|

Programming - User Support
Applications

Issue #27

68000 TinyGiant
Low Cost 16-bit SBC and Operating System

The Art of Source Code Generation
Disassembling Z-80 Software

Feedback Control System Analysis

Using Root Locus Analysis and Feedback Loop Compensation

The Hitachi HD64180

New Life for 8-bit Systems

~ A Tutor Program for Forth
Writing a Forth Tutor in Forth

Disk Parameters

Modifying The CP/M Disk Parameter Block
for Foreign Disk Formats

- ISSN # 07489331

THE COMPUTER JOURNAL
190 Sullivan Crossroad
Columbia Falls, Montana
59912
406-257-9119

Editor/Publisher
Art Carlson

Art Director
Donna Carison

Production Assistant
Judie Overbeek

Circulation
Donna Carlson

Contributing Editors
C.Thomas Hilton
Donald Howes
Jerry Houston
Bill Kibler
Rick Lehrbaum
Peter Ruber
Jay Sage
Jon Schneider

Entire contents copyright®
1987 by The Computer Journal.

Subscription rates—3$16 one
year (6 issues), or $28 two years (12
issuesj in the U.S., $22 one year in
Canada and Mexico, and $24 (sur-
face) for one year in other coun-
tries. All funds must be in US
dollars on a US bank.

Send subscriptions, renewals, or
address changes to: The Computer
Journal, 190 Sullivan Crossroad,
Columbla Falls, Montana, 59912, or
The Computer Journal, PO Box
1697, Kalispell, MT 59903,

Bulietin Board—Our bulletin board
will be on line 24 hours a day at 300
and 1200 baud, and the number is
(406) 752-1038.

Address all editorial and adver-
tising inquiries to: The Computer
Journal, 190 Sullivan Crossroad,
Columbia Falls, MT 59912 phone
(406) 257-9119.

The Computer Journal/ Issue #27

The COMPUTER
JOURNAL

Features

68000 TinyGiant

Hawthorne's 68000 Single Board
Computer combined with their $50
operating system

byArtCarlson. 0. ..

The Art of Source Code Generation

Disassembling Z-80 software to
produce modifiable source code
by Clark A. Calkins

Feedback Control System Analysis

Using Root Locus analysis and Feedback
Loop Compensation to solve closed
loop control problems

byBertP.vandenBerg.............................

The Hitachi HD64180

Understanding the HD64180’s advantages
over the Z-80, and how to use some of it's
advanced features

bydJonSchneider...................................

A Tutor Program for Forth
Writing a Forth Tutor in Forth

by Bill Kibler.............

Disk Parameters

Modifying the CPIM Disk Parameter Block
to read and write foreign disk formats

byC.Thomas Hilton.

Departments

Editorial ...

C Corner

by Donald Howes.cc.ccvviiiunnn....

Z2SIG Corner

by Jay S8ge.........coiiiiiiiiii e

Reader’s Feedback...............................

Computer Corner

by Bill Kibler..................cco i,

............. 4

........... 23

........... 36

........... 52

Editor’s Page

Market Developments

While some people claim that the per-
sonal computer sales are flat because the
sales of their own products are low, and
others claim that the technology is
stagnate because all they see is the IBM
PC series, there is actually a great deal
of activity in both sales of existing
products and technical developments
which will lead to the next generation of
computers.

If anyone tells you that computers
aren’t selling, show them the current
issue of Computer Shopper which has 408
pages mostly filled with ads for har-
dware and software. Many of these ad-
vertisers have been running full page or
even multipage ads in every issue, and
those I talk to assure me that the ads are
generating the sales to justify the cost of
the ads — they’re selling a lot of har-
dware, software, and peripherals — but
the market has made another abrupt
change. As pointed out in George
Morrow’s column in Electronic
Engineering Times (January 12, 1987,
page 61), individuals started buying
again in 1986 while the corporations and
government agencies cut way back on
their purchases. To quote one small sec-
tion of his column, ‘“The personal com-
puter market was launched by in-
dividuals who were convinced that the
power of low-cost micros could be har-
nessed to solve spreadsheet applications
and word processing chores, and it’s no
secret that this type of customer doesn’t
use the same criteria as corporations or
government agencies when it comes to

buying computers. When a government
agency buys a computer, the taxpayer
pays the bill. When a corporation buys a
computer, the company’s stockholders
pay for it. Individuals, however, have no
choice but to spend their own money. So
the price of the machine, as well as its
features (clock rate, ease of use, bundled
software, etc.) become deciding factors
in a sale.” George goes on to say, ‘‘Thus,
the key to next year seems to be in the
hands of individuals, just as it was in
1986. Will they continue to buy at the pace
they established in 1986?"’

Digesting what George said, I feel that
when corporations and government
agencies became the primary buyers,
most sellers structured their product
line, marketing organization, and pricing
for this ‘big-business’ segment. Now that
individuals and small companies are
again the primary buyers, these sellers
have too much built-in overhead cost and
are burdened with products and
marketing plans designed for those
spending someone else’'s money. The
ones succeeding in the current market
are the lean and hungry ones who can
provide the features and prices deman-
ded by the individuals spending their own
money.

At the same time as the current
products are being sold in volume, there
are also a lot of technical developments
taking place which will affect what we
buy in the near future — but these
developments are not taking place in the
consumer market which everyone is
watching, but rather in the industrial
market where they are not attracting
much attention.

There is a lot of talk about how much
power the Motorola 68020, 68030, and
68040 and the Intel 80286, and 80386 will
provide, but there is very littie talk about
what kind of system architecture will be
needed in order to realize these benefits.
It’s true that MicroSoft and others are
developing operating systems for the
80386, but apparently the hardware
people (remember that they are used to
dealing with buyers spending some one
else’s money) are talking about putting it
on a glorified PC-type bus. That’s like
putting a turbo-charged V-12 engine in a
old Ford model T.

1 feel that the advanced business,
engineering, and industrial systems
which can properly utilize the power of
the new CPU’'s will be multiuser,
multitasking systems employing
mutiprocessors and will require a

give you the answer.

"The darndest thing
I ever did see..."
"... if you're at
all interested in
what's going on in
your system, it's
worth it."

Jerry Pournelle,
BYTE, Sept 'B83

areas) .

Ever Wondered What Makes CP/M® Tick?

Source Code Generators
by C. C. Software can

The S.C.G. programs produce
fully commented and labeled

source code for your CP/M
system (the CCP and BDOS
your liking,

To modify the system to
just edit and assemble with ASM.
CP/M+ $75, + $1.50 postage

C. C. Software, 1907 Alvarado Ave.
Walnut Creek, CA 94596

CP/M is a registered trademark of Digital Research, Inc.

CP/M 2.2 3545,
(in Calif add 6.5%).

(415)939-8153

The Computer Journal / Issue #27

reliable bus structure which provides for
interprocessor communications and
multiprocessor communications. I'm
sure that many readers will comment on
my negative stand on the current
multitasking and multiuser implemen-
tations — and that’s because I fee} that
the currrent systems do not have suf-
ficient power to properly execute these
feature. If we don’t need these features,
then we don’t need the new chips either!
I'm happy with my 8-bit systems with
hard disks for wordprocessing which is
the majority of my work. I'll probably
upgrade to solid state RAM to speed
things up a little and avoid the disk noise,
but I surely don’t need a 16-bit or 32-bit
CPU and I don’t need multiuser or
multitasking for our operation (although
other larger operations may well need
this). Eight bit systems are cheap, and if
I want to do several things at the same
time, I just use several systems at the
same time!

I am very interested in the new chips
for other applications, but when I choose
a powerful chip because of its features I
insist on being able to use ALL of its
speed and power! If limited power is ac-
ceptable, I can provide that with existing
CP/M or PC-DOS equipment. If more
power is needed, then I want to be able to
use everyting that I can get.

The industrial market has already
developed architectures such as the
VMEDbus® (Motorola) and Multibus I1®
(Inte) which provide most of the
features required to use the full power of
the new CPUs, and 68020, 80286, 80386,
and WE32XXX single board computers
are readily available. Simple low power
systems can be used with a simple low®
power bus — or even without a bus — but
high-power systems must be used with a
high-power bus in order to realize their
full potentials and to provide for expan-
sion. I'll only be interested in using the
new CPUs on a standard open bus, ex-
cept possibly for a dedicated single use
application such as a CAD station.

While we'’re talking about the new
CPU’s, it appears that the software
developers have stopped their work on
the AT 80286 in favor of the 80386. Without
the software to make use of the ’286's
features, the AT will just be used as a
fast PC instead of realizing its full poten-
tial.

Why Companies Don’t Succeed

Most companies want to have their
products considered for new designs, and
they spend a lot of money for slick four

The Computer Journal / Issue #27

color ads, but then when we try to get
technical information they fall flat on
their face. An example is the AD639 Trig
Processor chip from Analog Devices. [
wrote three letters asking for tech info to
publish, but never received a response.
In November I finally phoned and talked
to someone in marketing who promised
to send the info. We still haven’t received
anything, and frankly I'm no longer in-
terested in dealing with them.

On the other hand, I called Hitachi for
info on their HD64180 and received a
large box of material. They also followed
up with a phone call to see if I had
received it and if I needed any further
help.

Guess which product I'll support. The
American companies will continue to cry
about how they are losing business to the
foreign producers, but in many cases it is
their own fault because while they spend
money on impressive advertising they
won't pay attention to customers and
provide support.

Hard Drives vs. RAM Disks

Hard drives are nice for operations in-
volving a lot of disk access such as data
bases or compiling where the speed and
capacity advantages over floppies are
important — BUT remember that when
used continuously, every hard drive will
eventually FAIL! The question is not IF,
but rather WHEN. The expensive large
drives intended for mainframe ap-
plications will probably last for a long
time, but some of the low cost drives for
micros are not so durable. In the case of
the 10 Meg drive for our BBS the
bearings gave out after about six months
of continuous operation. 1 noticed it in
time to save the data, but I'll have to
send the drive out for repair.

The board is running on just two flop-
pies until I decide on a long term
solution, but I question if I want a hard
drive running 24 hours a day for seven
days a week. I may add more 96TPI flop-
pies because the drives only run when
they are accessed instead running all the
time like a hard drive. The real solution
will be to go to battery backed RAM disk
if and when I can justify the cost. I would
be very interested in feedback regarding
other people’s experience with the life of
various models of hard drives.

Source Code

I realize that you get tired of hearing
me talk about source code, but having
the source code is what enables us to

(Continued on page 38)

Make certain that TCJ follows you
to your new address. Send both old and
new address along with your
expiration number that appears on
your mailing label to:

THE COMPUTER JOURNAL
190 Sullivan Crossroad
Columbia Falls, MT 59912

Please allow six weeks notice. Thanks.

Registered Trademarks

It is easy to get in the habit of using
company trademarks as generic terms,
but these registered trademarks are
the property of the respective com-
panies. It is important to acknowledge
these trademarks as their property to
avoid their losing the rights and the
term becoming public property. The
following frequently used marks are
acknowledged, and we apologize for
any we have overlooked.

AppleIL II +, Il¢, Ile, Macintosch,
DOS 3.3, ProDOS; Apple Computer
Company. CP/M, DDT, ASM, STAT,
PIP; Digital Research. MBASIC;
Microsoft. Wordstar; MicroPro Inter-
national Corp. IBM-PC, XT, and AT;
IBM Corporation. Z-80, Zilog. MT-
BASIC, Softaid, Inc. Turbo Paseal,
Borland International.

Where these terms (and others) are
used in The Computer Journal they are
acknowledged to be the property of the
respective companies even if not
specifically mentioned in each occuren-
ce.

68000 TinyGiant

Low Cost 16-bit SBC and Operating System

by Art Carlson

There has been a lot of interest in a low priced 68000
single board computer for experimenting or process control,
" and a group of us got together at SOG last year to discuss the
situation. We are interested in the 68000 because it is big, fast,
cheap, and well supported. The 86 family is dominated by MS-
DOS/PC-DOS® machines which are designed as office
machines, and the other 32 bit micro processors are not very
well supported. We wanted to work with a processor for which
books are available, and we also wanted other companies to
provide software for the new machine.

The major problem in experimenting with the 68000 has
been the lack of a readily available low-cost operating system
and programming utilities. As a result of our discussions, Joe
Barte] (Hawthorne Technology) offered to supply a single-user
version of his 68000 operating system complete with the source
code and the compiler for his HTPL® language (in which the
system is written) for $50. He’s even throwing in a line editor
and a 68000 assembler.

Once we had the operating system, we started searching for
suitable hardware since not all of us are interested in designing
and wirewrapping the main CPU board. I understand that some
people are porting Hawthorne’s K-OS ONE® operating system
over to the Atari ST® (which is a great hardware bargain), but
we also need a small low cost board which can be mounted on
robotic arms and other places where an ST is too big or is
technically unsuitable. After all, for many controller ap-
plications we don’t need sound, graphics, drives, keyboard, or
monitor; but we do need complete bus access so that we can
provide lots of 1/0. Joe came up with another winner which is
the 68000 single board computer he calls ““‘The TinyGiant® .”

Every computer is designed to fill a particular goal or
market niche, and The TinyGiant was designed to be as low cost
as possible while still providing the needed features. The target
price was set at $395, and when a choice had to be made they
looked at the original goal. Then they looked at what was needed
to make a usable small developement system. There had to be a
disk of some kind. There also had to be enough 1/0 to support a
terminal and some kind of printer and a modem. They didn’t put
a video controller on the board because they felt that many of
these would be used in places where video was not needed. Also
video would have made the board much larger and more costly.
Dynamic RAMs were used because of the lower cost.

The TinyGiant is a complete 8000 system on a single board.
The main component is the 63000 that runs at 8 Mhz. with no wait
states. There are two EPROMS, a dynamic RAM controller,
four RAM chips, and a 68681® dual serial chip. There is also an
unbuffered expansion bus provided.

The 68681 is almost a complete I/O system on a single chip.
There are two serial ports and a timer on the 68681. There are
also some extra input and output bits that can be used. Each
serial port has its own internal baud rate generator that can be

4

;‘;

1T m

SRS

68000 TinyGiant

set from 50 to 9600 baud. The system startup assumes that the
console terminal on the first port is set to 9600 baud. The other
port is assumed to be for a modem and is set to 1200 baud. This
port could be used to support a serial printer if a modem is not
needed. The timer is used as the basic system timer for a time of
day clock. When the PRN device is selected, a parallel printer
port made from a latched buffer is used.

The 1770° floppy controller can control up to four 5% or 3%
inch floppy disk drives. At the present time the software is only
supplied on 5% inch floppy disks, but it will also be supplied on
314 disks in the near future. The 1770 controller has an internal
clocked digital data separater so no adjustments are needed.
There is no DMA controller so all 1/0 is done with interrupts.

The board is supplied with 128k of RAM but can be expanded
to 512k by simply adding the memory chips. The memory is con-
trolled with an MB1422® dynamic RAM controller which takes
care of all the timing and refresh for the 64k x 4 dynamic RAMS.
There are four RAM chipe in the basic machine, 12 more can be
added on board, and an expansion board can be added to provide
additional memory. There are two EPROMS that contain the
boot code and a very simple hardware debug monitor, and there
is a lot of empty space in the PROMS that could later be used for
code.

There are two expansion connectors that provide all the
needed address, data, and control lines. The 64 pin expansion
busconnectorhnalltherawsignalsjmtutheymonthe
68000 itself and it is an unbuffered bus which means that buffers
have to be provided for the bus lines on the first expansion
board. The other expansion connector has some signals derived
from logic on board. There is a priority interrupt encoder that is

The Computer Journal / Issue #27

connected to autovector interrupts.

To use the TinyGiant you have to connect a power supply, a
terminal, and a disk drive. The board requires only 5 volts at
about 2 amp and some at +12 volts for the RS-232 (the —12 for
the RS-232 is generated on board), and the power connector is
the same as a floppy drive. The EPROM monitor is set up to boot
the K-OS ONE operating system from a floppy disk when the
power is applied. All of this should be in a proper case, and any
of the cases for the Ampro Little Board® should work fine
because the board is the same size. The cases and power sup-
plies for the PC clones should also work and are available at
very low prices.

The software that comes with the TinyGiant has many
features that will remind you of CP/M® or MS-DOS. The disks
are compatible with MS-DOS which means that you can move
data files from your new machine to your PC easily. The stan-
dard command processor is modeled after MS-DOS but does not
have batch files. The editor is a line editor but is much better
than ED® or EDLIN® . The assembler is a two pass absolute
assembler that has include files but no macros. The compiler is
for HTPL, the language used to write the K-OS ONE operating
system.

People who currently use a Z-80® and are interested in
moving up will be interested in the board. Also anyone who wan-
ts to learn about the 68000 without having to dig through a dif-
ficult operating system will like it. The price of the board is
competitive with the 80 and 86 family boards and so is the price
of the software. The small size and power make it great for con-
trol applications. The use of MS-DOS compatible disks makes it
very convenient for data capture. The operating system makes
it good for a personal computer or for experimenting.

At the present time there are a limited number of programs
that will run under K-OS ONE. This will improve in the next few
months as the companies that purchased the first copies of K-OS
ONE bring their products to market. For any new system there
is a delay between when it is first delivered and when lots of sof-
tware is available for it. Some of the software that will be
available is code that is being ported from other systems.

For languages there is the assembler and the HTPL com-
piler that come with the basic machine, and the operating
system is written in HTPL so that it can be recompiled on the
system. Most of the development is being done in HTPL, but the
source code for the runtime library is written in assembler and
is supplied in source form. For many applications most of the
code can be written in HTPL with the speed critical portions
written in assembler. Also there are some functions that are
much easier to write or much smaller in assembler. I under-
stand that a C compiler is being ported over to the system.

Externally, the operating system can look like anything you
want it to. The command processor provided looks a lot like MS-
DOS but you can change it because it is a separate program like
the CCP is in CP/M and you are provided with the source code.
In a dedicated application the command processor could be
replaced by a menu to load a set of application programs. A
command processor could also be written that would make it
look like a Unix system was being used if that was desired.

Internally, the operating system resembles Unix® or MS-
DOS 2.0 except that it is greatly simplified. All system calls are
done in a manner similar to MS-DOS where the required infor-
mation is placed in a parameter block and then a trap instruc-
tion gives control to the system. All error information is retur-

ned in memory in the parameter block. This makes it very easy
to use system fuctions directly in a high level language. The use

The Computer Journal / Issue #27

of Unix like files instead of file control blocks like CP/M means
that any application written will still run even if there are
radical changes to the internal structure of the disks.

HT68K TinyGiant Hardware Description

There are 6 connectors on the TinyGiant board that connect
it to the real world. Two of these are for expansion, one for the
console serial port, one for the auxillary serial port, one for the
printer, and finally one for the disk drives.

The size and shape of the board is such that it can be bolted
to the side of a standard 5% inch floppy disk drive, and the
power connector for the +5 and +12 is the same as used on a
floppy disk drive. The +12 volts is converted to —12 for RS-232
by an onboard power converter. Most of the cheap PC clone
power supplies already have the connectors wired for floppy
disks so one of them can be used.

The expansion bus is divided between two connectors, P1
and P2. The P1 connector brings out all the basic 68000 control
signals. These come directly from the 68000 cpu chip and are not
buffered. The remaining signals come from the P2 connector.
Any signal should be buffered before it is used on an expansion
board.

When power is applied the PROM is at location 0. As soon as
the serial port is addressed the PROM is shifted into high
memory. This is taken care of in the boot PROM so all the user
will see is RAM memory at location 0. The BIOS is in PROM so it
is assumed to run at $380000. All interrupts are auto vectored,
some are dedicated to devices on the board and some are
available on the expansion connector.

P1 CONNECTOR -- EXPANSION
1 = D4 33 =05
2 =03 34 = D6
3 =02 35 = D7
4 = DI 36 = D8
5 =00 . 37 = 09
6 = AS* 38 = D10
7 = UDS* 39 = 011
8 = LDS* 40 = D12
9 = R/W* 41 = D13
10 = DTACK* 42 = D14
11 = 3G* 43 = D15
12 = BGACK* 44 = GND
13 = BR* 45 = A23
14 = ¥CC, 5 V 46 = A22
15 = CLK, 8 MHZ 47 = A2}
16 = GND 48 = VCC, 5V
17 = HALT* 49 = A20
18 = RESET* 50 = A19
19 = VMA* 51 = A18
20 = E 52 = A17
21 = YPA* 53 = Al6
22 = BERR* 54 = Al1S
23 = |1PL2* 55 = Al4
24 = \1PLI* 56 = Al3
25 = |PLO* 57 = Al12
26 = FC2 58 = All
27 = FCt 59 = AlQ
28 = FCO 60 = A9
29 = Al 61 = A8
30 = A2 62 = A7
31 = A3 63 = A6
32 = A4 64 = AS

P2 CONNECTOR -~ EXPANSION
T = EX102* 9 = EX|O1*
2 = 412 10 = DREQ*
3= -12 11 = NM*
4 = VCC, 5 v 12 = EXIRI*
5 = yCo 13 = EXIRS*
6 = GND 14 = EXIR6*
7 = GND 15 = GND
8 = GND 16 = 16 MHZ CLOCK
P3 CONNECTOR -- DISK
1 = 3ND 2 = NC
3 = GND 4 = NC
5 = GND 6 = DS)
7 = GND 8 = |P
9 = GND 10 = DS3
11 = GND 12 = DS2
13 = GND 14 = DS
15 = GND 16 = MD
17 = GND 18 = DIR
19 = GND 20 = STEP
21 = GND 22 = WD
23 = GND 24 = WG
25 = GND 26 = TKO
27 = GND 28 = WP
29 = GND 30 = RD
31 = GND 32 = SIDE SEL
33 = GND 34 = NC
P4 CONNECTOR -~ TERMINAL SER!AL CONNECTOR
1 = GND 6 = NC
2 = RXD 7 = GND
3 = TXD 8 = NC
4 = CTS 9 = NC
5 = RTS 10 = NC
P4 CONNECTOR -- MODEM SERIAL CONNECTOR
1 = GND 6 = NC
2 = RXD 7 = GND
3 = TXD 8 = DCDL
4 = CTS 9 = NC
5 = RTS 10 = RTS
PR CONNECTOR -- PRINTER
1 = STROBE
2 = D0
3 = D1
4 = D2
5 = D3
6 = D4
7 = D5
8 = D6
9 = D7
10 = ACK =-- BUSY
MEMORY MAP
$000000 - $O7FFFF RAM ON BOARD
$080000 - $OBFFFF X1
$100000 - $10FFFF X2
$180000 - $17FFFF PRT
$200000 - $27FFFF SLK- FDC
$280000 - $2FFFFF Si0
$300000 - $37FFFF FOC
$380000 - $3FFFFF PROM ON BOARD

INTERRUPT LEVELS

NMOVHB LW —O

not an interrupt at all
external

Printer, internal
Serial, internal

Fioppy disk, internal
external

external

NMi, external

Where Do We Go From Here?

It’s very likely that the 68000 will replace the Z80 as the
choice for hobby and experimental projects, and the com-
bination of the TinyGiant and the K-OS ONE operating system
will provide a very good development platform.

