re Welcome to Visit Us

MA Customers
617-682-06938¢
& Add 5% Sales

12 The Computer Journa

BASE

A Series on How To Design and Write Your Own Database
By E.G. Brooner

L ast month we covered the task of
defining the file structure to our needs.
Now, we can assume that files exist for
our custom-designed storage system
and we are ready to make some data
entries. This is actually the easy part to
program and to use. The DATA
INPUT portion of the sample program

+shown in Listing 1.

It opens by zeroing some arrays into
which the program will read some of
the housekeeping information that it
previously stored, regarding such
things as the field names for this data
collection. Remember, we are accessing
several of these little databases from
the same program so it has to
‘customize’ itself for the files we have
chosen each time we use it.

It will then present us (on the screen)
with a prompt for the information it
wants until the record has been entered
in the otherwise conventional manner.
It will name the field and tell us what
kind and amount of information will be
acceptable. The data will be stored in
an array until we approve the entry. As
is customary with this kind of
operation, the program will give us a
chance to correct the data, or back out,
before filing it on the disk. It's that
simple.

Next, we might want to edit an
existing record. This section functions
much like the data entry portion, ex-
cept that we are presented with
existing data rather than a blank
record. We step through the fieldsina
similar manner, hitting RETURN to
leave them unchanged or typing in the
new, corrected information where
necessary. (Note: Some BASICs do not
accept a carriage return as an input
variable.)

For simplicity we choose to call up
the desired record by its relative num-
ber rather than by some key. This is
fast and it is possible because if the
record exists we probably already
know the record number. If we don't,
we can find it by other means in the
‘search’ section of the program; that

will be taken up as our next subject.
What is illustrated here is just a
method of changing one or more fields
of a record that has been called back
and displayed on the screen.

There is not a great deal more to say
about this section. The program

already knows which base it is dealing
with (from the opening section) and can
pull out the necessary housekeeping
and data files from among whatever
else is there on our disk directory.
Again, it reconstructs the file names,
based on the core name we specified

REM
REM
REM

3990
REM

3958

3IP6P

3199

3200

3590

REM

FEHEHE R

#DATA IN

FE I 3

GOSUB 99
PREPARE
FOR X%w=1

NEXT X%
FILES="B
OPEN FIL
IF END #

FOR X%=1

NEXT X%

CLOSE 19

GOsSUB 99
FOR X%=1

NEXT X%

INPUT °*A
IF APPRO

FILEXTS=
OPEN FIL
READ %29
FOR X%=1

NEXT X%
PRINT #2
CLOSE 28

CONTINUA
PRINT *T

PUT MODULE#

99

ARRAYS

TO 12

FIELD.NAMES (X%X)=""
FIELD. LENGTH% (X%) =0
DATAS (X%)=""

REM FILL WITH BLANKS

“+NAMES+" . DEF"
E® AS 19
19 THEN 31920

T0 12 REM DISPLAY FIELD NAMES
READ W193FIELD.NAMES (X%) ,FIELD.LENGTH% (X%)
IF FIELD.LENGTH%(X%X)=3 THEN 31890
PRINT X%3° ®3 FIELD.NAMES (X%)}§

PRINT TAB(28) IFIELD.LENGTHR(X%)} " CHAR “}§
INPUT LINE DATUMS

IF LEN(DATUMS) <=FJELD.LENGTHX (X%) THEN 39860
PRINT *“DATA TOO LONG FOR FIELD ®* RE-ENTER"*
GOTO 3959

DATAS (X%) =DATUMS REM SAVE IN ARRAY

99

TO 12 REM DISPLAY FOR APPROVAL
IF FIELD.LENGTH%(X%)=@ THEN 3280
PRINT FIELD.NAMES (X%) 3 TAB(20) J DATAS(X%)

PPROVED 7 (Y/N) "} APPROVES
VES<>"Y" THEN 3289 REM FILE IT

"B +NAMES+" . EXT"

EXT® RECL % AS 20

»1ILASTY REM PREVIOUS FILE LENGTH
TO 12 REM ALL POSSIBLE FIlELDS

IF FIELD.LENGTHX (X%X)=@8 THEN 3589
FILES="B" +NAMES+STRS(X%) +“.DAT"
OPEN FILES® RECL FIELD.LENGTH%(X%)+3 AS X%
PRINTHX%, LASTR+1IDATAS (X%)
CLOSE X%

REM DATA FILED

P, 13LASTR+1 REM & 'EXT' FILE UPDATED

REM IF MORE TO BE ENTERED
OR <CR> FOR MORE ENTRIES"

TION OPTION
YPE <M> FOR MAIN MENU,

Listing 1

I

INPUT LINE OPTIONS

GOTO 3999
REM F S I 3
REM #EDIT MODULE#
REM e sz as s s sy
4299 GOSUB 9999

FILES="B"“+NAMES+" EXT"
OPEN FILES® AS 19

READ #19IMAX%:CLOSE 19
INPUT REC.NBR%
FILE®="B*+NAMES+ " DEF"*
OPEN FILES AS 19

IF END #19 THEN 41900

FOR X%=1 TO 12

NEXT X%

GOSUB 4289
NEXT X%

INPUT LINE CHOICES

CLOSE 19:G0TO 1399

INPUT LINE CHANGES

4300 CLOSE X%:RETURN

IF OPTIONS="M" THEN 1398

IF LEN(CHOICE®S)=@ THEN 4100

IF LEN(CHANGES)=¢ THEN 4300
PRINT #X%,REC.NBR%} CHANGES

REM FIND FILE LENGTH

REM CALL IT 'MAX"

49583 PRINT "RECORD TO CHANGE - MUST BE BETWEEN i AND *jMAX%

IF REC.NBR%<1 OR REC.NBRX>MAX% THEN 49%2

REM DEFINE THE FIELDS

REM & READ THE DETAILS

NBR.OF.FLDS%=X%-1
READ #1P3FIELD.NAMES (X%) ,FL% (X%)
IF FL%(X%)=@ THEN 4100

4109 PRINT "AFTER EACH FIELD IS DISPLAYED:"*
PRINT *IF CORRECT PRESS <CR> OR ENTER NEW DATA":PRINT
FOR X%=1 TO NBR.OF.FLDS%:F.L%=FL% (X%)

PRINT FIELD.NAMES (X%) §TAB(29)}
REM YOUR CHANCE TO CHANGE 1IT

PRINT *“<CR> = ADDITIONAL CHANGE - <M>= RETURN TO MENU"

REM ALL FINISHED?

4299 FILE®="B"+NAMES+STR® (X%) +* . DAT"
OPEN FILES RECL F.L%+35 AS X%
READ #X%,REC.NBR%iDATUMS:PRINT DATUMS;

REM NEW DATA (IF ANY)
REM OR KEEP THE OLD

Listing 2

The Computer Journa, 1%

before making our main menu choice.
See Listing 2.

