ISSN # 07459331

THE COMPUTER JOURNAL

For Those Who Interface, Build, and Apply Micros

Issue Humber 19 Ju'y—August, 1985 $2.50Us

Using the Extensibility of FORTH
Using the CREATE. .. .DOES Construct pse:

Extended CBIOS -

A $500 Superbrain Computer s

BASE:

Part Seven in a Series on
How to Design and Write Your Own Database page

Interfacing Tips and Troubles:

Part Two
Communicating with Telephone Tone Control sages

3 Multitasking and Windows With CP/M-80
A Review of MTBASIC page 26

The Computer Corner eu.»

]

The Computer Journal / Issue #19

e N— - —

THE COMPUTER JOURNAL
190 Sullivan Crossroad
Columbia Falls, Montana
59912

406-257-9119

Editor/Publisher
Art Carlson

Production Assistant
Judie Overbeek

Circulation
Donna Carison

Technical Editor
Lance Rose

Contributing Editor
Ernie Brooner

Contributing Editor
Neil Bungard

Contributing Editor
Bill Kibler

The Computer Journal® is a bimon-
thly magazine for those who interface,
build, and apply microcomputers.

The subscription rate is $14 for one
year (6 ssues), or $24 for two years (12
issues)in the U.S. Foreign rates on
request.

Entire contents copyright © 1985 by
The Computer Journal.

Advertising rates available upon
request.

To indicate a change of address,
please send your old label and new ad-
dress.

Postmaster: Send address changes
to: The Computer Journal, 190 Sullivan
Crossroad, Columbis Falls, Montana,
59912.

Address all editorial, advertising and
subscription inquiries to: The Com-
puter Journal, 190 Sullivan Crossroad,
Columbia Falls, MT 59912.

Editor’s Page

We've Made Some Changes

You've undoubtedly noticed the

delay between issues 18 and 19 (at least
I hope that you missed us), and the
reason for the delay is that we have
changed the publishing schedule from
monthly to bimonthly. We were never
able to keep up with the monthly
schedule and finally decided that it
would be better to publish a larger, bet-
ter, magazine every other month rather
than slip a few days further behind
every month. You will still receive the
same number of issues that you paid
for, but your subscription will last
longer and reduce your annual cost.

We have also relocated to a larger,
lower cost, out-of-town location where
we can consolidate the publishing, elec-
tronics, and experimental machine
shop. Before the move we were split-
ting our time and equipment between
two locations, and what we needed
always seemed to be at the other place.
Once we're settled in we'll be more
comfortable in the rural setting where I
can see the snow capped mountains
from the window (the base of the moun-
tains is only 2': miles away), but there
are some distractions —such as when
we have to stop to watch the bull elk
lead his herd of 32 girls across the field.
There is also a shortage of phone lines
which means that we'll have to wait un-
til another private line is available
before we can proceed with the bulletin
board.

The extra time between issues will
allow us to produce a larger magazine
with more time-consuming technical ar-
ticles, and we'll be able to work more
closely with our authors. We also in-
tend to increase our contact with you,
the reader, to find out what you are
doing, and how we can better serve
you. The only purpose of this magazine
is to provide a place for everyone to
share their knowledge with others, and
we have not been getting enough feed-
back from YOU. We need to hear about
your problems, your solutions, bugs
you've discovered and how you patched
them, bugs that you haven't figured out
how to patch, and your tips,
suggestions, and comments.

Everything doesn't have to be a major
article, short notes and letters are also
welcome. We had planned on setting up
a bulletin board to make data exchange
easier, but won't be able to do that until
we can obtain a second private line.
Would it help if we had a 300 Baud
modem to put on line after answering
the phone by voice?

Technical Software Exchange

There are a lot of user’s groups
providing public domain software, but
we need a place to exchange the
specialized programs that we need for
engineering, scientific, interfacing,
operating system modifications,
robotics, measurement, control,
numeric machining, and other odd-ball
pursuits whichinterest us. Without a
bulletin board there is the problem of
disk formats, but I am going to start by
offering to handle Apple II, CP/M-80 in
8" SSSD and some 5'% " formats, and
probably IBM-PC disks. I am also going
to try to have either the magazine or
the author make disks of the program
listing from the articles available to
avoid the problems in rekeying long
listings. If any of you would like to
make a bulletin board available, it
would be greatly appreciated by all of
us.

“Knowledge is for
sharing. Are you willing
to contribute software
or information for the
exchange?”

It has also been suggested that we
publish abstracts of articles which are
too specialized to publish in the
magazine, and provide photocopies or
text files on disk of these articles to the
interested parties for a small fee. This
is another possible application for a
bulletin board, but for those of us in
remote rural areas the time charges for
downloading long files is excessive and
most articles will include illustrations
which are difficult to handle over the
modem.

f{continued on page 30/

The Coinputer Journal / Issue #19

Using the Extensibility of FORTH
Using the CREATE. .. . DOES Construct

by Mahlon G. Kelly and Nicholas Spies

FORTH is a very powerful, fast, high-

level language that is well suited for all
sorts of general programming. And, for
several reasons, it is better for interac-
ting with hardware than anything but
machine and assembler programming.
One reason for this is that FORTH
makes direct memory and port access
very easy, but another is that a FORTH
program is actually an extension of the
language itself, able to do literally
anything that the computer can do.
Further, FORTH gives you the ability
to add whole new features to the
language, in particular, functions that
are able to define new functions,
analoguous to being able to create a
function that can be used to create
whole new types of subroutines in
another language. This ability is unique
to FORTH and provides power way
beyond that given by any other
language, yet it is an ability that is not
well understood by those who could
profit greatly by using FORTH. We will
explore FORTH's extensibility in
detail, but first we should describe
some of the general characteristics of
the language.

For several reasons FORTH is an
unusua! language. First, it uses a stack
for all transfer of numbers between
routines, including arithmetic and such
things as transfer of ASCII characters
and comparison operators. Second, it is
very interactive, responding im-
mediately to keyboard input. And
third, as we have said, a FORTH
program is a direct extension of the
language. These unusual features
provide FORTH with much of its
power, but have given it a reputation
for being hard to learn. FORTH is not
really hard to learn — children take to it
easily — but it does require that you not
think of it like other languages; you
must approach FORTH with an open
mind. We can best show FORTH’s
unusual features with an example.

Suppose you want to calculate 25

squared + 33.If you typed
25 DUP* 33 + . (enter)

from the keyboard you would see 658
(the correct answer) displayed. What
happened? Typing 25 placed 25 on the
stack, DUP duplicated that num-
ber,leaving two 25s on the stack, one on
top of the other. ®* then multiplied the
numbers, leaving the product, 625, on
the stack. 33 placed 33 on top of the 625,
+ added 33 to 625 giving 658, and .
{pronounced "dot") finally caused the
658 to be displayed on the screen, em-
ptying the stack. This can be diagram-
med as follows:

Typed STACK
on keyboard (top) (bottom)
25 25
pup 25 25
* 625
33 33 625
+ 658
. (empty)

This is a so-called last-in-first-out or
LIFO stack. It produces what is known
as postfix or Reverse Polish Notation
(RPN), with the operators following the
numbers, as opposed to the more com-
mon algebraic notation, with the
operators between the numbers.
Although RPN may initially seem dif-
ficult, with a little practice it becomes
very natural. It has the advantage that
parentheses are never needed to
specify precedence, which is much sim-
pler for the computer.

This example should make the in-
teractive nature of FORTH clear; it can
be used directly from the keyboard,
even without writing a program. A
more important point is shown by the
operators DUP,*, 4 ,and .. These
are a few of many FORTH words.
FORTH consists mainly of a dictionary
of words resident in memory. When a
word is input, the dictionary is sear-
ched until the word and its definition
are found. The definition consists of a

pointer or sequence of pointers to
machine language routines that are
executed to perform the function of the
word, for example multiplying two
numbers or displaying the top number
on the stack. Since the machine
language routines are fast, FORTH is
fast. Virtually all of the functions of
FORTH are performed by words, and
writing a FORTH program simply con-
sists of adding more words to the dic-
tionary. Here's an example.

Suppose you must repeatedly square
a number that is on the stack. You could
define a new word SQUARE simply by
inputting

:SQUARE DUP*;
:isa FORTH word that has the function
of taking all the following input until
the word ; is encountered and using
that input to define a new word, the
name of which is the first sequence of
letters encountered, in this case
SQUARE (all words must be separated
by spaces). All following words up to ;
are then compiled in the dictionary as a
sequence of pointers that comprise the
definition. Now if you were to input

5SQUARE.
you would see 25 displayed. Of course
the same thing would have been ac-
complished by

5DUP*.
and normally definitions are more com-
plex than this example, but you can
now see why FORTH is called an ex-
tensible language.

Here's another example. Suppose
you must repeatedly perform the fun-
ction

Y-AX%2+B
where A and B are variables with num-
bers stored in them and X is a number
on the top of the stack that is to be
replaced by Y. First the variables must

be created by
VARIABLE A
and
VARIABLEB

[

The Computer Journal / Issue #19

Variables are not used nearly as much
in FORTH as in other languages
because so much can be done with the
stack, but variables are important for
what we will cover shortly. A variable
in FORTH is really a word that returns
an address where a number may be
stored. (The same is true of all
languages, but the user is not aware of
the address.) This would store 625 in
the variable A.

625A!
625 put a number on the stack and A
put an address on top of 625. ! (pronoun-
ced “store”) is a FORTH word which
stores the number that is second on the
stack at the address on the top of the
stack. To get the value of A back to the
stack you can input

A@
where @ (pronounced “fetch”)is a word
that fetches a number from memory to
the stack, using the address previously
on the stack, in this case the address
returned by A.

Now we can define the function.

:AX2_+. _ BSQUAREA@*B@ +:

Notice that the previously defined
SQUARE was used; a program is built
up by defining words using previous
words. Now if you typed

385A! 56B!
followed by
2AX2_ +_B.

.(dot) would display 196, the correct
answer. AX2__+4_ Bisactually a very
short program, and it is executed by
typing its name. It is very fast because
all it does is follow a thread between a
sequence of machine language routines
(and this is why FORTH is called a
threaded interpretive language or
TIL).

There is another way toset upa
variable, using the word CREATE.

5CREATEA,

would have the same effect as the
previous definition of A with the ad-
dition that 5 would be stored in the
variable as an initial value. CREATE
creates a new definition in the dic-
tionary, with the name being the next
set of characters, in this case A. , (com-
ma) reserves 2 bytes in the body of the
word just created and stores 5 there
{two bytes are used for most numbers
in FORTH although more may be used
if a range larger than - 32768 to 32767
is needed). A word defined using
CREATE has the effect of returning
the address of its own body to the
stack, in this case where 5 was stored.

It is also possible to store several num-
bers in the body of a word, for example
an array or a string of ASCII charac-
ters. The importance of CREATE for
us here is that it can be used in conjun-
ction with another word, DOES), to
define words that have the purpose of
defining whole new sets of other words,
greatly enhancing FORTH’s exten-
sibility, and providing an ability far
beyond what is provided in any other
language.

Parent And Child Words

The remarkable ability of FORTH to
extend itself results from defining wor-
ds. The sole purpose of defining words
is to compile (define or create) other
words. The most commonly used
defining word is : (colon), and many
short programs use nothing else. You
have also seen CREATE and
VARIABLE . When any defining word
executes, it makes a new word by
placing a header in the dictionary for
the created word followed by whatever
is needed for the new word to execute.
The header contains the word's name
and some other information. Every
aspect of FORTH programming uses
defining words to tie together more
primitive routines to solve complex
problems.

The important feature of FORTH
that we will cover here is that you can
create new defining words, that is, you
are not limited to the defining words
provided in the FORTH kernel. It's as
easy to create new defining words as it
is to create “regular” words. This opens
almost unlimited possibilities for
creating new types of words and new
data types that can make programs
more efficient and compact and that can
also make programming easier.

Each defining word in the FORTH
kernel is able to create a distinct class
of words. For example, although each
word defined with : (colon) performs a
different function, they are all similar
with respect to how they are defined
and compiled and as to how they
execute. All colon-words belong to a
single class because they have all been
created by :(colon) to combine the ac-
tions of more primitive words.
Similarly all words created by
VARIABLE are variables precisely
because they all compile and execute in
the same way. Thus every word may be
classed according to what defining
word was used to create it.

A way of keeping the relationship
clear is to call defining words “parents”

FOR TRS-80 MODELS 1,344
IBM PC, XT, AND COMPAQ

Train Your Computer
to be an

EXPERT!

Expert systems facilitate the reduc-
tion of human expertise to simple,
English-style rule-sets, then use them
to diagnose problems. “Knowledge
engineers™ are developing many
applications now.
EXPERT-2, Jack Park's outstanding
introduction to expert systems, has
been modified by MMS for MMS-
FORTH V2.0 and up. We supply it
with full and well-documented source
code to permit addition of advanced
festures, a good manual and samplie
fule-sets: stock market analysis, a
digital fault analyzer, and the Animal
Game. Plus the benefits of
MMSFORTH's excellent fuil-screen
editor, super-fast compiling, compact
and high-speed run-time code, many
built-in utilities and wide choice of
other application programs.

{ Rule 1 - demo in EXPERT-2)

IF you want EXPERT-2

ANDNOT you own MMSFORTH

THENHYP you need to buy

MMSFORTH pius EXPERT-2
BECAUSE MMSFORTH is required

XPERT-2
li(SFORTH

The total software environment for
1BM PC, TRS-80 Mode! 1, 3, 4 and
close friends.

FORTHCOM communicalions $ s
Uwmes
GBS Y
OPERT2epertaem [T 3
DATAMMDUIR ns
BATAMANDLER-PLUS (PC ony. 120K ren) %0
FORTHUNITE word processey e
sCorporate Site License
Extonsions om §1,000
o Some recommended Forth books:
UNDERSTAMNDING PORTH (overviow) ¢ 1
STARTING FORTH programming . nes
THREUNG PORTH Machigue) s
SEGBOENG FORTH (» MMSFORTH) ns

Shipping/handiing & tax ean. MO Stume on solware.
Ask dealer 10 show you the worid of
uﬁmamwmm.
MILLER MICROCOMPUTER SERVICES
€1 Lake Shere Roed, Natick, MA 01760
8176538138

4

and the words they create “children.”
Each child of a common parent-word
has a behavior that is similar to, yet dif-
ferent from, that of its “siblings.” The
common behavior of siblings is a con-
sequence of their sharing the same

* execution action as defined in their

common parent. The differences of the
children are a result of the different
values compiled into them when they
are created (for example different wor-
. ds, represented by different pointers,
within a colon definition). To under-
" stand why a child-word acts the way it
does you have to look both at its
parent'’s definition and its own.

If the genealogy of words is charted,
we can discern three stages, often
called sequences in the FORTH
literature. The sequences are what
happens when: (1) The parent is born
(compile defining word). (2) The parent
acts and gives birth to the child
{execute defining word and compile
child-word). (3) The child acts {(execute
child-word).

The reason there are three stages in-
stead of four is simple: whenever a
defining word executes, it compiles a
child-word. What seems like two stages
is really one and the same action.

The general behavior of the children
of a particular parent is predetermined
by the definition of the parent word in
* stage 1. Colon words are all similar
because of the way : itself was defined.
They all execute in the same way
because one of the actions of a defining
word is to make its children all have
similar behavior. This is most easily
seen in the case of the children of
VARIABLE and another word, CON-
STANT . As you have seen, variables
all put the address of their contents on
the stack; constants on the other hand
all put the contents themselves on the
stack. For example if you defined

65 CONSTANT EXAMPLE
when EXAMPLE was executed 85
would be put on the stack;no @ is
used. The contents of a constant are set
up when it is defined, and the contents
are harder to change than those of a
variable. They normally stay the same
throughout the execution of a program.
The difference in action is because of
the way that VARIABLE and CON-
STANT were each defined; we will give
you their definitions shortly.

The differences in the behavior of
siblings is thus determined during
stage 2, when the defining word
executes and compiles a child. Siblings

do different things because they con-
tain different things. Each colon word is
distinct because it is defined using a dif-
ferent combination of words. Constants
vary according to the values they were
created with. So we can say that the
children of a common defining word
(siblings) are the same because they
execute in the same way, but are dif-
ferent because they contain different
values or addresses.

Thinking in terms of these three
stages or sequences of a word's
geneology will help to prevent con-
fusion when new defining words are
created.

To summarize:

Sequence 1. A defining word is

created to compile children with
a certain type of behavior.

Sequence 2. A defining word
executes to create a child with
specific contents and behavior.

Sequence 3. A child-word executes
according to what its parent told
it to do with its contents.

It may seem rather mysterious that
one word can determine how another
word will execute, but it’s really quite
simple. When a defining word creates a
child, in addition to storing the child's
contents, it stores the address of the
child’s run-time code into the child. The
run-time code is a machine language
program that determines how the child
will execute, that is, what it will do with
its contents. Since each defining word
stores the address of a specific run-time
code in all of its children, all of its
children execute in the same way.

Creating Defining Words

How are defining words defined?
Some, like : and CREATE are part of
the FORTH kernel, the elementary
code that was produced when the
language itself was produced with an
assembler, cross-compiler or something
of the sort. But how can the user create
new defining words? The answer is in
CREATE, either used by itself or with
the word DOES 2. CREATE by itself
is the most fundamental way of
defining new words in FORTH.
CREATE is used as

CREATE CHILD-WORD

where CHILD-WORD is the word
being defined. As mentioned above the
action of CREATE is to place a header
for CHILD-WORD in the dictionary,
and when CHILD-WORD is executed,
the address of its contents is put on the
stack. CREATE itself does not allocate

The Computer Journal / Issue #19

any dictionary space beyond the header
of the child-word — this must be done as
a separate step (with , (comma), for
example, as used above). VARIABLE
can be defined as:
: VARIABLE CREATE 0 ,;

When VARIABLE is executed
CREATE acts, not to compile 0, which
was compiled when VARIABLE was
defined, but to compile the next word in
the input stream. VARIABLE then
puts 0 on the stack and , (comma) places
the 0 as two bytes in the body of the
new variable. Just as the actions of
DUP and * in the definition of
SQUARE were deferred until SQUARE
was executed, the action of CREATE is
deferred until VARIABLE is executed.