The lack of software is a major problem with any new har-
dware or operating system — developers won’t write the
programs until a lot of the systems are sold, and people won’t
buy the systems until a lot of software exists — at least that's
true with a mass market appliance type computer. But this is
initially aimed at a different market, and I believe that
Hawthorne has made several very smart moves. For one,
they’re supplying the system with the board, and the system
(whether obtained separately or with the board) includes the OS
source code plus the language compiler, a 68000 assembler, and
a line editor so that you have the utilities to start writing
programs. Another very good move is that even though
Hawthorne is selling a single board computer, they still want to
sell their operating system to hardware companies even if they
are directly competing with Hawthorne! Joe has aiso been in
contact with a lot of potential 68000 programers who were
frustrated with the lack of a low cost operating system, and
there will soon be a rapidly expanding base of software.

One of the most significant points is that you get the
operating system with the source code (plus the other goodies)
for only $50. Has any one else ever supplied the OS source code?
I doubt it, because many CP/M hardware vendors wouldn’t even
supply the source code for their customized CBIOS. With the low
cost OS and its source, you can customize it for your own par-
ticular application, and it’s cheap enough so that you can in-
clude it with your software.

I feel that the use of K-OS ONE is going to expand very
rapidly, and we at TCJ are going to fully support this growth. @

68000 Reference Book List

68000 16/32-bit Microprocessor Programmer’s Reference
Manual, by Motorola, Prentice Hall

68000, 68010, 68020 Primer, by Kelly-Bootle and Fowler, The
Waite Group, Howard W. Sams

The 68000: Principles and Programming, by Leo Scanlon,
Howard W. Sams

63000 Assembly Language: Techniques for Building
Programs, by Donald Krantz and James Staniey, Addison-
Wesley Publishing Company

68000 Assembly Language Programming, by Lance Leven-
thal, Doug Hawkins, Gerry Kane and William D. Cramer,
Osborne/McGraw-Hill

The 88000 Microprocessor: Architecture, Software and Inter-
facing Techniques, by W. Triebel, and A. Singh, Prentice Hall

68000 Microprocessor Handbook, by William Cramer, AVM
Systems, Gerry Kane, Osborne/McGraw-Hill

68000 User’s Manual, by J. Carr, Prentice Hall

MC68020 32 bit Microprocessor User’s Manual, by Motorola,
Prentice Hall

Basic Microprocessors and the 68000, by Ron Bishop & the
Motorola Semiconductor Group, Hayden Books

Dr. Dobb’s Toolbook of 68000 Programming, Edited, Prentice
Hall

Programming the 68000, by Rosenzweig and Harrison,
Hayden Books

The Computer Journai / Issue #27

Programming the 68000, by Steve Williams, Sybex Computer
Books

Self Guided Tour through the 68000, by M. Andrews, Prentice
Hall

The above books can be ordered from:

Magrathea
8842 Southeast Stark
Portland, OR 97216
Phone (503) 254-2005

68000 SINGLE BOARD COMPUTER

$395.00
32 bit Features 7 8bit Price

-Hardware features:

* 8MHZ 68000 CPU

* 1770 Floppy Controller
* 2 Serial Ports (68681)
* General Purpose Timer

* Centronics Printer Port
* 128K RAM (expandable to
512K on board.)
Expansion Bus
* 5.7% x 8.0 Inches

Mounts to Side of Drive
* +5v 2R, +12 for RS-232

»

-Software Included:
* K-OS ONE, the 68000 Operating
System (source code included)

* Power Connector same as * Command Processor (w/source)
disk drive * Data and File Compatible with
¥S-DOS
Add a terminal, disk drive * A 68000 Assembler
and power, and you will have * An HTPL Compiler
a powverful 68000 system. * A Line Editor
ASSEMBLED AND TESTED ONLY $395.00
* ® t 4 ® * L] * ® * * x ® * ® * = ®

K-0S ONE, 68000 OPERATING SYSTEM

For your existing 68000 hardware, you can get the K-0S ONE
Operating System package for only $50.00. K-0S ONE is a powerful,
pliable, single user operating system with source code provided
for operating system and command processor. It allows you to
read and write MS-DOS format diskettes with your 68000 system.
The package also contains an Assembler, an HTPL (high level
language) Compiler, a Line Editor and manual.

... $50.00

4 * 1 4 * ® ® x L] ® L 4] *] ® x

SHIPPED ON AN MS-DOS 5 1/4" DISK. .

Order Now:

VISA, MC HAWTHORNE TECHNOLOGY

(503) 254-2005
8836 S.E. Stark
Portland, Or 97216

TURBO PROGRAMMERS -

...CUTS DEBUGGING FRUSTRATION.

TDebugPLUS is 3 new, interactive symbolic de-

bugger that integrates with Turbo Pascal to let you

s Examine and change variables at runtime
using symbolic names — including records.
pointers, arrays, and local vaniables,

® Trace and sel breakpoints using procedure
names or source statements;

s View source code while debugging:

» Use Turbo Pascal editor and DOS DEBUG
commands

TDebugPLUS also includes a special MAP file
generation mode fully compatibie with external
debuggers such as Periscope, Atron, Symded, and
others — even on programs written with Turbo
EXTENDER.

An expanded. supported version of the acclaimed
public domain program TDEBUG, the TDebugPLUS
package inciudes one DSDD disk, complele source
code. a reference card, and an 80-page printed
manual. 256K of memory required. Simplify
debugging! $60 COMPLETE

TURBO EXTENDER™

Turbo EXTENDER provides you the foliowing

powerlul lools to break the 64K barries:

a Large Code Model allows programs 1o use all
640K without overlays or chaining, while
allowing you to convert existing programs with
minimal effort; makes EXE liles;

® Make Facility offers separate compilation
eliminaling the need for you to recompile
unchanged modules;

= Large Data Arrays automatically manages
data arrays up to 30 megabytes as well as any
ar1ays in expanded memory (EMS);

s Additional Turbo EXTENDER tools include
Overiay Analyst, Disk Cache, Pascal Encryptor,
Shell File Generator, and File Browser.

The Turbo EXTENDER package includes two 0SDD
disks, complete source code, and a 150-page
printed manual. Order now! $85 COMPLETE.

TURBOPOWER UTILITIES™

*“If you own Turbo Pascal, you should own
TurboPower Programmers Utilities. that's ail there
istoil” Bruce Webster, BYTE Magazine

TurboPower Utilities offers nine powertul pro-
grams. Program Structure Analyzer, Execution
Timer, Execution Proliler, Pretty Printer, Command
Repeater, Pattern Replacer, Difference Finder, File
Finder, and Super Directory.

The TurboPower Utilities package includes three
DSDOD disks, reference card, and manual $95 with
source code; $55 executable only.

ORDER DIRECT TODAY!

® MC/VISA Call Toll Frae 7 oays a week
800-538-8157 x830 (US)
800-672-3470 x830 (CA)

» Limited Time Offer! Buy two or more
TurboPower products and save 15%!

= Satisfactien Guarantesd or your money back
within 30 days.

For Brochures, Dealer or other Information,
PO, COD - call or write:

3109 Scotts Valley Dr . #122
‘ Scolts Valley, CA 95066
(408) 438-3608
M-F 9AM-5PM PST

The above TurboPower products require Turbo Pascal 3 0
(stancara, 8087, or BCD) and PC-00S 2 X or 3 X_and
run on the IBM PC/XT/AT and compatibies

e

The Computer Journal / Issue #27

The Art of Source Code Generation

Disassembling Z-80 Software

by Clark A. Calkins, C.C. Software

Introduction
. What is source code generation all about? Well, I consider
this as the process of creating usable program source code in
- some language that is equivalent to an initial executable
program. By usable I mean that the source code has been suf-
ficiently documented or commented such that you or someone
else schooled in the language can understand what is going on.

If you already have an executable program, why would
anyone want the source code? The truth is, many users would
not. But if you ever wanted to change a program, source code
makes it much easier. In some cases, it is not practical to
change a program without the source. Besides the necessity or
desire to change a program, some people would just like to un-
derstand how it works.

Why is it that software producers very seldom make source
code available for their products? There are several reasons (or
excuses) for not releasing the source code. These include 1)
‘‘...you don’t need it, program XYZ works perfectly as it is”, 2)
‘“...you could then make copies and give these to others’”, 3)
‘“...it's too complicated, you couldn’t understand it”’ and so on.
Actually, the real reason is that software writers feel that their
programs represent private and creative thoughts and that they
loose privacy if the source code gets out of their control. There is
a mystique to writing programs and programmers tend to keep

. it that way. A form of ‘‘job security."

However, users do have a legitimate requirement for source
code. After all, the programmer wrote the program to do what
he/she thought was the best, but the users generally have dif-
ferent ideas and frequently want to change the default values
which were selected by the programmer. Some programs come
with installation instructions that do allow some flexibility in
this regard, but this is not always enough. If you ever wanted to
learn how to write an operating system or compiler and only had
a book or two for reference, you would then see the advantage of
having some source code to refer to. This is indispensable!

Can the source code for any program be produced?
Theoretically the answer is yes. However, from a practical
standpoint, only a few programs would be worth the effort in-
volved. The idea to keep in mind, is that if the computer can
execute the program, it can be disassembled. This is because
the process of disassembling a program is really a conversion
from one language (machine code) to another. Like translating
a book from German to English except there are no ambiguities
to worry about. Documenting the program now involves just
time and effort (maybe quite a lot of these).

The specific type of source code generation I am going to be
dealing with here, is the creation of Z-80 assembly source code.
If it were desired to create Pascal or Fortran source code
(assuming the program was written in one of these languages),
the first step would be to produce assembly instructions and
convert groups of instructions into source statements. This

would require a thorough understanding of the code produced by
the compiler. A difficult task indeed, but it can be done.

In addition, I will be assuming that CP/M is the operating
system being used and that it is desired to disassemble a normal
transient program and not a ROM or other type of program
storage. These are slightly more complicated as the execution
address may differ from the physical address.

The disassembler I use is my own (the Masterful Disassem-
bler or MD for short) but most any quality disassembler can be
used. It is most handy if the disassembler allows label names to
be associated with addresses and also supports comments lines.
All disassemblers I know of allow you to define which areas of
memory are instructions and which are data (the more data
types supported the better). You will find it particularly handy if
the disassembler will recognize tables of addresses and put
these into its label pool.

If the disassembler you use does not allow label names and
comments to be entered, then you will have to work from a prin-
ted listing and use an editor to keep track of things. This is a lot
more trouble on large disassemblies because up-to-date listings
may take hours to generate and you will be tempted to try and
get by with older ones. This will sooner or later cause
duplication of effort as you re-comment some areas a second
time.

For an example, I will be referencing TURBO Pascal® .
This is because I am familiar with it and it encompasses many
features common to most assembly language programs.

There is a knack to disassembling programs. After you have
done one, the next comes easier. Just like programming.

Choosing the Proper Candidates for Dissection

Before setting cut to produce source code for that super new
program, you first want to know if you can succeed. Before 1
embark on a new project, I ask myself these questions:

* Is there a real use for the source code for this program?

* Is the program small enough that I can complete this
project in a reasonable amount of time?

* Was the program written in assembly or at least compiled
with a good (non-threaded) compiler?

Disclaimer

The guidelines contained herein are for educational pur-
poses only. The legality of disassembling a program is not
totally free from doubt (although it is done on a routine basis).
Software licenses may impose limitiations that the user should
be aware of. It is certainly not the intent of this article to deprive
any software producers of rightfully earned revenues.

The Computer Journal / issue #27

* Is the program static or does it move itself around in
memory?

The answer to these questions, when taken together, help
me to decide whether or not to try to disassemble a program. 1
really try to avoid programs that move themselves in memory
(like DDT does). I know of no disassembler which can handle
these types of programs successfully. The program size is also
very important. I have found that, on the average, every
processor instruction, uses 2 bytes of memory if it is 8080 code
and 1.5 bytes if it is well written Z-80 code (this includes most
normal data areas). This means that an 8k program would
result in 5333 lines of Z-80 assembly code and when commented,
will take up 100k of disk space. I don’t recommend users try
disassembling programs in excess of 16k (unless they have a

- VAX to work with!).

How can you tell if a program was originally written in
assembly language and is this really important? With some of
today’s optimizing compilers, this question becomes less impor-
tant. But in general, when I first look at a disassembly of a
program I want to see if there is a consistent flow of logic to the
code. When I see code that is composed of a seemingly endless
series of calls to subroutines grouped at one end of the program
(either low or high addresses), 1 know this came from a
threaded type compiler and will be a bear to disassemble. I like
to see subroutine calls followed by code that uses the Z-80 flag
register (like “CALL 1234" followed by *“JR NZ,4567""). This is
the way assembly programmers work but few compilers are
smart enough to do this. Most would have inserted a ““AND A"’
or similar instruction. Additionally, compilers produce code
that executes under all conceivable conditions. Thus there will
be many absolute jump instructions and few relative ones. If
you find that you cannot tell if the code was produced by a com-
piler or an assembiler, then it probably does not make much dif-
ference.

Over the years, users have suggested various projects for
disassembly. These have ranged from fairly reasonable ones
like MP/M, OASIS, and MS-DOS to absurd ones like ED and
LOTUS-123. Who even uses ED, and who has enough disk space
to hold LOTUS?

The Process of Generating Usable Source Code

Prior to disassembling a program, you want to learn as
much about how it works as you can. You need to know exactly
what the program does and have a reasonable idea of how it
does it. When you understand what a program does on a gross
level, you will be able to understand the finer details when you
get to them.

When I start on a disassembly project, I find it is generally a
six step process.

1) Understand what the program does and how it functions.
2) Determine the begin, end, and initial execution addresses.
3) Identify the instruction and data areas.

4) Isolate the subroutines and identify the lowest level ones.
5) Comment and label the subroutines.

6) Comment and label the main program code.

Before you can effectively use a disassembler, you will have
to know the bounds of the program you are dealing with. I
generally use DDT to get a rough idea of the end address. This
will display the address of the physical end of the executable
file. The actual end of the program is somewhere before this.

~ The Computer Journal / Issue #27

Depending on the type of program, it may or may not be easy to

.locate an effective ending address. At the very least, you can use

the physical end address until experience indicates otherwise.

With most disassemblers (especially MD) you will want to
identify those areas of the program that contain data and not in-
structions. You can spot the larger data areas using a
hexadecimal and ASCII dump of the program (DDT can be used
if the disassembler does not support this). Message areas are
quite easy to find, but binary data can be hard if it is not all 00’s
or OFFH’s. Of special importance is the location of any address
tables. When disassembled, these tend to show up as series of
LD C,C or other “meaningless’’ instructions. Depending on the
program, the address table might be next to another key table.
For example in TURBO Pascal, the editor uses an input com-
mand table followed by a corresponding address table.
Programmers tend to keep these close together as it makes it
easier to write and maintain the program.

An important point to remember is the documentation that
came with the program. At times there is a wealth of infor-
mation here. You will be particularly interested in the following
items:

* Error code and error message cross references. What
situations lead to the different errors?

* Internal data structure areas. Some of this information may
be found in a section which details the interfacing of external
programs or subroutines.

* Program options. If there are several options (or ‘‘swit-
ches’’) available, what are the defaults and how are they used?

¢ Names. The manual may use mnemonic names while
describing an internal function. For example the TURBO
Pascal manual uses FIB while describing file interface blocks.
Maintain these same naming conventions.

TURBO Pascal is a good example as the manual goes into
considerable detail on the structure of some internal data areas
like the file interface blocks and the storage of real and integer
type numbers. Plus a memory usage map is provided. Very
handy! There are three very gross sections to all programs.
These are 1) the initialization section, 2) the main working sec-
tion, and 3) the wrap-up section.

Initialization

There are certain similarities among most programs when
it comes to initialization. One of the first things a program is
going to do is setup a machine stack area. This is because CP/M
does not define how much stack space is already available. To
be safe, programs will generally set their own space aside for
this. It is easy to spot. You are going to find a LD SP.nnnn or
similar type instruction very early in the initialization phase.
Secondly, the memory limits will have to be established. For
programs that want to use all available memory, there will
something similar to LD HL,(0008) followed by LD (nnnn) ,HL.
This is because CP/M maintains a jump instruction to the BDOS
at location 5 and this is the lowest location used by CP/M.
Everything below this is available for the program to use. On
occasions you will find a program that does not use too much
memory and then it merely saves the return address by POP HL
and LD (nnnn),HL. This allows the program to return to CP/M
without having to do a warm boot. Thirdly, certain data areas
will have to be preset, and then the screen will be setup with a
sign-on message (this varies the most between programs).

When you disassemble a program, first jump to the
initialization area. You will want to identify the stack area
which more than likely is close to other data storage areas. You
should also be able to locate the screen 1/0 routines as the
program will surely do some kind of screen output during
initialization

There are two common means of outputting a string of data
to the screen and you want to find out which method is being
used. Thus will aid in the remainder of the disassembly. The first
way is to load the address of the string into a register pair (like
HL) and then call a routine which outputs the characters. The
other way is to call an output routine and have the string im-
mediately following the call instruction. In either case, the

. strings will start with a character count byte or terminate with
an ‘‘unprintable’’ character (like 00 or OFFH). CP/M programs
commonly use a dollar sign (‘‘$"") as a terminator as this is con-
sistent with the BDOS string output function. Determine which
method is being used so you can spot and comment these areas
as you find them.

You can identify the data areas being initialized but since
you probably do not know what these are used for, you cannot
add meaningful label names or comments. But have patience,
you will be learning a lot more as time goes on.

Main Program Body

This is the heart of any program and the section which is dif-
ferent for every one. Luckily programs are generally written in
a modular fashion. Sections of code perform a specific task. This
makes it easier for the programmer to write and later debug it.
And happily it makes it easier to disassemble. TURBO Pascal
had three main portions that were disassembled separately
(run-time library, editor, and compiler). By locating the logical
divisions of a program, you can minimize the cross com-
munication which hinders the disassembly process.

When you first start on the main program section, keep in
mind that a program is a collection of subroutines tied together
in a particular order. As you browse through the code initially,
try to get an idea of the programming style. Items to keep track
of are:

» Are subroutines generally kept in one location (like the
beginning or end of the program)?

» Is there a constant pattern of calling subroutines (certain
registers always used for arguments)?

* Do routines always terminate in a return instruction? Or do
they use jumps to other routipes to save time?

e Are certain registers ‘‘sacred”’” and not used by
subroutines? .

¢ Do subroutines always preserve registers?

To answer these questions, examine the first few
subroutines you find. These are easy to spot. Just check the
destination of the call instructions. You do not have to under-
stand the routines right off, but make notes concerning any
similarities that stand out. If the program was written in a high
level language, there will be many (and often wasteful)
similarities.

With these ideas in mind, the next step is to identify as many
of the individual subroutines as you can. If you can insert com-
ments with the disassembler, try to separate the routines with a
blank comment line or two. Some disassemblers do this
automatically when they encounter a return instruction. Most,
including MD, do not.

10

When beginning to disassemble a subroutine and comment
it, remember that subroutines are often nested (subroutine A
calls subroutine B which calls subroutine C, etc.). You will find
it easiest to locate the inner most subroutine (the one -hat does
not call any other subroutine within the program area that has
not already been disassembied) and begin there. These are
generally smaller with an easier to understand, more direct
purpose. You will find that by documenting one of these low
level routines and changing the references to it to a meaningful
name like “OpenFile’’, you can go back to a parent subroutine
and understand it a little easier. Then go back to its parent
subroutine and so on. Because a subroutine is generally referen-
ced by many others, documenting these small ones has a
pyramid effect. This bottoms-up process is essential for even the
smallest programs.

Initially look for CP/M BDOS references. These are call or
jump instructions to location 0005. The process to access CP/M
is well defined. The function number is loaded into register C
and any parameters use register pair DE. You might have to
look a few instructions ahead of the BDOS call (or jump) to find
where register C is loaded. Then refer to the CP/M Reference
manual for the meaning of this function. Keep a chart on the
wall with a summary of these functions. You will refer to it of-
ten. By using this approach, you can identify the file routines
(open, close, read, write, delete, rename, etc.) and the console
routines (character input, character output, status, etc.).

It should not take too long to disassemble and comment the
lowest two levels of subroutines. You should then have labeled
subroutines like ‘‘CreateFile’’, “‘PrintChar”, ‘WriteFile",
“ConsoleStatus’’, etc. These will be the work horse of the
program as all other subroutines will need to use these.

There will come a time when you seem to be unable to
progress with this bottoms-up approach. Maybe by the third or
fourth level of subroutines. At this time, you need to call upon
your knowledge of what the program does and start a top-down
approach. You will need as much information as you can get on
how it functions. For example, if you are disassembling an
editor (like the editor portion of TURBO Pascal), you know that
this will read the keyboard, determine if the key (or keys) con-
stitute a command or data to be added to the file. Then you will
look at those subroutines that reference the keyboard (either
directly or via a status check subroutine). One of these routines

~will have to determine if the key is a command key. In TURBO

Pascal, commands consist of a control character followed by
another character. By examining the data areas initially you
have already found the location of the key translation table.
Then the subroutine you are looking for will contain a reference
to this table. When it is found (it must be there) you then
discover that it also references another data area at the same
time. Isn’t that interesting? Looking at the code shows that as it
scans the key translation table, it keeps a count of which one
matched (if any). Then when a match is found, it doubles the
count and adds it to the start of the second table. Because you
know that addresses in the Z-80 are two bytes long (16 bits), you
then determine that the second table is a table of subroutine ad-
dresses for all possible commands. Now we are really getting
somewhere! Looking at the documentation determines what
functions are performed for the different commands. All of a
sudden you have determined the address and function of many
more subroutines. Of course you quickly document and label
these.

Every once in a while you may find yourself hopelessly lost
within a particular subroutine. At these times, document it as

The Computer Journal/ Issue #27

best you can and put the remainder off until later. As you
disassemble the rest of the code, you will find out under what
circumstances this subroutine gets executed. This may give you
the insight you need to understand it.

Termination

Like the initialization section, the termination portion of a
program is fairly standard. The program has to clean up and
then get back to CP/M somehow.

The process of cleaning up may be trivial for some
programs. Others may have to flush buffers and close data files.
Some times the stack pointer is reset to the value it had when the
program was first executed. This seems to be common even
though it is not required by CP/M. If buffered data output is
used, then the program must be sure the buffers are flushed
(written to the disk) prior to closing the files. There are two
common procedures to flush buffers. The first is to have a
separate subroutine that writes the current buffer as it is. This is
the "‘cleanest”” method but takes some extra memory. The other
process is to write enough end-of-file marks as to be sure to
overflow the buffer which causes it to be written. If the buffer
holds 1024 bytes, then if that many EOF’s are written to the buf-
fer, you “know’’ that it must have been written. I do not consider
this as clean as the first approach as it could result in an extra
buffer being written, but it generally takes less memory to im-
plement.

Stumbling Blocks

By the very nature of assembly programming, it is possible
to write real obscure code. Code can be self-modifying, self-
relocating, or a combination of these and you will have fits
trying to disassemble it as the code may not function as it first

appears.

Self-modifying Code

There are many possibilities here. I will touch on a few of
the most common techniques I have run across. Self-modifying
code is used to either save memory (possibly increasing
execution speed) or to confuse the person trying to disassemble
it.