Reviewing the BASE series to date:
after the introductory discussion we
covered opening the program, then the
definition and creation of the related
files and their record structure. In this
issue we entered some data into the
files that were created earlier, and
showed how any portion of any record,
in any of our data collections, could be
edited or altered after it was already in
the file. In the next column we'll take
up some of the more database-like
features, i.e: searching the files for par-
ticular key information. We will be able
torelate these searches to any of
several criteria that might be part of
the record. While many simpler ap-
plications retrieve records only by
relative number, or by a single ‘key’
field, we'll construct this program so as
to permit ‘finding’ data by more flexible
methods. We may also discuss ad-
ditional methods just as a subject of in-
terest. As this is a learning project, an
attempt has been made to keep the
sample program relatively uncom-
plicated while illustrating other
techniques which may sometimes be
desirable. B

—

Apple Game Port, continued

read in the previous location is zero,
which would indicate that the timer has
completed its cycle. If bit seven is still
one, the next operation (INY) in-
crements the Y register to count the
number of cycles, and the following
operation (BNE FB25) terminates the
loop if the Y register has been in-
cremented past $FF, which would in-
dicate that the resistance is in excess of
150 kilohms. The following operation
(DEY) decrements the Y register so
that it will contain the maximum value
of $FF if it has been incremented to
zero. It may be confusing when we talk
about increasing a positive number to
zero by adding another positive number
to it, but the contents of an eight bit
register will overflow and “wrap
around” to 00 if one is added to the
maximum vaiue of $FF. The final com-
mand RTS at FB2E returns control to

the program which called the
subroutine, with the value in register Y
containing the number of cycles
required for the capacitor on the 558
timer to charge.

The assembly language routines
should not be considered the best
examples of programming practice —I
just hacked out something to do what I
wanted. I'm sure that Don Lancaster
{Synergentics) or Bob Sander-Cederlof
(S-C Software) could write much better
code! [tried to include enough infor-
mation on the assembly language
routines to help people not familiar
with them, but did not write them asa
complete tutorial. I need your feedback
on how much assembly language detail
should be included in future articles.

Going Further
There are many cards available for
the Apple which offer more advanced

interfacing capabilities than can be ob-
tained from the game port, but it is an
interesting challenge to learn what can
be done with the little-used game port.
Jan Eugenides is working on an article
about using the game port to drive a
printer, and others have articles in
progress that deal with using it to con-
trol stepper motors, DC motors, and
other devices. This article has not men-
tioned the flag inputs or the strobe; I
intend to cover both topics in a future
article, and would like to include infor-
mation on what you are doing with the
game port. Your articles, letters, and
comments are welcome. Bl

Referonces:

* Applell Applicatiens by Marvin L. De Jong, published by
Howard W. Sama.

¢ The Art of Electreaics by Horowstz and Hill published
by Cambridge University Press.

¢ TTL Ceskbesk by Don Lancaster. pxdlished by Howerd
W. Sams.

¢ 8-C Macre Assembler s0id by 5-C Software Corporation,
P.O. Box 280300. Dallas. TX 75228

USING THE S-100 BUS AND THE 68008 CPU

by Joseph Kohler, Kevin Jackson, and Bob Buckman
Wright State University

In 1978 the Computer Science
department at Wright State University
decided to develop a computer
engineering program. To us, this meant
“hands on the hardware.” At that time
we had an Intel system and several
PDP-11 computers. All of the hardware
had large PC boards with integrated
circuits soldered to the boards. Repairs
were either quite costly or very time
consuming —i.e. expensive no matter
how you looked at it. At this point we
decided to investigate other systems
which might be suitable for use by
students in a hands-on computer lab.

At about that time I purchased a
Cromemco S-100 kit which included a
box with power supply, and a CPU
card. The next step was a serial 1/O
card followed by some Seattle Com-
puter 16K RAM cards. I could now run
out of ROM —not much of a computer
system, to be sure. The next step was a
disk system. This started with the pur-
chase of a pair of Innotronics floppy
disk drives. I purchased a floppy disk
controller board — it failed to work and
the same thing happened when I tried
again with a different vendor. I decided
to build my own. The necessary parts
consisted of a prototyping board, a 1771
disk controller chip and an assortment

of TTL IC's. Many long hours were
spent getting that board with the 1771
chip to work properly. With this ac-
complished, everything necessary for
CP/M 1.4 was at hand. Once CP/M was
up and running I felt I had a complete
computer system. I was also confident
that a laboratory of the kind we wanted
could be put together at a reasonable
cost.

The schematics for the disk con-
troller board were given to an in-
dividual with a part time business in his
home laying out PC boards. Then, with
artwork in hand, I marched off to the
PC house and had circuit boards made.
This was followed by a simple serial I/0
board. At about that time Digital
Research of Texas was marketing a Z80
CPU board which proved to be perfect
for our applications. The final step was
the design and manufacture of a
prototyping card with provisions for
power and ground buses, bypass caps,
regulators, connectors and easy access
to the S-100 bus.

We finally put together a laboratory
with seven S-100 systems using our
own disk controller and serial I/O boar-
ds, Seattle Computer RAM cards,
Digital Reaearch CPU boards and In-
notronics disk drives. The operating

a0t 4 33
—e —s o STt 26 pin
S 20 T —— g A —————
—ore ox e —— 0
—K K ——a —
== o] =
) L5204
o | usaa \ .
1 58008
1K G
L - i 501
i
I AN — 1 sie
[} F————
s
111 et v
4 \ -S0C
f——
-
3o fse] T see] [s] L | v
O
— c - r : . -
2 [s s [osx Lo | s | 2 [ss]
‘.-‘
v | s 2 I || s [s L sz | 8"
—k —F —
— K . 1K C——— | K ¥
A R . ¢ ¢ -— et
s
' 0
Board Layout

system was CP/M 1.4, later upgraded to
CP/M22.

Why S-100?

Each quarter a class of relatively
inexperienced students build circuit
boards of their own design and plug
them into the S-100 systems. In order
to survive this heavy use the systems
must be physically rugged and easily
repairable. At the time the lab was set
up, the choices available were multibus
or S-100. The cost ratio was nearly four
to one. Also, rugged mainframes of the
S-100 style were not readily available
for the muiltibus. The choice at the time
was clear even considering the superior
design of the multibus signal set.

The power distribution system on
the S-100 bus ensures a certain amount
of safety for all cards in the system.
Switching power supplies, present in
many computer systems, are efficient
and compact, but they are more com-
plicated and more easily damaged than
the simple supplies in the S-100
systems. They are certainly more dif-
ficult to repair.

The reasons for using the S-100 bus
as opposed to the better designed buses
such as the multibus or IBM PC bus
haven't changed much. An IBM PC
would not survive the hard usage
received by our present S-100 systems.
If an IC on the PC motherboard were
damaged, the whole system would go
down. With an S-100 system, cards are
swapped until the offending card is
located, a spare is plugged into it's
place, and we are up and running again.
The bad cards are repaired when
several of a kind are damaged.

Our reasons for continuing to use the S-
100 systems are:

1. Aninexperienced student can
acquire a complete grasp of the har-
dware in a short period of time.

2. The systems are rugged, reliable
and easily repaired.

8. The mainframes have large simple

Trp TAamm~ s
e LT Dlte

O

a3 18

linear power supplies and many slots
for cards.