The stage 1 activity of VARIABLE is
the definition. The stage 2 activity of
VARIABLE is when it is used as in

VARIABLE DISCOUNT

which breaks down to

VARIABLE Start execution of

" defining word.

CREATE Make DISCOUNT a word
in the dictionary. Store address of
run-time code in DISCOUNT.

0, Compile two zero-bytes
into DISCOUNT,

The stage 3 activity of VARIABLE
occurs when DISCOUNT executes.
This is when the run-time code that was
put into DISCOUNT by CREATE
executes and puts the address of the
contents of DISCOUNT onto the stack.
Any colon word that has CREATE as
part of its definition is a new defining

word.

But how can CONSTANT be
defined? It might at first seem that we
could define CONSTANT as

: BAD-CONSTANT CREATE, @ :

but immediately we can see that BAD-
CONSTANT cannot work because the
@ will execute during stage 2, when
the child is created, and not when the
child-word is executed. What we ac-.
tually want to do is define CONSTANT
0 that its children's contents are fet-
ched in stage 3. That is done with
DOES >.

Creating New Defining Words

The word DOES > is needed to per-
mit defining words to determine the
execution behavior of their children.
Now we can define

:CONSTANT CREATE ,DOES > @ :

The Computer Journal / Issue #19

The stage 1 activity of CONSTANT oc-
curs when this definition is compiled.
When CONSTANT executes to compile
another word, as with

1024 CONSTANT 1K
the stage 2 activity of CONSTANT can
be mapped as

CONSTANT Start execution of

defining word.

CREATE Make 1K a word in the

dictionary. Store address of run-time
code in 1K.

, Compile the nimber 1024 fron the stack.
But, because of the presence of
DOESD> @ , we know that the stage 3
activity of CONSTANT (when 1K
executes) is more complicated than in
the case of VARIABLE . When 1K
executes, the address of the contents of
1K is first put on the stack (because
CREATE put the run-time code in 1K
to do just that), and then @ fetches the
contents from this address, putting
1024 on the stack. In other words, the
@ following DOES) is executed when
the child-word executes, not when it is
defined. The function of DOES)> is to
specify that the words following it are
to be executed when the child word
executes, while those between
CREATE and DOES > are executed
when the child word is created.

The definition of CONSTANT isa
good example of how new defining
words are created. To reiterate, the
words between CREATE and DOES >
are executed during stage 2, when the
parent executes and compiles the child-
word. When the child-word itself
executes, the address of its contents is
first put on the stack. Then the words
that followed DOES > in the defining
word are executed, determining what
the child-word "does.”

Here's an application for defining
words. Most terminals and printers are
controlled with the ASCII values bet-
ween 0 to 31 (called control codes). The
control values could be stored in con-
stants and output to the terminal with
EMIT , a word that sends a character
represented by a number on the stack
to the terminal, but using a new
defining word is more efficient. Con-
sider:

:IS-CONTROL CREATE,

DOES > @ EMIT;
IS-CONTROL is nothing but CON-
STANT with EMIT added to its
children's execution behavior. IS-
CONTROL can be used to create a
family of related words such as

TIS-CONTROL BELL

8 IS-CONTROL BACKSPACE
12 IS-CONTROL FORMFEED
131IS-CONTROL CR
where each word will tell a terminal to
perform a certain action. That is, BELL
would cause most terminals to sound a
beep.

One advantage of defining words
should aiready be apparent: They en-
courage readable programs. When IS-
CONTROL is used, all that needs to be
specified is the data to distinguish the
new word from the other children of IS-
CONTROL, specifically a control code
and a name. Each child stands out as an
individual in the family of IS-
CONTROL definitions. Defining words
encourages the separation of the
behavior that related definitions have
in common from their individual
behavior. The common behavior of the
children is coded in the DOES> por-
tion of the defining word's definition.
The individual behavior of each child is
determined by the value (or values) on
the stack when it is created. Problems
that involve a series of words with
similar definitions can often best be
solved by creating a new defining word.

Here’s another example. We earlier
showed how to define a mathematical
function with a colon definition. With a
defining word you can create any num-
ber of linear equations of the form

y=ax+b
by creating children when the coef-
ficients a and b are on the stack. When
a child-word then executes with x on
the stack it will leave the solution y.
The definition of the defining word is

:LINERA(ab-)CREATE SWAP,,
DOESY> DUP JR@°*R>» 2+ @ + ;

Notice that the values on the stack (a
and b) are swapped when LINEAR is
used so as to save some stack
manipulation when the child executes.
You should always try to have work
done during a definition if it will save
time during execution of a child. If the
linear equation

y=3x+17
is defined with

317LINEAR ALINE
then if

2 ALINE.
is executed 23 will be shown as the
solution. The definition needs some ex-
planation. First notice that more than
one number can be placed from the
stack into the body of the child-word by
using ,(comma) repeatedly. PRisa
word that takes a number from the

[

NGS FORTH

A FAST FORTH,
OPTIMIZED FOR THE IBM
PERSONAL COMPUTER AND
MS-DOS COMPATIBLES.

S8TANDARD FEATURES
INCLUDE:

79 STANDARD
ODIRECT I/O ACCESS

®FULL ACCESS TO MS-DOS
FILES AND FUNCTIONS

OENVIRONMENT SA
& LOAD VE

OMULTI-SEGMENTED FOR
LARGE APPLICATIONS

OEXTENDED ADDRESSING

@MEMORY ALIOCATION
CONFIGURABLE ON-LINE

OAUTO LOAD SCREEN BOOT
OLINE & SCREEN EDITORS

ODECOMPILER AND
DEBUGGING AIDS

08088 ASSEMBLER
OGRAPHICS & SOUND
ONGS ENHANCEMENTS
eDETAILED MANUAL
®INEXPENSIVE UPGRADES
ONGS USER NEWSLETTER

A COMPLETE FORTH
DEVELOPMENT SYSTEM.

PRICES BTART AT $70

NEWe-HP-150 & HP-110
VERSIONS AVAILABLE

‘\
=)

P.0.BOX 2987
S8ANTA CLARA, CA. 95055

(408) 241-5909

main stack and places it on a second
stack (called the return stack). R> pops
the number from the return stack and
places it back on the main stack. This
lets the return stack serve as a tem-
porary storage area. 2+ isa FORTH
word that simply adds 2 to the number
on the stack; it performs the action of 2
<+ but is defined as a single word in
assembler for speed. The execution of
ALINE may now be shown as in
Figure 1.
The material in parentheses shows the
stack contents after the execution of
each word; it is a FORTH convention to
use such stack charts, and anything
within parentheses (with the opening
parenthesis followed by a space}is a
comment in FORTH; it is ignored by
the language.

This shows a common technique used
in complex defining words. Because the
address of the first cell of ALINE will
be needed to fetch two numbers this
address is stored on the return stack.
When the address is then taken from
the return stack it must be incremen-
ted by 2 so as to point to the next cell in
ALINE allowing the 17 compiled there

tobe fetched. (In FORTH, a cell is the
two bytes needed to store a number.)
Although there are words for
manipulating the stack that could have
been used in this example, variations of
this technique can be used to store and
recover any number of bytes or num-
bers in the children of defining words.

The best way to become familiar with
the power of defining new defining
words is with practice. Here are some
exercises that should give you some
more ideas. The answers are at the end
of the article.

Exercises

1) Define a word called MAKEDATE
that expects month, day, and year
numbers on the stack and creates
children that will display their date.
Thus

12741 MAKEDATE
PEARLHARBOR
would create PEARLHARBOR, which
would display 12 07 41 when it
executes.

2) Define a defining word called
COUNTER that uses the number on
the stack to initialize its children. When
the children of COUNTER execute
they will modify their own contents to
be one greater each time they execute.
Thus

0 COUNTER COUNTIT

DUP (-- 2 addr addr)
>R (=~ 2 addr)

[] (=-23)

- (-—- 6)

R> (=—— & addr)

2+ (—— 6 addr+2)

[] (-— &6 17)

+ (—— 23)

Figure 1

The Computer Journal / Issue #19

Addr of 3 in ALINE .

Put addr on return stack.
Fetch 3 ta).

é& = ax, the first term.

Addr of 3 in ALINE .

Addr of 17 in ALINE .

Fetch 17 (b), the second term.
23 = y = ax + b, the solution.

would create COUNTIT which would
modify its contents soastobe 1,2,3
and so on each time COUNTIT
executes. If a child of COUNTER is
used in a colon-definition it will keep
track of the number of times the
colon-word is executed.

3) Define a word QUADRATIC that
works similarly to LINEAR but defines
children which, given x, will solve
equations of the form

y = ax2 + bx + ¢

4) The Michaelis-Menten equation
has wide application in biology and
biochemistry for determining the rates
of enzymatic reactions. Its general form
is

QR=-Q,,,s/ Ky + 8)

where Q is the rate of the reaction,

S is the substrate concentration, Qmax
is the maximum rate of the reaction,
and K, is the half-saturation constant
or the substrate concentration at which
the reaction rate is one half of its
maximum. Write a defining word to
solve this equation given Qpaxand Ky
on the stack when the child is created
and S on the stack when it executes.

Defining Arrays

An array is simply a sequential list of
numbers. Each number is called an
element. and each element is num-
bered; that is, the first number in the
list is either the first or Oth element,
depending on whether one chooses to
number the elements from O or 1.
Arrays are very useful in a wide
variety of fields and can be stored in
memory in consecutive pairs of bytes.
Arrays are an excellent application for
defining words because the word
ARRAY can be defined to be used to
create a child array of a certain size
which, when it executes, will return the
address of a particular element to the
stack.

Here's a parent word to create
arrays. One way of defining ARRAY
would be

i ARRAY CREATE 2 o ALLOT DOES)
SHAP 2 e + 3

When used as

30 ARRAY NOVEMBER
an array of 30 numbers would be
created with elements numbered from
0to 29. When the child-word is used it
expects an element-number on the
stack with which to calculate an ad-
dress. That is,

2397 1 NOVEMBER!
would calculate the address of the third
byte in NOVEMBER and store 2397
there.

1NOVEMBER @ .
would then fetch 2397 and display it.
The word ALLOT allocates a number
of bytes specified on the stack into the
body of a word for number storage. Sin-
ce each number is two bytes long, the
number of bytes that is ALLOTed must
be twice the number on the stack; that
is, 60 bytes must be ALLOTed in
NOVEMBER . When the child word is
executed the address it returns must be
SWAPped on the stack with the
element that is already stored there.
That element is then multiplied by 2to
get the offset from the start of the
storage area to where the number is
stored. That offset is then added to the
start of the storage to get the address
where the number is stored.

There are two ways of numbering
the elements of arrays, either starting
with element 0 (as shown above) or
starting with element 1. If you want 1
NOVEMBER to give you the address of
the first (rather than the second) num-
ber in the NOVEMBER array then
define ARRAY as

: ARRAY CREATE 2 e ALLOT DOES>
SHAP 1- 2 & + §

Although starting with element 1 is
slightly slower it may be easier to work
with.

Notice that arrays created with
these simple definitions will dutifully
return an address outside of the reser-
ved array space if they are given an
element-number that is out of range.
Storing values outside of the alloted
area can cause disastrous errors. The
proper solution would be to write a
word to make sure the array index is

The Computer Journal / Issue #19

within legal bounds before the index is
handed to the array word. But incor-
porating error-checking in the
definitions of ARRAY will slow the
performance of each child array-word
whenever it is used, whether or not
there might be an error.

If you are familiar with matrices you
may want to try this exercise. Write a
word similar to ARRAY , called
2ARRAY, that will create a two-
dimensional array. Thus if

582ARRAY ARR
is executed, an array called ARR
should be created to hold a matrix with
5rows and 8 columns. Typing

36 ARR
should return the address of the num-
ber stored in the 3rd row and 6th
column, counting from element 1. The
answer is give at the end of the article.

An Applied Example —
Using FORTH For Gathering Data

One of the most important uses of
FORTH is for interacting with devices
outside of the computer. Our final
example will show how the CREATE ...
DOES> construct can be used to helpa
computer gather and analyze data in
real time. This example is derived from
an actual application used by one of the
authors for his research. In fact, he
learned FORTH because no other
language could be used as easily to do
what he wanted.

The problem is to take data from a
variety of water-quality sensorsina
lake, put it into the computer, and then
manipulate the data to see its behavior.
There may be up to 48 sensing devices
including photocells, pH electrodes, in-
struments to measure the clarity of the
water (turbidimeters), flow measuring
devices, and dissolved-oxygen elec-
trodes. The modules containing the
sensors are suspended in a lake, and we
want to be able to see what is being
measured as well as what was
measured in the previous 24 hours.
Cables lead from the sensorsto a
microcomputer on the shore. Each
device produces an output voltage bet-
ween 0 and 1000 millivolts, proportional
to what is being measured. The output
is fed to an analog to digital converter
to produce a number made available on
the computer’s input ports. For our
example we will assume that a FORTH
program has been written to place the
millivolt input into an array called

PORT-DATA , such that 1 PORT-
DATA @ will return the current
millivolt value from port 1, and so on.
The data-gathering program is not dif-
ficult, but it depends on the computer
and dialect of FORTH being used.

Our problem is that we want to con-
vert the raw-voltage input to actual
values of pH, temperature, and so on
before it is passed to a word that will
summarize that data in tabular and
graphic form and store it on disk. We
have an equation for each sensor. Here
we will consider only the temperature
measurements, but the procedure for
the other parameters is nearly iden-
tical. Each temperature sensor
produces a voltage that is linearly
proportional to the temperature. That
is,

T=avVs+h

where T is the value of temperature, V
is the voitage,and a and b are
calibration constants that are different
for each sensor. We need a word for
each temperature sensor which, when
it is executed, will take a voltage from
the stack, calculate the temperature
{actually the temperature scaled by a
factor of 1000), and store the result in
an array called RESULT . Those wor-
ds, for example I TEMP , 2TEMP and
8o on, can be created by a defining word
asin

port# a b VOLT-TO-TEMP nTEMP

where nTEMP is the child-word. Thus
if the equation for temperature tran-
sducer number 8 on port 32 is

T = 26v + 1200
then the appropriate conversion word
would be created by

3226 1200 VOLT-TO-TEMP 8TEMP
The definition for VOLT-TO-TEMP

would then be as shown in Figure 2.
L

where the initial values are compiled in
the same order as they occur on the
stack. When the child-word (§STEMP)
executes, it gets the raw voltage data
for the appropriate port (32) and con-
verts it to a temperature using the
words following DOES > . Finally the
results are stored in the previously
created array called RESULT . The
word ROT rotates the top 3 numbers on
the stack, that is, the third number is
moved to the top, the top to the second,
and the second to the third. R@ is
similar to R except that it only copies
the number on the return stack to the
main stack without removing it. Under-
standing this example may take some
study, but it would be impossible to
perform this task so simply in any other
language, and the function would be
slower and take more memory as well.

There would be equivalent defining
words for each type of sensor, that is,
for oxygen, pH, and so on. They would
differ in the words following DOES >
because the form of the equations
relating the voltages to the actual
values for each sensor-type is different.

Although this is only part of a
program (getting the voltages, and
displaying and storing the results are
not simple), you can see that the child-
words can easily be modified to accom-
modate changes of sensors or of their
calibration. By using defining words the
calibration values used for each in-
strument are clearly shown by the
parameters used to create each child-
word. This is an example of how
defining words not only make source
code more readable, but also how they
help to design programs that are more
structured and compact.

In Conclusion
As we said at the beginning, FORTH

VOLT-TO-TEMP
CREATE

Name of defining word.)
Compile a header for child.)

Put address of run—time code in child.)

ROT , SwAP , ,
DOES>

Compile as:

port®, a, b.)
Start defining execution of child.)

Put address of child’s contents on stack.)

>R

PORT-DATA @
RQ 2+ @

-
RQ 4 + @
+ -~ result)
R> @

RESWLTY !
$

- port# result)
--) (Store result in nth array position.)
End definition.)

(
<
(
(
(
[§
(==) (Put address on return stack.)
R@ @ (-— port#) (Get port number in child.)
{ —— data) (Get voltage from port n.)
(- V a) (Gat a.)
(== Vaa) (Add to data to start froma zero.)
(=~ V#a b) (Get b.)
((Calculate temperature.)
(
(
(

(Get port number in child.)

Figure 2

is an unusual language. We have only
touched on one of its features, but one
of the most powerful and subtle. FOR-
TH programs are written by extending
the language, which means defining
new words using, appropriately,
defining words. Just the ability to
define new words makes FORTH more
powerful than other languages. But
beyond, that one can define new
defining words — words that create
whole new classes of words. The end
result is that very specialized ap-
plications can be created in FORTH.
The creation of words for calibrating
temperature transducers is an exam-
ple. But the defining words could be for
creating new phoneme translatorsina
speech synthesizer, controlling arm
motions of a robot, or sorting objects
using pattern recognition. Any set of
tasks with similar but slightly different
actions will benefit from the use of
specialized defining words. This makes
FORTH particularly well suited to har-
dware control or interfacing. In fact
FORTH can be used to create
specialized vocabularies, or even
specialized pseudo-languages to per-
form functions in dedicated ap-
plications. Since FORTH code can be
easily put in ROM it is well suited to
dedicated control hardware. It can sub-
stitute for machine language programs
in such situations.