One very common procedure is to alter the contents of a
data item being loaded into a register. The instruction “LD A,0’’
may be changed into ‘LD A,5” by writing a 5 into the second
byte of the instruction. By using this type of code, the execution
speed is improved (an immediate load is about twice as fast as
an indirect load) and the code is a little smaller. Some
disassemblers point out these types of self-modifying code (MD
does not). If not, these are easy to spot. Just look for unresolved
address references that are within the boundaries of the
program code.

A more difficult type of self-modifying code to locate is when
the instruction itself is changed. Some subroutines (mainly 1/0)
have complement functions. For example reading or writing to
afile. Because they are very similar, programmers are tempted
to “re-use” the same subroutine for both functions. Only a flag
or register value indicates which function is to be performed. An
example is a file I/0 routine that sets a flag based on the conten-
ts of register A. The instruction that sets the flag is either an
“INC A" or “DEC A". Prior to calling the routine, this instruc-
tion is modified to provide the desired function. Since these dif-
fer by only a single bit (3C and 3D hex respectively), a clever
programmer could have code such as:

The Computer Journal / Issue #27

- v =

el W IOMPLTERS NCOReCRATED

| %%ﬁ%nzcmomcs
SAVE 10% on AMPRO

ALL AMPRO PRODUCTS READY FOR IMMEDIATE SHIPMENT

SOME EXAMPLES:; (O, /}"R0 products avaiiabie

MODEL DESCRIPTION REG. PRICE DISCOUNT PRICE
1B-1 Lintie Board SBC 249.00 224.10
18-2 Linte BoarwPLUS SBC 289.00 260.10
2A-2 Littie Boarc/188 SBC 49500 445.50
24P Proto Board 179.00 161.10
2vR Video RAM Emulator 195 00 175.50
3A1 STD Bus SCS! VO Board 119.00 107.10
1224 CP/M System w2 Drives 995.00 895.50
222 PC-DOS System w2 Drives 1295 00 1165.50
321 Expandable PC-DOS System 1296 00 1255.50
Piease aad $3.00 (38 00 on) for UPS s

g

Caiifornia resdents add appropriate sales l;l

X

VA ‘f_'c—/) Some restrictions apoly 10 Crece and largs quan-
 cm— = L tity orders. Call for information. Allow 2 - 3 weeks
for 1224, 222 or 321
CHECKS PO's « friema

CALL NOW - CALL COLLECT (415) 376-0125
BEAR ELECTRONICS, P.O. Box 61, Moraga, CA 94556

(€ Z Best Sellers -)

Z80 Turbo Modula-2 (1 disk) $69.95
The best high-level language development system for your Z80-
compatiblie computer. Created by Borland International. High perfor-
mance, with many advanced features: includes editor. compiler,
linker, 552 page manual. and more

Z-COM (5 disks) $119.00
Easy auto-installation complete Z-System for virtually any 280
computer presentty running CP/M 2.2. in minutes you can be runming
ZCPR3 and ZRDOS on your machine, enjoying the vast benefits
Includes 80+ utility programs and ZCPR3: The Manusl.

Z-Tools (4 disks) $150.00
A bundle of software tools individually priced at $260 total. Includes
the ZAS Macro Assembler. ZDM debuggers, REVAS4 disassembler
and ITOZ/ZTO! source code convertors. HD64180 support

PUBLIC ZRDOS (1 disk) $59.50
It you have acquired ZCPR3 for your ZBO-compatible system and want
to upgrade to full Z-System, all you need is ZRDOS. ZRDOS features
elimination of control-C after disk chenge. public directones. faster
@xecution than CP/M. archive status for easy backup, and more!

DSD (1 disk) $129.95
The premier debugger for your 8080, Z80. or HD64180 systems Full
screen, with windows for RAM. code listing, registers. and stack. We
feature ZCPR3 versions ot this professionat R

Quick Task (3 disks) $249.00
Z80/HD64180 multitasking realtime executive for embedded com-
puter appiications. Full source code. no run time fees. site license for
development. Comparabie 1o systems from $2000 to $40.000'
Request our free Q-T Demonstration Program.

Z-System OEM inquirnes invited.
- ¢ Visa/Masiercarg accepled Aod 34 20

- $h h n Norr A = .
- | Echelon, Inc. et wseanare So0cm son st
885 N. San Antonio Road + Los Altos, CA 94022

QIS/‘NS-}SZO {Order line and tech support) Telex 4931646 ‘

1

Lo HL,Filel0
INC (HL)
P (HL)

;Address of general file i/o.
;Change INC into DEC for reading.
;Execute and return through it.

While this type of code would be difficult to manage because
it would have to remember the last state, it could be made to
function.

Relocatable Code

The Z-80 does not process relocatable code. So the program
must handle the relocation task itself before it is executed.
While there are many ways to do this, the most common
procedure to to maintain a table of those address that have to be
relocated. TURBO Pascal, in the overlay command processor
(TURBO.OVR) uses this technique. The program is assembled
as if it begins at location zero (or some such address). Just prior
to being executed, a relocation routine moves it to the
destination address (in the case of TURBO.OVR this is high
memory) and then changes all address references accordingly.
Finally the program is executed.

A second procedure is to maintain a bit map table within the
program (some assemblers help you maintain such a table).
This table has a bit for every byte in the program. If the bit is
set, the corresponding byte must be relocated. This works for
programs which are relocated by a certain number of pages (256
bytes to a page). That way only the high byte of an address must
be changed.

Trick Code

You may find that assembly programmers love to use cer-
tain ‘‘tricks” that improve execution speed or save memory.
You have to watch out for this or you could get really confused.
TURBO Pascal in many places uses instruction sequences like:

ReadFile: LD A, OAFH
ORG $-1
WriteFile:XOR A
AND A
PUSH AF

By jumping into the middle of the instruction at “‘ReadFile”
the program is able to set a flag byte (using register A) that is
zero on a write and non-zero on a read. This saves a few bytes
and drives the disassembler crazy! Change these into
something like:

ReadFile: DB 3EH

WritefFile:XOR A
AND A
PUSH AF

And add some good comments so you will know what is
going on the next time you have to look at this.

One way of logging an error message where it is desired to
load register A with a value (say from 1 to 5) to correspond to an
error code, could be done as follows:

Error5;: INC A
Errors: INC A
Error3: INC A
Error2: INC A
Errort: INC A
LD (ErrorCode), A

To log an error then, the following sequence would work
(this saves a single byte for each occurrence).

XOR A
CALL Errord

12

Initially when you disassemble this type of code sequence,
you may be tempted to think that the series of “INC A"’ instruc-
tions are really data. After all it doesn’t make much sense at fir-
st. But as you uncover those locations where these instructions
are referenced, you soon discover what is going on and correct
your mistake.

There are plenty of other tricks you may run into and some
are even more obscure.

Making Use of the Generated Source Code

Now that you have generated the source code and it has
been documented more of less to your liking, what do you do
with it? Although you probably should have asked yourself this
before you started this project, here is a list of the major uses for
the source code to a program.

¢ Using the source code you can fix those ‘‘bugs’’ that preven-
ted you from fully utilizing the product.

¢ Set those default parameters to what you want.

* Modify the program to include features that you (and
perhaps others) want to see.

¢ Learn how the programmer did those wonderful things.
Make your programs work just as well using these techniques.

¢ Make some money from your labor.

Because you have converted the program from machine
code to an ASCII file suitable for an assembler, you can now edit
the file making any changes you wish. Then you reassemble and
link (or load) the program. This new copy now functions the way
you want it to.

If one of your reasons for producing the source code was to
learn how the program functioned, then the printed listing is
probably the most important result. While the process of
disassembling already gave you great insight into the program
as a whole, now you will be able to study that particular aspect
that intrigued you (like just how does TURBO Pascal handle a
forward label reference when it is only a one pass compiler? Is it
really a one pass compiler??).

Another interesting, but often overlooked, use for the source
code is that other people may have similar interests to yours.
Maybe you could sell it? This is a sticky area because the source
code is composed of instructions whose order (ie, the executable
part of the program) is owned by the author, plus your added
comments and label names. There have been a few examples of
disassembled programs being published (for example the
Timex/Sinclair ROM) but these most likely required the con-
sent of the original author.

Regarding your work, you would certainly be allowed to sell
your label names and comments but probably not the instruc-
tions. After all if you sold the instructions then you are, in effect,
selling the program and would owe the author royaities. But all
is not lost as there is a way out of this mess.

If you consider that every line of the assembly source file
looks like this:

Co=] --=> Cmemmmmmens 2 ~--oee- > Koeremom—an 3 o=emme > <=m- fAme->
{LabeiName) (processor instruction) linstruction arguments! {(Comments}

where each field could be absent, then you could extract the por-
tions that you have created (#1 and #4) from the line and
eliminate the portions that the program author created (#2 and
#3). The extracted portions could be put into data files and sold.
Now in order for a customer to use this data (your label names

The Computer Journal / Issue #27

and comments), he will have to come up
with the instruction and argument fields
for each line. This means he must
already have the program. Since even a
rudimentary disassembler has no
trouble producing the processor instruc-
tions for a program, you will have to
come up with a disassembler that knows
how to combine your label names and
comments with the disassembled in-
structions. This is not a trivial task, but
its not that difficult either. What you
come up with is a program that can
reconstruct the source code on the
customer’s computer system.

In this way you would only be
distributing your label names and com-
ments along with a simplistic
disaassembler that knows how to put the
pieces back together again. And, impor-
tantly, the author is not cheated out of
any royalties that are due because the
user must already have a copy of the
program. Which hopefully was obtained
properly.

The results of this fancy foot work is
that the customer has to wait a short
while for the source code generator to
produce the final files. The generator for
TURBO Pascal takes about twenty
minutes to produce 21,000 lines of assem-
bly code. Not a big inconvenience con-
sidering the immensity of this task.

These knowledgable, highly
specialized disassemblers are what I call
Source Code Generators. C.C. Software
has these available for CP/M 2.2 ($45),
CP/M 3 ($75), and TURBO Pascal v 3
(CP/M, Z-80) ($45). And more are in the
works. B

The Computer Journai / 1ssue #27

BD Software, Inc.. maker of the original
CP'M-80 C Language Development

System, knows

Time s precious

So the compilation, linkage and execution
speeds of BDS C are the fastest available, even
(especially!) on floppy-based systems. Just ask
any user! With 15,000 + packages sold since
1979, there are /ots of users . .

New! Ed Ream's RED text editor has been
integrated into the package. making B0OSC a
truly complete, self-contained C development
system.

Powerful original features: COB symbalic
source-level debugger. fully customizable
library and run-time package (for convenient
ROM-ing of code), XMODEM-compatible
telecommunications package. and other sample
applications.

National C User’s Group provides direct access
to the wealth of public-domain software written
in BDS C. including text editors and formatters.
BBS's, assemblers, C compliers, games and
much more.

Compiete package price: $150.

All soft-sectored disk formats, pius Apple

CP'M. available off-the-shelf. Shipping: free. by
UPS, within USA for prepaid orders. Canada. $5.
Other: $25. VISA, MC. COD. rush orders accepted.

i : DSolftwearre, ine.
BO Software, Inc.

P O Box 2368 RN
Cambridge MA 02238 ""'\

617 + 576+ 3828 ',‘
“‘"lllt

<%

13

Feedback Control System Analysis

Using Root Locus Analysis and Feedback Loop Compensation
by Bert van den Berg, BV Engineering

Closed loop feedback control systems are used to ensure

.that an activity occurs as intended. All such systems contain a

forward block which performs an action and a feedback block

" which measures the action and reports the results. The function

of the feedback loop is to reduce the error between the measured

and desired result to zero or some acceptable value near zero.

Figure 1 shows a typical feedback control system in its simplest
form.

X(s) m G(s) Y(s)

K(s)

Figure 1 - Simplest Feedback Control Loop

The composite LaPlace transfer function, H(s), of the feed-
back system of Figure 1 can easily be calcuiated. If G(s) is the
LaPLace transfer function of the forward path and K(s) is the

-transfer function of the feedback path, and the overall transfer
function H(s) is defined to be H(s)=Y(s)/X(s), then:

Y(s) = e*G(s) V)

e= X(s) — K(s)*Y(s) (2)
Substituting (2) into (1) gives:

Y(s)=G(s)[X(s) — K(s)Y(s)] (3)

Rearanging (3) gives us the answer fbr the closed loop transfer
function:

H(s) = Y(s)/X(s) = G(s)/[1+ K(s)G(8)] (4)

An example of such a control system is the driver of an
automobile. In the case of the driver, he uses the automobile
controls to maintain the vehicle on a desired path. The driver’s
vision provides a means for sensing the actual motion while his
brain derives the error between the desired motion and the ac-
tual motion. Deviations are corrected, the new path observed,
and a new estimate of the error between actual and desired
course is provided.

While feedback provides a means to reduce error by
measuring the activity, it can also create system instability,
cause overshoot, and exhibit undesirable transient response. An

14

example of potential instability and undesirable response would
be if the driver of the automobile were drunk or had to rely on in-
formation verbally transmitted to him by another observer.
With this in mind, it is important to have the capability to assess
a control loop’s characteristics. In particular, one of the first
issues requiring resolution is that of loop stability. Since loop
stability, accuracy, and transient response are all related to
loop gain, the loop gains for which the loop remains stable are
another area of interest. The question of loop stability with
respect to loop gain arises because loop element gains may
change due to environment and loop accuracy is strongly affec-
ted by loop gain.

When the issues related to loop stability have been resolved,
the designer then turns to concerns regarding loop transient
response. This defines the loop response to a step change in in-
put to the control system. One method for studying and predic-
ting the behavior of closed loop systems is called the root locus
method. The root locus method attempts to calculate the roots of
the denominator of the closed loop transfer function, H(s), for
the control loop. With this method the transfer function is
determined in the LaPLace domain (or as a function of the com-
plex variabie, s). Next, the roots to the denominator of equation
(4) are determined as a function of loop gain. When the roots are
plotted in the s plane we can infer some characteristics about
stability and transient response.

Roots which lie in the right half of the s plane correspond to
an unstable system whose output to a step function input will
oscillate with continually increasing amplitude. Those roots
lying in the left half plane with complex pairs will exhibit a
response to a step input which may overshoot the step amplitude
but will settle to the commanded step value. The closer a com-
plex root lies to the imaginary axis the quicker the system
response is expected to be. That is, the system will reach its
final value quickly. However, the overshoot in reaching the final
value may be substantial. The converse is also true. The closer a
complex root lies to the real axis, the slower its step response
becomes. The type of response for a system having roots located
at various points in the s plane is shown graphically in Figure 2.

We will now analyze a typical control loop, compute the root
locus of the system using the LOCIPRO(1) root locus program.
We will find that the loop is unstabie. This behavior will have
been predicted from the system root locus by LOCIPRO. A lead-
lag loop compensator is then added and the new locus of roots
for the compensated system computed. The new root locus
provides us with information as to the optimal loop gain and

(1) LOCIPRO, SPP, and PDP, are Professional Engineering
Software products from BV Engineering, 2200 Business Way,
Suite 207, Riverside, CA 92501, phone (714) 781-0252

The Computer Journal/ Issue #27

relative stability of the compensated system. SPP will be used
to verify that the response of the system is now acceptable. PDP
is used to make all the plots for these examples.

—_—
2 ./
<
-
1
3
=
)
a3
E
T Real Axis
1'\

Figure 2 - Typical System Responses

The stable platform control system shown in Figure 3 con-
sists of a platform, an angular rate sensor, and a torque motor to
move the platform. In this system a desired rate is input to the
system, and the amplifiers feed a signal to the torque motor
which in turn causes the platform to rotate at a particular
angular rate. The actual rate is fed back to the control loop to
allow the loop to accurately follow the commanded rate.

Rate Sensor

A: T+

el

Primary Lens

Optical Sensor

Torque Motor

]

Position Sensor

Figure 3 - Stable Platform Control Feedback System

It is desirable to have as high a loop gain as possible in order
to maximize steady state accuracy of the closed loop. The
system requirements demand that the system settle to the
desired steady state final value within 0.1 seconds for a step in-
put. Figure 4 shows the block diagram of the components of the
loop in the LaPlace domain. The loop elements describe the
characteristics of the gain stage, power amplifier, the torque
motor, platform inertia, rate sensor, etc.

The Computer Journal/ Issue #27

Gain Stage Amplifier Motor
2000 1 1/%
-
1
13E-5 S°2 +44E-3 s:;
Rate Gyro
Figure 4 - Loop Block Diagram

The transfer functions describing the loop elements of
Figure 4 are entered into the LOCIPRO program and the
program is used to compute the root locus as a function of gain.
The value of the gain, K, (block 1 of figure 4) is allowed to vary
between the limits of 500 and 4000.

After data for the last transfer function block has been en-
tered into LOCIPRO, the program lists all the data and requests
whether there is any need to edit the data. Once editing (if any)
has been completed, LOCIPRO will list the composite open loop
transfer function. The closed loop transfer functions may be
saved to data files for future use by LOCIPRO or the Signal
Processing Program (SPP). After the root locus has been com-
puted, the pole-zero vs. gain data may be vectored to the
display, the printer, or to an ASCII data file. The ASCII data
files may be plotted using PDP, PCPLOT, PLOTPRO, or other
plotting routines.

The composite open loop transfer function for the system
described by figure 4 is computed by LOCIPRO and is listed
here:

Open Loop Transfer Function Data

Numerator Coefficients - Ascending Powers of S

Exponent of Coefficients
S
0 .100000E 1

Denominator Coefficients - Ascending Powers of S

Exponent of Coefficients
S ’ '
0 .000000E 0
1 .100000E 1
2 .440000E-2
3 J130000E-4

We are now ready to perform an assesment of the stability
of the loop with respect to changing gains and have a choice of
three levels of resolution in choosing gain steps. The LOCIPRO
program can be directed to choose low or high resolution steps
with the gain steps automatically selected by the program. The
user can also specify the number of steps manually. For this
example LOCIPRO was directed to compute a root locus for 70
gain steps for the stable platform problem. The gain K, was

15

specified to vary between 500 and 4000. The results are shown -

plotted in the s plane of figure 5.

Jncompensated Root Locus
&3¢
!
360 r
v P .
> : !
<< 2 e '
. 1 J
= T — :
E 2 }_
g |
— | .
| ;
-
\
L |
-60C { ! i i i 1 1 H ! J
-1200 -90¢ -600 -300 0 300
o Real Ax13
Figure 5 - Root Locus for Uncompensated Stable Platform

A number of different things can be seen from the data
presented in figure 5. It is immediately obvious that the system
is unstable for all values of gain in the range of 500 to 4000. There
are two poles in the right-half plane for all values of gain. These
right-half plane poles start at about 27 + 300i for a gain of 500
and migrate to 200 + 600i for a gain of 4000. There is also a pole
which starts at —400 +0i at a gain of 500 and migrates to —750
+0i at a gain of 4000. Since this third pole lies entirely in the left-
half plane it does not worry us as far as stability is concerned.

This system might be stable for loop gains below 500 but we
would lose the benefit of accuracy at lower loop gains. A gain of
about 2000 would be desirable and thus it will be necessary to
‘‘compensate” the loop to improve the stability margin. The
design of loop compensators in general is a topic worthy of an
article in itself. We cannot do such a topic justice in a few words,
and we will not try to do so here. Let it suffice that many loop
compensators are just ‘‘lead-lag’’ networks which improve
phase margin for the loop by delaying the point at which the
poles move into the right-half plane.

A lead-lag compensator for the loop described by Figure 4
was designed to stabilize the loop. This loop compensator having
a transfer function C(s)=[0.1S + 1 /S is added to the loop
giving us the block diagram shown in Figure 6.

2000 p—d

13E-5 572 +44E-3 S + 1

Figure 6 - Compensated Loop Block Diagram

18

The data for the feedback system described by the transfer
functions of Figure 6 are now entered into the LOCIPRO
program and plotted using the Plotter Driver Program (PDP).
The results are shown in Figure 7.

=N o e ~— =
ez

— =4

-
< s L
>
[. J—
2
—_ -0 }_
£ L
=
BU NS
;" “~
!
00 L | ; . | . ™~ :
400 -30C -200 b) iele

Poles -

Figure 7 - Root Locus of Compensated System

Note that the plot of Figure 7 is made on a different scale as
that of Figure 5. The loop compensator has *‘pulled” the poles
closer to the origin. The additional *‘zero’’ at —10 +0i results in
a drastically different starting point for the closed loop poles. As
the gain K is increased, the poles migrate over a different path
as before and stay much closer to the origin.

The plot of Figure 7 shows that the compensated loop is
stable for loop gain of 500 and unstable for a loop gain of 4000.
Printing the LOCIPRO data in a tabular format, it is easy to see
that a complex pair of poles migrate into the right-half plane at
a loop gain of 3286. At a loop gain of 2000 the poles are located at
—33 =+ 235i. Therefore the loop should be stable at a gain of 2000.
This much gain should provide the desired accuracy. Having the
roots near the imaginary axis predicts a fast response. We only
have to see if the transient response meets the 0.1 second set-
tling time requirement.

We use the LOCIPRO program to save the closed loop tran-
sfer function for the compensated loop and then use the Signal
Processing Program (SPP) to compute the step response. The
time domain waveform we wish to compute the response for is
generated within SPP (or some other program). Although any
user-defined waveshape could have been used, in this case a rec-
tangular waveform was selected. The closed loop transfer fun-
ction file created by LOCIPRO is read into SPP and the time
domain response computed. SPP performs this operation in 35
seconds by using Fast Fourier Transform (FFT) techniques.

SPP takes the rectangular wave and performs a 512 point
FF'T on the signal to determine the constituent frequencies, and

-the magnitude and phase of each of these frequencies. The

resulting frequency components are called the signals ‘‘spec-
tra.” The resulting complex spectra is then ‘‘filtered” through
the transfer function one frequency at a time. The transfer fun-
ction modifies each frequency component of the original time
domain waveform. The resulting frequency spectra is then con-
verted back into the time domain by performing an inverse
FFT. The spectra multiplication technique in the frequency
domain is identical to convolution in the time domain, where the

The Computer Journai/ |ssue #27

rectangular input signal is ‘‘convolved” with the impuise
response of the closed loop transfer function. Spectra
multiplication is far faster than convolution and it takes SPP
only 35 seconds to perform all three operations (FFT-Filter-
IFFT). The results of the transient analysis of the compensated
system is shown in Figure 8.

Zomgersated "rans:ient "Respcrce
ERl) 700
]
)
» |
10 — \ 4 5.0
| | |
— r ’ ! 7 —_
. i ©
2 4w ____J L Jiw c
=} o
2 g
W L 4 n
o o
S a0 A 110 3
a AT \ a
(o -
— . - 3
[e=)
' [- N
500 feooooaoadd RIANENERES
Y]
-7.00 L 1 s 1 1 L 1 L L -3.00
0.000 G.100 0.200 0.300 0.400 0.500
— lhout .
T vkt Time (Seconds)

Figure 8 - Transient Response of Stable Platform

A book with

Table of Contents

Optimization Techniques

Using the DOS Background Print Spooler
System Level Tools

Creating Libraries

Exploiting Command Line Arguments
Using a Binary Search Tree
Techniques for Data Compression
Claiming CP/M Memory

Break the 64K Data Limit

Linked Lists for Data Structuring
Interrupts from Turbo Pascal

Calting the DOS Command Processor
Bit Mapped Graphics

Teaching an Old Screen New Tricks
Implementing 2D Core Graphics
Build a Subset Pascal Compiler

O 0 0000 0 000O0OO0OOO 00O

The Computer Journal / issue #27

“..packed with good
advanced technical information.”