— 4. A completely new system can be put !
together in a matter of minutes by aoles 2 s
merely swapping a few cards. arsfis 6 s a

0 5 < 32 A%
Al 1 '3 “ b
e . < 33 A1

On the negative side: - L e G

a4

. . 1. The S-100 bus has speed limitations. as
2. The assertion levels of some of the ae
— signals are wrong.
3. Thelayout of the signals could be
better.

o [e To

A'Q

®x0oom™ao

agle & ta

Adfa2 2

A2la8 vy

2 oA e

- Choosing a 16 Bit CPU Aol s PSR
' We decided to try one of the newer :'lj ” '2 o ,

microprocessors but to continue to use a-ls T ; oo
— our 8 bit hardware. Two choices were 3 ‘
available, the Intel 8088 and the atolie y- ‘
Motorola 68008. The latter was chosen = -
because of its superior architecture. sralre R
Here is a list of reasons for choosing the T . T

68008: . v

J

jolo

4
b1

I
P

Hardware considerations: —G TR Y
1. The hardware signals issued by the Ik
68008 are straightforward and
systematic.
— 2. Only a 5 volt supply and a simple,
single phase clock are necessary to Figure 1
drive the 68008.
Programming considerations:
1. The chip has 8 address and 8 data
registers.
2. The 68008 has two modes of
— . operation; user mode, and supervisor
mode. Address register A7 is used as
the stack pointer for both modes. When

45

A8

6
the 68008 is in user mode A7 points to asls
the user stack, and when in supervisor Atols 1"
mode it points to the supervisor stack. anlo
3. Except for A7 used as both a super- D4 al2}io 12, D3 ST SO -
— visor and user stack pointer, the ad- PSEIRN 3 s, —;3—/
dress registers do not have special Alafi2 5
properties; i.e., instructions which use Alsple !
address registers are not tied to a par-
ticular address register.
4. Address registers can point to any
memory location in the entire 1
- megabyte address space of the 68008.

5. The data registers may be used in- ::i :: —-
terchangably; i.e., instructions which M
use data registers are not tied to a par-
ticular data register.
6. A wide range of addressing modes is
available.
_ 7. A wide range of opcodes is available.

A 68008 CPU Board Design
In the following paragraphs you will

o

® 00 ®o
P
~_Y
X

LS30

SLOW %
82 g C1-2

Aiglls

- o j | » {w

A9119

- find the the technical details for a 68008 Figure 2

16 The Computer Journai

CPU board which resulted from a
student design project. It is not IEEE-
696, but it generates enough of the S-
100 signals to fit many systems. The
chief virtue of the board is its sim-
plicity, its lack of PLA’s or hard-to-find
IC’s, and the fact that it uses only 24
chips. You will probably notice that a
number of the S-100 signals are not
generated. Our goal was to build an S-
100 board which worked with the boar-
ds we already had and to generate only
those S-100 signals which seemed to
derive in a reasonable way from the
68008 signal set. Actually this results in
a fairly large subset of the S-100 signals
being generated. When referring to
signals by name, no assertion levels are
included, for example NMI is written
rather than NMI*. However, the
schematics do include the assertion
levels with the names.

Address lines A0 to A23. The S-100
bus has 24 address lines but the 68008
has only 20 address lines. First A0 to
A19 of the 88008 are passed through
LS244’s to drive S-100 address lines A0
to A19. Lines A20 to A23 of the S-100
bus are forced high by tying the inputs
of half of an L8244 high and attaching
the outputs to lines A20 to A23. Since
A20 to A23 are always high, no further
mention of them will be made. All ad-
dress buffers are enabled unless ADSB
is asserted. Detailed schematics for the
signals discussed in this paragraph are
given in Figure 1.

Input and output. The 68008 has no
special input or output instructions,
and no part of its address space is set
aside for 1/0. The signal SIO (see Figure

‘2)is generated whenever address lines
ABto A19 of the 68008 are all high.
Assertion of SIO will be necessary for
the assertion of SINP or of SOUT (see
Figure 3). The addresses $FFF00 to
$FFFFF will be set aside to be used as
1/0 ports.

Data Out Lines DOO to DO7. The
lines DOO to DO7 (see Figure 4) are
driven by an L.S244 whose inputs are
tied to DO to D7 of the 68008. This
LS244 drives DOO0 to DO7 whenever W
(see Figure 3) on the 68008 is asserted
and DODSB is negated.

Data In Lines DIO to DI7. The lines
DIO to DI7 (see Figure 4) are inputs to
an LS244 whose outputs are tied to DO

eco |43] . 14 USEADATA @
s 5
sCy 44 2) 13 USER PROGRAM & §
3 . x
s f4o_ 3 e o Sk e s Pt e
. s
° SUP PROGAAM W $ \('-3\/\/‘
& v
& 7 INTACK +5 t LS A
8 t 3 23
0 gd
4 7K
o K~ .
' s 6 4 vl
SC M f SWEwe
3t 2 ? -
Oa . ; 3 SAE
A 834 vy : Lo <
¢ NAL ! o s, 2 s st
3 3 J . 4
8 ’ 3.0 Sa
! 48
i
+ !
2 [
%47(- R - -
AR
R/w 30 13 2 7 R/W %
’ -
i . As 83°€
4
v M’X w
{/,/ £ 3
47K [\\ As
128 e A 57 [YRH
As
+ g
l,
-
24 7 K
L4 '
29, n'¥ R
os — ST N 2y
[/ [y
Figure 3
95 D10 U N e V7 . 3 200 4,
s s <
T [1 2)
'Y 2 2 2] DO ! 3s
4 4
o1 2 17 3 a t
a2t s N 6 002 i"
~._ot 15 s) 14
o E] LISBER
o, 01 4 ? 1] 15 's 00 ¢ 4
IR T 4 16 k] 7 90 5 4,
~ —<
~ Di_ & 6 14 11 9 DO &
93> -H S 2 ——————=<a0
~_Bt 7 13 7 L ' 12 00 7
e €1 Y €2 30
B Y
1
[
v he
EIBUF & |
2
i
|
|
i
|
27} 26] 25; 24 23 27, Z'IL 2C
Do D: D? 03 D4 05 Ds D7
68008
04
Figure 4
0s
837 —3d’§| s . e PR .
1
prre —RW 20" |
1502
wh B

Figure 5

EBuF &
c29

to D7 of the 88008. This L5244 is
enabled by EIBUF which is asserted
whenever both R and DS (see Figure 5)
are asserted by the 68008.

Status Lines SINP, SOUT, SMEMR,
SINTA. At the beginning of each bus
cycle the 68008 tells us what it wants to
do during the next bus cycle by placing
a value of 0 to 7 at its function code out-
puts FCO to FC2. The only one used on
this board is interrupt acknowledge
denoted by INT ACK (see Figure 3).

The three signals SIO, R/'W and INT
ACK are fed to an LS138 whose out-
puts are the status signals SINP,
SOUT, SMEMR and SINTA in inverted
form. This LS138 is enabled only when
AS is asserted by the 68008 so these
signals are asserted only when there is
valid address information on the S-100
bus. These signals reach the S-100 bus
with proper polarity by passing
through half an LS240. This half LS240
is enabled except when SDSB is asser-
ted.