We have only touched on FORTH's
power. It is possible, for example, to
merge assembler language instructions
into FORTH words if no pre-existing
FORTH words will do the job (which is
rare). And we have left out many
elementary features of FORTH. We
have hardly mentioned the power of the
stack, how to work with strings or
floating point arithmetic, or how to ex-
charnige programs and data with a disk
(which is simple). And we have not
covered FORTH's remarkable ability to
access memory and work with bytes
and bits in variable number bases.
FORTH can do anything that any other
language can and more, and usually
faster and with less memory. FORTH
programs may actually use less
memory than equivalent programs
written in assembler language. B

This article is based on a chapter
from the book FORTH, A Text and
Reference, an introduction to fun-
damental and advanced aspects of the
language that will be published by
Prentice-Hall

The Computer Journal / Issue #19

o

(Print them)

s
o
~

EXERCISE # 2)
11 : COUNTER (n ==)
12 0 COUNTER COUNTIT

0 (Answers to exercises, block ! of 3)
1

2 (EXERCISE ¢ 1)

3 : MAKEDATE (n1 n2 n3 --

by (Child-word action:)

S Dup @ (Fetch year)

6 SWAP DUP 2+ @ (Fetch month)

7 SWAP 4 + @ (Fetch day)

8 .

9

¢ TASK ;

) CREATE , , , DOES>

CREATE , DOES> 1 SWAP +! 3

13 { To get the count do ' COUNTIT € .)

(Answers to exercises, block 2 of 3)

(EXERCISE # 3)
: QUADRATIC (a b c --)

s TASK ;

CREATE , , , DOES>

(Child-word action, child stack chart (x ==y)

DUP @ (addr ¢)
SWAP DUP 2+ € (¢ addr b)

SWAP U4 + @ (cba)

o]
1
2
3
Y
2 SWAP >R (>R places x on another stack, the "return stack")
7
8
9

¢
Ré DUp & & (cbax"2) (R fetches x from return stack)
¢

10 SWAP R> & (
1M e+ (y)

-
N
—

13 17 should be displayed.)

ax"2 bx) (R> removes x from return stack)

Using 3 2 1 QUADRATIC QUAD , when 2 QUAD . is executed

15

0 (Answers to exercises, block 3 of xxx) s TASK 3

1

2 (EXERCISE # 4)

3 : MICH-MENT (Qm Km --) CREATE , , DOES>

4 SWAP >R DUP @ SWAP 2+ @ (Km Qm)

S R * (Km Qm*s)

€6 SWAPR>+/ ;3 (Q)

7

8 (EXERCISE IN TEXT ON PAGE 6)

9 : 2ARRAY (rows cols -~) CREATE DUP , ® 2 & ALLOT DOES>

10 DR SWAP RO @ ® 4 14+ 2 ® R> 4+

1 (The trick is to store the number of columns as the first
12 element in the array, and then let the child word use it
13 to calculate the offset in the array.)

14

15

MODEL 100 C COMPILER

Now you can wrnite efficient programs for your
TRS-80 model 100 with ease Or. learn the
essentials of C programming while traveting'

C/100 - THE “PORTABLE™ C COMPILER
Cassette version .. .
Disk/Video interface version $59.00
Model Il version {run on mod I, then
download object code to mode! 100) .
Model lil version (as above for Mod 1)

$79.00
$79.00

Write or call for information on other
TRS-80 software

MODELS I, 12, 16
MODELS I, 4
TRS/C C COMPILER

Fuli K&R with source to the
function library. UNIX

compatible, .. $85.00
ZSPF EDITOR

SPF. the choice of most

maintrame programmers. 1§

now availlable for Z80 machines.

And it's pane! dnven so you

can customize it! $7500

business utility software
109 minna ste 423 san francisco ca 3410%

(415) 397-2000

The Computer Journal / Issue #19

EXTENDED CBIOS

by Everson J. Ecoff

Background

This project began with a desire to
add a very large CBIOS (Custom Basic
Input/Output System) driver to a CP/M
based system in order to make useof a
Selectric typewriter as a list device.
Because the Selectric has a minimal
hardware interface, it requires a long
(400 byte) software driver. It seemed
undesirable to make room for the
CBIOS driver by moving the CP/M
system down, as this would greatly
reduce the size of the user TPA (Tran-
sient Program Area). The approach
that seemed most feasible was to form
a two-piece CBIOS. One small module
would reside in the place of the usual
CBIOS and would be accessible to all
users. The second, larger module would
reside in some bankable area of
memory and would only be switched in
by the resident CBIOS when needed.

The first decision that had to be
made concerned the type of bank swit-
ching. Close examination of the system
revealed that the Digital Research
Computers 84K static memory board
allowed the S-100 bus phantom® line
(pin 87) to disable the lower 32K of
memory. This fact set the stage for the
approach that was finally used. Figure
1 displays the relationship of the
deselectable memory to the system
memory map. It became obvious after
some study that the idea was going to
require some refinement in order to be
useable. Figure 2 shows the next
required refinement in the implemen-
tation. Notice that the area of memory
that is allowed to be disabled is a por-
tion of the user TPA. The memory
locations below 100H that are assigned
for system use will not be disabled un-
der any circumstances. Only the user
TPA from 100H to 8000H will be
disabled by the exertion of the phan-
tom” line. The final requirement was to

BIOS F2eeH BIOS F20aH F2aoH
BDOS E400H BDOS E400H E400H
ccr DCodH ccr DCaaH DCodH
TFA TPA
GOOH fi’BOH EGGGH]
SYSTEM 160H SYSTEM 18@H SYSTEM 100H
USE USE USE
FIGURE 1. FIGURE 2. FIGURE 3.

provide a memory substitute that
would take the place of the disabled
portion of the TPA. Figure 3, which
shows the maximum size of the alter-
nate TPA, illustrates the desired final
requirements. The actual implemen-
tation only needs to utilize an alternate
TPA size that is sufficient to accom-
plish the desired enhancements. I
decided to use a 12K byte size in my
implementation.

Design Process

The previous paragraphs described
the design requirements from a concep-
tual point of view. Essentially, the
phantom® line will be used to enable an
alternate memory bank only when
requested by the memory management
software in the CBIOS. This alternate
memory segment will be addressed in
the range of 100H to 8000H. Figure 4 is
a block diagram that depicts the im-
plementation of this statement with
more detail. The diagram also shows

the required input and outputs. There
are many ways to implement the logic
required to perform the functions con-
tained within each biock. Figure 5is the
actual logic diagram used in this par-
ticular example.

Theory Of Operation

The memory portion of the board is
found in U1 through U6. 86116s were
chosen because of the ease of im-
plementation and their inter-
changeability with 2718 EPROMs. U7 is
a T4L.S138 used in a conventional
memory decoder/chip select circuit. U8
is the port decoder and it utilizes the
741.5682. This particular IC (integrated
circuit) was chosen because it contains
the internal pullup resistors on the DIP
switch inputs, thereby reducing the
number of parts on the board. U9 per-
forms the qualifier function and only
permits the phantom® line to operate in
the 100H to 8000H range. U12 is the
control logic that determines if the

data—3] CONTROL QUAL IFY

o

phantom/h

address —% PORT DECGDE

W
MEMORY bdata

v

address

FIGURE 4.

10

The Computer Journal / Issue #19 -

—©

611G DATA Bt
o Pv T =8DI g

Plyio=BDI L —
Pt =80T 2
Pyi3-8ory
Piajrg =802 4
Pinis=80rs
PinIG= BRE (,

alternate memory bank will be used in
place of the user TPA. U14 thru U18
are drivers used to power all the
devices on the board.

Construction

The materials shown on the parts list
are “off the shelf” components and can
be purchased from many different sup-

"REQUIRED PARTS LIST:

S19@ prototype board SUN 721
from SUNTRONICS CO.

Ul thru Ué HM&116-4 208 nsec

U7 74L5138

U8 74LS682

Ue? 7415688

U1@ 74LS10

Ull 74L5S04

U122 74LS74

Uil 7486

Ul4 thru U18 74L5244

N

pliers. The construction techniques are
not any more critical than those used in
other projects involving LSTTL logic.
There have been several articles in The
Computer Journal on techniques used
for prototyping, and this information
could be used to build the board. Figure
6is the parts layout that I used for this
project —it functioned quite satisfac-
torily from a construction point of view.
Procedure 1 gives the syntax

[T,

I

S

® T

<

£
TIITIITIL ™
CE §>

‘«

Pini7=80r7

-~

~
| S
<
®

necessary to test the completed project
using Digital Research's DDT (Dynamic
Debug Tool). The upper limit used in
the fill command should be set to the
size of your alternate TPA. The value
of 3000H corresponds to a 12K alter-
nate TPA. Port address 90H was used
to switch the TPAs in this example.

0oT CENTER>
A 9see <ENTER>
*s0e w1 a1 CEMTER> |
‘082 auT 99 CENTER > !
"wss NOP <ENTER>
v . <ENTER >
aIeer, 984 <ENTER>
F100, 3000, FF <ENTER
D108 CENTER> —

o

<ENTER>
D can be entered as aany tiees as necessary to check
your particuler configuration for all bits set.
F 100, 3000, 00 <ENTER>
Dise <ENTER>
] <ENTER>
D can be entered as sany tiaes as nacessary to check
your particular configuration for all bits reset. —

PROCEDURE | .

vl 1 U3 | VY

il

B] 9]] M P P |

-

G0

] i

Figure 6:

Y

The Computer Journal / Issue #19

1

*a

sw!“g!ling

RN LT SR TR LY S TTE Y RRANE Y

Software Implementation

The description that follows is
general in nature due to the many
variations that exist in the CBIOS por-
tions of CP/M system software. The fir-
st thing that has to be done is to deter-
mine what sections of the CBIOS have
to be available to all users. These por-
tions of the code will have to be main-
tained in the non-banked area of
memory that was formerly used to con-
tain the entire CBIOS. The portions of
code that are only used by the extended
CBIOS can be located in the banked
area of memory. Typically, the non-

banked area of memory will contain the
“jump vector table,” disk parameter
blocks, disk parameter tables, the move
data portion of disk read/write, and the
memory management code to switch
in/out of the banked memory. The
banked area of memory can contain the
system-specific drivers for all the I/O
devices. This is the place to harvest the
fruit of your labors in the implemen-
tation of this project. You can im-
plement keyboard translation, I/O
drivers for the reader/punch devices,
additional drivers for the user list
devices, full implementation of the I/O

byte and drivers for a hard disk con-
troller. You can do all of these things
and more while maintaining a very
large user TPA. Figure 7 is a listing
which includes the non banked code of
my CBIOS as implemented with this
concept. The non banked segment
begins with the BIOSOVL label. Each
jump vector will jump to a segment of
code that will arrange for a new tem-
porary stack, switch TPAs and call the
appropriate routine in the alternate
TPA. The WBRET label is used as a
return from the warm boot routine in-
stead of a normal return from a call in-

1]
$CODE THAT FOLLOWS IS NEW BI0S VECTORS WITH TPA SWITCHING

Figure 7: Listing
1
% MACROS FOR 280 INSTRUCTIONS
88PD MACRC ADDR
o8 OEDH, 73H %
o ADOR 81030
ENDM
LSPD MACRO ADDR | SCBOOT:
o8 GEDH, 7BH SBOOT 3
Doy sk
LDIR MACRC m-
e OEDH , 0904 SLIST:
ENDM SPUNCH
DIN2 MACRO ADOR2 SREADER
o8 10H SHOME |
o8 ADOR2-%-1 SSELDEK:
SSETTRI s
SPLR MACRO SSETSEC:
o8 oCOMH, FH SSETOMA:
ENDM BREAD
SLAR MACRO WRITE
o8 SCBM, 274 SLISTST:
SSECTIMI
] KK XX X XN N % X XX NEXXENXXNYXXXXXNXNXER XSCHOOT s
)
) ASED
ore 100H jORIOIN OF THIS PROBRAM XSWBOOT ¢
1]
] ¥ONOE N NN NN R KN NN ENENNENENENENEXNREXEX
: MBRET 1
START: X! H, START XSCONST 3
S ¢ D,8100M
i} 8,9900H
LDIR
L o CONT+8000H
CONT: VI a0
ouT APTPA
L1 H,0100M XSCONINI
i1 D,START
1 8,000H1
LDIR
5 ¢ H,Bl080VL
[5 ¢ D,9108
L 8,5F0H
LOIR XSCONOUT 1
w1 "0
ouT SAPT P
our RESETHD
P L4 CCPed
1
1
THIS AREA WILL CONTAIN THE BULK OF YOUR BIOS. THIS PORTION XSLISTs

OF THE BIOS WILL RESIDE IN THE BANKED R AREA

EQU

R DR U Ut SO R BEE U I

.
OF200M
X9CBOOT
XEPOOT
XSCONST
XSCONIN

X

X8 187
XIPUNCH
XSROR
NBHOME
XSSELDSXK
XSSETTRK
XSSETSEC
CSETDMA
XOREAD
XBaRITE
X 1STST
XSSECTIN

180 DIRECT TO ROM

”»,TOWITX
NEMTPA

”»,TOPITX

” . TDPSX

(8% 14

12

PLZ is the cure!

Introducing a native code PLZ compiler
for the 68000, featuring:

O Complete PLZ language. including structure
assignment and comparison

C Fully compatible with Ziiog 280, 28000 PLZ

(I idea! for embedded. ROM based systems

D Strongly typed

T Data types include signed and unsigned byte. word
and iongword

O All of the protection of Pascal, with the flexibility of C

O Inherent!y more portable than either Pascalor C

O Easy for Pascal or C programmers to learn

O Fully compatible with the CP/M-68K C library

Requires CP/M-68K QOther systems and CPU's supported soan

Package includes: All this for
68000 CompierCode generator the low
User Manuai introd uctory

Springer-Veriag "Report on the
Programming Language PL2/Svs Price of

One Year free updates

® AKCSystems

Ao $3 5/ Ny Resdents
inciuge B4 sales tax

(201)827-9104

The Computer Journal / Issue #19

e
*S,.VS'TEMS 20 Lammgton Drive, Succasunna NJ 07876

APROTEK 1000™ EPROM PROGRAMMER

N AN
I B]

- -

E' m only
$250.00

A SIMPLE, INEXPENSIVE SOLUTION TO PROGRAMMING EPROMS

The APROTEK 1000 can program S voit 25XX seres through 25€4 27XX
senes through 27256 and B8XX devices plus any CMQS versions of the abowe
types Inciuded with each programmer s 3 personality module of your chowce iothers
are only $10 00 ea when purchased witth APROTEK 10000 Later. you. may ‘e
quire future moduies at oniy $15 00 ea postage paid Avalabie personanty
modules PM2716 PM2732 FPM2732A PM2764 PM2764A- PM27128
PM27256 PM2532 PM2564 PMEBTE64 uncludes 68766, (Please specity
moadutes by these numbers)
APROTEK 1000 comes complete with a men. driven BASIC dnver programmer
hsting which aHows READ WRITE. COPY and VERIFY witk Checksum Easay
adapted for use with IBM. Apple Kaypro. and other microcomputers with a RS 232
port Aiso included 1s a menu dnven CPM assembly language driver hsting with Z 85
{DART, and BO8O 82511 | O port exampies (ntertace 1s a simple 3 wire RS 232C
with 3 female DB 25 connector A handshake character 1s sent by 1he programmer
after programming each byte The interface s switch seiectable at the tollowing
6 baud rates 300. 1.2k 2 4k, 4 8k. 9 6k anc 19 2k baud Data format for prograrm
ming s 'absolute code’’ (1e . 1t will program exactly what 1t 1s sent starting at
EPROM address 0i Other standard downloading formats are easily converted tc
absolute lobject) code
The APROTEK 1000 s truly uriversal. it comes standard at 117 VAC 5C 60 HZ
and may be internally jumpered for 220-240 VAC 50 60 AZ FCC venfication
{CLASS B! has been obtained tor the APROTEK 1000

APROTEK 1000 is covered by a 1 year parts and labor warranty.

FINALLY — A Simpia, | ive Sol: To Erasing EPROMS

APROTEK-200™ EPROM ERASER APROTEK-300™ only $60.00

Simply insert one or two EPROMS This eraser 1s idenucal to APROTEK
and switch ON In about 10 minutes, 200™ but has a built-in timer so that the
you switch OFF and are ready to ultraviolet lamp automatically turns off n
reprogram 10 minutes. eminating any nsk of overex

APROTEK-200™ only $45.00. posure damage to your EPROMS
on APROTEK-300™ only $60 00

p—
APROPOS TECHNOLOGY
1071-A Avenkia Acaso. Camarillo, CA 93010
CALL OUR TOLL FREE ORDER LINES TODAY:
1-{800) 962-5800 USA or 1-(800) 962-3800 CALIFORNIA
TECHNICAL INFORMATION: 1-(805) 482-3604
Add Shipping Per Item: $3.00Cont. U.S $6.00 CAN. Mexico, Hi, AK. UPS Blue

PERSONAL ROBOTICS EXCLUSIVELY
FACTORY AUTHORIZED DEALERS

HAVE YOU MEARD ABOUT SAVVY?
SAVVY s a revotutionary programming language for the Appie 11+ & ile and the
IBM PC 1t approaches artificial intelligence. Besides being a pertect language for
roDot control 1t can handie general applications programming Write or cati tor de
taed descriptive material

A FULL-LINE ROBOT SUPPLIER
1 No dissatisted customers
2 Catl it you have questions —we know ouf products
3. Unlimited help when you need 1t

List SALE st SALE
MOovIT ANDROBOT

Screwdrnver Kits—No Soider—FUN Siave to your comautey

Avoider 4495 4015 TOPO It 1595 00 1485 00
Circular . 6795 63.75 Accessones CALL
Line Tracer 3898 B75 TOPO it moves and taiks very weli It uses
Medusa 2795 2625 LOGO-iike commands and & good fex!
Memoconcrawier 7495 7018 to-speecr system

Monkey 24 .95 2385

Mr. Bootsman 3095 29.25 A8 ROBOT

Peppy 2495 2285 Downioad from your computer

Piper Mouse 44.95 40 13 ABSX 2295.00

Sound Skipper 24.95 2365 Accessornes CALL
Turn Backer 39.95 3875

Program it in Tiny BASIC or use 8 SAVVY

We have s30!d hundreds of these items to Tiny BASIC “compiier” RB5X has

They work 8s they shouid and they last
HARVARD ASSOC.