The platform output closely tracks the desired input and set-
tles to a steady-state rate within the required 0.1 seconds. With a
loop gain of 2000 this *‘tight*’’loop should track the commanded
rate quit closely. The gain margin for the loop is 20*Log
(3286/2000) = 4.3 dB, not high — but acceptable under most con-
ditions.

This concludes the discussion of root locus techniques and
the example using the LOCIPRO program. Several books which
are good reading should you desire a more in-depth knowlege of
root locus techniques are listed below:

References:

Dorf, R.C., (1967), Modern Control Systems (Addison
Wesley)Cannon, R.H. Jr. (1967), Dynamics of Pkysical Systems
(McGraw-Hill)Melsa, J.L., and Jones, S.K., (1973) Computer
Programs for Computational Assistance in the Study of Linear
Control Theory (McGraw-Hill) @

ADVANCED TOPICS in TURBO PASCAL

——— Turbo Pascal - Advanced Applications wsesc—

Order Turbo Pascal - Advanced Applications for $19.95 post-
paid in USA; with MS DOS disk, $32.95. Add $3.50 for surface ship-
ment to Canada or other countries; air rates on request. Order from
Rockiand Publishing, Inc., 190 Sullivan, Suite 103, Columbia Falls,
MT. 59912. Visa or Mastercard accepted. Phone orders . call
(406) 257-9119. Free information is avallable. Dealer inquiries
welcomed.

Turbo Pascal -
Advanced Applications

17

The C Column
A Graphics Primitive Package

by Donald Howes

It's now December 18, and I'm frantically typing this
column so I can leave on the 20th to go to Canada for Christmas.
By the time you read this, the holiday season will have passed. I
hope that it has been a happy one for all. Hopefuily, I won't still

- be chained to this desk.

In this column, I'll start to present code for a graphics
primitive package for the IBM PC. While these particular
primitives are for that machine, it shouldn’t be hard to adapt the
code to run on other machines, either MS-DOS based or other
operating systems. Once the primitives are complete (which
will be this and the next column) we can take a stab at
developing some applications using them.

By hiding the machine dependent code at the lowest level, it
will free us to develop the important things in a more general
and machine independent fashion, aiding in the porting of our
software from one system to another. This time, I'll present
code for the most basic parts of the primitive package. These
routines initialize and terminate the application, provide move
and draw routines, and the ability to activate a pixel and clip a
line (see Listings 1 and 2).

Getting Things Started (and Stopped)

To start things off, it is necessary to initialize the graphics
application. The function graf__init() does this, setting the
current x and y location, the maximum and minimum x and y
.coordinate values, getting the display mode parameters
operative when the graphics application started and then setting
the system into high resolution graphics mode.

I must admit, I've cheated a bit on this function, since I've
hard-wired the initialization routine for an Enhanced Graphics
Adapter (EGA). For those not using an IBM or compatible
system, this card provides higher resolution and more colors in
both the foreground and background than the Color Graphics
Adapter (a palette of 16/64). It would be possible to write an
initialization routine that could check whether the system had a
CGA or EGA video card, but there are differences between the
cards that go beyond resolution that would complicate some of
the other routines (I also don’t have a CGA card to test the code I
would write).

The int86() function accesses the DOS interrupts and is used
here to access interrupt 10H (ROM BIOS video interrupt). Users
of non-IBM systems will have to find the appropriate means to
do the analogous on their machines. The first call finds out what
the video mode and video page are when the application starts,
so that the same environment can be restored on exit. The
second call sets the video card into the EGA high resolution
640x 350 mode.

Once the application is complete, the function graf__term()
restores the original video mode and video page using the in-
formation discovered in graf__init(). Resetting the video mode
will automatically set the page to 0, so, if a video page other than
the first was being used, it has to be set independently.

18

Where Do We Go From Here?

Now that we know how to start and stop, what do we do while
we're there? Let’s start with the function for setting a pixel,
do__pixel(). This particular routine is very straight forward,
being a single call to int86(). The parameters passed are the x,y
coordinate of the pixel and the color you wish it to be (#defines
for valid colors are given in graph.h, Listing 1).

Equally simple is the move() function, which updates the
value of cur_x and cur__y to the x and y coordinates passed to
it. Note that both the move() function and the draw() function
I'll be talking about in a minute are absolute routines. That is,
the x,y value passed is a screen coordinate, not an offset. These
functions can be augmented by relative ones (which do use an
offset) very easily. Using the move() function as an example, it
would be:

void move__rel(xoff,yoff)
int xoff, yoff;
{
intx,y;
X = cur__x + (xoff);
y =cur__y + (yoff);
move(x,y);

}

A function draw_rel() would be identical, except calling
draw(), instead of move().

I'll discuss draw() and clip() at the same time, since clip()
is used by draw() to clip lines to the screen. The draw() function
uses the Bresenham line algorithm to draw a line from the
current x,y location to that specified. This algorithm is quick,
since it uses only integer arithmetic to calculate which pixels
are part of the line and avoids the ‘‘stair step’ effect which
plagues other integer based line drawing routines. An extended
discussion of this routine can be found in Foley and Van Dam,
pg. 433-436 (see References section below).

The clip() function is used to clip a line segment to a win-
dow, so that no time is wasted in calculating pixel positions
which fall outside the window and are not displayed. The fun-
ction uses the Cohen-Sutheriand clipping algorithm (see
Newman and Sproull, pg. 65-67) to calculate the length of the line
which is visible within the window (in this case, the window is
the same as the physical screen, the viewport). This clipping is
an iterative process, where the line is successively truncated
until both endpoints of the line are within the window. The fun-
ction code() returns the 4-byte values which are used to deter-
mine when the line is within the window. In addition, the clip()
function tests for the situation where line clipping results in a
line where both end points are on the same side of the window
and are external to it. In this case, the line cannot be displayed
and the function returns.

The Computer Journal / {ssue #27

*uotiraoisar 1o] saayaweard snotaaad saaPs osy >
] SSAIAPTIPA SAZITRPIIINT PUP APOW (GEXNHQ O UAIIDIS Ayl s1as - uojrdrinsap -
[OYT1d op qo pun {
:m.::_..a.m.:m.a.:;.:Nn:: UARIDSE Ay SAZIIPIIIUL - 1ut gea? g
‘A = xpexcRaaur
fx - xoextdoaur u-udea® apniouts
‘10700 - jecy+8daauy " "
Coxn = yeeyecfaauy
\K(K‘«{&«i&((ikili(«{«lll{i{&&llil((‘!{Ki{{KlkI{&iillll(Ii‘ili&(lﬂl{illl!l(l&
¥ ¥
/% ()ARIVT RUISH TOTOD MAU AL 1AS yf . ssa1qrIvdwod aso1d puer 04 WAT A4l 01 01j10ads are pue ajeiado ¥
. PPN } » 01 STTPD GOTH WON OAPIA Od WAT 2SN SUOTIdUN] 38AY1 JO 1Sow © AION ¥
‘aojo: X Ut
€ 3 7, * ¥
(10702 K xy1axtd op proa . *sa1dnd e ul papnioutl St Ad170u A1akdon Ayl eyl papracad ¥
x ‘ATuo ssn jeroaawwod-uou ‘yruosiad 107 patdod aq Aew weaRoixd styp "
cqoqo0 patjtands a1 o1 paxtd waa1d oy suang uoyidraoss I * *
[oa p . ! - 11dyaosap M *paAxasay sIURTH 1TV *
¥ Samoy piruoq 9861 (0) mAridkdon ¥
[oxtd v saop o 1ax1d op x/
/ x ¥
_ < x *9d WE1 ay1 103 saarrtwyad soiydesd : d2-ydeas M
/» (JwWial 1e1d J0 pua / { . v
{ I e T T T e e P P T R T T P T TP I T TR T P T T T P TP TR P PR T T TP T T Y
C(RA11n0RBaaUIR NTXN)9RIUT
tafed = tery+3azuy *saA11TW1ag sotydern :7 Buyisin
/¥ 28vd Lepdsip 1007198 o/ ¢ = yery 823Ut
}
Jv 19831 () 1s11] A1 1 usesa afed J1 g (A8ed) 31 _t(yapod ‘(ydrro aur
(()meap ‘()anow *‘()1axid op ‘()miadl jead ()Itur jeid pjoa
H(Ra11n09'BP2UT9 N1XN)GRIUT
fapow = Te-y-¥aa1ul 4] FLTHME auY Iapy
/¥ Spow 163/ ‘0 = yeey+Aaauy w1 MOTTIA Autiapy
_ } €1 VINAOVHT Uy apy
(Ywial JeI® prOAA 71 ANTA dUuTIopy
1 NVADT Jutjapy
/% 01 NAIRO1 3uyjapy
SpIRO uorlezZIIRIIIAY 6 anae1 auyJapy
AT AI01ag sem 11 Aem Al 01 waIsAS By 10sad — woridransap ! A9 AUYIop#
14 ALTHM 3utapy
cwn1sAS A1 19saI - winy jead w/ 9 NMOYE Ul iapy
S VINIOVH AUt jyapy
Y aad AUt japy
/v ()31UT je1R jo pua ./ { € NVAD AuTIapa
/x 0GE X N%G x/ fe3r11n09* FaIUTR N 1XN)gQIuT 4 NITND aUTIOpY
/% Apow s21 Ry Yoy 19s 4 ‘ATxX0 = 1e*ycIa1ur 1 anq auyjapy
‘N = yreqe/aIul 0 Xovig AuTIapy
[x 01 13821 01 Apow 101T00U 4/ f1e-y*8a11no - apou /% S1070D punoiBaio] 103 SIUTIAIP y/ ~
/x 01 198%0u oy aded aorTuow o/ ‘yq y+8ni11no - afed n
/% HOT 110D 0ap1a WON x/ f(Ra11nor @r1uTRNIXN)9gINT /x ()987UT 10] suoyun / ¢qaxano ‘Qa1ut §oHFW uotun IfIeIS ®
/x Apow Lepdsip junrana 108 ¥/ LInxXn = yeey*faaur W
/x dniieis 1e apow pue a8ed 0APTA y/ _ tapom ‘s%ed jur 2
[POUTA X wOw XKWy / ‘660 = xew x /¥ SONTRA UAIIDS UTW PUPR XEw y/ ‘utw £ ‘wxem 4 ‘urw x ‘xew x Ut =
/x dnyea K unuixew o/ tahe = xeW A /% SPIBUTPIOOD A ‘X UAIIND f ¢ATamd ‘x and qur m
[x K PUP X 403 sanpea wnutuw [/ ‘o= umw A = ntw X 2
B B <Yy-°sop> apndouTy anw
/x UOTIEDOT A% Juoland Ins x/ ‘n =K and> - ¥ and <Y4rolp1s) apniouly ﬂ
_ } <Y*qQITPIS> apnyouty 5
()1rut 3e18 proa a
Ix /x Seatitwrad Syydead 103 a1 13peay / m
7 8ut1s1q /7 umnyon o sanTiTwIlg sdruydean 1og 9774 aapeay :1 Burisii .M
-

f(1h-7Kysqe = Ap
f(1X-7x)sqe = Xp
K and = (K
X and = |x

C(7K07x K andx and)driyo

“x *p ‘*gaduy ‘zadur ‘yadur ‘Ap ‘xp Iuy

¢(Yanom ‘()1axid op proa

fpuak ‘puax ‘1L ‘L “gx

}
f1o100 7A 7% Ju1
(2107102° A ZX)MEID PTOA

/%
+£7ano pue x and satepdn osye 1] *(7A'7x) AQ paduaiajaa
WOT1BDOY Ayl 01 UOTIED0] IUIIIND AY) wWoa] auly e smeip - uoridradsap
swyitio8(e weyuasaig ayl Juysn AUT] B SMEIpP - MEIp ¥/
/¥ ()2a0W JO PpUd / {
A = K and
X = x Ind
}
¢ *x Uy

(£‘x)3Aa0w p1OA

/x
£ 1nd> pue x and 10}
SINTEA 3yl $1ASAI pue (MeIp 10U SI0p) daow e swiojiad - uoridridsap
arow swiojiad - sacom /f
/¥ (Y112 30 pus 4y {

f(14¢ 1x)dA0W

{

‘xew K = 7k

AP / (7K - xew £) 4 Xp =4 7X
}
(xew £ ¢ zA) 31 esya
{

‘utw £ = 74

AP / (7K - utw £) 4 Xp =4 7X
}

(uta & > 7K) 31 asta

fXBW X = 7X
‘Xp / (7Xx - xew X) y Ap =4 7K

(xew X ¢ 7x) J1 asya

futw X = 7x

XP / o(7X - utw X) y Ap =4 7K
_ }
(utw x > 7x) 31

EL £

‘xew £ = (4
tAp / (14 - xew £) 4 XP =4 IX

futw £ = 14
CAp / (14 - utw K) 5 Xp =4 IX

utw £ > 1£) 37 @872

—~

XEW X - [X
Xp /(1% - xew X) 4 Ap =4 14
}
(xew X ¢ {xX) }} asya
B {
fulw X = %
XP / (IX - utw x) o, Ap =4 1K
_ }
(utm x > 1x) J¥
}
(12) 11
1 - 7K = Kp
SIX -~ 7X = XP
fuanyaa
(7> % 19) 37

}
(z2 1 19) aT1um

tp ‘xp Juy
$(2K°7x)apod = 7O IuY
$(14°TX)3p0d = 12 1UTY
$()apod 1uy
t()aaow pyoa
17K ‘x 1L ‘1x u:“
(Zh'gx 144 1x)d11o 3y

/*
*wyjyaodye

pueT13yIng/udyon 3yl Buysn 110dmata ® 031 dulf © sdyTd - uoyadyaosap
*autt ® sdy1d> - dy72 %/
_ _ _ /% ()3p02 jo pua 4/ {

f(xea A¢K) |opod(utw A>L) | o> (xew x<x) | g>>(ulm XpX)uInialx
}
¢ % 3Juy

(£‘x)ap0d Juy

/%
*310dmd1A ® 0} UO1IBTAI Ul Syie] Judwdas auyy 8yl
2194yM AUTWIDIAP 0 paIpasdu apod 11q inoj 3yl sapyaoad - uoyidransap
rwyiyaoldre BurddiTd pueiiasying/uayo)y Aq pasn - 3pod »/

7z 3uyasyq /7 wuwnyo))

The Computer Journal / Issue #27

/v ()me1p 10 puns 4/

(7K 7x)An0m
f(3oton Lixyraxid op
{

ffadur -4 p

‘710Ut

+p
X

s

1
Dﬂ—ﬁ
$1I0UT =4 P
(0 => xp) 37
}
(0 =¢ p) 31
‘e K
}
(puak > Ky ariym
f(ro7od K x)1axtd op
f1>> (Ap+xp) = gIdur
15> (Ap-xp) = 7aoun
S1 05> Xp = 1adurt

Ap — 1aduT ; (n =¢ Xp) = P

{

X = Xp
(2K = puak
TIX = X
1K = K
}
DW&D

/x Adors anrirsod o/

adoye 01a2 10 an11e83u 4/

‘Xp 4+ jiouy

$7% -~ IX = XPp
1K = puak
7% = X
t7h = K

}

(76 < 15y 1

L2324

{

(10102 £ xy1axyd op
{

$EADUT =4 P
- K
}
asya
f1I0UT =4 P
(n =¢ Ap) 3%
}
asta

{

f7I0UT =4 P
4 K
}
ERA G
£110U7 =4 P
(n => £p) 11
}
(n = P) 37
HEWa
}
(Puax > x) 3TTym

f(20102*Lx)1ax1d op
13> (xp+4Ap) = gaduT

1> (xp-Ap) = 7aduy
15> £p = 1a1duy

Xp - [A2uY § (N =C AP) = P

UK - 724 = Ap A
7X = pusx
1K = £
SIX = X

asya

{
1 - 2L = Ap
$1X = puax
2k = £
7% = X

}

/¥ *P10-0D X IB71ews yi1m JUTOd 1B 11BIS ,/ (Zx ¢ X) J1

/¥ 1 > S1 adols Jo anyeA PINTOSQE 4/ }

(xp => £p) JT

7 Ru13sy7 (7 wwnyo) 9

il

The Computer Journal / issue #27

(C Column continued)

Graphics References

This has been a rapid introduction to graphics. For those
who wish to delve a little deeper into the subject or want to try
their hand at developing their own routines, here are some
references you will find helpful.

Bruce A Artwick, 1984, “Applied Concepts in Microcom-
puter Graphics’, Prentice-Hall, Inc., Englewood Cliffs.

J.D Foley and A. Van Dam, 1982, “Fundamentals of In-
teractive Computer Graphics’’, Addison-Wesley Publishing
_Company, Reading.
. Steve Harrington, 1983, ‘‘Computer Graphics : A Program-
ming Approach’’, McGraw-Hill Book Company, New York.

William M. Newman and Robert F. Sproull, 1979, “‘Prin-
ciples of Interactive Computer Graphics’, McGraw-Hill Book
Company. New York.

That's it for this time. The next column will finish up the
primitive package and we can move on to some interesting ap-
plications. @

,)“5'x¥ 122

Surplus Parts
Resource

Here’s a catalog any serious computer tinkerer needs. It's a
treasure-trove of stepper motors, gear motors, bearings, gears,
power supplies, lab items, parts and pieces of mechanical
and electrical assemblies, science doo-dads, goofy things,
plus project boxes, lamps, lights, switches, computer furni-
ture, and stuff you might have never realized you needed.
All at deep discounts cause they are surplus!

Published every couple of months, and consecutive issues
are completely different. Send $1.00 for next three issues.

JERRYCO, INC. 601 Linden Place, Evanston, lllinois 60202

The Computer Journal / lssue #27

The Hitachi HD64180
New Life for 8-bit Systems
by Jon Schneider

This article was written with the intent of giving those un-
familiar with Hitachi’'s new 8 bit microprocessor an understan-
ding of its advantages over the Zilog Z-80. Also, through the use
of some actual 64180 bios level code, an understanding of how to
utilize some of its advanced features.

The Hitachi 64180 is a highly integrated 8 bit CMOS based
micro-processor designed to be fully compatible with the large
base of Z-80 software already in existence. In addition to an
enhanced instruction set and increased throughput, the chip
performs many of the functions that previously required a large
number of support chips. A few of those functions are:

* On chip MMU, supporting up to 512 bytes of linear address
space

¢ Two channel DMA

» Programmable RAM refresh rates

¢ Programmable memory and I/0 wait states

* Two fully programmable 16 bit reload timers

¢ Two full duplex asynchronous serial ports

¢ One clocked serial I/0 port

¢ Interrupt controller (can use reload timers to generate in-
terrupts)

» Ability to relocate on-chip I/0 addresses

Many of the features of the chip serve to make the design
and production of a system easier and cheaper for the manufac-
turer, and will be transparent to the applications level
programmer. However, if you are a systems level programmer,
or desire to use any of the memory above 64k in any ap-
plications, then you will need to become familiar with the
methods used to control the various on-chip functions.

In addition to the on-chip ports used to control the additional
integrated hardware, there is an extended instruction set. Many
of the new instructions are directly related to on-chip port 1/0,
and will be of no real use other than to avoid I/0 address conflic-
ts between the on-chip and external ports, or to make sure that
the high order bits of the address bus are all 0 (if ANYTHING is
on the high 8 bits of the address bus, the Hitachi’s ports won’t be
accessed).

There are several new instructions that will be of use to any
assembly level programmer. They are:

¢ MLT — multiply two 8 bit values, with 16 bit result

¢ TSTIO — AND the contents of a specified I/0 port with the
accumulator

* TST (g) — AND specified register and accumulator

¢ TST (m) — AND immediate data and accumulator

¢ TST (HL) — AND memory and accumulator

All of the TST instructions are non-destructive on the ac-
cumulator, eliminating the need to save and/or reload the ac-

The Computer Journal / issue #27

cumulator after the AND operation. The fiags are set-reset in
the PSW as would be expected for any other AND operation.
MLT will be covered in more detail later in this article.

The 64180 uses 64 I/0 addresses to control its internal ports,
and allows relocation of those addresses to any 64 byte boundary
within the first 256 bytes of the 64k I/0 address space. This was
done to facilitate the add-on of the Hitachi processor to existing
hardware without causing I/0 address conflicts.

Due to the large number of internal ports, I use an include
file in all of my 64180 work, and refer to the ports by their names
as shown in the Hitachi manual. This file is shown in Listing 1,
and assumes that the ports start at address 0.

The addition of a few new instructions would hardly qualify
the Hitachi as a marked improvement over the venerable Z80,
and other than than making the design of a new system easier, it
wouldn't be generating the interest that it is without something
to make it much more powerful than the current 8 bit workhor-
se.

That feature is its ability to address up to 512k bytes of
memory in a linear fashion. Due to the lack of more than 16 bits
of addressing for the programmer, you are still limited to 64k of
memory addressable at one time, but developers can now code
programs to utilize memory past 64k in a uniform manner,
much like PC-DOS programmers now do.

If you are not familiar with how the IBM PC and other 8088
based computers address memory, you may be surprised to
discover that they have been working within the same limitation
of a 64k segmented architecture. The main difference is that the
8088 based systems don't actually have to switch memory in and
out of one 64k segment, but have to use a segment register in ad-
dition to a 16 bit address to specify an absolute address.

You may have noticed that I mentioned 512k bytes of
LINEAR address space for the Hitachi, and then turned right
around and said that the memory above 64k had to be switched
in and out of the 64k address space the programmer uses. That is
not as contradictory as it may seem.

The address bus on the Hitachi is actually 19 bits wide,
allowing the processor direct linear access to any address
within 512k bytes. It is the programmer that has to work within
the limits of addressing memory with only 16 bits. Even that
isn’t entirely accurate, as some operations, such as DMA, allow
the programmer to specify the absolute addresses within the
512k byte address space.

Since addressing the 64180's extra memory is one of the
more confusing aspects of programming the chip, I will cover it
in detail. The manual as supplied by Hitachi is somewhat con-
fusing and terse, to say the least.

The 64k of memory that is accessible at any one time is
divided into three separate areas called Common Area 0, Com-
mon Area 1, and the Bank Area. How 512k bytes of physical
memory is mapped into a logical 84K of address space is deter-

23

FOR TRS-80 MODELS 1, 3,4, 4P
IBM PC/XT, AT&T 6300, ETC.

The MMSFORTH
System.
Compare.

¢ A total software environment: custom
drivers tor printer, video and keyboard
improve speed and flexibility. (New TRS-
80 M.4 version, tool)
Common SYS format gives you a big
305K (195K single-sided) per disk, pilus a
boot track!
Common wordset (79-Standard pius
MMSFORTH extensions) on ali sup-
ported computers.
Common and powerful applications pro-
grams available (most with MMSFORTH
source code) so you can use them com-
patibly (with the same data disks) across
all supported computers.
Very fast compiie speeds and advanced
program deveiopment environment.
A fantastic fuli-screen Forth Editor:
Auto-Find (or -Replace) any word (for-
ward or back), compare or Pairs-Edit
any two ranges of blocks, much more.
Temporary dictionary areas.
QUANS, VECTs, vectored /0O, and many
more of the latest high-performance
Forth constructs.
Manual and demo programs are bigger
and better than ever!
Same thorough support: Users Newsiet-
ter, User Groups worldwide, telephone
tips. Full consulting services.
Personal Licensing (one person on one
computer) is standard. Corporate Site
Licensing and Buik Distribution Licens-
ing available to protfessional users.