Control Lines PWR, PHLDA, PD-
BIN. PWR (see Figure 5) is asserted
whenever the 68008 asserts both DS
and W. PDBIN (see Figure 5) is asser-
ted whenever the 68008 asserts both
DS and R. PHLDA (see Figure 6) is
asserted whenever the 68008 asserts
BG and negates (actually tristates) AS.
The three control signals reach the S-
100 bus with proper polarity by passing
through one half an LS240. The half
L8240 is enabled except when CDSB is
asserted.

Reset. Whenever the reset switch is
depressed a low is delivered to the
RESET and HALT (see Figure 7) in-
puts of the 68008. The low is held for a
period determined by the time
necessary for the 33ufd capacitor to
charge through the 10K resistor. The
feedback circuit causes some hysteresis
to be added but is overly conservative.
The 68008 seems to work well enough
without it.

Clock. The clock circuit (see Figure 8)
has appeared in the literature. The
8112 was used to achieve sharp rise and
fall times as well as a 50 percent duty
cycle (see Reference 1 at the conclusion
of this article).

Interrupts. Assertion of NMI (see
Figure 6) causes the 68008 to see a low
at inputs IPL1 and IPL2/0 which it

Tne Computer Jourra 17

®o0O0® o

+5
1K
— 5 1:5 #OLT -
BR 3 83

—_ 32 13 ‘2 3
8 Ao TN ‘JJ te PMLOA
AS vﬂ* 2 26

—_—————
836 t/T/

1
3 : h

— l3e 47k [b'_._—<,q
VPR P AAA— 45 | { Cose «

47K ; i
= a0
QERR e AAA— 5 i -

9d

i
+5

Figure 6

10 x
470K 120 RS™ »
9 8 11 o
73 AMA + {;ﬁ\ AAAS T {{>&
l |
_L 1K
T .t o
4
n// 13
9d Es R
od]
resst switch [+
s o
[
1501
P . 47K
RST = ' P 5. F 4 37 weE
F5:10 ' £ ’
] s
47K
12
, 13 8l o
POC * gy s
99 £ .
i
5
9d
Figure 7
1K 1K 4 7K N
2 +5 D4
W I VWA —‘VWE ole 34 ox
ot ut 5‘
1
od 2

©
»
o
A 2
[
»
o
(3
o
»
»
®@0cO®o

—d_ arpt

0d

Figure 8

18 Tre Corputer curra

regards as a level 7 interrupt. To the
88008, this is an edge triggered non-
maskable interrupt. Assertion of INT
causes the 68008 to see a low at its
ILP2/0 input, which the 68008 regards
asalevel 2interrupt. To enable in-
terrupts set the interrupt mask less
than 2. To disable interrupts set the in-
terrupt mask greater than 2.

SLOW and PHANTOM. Assertion of
either PHANTOM or SLOW (see
Figure 8) forces the insertion of wait
states. SLOW (originates in Figure 2) is
dependent upon placement of jumpers
to determine which of A14t0 A17 must
be high in order to contribute to the
assertion of SLOW. Assume A14, A15,
A16, A17 are all connected (i.e. no trace
under a jumper has been cut or if it has,
jumpers reconnect the cut traces).
Memory references to addresses with
Al4 through A19 all set to 1 will have
wait states. The duration of the wait is
determined by A, B, C. All other
memory references run at the
maximum speed of the processor. Thus
memory references from $00000 to
$FC000 run at maximum speed and any
reference to the 16K of address space
from $FCO000 to SFFFFF has the asser-
tion of DTACK delayed by an amount
determined by A, B, C. The slow
memory space can be increased to 32K
by cutting the A14 trace, to 84K by cut-
ting the A14,and A15 traces etc.
Whenever PHANTOM is asserted
memory references will have wait
states, again the number determined
by A, B, C.

Our reason for having a slow area of
memory is to allow the use of ROM
chips which cannot be correctly read by
4 68008 running at 8mhz. Also the I/0
space is in the slow area of memory
because many ICs such as timers, disk
controller chips, etc. have slow
read/write times.

Memory references to the upper 256
bytesi.e. to $SFFF00 to $FFFFF assert
SIO which results in the assertion of
SINP or SOUT and the negation of
SMEMR. Thus references to the I/0
space are always slow. If a RAM or
ROM board overlaps the I/O space, the
overlap becomes write only to those
boards that respond to PWR. The
signal MWRITE (see Figure 5) is
negated by references to the I/0 space.

STRT. The assertion of STRT (see

Figure 9) indicates the beginning of a a problem for the read-modify-write
read or write operation. You might ex- cycle. During such a cycle DTACK
pect AS to indicate the beginning of a must be negated following the read
read or write cycle. It does, but there is portion of the cycle and reasserted
N
N ST
: ’| L

i
i T ‘
® 2 « !
S s facad
TR i __
o &
Figure 9
1 26 b—
2 '8
D4-45 FCO . 13 2 125 b
Dé-aa FCr 17 s J Ja 3 | 24
2
0443 £C2 4 . '6 15 4 |23 [—
8316 I — 3] 4 5 is 5 122
!
837 S — & ey RN
& 13 7 7 |20 9d
8314 AW ———— 3 Y s
8 V2 8 {19 1 Componen: Sde .
a6 OTRATX = s s T 1 —
Gé |17
1" 16 ™
V| ove 1215 —
ad 13 14 —
*5—’\/\/\/_‘3 3 é 1
GTACK
, Q 2%1 ALt
gd——— K — J/
AS
STEP &
1N———> a
STRY 15
Ad-8
SINGLE STEP @ 2 '8
n
1
K
9d
+5
Figure 10

. during the write portion of the cycle. If
STRT were asserted only when AS was
asserted then the read-modify-write
cycle would not work properly, because
AS is asserted throughout the read-
modify-write cycle.

STRT is asserted following the
assertion of either DS or W. Note that
for a read transaction DS is asserted at
the beginning of the transaction (same
time as AS is asserted) and for a write
transaction W is asserted at the begin-
ning of the transaction (same time as
AS is asserted). The only write transac-
tion for which AS and W are not asser-
ted at the same time is during a read-
modify-write cycle. Until STRT is
asserted the shift register is held in the
clear state. Following the assertion of
STRT each rising edge of the clock sets
successive outputs of the shift register
high. After a number of clocks a high
will appear on pin 5 of the LS151. The
exact number of clocks is determined
by the A, B, C values. The inputs at A,
B, C yield a binary value and the num-
ber of shifts required to set pin 5 of the
LS151 high is this binary value plus
one.

SINGLE STEP. If J1 is grounded,
then SINGLE STEP (see Figure 10} is
asserted and pin 2 of A4 is high. Aslong
as as pin 2 of A4 is high GTACK is the
inversion of the Q* output of A5. Now a
debounced switch connected to J2 can
be used to single step the 68008.

At the beginning of every 68008 bus

FRE

CATALOG AND

GIGNAL PROCESSING BOOKLET MSDOS

transaction STRT is negated so the Q*
output of A5 is high and therefore
GTACK is negated. The assertion of
either DS or W forces the assertion of
STRT which removes the low from the
clear input of A5. At this time GTACK
is still negated so the 68008 is waiting
for the assertion of DTACK (see Figure
9).