Turtie Tot 299.00 275 00

Excellent for simple educationat apph

cations Qur customers have been very

bumpers and sonar. voice with sound ef
fects. arm. easy to-use programming ian
guage. additional senses are avalabdie
It is good quahity Our two demos have
seen hard use and haven 't broken down

satisted yet'

ROBOT SHOP ARCTEC
Robot Bug 12995 12200 GEMINI 6995 00 6506 00
5; ;:g % ;gg g A marve! Three CPUs vo:ce recognmiion

goal-anented navigation on-board disk

Simpie and dumb. but iots of potential drive detachable eyboard. and more

for customizing and expansion
- TECHNICAL INFO—WE CAN HELP CALL)
mahe/ Shipping Over 3200 Add 4% $200 And Under Add 5% E
COEMP oqn with Order Deduct 3% N M Orders Add 5% Saies Tax
Allow 4 Weeks For Delivery

RIO GRANDE ROBOTICS |

A Division of Mobdite inteliigence Corporation

1595 W. Picacho #28, Las Cruces, N.M. 88005, Tel. (505) 524-9480

“...received my moneys worth with just one
issue...”

‘ —J. Trenbick
“...always stop to read CTM. even though

most other magazines | receive (and write for)

only get cursory exarmnation...
—Fred Blechman, K6UGT

S1500 for 1 year
Mexico, Canada $25.00
Foreign . $35.00(tand) - $55.00(air)
(U S. tunds only)
Permanent (U.S. Subscription) $100.00
Sample Copy . .83.50

CHET LAMBERT W4WDR
1704 Sam Drive » Birmingham. AL 35235
(205) 854-0271

The Computer Journal / Issue #19

XSPUNCH

XSRDR 1

XSHOME ;

XSSELDSK:

XSSETTRK ¢

X8SETSEC:

XSREAD

XSIRITE

XSLISTST:

XSSECTRN;

OLDTPA:

O18KROWR ¢
1

MVEDMA)

B B

DPES,

1333

FPEY

EQU

struction. The move data portion of the

read/write routines is accomplished at

RET labels DISKRDWR and MVEDMA.
88PD sTAKeMw

Lx1 8P, TOPETK

caLL o

One label is for floppy disk operations
and the other label is used for hard disk

LePD sTaKaa operations.
ssro gt -er g It can be ‘.iifficult to debug this t)fpe
CALL NEWTPA of program implementation, and it is

therefore desirable to establish some

RET technique that will minimize the har-

dship to the system integrator. The

CALL woME technique used was not a new one, but

it proved to be very effective —the time

RET . P :
e/l g os B spent <:'le‘buggmg this implementation
CALL NEWTPR was minimal. The approach used was to

have the system boot utilizing the un-

RET modified CBIOS and then to execute a

COM file that would set up the two-
piece BIOS. The first choice to be made
was the selection of an assembler. M80
had all the characteristics that were

CALL NEWTPa necessary, and its MACRO capability

and phase/dephase features were the

N sraxasw two deciding factors. The MACRO
Lxt P, TEMPSTK facility allowed me to use the Z80 in-

struction set within the 8080 source
code for the CBIOS. The phase/dephase

RET
il gsices feature allowed the assembly of code at
CALL NDMTPA one location with the requirement that

CALL WRITE
LSPO STAKSAV
RET

SSPD STAKSAY
1 8P, TEMPSTK
NOATPA

CALL LISTST
cAaLL OoLDTPA
LSPD STAKSAW

this code will be executed at some other
address. Figure 8 depicts the layout for
the source code used to generate a
COM file that will transform the un-
modified BIOS into the two-piece BIOS.

RET Block move 1 moves the entire object

$3PD STAKSAV
1 SP, TEMPSTK
CALL NEWTPA

caLL SECTRAN
caLL oLDTPA
LSPD STAKSAY

RET

PUSH Lg o

L1 L)
ouT MAPTPA
POP L]

RET

PUSH Lg

"t A0
ouT SAPTPA
POP [}

RET

CaLL NEWNTP,

CALL oLoTPA
LDIR

CALL NENTPA
RET

FIXED DISK PARAMETER BLOCK TABLES FOR FOUR
DRIVE SYSTEM

1 1BASE OF DISK PAMMETER S8 OCKS

DISK PARAMETER BLOCK FOR DRIVE NO. 00

TRANS ,0000H i TRANSLATE TABLE

000K, 00004 1SCRATCH AREA
DIRSUF ,DFBS (OIR BUFF, PARM BLOCK
Cove ,aLVe JCHECK, ALLOC VECTORS

DISK PARAMETER BLOCK FOR DRIVE NO. 61!

TRANS , 0008H)TRANSLATE TABLE
QB00H, 00004 1SCRATCH AREA

DIRBUF ,DPBe $1OIR BUFF, PARM BLOCK
CW1,ALV! JCHECK, ALLOC VECTORS

i
i

]
OPE2:

code into the region of memory above

13

8000H. This region does not switch and
is therefore a good place from which to
maneuver. The prograrr “hen jumps up
to the moved code and switches in the
alternate TPA. Block move 2 then
places the banked BIOS into the alter-
nate TPA. The TPA is now switched to
normal position. Block move 3 will
overlay the normal BIOS with the non-
banked portion of the two-piece BIOS.
Block move 3 transfers the code that
utilized the phase/dephase feature. The
code it moved was assembled at an ad-
dress which is different from the ad-
dress that will be used for execution.
The only thing that remains at this
point is to jump to CCP(Console Com-
mand Processor) and begin executing
the two-piece BIOS.

Conclusions

The extended BIOS concept is not
mutually exclusive with the public
domain CP/M enhancements such as
ZCPR3. This concept can be used to
augment ZCPR3 and provide for a
larger TPA than is otherwise available.
Specifically, the SYSIOP portion of
ZCPR3 can be implemented directly in
the banked portion of the BIOS.

The potential for this enhancement
can only be realized if the microcom-
puting community shares the various
ways of making this idea more produc-
tive. B

DISK PARMETER BLOCK FOR DRIVE NO. 02

O TRANS , 8000H ITRANSLATE TABLE

o 0080H, 00001 1SCRATCH AREA

20a) DIRSUF ,DPBY iOIR BUFF, PaRrt BLOCK
O CWV2,ALV2 1CHECK, ALLOC VECTORS

DI1SK PARMMETER BLOCK FOR DRIVE NO. 83

D TRANS , 0000H 1 TRANSLATE TABLE

D 0000+, 0800H 1SCAATCH AREA

O DIRBUF ,DPBe iOIR BUFF, PARM BLOCK
ot cv3, ALV JCHECK, ALLOC VECTORS

XLT4,9000M

1SK PARMIETER BLOCK FOR HARD DISK

000K, 0000H
DIRBUF ,DFRe

19ECTORS 1,2,3,4
|SECTORS S,4,7,0
ISECTORS 9,10,11,12
JSECTORS 12,14,13,16
19ECTORS 17,10,19,29
1SECTORS 21,22,23,24
JSECTORS 23,24

1018K PARWETER BLOCK FOR STNBLE DENSITY SINGLE SIDED DIsks
WITH BLOCK SI1ZE BLKSZ = (024 SYTES / BLOCK

oe 1,7,13,19
o8 28,8,11,17
o8 23,3,9,18
o8 21,2,8,14
08 20,26,6,12
o8 18,24,4,18
o8 16,22

(1] [

oM 2¢

oe 3

08 H

o8 .

O 242

o «

oe 192

oe .

o™ 16

om 2

1SECTORS PER TRACK

SILOCK SMIFT FACTOR

1 IROCX MASK

PMULL MASK

1018 SI1ZE-1 (MD. OF BLOCXS/DISK-1)

0. OF DIRECTORY ENTRIES MAX.-|
IDIRECTORY ALOCATION SPACE MASK, | ST sYTE
I1IOWE AS ABOVE, 2 ND BYTE

10€0K S12E ~ (44 DIR DNTRIES DIV BY 4
WD, OF SYSTDN (NOT ACCESSARLE) TRACKS

fcontinued on page 23/

14

The Computer Journal / Issue #19

A $500 SUPERBRAIN COMPUTER

by Bill Kibler

w ith prices of computers coming
down, there are many inexpensive used
units on the market. My local used
computer store had a unit that was not
moving, and looked too good to pass up.
It was a Superbrain QD by Intertec
Data Systems. I remembered the name
from working at Micropro, where they
configured Wordstar for it. The
programmers liked some things but had
complaints about others—rather
typical, I thought. Because my fellow
workers didn't give it 8 completely
pegative report, I felt a low bid might
get me a good second computer. This
unit had cost over $2000 new and was
on sale for $795, marked down from
$995. I said “$500 or forget it,” and
_found myself walking out with it.

* AlthoughIam using the Superbrain
to write this article, there are times
that I feel I spent too much money. Asl
explain more about the unit you will see
why this is a good but limited unit. One
of the reasons for the low price was the
lack of documentation. The owner did
supply a bound manual after the pur-

- chase, which only proved my choice of
pricing.

Intertec Support?

Remembering that Intertec adver-
tised in BYTE, I looked up their phone
pumber and gave them a call. They do
not support the product. The company
has turned support over to three
separate companies located on the East
Coast. This situation is recent, and only
one place talked like they actually were
supporting the unit. The other two
were contract servicing people trying
to cut out a national position for them-
selves. Actually, I feel that Intertec
just dumped it on them with a “take it
or else.”

So what kind of support can you get?
Not much. Manuals go for $50 to $75

each, which is a little high for copies of
old CP/M manuals. The schematics also
go for $50 to $100 a set and contain
drawings for several versions of the
Superbrain. One feature of the Super-
brain was to have been a single 5-100
slot. The factory never made it work,
but one of the support places has it for
$500. A parallel interface card to hook
Superbrain units together in a net
system is also available. I feel that this
net system is why the company stayed
alive for so long.

Since I needed more information on
the unit and did not want to pay for
schematics, I tried several local places.
One place here in California handles
these units and gave me copies of the
schematics for free. From them 1 found
out that the unit is used mostly by the
government. The net ability was one of
the first on the market, and so gover-
nments bought them in large quan-

tities. Intertec is also trying to build an
IBM type unit, and probably decided
that supporting its old units was taking
away from the development of new
products. If this had been their only
failure, I might have a better feeling
towards them.

BIOS Mainia

This is where the fun starts. Several
of my needs were for 8 inch com-
patibility and Centronics printer
operation. The unit hastwo 5inch
drives of the old double sided 35 track
variety. Running their 3.1 version of
BIOS gives 380K with 512 bytes per

sector, which is not bad. Two serial por-

ts, which are easily changed in a con-
figuration program, talk to printers or
modems. The unit has two Z-80s and
64K of memory, with memory mapped
video and a built in keyboard. It is
possible to see that some imagination

i*******l******{***!**'l**I‘i***l*i*{’i*’}{i**l*i*’}

MEMORY MAP

F80@ TO FFFF
Fo@@ TO F7FF
Fagd TO FSFF
F38@ TO F3FF
F3@@ TO F37F
F280 TO F2FF
EF208 TO F27F
EFO@ TO EF1IF
Eg@a TO EEFF
EBAB TO EE7F
EADA TO EBA7
E7Cé6 TO EADS3
E713 TO E7CS
€483 TO E712
E4G@ TO EAB2

STACKS

(EQUIVALENT SYSTEM S1ZE OF S7K)

CRT MEMORY MAP
p1SK HOST BUFFER
NOTHING

KEYBOARD BUFFER

DIRECTORY BUFFER

NOTHING

CONF IGURATION DATA

WARM START ROUTINES

« NOTHING # (COPY OF BDOS)
DISK HANDLING ROUTINES
CRT OUTPUT ROUTINES

CRT INPUT ROUTINES
INTERRUPTS AND INITIALIZATION
JUuMP TABLES AND BUFFERS

E293
DE@@
DEoo
cego
2100
2000

{Q*’{I‘Q’*l’***’i{*{’}}{{lill‘

T0
T0
T0
TO
T0
70

E3FF
E292
DDFF
CFFF
C7FF
GOFF

* NOTHING # (BIOS FREE SPACE)
BIOS "QD31RIOS.ASM"

cp/M BDOS

cp/m CCP

TPA (~58K)

BASE PAGE @, CPM JUMPS

’ii‘*il”*”l’l’”‘ll‘ﬁl**{l

The Computer Journal / Issue #19

went into the hardware design of the
unit, but not so for the software.

I printed out the listing of the BIOS
and found references to other jump
tables. After DDT-ing around in the
system area of memory for awhile, I
decided that only one third of the
listing was provided. What the other
two thirds of the BIOS and the BOOT
PROM contained was a mystery. A long
distance call to Intertec gave the
fateful answer “that information is not
available to anybody,” and that in-
cludes the support companies as well.
So out came the disassembler, and
several days later I had the reason why.

I have never seen such a mess of code
in my life. Either the programmer left
it that way to keep others out, or
somebody was in a big hurry. It appears
that the last programmers patched
everything. The jumps out of the BIOS
go to jump tables that jump to the ac-
tual operations. It is possible that dif-
ferent people were patching different
areas and so they decided that one
place would have the jumps to their in-
dividually written routines. Whatever
the reasoning, it is almost impossible to
change the system. There is some space
to lengthen the BIOS, but any major
changes will require decoding other
routines first. I might aiso add that past
code has been left in the system, such
as parts of the BDOS. Routines that
were later not used are still there too.

The use of ZSID and Disassembler
will be necessary to see where real code
is and is not. Make sure your jumps go
to routines, as well as routines actually
being used (the disk routine has unused
but valid code). If time permits, I will
rewrite the BIOS to include all their
routines, or better ones, and put it in
the public domain. Because theirs is
such a mess, and contains bad and
bogus code, a new version will be at
least 2K less in length.

Modifications

A later version of the software tur-
ned the drives off after use; mine does
not. The parallel chip that provides in-
ternal commands has several extra
outputs. My first choice killed the
system, but the second one worked fine.
The routines in the listing show where
to patch the BIOS to get the drives to
turn off. This is not the best way to do
it, but without access to the interrupt

15

Initial Hookup
245 PPIA 7 .
8255 Bit 10H .
Pu: %0 < : \J"\ 2 11" 0 MTRON
e — =
! I
[-t Remove xn
hg I jump to + BV
! +5V
Add jumpers ‘v
8 Second Delay Circuit
“sv vsv 4~sv
Z45 PPIA 4‘ *I §~330‘
8266 Bit 10 Hex Reset + 6V =
; - 2 »
Fin 40 8> Trigger Threshold
Control Discharge Most any PNP AF
3 7 transistor will do.
Ground Output
T =
]
Remove ><
jumpto + BV :
v
Figlll‘e 1: 317 +

routines (clock functions), a proper or
normal modification is not possible.]
am running this mod right now and
have not found any problems yet.

The 8 second delay timer is
necessary to keep the drives from
eyeling during format or multiple disk
copying. I tried everything to avoid
using this circuit, since I have a real
dislike of adding transistors to logic
circuits. The diagram in Figure 1
however, is the only one that would do
the job for me with the least amount of

chips and hardware. Also shown is the
circuit without the timer, which will
work, but it causes the drives to cycle
too much. You might try the simple
jumpers first and then add the 8 second
timer. I put everthing on one chip
socket and then glued it to the main
board for a rather quick and simpie in-
stallation.

Disk Formats
While using a friend's Kaypro, I tried
to make disks on it for the Superbrain.

RRRRBBEREFFRRERRERERER R BB AR RRRB SRR AR RRRRBAEERRB SRR

3
§ SID AND ZSID PATCHES DONE WITH DDT

to 8030hex, rst &

] S1D.COM

o68F 2 MVl A,C3

28F 4 STA ©8638h jchange

88F7 LXI h,08686h

#8FA SHLD #039h jchange to @831ihex
L

]

4 ZS1D.COM

106FD Mvl A,C3

19FF STA @638 ichange to 603Shex, rst &
1102 LXI H,0E846

1185 SHILD 8939 jchange to 8831hex

O"'QQQ’."!Q.C.Q..O'll.ll.Q..Q'.Q..QQ.Q.O.Q...Q.

Three known support organizations:
A) Kramer Systems International

(301) 933-8300
B) Molenair Corporation
(800) 328-8944

C) Nine Associates
{703) 273-1803

16

Although formats were given for the

Superbrain, they were not compatible

with my system. The directory is on the

wrong track, which has made it non-

compatible so far. Getting data to and

from the unit requires Modem 7. The

PIP program has been patched for

" machine to machine transfers. Unfor-
tunately, PIP cannot transfer files
larger than 16K in this manner. You
will find, however, that MBOOT can be
transferred, reassembled, and then
"used to load Modem 7 files. There was

- another program without any
documentation that I believe was for
file transferring. The SEND and RECV
programs never worked for me, while
Modem 7 works just fine, especially at
9600 Baud. Watch out for the han-
dshaking on the serial ports; their main
port is not standard, and an adapter
with 2 and 3 reversed but all others
straight through may be needed.