A World of
Difference!

The total software environment for
IBM PC/XT, TRS-80 Model 1, 3, 4
and close friends.

e Personal License (required):

MMSFORTH V2.4 System Dink
(TRS-80 Mode! 1 requeres lowercass, DDEN, 1 40-eck dvive.)

*Personal License (additional modules):
FORTHCOM communications module § .98

FORTHWRITE word processor
eCorporate Site License
Extensions
o Buik Distribution . . . wom 9590/30 wnits.
*Some recommended Forth books:
PORTI: A TEXT & REF. (besttextl) § .96
THINKING FORTH (best on technique) . . . 16.98
STARTING FORTM (populer text)
Shipping/handiing & tax extra. NO retums on softwere.
ﬁ:;;ourdonbfnosnmuyoutheumndot
MMSFORTH, or request our free brochure.

MNLLER MICROCOMPUTER SERVICES
§1 Lake Shore Road, Natick, MA 01760
{617) 653-8138

Listing 1

; HD64180 Ports

; Asynchronous Serial Communication Interface (ASCI)

cntlald equ 0 ; ASC| Control Reg A Chn! 0
cntlal equ ! ; ASC! Control Reg A Chnl 1
cntib0 equ 2 ; ASC| Control Reg B Chn! 0
cntlbl equ 3 ; ASC! Control Reg B Chn! 1
stat0 equ 4 ; ASCI Status Reg Chn! 0

statl equ 5 ; ASCI| Status Reg Chn! 1

tdro equ 6 ; ASCl Transmit Data Reg Chni O
tdrl equ 7 ; ASCl Transmit Data Reg Chnl 1
rdro equ 8 ; ASCI Receive Data Reg Chnl 0
rdri equ 9 ; ASCi Receive Data Reg Chnl 1

; Clocked Serial Input/Output Port (CSI/0)

cntr equ Oah ; CS1/0 Control Reg
trdr equ Obh ; CSiI/0 Transmit/Receive Data Reg

; Programmable Reload Timer (PRT)

tmdr0l equ Och ; PRT Timer Data Reg Chn! O Low

tmdrOh equ Odh ; PRT Timer Data Reg Chnl O High

ridrol equ Oeh ; PRT Timer Reload Reg Chn! O Low

ridroh equ Oth ; PRT Timer Reload Reg Chnl 0 High

ter equ 10n ; PRT Timer Control Reg _
tmdril equ 14h ; PRT Timer Data Reg Chnl | Low

tmdrih equ 15h ; PRT Timer Data Reg Chnl 1 High

ridrit equ 16h ; PRT Timer Reload Reg Chnl 1 Low

rldrih equ 17h ; PRT Timer Reload Reg Chnl 1 High

; DMA Controller (DMAC)

sar0l equ 20h ; DMAC Source Address Reg Chnl O Low
sarOh equ 21h DMAC Source Address Reg Chn! 0 High

sarOb equ 22h ; DMAC Source Address Reg Chn! 0 Bank
darOl equ 23h ; DMAC Dest Address Reg Chni O Low
‘dar0Oh equ 24h ; DMAC Dest Address Reg Chnl 0 High
dar0b equ 25h ; DMAC Dest Address Reg Chnil 0 Bank
berol equ 26h ; DMAC Byte Count Reg Chn| O Low
bcrOh equ 27h ; DMAC Byte Count Reg Chnl 0 High
marl | equ 28h ; DMAC Memory Address Reg Chni 1 Low
marth equ 29h ; DMAC Memory Address Reg Chnl ! High
marib equ 2ah ; DMAC Memory Address Reg Chn! 1 Bank -
iarll equ 2bh ; DMAC 1/0 Address Reg Chnl 1 Low
iarth equ 2¢h ; DMAC 1/0 Address Reg Chnl 1 High
berti equ 2eh ; DMAC Byte Count Reg Chnl 1 Low
berth equ 2th ; DMAC Byte Count Reg Chnl 1 High
dstat equ 30h ; DMAC Status Reg

dmode equ 31h ; DMAC Mode Reg

dcnti equ 32h ; DMAC Control Reg

Interrupt Control Registers

; INTERRUPT Vector Low Reg
INT/TRAP Control Reg

; Refresh Control Register
;

rer equ 36h

; REFRESH Control Reg

; Memory Management Unit (MMU)

cbr equ 38h ; MMU Common Base Reg
bbr equ 39h ; MMU Bank Base Reg
cbar equ 3ah ; MMU Common/Bank Area Reg

; 1/0 Control Register

icr equ 3th ; 1/0 Control Reg

The Computer Journal / Issue #27

mined by how three of the 64180’s internal registers are set up.

The first register that needs to be set up is the CBAR
register (Common Bank Area Register). It determines which of
the three logical partitions will be used, and where they will be
located within the 64k of logical address space.

SEVERAL POSSIBLE CONFIGURATIONS OF MEMORY AS DEFINED BY CBAR

Common Zommon Common |
Area ! Area | Area ! |
g8ank } }------memmr oo 1 Common 6
Area Area i 4
------------ 2ank Common 3
Common Area Area 0 |
Area 0 '
Figurel

As you can see in Figure 1, the starting and ending ad-
dresses for the three segments WITHIN the 64k logical address
space have all been set (although I didn’t show the actual ad-
dresses), and whether or not a particular segment will even be
used is also determined.

Common Area 0, if used, MUST always start at logical and
physical address 0000. The Bank Area must start at either the
end of Common Area 0, if it was used, or at logical address 0.
Common Area 1 must start at the end of the Bank Area, if used,
or the end of Common Area 0, if it was used (and the Bank Area
was not used), or at address 0.

Both the Bank Area and Common Area 1 serve as areas for
the actual switching of physical memory into the logical address
space. All of the areas must start on a 4k physical address boun-
dary.

Now that you have an understanding of what the 3 segments
are, lets see how the CBAR register determines the actual
location of the segments.

MMU Common/Bank Area Register (CBAR : 1/0 Address = 3AH)

bit 7 6 5 4 3 2 1 0
CA3 CA2 CAl CA0O BA3 BAZ BAl BAO

CA3 - CAO (bits 7-4)
CA specifies the start address (on 4K byte boundaries) for
Common Area 1. THIS ALSO DETERMINES THE LAST ADDRESS OF THE
BANK AREA. After a hardware reset all of the CA bits are set
to 1.

BA3 - BAO (bits 3-0)
BA specifies the start address (on 4K byte boundaries) for
the Bank Area. THIS ALSO DETERMINES THE LAST ADDRESS OF THE
COMMON AREA 0. After a hardware reset all of the BA bits are
set to 0.

Let’s actually set up the CBAR register for the following
memory map, which is the same map as used in the RAM disk
drive that I will show later in this article.

MEMORY Logicatl Address
FFFFH

8OO0
JFFFH

0000H

The Computer Journal / I1ssue #27

Little Board/186™.... $495

High Performance, Low Cost PC-DOS Engine

o Boots iBm PC-DOS
. [(not included) —.
-t —— S __$
ﬁ\ g -
. S —
e
. T
® Three times the COMPUTING POWER of ® Only 5.75 x 7.75 inches, mounts
aPpPC directly to a 5-1/4° disk drive

® Data and File Compatibie with 1BM PC, ® Power Reguirement. - SVDC at ' 25A,
runs “MS-DOS genenc” programs +12VDC at .05A; On board -2V

o 8 MHz 80186 CPU, DMA, converter
Counter/Timers, 128/512K RAM zero ® SCSI/PLUS™ multi-master 1. O
wait states, 16-128K EPROM expansion bus

® Mini/Micro Floppy Controller ® Software Included:
(1-4 Drives, Single/Doubie Density, ® PC-DOS compatible ROM-8I0S boots
1-2 sided, 40/80 track) 00S 2x and 3x

® 2 RSQ3QC Senal Ports (50 -38,400 ® Hard Disk support
baud), 1 Centronics Printer Port

OPTIONS

PROJECT BOARD/ 186~ - adids 25
square inches of wire wrap
prototype ares with buffered and
pre-gecoded 80186 bus interface
for Littie Board/ 186

EXPANSION/ 186~ - 20 five key
options to Littie Board, 186
® 512K RAM
® 8087 co-processor
¢ Battery-backed Real Time Clock
® 2 RSQ39/422 sync. async senat
ports
® 1/O expansion ous

ARGENTINA: FACTORIAL S-A, 410018
TLX 22408 AUSTRALIA: ASP

(03) 66 20 20, TLX 43558 Ui AnllAR
SYSTEMS LTD,, 0996 15511 Nx 637497
MLAND: SYMMETIIC OF 1980 585- 292,
CENTRE TLX 121294 MRANCE: £GAL PUA

LEMPEREUR, (041) 23-45-41, TLX 42681 (1) 4508-1800, TLx 690097 GRAdL: ALMHA
BRAIR: COMPULEADER COMPUTADORES TERMINALS, LTD,, (03} 40 '69% NX 341667
LTDA, (41) 262-1939, TLX 416132 CANADA: PWEDEN: A AXTA, 08 $4-90 90 X 1370%
TREM, (604) 438-9012 DIRGMARI: DANSIT, USA: CONTACT AMPROD COnaPUTERS INC_

W e (e ' rwm Com,

ZVI=E=]

COMPUTERS, INCORPORATED

67 East Bvaiyn Ave, * Mountain Vigw, CA 94041 + (413) %e-0E00
TELEX 4940308 * FAX (413) 962-1002

Since you want Common Area 1 to start at 8000H, you would
set up the 4 most significant bits of CBAR as 1000H. To see how
the value was obtained just do the following:

Starting address = B00OH
8000h/1000h (4k) = 8h
08h = 1000 bin

4 MSB's in CBAR = 1000

;divide address by 4k
;result to binary

. Since the Bank Area is to start at 0000h, the 4 least
significant bits of CBAR will be 0’s. Then just convert 10000000b
to hex, and you will have a value for CBAR of 80h.

Now that the segments have been choosen for the 64k logical
address space, and set up with the CBAR register, the next step
is to determine what addresses in physical memory will be
mapped into those segments. There are two registers used for
that purpose, CBR and BBR.

MMU Common Base Register (CBR : 1/0 Address = 38H)

bit 7 6 5 4 3 2 1 0
- €86 (CBS (B4 (B3 (B2 CB! CBO

CBR specifies the base address (on 4K boundaries) used to
generate a 19 bit physical address for Common Area 1 accesses.
After a reset all of the CBR bits are set to 0.

MMU Bank Base Register (BBR : 1/0 Address = 39H)

bit 7] 5 4 3 2 1 0
- BB6 BBS B84 BB3 882 B8! BBO

BBR specifies the base address (on 4K boundaries) used to
generate a 19 bit physical address for BanK Area accesses. All
bits of BBR are set to 0 after a hardware reset.

As an example, suppose that you want to switch a block of
memory starting at physical address 50000h into the Common
Area 1 segment (at the same time switching out whatever was
there). Then the CBR register would be loaded with 50h. It’s that
simple. You just load the register with the two most significant
digits of a 5 digit hexadecimal address in physical memory.

DISK DRIVE SERVICE
L2/ $35
B e e e $45

SERVICE SPECIALS
Apple IIDrives............cooiiiiiiii i $30
Shugart SA400/400L.c.ccovivininnn.. $25
Shugart SA800/801......................oovieninnn... $25
Shugart SA850/851...............coviiiineiiien., $35

DRIVES FOR SALE
Shugart SA 800-2 (wideframe)........................ $59
Shugart SA 850 (wide frame)......................... $99
MPI52S5%"DS/DDfullht............................ $55
Tandon 100-2 DS/DD fullht........................... $70
Tandon 100-1 SS/DD full ht. (new).................... $60
Apple II Drives............oooiiiiinniiiiniinnn .. $85
Genuine “IBM” (PC) floppy contr.................... $60

60 day warranty on all drives and service. Turnaround
time usually 24-48 hours. Trade-in available for drives too
costly to repair. Prices do not include parts or shipping. If
parts are more than $20 we get permission before
repairing. Units returned UPS COD unless otherwise
requested. All drives for sale are reconditioned unless
otherwise noted and documentation is included.

LDL ELECTRONICS
13392 158 St. N., Jupiter, FL 33478 (305) 747-7384

The BBR register is used in exactly the same manner, and
since Common Area 0 always starts at physical address 0, there
is no need for a register for its mapping. A few examples may
help to clarify all three registers usage.

CBAR = 80h CBR = Q0h B8BR = 40n

MEMORY Logical Address Physical Address

FFFFR OFFFFh

32k

8000h
IFFFR

08000h
47FFFn

0000h 40000n

Now, to switch the physical addressed memory '40000h to
47FFFh’ out of the bottom 32k of logical address space, and
switch the next 32k block from '48000h to 4FFFFh’ into the same
logical address space, just load BBR with 48h.

CBAR = 80h

CBR = 00h BBR = 48h

MEMORY Logicati Address Physical Address

FFFFRA OFFFFh

32k

8000h
IFFFR

08000h
4FFFFR

0000h 48000h

CALENDAR/CLOCK

$69 KIT

Noww,

D TH i

® Works with any Z-80 based computer.

® Currently being used in Ampro, Kaypro
2, 4 & 10, Morrow, Northstar, Osborne,
Xerox, Zorba and many other computers.

¢ Piggybacks in Z80 socket.

® Uses National MM58167 clock chip, as
featured in May '82 Byte.

e Battery backup keeps time with CPU
power off!

e Optional software is available for file
date stamping, screen time displays,
etc.

e Specify computer type when ordering.

e Packages available:

Fully assembled and tested $99.
Complete kit $69.
Bare board and software $29.
UPS ground shipping $ 3.

MASTERCARD, VISA, PERSONAL CHECKS,
MONEY ORDERS ¢ C.0.D.'s ACCEPTED.

N.Y. STATE RESIDENTS ADD 8% SALES TAX
A AV Y N KENMORE

COMPUTER
TECHNOLOGIES

P.0O. Box 835, KXenmore. New York 14217 (718) 877-0817

The Computer Journal / issue #27

In Listing 2 you will see a portion of Listing 2
the BIOS that I am running on a 64180 . Memory drive read routine

’

- equipped machine. It shows a RAM disk ; Input: Select parameters in Select Control Block
driver, and serves as a good example of ; Output: Record moved to (DSBDMA)
some actual 64180 code that utilizes the .
mdread: cp 02h Is it a write

memory past 64k. The memory on my

jr z,mdwrit ; Jump i
- system (a TRS-80 Model 4 with a XLR8er Jcal [mdaddr ; élsg s;fsgp addresses
processor replacement board) has a 64k jr mdmove ; And read the record
block of memory starting at 0000h, and
then another 256k starting at 40000h. ; Memory drive write routine
- You will notice a new instruction ’ Output: Record moved from (DSBOMA)
OUTO, and it, along with several other mdwrit: call mdaddr ; Set up addresses
1/0 instructions with the '0’ added, are ex de,hl ; Switch for write

nothing more than the standard 280 1/0 Memory drive dat .

. : : H Yy rive dara move routine
mstxtuct)onSleth the _added featux.'e of ; Input: A=Address select bits for move
placing all 0’s on the high order 8 bits of ; HL=Source address for move

the address bus. This assures that the in- ; DE=Destination address for move
— struction accesses the 64180's internal ; Output: 128 bytes moved as requested

rts. . R
P You will also see the MLT instruction mdmove : g:rro (bbr),a ’ gSi ,‘rz;e’;:”g;k
used. To use it just set up a register pair call movrec . Move the record
et (BC,DE,HL, or SP) with the values to be xor a ; O=bank 0
multiplied (an 8 bit value in each 8 bit out0 (bbr),a ; Switch in normal map
register). The result will be stored as a 16 f é +

bit value in the same register pair.

I did not include the Disk Parameter
Header nor the Disk Parameter Block
for the RAM disk, as they are nothing
more than the standard CP/M struc-
tures. The memory maps used as exam-

Memory drive address setup routine
Input: Information in Select Control Block
Output: A=Map address select bits
DE=Internal record buffer address
HL.=Record address in alternate Memory Map

e we W we s

ples in the prior text are the same ones mdaddr: push hi ; Save buffer address
that this RAM disk driver uses. The :g #?28 aefi?" | # ;0 %28

- rothmnw are st.r.lctly the . low lgvel mi+ hi : HE nos Z:onz'ains address in bank
drivers, and the high level disk routines Id a,c . Track # to A
are not shown. ric a ; Multiply by 8

There are already several packages : :g :
:ﬂcz:sc{ﬂegﬁﬁfﬁtﬁeﬁiﬁfymi mdadr1: add a,bank 1 ; Add BBR of fset
. pop de ; DMA addr to DE
within a high level language, without ret
having to worry about the complexities

- of addressing it at the chip level. They
are Borland’'s Modula-2 from Micro-
Mint, and 64180 Basic from Softaid.

- 64180 Basic is currently available, The Hitachi 64180 holds great promise for the 8-bit world,
and Modula-2 will soon be. There has also and for CP/M in particular. If half of the products promised for
been talk of several new CP/M packages the chip are delivered, then you you will find 64180 based
being written specifically for the 84180, systems will be around for a long time.

- one of them being a Lotus-like spread- If you are interested in more information on the XLR8er, a
sheet. Echelon is currently working on a 64180 based enhancement for the TRS-80 Model 4, contact H.I.
new multi-tasking DOS and banked ZC- Tech Inc., P.O. Box 25404, Houston, TX 77265, 1-800-835-2246 ext
PR3 that will both utilize the 64180's 202, or contact my BBS system, Rio Grande Z-Node #39, 915-592-

memory addressing features. 4976. @

The Computer Journal/ issue #27 2

WHO WE ARE
Echelon is a unique company, oriented
exclusively toward your CP/M-compatible
computer. Echelon offers top quality software
at extremely low prices; our customers are
overwhelmed at the amount of software they
" receive when buying our products. For
example, the Z-Com product comes with
approximately 80 utility programs; and our
TERM 1ll communications package runs to a
full megabyte of files. This is real value for your
software dollar.

ZCPR3

Echelon is famous for our operating systems
products. ZCPR3, our CP/M enhancement,
was written by a software professional who
wanted to add features normally found in
minicomputer and mainframe operating
systems to his home computer. He succeeded
wonderfully, and ZCPR3 has become the
environment of choice for “power” CP/M users.

Multiple Commands per Line

Other Features

There's much more to ZCPR3, like named
directories, online help system, etc., but it
can't be described on one page. if you would
like more information, consider the books
shown below.

Z-SYSTEM

Perhaps the only shortcoming of ZCPR3 is that
itis not a complete replacement for CP/M. This
is what the Z-System does. The Z-System
contains ZCPR3 and an additional module,
ZRDOS, and is a complete replacement for
CP/M. ZRDOS adds even more utility programs,
and has the nice feature of no need to warm
boot (*C) after changing a disk. Hard disk users
can take advantage of ZRDOS "archive” status
file handiing to make incremental backup fast
and easy. Because ZRDOS is written to take
full advantage of the Z80, it executes faster
than ordinary CP/M and can improve your
system's performance by up to 10%.

INSTALLING ZCPR3/Z-SYSTEM
Echelon ofters ZCPR3/Z-System in many

Z sets you free!

The Z-System User's Guide

For those who are not technically inclined. This
is an excellent tutorial-style manuai filled with
examples of how to use the power of ZCPR3/
2Z-System most effectively, written by two
highly experienced Z users. (One user is a
lawyer, the other a writer; this proves that
anyone can use Z and benefit from it.)

ZCPR3: The Libraries

The extensive documentation for the libraries
of ZCPR3, SYSLIB, Z3LIB, and VLIB. A must
for any serious user of these programming
tools. Loose-leaf notebook style: easy to work
with as it will lay flat on your desk.

THERE'S MORE

We couldn't fit all Echelon has to offer on a
single page (you see how small this type is).
We haven't begun to talk about the many
additional software packages and publications
we offer. Send in the order form below and just
check the "Requesting Literature” box for more
information.

You can easily use multipie commands per line different forms. For $44 you get the complete ftem Name Price)
under ZCPR3. Simply separate the individual source code to ZCPR3 and the installation files. ; gg;:g m;e‘?;a';;m Package ggg 8 gﬁl
commands with semicolons. For example, "PIP However, this takes some experience with 3 23.Dot.Com (Am:_ mfn 2cPA3) $99.00 (6 dm{.
B:=A" TXT.STAT B:*.*" will copy files and then assembly language programming to get 4 23-Dot-Com "Bare Mimmurm* $45.95 (1 disk)
show you the STAT results. running, as you must perform the installation 5 Z-Com (Auto-Install Z-System $119.00 (7 disks)®
ourself. 6 Z-Com "Bare Mintmum $69.95 (2 disks)
y 12 PUBLIC ZRDOS Plus iby fiseff) $59.50 (1 disk)
User-Programmed menu systems _ 13 Kaypro Z-System
ZCPR3 comes with three different menu For users who are not qualified in assembly Bootable Drsk $69 95 (3 qisks)
systems that you can use to create custom language programming, Echeion offers our 20 g:dsﬁk“";:‘ Macro Assembler $69.00 (1 Gy
menu-driven “front ends" for your computer. "auto-install” products. Z-Com is our 100% 21 ZDMD for B0BO/ZBOMDEA 180
This is especially useful for setting up menus compiete Z-System which even a monkey can CPU's $50.00 (1 drsk)
for your spouse or co-workers to use the install, because it installs itself. Z-Com 22 ;:)ans;at&r’sd;or Assembier 551,00 (1 g
computer, as they never have to see the A> includes many interesting utility programs, like urce 2000 :sk
prompt. All they have to do is press a single UNERASE, MENU, VFILER, and much more. §i 252;.5;"_‘ Drsassembeer s 1 ok
key to run any single or muttiple CP/M hems 20 through 23 $150.00 (4 disks)
programs, and when the task is done. controf is Echelon also offers "bootable” disks for some 25 DSD-80 fu" Screen $129.95 (1 cisk
automatically returned to the menu (ordinary CP/M computers, which require absolutely no 27 Thm:“,_”,;am SYSUB. Z3LIB
CP/M menu programs cannot do this). installation, and are capable of reconfiguration and VLIB $69.00 (8 disks)
to change ZCPR3's memory requirements. At 28 Graphics and Windows .
Extended Command Processing present, only Kaypro computers have this » ;:":’i‘:f_ $49.00 (1 sk}
When you type a command under CP/M, it will option available. ftems 27. 28, and 82 $129.00 (9 disks)
only look for the program in the current drive 40 Input/Output Recorder
and user area. ZCPR3 gives you more flexibility BOOKS o 2P ("83‘\0 Panter 1P $39.95 (1 dsk)
by additionally searching other disks and user We sometimes joke around the office that we (aaapcm,“ o) $39.95 (1 desk)
areas when resolving commands. You have full are really in the business of publishing, not 42 Programmable Key IOP (PKey) $39.95 (1 disk)
control of this function, calied the PATH. This is selling software. We have books. Lots of 43 :p-ct::) “rouon 42 $69.95 (3 dishs)
probably the one element of ZCPR3 that is books. We have to have lots of books, 60 Discar :
missed most if you return to “ordinary” CP/M. considering how powerful our software is and Disk cataloging system $39.99 (1 disk)
the large quantity of different packages we 61 TERM3
Also, ZCPR3 supports the capability of ofter. Here are our best sellers: 6o Sommumcatons System $99.00 (6 duks)
) - -Msg Message Handhng
grouping all your commonly used utility System $99.00 (1 osk)
programs into a library file (*.LBR). This is great ZCPR3: The Manual 81 ZCPR3: The Menusi
for systems with a small number of directory This is the "bible” for the ZCPR3 user. An " bound. 31_53. P e $19.95
entries per disk, as the library file only uses exhaustive technical reference, bound 3zc1°| Mm $29.95
one entry. It also has the advantage of softcover, 350 pages. Contains descriptions of 83 Z-NEWS Newsietier 20
reducing disk space requirements for a given each ZCPR3 utility program, a detailed 1 yr subscipbon :
set of programs, allowing you to put more discussion about the innards of ZCPR3, and a % %m $9.95
programs on a disk. And the programs in the full installation manual for those doing their own Menuai 35 pages $3.95
library file are invokable from the command line installation. You could order it from B. Dalton, 88 Z-System User's Guids + -
just like any other program not in the library. but why? Get it from us. 80 page ttona) 4
Includes ZCPR3: The Menusl
’—. ORDER FORM ITEM PRICE
- Payment to be made by:
- Echelon, Inc. O Cash
885 N. San Antonio Road, Los Altos, CA 94022 USA g agenz'; r
415/948-3820 (order line and tech support) O Ues CO:D“
NAME O Mastercard/Visa: Subtotal
#
ADDRESS Exp. Date Sales Tax
Shipping/Handli
TELEPHONE DISK FORMAT California residents add 7% sales tax. Pping/ "
0O REQUESTING LITERATURE Add $4.00 shipping/handling. Total
28 The Computer Journal/ lssue #27

ZSIG Corner

Command Line Generators and Aliases
by Jay Sage, ZSIG Software Librarian

When I first offered to write a regular column for The
Computer Journal, I wondered if I would have enough material
for a column every two months. Instead, the problem has
become one of finding the time to set down all the thoughts I
have. For this issue I had planned to cover four topics, there is
only room for three of them. They are: 1) corrections of some
errors in the last column (and an excuse for more discussion of
flow control in Z System); 2) a brief rundown on the files in the
first officially released ZSIG diskette; and 3) a discussion of
command-line-building programs in ZCPR3, including aliases
and shells.