Now, if the debounced switch is
grounded (i.e., STEP is asserted), the
Q* output of A5 goes low so GTACK is
asserted. This results in the assertion
of DTACK. The 68008 performs the
read or write and then negates both DS
and W so STRT is again negated. This
returns the 68008 to the state described
at the beginning of the previous

paragraph.

Connector J. The L5244 G6 (see
Figure 10) buffers a number of the
68008 control signals so that they may
be available to another board. We have
also built a companion display board
which displays these signals, allows
single stepping of the 68008 and
displays a number of the S-100 signals.
The display board shows the S-100 ad-
dress, data in, data out in hex displays
and control signals in discrete
LEDs. B

Reference 1: "Basic Circuit-deisgn Techniques Yield
Stable Clock Oscillators,” by Jim Wilhams EDN Magaztne.
August 18, 1983.

Note: A PC card for this 68005 CPU design can be purchased
for $60 from Inteillicomp Inc.. 292 Lambourne Ave..
Worthingtown, Ohio 43085

AFFORDABLE
,ENGINEERING

SOFTWARE

TRSDOS
PCDOS

CIRCUIT ANALYSIS

~
SIGNAL PROCESSING) GRAPH PRINTING

N

e Fast Machine Code

sPpP

$59.95 e Linear/Logarithmic

o Complete Circuit Editor
e Free Format Input
o Worst Case/Sensitivities

Version
ACNAP
e Any Size Circuit
e Input / Output impedances
o Monte Cario Anatysis
e Transients (with SPP)

$69.95

* Linear/Non-Linear Anatysis

* FFT/Inverse FFT

s Full Error Trapping * La Place Transforms

Transient Anatysis

Time Domain Manipulation
Spectra Manipulation

® Transfer Function Manipulation
* Eaung and Error Trapping

* Free Format tnput

* Muitipie Plots

* Full Plot Labeling

* Auto/Forced Scating
* Two Y-Axes

* ACNAP/SPP Compatibie

PLOT PRO $49.95
s Any Printer

e Verucal/Horizontal

PC PLOT $59.95

BV Engineering
Professional Software 2200 Buciness Way Sute 207 o Rwersige CA 9250 e USA

DCNAP $59 .95 : /F’\SCH and Binary Files o Screen Graprics
« Compatibie Data Fries _Fast Machine Code J s Pixel Resolution
o Caiculates Component Power y e Epson Printer
30 Nodes / 200 Components VISA ® MASTERCARD
A A <

(714) 781-0252

Tre Computer .

BOOK SALE
Save 50 to 60%

Computer Communication
Techniques

Howard W. Sams #21998

by E.G. Brooner and Phil Wells
Retall price $15.95

Introduces the reader to the
principles of digital com-
munications, protocols and stan-
dards, and describes practical
uses and software for this pur-
pose.

Microcomputer Database
Management

Howard W. Sams #21875
by E. G. Brooner
Retall price $10.95

An understandable text on file
handling techniques, such as file
organization, sorting, and sear-
ching. Some practical ap-
plications.

While limited supply lasts—50%
discount on either book, or 60%
off on orders for two or more
books.

Postpaid, cash or money order
only.

COMLABS

Box 236
Lakeside, MT 59922

MICROCOMPUTERS
AND
INTERFACES

rd computers, two
iaces for the IBM-
ers. You can
"y systems
hght ag automate
. irrigatie
mr!ems al
000! oy

JOHN BELL ENGINEERING
400 OXFORD WAY
BELMONT, CA 9400

(415) 5928411

20 The Computer Lourna

Interfacing Tips and Troubles
A Column by Neil Bungard

O ne of the best ways to interface to
any computer is through its serial
communication port, especially if speed
is not a critical factor. I personally use
this method anytime I can because the
. serial communication port is usually a
standard configuration regardless of
the type of computer being used. In ad-
dition, the serial port can usually be ac-
cessed through a higher level language
{like BASIC) as opposed to writing
machine language drive routines. Even
in the cases where machine language
routines are required, computer
manufacturers are good about
documenting the required software for
using their serial port.

1said that the good thing about the
serial communication port is that it is
usually a standard configuration. This
is good because you know what to ex-
pect when connecting to the computer.
But it can also be annoying because the
logic level voltage standard for a serial
communication port and the logic level
voltage values in the interface circuit
are usually mismatched. Most com-

* puters’ serial ports adhere to the
RS232C standard. This standard
assumes & logic 1 to be between - 3 and
— 15 volts, and a logic 0 to be between
+ 3 and + 15 voits. The logic level

voltages in the interface circuit
(assuming TTL logic) are 0 volts for a
logic 0 and + 5 volts for a logic 1.

The discrepancy in logic level
voltages between the serial com-
munication port and the interface cir-
cuit is eliminated by conditioning the
interface signals to agree with the
RS232C standards. This typically
requires a dual power supply, special
driver and receiver ICs, special connec-
tors, etc. After completing several
serial interface projects, I decided that
I needed a “jelly bean” logic-to-RS232
converter which could be pulled out of
my hacker’s tool box and placed between
any interface circuit and a serial com-
munication port. Figure 1 is such a device.
This circuit operates from a single
5 volt supply and conditions TTL logic
signals to agree with RS232 standards.

Circuit Description

The logic to RS232 signal con-
ditioning circuit in Figure 1 is ex-
tremely straightforward and utilizes an
interesting IC manufactured by Intersil
Corporation, the ICL7660 (IC1). The
ICL7660 is a voltage converter IC
which requires only + 5 volts to
operate, and produces a - 5 volts on its
output (pin 5). This IC eliminates the

ict
2
'Ctt] g e

+ 5V0LTS e

INTERFACE CIRCUIT

i€2

5VOLTS

i

PNt

RS232
SERIAL PORT

LM1488

TRANSMT DRIVER

AECEVER
-l
GROUND [[ok)

ﬁ,

} g
3 UT l

|

g

PiN 2 TRANSM.T
PIN3 RECEVE
PIN7 GRACUND

0s 2%
SO.DER S DE SHCW'NG

LM1489
I
€2 500PF

RECEIVE

J0

Figure 1

need for a dual power supply, which
greatly simplifies this circuit's design.
The other two ICs in Figure 1 are the
RS232 driver (LM1488,1C2), and the
RS232 receiver (LM1489,IC3). For
proper operation, the LM1488 requires
+3 to + 15 volts on pin 14 (which is ob-
tained from the interrface circuit), - 3
to — 15 volts on pin 1 (which is obtained
from the ICL7660), and ground on pin 7-
The LM1489 only requires + 5 volts on
pin 14, and ground on pin 7 for its
operation.

Serial information being generated
by the builder's circuit enters and
signal conditioning circuit on pin 2 of
the LM1488 (IC2). The signal is con-
ditioned by this IC to meet RS232 stan-
dards, and is output to pin 2 of a stan-
dard DS-25 connector {This connector is
standard on most computer systems).
Information coming from a computer's
serial interface port enters the con-
ditioning circuit on pin 1 of the LM 1489
(IC3), where it is converted to TTL
level signals before it is sent to the
builder’s circuit.