One major problem is the IN-
TERRUPT system. Superbrain uses
Mode 1 interrupts, which duplicate the
8080’s interrupt structure. These in-
terrupts use the first 40Hex addresses
for jumps when interrupted. My first
encounter with this was trying to run
SID or ZSID, the enhanced versions of
DDT. They use RST 7 (restart 7) which
jumps to 38Hex whenever it appears in

. the program. So if you try using SID, it
will lock the system up. SID and ZSID
can be patched, but when I used RST §,
some erratic operation was noted.
Kaypro's have the same structure, so
look for information in Kaypro
magazines for help in this area. I have
listed the patches for both programs to

“help you get started, but I guarantee
nothing!

Concmsion

This system has many drawbacks,
and with time I will get a new BIOS
that I can modify and reassemble. I see
this, and the small TPA, as the main
drawbacks. The few changes have made
the motors turn off, and the returntoa
quiet-running system is a pleasure. (I
hated the fan noise of my Z-100 too!)
The unit's size is compact — not as com-
pact as some portables, but about the
same weight. I have found myself
relying on this system a lot, and it is
beginning to look like it may be a per-
manent part of my computing
operation.

The Computer Journal / Issue #19

SOF TWARE CHANGES FOR MOTOR ON/OFF

INSERT ROUTINES CALLS TO "DRON" AND “DROFF"

H
HOME : ..
MOV B,A
call dron s$turn motor on
CALL DISK

call drof¢ $turn motor off
ORA A

WRIT1: call dron sturn motor on
CALL DISK
call drof+¢ 5
OrRA A

>
READHST: CALL PARM

MVI B,t
call dron s$turn motor on
CALL DISK
call droff sturn motor off
ORA A

H

$ ADD THESE TWO ROUTINES

b

dron: push psw
in ppia sget data port 68h

H set 4,a $turn on bits
db gcbh,fa7h 3z80 opcodes
ocut ppia $turn on motors
PoOp psw
ret

H

droff: push psw
in ppia $get data port é68h

H res 4,a §turn off bits
db dcbh,fe7h 3z80 opcodes
out ppia jturn it off
POpP pPSwW
ret

3

My final conclusion on this unit would
be to buy. By that I mean that the unit
at or near $500 is an excellent purchase
if your demands are for a straight-
forward system and you can stand the
limited TPA. The best use of the unit is
probably for wordprocessing, especially
with its memory mapped CRT. The
screen does not have true descenders,
but the update of the screen is so fast
that writing is quite a pleasure.

The Computer Journal / Issue #19

17

BASE

A Serles on How To Design and Write Your Own Database

By E.G. Brooner

Wrapping It All Up

In earlier installments, BASE was
presented in sections with some ex-
planation of how the program was con-
ceived and put together. The last ar-
ticle in the series attempted to answer
some of the questions that have come
up as the program was developed and
presented. In this issue we'll present an
overview of the project with some
comments that may help the potential
database writer.

Memory and Storage Space

First of all, those of us who program
realize that there is no do-all program
of any genre, and that if there were
such an animal it would be imprac-
tically large and unwieldy. I still
remember trying to write useable
programs with 16K of memory and one
single sided single density disk drive. I
won't even mention what it was like
before that. Consequently, we always
have to be aware of the limits of
memory and storage space. These con-
siderations are perhaps the ultimate
constraint on any such project.

The program as presented so far oc-
cupies 18K of memory if compiled with
CB-80. It is slightly smalier if compiled
with C-BAS but then you have to load,
in addition, the C-RUN utility —so
there is no gain there. Some arrays are
generated and they, too, take up space.
If we arbitrarily limit the program to
handling 1000 records, the arrays can
consume (depending on the size of the
fields being stored in them) 20K or
more. At this point we are approaching
the limit of a 48K CP/M system. Con-
sequently, some of the features were
made as separate programs that have
to be chained by the main program. As
shown so far, these are FILESORT
(which sorts any file on any field) and
PRTFORM which is a way of
generating special report formats. It
should be emphasized that neither of
these has yet been included in this
series of articles. They can easily be
omitted, because all necessary finding
and printing can be done, by BASE,
from the raw data files.

Two additional, separate programs
have been generated for my own use;
one of these enables the matching of
two key fields for a more selective
search, and the other generates a file
for making binary searches. It is my in-
tention to combine all of these even-
tually, keeping in mind that this will
strain my own 56K system to the limit.

““One of the definitions
of a database is it lets
you have some control
without writing new
code each time.”

What Is It Good For?

Many people ask about databases (as
we used to about microcomputers)
“What do you intend to do withit?" I
suppose ‘store and retrieve data’ is an
inadequate answer. As was the case
with micros themselves, you don’t
know until you have one. Most
programs deal with data in some man-
ner. One of the definitions of a database
is that it lets you have some control
over the process without writing new
code each time your requirement
changes. First of all, you can design the
way the data will be stored; more im-
portantly, you specify how it will be
retrieved.

My main use for this kind of package
is the retrieval of subsets of data. In the
case of names, the subset might be
everyone with the last name of Smith.
‘Smith’ would be the search key. Along
with the Smiths would come all of their
addresses, phone numbers, and
whatever else I had associated with
them. With numerical data it might be
all entries above 100, or all between 50
and 100. In the case of snowfall records
it could be an identification of the days
on which snowfall exceeded a certain
minimum limit.

Data is generally retrieved in one of
two ways: as a subset (even a subset of
one record meeting some ‘key’ criteria,

and by an absolutely unique key. For
unique key retrieval there can be one
and only one answer. ‘Smith’ will not
do. It must be J.P. Smith, for examplie,
or even the Smith who lives in Podunk,
North Dakota.

How The Searches Can Be Used

Any subset requires inspection of the
entire file, hence sequential reading of
an un-sorted file is about as good a way
as any. In the case of BASE, the subset
can be defined 1) as equal to a particular
key (which can be only part of the key
as SM for Smith), 2) by the greater than
or less than comparison, and 3) by all
greater than one key and less than
another.

The two best ways to find a unique
key are hashing and binary searching.
Hashing is slightly faster but less
flexible —the separate program that
was mentioned earlier, therefore, deals
with binary searching. The methods
just mentioned handle all of my present
requirements; indeed, I could do
without the binary search except that it
is so impressive and was so much fun to
write. We mentioned, also, matching
two keys within one record. This has
proven useful even though it, too, was
implemented as a separate program.
For most purposes you can search for a
subset and isolate the one you want by
inspection of the very few listings that
result.

Assume that you are a collector of
both modern and antique guns, and
want to create a database to serve as an
inventory of your collection. The use of
subsets and other database features
would justify putting such an inventory
on a database even though it involved
only 50 or 100 pieces. The items of in-
terest might be: make, model, serial
number, source, cost, caliber, and
several comment lines.

If one of these happened to be a Win-
chester rifle, model 1886, 4440, it might
be part of the following subsets: Win-
chester, rifle, and 44-40. You might
have other Winchester guns, rifles of
other makes, and (among the antiques)
8 44-40 pistol. That particular item

18

would be part of each subset. You

might also want to match two fields and

list part of your collection as ‘Win-

chester — Rifle(s).’

Perhaps the only unique charac-

teristic — one that could identify it

- specifically in isolation from all other
items — would be the serial number.
You would probably never search this
particular file by a comment field, but
you might, depending on how you coded
your comments. One or more comment
fields is a good idea in any database to

“ allow for later additions of information
you hadn't anticipated. The possible
structure might be designed as shown
in Figure 1.

Keep in mind that you could have had
up to 12 fields in this record, that each
field is named by you and its length is
specified when the base is first
designed and created. This set of recor-
ds need bear no relation to any other
data collections you may have, and all
can be run from the same program.

Similarly, a name-and-address file
structure might be designed as follows:

1 F. Name 20 char
3 Addr1 20 char
4 Addr2 20 Char
5 ZIP 9 char
8 Phone 12 char
7 Business 15 char
8 Holiday 5 char
9 Comment 1 20 char
10 Comment 2 10 char

A file such as this could be used for
addressing, for phoning, for printing
labels, or whatever. It is not necessary
to use every field for every purpose.
Too, you would have designed the file
yourself (perhaps in a radically dif-

ferent way) to suit your own purpose.

Some Future Improvements

Some database applications can
benefit from mathematical
manipulation. We have not allowed for
this in BASE; in fact, even numerical
fields are stored as strings. If you have
this need it will be necessary to find the
field, then convert it (for example,
AVAL (AS$) before using it arith-
metically. Numbers can still be com-
pared, and sorted, while in string form.
We plan to incorporate this feature into
the report generator, PRTFORM.

We occasionally want to delete an
existing record and reclaim the space it
occupies. A simple way to do thisisto
first locate the record, then modify it
by placing DELETE in the first field.
When adding another record, then, first

i

The Computer Journal / Issue #19

Yield # oand name space allowed contents
Field 1 Mai e (24 char) Winchester
z Mode? 11¢ char) 1886
= Type (13 char Rifle
4 Caliber {64 char A4-43

i) Lerral 4 (1S chear) 1 234SWW

&4 Value {6 chear) 70

7 Unimm2nt (2¢0 char; = ——=————————
Figure 1

search for a DELETE and then use the
‘modify’ option to enter the new record
over the old one.

Finally, we are in process of com-
bining the present separate programs
and the hoped-for improvements, all in
one program, as a finished product.
This version will be published if enough
interest is expressed by readers and
those field-testing the package.

Another desirable change involves
the length of each field. The CREATE
mocule (as shown) arbitrarily limits
these to 20 characters; it has proven to
be a bit short for some purposes. This
limit can be changed easily at line 2200
but must be done before creating any

files. There should, of course, be some
limit to keep file sizes reasonable.

And, Miscellaneous Comments
The concatenation of file names by
the program, and its generation of so
many sub-files for each database you
create, results in a great many direc-
tory entries. Many CP/M 80 systems
are limited to 64 entries and this num-
ber can be approached quite rapidly.
Should the user get near this number of
files it would be wise to simply start
another diskette for future data collec-
tions. In my own experience I have
usually run out of directory space
before filling the disk with data. W

[“BmoN"

Software In-Circuit Emulator

Links your CP/M computer with any Z80
based computer or controller that you may
develop. Allthatis needed is BMON, 8K of
ROM space, and a handshakeable bi-
directable I/ O port (either RS232 or Paral-
lel).

Features:

—Full program deveiopment debugger
with Breakpoints, Snaps, Stops. &
Waits.

—Single Step program execution.

—Download file from CP/M system to de-
velopment RAM.

—Upload Memory from development
RAM to CP/M disk.

—Two versions: Master BMON runs in
your CP/ M system, Slave BMON runs
in your target system.

Note: Requires Microsoft's M80 & L80
assembler & linker to setup Slave
BMON.

8" SSSD Disk containing Master
BMON, Slave BMON, CONSOL,
BMONIO, CONSOLIO, and Users
Manual $49.95

Shipped Via prepaid UPS
—No COD or PO. Box—
Check or Money Order to:

Barnes Research & Development
750 W. Ventura St.
Altadena, CA 91101
(818) 794-1244

CPsM s a trademark of Digital Research Inc

SOURCES WANTED

We need sources for the
following items which are being
used in projects for future articles
If you know where individuals can
order these items at a reasonable
price in small quantities, share
the information with others.

Thermocouples
Strain gages
Flow meters
Pressure sensors

Drop a line to The Computer
Journal with your suggestions on
these, or to add other items to
the list.

MB0 & (B0 are trademarks of Microsc* inc

The Computer Journal / Issue #19

19

L ast month we introduced the
TONE CONTROL, a device which
monitors the telephone’s dual tone
keypad frequencies. In that article we
reviewed some touch tone telephone
basics and discussed the TONE CON-
TROL'’s circuit operation. This month
we will conclude the discussion of the
TONE CONTROL by explaining how to
use, construct, and tune the TONE
CONTROL circuit.

Using the Tone Control

In order to allow the TONE CON-
TROL to monitor the phone line as
discussed last month, incoming calls
must be answered automatically.
Although there are a number of circuits
for accomplishing this task, the circuit
in Figure 1 will do the job nicely. The

T pwane
faedy

=1 TN e

o—iH
INPUT

Interfacing Tips and Troubles
A Column by Neil Bungard

advantage of this circuit is that the
computer has control of hanging up the
telephone. With this capability you can
program the computer to consider a
unique touch tone key specifically for
that purpose. One of the disadvantages
of this circuit is that the computer has
no way of knowing when the telephone
is off the hook. Consequently, if
someone calls and does not instruct the
computer (via the touch tone keypad) to
hang up, the telephone may stay off the
hook indefinitely. This problem can be
eliminated with a software routine
which periodically checks the line to
determine if it is being used.

The computer must generate one in-
put timing signal and one output con-
trol signal for the TONE CONTROL's
operation. The input timing signal is
required to obtain the keypress infor-
mation from the TONE CONTROL.
This timing signal can also be used to
determine the condition of the keypress
valid flag by polling the tristate device
{(see Figure 2). When polling to detect
this flag, you should input the contents
of the octal tristate device ap-

—ORESET" U~

-

TRISTATE
oo OE| 'pevice
-
TRISTATE QOUTPUT TO MICROPROCESSOR

DATA BUS

ENABLE PULSE

t

Figure 2: Tone Control Block Diagram.

—C “KEYPRESS VAILD" FLAG

proximately every 100 milliseconds.
The keypress valid flag is present on
bit 7 of the data byte and is input each
time the 74LS373 is polled. After the
74L.8373 is polled and determined to be
a logic 0, a short time delay for filtering
purposes is executed (about 15msec),
then data bit 7 is rechecked. If data bit
T is alogic 1, no keypress is available. If
data bit 7 is a logic 0, a valid keypress is
available, and that keypress infor-
mation is contained in bits 1 through 6.
Refer to Figure 3 for a flow diagram
representing the software required to
utilize this method.

> To Coatrol
’ B:Irwuu-

*tcc X oW we Ve W~

z

&

-4

g
L

Figure 3: Polling Flowchart

20

An alternative method for deter-
mining a valid keypress is to connect
the keypress valid flag to the interrupt
input of the computer. When the
keypress valid flag goes to a logic 0, the
copmputer is alerted that a valid
keypress may be awaiting input. When
interrupted, the computer will go to an

- interrupt subroutine where the validity
of the keypress will be determined. If
the keypress is determined to be valid,
the keypress information will then be

input to the computer. Figure 4 shows a
L

Main Routine

BN

s e
orec To Mus

|

Interrupt Routine

Recura
Texon Rerpreee

Figure 4: Interrupt Flowchart

Telephone Data Bus Interface
Disit D:DsDs Da D3 0, 0. Do

Hexidecimal

L
flow diagram of the program required

to utilize the interrupt method. Figure
5 shows the bit pattern generated for
the corresponding touch tone keys, and
also shows the hexadecimal represen-
tation of each key.

The output control signal required by
the TONE CONTROL is used to reset
the row and column flip flops. Resetting
the flip flops informs the tone control
that the current keypress has been in-
put by the computer. Figure 6 shows a
timing diagram of the signals required
to detect a keypress, input the
keypress, and reset the keypress valid
flag.

Constructing and Tuning the
TONE CONTROL

The TONE CONTROL circuit can
either be wire wrapped or placedona
printed circuit board. Foil patterns for
the TONE CONTROL circuit are
shown in Figure 7. A parts placement
diagram and schematic to aid in con-

o
o
o

OO T == T« T S P Gy

37
7C
76
57
79
73
58
6D
67
4F
30
1F

s
i | Row 1
Column1
Row 2

Column 2
Row 3
Column 3
Row 4

Keypress
Vaild

O 0 ~NO W B WD =

i
= I = T = T

O OO0 OO0 O0O OO O oo
[N o T S -)
[T S on JE S N o R L = N
—_ OO O = s e
N T ~ B = I
L O kO e O s = O =

Figure 5:
Row and column bit pattern

struction are shown in Figures 8 and 9
respectively. Be careful to observe
proper polarity when placing the
capacitors and the diodes on the PC
board. Also, be sure that pin 1 on all ICs

OATA 8US X Do-D7 wvALID X

Kraor]
vesey L_I’_——

TRISTATE ENASLE
ot \
‘l) 15 my deley

NPUYT DATA
%11y DO-D7

Cweca KP
FLAG 07

Figure 6: Timing diagram of
detect keypress, input
keypress, and reset ‘KP’ flag.

is in the correct position. Before using
this device, each PLL (Phase Locked
Loop) must be trimmed to a separate
row or column frequency. In tuning a
PLL, the values of four timing com-
ponents should be considered. These
components are R1, C1, C2, and C3 (see

Figure 10). FO is the desired PLL detec-

tion frequency. First a value for C1 was
chosen. C1's limits can be between 0.01
microfarad and 1.0 microfarad.

The Computer Journal / Issue 219

Calculate R1:

R1=1.1+(f0xCl)
Calculate C2:

C2=C1x1070 +(f0 x 0.12
Calculate C3:

C3=2.0xC2

Al calculations for tuning the PLLs on

the TONE CONTROL were done

assuming C1 equal to 0.1 microfarad.

The other timing components were

then calculated and, except for R1, the

nearest standard values were used. For

R1,a 10 to 20 turn potentiometer was -
used to ensure a fine tuning capability.
R1on each PLL was initially set to its
calculated value, then trimmed in a
manner described below. Once a value
for R1 is determined, a wire wound
resistor can be built and used in its
place. Tuning the 7 PLLs on the TONE
CONTROL is accomplished as
described below.