Corrections

There were two errors that I noticed in the last column. One
was a minor one that was Art Carlson’s fault; the other was
more serious and was my doing. First for the easy one. Art was
kind enough to add information at the end of the column on how
to contact me, but the Z-Node he listed there was not mine. It
was the Lillipute Z-Node in Chicago, which is the official ZSIG
remote access system (its phone number is 312-649-1730).
Messages left for me there will get to me, but I will get them
sooner if they are left for me on my own node in Boston at 617-
965-7259. I can also be reached on my voice phone at 617-965-3552
(please don’t mix the two numbers up, especially if you are
calling in the middle of the night!). Finding me at home is not
always easy, and your chances will be best if you call between 10
p.m. and just after 11 p.m. (Boston time, of course). If you would
rather write, the address is Jay Sage, 1435 Centre Street,
Newton Centre, MA 02159.

Now for the error I made. In the discussion of the flow con-
trol package (FCP) and the transient IF.COM, I said that one
can force use of the transient program by including a DU: or
DIR: prefix or even just a colon in front of the ‘IF’. This is not
true. [thought I had verified the statement experimentally, but
my experiment was flawed, and the conclusion incorrect. A
colon does force the command processor to skip commands in
the resident command package (RCP) and in the CPR itself and
to proceed with a search for a COM file, but all the FCP resident
commands are intercepted no matter whether there is a colon or
not. There is a very good reason for this. The FCP commands
must be executed even when the current IF state is false. This is
especially clear for commands like ELSE, which reverses the
current IF state, and FI, which terminates the current IF state.
Transients ELSE.COM and F1.COM could not do this. After a bit
of thought you can probably see that this is true for all the flow
control commands.

I have long been searching for ways to give the user control
over whether IF processing is performed by resident or tran-
sient code. One solution that I introduced some time ago was ad-
ding alternative names for condition options in IF.COM so that
one could force the more powerful transient processing to be

The Computer Journai/ lasue #27

performed even when the function was supported by the
resident FCP. The trick was to use condition names in IF.COM
that were different from the names of the same functions in the
FCP module. Specifically, I changed the first letters to ‘X’ (for
example XXIST for EXIST and XNPUT for INPUT). Frank
Gaude’ in the Echelon Z-News has reported examples in which
the transient program is given a name other than IF.COM (such
as IF13.COM). Then the command “IF INPUT" gives resident
processing and ‘‘IF13 INPUT" transient processing. This will
work correctly for first level IF processing but will not work in
general.

Neither of these solutions was really satisfactory. A proper
solution, I felt, would operate both correctly and automatically.
I have now written a new FCP package (FCP10) that is presen-
tly under test by ZSIG program committee members and should
be ready for release with the next ZSIG diskette. It handles both
resident and transient code. It can examine the command line to
see if there was a colon before the IF. In that case, the FCP
ignores its internal condition options and invokes the transient
IF.COM immediately. If no colon was present, the FCP first
looks to see if the condition option is included in the resident
code. If not, it automatically invokes the transient [F processor.
The user need not be concerned with which options are resident
in the FCP. The script ‘‘IF NULL $1” in an alias will take advan-
tage of fast resident processing if the NULL option is supported
in the resident code or will automatically invoke transient
processing if not. When one wants to be sure to get transient
processing, one simply uses the colon as in ‘“:IF EXIST
FILEL FILE2".

To go along with FCP10 there is a new transient I
processor, COMIF'10. It supports dozens of additional conditic
tests. One is AMBIG, which tests a file specification for ar
biguity (question marks or asterisks). Register (numeric) ar
string (alphabetic) comparisons are now extended to the fu
range of tests: equal, not equal, greater, less, greater than :
equal, and less than or equal. I plan to add file attribute testin,
(SYS, DIR, RO, RW, ARC, WP) and testing for the presence of
Plu*Perfect Software’s exciting Backgrounder task-swapping
program.

The new FCP/COMIF combination also adds an important
new twist in transient processing. They have the option of
loading the transient code not at 100H, as has been done until
now, but high in memory, where it will not overwrite a user
program that is loaded at 100H. In this way the GO command
can be used to rerun the last user program after flow control
processing no matter whether resident or transient flow
processing was used. Thus the user need not concern himself
with how the flow processing was performed.

While 1 was at it, I also added two new commands to the
FCP module. One, IFQ (if query), is designed to help users —
advanced as well as novice — learn how flow control works (or,

perhaps, is not working as one intends). It displays on the screen
the complete flow state of the system — the true/false status of
all IF levels. The second is ZIF (zero ifs). It is like XIF (end all
ifs) except for one thing. XIF clears all IF states only if the
current IF state is true; if the current IF state is false, XIF is
flushed (ignored) just like any other command. ZIF, on the
other hand, clears all IF states no matter what. I'm sure that
everyone who has experimented with flow control has at one
- time or another gotten himself so messed up that nothing
seemed to work. The only way out, short of rebooting, was to
type a string of Fls until things started working again. ZIF is a
quick way to reinitialize the flow control system (and it takes
very little code in the FCP).

'ZSIG Diskette #1 ,

Now that I have atoned, I hope, for my sin in the last issue, I
will turn to the first new subject, the inaugural ZSIG diskette.
Let me remind you that this diskette and a number of others put
out by NAOG/ZSIG (NAOG = North American One-Eighty
Group, the group formed to support the SB180 computer and
other computers using the Hitachi HD64180 microprocessor)
can be ordered from NAOG/ZSIG (P.O. Box 2781, Warminster,
PA 18974). I encourage all of you to join ZSIG ($15). You'll get a
nice newletter with Z System tips and details on all the
NAOG/ZSIG diskettes.

Here is a listing of the files in ZSIG diskette #1.

Z-RIP.LBR VERRORI17.LBR VCED18.LBR
ZCRCK.LBR ZFINDU.LBR ZLDIR.LBR
ZTXTTOWS.LBR ZWC.LBR

PPIP14.LBR UF.LBR

LDSK20.LBR W20.LBR

. The first three programs are by Paul Pomerleau. Paul is a
speed freak and, like many of us, found the process of installing
Z programs with Z3INS (the standard installation utility)
tedious and slow. So Paul wrote Z-RIP, given that name because
it rips through an entire disk of files at incredible speed,
automatically identifying the ZCPR programs and installing
them. The new autoinstall versions of ZCPR3 may make Z-RIP
(not to mention Z3INS) obsolete, but it is great for those running
standard ZCPR. VERROR is Paul’s video error handler. It
provides a screen display of the entire command line in which
an error was detected and allows the user to edit it freely,
moving about using WordStar-like commands. VCED is Paul’s
Video Command EDitor, a video history shell. With VCED run-
ning as a shell, the user always has full command-line editing.
In addition, past commands can be recalled, searched for,
edited, and run. As if that were not enough, it doubles as a video
error handler as well! Paul astutely noted the functional
similarity between correcting old commands with errors and
entering new commands — so he combined the two functions in
a single program.

The next group of five programs comprises Z versions of
common CP/M utilities. Most of these were created by the
prolific program fixer and NAOG/ZSIG chief, Bruce Morgen.
The main feature that makes these programs ZCPR3-com-
patible is their ability to accept named directory (DIR:)
references as well as drive/user (DU:) references. For
programmers and aspiring programmers reading this, you

should know that the code to do this in ZCPR3 is actually much
simpler than the CP/M code needed just to recognize the DU:
form. This is because the ZCPR3 command processor already
does all the work for the first two arguments on the cc nmand
line (including translating named directory references into
drive/user values). Unlike CP/M, ZCPR3 saves not only the
drive but also the user number in the defaulit file control blocks
at 5CH and 6CH. A ZCPR3 program need only fetch the values
from the appropriate locations. The hardest part of making
these ZCPR3 versions of the CP/M programs was stripping out
the complex and lengthy parsers required to accept DU: syntax
in CP/M. (So much for the myth of ZCPR3 complexity!
Programming in ZCPR3 is often, as in this example, simpler
than programming in standard CP/M.)

The third group of programs includes two more ZCPR3 ver-
sions of CP/M programs. They are listed separately only
because they do not have names with Zs in front! Here is a quick
listing of the functions of all seven of these converted programs:

ZCRCK — computes cyclic redundancy check codes for files
using both common CRC polynomials

ZFINDU - searches for text strings in files, including files
that are squeezed

ZLDIR — displays a directory of the files in a library

ZTXTTOWS — converts standard text files to WordStar files

ZWC — counts the number of words in a text file

PPIP14 — copies files (as does PIP) but with nicer interface
and fast — I renamed it to COPY and use it all the time

UF — Steven Greenberg’s ultrafast file unsqueezer

The last two programs are original creations for the Z
System. LDSK, by Wilson Bent with modifications by Earl
Boone, solves a longstanding problem that owners of floppy-
disk-based computers had with named directories. With hard
disks, there is an unchanging association between directory
names and drive/user values, but with floppies the association
changes every time the diskette is changed. Wilson devised this
nifty scheme for automatically loading the named directory
register (NDR) with the names associated with user areas on a
floppy diskette. To give a user area a name, one simply puts a
(usually zero-length) file in that user area with a name of the
form “-NAME"'. When LDSK is run (specifying the drive to be
loaded), it scans the disk for files of this type, strips the leading
hyphen, and creates an entry in the NDR associating the name
with that user number on the drive. As I wrote in the last
column, I still have a lot of floppy-only systems, and I love LD-
SK.

Haven’t you at times wished that you could take some
program that only works on a single file and magically make it
work with an ambiguous file reference. Well, Steve Cohen did,
80 out of his programmer’s hat he pulled the wildcard shell ‘W’
to do it. It just shows again that the only real limitation with the
Z System is one’s imagination! Here are some examples of how
‘W’ can be used. Bob Freed wrote a quick little program called
PCPCK that checks a file for proper transmission over Telenet’s
PC-Pursuit packet network (certain character sequences cause
problems). The trouble is, PCPCK only works on a single file,
and it is no fun to run it manually on every file one is about to
send somewhere. But along comes ‘W’ and all I have to do is en-
ter “W PCPCK *.*" and away we go. Or suppose you are just
lazy and hate typing exact names of files. Just put a ‘W’ in front
of the command and enter a wildcard file name that specifies
the file you want. That’s all there is to it. I have ‘W’ implemen-

The Computer Journal/ Issue #27

ted in an alias on my Z-Node system so that users can type a file
without having to enter the exact name. If a user can’t remem-
ber (or doesn’t really care) whether the file is AUTOINST.FIX
or AUTOINST.FQZ or AUTOINST.FZX, all he has to enter is
“TYPE AUTO*.*" and the file (whatever it is cailed) will ap-
pear on the screen.

Command Line Generators

Many people call me about problems they are having get-
ting an alias or VFILER script to work correctly. Often the
problem turns out to be a misunderstanding of what command
line generators are really doing. I will try to shed a little more
light on that subject here.

First a little philosophy. There are many features in the Z
System about which one might well at first just shrug one’s
shoulders and say, ‘‘So what!” The flow control system
discussed earlier is one such feature, and multiple commands
on a line might be another. After all, how many of us actuaily
think far enough ahead to enter more than one command at a
time anyway? Well, the answer lies in the interplay of all the
features in Z System and in the ways they allow things to be ac-
complished automatically.

Aliases

The multiple command capability of Z System, for example,
is important not so much because it allows the user to enter a
whole sequence of commands manually but rather because it
allows other programs to do so automatically. The simple, stan-
dalone ‘alias’ created with the original ALIAS.COM or one of the
more sophisticated alias programs like TALIAS, BALIAS, or
VALIAS is a good example. Let’s see how such an alias might be
used. Suppose we are working on a new program with a source
file called MYPROG.Z80. Our standard sequence of operations
is to edit the source with a command like “EDIT MYPROG.Z80"’
and then to assemble it with a command like ‘‘ASM
MYPROG.AAZ” and then to load it with a command like
“MLOAD MYPROG1"”. We can speed things up and reduce the
amount of typing (and the number of typos!) by creating an
alias which we might give the name DO.COM. We would create
it, with VALIAS for example, with the following script (com-
mand line form):

EDIT MYPROG.280; ASM MYPROG.AAZ; MLOAD MYPROG

Now when we want to start a new cycle, we just enter the easily
spelled command “DO” . The rest is automatic.

But how does this alias actually work? When you enter the
command “DO”, the operating system loads DO.COM into
memory and starts running it. DO contains within its file the
script line put there by VALIAS.COM (for example) when the
alias was created. DO.COM has code to determine where the Z
System multiple command line is located in memory (this in-
formation comes from what is called the environment descrip-
tor, whose address is installed in a standard location near the
beginning of all true Z System programs). Next DO.COM takes
its command script, appends any other commands in the
multiple command line that come after the DO’ command,
and then writes the result back to the command line buffer.
When it then returns to Z System, the ZCPR3 command
processor, as usual, looks at the command line buffer to see if
there are more jobs listed there for it to do. Since DO.COM has
filled the command line buffer with the script, ZCPR3 responds
just as if we had typed the long command line script instead of

The Computer Journal / Issue #27

SAGE MICROSYSTEMS EAST

Selling & Supporting
The Best In 8-Blt Software

o Plu*Perfect Systems

- Backgrounder il: switch between two of three running tasks

under CP/M ($75)

- DateStamper: stamp your CP/M files with creation, modification,

and access times ($49)
o Echelon (Z-System Software)

- ZCOM: automatically installing full Z-System ($70 basic package. or

$119 with all utilities on disk)

- ZRDOS: enhanced disk operating system, automatic disk logging

and backup ($59.50)

- DSD: the incredible Dynamic Screen Debugger lets you really

see programs run ($130)
o SLR Systems (The Ultimate Assembly Language Tools)
- Assemblers: ZBOASM (Z80). SLR180 (HD64180). SLRMAC (8080).
and SLRO8S (8085)

- Linker: SLANK

- Memory-based versions ($50)

- Virtual memory versions ($195)

o NightOwl (Advanced Telecommunications)

- MEX-Plus: automated modem operation ($60)

- Terminal Emulators: V1100, TVig925, DG100 ($30)

Same-day shipping of most products with modem download and support
available. Shipping and handling $4 per order. Specify format.
Check, VISA, or MasterCard.

Sage Microsystems East
1435 Centre St., Newton, MA 02159

Voice: 617-965-3552 (9:00 a.m.-11:15 p.m.)
Modem: 617-965-7259 (24 hr., 300/1200/2400 bps,
password = DDT, on PC-Pursuit)

the simple ‘DO’’.

Now let’s see how flow control can be used with alias scripts.
One problem with the command sequence in our example arises
when the assembler reports an error. In that case there is no
sense going through the MLOAD operation. Assemblers like
ZAS from Echelon and Z80ASM from SLR Systems set a flag in
the Z System to show whether or not they encountered any fatal
errors during the assembly, and the flow control command “IF
ERROR” can test the state of that flag. We can improve ou
script as follows:

EDIT MYPROG.Z80; ZAS MYPROG; [F ~ ERROR; MLOAD MYPROG; F1

In this script the MLOAD command will only be executed if th
program error flag has not been set by ZAS (the tilde '~ ' has th
meaning 'not’). Typing all those flow control commands
manually would be more trouble than entering single comman-
ds at a time, but with an alias we are still typing only two let-
ters: “DO".

So far so good. But what happens when we want to start
work on another program, say NEWPROG? Do we have to
create a new alias, such as DONEW? The answer is that the
alias program actually does much more than just copy a com-
mand script as is into the muitiple command line buffer. It is
capable of making parameter expansions, the simpier examples
of which are like the parameter expansions that occur with the
CP/M SUBMIT program. We can store the alias script as:

EDIT $1.280;ZAS $1;IF “ERROR;MLOAD $1.FI

i

The ‘$1’ is a symbol representing the first token after the com-
mand on the command line that invoked the alias program.
Thus when we enter the command ‘DO MYPROG" we get the
first script we discussed, but when we enter “DO NEWPROG”
we get a command line for working on NEWPROG instead. A
single alias thus becomes very flexible. There are quite a num-
ber of parameter forms that can be processed by aliases, and I
refer you to Rick Conn’s *“ZCPR3, The Manual”’ and various
"HELP files for more detailed information.

Now let’s try something a little trickier. Sometimes we have
already edited a file and just want to assemble and load it (if
there is no error in assembling, of course). So we create an alias
called AL (for assemble/link)

~ ZAS$1;IF ~ ERROR;MLOAD $1;FI

[T am using ZAS in these examples rather than the SLR
ZB80ASM, which I prefer, because the SLR assemblers can
produce a COM file directly in one pass and do not need MLOAD
or the flow control error checking. Thus they do not serve the
purposes of my example here.] Now what do you think will hap-
pen if we define our DO alias as follows:

EDIT $1.Z80; AL $1

Do you think that will work? One alias inside another? Well, it
will indeed! Aliases can be nested. How deeply? Without any
limit! Before we explain why this is, let's look at an even more
fascinating example. When I sit down to work on a program, I
typically go through one edit/assemble cycle after another (just
don’t seem to be able to get it right the first time). So I make my
DO alias have the following script:

EDIT $1.Z80; AL $1;DO $1

This alias actually invokes itself! ! When one cycle is finished,
it just goes back for more. Now let’s look at what goes on in the
system after we enter the command “DO MYPROG’’. The DO
alias expands its script and writes the following command line
into the multiple command line buffer:

EDIT MYPROG.Z80;AL MYPROG; DO MYPROG.

After the editing is finished, AL runs, expands its script, and fills
the command line buffer with the following command line:

ZAS MYPROG; IF ~ ERROR; MLOAD MYPROG;FI;DO MYPROG

Note that the alias always appends to its own script any other
commands in the command line after itself (hence the DO
MYPROG on the end). Now ZAS runs, and, depending on
whether there were errors or not, MLOAD may run. Finally
ZCPR3 gets to the DO command, and we are right back where
we started. The whole process is repeated (and repeated again).
In fact, the only trouble with this alias is that there is no way
out! You can’t stop!

Well, we all hope we will get the program right eventually,
so we really would like to be able to get out of the alias. Flow
control can help us again. Consider the script

EDIT $1.280; AL $1; ECHO EDIT AGAIN?;IF INPUT; DO $1;F1

Now, before reinvoking DO, the alias asks us if we want to edit
the file again. If we give a negative answer (anything other than
carriage return, space bar, 'Y’ for yes, or 'T’ for true), the loop
is broken. If we answer affirmatively with a quick tap of the
return key, we start again. Very quick and easy.

There is one subtle problem, however. If you go through the
exercise of expanding the alias scripts, you will see that with
each cycle an extra 'FI' builds up at the end of the command
line. Even more careful analysis will show that with each cycle
we go one [F level deeper as well. One of two problems will
eventually spoil our plan. Either the command line will get so
long that it won't fit in the command line buffer, or we will run
out of IF levels (eight is the maximum). What can we do about
these problems?

The FCP has the XIF command precisely for this reason. If
we put an XIF command at the beginning of the script, we will
reset the IF system to level 0 every time we reenter the loop.
Then the limit will be overflow of the command line. When this
happened to me, I invented a special type of alias — the recur-
sive alias — and incorporated it into my VALIAS program (as
far as I know only VALIAS and ARUNZ support this alias type).
It works the same as a regular alias except for one thing — it
does not append to the script expansion any commands that
were pending in the command line buffer; it just throws them
away. Thus in the above example all the FlIs would be discarded
when DO was invoked again, and the pileup would be avoided.
When an alias is created with VALIAS, one can select either a
normal alias or a recursive alias. But note that no other com-
mand can ever follow a recursive alias on a multiple command
line. Recursive aliases should be used only in special cases like
the one described here.

Shells

Aliases are not the only command line generators. Most
shells also generate command lines for the user. In some cases
(VCED, described above, and MENU) this is their main pur-
pose; in other cases it is secondary (VFILER). Before we
examine the way they generate command lines, let’s look at the
way shells operate in the Z System.

The essential purpose of shells is to create just the kind of
recursive command situation we were just developing with our
alias example. But they achieve that function in a very different
way. A shell has a kind of schizophrenic personality as a result
of being invoked in two significantly different circumstances.
One circumstance is when it is invoked directly or indirectly
(e.g., from an alias) as the result of a user command. In this
case, the shell has one basic purpose - to perpetuate its own
existence as a command. It does this by entering its name as a
command into a special buffer (area in memory) in the Z
System called the shell stack. Having done that, it can then
return control to the operating system. (The smarter shells
generally do something a little more sophisticated at this point,
but the principle is correct as I have described it.)