This signal conditioning circuit can
easily be wirewrapped, or for con-
venience and reliability a circuit board
can be manufactured. A foil pattern for
the signal conditioning circuit is
provided in Figure 2 for those who wish
to make a circuit board. If you do not
wish to manufacture your own board, I
have a few and would be glad to send
you one for $10.00. Regardless of
whether you produce a board or
wirewrap this circuit, I'm sure that you
will find this device a worthy addition
to your interfacing toolbox. W

1488 680

The Computer Jourrar 21

APROTEK 1000™ EPROM PROGRAMMER

only
$250.00
A SIMPLE, INEXPENSIVE SOLUTION TO PROGRAMMING EPROMS

The APROTEK 1000 can program 5 volt, 25XX seres through 2564, 27XX
senes through 27256 and 68XX devices plus any CMOS versions of the above
types Included with each programmer 1s a personality module of your choice {others
are only $10.00 ea when purchased with APROTEK 10000 Later, you may re-
quire future modules at only $1500 ea postage patd. Avalable personahty
modules: PM2716 PM2732 PM2732A. PM2764. PM2764A. PM27128
PM27256 PM2532 PM2564. PM68764 (ncludes 68766). (Please specity
modules’by these numbers)
APROTEK 1000 comes complete with a menu driven BASIC drver programmer
hsting which allows READ. WRITE, COPY. and VERIFY with Checksum Easiy
adapted for use with IBM, Apple. Kaypro. and other microcomputers with a RS-232
port. Also included 1s a menu driven CPM assembly language driver fisting with 2-80
(DART: and 80BO (8251) 1:O port exampies. Interface s a simpte 3-wire RS- 232C
with 3 temale DB-25 connector A handshake character is sent by the programmer
after programming each byte. The interface is switch selectable at the foliowing
6 baud rates. 300, 1.2k, 2.4k. 4 8k. 9.6k and 19.2k baud Oata format for program
ming 1S ‘absolute code’'. (i.e . it will program exactly what it is sent startng at
EPROM aadress 0). Other standarg downloading formats are easily converted to
absolute (object) code
The APROTEK 1000 s truly universal. it comes standard at 117 VAC 50 60 HZ
and may be internally jumpered for 220-240 VAC 50 60 AZ. FCC verfication
(CLASS B} has been obtained for the APROTEK 1000

APROTEK 1000 is coversd by a 1 year parts and labor warranty.
Sa———

FINALLY — A Simpl To Erasing EPROMS
APROTEK-200™ EPROM ERASER APROTEK-300™ only $60.00. ROTEK
smpt " PROM This eraser 1s dentical to APROTI
fnd"sl,,{'c‘?gN°?: a‘;ou"'”fo En,nslei 200™ but has a buiit-in timer so that the
you switch OFF and are ready to ultraviolet lamp automaticaily turns off n
reprogram. 10 minutes. ehminating any nsk of overex-

APROTEK-200™ only $45.00. posure damage to your EPROMS
only APROTEK-300™ only $60.00.

Du—
APROPOS TECHNOLOGY
1071-A Aveniia Acasc, Camariio, CA 93010
CALL OUR TOLL FREE ORDER LINES TODAY:
1-{800) 962-5800 USA or 1-(800) 962-3800 CALIFORNIA
TECHNICAL INFORMATION: 1-(805) 482-3804
Add Shipping Per item: $3.00 Cont. U.S $6.00 CAN. Mexico, HI, AK, UPS Blus

1 € ol

RP/M..

By the author of Hayden's "CP/M Revealed."

New resident console processor RCP and new
resident disk operating system RDOS replace CCP
and BDOS without TPA size change.

User 0 files common to all users; user number
visible in system prompt; file first extent size
and user assignment displayed by DIR; cross-drive
command file search; paged TYPE display with
selectable page size. SUBMIT runs on any drive
with multiple command files conditionally invoked
by CALL. Automatic disk flaw processing isolates
unuseable sectors. For high capacity disk systems
RDOS can provide instantaneous directory access
and delete redundant nondismountable disk logins.
RPMPIP utility copies files, optionally prompts
for confirmation during copy-all, compares files,
archives large files to multiple floppy disks.
RPMGEN and GETRPM self-install RP/M on any
computer currently running CP/M®2.,2. Source
program assembly listings of RCP and RDOS appear
in the RP/M user's manual.

RP/M manual with RPMGEN.COM and GETRPM.COM
plus our RPMPIP.COM and other RP/M utilities on
8" SSSD $75. Shipping $5($10nonUS). MC,VISA.

118 SW First St. - Box G
Warrenton, OR. 97146

Micro -
y ethods, Inc.

(503) 861-1765

MCMi]1+ . 68000 POWER FOR YOUR APPLE I, Ile

Stalus ingicators tor
Run. Stop and Super
wIsor User moges

Expansion connector
tor penpherals and
TeNOory

2K - B RAM expand
abe ic 8K - 8

o

s

8K » 8 EPROM
expandable 1c 32K - 8
{contains Momitor

68000 with 8 bit Dus

hf_‘ﬁ‘ A,

Great for measurement &
control applications!

g::tggﬁy ana and hard Breskpoints with mernory display
in byte, word or longword quantites are all
available.
McMill + comes with five excellent, 68000 texts along with extensive documentation on both hardware and software
B I I e +++e..... Your price only $406.00

This 68008 co-processor board has 2K X 8 RAM (8K X 8
optional) 8K X 8 EPROM (contains self
tester and debugger), and 50 pin expansion
bus that allows expansion to the full one
megabyle addressing space of the 68008,
Also designed o directly access data and
execute programs in the Apple I main
memory and peripherals. We supply this
with an enhanced version of the S-C 68000
Macro assembler that will allow the quickest
development of your 68000 source code.
You edit, assemble and debug your code
without changing from editor, assembler,
and separate debut programs: this ystermn
was designed with software development in
mind.

The specially designed debugger gives
you four different windows into the execution
of your programs: you can actually see the
changes in the proceascr state and registers
&s your program proceeds. Step. Trace. soft,

Jutmper plugs to
AClvdte Selt tost

All of our products are warranteed for a full year.

To order: Visa, Mastercard, ar COD.
Deltveries in USA by UPS.
(Caltfornia addresses add 6% sales tax).
*Appie 15 & regisierec umdemark of Appie Computer Ine

Post Office Bax 2342 Santa Barbara, California 83120

Ask about our 10 mangy back guarantseel

. 2 LATION
TWO

(806) 6603132

22 The Computer Journa

Books of Interest

A

Structured Microprocessor
Programming

by Morris Krieger, Charles Popper,
Robert Radcliffe, and David Ripps.
Published by Yourdon Inc.

1133 Avenue of the Americas

New York, NY 10036

230 pages, 6" x 9"

This book is not new (the copyright
date is 1979), but it is so unusual that I
felt it should be brought to the atten-
tion of our readers. Most books on
assembly language are either very
simple with side-by-side examples of
BASIC and assembly language
routines, or they are written on a doc-
torial thesis level and only the experts
can understand them. You'd expect a
book about structured programming at
the CPU level to be difficult to foliow,
but this book is written for the begin-
ner. On page one they state “We
assume no prior knowledge on the part
of the reader about programming
(structured or otherwise). This book is
for the complete novice. It starts at
square one.”