Solder all components in place on the
PC board. Place the TONE CONTROL _
in parallel with your telephone, and
connect + 5 volts and ground to the
device. Connect the OE input of the oc-
tal tristate device to ground. This -
enables the tristate device so that
keypress information is always
available on the data bus interface of
the TONE CONTROL. Lift the
receiver; press the digit 1 on the touch
tone keypad and hold it down. The
PLLs affected by the digit 1 are the
row 1 and column 1 PLLs. Referring to
the schematic drawing in Figure 9, and
the interface connector in Figure 11,
D1, D4, and D7 on the data bus inter-
face will be a logic 0 when the row 1 and
column 1 PLLs are tuned properly (D7
is the keypress valid flag and is a logic 0
for all keypresses). With digit 1
depressed, the remaining data bits
should be a logic 1 as indicated in
Figure 5. If the bit pattern is not as in-
dicated, adjust the trimmer on the row
1 PLL (see Figure 8) until D4 is a logic
0. Now adjust the trimmer on the
column 1 PLL until D1 is a logic 0. This -
sets the row 1 and column 1 PLLs. The
rest of the row and column PLLs are
adjusted in the same manner. When all
the rows and columns have been ad-
justed, the TONE CONTROL is ready
to use. The schematic diagram,
provided in Figure 9 should aid in
troubleshooting unanticipated
problems.

In conclusion, you can connect the
TONE CONTROL to your computer, -
install an appropriate answering cir-

The Computer Journal/ Issue #19

21

)

£

o
4

Figure 7: Foil patterns for
tone control circuit.

\Q‘x;_%_lﬁ?ﬁ TEnMIN IV

~
N
- z 3 2
* + T r o+ + o+
o ~ 5“ | »—,n‘ -_n‘ lﬁ' ~_»
|f_‘r~ o=t nlole 1578 ~ o0 I57F 2o [FRE
> - = |3£ Sk & 5™ Pws g i~ P
bods - [} le
= F-4 = = |
v 58 * =g 4154 - Sy
3 z £ i
-+ ’ < * o+ e + 41 - -
o = bkl GrE bl lersl e
EF |BSY FIZF BRr B EP ESY B
- |y - ~
rz] ¥ o © " ® ro
l(,;‘! = < - = =z
X x|
-3
!-1g| o 4 7 -
~ B T
° 3< $3 A
:o > -]
NOTES: ¥ indicates pin 1
1C4-1C7 are LM567
Figure 8: Parts placement.

by *

(ond soend ou sn X X o ¥ |

OQC/11H 1T

THE AUTONOMOUS ROBOT

IS NOW PRICED FOR
EVERYONE!

Buy each subassembly as a kit
or factory assembled and create
your own GEMIN! Robot.

Or, for
ity convenience,
‘ . L start with
'(‘s . GEMINEX
\ our starter
i kit, and
expand to
GEMINI
later with cevncp—m
upgrade kits. e
W
o
— T
Either way, v
Buy a piece of tomorrow
TODAY!

CALL or WRITE For Our FREE
Brochure.

9104 Rec Branch Roac
Cotumb.a Mary:and 21045
(301)730-1237
Telex 87-781

29 The Computer Journal/ Issue #19
*R1-R7 10 turn 20K pots.
N *R8-R14 10K ' W resistors.
Lm *D1-D7 1n916 diodes.
R 1 *C1-C70.1uF Tantalum caps.
Row
o 4
Gy JE J_‘
Teoil | To
2
a|LC3
Lm -
ne 50 L_l
Row i {20
2 L3 12 ade
y s
= D
= CERd s (b B
Tedl 8 M4 o,
[23 3
13 14
—— 04
3] ILch \ E—pos
ns Se7 L 1]
12
Row B _po7
3
Ol JT]d L———>‘ ot
Teog | T
1 Lt ¥ ¢oLumn]
3 4873 — ke
“‘f,?""" ce s[TET
WPGT AF & 57 . % Jr [P L ¢
u US| gve ’?'_l —4 k—:'sﬁ
Row D% et il :
o M P"t}
(<1 11
Ten[| Jent2¥
o
¥ GND
Figure 9: Schematic drawing.
45V ticle, I received literature on one of
. . T those devices (the SSI 204), and saw it
o—il‘ 3 oK A Composest Side ot used in a home management design. I
inour 4o | - will be obtaining one of these chips soon
v, é: L7 ourer 0 01 o2 0 00 ms 007 and will be glad to report my findings
v 00000000 toyou. B
C'I‘ C,:: 7‘=]C, L ODOOOOOO‘
T [- AN
GNo | MICROCOMPUTERS
Figure 10: Phase Locked Loo oD Rew b Coiums s AND
P A e INTERFACES
OF 1’:’.::’0“.:: Enable

cuit, and have finger tip control of your
computer from any touch tone
telephone, without the need for a
modem or a terminal. An example of an
application where circuits like the
TONE CONTROL are being used is in
home management systems. These
systems control the environmental
conditions within the home as well as
controlling appliances, security

systems, and lighting. In fact, with a lit-

tle imagination, dozens of applications
for telephone control can be created. If
you have a unique idea for a telephone
control application, drop us a line here
at The Computer Journal; we are
anxious to hear what you have to say.

Figure 11: Interface Connector

Author's Note

When I originally developed the
TONE CONTROL circuit a few years
ago, there were no single chip devices
that could reliably detect the dual tone
telephone frequencies. I researched a
few devices which claimed to detect the
dual tone frequencies, but they turned
out to be either unreliable or
unavailable, so I was forced to develop
the TONE CONTROL circuit. Recently,
however, a new generation of dual tone
frequency detectors have been made
available. In fact, while writing this ar-

automated
. irrigation

For catalog call

JOHN BELL ENGINEERING. INC.
400 OXFORD WAY
BELMONT, CA 94002
(415) 592-8411

The Computer Journal / Issue #19 23

{CBIOS continued from page 13/

5 % END OF FIXED TABLES ¥
OPB1: $DISK PARAMETER BLOCK FOR DOUBLE DEN., SINGLE 81DED DISKS] * X
f MITH BLOCK SI2E BLKSZ = 2048 BYTES / BLOCK ' EX RN EEE NN E N NN EESEREENENEXNNNAN
— i i
om 52 1SECTORS PER TRACK STAKSAV os 2 18TACK SALUAGE LOC
P 4 IBLOCK SHIFT FACTOR TEWSTK EQU OF7FFH jJUST BELOW THE ROM
o8 15 1BLOCK MASK)
D8 1 JEXTENT MASK SEGOAT £Qu . 1BEGINING OF DATA AREA
[l 242 IDISK 812E-1 (NO, OF BLOCKS/DISK-1) DIRBUF: o8 12e IDIRECTORY ACCESS BUFFER
[127 §MO. OF DIRECTORY ENTRIES MAX.-1
08 192 IDIRECTORY ALOCATION SPACE MASK, | ST BYTE]
- o8 [} 19AME AS ABOVE, 2 ND BYTE ALVS] 31 $ALLOCATION VECTOR 0
Dw 32 JCHECK 81Z2E cove: DS 32 §CHECK VECTOR ®
2] 2 INO. OF SYSTEM (NOT ACCESSABLE) TRACKS]
- ; ALV os L]l JALLOCATION VECTOR |
oPB2: 1DISK PARAMETER BLOCK FOR SINGLE DEN., DOUBLE SIDED DISKS coviy o8 32 §CHECK VECTOR 1
i WITH BLOCK S12F BLKSZ = 2948 BYTES / BLOCK i
) ALV2: 08 31 JALLOCATION VECTOR 2
- o 52 I1SECTORS PER TRACK cov2s [24] a2z jCHECK VECTOR 2
oe 4 1BLOCK SHIFY FACTOR '
. oe 13 §BLOCK MASK 1}
os 1 1EXTENT MASK ALV DS 3t $ALLOCATION VECTOR 3
oW 242 JDISK SIZE~1 (NO. OF BLOCKS/DISK-1) Cv3: oS 32 JCHECK VECTOR 3
oW 127 §NO. OF DIRECTORY ENTRIES MAX,-1 '
oe 192 JDIRECTORY ALOCATION SPACE MASK, 1| ST BYTE ALV4) 08 326
—] [} 1SAME AS ABOVE, 2 ND BYTE Cova os]
o 32 JCHECK S1ZE BUFFER1: o8 128
. oW 2 INO. OF SYSTEM (NOT ACCESSABLE) TRACKS ENODAT Eou g $END OF DATA AREA
3 oATSI1Z EQU $-BEDOAT §S1ZE OF DATA AREA
oPBI: $DISK PARAMETER BLOCK FOR DOUBLE DEN., DOUBLE SIDED DISKS - DEPHASE
] WITH BLOCK SIZE BLKSZ = 4896 BYTES / BLOCK L2 Y START
— oW 194 §SECTORS PER TRACK
o8 s JBLOCK SHIFT FACTOR
oe 1) 18LOCK MABK
oe 3 JEXTENT MASK
ow 242 §DISK S12E-1 (NO. OF BLOCKS/D1SK-1)
) 127 INO. OF DIRECTORY ENTRIES MAX.-1 block move 1
o8 128 $OIRECTORY ALOCATION SPACE MASK, 1 ST BYTE switch TPA (bring i1n new)
— : ;2 lc"mcxﬂ:’mzz » 2 ND BYTE block move 2
' switch TPA (bring back old)
.] 2 INO. OF SYSTEM (NOT ACCESSABLE) TRACKS block move 3
OPB41 (%) 68 banked bios
[+] - .phase F206H (beginning of my bios)
24 3 unbanked-bios
— o8 1 .dephase
ow 2600
: ::.1 FIGURE 8.
] [
o .
[1
— 1}
1 XOE K K M X R XX XN R X X K NN N E XN EKENXENENYX

am HEROY/APPLE® HANDSHAKE

— | ROBI. . .an affordable interface for
: the robotics experimenter. Easy

hook-up (8 screws on HERO ®, 1 s '99.00!

_ , * card slot on Apple ® Il or lle) and a

low price are combined with extra
capabilities in the ROBI computer/ -8
robot interface.

ROBI SPECIFICATIONS
® 4 programmable bidirectional. 8-dit ports

T for intertace and expansion
: : . ® programmabie control over handshaking
— . * ©® access 1o signais through tie point blocks

on robat’s Experimental Board . .
L S ® §-foo! cable lor intertace hmited remote 'nformaﬂon Serulces
. operation
T ® user-fnendlysoftware quickiy transters files
belween computer and robol. stores and
T retrioves 1165 to and 1rom disk 26180 Edelweiss Circle
— ! — v ® not copy protected Software is provided in Evergreen, CO 80439
; oo (303) 6706137

® iiberally commaented source code included

APPLE * s a trademark of Appie Computer
HERO " is a trademark of Heath Eiectronics

The Computer Journal / Issue #19

Interface Breadboard

Group Technology has announced
their BG-Board Interface Breadboard
for the IBM-PC and its compatibles, and
for the Commodore 64 and VIC-20 com-
puters. The BG-Board provides safe ac-
cess to the data, control, and address
buses of the microcomputer, allowing
the user to construct interfaces for con-
trolling and monitoring home applian-
ces, analytical instruments, tem-
perature control systems, security
systems, voice synthesizers, anda
variety of real-worl applications.

Individualized interface cards (called
CableCards) orient and condition
signals to permit the BG-Board to be
used with the most popular microcom-
puters. CableCards are available for
the IBM-PC and its compatibies, The
Commodore 64, the VIC-20, TRS-80
Models I, I1, ITI, and 4, and the Apple II
Oe. Users are not locked into one brand
of computer because the board can be
used with a wide variety of micros by
simply changing an inexpensive inter-
face card.
" The BG-Board, which is buffered to
protect the microcomputer in the event
that wiring errors occur, provides up to
eight decoded address outputs in either
the device addressing or memory ad-
dressing models. Up to 256 input (I/0)
devices may be addressed using BASIC
software. A built-in logic probe permits
logic levels and pulse edges to be detec-
ted.
For the IBM-PC, either accumulator
1/0 or memory-mapped 1/O can be used
to address devices. Jumper options on
the CableCard permit selection of ap-
propiate blocks for addressing devices,
accessing the interrupt request, and
constructing an interrupt acknowledge.

For the Commodore 64 and VIC-20,
only memory-mapped 1/O can be used to
address devices. More information
can be obtained from Group
Technology, Ltd., PO Box 87, Route 1
Box 83, Check, VA 24072, phone 703-
651-3153.

Stepper Motor Driver

Cyberpak is offering the HS-2, a
single card stepper motor controller
capable of driving two stepper motors,

New Products

which interfaces to a personal com-
puter or control circuit. The HS-2
driver interfaces to any 8-bit parallel
TTL port, and interfaces to stepper
motors (up to 2 amps/phase) used in
education, robotics, and machine con-
trol applications.

They claim that the HS-2 has per-
formance advantages because of the
bipolar chopper drive method used.
Bipolar motors can deliver a 30% in-
crease in torque over unipolar motors
with the same power, and the chopper
mode drivers which regulate current
through the coils of the motors yield a
much higher maximum step rate than
can be achieved by controllers using
L/R methods. The HS-2 allows the user
to set the current for each motor in-
dependently.

The HS-2 board size is 5.0 x 7.4 in-
ches, operates from 12 to 46 VDC, and
full or half-step plus a power down
mode can be selected via the computer.
It is available from stock at $109 for the
single motor version or $149 for the
dual motor version. For more infor-
mation contact Cyberpak at PO Box 38,
Brookfield, IL 60513 phone (312)387-
0802

PROMAL for the Apple and IBM

SMA has announced the availability
of PROgrammer’s Micro Application
Language (PROMAL), a new high-level,
structured programming language
similar to C and Pascal. It is currently
available for the Commodore 64 and
128, the Apple IIe (with 80 column card
and PRODOS), and the Apple Ilc. They
expect it to be available in August 1985
for the IBM-PC, PCjr., PC/XT, PC/AT
and all MS-DOS compatible machines.

They state that PROMAL was
designed to meet the objectives of sim-
plicity, power, and speed; and that
PROMAL's fast one-pas compiler and
efficient run-time environment permits
applications to be writtenina high-
level language which previously had to
be written in assembler for performan-
ce reasons.

It consists of the Executive
(operating system) which provides file,
memory and program management,
and 1/O redirection; a full-2creen cursor

driven Editor, and a Library of machine
language subroutines which support
the run-time environment with op-
timized routines for file I/O, string han-
dling, formatted output, cursor control
and data conversion. At the source
level, the language will be compatible
across all target machines.

The Developer’s Version which in-
cludes an unlimited run-time
distribution license is $99.94, and the
End-User Version is $49.95. More in-
formation can be obtained from Jen-
nifer L. Conn at Systems Management
Associates, PO Box 20025, Raleigh, NC
27619 phone (919) 787-7703.

Laboratory Data Acquisition Catalog
for Applell

Interactive Microware has available
a new 64 page catalog describing its
line of data acquisition hardware and
analysis software for Apple II
microcomputers.

Included are the general purpose
ADALAB® data acquisition interface
card and hardware accessories; data
acquisition software; application sof-
tware for gas, liquid, and gel per-
meation chromatography, temperature
monitoring, and also for mulit-channel,
multi-purpose data logging and process
control; software for graphics plotting,
drafting, and design.

Contact Kay Whiteside at Interac-
tive Microware, PO Box 139, State
College, PA 16804-0139 phone (814) 238-
8294.

C Sereen Management Utility
CompuCraft has announced cVIEW

_ 2.11, a screen management tool for sof-

tware developers writing in C. cVIEW
allows the developer to modify his for-
ms without having to change the code
behind them, in fields are defined as
they are placed on the screen, type
specification of the input fields
provides automatic testing and rejec-
tion of incorrect user entries,
minimum/maximum range limits may
be specified for numeric fields, user
written edit routines may be applied to
any field, and all of the special keys can
be defined by the programmer for each
form.

&>

The Computer Journal / Issue #19

¢VIEW runs on the IBM-PC or com-
patible, and can be used with the Com-
puter Innovations, Mark Williams,
Microsoft or Lattice C compilers. The
¢VIEW screen package which contains
the editor used to create and modify
forms, online help for each level of
operation, the runtime library required
for interfacing to applications
programs, and programmers reference
manual is $245, and a demo disk is
available for $25 which is credited to
the purchase of cVIEW. Call or write
Jerry Januzzi at CompuCraft Corp.,
42101 Mound Road, Sterling Heights,
MI 48078 phone (313) 731-2780.

Hero Robot Macros

Bersearch Information Services has
developed a software package for
programming the Heath-Zenith Hero-1
Robot with an Apple II. The package
allows the user to program with easily
remembered mnemonics and base-10
numbers in a BASIC format. The Robi
interface is used to transfer finished
programs from the Apple to Hero.

Tom Bernard, at Bersearch Infor-
mation, has written Hero Macros for
the S-C Software 6800 Cross Assem-
bler. The Hero Macros allow the user to
program Heath's Robot Interpreter
Language with easily remembered
mnemonics, for example the line 1130
PMVWRIM GRIP,OPEN,60,FAST
instructs Hero to open his gripper 60
units at fast speed. As in BASIC, line
numbers are used to enter lines, and
the cross assembler includes auto line
numbering to make programming

25

easier. The programmer uses labels to
target branch points and data ad-
dresses; the assembler calculates the
actual addresses from the labels.

The Hero Macros come with 30 pages
of documentation, and the Cross
Assembler and Robi Interface are also
well documented. Maximum motor
positions (in base-10 and hex.) are given,
along with each command's exact syn-
tax. The Hero Macros disk includes
ready to run sample programs to
illustrate programming technique.
Customer support telephone numbers
are included.

The Cross Assembler with Hero
Macros sells for $100.00; the Robi Inter-
face sells for $199.00. Both as a package
sell for $279.00. To order, or for more
information, contact Tom Bernard at
Bersearch Information Services, 26160
Edelweiss Circle, Evergreen, CO 80439
phone (303) 670-6137.

Classified

The Computer Journal will carry Classified Ads. The rate is $.25 per word. All Classified
Ads must be paid in advance, and will be published in the next available issue. No checking
copies or proofs are supplied, so please type your ad or print legibly.