Now we come to the unique role of shells in the Z System.
The CP/M command processor gets commands from only two
possible sources: 1) from a submit file, if one exists, or 2) from
the user. The Z System gets commands from at least four sour-
ces and in the following order of priority (ignoring the tricky
role of ZEX): 1) from the multiple command line buffer; 2)
from a submit file; 3) from the shell stack; and 4) if all else fails,
from the user. Observe that so long as the shell stack has a
command in it, the command processor will never turn to the

The Computer Journal/ 1ssue #27

user for input! That is why one can regard the shell as taking
over the command processor function. While the shell is run-
ning, it becomes the source of commands for the system.

How does the shell do this? By expressing its second and
more dramatic personality. Another special buffer in the Z
System, the message buffer, contains a flag byte that is set by
the ZCPR3 command processor to indicate whether a program
has been invoked as a user command or as a shell (or as an error
handler). We have already discussed the simple goal of the shell
in the former case. In the latter case the shell actually carries
out its real function in life. Let's consider the MENU shell as an
example.

When the MENU.COM is loaded as a shell, it displays a
screen of command choices to the user. Each single-character
choice is associated with a command line script, much like the
alias script. When the user strikes a key, MENU looks up the
script associated with that character, expands the script (sub-
stituting parameters), and puts the resulting command into the
multiple command line buffer. It then returns control to the ZC-
PR3 command processor. ZCPR3 executes the commands in the
command buffer one after another until they have all been per-
formed. Then, when the command buffer is empty again, ZC-
PR3 looks in the shell stack, finds the MENU command there,
and runs MENU again. This process continues until a special
user key is entered (control-c in the case of MENU) that signals
the shell that it should remove itself from the shell stack. Then
things return to the state they were in before the shell was in-
voked initially by the user. Shells, by the way, can be nested (the
usual shell stack is four entries deep), so when one shell
removes itself from the sheil stack, control may still not return
to the user. Another shell, whose role was superceded by the
most recent shell, may now come back into control.

With the MENU.COM the displayed menu of choices and the
scripts associated with the choices are both included in a text
file that is read in by the program. This makes it very easy for
the user to create and modify the display and the scripts. Con-
sidering again our program development example, we might
create a menu screen with the following display:

S. Select name of program

E. Edit program source code

A. Assemble program to HEX file
L. Load program to COM file

R. Run program
F. Full cycle (edit, assemble, load)

These choices might be associated with the following command
scripts:

S setfile 1 “Enter name (only) of program to work on: "'
E edit $n1.Z80

Azas $ni

L mload $al

R $n1

F edit $n1.280;zas $n1;if ~er;mload $ni;fi

There are two interesting new parameters illustrated in
these scripts. One is the $N1 parameter. As part of the Z System
environment buffer, four system file names are defined. MENU
can read these four file names and put into scripts the complete
filename ($Fn), the name only (§Nn), or the type only ($Tn),
where'n’is 1,2, 3, or 4. The 'S’ selection sets the first system file
name using the program SETFILE, and the others then use it.

The Computer Journal / iasue #27

The 'S’ selection illustrates the other new script parameter
— prompted user input. When the script for choice 'S’ is being
expanded, the text between quotes will be displayed as a prompt
to the user, and one line of user input will be substituted into the
command line in place of the prompt. It is with prompted input
that many users get confused and make mistakes. Suppose you
want to be clever and helpful by displaying a directory of
existing programs to jog the user’s memory before asking for
his choice. You might think of using the script

S dir *.z80;setfile 1 ‘‘Enter program name: *’

This will not have the effect intended! One must not forget that
the user is prompted for input by the shell at the time the script
is expanded, not at the time when the command line is executed.
In this example the user will be prompted for his choice before
the directory is displayed. Thus, the directory display is useless.

To achieve the result intended above you must combine
scripts. You can create an ARUNZ alias called SETNAME with
the following script (ARUNZ supports prompted input) :

SETNAME setfile 1 “Enter name of file: ”
The MENU script would then be:
S dir *.z80;arunz setname

When the MENU script is expanded, the command becomes
“DIR *.280;ARUNZ SETNAME", and this command is then
run. It is not until ARUNZ SETNAME is executed that ARUNZ
prompts the user for the name of the file. At this point the direc-
tory of files with type Z80 has already been displayed on the
screen.

There is obviously much more that could be said about the
command line generators in ZCPR3. The discussion here has
been only an overview, but I hope that it will inspire you to take
a fresh look at and to experiment with aliases and shells of all
kinds: the standalone aliases generated by ALIAS, VALIAS,
TALIAS, or BALIAS; the text-file-based alias generator ARUNZ
with its ALIAS.CMD file; the menu- or macro-type shells
MENU, VMENU, FMANAGER, VFILER, and ZFILER; and
the command-line history shells HSH and VCED.

Plans for Next Time

As 1 said at the beginning of the article, I had planned t
cover, along with all the subjects above, techniques fo
customizing the Z-COM self-installing version of Z System. Bv
there just isn’t the time or space. So I will have to leave that fo
the next issue. Let me just say one thing here. If you do nc
already have Z System running on your computer and have held
back on buying Z-COM from Echelon because you thought it
would pot offer you the flexibility of a custom installation, hold
off no longer. Buy Z-COM! Start the exhilarating process of
discovering Z System now. By the time my discussion of Z-COM
hacking is complete, you will know how to get just as mmch
flexibility with Z-COM as with a manually installed version. It is
much more fun to start with something that is working and to
improve it than it is to spend many frustrating weeks trying to
get an initial manual version working.

1 want to close with my usual invitation and encouragesaent
— please write and call with your comments and suggestisns of
allkinds. @

MORROW
PO ek
* Qver 15,000 o(these single)
board computers installed.
= Free copy of the "MORROW
OVNERS REVIEW". The national
zine devoted]usl to the
ORROW computer. yihif,e 1est
=» Ve have over 2000 in stock
* 4 mhz Z80A CPU, 64K RAM
16/32K ROM
% 2 RS232 serial ports (300-
19.2k baud with ?b25 con-
nectors installed
Centronics printer port &€ sy
Power requirements-
+12vdc -12vdc +Svdc
= Floppy disk controtler up to 4
drives. SSDD standard. Rom for
DSDD 43tpt or 96tpi $12 extra
including assembdied dios
= CP/M bios Wordstar, and Bazic
included
= Schematic, dbios asm, ;smnt
manual and users o
inclu ed. gu
= Copy program to read/write
non morrow formats such as
Kaypro, Osborne. Xerox. & etc.
% Optional rs23 lertntaal pcb
mom(tor pC! isplay’
9 with vith § purcnlu 3 cpu.a

2 2

"'"-I a8x
;rl‘nit cxlu SnI cuet’a: 1. 92‘;' cao"
[4 ore Pric of
supolies T-.FB'%. ‘um' o-r.:rmi':o

CLOSED
SUN &MON

4401 DAKPORT DAKLAND CA, 94601

SPECIAL PURCHASE
&) Multitach KEYBOARDS

Kul%” "» :I::s: FOR Igﬂm T
3 on the PC
orthe AT

If you don t
like the feel
return it for

& 5 b B 3
KEYS * KBOB4 - $39°° :.;'.{}'.{“,’.,.‘.’.

g7f KEYS'KBO§7 349" & ‘

FLOPPY CONTROLLER

WITH LPT1 PRINTER PORT
FOR IBM® OR CLONES

TANDEM “PCBA 188400

ONLY § 24>

15 DAY TRIAL PEIRIOD. HURRY SUPPLY
WON'T LAST LONG AT THIS PRICE

WE NAVE A NEW BAS | PLE IVE |
ACALL AT 415~ 2%!-‘45!3 SGNSLGI
ME KNOW WHAT

YOU THINK. il RIAN

riel asreement. Yox
m.nt oxin s.n elul or odd 1.9(C

PEICY e SR AR race e Sisr Whi |

liconWalley@urplus | 0o sem
4401 DAKPORT OAKLAND CA, 94601 | sy &MON

Reader’s

Laser Rangefinder

I am a student in a Science &
Technology program, and during our
Senior year we must complete a year
long research project and Senior Thesis.
I am building a portable laser ranging
device and I want to hook the experiment
up to a ZX81 computer. The laser will
stop and start a timer as it is shot and
returns from a target. I want to send the
time to a program that will calculate the
distance to the target.

I was wondering if you have had any
prior experience with this particular
computer and if you could give me some
advice or suggest someone who could. I
would be most grateful for any help.

E.T.

Editor’s Note: Is anyone willing to of-
fer some help or comments on this
project even if it doesn’t concern the
7X817

8-Bit Fan

To date I have found TCJ to be the best
publication of many that land on my desk
in a week. Always good solid hands on in-
formation. Hopefully you will not go the
IBM route as did another magazine. We
broke our rule with them about more that
a one year subscription and after a
couple of issues off they went
predominantly IBM. Reading items of in-
terest to us in it takes less that five
minutes and we are not renewing for that
reason.

Somewhere you got our initials shor-
tened up regarding the hard disk
problems in issues #25 and #26, the
initials should have been JTL not JT. The
reply from Tom Hilton in issue 26 was
very interesting but not an answer. Cer-
tainly we agree with the SMB limit —
BUT our question was how do we add say
another 40MB drive to an SB180 system.
Our BIOS can go to drive “P’”’. We can
only access 32MB of our present 40MB
drive now, leaving a lot of unused area. I

guess the problem comes down to the
formatting program for the hard disk
which limits us to four apparent drives,
currently E,F,G,H. We are using an
Adaptec ACB4000 so have a second SCSI
slot available to run another drive.

What appears to be needed are the
following:

(1) Modifications to HDINIT.COM
allowing us to set up say five drives per
40MB hard disk of say a littlé under 8MB
each.

(2) A way to be able to configure
another drive as drives J,K,L,M etc.
which doesn’t appear possible at present.

Our present hard disk is a NEC D5146.
Possibly since it has only 4 data disks
item 1 is impossible, but I see no reason
that item 2 can not be done.

Unfortunately our programming is
done in the higher level languages such
as Dbase, Pascal, etc, and the
hieroglyphics of HD64180 and Z-80
assembly code are Greek to us. I guess
we shall have to take the bull by the hor-
ns one day and get down to it.

Thanks for an excellent publication to
date. Keep it up and please ensure no
defection to the Imbecile’s Biggest
Mistake.

J.T.L.

Editor's Note: As I understand it, the
basic problem is that CP/M can only ad-
dress 8MB per drive and the hard drive
controller can only handle four drives.
Thus you can only partition a physical
drive into four logical drives of 8MB
each, and four times eight equals thirty-
two. The answer is to use more than one
physical drive and more than one hard
drive controller, and partition each
physical drive into several logical drives.
I also feel safer with my data spread over
several physical drives. I would choose
20MB drives, each partitioned into four
5MB sections, and would use ZCPR3 so
that all user areas are available.

The Computer Journal / ssue #27

Feedback

BUILDING A ROBOT

MOTION PACKAGE
DIRECT GEAR DRIVE FOR
WHEELS 12 INCH OR LARGER

INCLUDSES:
2tr DC MOTORS
2e016:1 GEARBOXES
2en 24 TOOTH STEEL SPUR GEARS
264 60 TOOTH NYLON IDLE GEARS
2t8 235 TOOTH 12 INCH DRIVE GEARS

MOTOR, GEARBOX, & IDLE GEAR ARE PRE-

ASSEMBLED. DRIVE GEAR [5 READY TO

MOUNT ON YOUR WHEEL .

Reader Feedback

I am writing in* response to your
request for reader feedback.

I feel that TCJ is straying away from
my needs. A magazine that fullfills the
goals as stated in the Editor’'s Page in
Volume 1, Number 1, is exactly what I
need. Why not pick a project, for exam-
ple your NC controlled milling machine
project, and carry it through to a useful
end? Where existing hardware is
available at affordable hobbiest prices,
use it, otherwise build it. Where suitable
software is available, use it, otherwise
write it.

Don’t turn the magazine into a
generalized software magazine with too
many articles like ‘‘Affordable C Com-
pilers” and ‘‘Concurrent Multitasking.”
For that kind of information I subscribe
to Dr. Dobbs Journal of Software Tools.

Don’t turn into a computer industry
‘‘news’’ magazine with too many articles
like ‘‘Inside AMPRO Computers”’ BYTE
magaine’s subscription gives me that.

While I enjoyed all the above articles, I
would rather have read them in
magazines that I consider more ap-
propiate for them.

CDM.

Editor's Note: Reader’'s feedback is
VERY important, and we encourage
every reader to send us a list by mail or
on the BBS describing the four subjects
that they would like to have covered in
future articles.

A Computer Builder

Issue #26 just arrived and I read it
cover to cover. Ironically, last week
some back issues of TCJ and ‘‘The Big
One’’ (you know, the magazine with 300
pages of advertising, been around for ten
years) arrived. I just threw away several
years worth of old computer magazines,
and comparing the two which arrived on
the same day, I found what was missing
in computer literature. I sincerely hope
you can keep up what you have so

The Computer Journal / Issue #27

diligently started.

I have a North Star Z80A Processor
Board model ZPBAZ2, copyright 1977. It is
in an IMSAI computer, and has
developed a minor glitch. 1 have
schematics on everything else, do you
know where I might find the processor
board schematics?

You mentioned, I believe, in a previous
issue that you would like to have a
library of old schematics and instruc-
tions for various archaic systems. If this
is true, [can offer copies of the Big Board
I (I have two working boards to possibly
sell), the Tarbell Casette interface
board, VDB-A Video Terminal S-100
card, Jade Z-80 (actually Ithica Z-80) and
an Ithica Audio board with the working
mod’s on it, and the Xitex SCT-100 Single
Card Video Terminal.

Right now I am in the final stages of
construction on a ZAP-80 microcom-
puter. This is being built from Steve
Ciarcia’s book “Build Your Own Z-80
Computer’’ (Byte Books, 1981). You
should have this in your offerings, it is of
great interest to some, if not many, of
your readers. The circuit he uses was the
winner in a competition of four different
possibilities.

What was needed was a single board
controller/computer. It is to serve as a
data logger, and whatever else comes to
mind. For several years I have been
trying to find a ‘‘public domain com-
puter”’ sufficient for a beginning student
to wire wrap and use for some significant
purpose. There are simpler solutions to
the problem (such as the 8748 single chip
microcomputer). However, this Z-80
board has some extreme advantages.
First, all of the software will be upward
compatible (the next step up might be a
Little Board®). Second, all lines off the
CPU are buffered with the expectation of
adding odd-ball devices to the exterior.
Third, there are two 8-bit parallel ports
(input) and an 8-bit output port, with an
optional RS-232 serial port. To make the
projects initially useful, it will be an en-

(Continued on page 50)

VOC[RPM [NO LOAD| STALL [MPH| MPH wTH 127
WHEEL USE A
24134 |BOO MA [100AMP]1 25] (arcEr wrgEL

1827 [600 MA | 7 SAMP| 96) 000 FASTER

OR
12118 1SO0MA | SOAMP] 64 Ef,:ﬂ,fn-s
4 Ly 1
ARTS AVAILA ALL

200.2300 DAVR AUTO SYMCH 212261 ac1 % |

1 BLADE INTURRUPTER
TQ GET PULSE EYERY 06
INCH OI' TR V(L

I“l DIAGRAII l"
1
[§ FOUR BOLTS 15
HOLD 12 INCH b
— GEAR TO 14 INCH __§
[. " TIRE WICH TURNSJ
FREE ON AXLE

M
ol fe s coryof 15 day hhl syreement. Tex &
frissht extre.Send chock or add 1.90 for COD

R R K A it
i Ou’n'- ‘_ng

CLOSED
SUN & MON

4401 OAKPORT CAKLAND CA, 94601

[$7°° EQUIPMENT CASE |

=2, SIMULATED LEATHER FINISH
I 10 INCH BY 12 INCH BY 4 INCH
RUGGED ABS PLASTIC WITH
CHROME PLATED LATCHES

USE IT FOR A CAMERA CASE, TOOL BOX. OR
PORTABLE EQUIPMENT CASE.GREAT WAY
TO CARRY THOSE bOOKS AND SOFTWARE
TO AND FROM W
$29® PREClSlON XY TABLE]
TWO GLOBE DC GEARMOTORS
LINEAR POT FEEDB.
USED N MICRO FITCH READER ‘ - ’1;)
TABLE HAS 457BY 6" TRAVEL ==&
{DC GEARMOTER $§ |4°°]
VOLT TO 12 VOLT DC OPERATICN
S0 TC | GEAR REDUCTION.
A PAIR OF THESE WILL MOVE A
500 LB ROBOT
64K DRAMS 75 EACH
$6% FOR A PKG OF 8
SOLD IN PKG OF 8 OR G ONLY

B3 EA If YOU BUY 8 OR LESS
IC SALE THIS MONTH ONLY

HM6116 .40}82C51 199
74LS393 .60] 6502 199
74LS245 ,SO0|FDC 765 29
4517 .40180C86 39

CALL oua MODEN CATALOG
415- 26! 451 3

"'..-I
Vrinm u(n Sod chtt .l' -a 1.9

..'61‘“ ‘u""m’ 'ﬂ.et O’c"w' '&“.
—OPER |

iliconV¥Walley urplus 10ane om
415-261-4506 T eoseo
4401 DAKPORT OAXLAND TA, 94601 | sunatuow

A Tutor Program for Forth
Writing a Forth Tutor in Forth

by Bill Kibler

O ver the past few months 1 have
been working on tutor programs and
produced one for a computer class using
BASIC. The program just presented
menus and then checked for keyboard
input. Next it jumped to a given line and
ran the code. The code in this case was
text statements and took forever to en-
ter. As far as program statements I used
both “ON X GOTO” and “IF.THEN"
statements. My overall feelings about
the program was that it involved too
much work for too little output. Needing
to do another tutor program and also
wanting to do something in Forth, I
decided to try a tutor program using F83.

F83 is the most current version of the
FORTH 83 standard and is available both
commercially and in public domain. F83
has several extra features and is quite an
improvement over previous versions of
Forth. People who have used other ver-
sions of Forth find F83 to be a real
challenge to learn (same words new
meanings). People who have not used
Forth previously are usuaily lost im-
mediately after the prompt. I figured I
needed a tutor and help program that
would be available after the prompt. Af-
ter I started writing the program I was
amazed at how easy and how fast I was
able to write the mechanics of the
program.

1 spent about two days thinking about
how 1 wanted information moved and
displayed, and then about one hour
generating screens to doit. I only had one
time in which any code went south for the
winter, other than that it was very
painless. Although this program is rather
simple, involving defining barely ten
words, it has made a real convert of me.
Compared to the tutor program I wrote
in BASIC, this was a breeze to write and
will work many times better.

TUTOR.BLK

The program has three variables
which keep track of the current screen.
Forth stores all information in screens of
1024 characters each. This gives a dislay

SCR #0 TUTOR.BLK

(INTRO TEXT FOR SCREEN ZERO BDOK112186)

N N6 0 6 0T 0 IR 0 0 0 U0 3 T B O 06 DO T b 30 B T 0 006 0 S
0036 30 0 0 U A6 6 A 3 0 306 3 0 3 0 66 T It 0 0 30 063 T 3 T U N 0 %
T30 06 W36 16 O 06 30 06 0 36 0 0 26 3 36 0 3 3 3 3 3 3 0 3 3 0 T3 3 b3 06 3 B 30 0 36 30 3 T3 0 b 0 06 S 0 NN

AR *R 12222 X3
i F83 TUTOR AND HELP PROGRAM el
*rres F83 TUTOR AND HELP PROGRAM b
* %% %% L2223 X2]
* %% %% E a2 2 X 24
halafaloid Written by Bill Kibler ERERER
*ERrr PO BOX 487 Cedarville, CA 96104 srnrer
* %% % % E 2222 X}
ool ALL Commercial rights reserved RERRER
E2 2 22 2 %5 %% % %

MR E RN R RN R R RN EERE R R R R RN RN ERERREREER N
00 06 3 0 T I 0 O R0 I3 360 60 3 0 0 3 00 6 0 IE 0 60 0 T O 03 3 3 3 3363 3 0 T 3 6 I N

SCR #1 TUTOR.BLK

(LOAD BLOCK AND START OF TUTOR PROGRAM bdk 120186)
(variables and display routines)

VARIABLE ETUTOR (END DISPLAYING TUTOR SCREENS)

VARIABLE STUTOR (BEGINING SCREEN OF CURRENT GROUP)

VARIABLE NTUTOR (NEXT TUTOR SCREEN OF GROUP)

: LSSK DUP 36 = IF 1 ETUTCR ! THEN ; (CHECK FOR §§)
: DISPLAY (DISPLAY SCREEN OF TEXT)
1 ?ENOUGH L/SCR 1
DO 5 SPACES

DUP BLOCK | C/L * + C/L
TUCK PAD SWAP CMOVE PAD SWAP (>TYPE WITHOUT THE TYPE)
0 D0 DUP C& L$$K EMIT 1+ LOOP DROP (TYPE WITH LSK)
CR KEY? 2LEAVE LOOP DROP

-—>
SCR #2 TUTOR.BLK

(go get screens of information - gotutor tutor bdk12018€)
: WTPRT 20 SPACES ." USE SPACE BAR FOR NEXT SCREEN "
: ESCCHK DUP 27 = IF 1 ETUTOR ! 32 THEN ; (SET ESC FLAG)
: WAIT WIPRT “ 13 EMIT (PRINT THEN CR WITHOUT LF)

BEGIN KEY ESCCHK 32 = UNTIL ; (LOOP TIL SPACE KEY)

: GOTUTOR (DISPLAYS SCREEN ON STACK THEN WAITS)
CR DUP SCR ! 15 SPACES .SCR CR
BEGIN DISPLAY WAIT NTUTOR @& 1 + DUP
DUP NTUTOR ! 1| ETUTOR @ = UNTIL CR CR 15 SPACES
.M REPT = REPEAT LAST LESSON ...GET = NEXT LESSON " CR CR ;

: TUTOR (STORE SCREEN POINTERS THEN GOTUTOR)
0 ETUTOR !
DUP DUP STUTOR ! NTUTOR ! GOTUTOR ;

-——>

SCR #3 TUTOR.BLK
(INITIALIZE AND START THE LOOPS..GET..REPT.. 80K112586)
: GET (GO GET NEXT GROUP OF SCREENS)

NTUTOR @ TUTOR ;

The Computer Journal / Issue #27

: REPT (GO BACK AND REPEAT SET OF SCREENS)
STUTOR @ TUTOR ;

¢ START-TUTOR { START WITH FIRST SCREEN OF TUTOR)

10 TUTOR ;
: HELP (GIVE INTRO MESSAGE)

6 TUTOR
SCR #4 TUTOR.BLK
(DEFINING MODULES OF INFORMATION..e.. 8DK112186)
: CHPI 10 TUTOR
: CHP2 20 TUTOR
: CHP3 30 TUTOR
: CHP4 ¢+ 40 TUTOR ;
¢ CHPS 50 TUTOR ;
: CHP6 60 TUTOR ;
: CHP7Y 70 TUTOR ;
: CHP8 80 TUTOR ;
: CHPS 90 TUTOR ;
: CHP10 100 TUTOR
: CHP1I 110 TUTOR
: CHP12 120 TUTOR ;

-——>

SCR #5 TUTOR.BLK
(MORE ROOM FOR LESSON WORDS.... bdk120186)
: GLOS 130 TUTOR ;
: PRTSCR CR ." CURRENT GET SCREEN IS " NTUTOR @ .