The book is intended to accompany
SMAL/80 (Structured Macro Assembly
Language 80} which will be the subject
of a separate review, but the detailed
programming information will be help-
ful to anyone programming in assembly
language. The contents of the book are
as follows:

¢Chapter 1 SMAL/80— An Introduc-
tion. Why Structured Programming.
¢Chapter 2 Structured Programming
Principles. The BEGIN-END Con-
struct; The IF-THEN-ELSE Construct;
The LOOP-REPEAT Construct; To
GOTO or Not to GOTO; Flowcharts or
Pseudo-Coding?

oChapter 3 Microcomputer Basics.
Central Processing Unit; Arithmetic
and Logic Unit; 8080 and 8085 .
Microprocessors; Bits, Bytes, and Wor-
ds; Microprocessor Operation; Instruc-
tion Execution; Program Counter.
oChapter 4 The Binary Number
System. Binary Numbers; Binary Ad-
dition; Binary Subtraction; Positive and
Negative Binary Numbers; The Octal
and Hexadecimal Number Systems.

*Chapter 5 Boolean Logic and
SMAL/80. AND Operator; OR
Operator; XOR Operator; NOT
Operator; Boolean Logic and the CPU;
AND Operation; OR Operation; XOR
Operation.

*Chapter 6 Decision Making and the
IF-Then-Else. SMAL/80 Flags;
Decision Making; SMAL/80 Coding:
Semicolons; SMAL/80 Coding: Writing
Small Numbers; SMAL/80 Coding:
Transfer Instructions; Controlling
Program Flow; SMAL/80 Coding: In-
crement and Decrement Instructions.
*Chapter 7 Decision Making and the
LOOP-REPEAT. Loops Within Loops;
SMAL/80 Coding: Memory Transfers
and the HL Register Pair; Double-Byte
Increment and Decrement Instructions;
ASCII Coding; Setting Up the Line-
Numbering Program; Decision-Making
Using a Comparison Instruction;
SMAL/80 Coding: More Memory Tran-
sfers and the HL Register Pair.
oChapter 8 Symbolic Addressing:
Addition and the Carry Flag. Addition
and Subtraction in SMAL/80 Programs;
The Carry Flag and Addition; Symbelic
Addressing; The Transfer of Multi-
Byte Numbers; Multi-Byte Arithmetic;
SMAL/80 Coding: Addition with Carry;
SMAL/80 Coding: Clearing the CPU
Registers.

eChapter 3 BREAK and NEXT
Statements and ASCII Coding. The
ASCII Code (continued); SMAL/80
Coding; The BREAK Statement;
SMAL/80 Coding; The NEXT
Statement; Pointers and the BC and DE
Register Pairs. »
¢Chapter 10 Subroutines and the
Stack, More ASCIL The Road from
HEX to ASCII; Subroutines: RETURN
and CALL Instructions; The Stack;
PUSH and POP Instructions; The Stack
and Interrupts; CONVERTZ and the
Sign Flag; The Conversion Routine;
SMAL/80 Coding: ROTATE Instruc-
tions.

*Chapter 11 Flles, Counters, and
Markers. COUNTER, Why Negative
Addition? Finding the End of the Block;
SMAL/80 Coding: Exchange Instruc-
tion; SMAL/80 Coding: Complement
Instructions.

oChapter 12 Storage and Retrieval:

An Introduction to Tables. Indexed
Retrieval; Linear Search Tables;
Variations on a Theme; SMAL/80
Coding: Exchange Instructions;
SMAL/80 Coding: Program Jump In-
struction.

*Chapter 13 Writing Modular
Programs. A Caveat; An Overview;
Walking Through a Program; More on
Flag-Setting and Flag-Testing; Prompt
Messages; Entering Data; BINARY: An
ASCII to Binary Conversion Routine;
Pseudo Operations; Program Origin;
EQU Statements; RESERVE
Statements; BYTES and WORDS; Set-
ting the Stack Pointer.

*Chapter 14 Input/Output Program-
ming. Basic Output Programming;
Basic Input Programming;
Teletypewriter Interface; Cassette
Tape Interface; Parity Checking;
Checksum Error Detection; Drivers.
*Chapter 15 The SMAL/80 Macro
Processor. Macros Defined; Simple
Replacement Macros; Inventing In-
structions; Writing Macros That Have
Variables; Writing Conditional Macros;
Language Changes.

eAppendix A 8080/8085 Condition
Flags.

*Appendix B Macro Processor
Description.

eAppendix C 8080/8085, Z-80, and
SMAL/80 Instructions Sorted
Numerically by Standard Intel Op
Code.

eAppendix D B8080/8085, Z-80, and
SMAL/80 Instructions Organized
Alphabetically According to Standard
Intel Mnemonies.

The book contains a lot of down-to-
earth advice. For example, in chapter 2
on structured programming principles,
they state “In structured program-
ming, every statement must always
have only one entry point and one exit
point.” They also advise “When a
program segment has more than one
entry or exit point, the programmer
will very likely find he has lost control
of his program.”

Ifound chapter 11 on files, counters,
and markers, and chapter 12 on storage
and retrieval to be especially helpful on
a program I was working with using
8080 code and ASM. B

Tre Jomputer Loutnar 23

New Products

Full BASIC Microcontroller

Basicon’s MC-li microcontroller uses the full BASIC
language to program directly through a terminal with an RS-
232 connection. Designed around Intel's BASIC 52 chip, the
self-contained microcontroller offers exceptional program-
ming ease.

Priced at $349, the MC-li uses low power to offer 36 in-
put/output lines, 8K x 8 RAM, 3 timer/counters, 9 interrupts,
wide ranging autobaud and a real time clock. An EPROM
programmer and other peripherals are also available.

Intended uses include instrumentation, process control,
research and development, and even personal computing.

For additional information, write to Basicon, Inc., 11895
N.W. Cornell Road, Portland, OR 97229, or phone
50326012. &

IBM Compatible SBC

Davidge Corporation announced their DPC-1000 IBM-PC
compatible single board computer which they claim matches
the IBM-PC form factor right down to the location of the
mounting holes.

3.5 DRIVES

WHY GO 35° 7 THEY ARE SMALL, FAST, LIGHT, LOW POWER,
COMPATIBLE WITH'S 25" DRIVES (ON THE SAME CABLE), AND THE

DISKS AND DRIVES ARE MORE RUGGED AND RELIABLE MITSUBISHI
HAS A RECORD FOR BUILDING THE FINEST QUALITY DISK DRIYES

A F I3
COMPATIBLE WiTr 1B PC, PC COMPATIBLES, RADIO SHACK, or ANY
YSTEM NQW USING STANDARD T 1Ty _ DRIV,

OMF 351 SS 360K w/manual connectors disk $215

OMF 353 DS 720K w/manual connectors disk avall soon

OCase and Power supply (butlt in spike protection) avail soon

UCable (two drive mbbon cable) 215
N V.

2
FREE SHIPPING. QTY DISCOUNTS CA RESIDENTS 6stax
TECHNICAL QUESTIONS WELCOMED!

MANZANA

935 Camino Del Sur
sl 'S'2 Vista. CA 93117 1-805-968-1387

CHECK . M.O. . VISA.MC

The DPC-1000 features IBM-PC compatibility on a single
board without the need for video and disk controller cards,
and they state that it will run all the popular IBM software.