KEYBOARDS FOR COMPUTER BUILDERS. Fuli
ASCII, numeric pad, UC/Ic, CAPS-LOCK, REPEAT,
SELF-TEST! Brand new, hundreds sold to builders
of Apples, Xerox 820s, Big Boards, etc. Parallel TTL
output, strobe. 5 volts/100 ma. Custom case
avaifable. Keyboard $35. Documentation (21
pgs.)/cable pkg. $5. Spare CPU/ROM $4. UPS in-
cluded. Detailed specs on request. Electrovalue in-
dustrial Inc., Box 376-CJ, Morris Plains, NJ 07950.
(201)-267-1117.

Voice Processor for the KAYPRO Computer.
Unlimited speech contains all software. Call or write
Busch Computer, PO Box 412, West Haven, CT
06516. Phone (203)484-0320.

$-100 68008 CPU BOARD. Detailed description in
issue 16 of The Computer Journal. A&T $260. Kit
$210, Bare Board $65. Prices include shipping. IN-
TELLICOMP, INC., 292 Lambourne Ave.. Wor-
thington, OH 43085, Phone (614)846-0216 atter 6
p.m.

$-100 Bus IEEE-488 Interface Card with cable,
manuals, and software for North Star Horizon.
Purchased new From Pickles and Trout in 1979 and
used once. $100. Cail Phil Wells a1 (406) 755-1323
days or (406) 257-5326 evenings.

Morrow Decision | S-100 system with MPZ-80 CPU,
DJ/DMA tioppy disk controlier, 256K static ram.
Wonderbus 1/0 on mother board, Disk Jockey Hard
Disk (HDCA) Controller, 801 floppy drive, 10MB
hard disk, CP/M, Micronix Multiuser system, un-
configured MP/MII, dBase Il, Wordstar, Accoun-
ting Plus. Excellent condition. $3500, some trades
considered. TCJ, 190 Suilivan Crossroad, Columbia

.Falls, MT 53912 Phone (406)257-9119.

Book Sale— These books are offered at this price
while the supply lasts.
Zilog Z80-CPU Technical Manual, $1.50
The Programmer’s CP/M Handbook

by Andy Johnson-Laird, $18.66
Real Time Programming—Neglected Topics

by Caxton C. Foster, $8.46
CBASIC Users Guide

by Osborne, Eubanks, and McNiff, $15.26
Introduction to FORTH

by Ken Knecht, $9.31
FORTH Programming

by Leo J. Scanlon, $14.41
Interfacing and Scientitic Data Communications and
Experiments

by Peter R. Rony, $6.76.
These prices are postpaid in the U.S. only. TCJ,
190 Sullivan Crossroad, Columbia Falls, MT 59912,

Corvus 10MB Hard Disk for the Apple !l plus,
$888.00: Apple 11 Second Disk Drive, $199.00:
Appie 111 SOS Device Driver Writer's Guide $19.95:
BPI Accounting for Apple 11! {Requires Hard Disk)
$99.00: Apple Writer 1.1, 16 Sector, $8.88: Apple
DOS User's Manuai (i, Il pius, lle), $8.88: Apple
DOS Programmer's Manual (11, 1 plus. lle), $6.88:
KAYPRO-Home Accountant by Continental, $49.00°
Soroc 1G 130 Terminal, $399.00. Al pius shipping.
The Computer Place. 36 2nd Street East, Kalispell,
M7 59901, Phone (406)755-1323.

The Securtty Disk. Protected vs unprotected. At
last, the best of both worlds. Here is sotware
designed to protect your private files. plus allow you
to analyze and unlock your other other **Copy-
Protected’’ disks, then change them to standard
0OS 3.3 format. Simple **Password'" protection to
“*Cryptology " A disk packed with secrets, tips.
and other goodies. Not locked-up. Completely REM-
arked. Machine Source Codes included. Supports
Apple Il 1l Plus, Ile, and lic. To order send $24.95
CHECK/MOto B.M.E. Enterprises, Box 191-J. Kila,
MT 59920.

The Computer Journal / Issue #19

Multitasking and Windows With CP/M-80 -
A Review of MTBASIC

by Art Carlson

d

Have you ever wished that your com-
puter could do two or three things at
the same time? We often feel this need

" when programming measurement or
control applications, and while large
systems usually have this ability (it's
called muititasking) it has not been
readily available on eight bit CP/M
systems. When I saw Softaid’s ad for
MTBASIC which theyclaimed could do
multitasking and windows under CP/M-
80 or PC-DOS, I contacted them fora
review copy. I received an 8" SSSD
CP/M disk to run on my Morrow S-100
system with a Z-80 CPU and their 99
page 82 x 11 manual.

MTBASIC is similar to other
BASIC’s with many familiar comman-
ds, but Softaid has made no attempt to
make it compatible with the others
because MTBASIC has many special
features. MTBASIC is an interactive
compiler which functions like an inter-
preter. The program is entered with
line numbers similar to other basics,
but when you enter the direct command
RUN, it compiles the program into ob-
ject code and then executes the
program. After debugging, the com-
piled code can be written to a disk file
for execution as a standard stand-alone
.COM file, and there is no license fee for
the object code. You just have to credit
Softaid in the documentation of any
compiled programs sold or given to
others. All .COM files produced by
DISK COMPILE are ROMable.

My primary interest in MTBASIC is
the ability to run several activities con-
currently in measurement and control
applications, and while Softaid states
that the multitasking feature adds a
degree of realism to games I'll leave
that feature for others to investigate.
We realize, of course, that a single
microprocessor can not really run more
than one task at a time, but with con-
current processing the compiler swit-
ches the processor from one task to
another so rapidly that it appears that
they are all running at the same time.

A secondary feature of MTBASIC is
the ahility to provide pop up windows
wader program control while working

with a character oriented terminal (I'm
using a TeleVideo model 950). MT-
BASIC can be run as received if you do
not use windowing, but you may have
to use the supplied INSTALL.BAS
program to configure your terminal to
support windowing. The CP/M version
is supplied pre-installed for the ADM-
3A (identical to Kaypro) and ran on my
TeleVideo 950 with no alteration.

Interrupts for Multitasking

MTBASIC can use either software or
hardware interrupts to schedule the
tasks for multitasking. The command
TICS ON before the program is com-
piled will generate software tics in the
program, and this is the easiest method
to use. Hardware interrupts are more
difficult to use because the program-
mer must write an interrupt service
routine to process the hardware in-
terrupts. Software interrupts come at a
rate proportional to the amount of time
it takes to execute each individual
statement within the program, which
varies considerably. Therefore precise
timing is not possible with software in-
terrupts. Hardware interrupts, while
more complex because you must write
the service routine, can be designed to
generate a very precise frequency and
torun a task at a specific time.

MTBASIC also supports device in-
terrupts, which are useful because the
program does not have to continuously
poll a particular device to determine if
data is ready. A disk service routine
could be written in MTBASIC by
dedicating a task to servicing the
device interrupt.

A multitasking program consists of
two or more tasks which run asyn-
chronously with respect to each other.
Unless the programmer uses
semaphores to provide some sort of
synchronization of execution, it is dif-
ficult to tell when any one task will be
executing. Tasks are not like
subroutines. A subroutine only runs
when it is called, and terminates when
its return instruction is executed. A
task, on the other hand, may be running
at any time, as computer time is shared

between execution of the tasks. A par-
ticular task generally does not run to
completion before the computer starts
running another task. The computer
just suspends execution of one task and
goes to another. Eventually it picks up
with the suspended task where it left
off and resumes execution. Although _
each task is executed in a “choppy”

fashion, to the user it appears as if all

tasks are executing smoothly because

the computer is so fast.

Scheduling Tasks
The main MTBASIC program is
known as the Lead Task and can consist
of the entire program (you won't always
be using multi-tasking). The lead
program can start one or more other
tasks, and these tasks can start tasks.
The tasks are started with the RUN
statement (not to be confused with the
direct command of the same name) -
which includes the task number and the
schedule interval as its arguments. If
the specified task is terminated with
the EXIT statement, it is automatically -
restarted after the number of tics
specified in the schedule interval. The
schedule interval must be in the range
of 1to 32,767 tics, but the number can
be increased to any value by setting a
flag which counts the number of times
the task has been executed and allows _
the task to continue executing only ifa
certain number of counts have been
detected. The program listing in Figure
1ia a simple example showing the use
of the RUN and Task statements.

Windowing

MTBASIC allows you to provide
windows with a few simple commands,
but you can ignore this feature and
program in 8 normal nun-windowing
mode if you do not need windows. A
window is a subsection of the CRT
screen and any window can be any size
up to full screen. Whenever a program -
selects a window and sends output to it,
all output will go to that window. A
window's borders are barriers to the
PRINT and FPRINT statements, and
inhibit these statements from writing

The Computer Journal / Issue #19

anywhere but within the currently
selected window.

Programming With MTBASIC

The fact that a language can provide
multi-tasking and windows is only part
of the story. Equally important is how
well the language handles the rest of
the programming tasks. I feel comfor-
table with MTBASIC, and appreciate
the fact that you can pick up the phone
and talk to someone who understands
your questions.

MTBASIC source programs are en-
tered with line numbers, and each line
is checked for errors when you hit the
return at the end of the line. And there
are meaningful error messages (28 of
them), no more SYNTAX ERROR, but
rather something like QUOTE OR
PARENTHSIS MISMATCH, or
STATEMENT FORMED POORLY.
There are also run-time messages such
as UNMATCHED FOR..NEXT PAIR
and ILLEGAL PRINT FORMAT.
These error messages are fully ex-
plained in the manual.

After typing the source program, you
enter the direct command RUN, and
the code is compiled and then run. And

27

Direct Commands
BYE Exits MTBASIC and returns to CP/M
COMPILE Compiles a program without running it
CONSOLE Directs output to console (disables PRINTER)
DISK COMPILE Compiles a program to a .COM file
END Marks the end of a source program file
ERROR Turns on runtime error checking (default is ON)
GO Starts an already compiled program running
LIST Displays the program code
LOAD Reads a source file from disk
NEW Erases the current program
NOERR Turns off runtime error checking (default is ON)
PRINTER Sends output to the printer (disables CONSOLE)
RUN Compiles and runs a program
SAVE Saves a program’s source code to disk
TICS Turns software interrupts on or off (default is OFF)
VARIABLE Sets RAM addresses (CP/M only)

Figure 2:

the compiler is fast! A sample 145 line
program was compiled and running less
than two seconds after I hit the return.
No more exiting to the system, calling a
separate compiler, and then using a
LOAD program. Just enter RUN, hit
the return, and the program is compiled
and running before you can reach for
your cup of coffee. You can save your
source code to disk, and you can com-

pile to disk (which results in a stand-
alone .COM file). You will also have to
compile to disk if the program is too
large for both the source and the com-
piled code to fit in memory at the same
time. In fact, the DISK COMPILE
command has been modified to allow
very large source files to be compiled to
disk from a source file on the disk.

The LOAD command brings a file in-

FREE SOFTWARE

RENT FROM THE PUBLIC DOMAIN!

User Group Software isn't copyrighted, so there are no fees to
pay! 1000's of CP/M and IBM software programs in .COM and
source code to copy yourself! Games, business, utiiities! All
FREE!

CP/M USERS GROUP LIBRARY
Volumes 1-92, 48 disks rental—$45
SiG/M USERS GROUP LIBRARY
Volumes 1-80, 46 disks rental—$45
Volumes 91-176, 44 disks rental—$50
SPECIAL! Rent ail SIG/M volumes for $90

K.U.G. (Charlottesville) 25 Volumes—$25

IBM PC-SIG (PC-DOS) LIBRARY
Volumes 1-200, 5% " disks $200

174 FORMATS AVAILABLE! SPECIFY.

Public Domain User Group Catalog Disk $5 pp. (CP/M only)
(payment In advance, please). Rental Is for 7 days after receipt,
3 days grace to return. Use credit card, no disk deposit.
Shipping, handling & insurance—$7.50 per library.
(819) 914-0925 information,(8-5)
(619) 727-1016 anytime order machine
Have your credit card ready| VISA, MasterCard, Am. Exp.

Public Domain Software Center
1533 Avohill Dr.
Vista, CA 92083

S R ST, J——

—

oy
SINCLE BOARD CONPUTER
Sy

FEATUR

16 bit Motorola 68000 CPU operating at 5 MHz or 10 MHz, 20K of on
board fast static RAM, 16K bytes of on board EPROM space. 7

autovectored interrupts, 3 memory/device expansion buses, 2 serial
communication ports (RS$-232 C). 16 bit bidirectional parallel port,
5-16 bit counter/timers with vectored interrupt and time of the day
clock. On board monitor allows to download and debug programs
generated on APPLE 11, TRS-80 and CP/M using our M68000 Cross
Assembler.

PRICE:

M68K Bare board with documentation
M68MON monitor & mapping PROM's
MD512 Memory/Disk Contr. (Bare Board)
M68KE Enclosure with P.S_ and card cage....
M68000 Cross Assembler
M68K Documentation only

Shipping & handling (Domestic)....

(foreign)....$ 20.00
CALIFORNIA RESIDENTS ADD 6 X TAX

P.0. BOX 16115, IRVINE, CA 92713

(714) 854-8545

Educational
Micresomputer
Systems

28

10 INTEGER A: REM DECLARE INTEGER VARIABLE
20 REAL X: REM DECLARE REAL VARIABLE

30 A=0:X=0: REMINITIALIZE VARIABLES
40RUN1,100: REM RUN TASK 1EVERY 100 TICS

50 RUN 2,500: REM RUN TASK 2 EVERY 500 TICS

60 GOTO 60: REM WAIT HERE TILL TIME FOR TASK

70 TASK 1:

REM CODE FOR TASK 1 FOLLOWS

100 TASK 2: REM CODE FOR TASK 2FOLLOWS

END

CALL
CANCEL
CLOSE
CURSOR
DATA
DELETE
ERASE
EXIT
FILE
FOR/NEXT
FPRINT
GOSUB
GO TO

IF

INPUT
INPUTS
INTEGER
INTMODE
INTON
INTOFF
JVECTOR
OPEN
ouT
POKE
PRINT

RANDOMIZE

READ
REAL
REM
RESTORE
RETURN
RUN

SEEK
STRING
TASK
TRACE ON
TRACE OFF
VECTOR
WAIT
WCLEAR
WFRAME
WINDOW
WSAVE
WSELECT
WUPDATE

Figure 1:

Statements

Starts an assembly language subroutine
Stops a task

Closes a file

Positions the cursor in a window
Defines a group of constants

deletes a file

Clears the entire CRT

Terminates a tesk

Selects an I/0 device

Loop control

Fromatted print

Subroutine call

Program branch

Decision

Enter data from i/O device

Enter data, including commas
Defines integer variables

Defines interrupt mode (CP/M only)
Turn interrupts on

Turns interrupts off

Defines interrupt vector (CP/M only)
Opens a file

Output to an I/O port

Modifies a memory location

Outputs data

Seeds the random number generator
Gets data from a DATA statement
Defines floating point variables
Comment, also denoted by *!”
Selects a DATA statement

Return from a subroutine

Starts a task going

Random file I/0 record position
Defines string variables

Defines the start of a task

Prints line numbers as they are executed
Disables TRACE ON

Links to interrupt vector

Delays a task’s execution

Erases a window

Draws an outline around a window
Defines a window

Saves the contents of 8 window
Selects a window

restores a saved window

Seperates multiple statementson a line

Figure 3:

The Computer Journal / Issue #19

to the compiler from disk, and the
program is checked for syntax errors as
the program is read. The files are stan-
dard ASCII, and this is fortunate,
because MTBASIC does not inculde an
editor. Programs can be created offline
with your favorite text editor (use the
non-document mode with WordStar),
and then checked for errorsasit is
loaded. LOAD does not erase programs
already in memory, and you can merge
two or more programs which will be
mixed as a function of the line numbers.
This is a great way to incorporate stan-
dard routines as long as you are careful
about the line numbers, and I under-
stand that a renumbering utility is in-
cluded on the current disks. To avoid
unwanted merging of

programs — believe me it produces
some startling results when you don't
expect it — just enter the command
NEW before LOADing the next
program.

Variables must be declared (IN-
TEGER, REAL, or STRING} at the
beginning of the program before any
executable code is encountered, and
should be initialized. Earlier versions
did not support string arrays, but this
was added in January of this year. IN-
TEGER variables are stored using a
sixteen bit two's complement represen-
tation and can range from + 32,767 to
- 82,767. Positive values which exceed
32,767 will appear as negative numbers.
Real values are four byte (32 bit) IEEE
compatible single precision real num-
bers. MTBASIC does not support BCD
or 64 bit double precision numbers.
Constants with a decimal point are
assumed to be real numbers, and
hexadecimal constants can be used with
a leading dollar sign. The compiler
provides automatic mixed mode ex-
pression evaluation, but you should be
aware of the possible loss of precision
because all components are converted
to real numbers if any component is a
real number.

MTBASIC is a completely recursive
language, that is, a routine can call it-
self. Common applications for recursion
are mathematical functions such as
computation of factorials, processing
linked lists, and binary trees. There is a
limit on how deeply the program can
call itself which depends on the nature
of the programs. They recommend that
you limit recursive programs to a depth
of ten to prevent the stack from over-
flowing, although programs with a dep-
th of fifty have run successfully. Recur-

The Computer Journal / Issue #19

sive programs should not be combined
with multitasking programs, since both
recursion and multitasking use large
amounts of the stack.