The 5SMHz 8088 CPU can be augmented by an optional 8087
math coprocessor. The board, which is available with
either 64K or 128K of RAM, can be expanded to 256K with an
optional memory expansion module.

There are two 28-pin EPROM sockets, one of which is
utilized by the BIOS ROM, and four DMA channels are used
for the floppy disk controller, memory refresh, and two user
defined functions. Two software controlled timers and five
user available interrupts are also provided. I/O includes a
monochrome video controller with TTL compatible output,
IBM-PC compatible keyboard port, two RS-232 serial ports,
Centronics parallel printer port, and a floppy disk controller
for up to four 5% " or 32 " drives. Five IBM-PC compatible
/O slots are also available. A specially written BIOS provieds
maximum IBM-PC compatibility and supports PC-DOS, MS-
DOS, CP/M-86, Concurrent CP/M and PC/iRMX (Intel)
operating systems.

Single quantity evaluation samples are available for a
limited time starting at $625, and quantity discounts are
provided. This board can be ordered from Davidge Cor-
poration, 292 E. Highway 246, P.O. Box 1889, Buellton, CA
93427 (phone 805/688-9598). B

“..received my moneys worth with just one
iIssue...”

—J. Trenbick
“..always stop to read CTM. even tho&gh

most other magazines | receive (and write for)
only get cursory examination...”
—Fred Blechman. K6UGT

USA . 51500 for 1 year
Mexico, Canada $25.00
Foreign $35 00(land) - $55.00(air)
US funds only)

Permanent (U.S. Subscription) $100.00
Sample Copy $3.50

CHET LAMBERT, W4AWDR
1704 Sam Drive » Birmingham AL 35235

(205) 854-0271

The Bookshelf

Soul of CP/M: Using
Features

Teaches you bow to modify BIOS, use CP/M system calls in your own programs, and
more! Excellent for those who have read CP/M Primer or who otherwise understand
CP/M’s outer-layer utilities. By Mitchell Waite. Approximately 160pages. 8x9':, comb.
CI983. $18.95

and Modifying CP/M’'s Internal

The Programmer's CP/M Handbook

Ar exhaustive coverage of CP M RO' | its internal structure and major components s
presented. Written for the programmer. this volume includes subroutine examples for
each of the CP M system calls and :nformation on how to customize CP'M - compiete with
detailed source codes for all examples. A dozen utility programs are shown with heavily
annotated C-ianguage source codes. An invaluable and comprehensive toal for Lhe serious

programmer. By Andy Johnson Laird. 750 pages. 7' :x9%. softhound .. 821.95

Interfacing to S-100 (IEEE 696} Microcomputers

This book is a must if you want to desigr. a cuslom interface between an S 100
microcomputer and almost any type of peripheral device. Mechanical and electrica’ design
is covered. along with logical and electrical relationships. bus interconnections and more
By Sol Libes and Mark Garetz, 322 pages, 62 x8%. softbound. $16.95

Microprocessors for Measurement and Control

You'll learn to design mechanical and process equipment using microprocessor hased
“real time” computer systems. This book presents plans for prototype systems which
allow even those unfamiliar with machine or assembly language to initiate projects. By
D.M. Ausiander and P. Sagues. 310 pages. 7 3/8x9 1 4. softbound. $16.95

Understanding Digital Logic Circuits

A working handbook for service technicians and others who need to know more about
digital electronics in radio, television, audio, or related areas of electronic troubieshooting
and repair. You're given an overview of the anatomy of digital-logic diagrams and
introduced to the many commercial IC packages on the market. By Robert G. Middieton,
392 pages, 5'axBlr. softbound. $18.95.

Real Time Programming: Neglected Topics

This book presents an original approach to the terms, skills, and standard hardware
devices needed to connect a computer 1o numerous peripheral devices. It distills technical
knowledge used by hobbyists and computer scientists alike to useable. comprehensible
methods. It explains such computer and electronics concepts as simple and hierarchical
interrupts. ports. PlAs, timers, converters, the sampling theorem, digita!l fiiters, closed
loop contro! systems. multiplexing. buses. communication, and distributed computer
systems. By Caxton C. Foster, 190 pages, 64 x9'4, softbound. $9.95

\

Interfacing Microcomputers to the Real World

Here is a complete guide for using a microcomputer to computerize the home office. or
laboratory. It shows how to design and build the interfaces necessary to connec: a
microcomputer to real-worid devices. With this book. microcomputers can be programmed
to pravide fast. accurate monitoring and control of virtually all electronic functions — from
controlling houselights. thermostats. sensors. and swilches, 1o opersuing motiors.
keybourds. and displays. This book is based on both the hardware and software principles
of the ZB0 microprocessor tfound in several minicomputers. Tandy Corporation’'s famous
TRS 80. and otherst. By Murray Sargent 11l and Richard Shoemaker, 288 pages, 6'ax9',
softbound. $15.55

Mastering CP/M

Now you can use CP/M to do more than Jjust copy files. For CP.M users or systems
programmers —this book takes up where our CP M handbook leaves off. it will give you
an indepth undersianding of the CP'M modules such as. CCP (Console Command
Processor’. BIOS {Basic Input‘Output System). and BDOS (Basic Disk Operating System:.
Find out how to: incorporate additional peripherals with your system. use console 1/0. use
the file control block and much more. This book includes a specal feature—a library of
useful macros. A comprehensive set of appendices is included as a practical reference tool.
Take advantage of the versatility of your operating system! By Alan R. Miller. 398 pages,
6°x8". softbound

FORTH Tools, Volume One

FORTH Tools is a comprehensive introduction to the new international FORTH-83
Standard and all its extensions It gives careful trestment to the CREATE DOES
construct, which is used to extend the language through new classes of inteiligent data
structures. FORTH Tools gives the reader an indepth view of input and output. from
reading the input stream to writing & simple maiiing hist program. Each topic is presented
with practical examples and numerous illustrations. Problems (and solutions’ are provided
at the end of each chapter. FORTH Tools is the required textbook for the UCLA and IC
Berkeley extension courses on FORTH. By Anita Anderson and Martin Tracy, 218 pages
S%x8'. softbound.. ... $20.00

TTL Cookbook
Popular Sams autbor Dan Lancaster gives you s complete look at TTL logic cireuits, the
most inexpensive, most widely applicable form of electronic logic. In so-sonsense
language, he spells out just what TTL is. how it works, and how you can use it. Many
practical TTL applicationa are exzamined. including digital counters, electronic
P hes, digital voit s. aad digital tachometers. By Don Lancaster. 336 pages.
BhxBlh.eoft. ©19T4. ... $12.95

at Title Price Totai
The Computer Journal y
PO Box 1697 Kalispell, MT 59903
Order Date:
Print Name
Address,
City State Zip

) Shipping charges are: $1.00 for the first Book Total

D Check CMastercard Dvisa book. and $.50 for all subsequent books. o

Card No. Expires Please allow 4 weeks for delivery. Shipping
Signature for Charge TOTAL