Listings of the the Direct Commands,
Statements, and Functions are shown
inFigures 2, 3, and 4, and there are
several interesting features which I
have not had time to try. The argumen-
ts for the trig functions are in degrees,
which I prefer to use for real world ap-
plications, instead of in radians as with
AppleSoft and MBASIC. The CALL
statement to begin execution of a
machine language subroutine has been
improved so that arguments may be
passed to the routine in the form of the
address and mode of the variable. The
ADR function returns the address of a
variable so that arguments can be
passed to assembly language
subroutines, or an assembly language
routine may be POKEd into an array
whose address has been determined. A
number of new statements and fun-
ctions have been added to perform ran-
dom I/O in a fashion very similar to that
used by Microsoft's MBASIC. The ran-
dom files are written in binary, soa
text editor cannot be used to examine
them.

Conclusions

MTBASIC would be a bargain at
$49.95 even if the compiler was not in-
cluded. It's worth the price just to try
the multitasking and windows even if
you don’t intend to use them, but I'm
sure that you will use them once you've
tried them. Softaid is improving and
updating the program frequently, and
updates are only $20 plus the original
disk! There is no run-time fee for the
compiled programs you produce (just

ACOS
ADR
ASC
ASIN
ATAN
BAND
BOR
BXOR
CHRS$
CONCATS
CcOos
ERR
ERR$
GET
INP
KEY
LEN
LOG
MIDS$
PEEK
RND
SIN
SQR
STR$
TAN
VAL

Functions

Arccosine

Returns variable address

Returns ASCII value

Arcsine

Arctangent

Bitwise AND

Bitwise OR

Bitwise exclusive OR

Returns string equivalent

Concatenates two strings

Cosine

Returns error numbers

Returns error messages

Returns one character from the surrent file
Reads input expression from input port
Returns one ASCII value from console
Returns the length of a string

Natural log (base e)

Returns part of a string

Returns the contents of 2 memory address
Generates random numbers

Sine

Square root

Converts numbers to strings (converse of VAL)
Tangent

Converts string to numbers (converse of SRT$)

Figure 4:

give them a credit line).They also
publish a user’'s group newsletter with
handy tips and information.

1 have only touched on a few of MT-
BASIC's features in this review, and
have talked about the CP/M version.
There are a few minor differences in
the PC-DOS version, and I understand
that a version for the IBM-PC with 8087
support is now available for $79.95
(upgrades are $30 plus your original

disk).

We should encourage smaller com-
panies who provide good low-priced
software with frequent updates at a
reasonable price plus friendly customer
support. Contact Cathy Ganssle at Sof-
taid, Inc., PO Box 2412, Columbia, MD
21045-1412 phone (301) 792-8096. And
after you get MTBASIC, send your
tips, applications, and program listings
to The Computer Journal so that we
can share the information with
others. B

Upcoming Articles

The following list is a sample of some of the interesting articles which are in
process. Your suggestions for future articles are welcome.

Source code drivers for the NEC 7220 graphics chip.

Accessing the Apple IIs graphics from within a CP/M program using a Z-80 card.
Kit Building — soldering, desoldering, and repairing printed circuit boards.

An S-100 WS2797 floppy disk controller board for CP/M 68K.

Programming the 6522 VIA.
Stepper Motors — Theory, programming, applications.
The IEEE-488 Interface — Tutorial and applications.
Robotics Control applications.
Programming the Z-80 CTC, PIO, and SIO chips.

Advertiser's Index

lBusiness Utility Software................
BV Engineering......................

Classifieds.coiieiinn,

KCSystems...........occivvinniiinnn,
Miller Microcomputer Services..........
Next Generation Systems................
Public Domain Software................

Rio Grande Robotics...................

Reviewers Needed

We are looking for qualified people to review
technical programs and hardware for The Computer
Journal. We do not need reviews of Lotus 1-2-3 or
similar spreadsheets, wordprocessors, or general
_business type programs; we il leave that to the
general interest magazines. What we do need are
reviews of compilers, assemblers, disassemblers,
debuggers. programming utility libraries, scientific
and engineering programs, data acquisition and
analysis programs, operating system enhancemen-
ts, and similar items which are used by program-
mers.

We are also interested in reviews of specialized
nardware such as A/D and D/A interfaces, EPROM
programmers, stepper motor controlters, and
kits—but not most new computers or peripherals,
uniess there is some technical aspect of special in-
terest to our readers.

We prefer reviews from people who are actually
using the product rather than from someone who
reviews many ditferent products without using any
one of them long enough to become completely
familiar with al! of its features. The reviews shouid
be truthful and should tell it like it is, but the best
reviews are the ones you write about products that
you like and want to encourage others to use.

If you are interested in writing reviews, send us a
short letter with your background and
qualifications, and a phone number where you can
be reached in the evening. Include products which
you now have available for review. and aiso items
which you wouid be interested in reviewing if we
could obtain a review copy. B

(Editor continued from page 1)

Knowledge is for sharing. Are you
willing to contribute software or infor-
mation for the exchange? If so, contact
me and we'll get it started!

The Only Thing Constant is
Change

After years of explosive growth,
there are signs that the microcomputer
market is fragmenting into a number of
areas each with its own requirements.
At first almost everyone was
technically oriented and either built
their machine or was personally in-
volved with keeping it up and running.
Then, as business applications were
developed, the users were more in-
terested in what the micro could do for
them rather than how it worked. At
this time the systems still required
tender loving technical care by
someone who knew the machines, but
basically the same hardware was used
by hackers, hobbyists, and business.
There was one broad market for
producers to aim at. Now, there are
separate markets developing for
business, industrial, serious com-
puterists, and home computer ap-
plications; and while there is some
overlap, the same hardware will not
meet the requirements for the different
markets.

The business market is the largest in
both dollars and the number of units,
and except for a few specialized vertical
applications, the large amount of
money needed for promotion and large
scale production limits it to big
business. Competing in this field is like
trying to sell cars against General
Motors.

The home computer market is still a
blood bath, and will remain so until a
standard is developed which allows the
consumer to freely mix software and
components from different vendors,
and someone develops the Visa-Calc
type blockbuster which makes the
computer useful and desireable in the
home. Games, checkbook, and recipe
programs won't do it!

The industrial and real world ap-
plications market is showing signs of
very strong growth and is getting
ready to explode, but the current work
is in developing very specialized ap-
plications and this is the least visible of
the markets. There is a need for
sophisticated software and hardware
people who are willing to learn how to
apply their skills to measurement,

The Computer Journal / Issue #19

numeric machining, process control,
and the control of electro-mechanical
devices. These techniques will filter
down to consumer product applications
(for appliance type products containing
a microprocessor, NOT computers as
such), resulting in a huge demand for
people familiar with programming and
debugging utilities and constructing
hardware prototypes. The programs,
which will be in ROM, will be small (but
difficult because of the size) and the
successful people will be experienced
“roll up the sleeves” “make every byte
count” practical minded individuals
who know both programming and har-
dware.] can't think of a better descrip-
tion of a serious hacker.

The remaining market is the serious
computerists (who we called hackers
before the popular press redefined the
word). These people are active in all of
the computer areas, and are interested
in the computers themselves —not just
what they can do, but also how they do
it. While this market is small compared
with the business and industrial
markets, the serious computerists are
the ones working on the new develop-
ments which will be the basis of the
future products for the other markets.
This market is showing signs of
renewed life, with increased interest in
software utilities such as debuggers,
assemblers, disassemblers, and
emulators; and in hardware for single
board computers, EPROM programers
and burners, dedicated microcon-
trollers, A/D and D/A boards, and kits.

We feel that The Computer Journal
can be most useful in supplying infor-
mation for the serious computerists,
those who want to learn more about
their computer, and those interested in
real world and industrial applications.

This is YOUR Magazine

We have a lot of good solid technical
articles in progress, but we need input
from YOU! We will be sending a survey
form, but until then, take the time to
write and let us know what changes you
would like to see in the magazine. B

The Computer Journal / Issue #19

(Computer Corner continued from page 32/
sided, 40 track). These are two thirds
height and white, but do not let the
color fool you—they are all but pure.
Lots of these units work at first for a
few hours, but then stop ever more.]
got four of them and wish I had none,
but alas there may be hope yet. I have
put considerable hours into finding
solutions for their ills. So far I seem to
be getting somewhere and would like
input from others too.
There seem to be several problems,
from poor design to bad parts. The
‘physical slides for the heads can be
noisy and sticky, so some lubrication
may be needed here. A quick cleaning
first may be needed and then light oil or
grease will help. The alignment is
generally OK, and moving the guides
has little effect, however the azimuth
may be off on higher tracks which is
caused by the guides. Moving and
rotating the upper rail (the end has no
support) may correct some azimuth
problems. If speed of the spindle
becomes excessive {starts sounding like
a jet airplane) two problems are
possible. First the chip, a MJE210,
could be bad and need replacement, but
secondly and maybe more common is
the mica insulator under the chip. If the
screw is tightened too far when moun-
ting the chip, the mica can be cut
causing the device to be shorted out to
case ground. Backing off on this screw
will generally help. Also one unit had a
loose wire going into the motor and
recrimping it helped for sure.
On the PC board there appears to be
a shortage of bypass caps especially
where the power enters the board. The
original schematic had the choke after
the bypass caps, but the actual layout
has the caps after the coil. Since several
parts of the board are fed from before
the coil, it could be considered as un-
filtered feeds and susceptible to noise. I
have added caps at some places I con-
sidered important and it seemed to
help, but was not a complete solution.
My problems and errors did decrease
considerably but not completely, so the
caps may help and you should use your
discretion here. What got me checking
that problem was the excessive current
drawn and the corresponding spike. I
tried this unit on an older supply and
found it would not run the machine. On
more checking it was decided that a
supply of at least 2 amps at 12 volts is
needed, less current ability may add to
the problems. The book however puts

peak current at 1.6 amps which I feel is
not correct.

Several changes were made between
board designs and some bypasses were
removed from the read amp circuit. I
am not sure yet if this effects the read,
but I have determined that reads are
my most common problem. A disk that
has been causing problems, was
realigned and then written to. This
formatting showed many errors, and
when checked with findbad would also
show errors. However there were no
errors when tested on a good drive,
showing that the write was OK but the
read after write was not. I adjusted R24
on two units and 98% of the errors
went away. The other unit went from
200 plus bad sectors to under 30, but
this unit doesn’t have any bypasses ad-
ded. R24 is the balance control for the
opamps, and tweaking for minimum
errors works just fine (the point of no
errors is rather sharp). I will try adding
the old bypasses to this circuit and see
if it helps matters any.

This by no means is a complete
solution to all problems but should help
you work on them. There are some
other people also working on the
problem and I would like to hear from
them myself. Through correspondence
with magazines like f2The Computer
Journal we can make happy users out of
upset buyers.

Lastly is what happened on May 4,
when our club threw an affair and

31

nobody came. We had a great time, and
the speakers were terrific, but only six-
ty people showed up. I fear this was not
so much a lack of our abilities to tell
people about the event as an indication
of changes in computer interest. Had
our speakers been in IBM blue suits and
talked more on software than on how it
was ten years ago in starting a com-
puter company, I guess more might
have come. Bill Godbout and Geofge
Morrow had a lot to say about problems
down the road if we allow governments
to use computers in the wrong ways.
David Thompson of Micro Cornucopia
gave us some insights into why
Microsystems went under (Ziff-Davis
needed 75,000 subscribers on record for
accounting purposes, so combined
mailing list kept him from paying ad-
vertisers back). Our locals added some
color to the affair, but all was dam-
pened by the low show. If you are
having an event this year, keep us in
touch on how it turns out, for I would
like to see if a new trend is forming.
This is especially important for clubs as
they need to serve their members
needs, and usually members just stop
coming instead of trying to change
their clubs. We now have plans on
going after the IBM kit builders, as well
as those who want to know more than
how to turn it on. Hopefully next month
we will have more to say about my
other projects that have been put aside
because of troubled disk drives.

AFFORDABLE

F cmm wo_| o ENGINEERING
\sown roctiNc B3 1576, SOFTWARE 7t
\

CIRCUIT ANALYSIS SIGNAI.. PROCESSING GRAPH PRINTING

¢ Fast Machine Code ¢ Linear/Logarithmic

» Compilete Circuit Editor seP 359951, Muluple Plots

¢ Free Format input * Linear/Non-Linear Anatysis ® Full Piot Labeling

o Worst Case/Sensitmties o FFT/Inverse FFT * Auto/Forced Scaiing

o Fuil Error Trapping LA Place Transtorms : Two Y-Axes :

NAP Version $69.95 o Transent Analysis ACNAP/SPP Compatible :

L 22 - ¢ Time Domain Manipulation no«r m $49.95 !
* Any Size Circurt « Spectra Manipulation -

* input / Output Impedances o Transfer Function Marpulation ¢ C"y(P"'m}:' '
ooy ! Lo e b g | » Voo

® Free Format input PC PLOT $59.95

DCNAP $59.95 : ASCII and Blnacrziles JE Sreen Grapes

«» Compatible Data Files > Fast Machine * Pixei Resolution

o Caiculates Component Power e Epson Printer

30 Nodes / 200 Components VISA @ MASTERCARD

* A V. <
[= . ,

BV Engineering

\ | Professional Software 2200 Business Way Sute 207 « Rversige CA G250 e USA (714) 781-0252 ,

32

The Computer Journal / Issue #19

THE COMPUTER CORNER

A Column by Bill Kibler

w ell here goes another month of
what's been happening. I suppose if
nothing was going on there wouldn't be
. any need for this column. Actually that
is what a lot of magazines would like
you to think about the non IBM
machines, but reality is quite different.
My last month has been very busy and I
am rushing this out so I can get on to
other pressing problems.

An important point has been made
by one of our readers and we would like
to thank him for both writing and
reading our work. The response dealt
with my view of the future and my not
so great like for IBM's. I agree with him
but found a recurring statement that
troubles me. In reading my unsolicited
copy of PC TECH JOURNAL (Iwasa
Microsystems subscriber), I kept fin-
ding the term “standard” used
everywhere in referring to the IBM PC.
When the letter also used standard
severa] times, I felt obligated to discuss
standards as they apply to computers.

In the computer industry there are
two types of standards, official and de
facto. The official standards are derived
by a standards committee which is for-
med by the IEEE and given the task of
formulating the specification under
which the standard will operate ever
after. Now these standards refer to
both hardware and software protocols
. and usually come after a product has
been manufactured and used for
several years. The process will take 3
to 5 years before a final agreement can
be reached. Some current standards
are the RS-232 serial interface,
Multibus I and II, IEEE 696 or S-100
bus, and RS 422. There are so many
others that it is impossible to cover
them all in this column. Once for-
mulated these standards can provide
about 90% compatibility between dif-
ferent vendors products.

The de facto standards are ones in
which a product has gained enough
popularity for a large number of ven-
dors to produce products around it. The
Apple II's and IBM PC’s are two exam-
ples which have many compatible ven-
dors. These so called compatible
products are not standards in the true

sense, as one manufacture can change
them to suit their own needs at any
time. For vendors who produce produc-
ts based on these designs, any changes
by the originator means changes for
them too. With real standards, there
can not be any changes without the
whole group agreeing and then the
standard usually will be in everybody's
best interest. Another important con-
sideration is the need for a long product
life, as it may take ten years just to
become an accepted standard, and for
the product to become bug free.

If you have followed my logic so far
you can see that the IBM PCisin fact
not a standard product of any kind but a
de facto product with enough followers
to make it appear as a standard to the
casual observer. In reality the product
even falls short of any standard.
Physically the bus used on the expan-
sion slots has already been upgraded in
the AT models and many of the earlier
cards will not work. A good physical
standard has upward compatibility
paths, as well as room for features
which are present in the new design but
not in the old. For software com-
patibility the IBM PC is quite lacking in
accepted format as entry into the BIOS
is to addresses well within the
copyrighted PROM and not to fixed
tables that can easily be duplicated.
Any standard is public, and can be
duplicated without threats of law suits.
CP/M BIOS and BDOS entry points are
fixed tables at the beginning of the
program and have been added to but
not rearranged since the original ver-
sion. This allows all past programs to
work, which is something I fear IBM
will not allow to happen. My biggest
personal dislike in this area is IBM's
use of PC-DOS and not the standard
MS-DOS operating system. Had they
standardized there would be no need
for near and true compatible clones.

I guess what I would prefer people to
say about the IBM until they become
officially approved by the IEEE, is that
their product has become a de facto
standard by their users. Now the users
do have considerable importances for
considering standards, and by all means

the number of machines out there may
be as many as most other official stan-
dards, but until it is an official standard,
it can not correctly be called one. It is
also important, very important in fact,
that the need for standards not detract
from your ability to use the product.
Non-standard products can be just as
useful when sufficient information and
support is available to allow you to do
any task you desire. It is here that IBM
and their clones really start to shine
and where I start to support them. The
physical product is really of little im-
portance anymore, it is the software
and the task it allows you to perform
which is really important. It is this
point which many people have missed,
that they are in fact not a standard
product, but one in which so many
products exist that all other standards
get ignored.

Some new products out which bear
looking into (and writing articles about)
and should help some users are next on
my list of topics. Several new S-100
boards for emulating the IBM graphics
and non-standard BIOS are now out on
the market. For MAC users lots of ex-
pansions and cheaper versions are
about to be released. IBM should have
their new PC II out soon (still a few
thousand warehoused PCs to sell first).
Allin all the next few months will see
many new machines, most using 256K
chips with 256K to one megabyte of
memory. Now that the mask problems
in the 80286 are almost all corrected,
expect to see many more products
there too. The 68000 is starting to
gather more popularity, thanks to the
MAC, but software is still a bit slow.
For real speed freaks there are some
FORTH machines coming out that will
be the fastest micros yet. Expect to see
1200 baud modems below $200, IBM PC
JR's for $150 and by the end of summer
IBM PC's below $700 new.

For those people, like myself,
without an unlimited pocketbook there
are lots of cheap products on the
market, one of which I need to spend
some time with next. For as little as $39
you can get new Remex drives (double

lcontinued on page 31/