CR " REPT SCREEN OF INFORMATION IS "™ STUTOR @ . CR
HELP
SCR 46 TUTOR.BLK

(PRINT SCREENS FOR TUTOR INFORMATION... bdk 120186}
FORTH-83 TUTOR PROGRAM AND HELP SCREENS
WRITTEN BY BitLL KIBLER
NOV/DEC 1986
ALL COMMERCIAL RIGHTS RESERVED

This program is intend to h2lp beginners and oid FORTH users
alike. The screens contain information on FORTH-83 and are
related to the recomended book " STARTING FORTH " by Leo B8rodie
which can be used as a textbook with this program. Each chapter
or series of screens is organized to present the words used in
the chapter first in a glossary form. Old timmers will find this
glossary important to see the differences between F83 and other
versions. Typing HELP will repeat these screens, then typing
SCR #7 TUTOR.BLK
(second intro screen with list of words... bdk120186)
the chapter number for the area of help needed. Typing ESC key
will exit the screens and return to the system prompt. GET will
display next chapter of information, while REPT will start
with the first screen of the chapter again. START-TUTOR wiil
start with the first chapter. Display will pause until
SPACE BAR is pressedecececss NEW F83 WORDSeesss

The Computer Journal / Issue #27

’

of 60 characters by 16 rows, which at first
I felt too small for the tutor program. Af-
ter generating some text I found the size
actually to be a very nice presentation.
The borders and display should be usable
on any machine, one of Forth's strong
points. The other words merely set which
screens to load and where you started.
The only major word I defined was ac-
tually modifiying the Forth LIST word.
Normally using LIST will display a
screen with each line numbered, and
with line 0 containing the origination date
and the title. I wanted the starting title
and no line 0 or line numbers. What [did
was reproduce the original F83 LIST
definition and then remove or rearrange
the information to get the desired results.
I made one mistake during this process
which sent the machine into the
operating system, but I had saved each
screen to disk and only had to reboot to
make corrections and try again.

The first word you can use is HELP,
which gives you an introductory set of
screens to the program. This introduc-
tion gives you some of F83’s words both
in the tutor program and regular F83.
The *‘$$"" means the end of a series of
screens and will drop the program back
into F'83 as indicated by the “OK'’ prom-
pt. “REPT" will repeat the series of
screens again, while “GET" will start
the next set of screens. Eliminating the
line 0 and some extra returns enabled the
next screen'’s text to display immediately
after the first (after you hit a space bar).
“ESC" will terminate the displaying of
screens, but “GET"’ will start where you
left off. “PRTSCR"” will tell you what
each of the two variables contains (t
screen pointers GET & REPT).

To enter text, you use the built in F
editor and start each screen with
NEW". This will allow you to enter te
one line after the other, while editi
previous lines will require you looking
the commands until you get used .
them. Now that I am getting used to the
commands 1 have found the editor to be
OK, especially when you consider it is
available at all times. I am planning on
writing the tutor screens along the lines
of Leo Brodies “‘Starting Forth’’, but feit
the idea of getting tutor programs out
there more important than the text itself.

Conclusion.

In using other tutor programs I have
found them both difficult to use and im-
possible to fit my needs. I found most
users either know too little or too much to
make proper use of the program’s infor-

37

The toliowing words are important utilities in F83 and may be
Jitterent from previous versions. WORDS will display a list of
783 words used. OPEN allows use of an existing file, EXTEND is
usec to add screens, and CREATE is used for making a new file.
INCL & Jisplays a list of line O, use 1 20 INDEX to list

screens | to 20. 1 30 SHOW will print 6 screens to a page on
your printer in condensed mode (use ' EPSON IS INIT-PR for
apso>n printers). 1 30 TRIAD prints three to a page if condensed
pria* is not available. 1 30 SHADOW SHOW wil! print both the
SCR #n» TUTOR.BLK

« THIRD PRINT SCREEN OF TUTOR INFORMATION..... bdk120186)
regular screens on the left side and the information screen on
the right side of each page. SEE xxxx disassembles the word
xxxx, while VIEW will open the source file (on A: drive) and
list the screen it is in. VOCS will |ist the vocabularies in

the dictionary, while ORDER displays the path of the directory
search. Use DOS WORDS to see a tist of the DOS dictionary words.
CAPACITY will print the number of screens in a open file. A L
will toggie between the shadow and the source screens. N L will
display the next screen, L will list current screen, B L will
list previous screen. 1 EDIT will invoke the line editor with
screen | ready to edit. O NEW will start editing at line O and
and aliow the text to be entered one line after the other. HEX
100 80 DUMP will do a hex dump of memory location 100h to 180h.
DEBUG LIST will allow stepping through !ist when used next as

in 1 LIST.

SCR #9 TUTOR.BLK
(last intro screen with list of words... bdk120186)
TUTOR WORDS
CHP1 = introduction CHP2 = fundamentals
CHP3 = RPN and STACK CHP4 = editor commands
CHPS = conditionals, nests CHP6 = fixed point operations
CHP7 = loops (& nested) CHP8 = number types
CHP9 = var. const. arrays CHP10= FB83 structure
CHP11= input/Output CHP12= extensions
GLOS = alphabetical glossary of F83 words

GET = next chapter

REPT = begin chapter again

HELP = repeat these screens START-TUTOR = start at CHPI1

SPACE BAR = next screen

mation. A typical problem is getting into
and out of lessons. Many times you can
get out but must start all over with lesson
one again. A recent tutor program I must
use makes you enter information at each
prompt before you can continue on. This
is not acceptable as the only information
I want is at the end of each lesson (a
review and glossary). My Forth tutor
program gives you many options, from
printing an index (or the whole thing) to
LISTing a single screen. After each
lesson you are given the Forth “OK”
prompt and can enter any F83 word, try
new words, run samples from the lesson,
or leave F'83 by going “BYE"".

I found using Forth to be easy and
simple. I use many different systems and
CPUs which started me on Forth and will
be the only language I could use on all the
units. Currently I have to learn
everything all over again when ever I
change systems, while learning Forth

ESC = stops display
PRTSCR = GET and REPT pointers

33

would allow me to learn only one system.
F83 contains most functions you might
consider when developing a program or
changing a system, and as such could be
the solution to efficiently using many
systems. Giveitatry. B

Editor

(Continued from page 3)

make the minor revisions so that a
program does what we want it to do. My
first choice is a program which includes
the source, and my second choice is a
program which I can figure out how to
patch.

Clark Calkins’ method of disassem-
bling programs in order to prcvide
modifiable source code is very important
for those of us who are working with
CP/M programs which are not supported
because of the manufacturer’s neglect or
the fact that they are out of business, and
we are very thankful that Clark is taking
the time to share his knowledge with us
in this first article of a series. I would like
to see source code generators for
popular, but undocumented, CBIOSs,
disk format programs, boot PROMs, etc.
If you have a likely candidate and would
be willing to cooperate in a group effort
(we can’t expect Clark to do all this work
for us), drop me a note or post a message
on our BBS. If there is enough interest
we'll organize a SIG.

While talking about source code, note
that Hawthorne's 68000 operating system
includes the source code plus the com-
pilier for the language in which it is writ-
ten.

8-bit Developments

There is still a lot of activity in the 8-bit
domain with Z-80 and HD64180 single
board computers selling well. There are
also a lot of 8-bitters still in use and they
are ideal tools for learning about inter-
facing and how operating systems work.

Toshiba and Zilog should both know
how many 8-bit chips are being sold, and
they have just announced new Z-80
family devices which means that they
plan on producing a lot more of them.

Toshiba has introduced a line of Ap-
plication Specific Standard Parts
(ASSPs) which include a CMOS Z-80 CPU
with peripheral functions on one chip.
Their Z84C011AF which combines the Z-
80 with a clock generator controller, a
counter timer, and five 8-bit parallel 1/0
ports comes in a 100 pin flat pack in6 or 8
MHz with 10 MHz promised. The 1/0 por-
ts are bit enabled and each port bit can
be used as input or output. The
Z84C013AT is designed for dedicated
communications with serial 1/0, and the
Z84C015AT is designed for com-
munications with parallel 1/0.

Zilog has announced their Z84C80
CMOS chip which can replace 70 to 100
SSI/MSI chips in a Z-80 system, and in-

The Computer Journal/ issue #27

cludes a clock oscillator, watchdog
timer, Z8500 bus interface, dynamic
RAM interface that handles 64K and
256K memory chips, and decodes the in-
struction set which permits code and
data to be separated into different ad-
dress spaces and doubles memory space.

BD Software is now shipping revision
1.6 of their C compiler. This revision in-
cludes the RED editor (with source code)
which reacts interactively with the com-
piler for easy error corrections, the buf-
fered I/0 functions have been changed so
that they are now K&R compatible
(programs written for V1.5 will have to
be modified), the compiler error detec-
tion and diagnosis have been improved,
plus there are numerous other im-
provements. Note that the source code
for all the library functions is included.
The BDS C compiler has been my first
choice as a programming language for
writing text filters and drivers for our
phototypesetter, and the new version is
even better.

Another entry is Borland’s 8-bit Turbo
Modula-2 compiler which is being
distributed by Echelon and Micromint,
and will be very important for people
writing non-trivial programs but who
don’t like C. Turbo Modula-2 has a lot of
the familiar syntax of Turbo Pascal, plus
separate compilation and library
facilities similar to C. Interfacing to
assembly routines has also been greatly
improved compared to Turbo Pascal, as
Turbo Modula-2 has a CODE statement
which reads in an assembly language
.COM file during compilation. The
assembly routine must be relocatable
(only relative jumps) and its length must
be included in the first two byte, and this
is all spelled out in the manual. It also in-
cludes type and version checking across
compilation units, and can be used for
large program development and for
operating system concepts like con-
currency and interrupt handling.

I feel that while a lot of work is still
being done in BASIC, it should be
replaced by Turbo Pascal for trivial
programs. [also feel that Turbo Pascal
should be replaced by C or Trubo
Modula-2 plus assembler for non-trivial
programs. I didn't find anything about
producing ROMable code in the Turbo
Modula-2 manual, so BDS C may have an
advantage there.

TCJ intends to support both BDS C and
Turbo Modula-2, and is especially in-
terested in acquiring extended library
modules to be published in the magazine
and posted on the BBS. Send us infor-

The Computer Journal / Issue #27

~FREE

AFFORDABLE

CATALOG AND | ENGINEERING
| SOFTWAREAPPLICATIONSGUIDE | CP'M TRSOOS
MSDOS SOFTWARE PCDOS
~N "
: ANALYSIS i CIRCUIT DESIGW GRAPHICS | MATHEMATICS
! XFF?,_, . 7295 ac 7295 ¢« POP 7295 | TEKCALC 7295
| LociPRO 7295 .PC;PLOT , 729 .MA»TP XMAGIC T2es
R ACNAP 7295 Tt
S o COMCALC 7295
sop 7205 ‘PLF)TPRO o "7295 ' o L
BT — o . REPORT WRITING
} { A . TEKCALC 7995 | Right Writer 9795
| stap 37295 l R R A e
L A Ja -
Eng|neer|ng 2200 Business Way. Suite 207 i @9

Protessional Software

Riverside, CA 92501 USA

mation on what you are doing, and share
your developments with others.

Feedback Control

The article on Feedback Control
Systems by BV Engineering is a good
example of both engineering software
and a very important subject for any

type of control system.
Feedback control can be applied ‘o
numeric machining, robotics, tem-

perature control — and even magazine
publishing. To keep TCJ steering down
the right path we need to know what the
readers want and how we are deviating
from the path. We have renamed the the
readers letter column “FEEDBACK" to
better describe its purpose, which is for
the readers to ask questions, respond
with answers, talk about what’s hap-
pening in the computer field; and most
importantly, where TCJ should be going.
Take time to write or to post a message
on our BBS.

Computer Parts

In the previous issue, I mentioned that
the power supply burned out in one of our
Morrow S-100 systems. I was concerned
about finding a replacement since
Morrow is out of business, but I located
Silicon Valley Surplus (4401 Oakport St.,
Oakland, CA 94601, phone 415-261-4662)
who obtained much of Morrow’s parts
inventory. A replacement supply was
only $25, and in addition I bought a spare
DJDMA disk controller board (complete
with the latest ROM) for only $45. The
people 1 talked to there were very
pleasant, helpful, and knowledgeable.

They even have an on-line bulletin board
to list some of their latest bargains. See
their ads in this issue for some great
deals including the Morrow Micro
Decision mother board which makes a
great single board computer. B

Forth Fan

Don’t let us down! I still wish there
were some Forth articles in TCJ, but I'll
be content as long as you continue to sup-
port CP/M as well as MS-DOS.

I know I'm not alone when I say that
having a MS-DOS machine hasn’'t made
me want to trash my CP/M box(es).

GS.

Editor’s Note: We haven't turned dow:
any Forth articles, we just haven’
received many. See Kibler’'s TUTOR ar
ticle in this issue, and tell potential Fort:
authorstocontactus. g

Disk Parameters

Modifying the CP/M Disk Parameter Block for Foreign Formats

by C. Thomas Hilton

. A number of our readers have asked for more information
on tailoring the CP/M® BIOS, and specifically on how to modify
"the BIOS in order to read other disk formats. Information on
writing to the disk is very hardware specific, but there are some
generalities and the information on the AMPRO Little Board®
will serve as a starting place for those with other systems.

We must keep in mind the basic structure of CP/M, or CP/M
derived operating systems. The CCP interfaces with the human
operator, and relies upon the FDOS, (Floppy Disk Operating
System), segment for all hardware interface. The FDOS
segment deals with all hardware requests in a ‘‘sentence’’ type
format. It does not however have much knowledge about what
the system hardware looks like. The BIOS, (Basic Input/Output
System) is the only segment which deals directly with the
system hardware. Because the other segments of the CP/M
system require no hardware specific information CP/M may be
run on nearly any manufacturer’s hardware. This is the purpose
of the CP/M concept, and why we don’t have ‘‘compatibility’”’
problems the way the 16 bit systems do.

Less than a fifth of a standard BIOS is concerned with tasks
not associated with disk management. When we begin to think of
disk management we are concerned with the entire BIOS and
cannot simply isolate a given segment and work with it. Far too

‘many concepts, or ‘small details’ are interrelated, and these
‘small details’ form the dominate four fifths of the BIOS.

Getting Started

From here on we will refer to a generic operating system as
the “DOS", which is assumed to be ZRDOS, CP/M, Hermit DOS,
or any other CP/M derived operating system.

The DOS can manage nearly any type of disk storage device
we care to connect to the system. These devices may range from
a single density 5 inch drive to a quad density, or for the little
AMPRO, 80 megabytes of hard drive storage. Wait just a
minute! Didn’t he just say the DOS segment has little knowledge
of the disk hardware? Yes I did. There isn’t really a conflict of
concepts. In beginning we will have to view the disk system as
the DOS sees it, and work our way deeper into the concept as we
g0. Any other route in our quest would lead to miles upon miles
of dull theory. I would rather do than read, wouldn’t you?

Of all the thousands of details concerned with disk
management only a few are of real concern to the DOS segment.
The DOS relies upon the BIOS to take care of these details. The
DOS asks the BIOS to provide it with a set of ‘‘parameters’
describing the disk device. Many times, as we attempt to inter-
face new technologies with standard, and aging systems, (all
the better tc upgrade them as we are doing here), the BIOS will
lie to the DOS segment about the disk drive. What the DOS
doesn’t know won't hurt it. The most common occurence of
misinformation is about hard-drives, which were not common
when CP/M was written.

40

Primary Disk Parameters — Some Theory

The DOS asks the BIOS for parameters which ‘‘describe”
what the mass storage device looks like. We will cover these
parameters several times, with a slightly different perspective
each time. We have to begin somewhere, and what'’s good for the
DOS is not always good for the BIOS.

The size of the blocks of disk space used by the concerned
format is a trade-off decided upon by the author of the BIOS. It is
said that ‘‘He who writes the BIOS owns the company.”’ There
are many reasons why this is true and we will discover them.

The allocation block may assume only a limited number of
sizes to remain compatible with the DOS. Of these limited
values at least one is considered obsolete. All possible values are
related to other disk parameters. The size of the allocation
block, simply expressed for now, is the amount of disk space
used in all transactions. A better way of putting it is that if a two
character file shows up in the directory as using 2K of disk space
then you may assume your system uses a 2K allocation block
size. The size of the allocation block is a great headache for the
format designer. File space is allocated only in terms of blocks.
In the two character file example there is a large waste of disk
space. We can expect that at least half of the last block in a given
file will be wasted. This waste factor is what prompted the
LU.COM and NULU.COM library utilities to be created — they
free up much of this wasted space within the individual files.

Now then, it seems logical that the larger the allocation
block the greater the amount of space which will be wasted. This
is a valid assumption. The considerations are the size of the disk
being used, and the number of files likely to be placed upon it. It
would follow that the lower the disk capacity and the greater the
number of files to be placed upon the disk, the smaller the
allocation block should be. It is not that simple, even if we knew
for certain what kinds of drives those darned TCJ readers would
attempt to connect to our system !

The DOS ‘“‘sees’’ the storage device in terms of allocation
blocks, which we will refer to only as ‘‘blocks’ from here on. It
knows only how many blocks the disk will hold. The concepts of
sectors and tracks it leaves to the BIOS to figure out. The total
number of biocks available on the disk allows a ‘‘map’’ of the
disk, in allocation blocks, to be built.

If the disk is a small one of less than 257 blocks, the map for
the entire disk may be referenced in a single byte. If the disk is a
large one we will have to use a word, or two bytes, to map the
disk. To avoid ambiguity in map making, a two byte map should
hold a predefined set of numbers. The size of the allocation block
therefore directly effects the production of a map of the disk.
The disk capacity and the block size determine how many block
numbers will fit in the data map of the disk. If we make the
number of blocks less than 256, a single byte, then the block size
must be large, a single directory entry can command more disk
space, and we will waste more disk space, (because of the large

The Computer Journal/ issue #27

block size).

The block size and disk capacity determine the amount of
space which can be described by a single directory entry. This
amount of disk space controlled by a directory entry is called a
‘“‘data map.”” The amount of space controlled by each entry in
the data map will be either eight or sixteen times the size of an
allocation block. This is a design rule. This number is also
represented by a term called a ‘“‘logical extent” which will
always be a multiple of 16,384. This is another design rule. There
is a case where these rules could be violated. If the block size
were 1K and the disk was so small that there were less than 256
blocks, then a directory entry could command only 8K of disk
space. This is not a usable combination of disk parameters. This
combination is not allowed in modern design concepts. The use
of 1K allocation blocks may only be used with disks of less than
256K of data, such as “‘fruit-loop’’ computers and other low-end
consumer toys.

The block size also effects the relationship between the
logical extent and the physical extent, (the actual amount of
space commanded by a single directory entry). The larger the
physical extent, the fewer the number of directory entries which
will be required to describe a complete file. The size of the
physical extent is more than a theoretical design concept as it
directly affects system performance. It takes time to locate and
‘“‘open’’ a new extent; a seek of the disk head back to the direc-
tory track is required. It follows that the larger the physical ex-
tent the less time would be required to process a large file. The
time it takes to find data on the disk is important when we begin
to think about how the system will perform with random access
files. But, as we have briefly discussed, the larger the extent, or
block size, the more wasted space we have on the disk.

Another consideration about the size of the allocation block
is the relationship to the number of directory entries it takes to
describe the entire disk. We must consider two extremes of disk
space management. On the one hand we must consider that
someone may place all his files in a library and the entire disk
may be filled with only one file. A single directory entry
therefore must be capable of describing the entire disk, if it has
to. If the directory were constructed any smaller than that
which could command the entire disk -space it would not be
possible to use the entire disk. On the other hand the disk may be
filled with two character files commanding a single block. There
must be enough directory entries to handle the load. From what
we already know the smaller the block size the more directory
entries would be required to describe the entire disk.

Just to make things interesting let's establish the rule that
there cannot be more than 186 allocation blocks used by the direc-
tory. Yes, you had better dust off that old caiculator and send
out for another bottle of you favorite headache reliever! The
basic rule of thumb here is that the smaller the block size the
larger the directory must be. It wouid also be logical to think
that the size of the disk would play a major role in determining
the allocation block size since it affects so many ‘‘small” con-
siderations.

The DOS requires the BIOS to tell it the number of blocks a
disk will hold. This figure represents the capacity of the disk.
When all the blocks are assigned to a directory entry the disk is
full, end of story.

Right from the start I am going to run afoul of CP/M pun-
dits. The parameter 1 refer to as ‘‘Records per Track’ is
generally called ‘‘Sectors per Track.” What it refers to is the
number of 128 byte data segments per track. Sectors have not
been 128 bytes per track since the 8080 processor was new. So,

The Computer Journal / issue #27

(

Littie Board™....$249 A

The World's Least Expensive CP/M Engine

CP/M 2.2
INCLUDED

® 4 MHZ Z80A CPU, 64K RAM, Z80A
CTC, 4-32K EPROM

® Mini/MICro Floppy Controller
(1-4 Drives, Single/Double Density,
1-2 sided 40/80 track)

® 2 RS232C Serial Ports (75-9600 baud
& 75-38, 400 baud), 1 Centronics
Printer Port

® Power Requirement. ~5VDC at . 75A;
+12vDC at .05A / On board -12V
converter

® Only 5.75 x 7.75 inches, mounts
directly to a 5-1/4" disk drve

o Comprehensive Software inciuded
@ Enhanced CP/M 2.2 operating

g

system with ZCPR3
® Read/write/format dozens of
floppy formats {18m PC-DOS.
KAYPRO, OSBORNE, MORROW
® menu-based system customization
® Operator-fnendly MENU shell

® OPTIONS

® Source Code

® TurboDOS

® ZRDOS

¢ Hard disk expansion to 60
megabytes

® SCSI/PLUS™ muiti-master 1/O
expansion bus

® Local Area Netwark

® STD Bus Adapter

BOOKSH E“TM Series 100

Fast, Compact, High Quality, Easy-to-use CP/M System

® Ready-to-use professionat CP/m
computer system

® Works with any RS232C ASCH
terminal (not included)

® Network available

® Compact 7.3 x 6.5 x 10.5 inches,
12.5 pounds, ali-metal construction
o Powerful ancd Versatile:
© Based on Little Board
single-board computer
® One or two 400 or 800 KB floppy
drives
¢ 10-mM8 internal hard disk anve
opton

Priced from
$895.00
10MB System
Only $1645.00

e Comprehensive Software included:

® Enhanced CP/M operating system
with ZCPR3

o Word processing, spreadsheet,
relationa database, speting
checker, and data encrypt/
decrypt (T/MAKER ill™)

® Operator-fnendly sheils; Menu,
Fnendly'®

® Read/write and format dozens of
floppy formats (IBMm PC-DOS,
KAYPRO, OSBORNE, MORROW . .)

* Menu-Dased system customization

ARGENTINA: FACTORIAL, SA, (1) 41-0018,
TLX 92408 SELQRME CENTRE
ELECTRONIGUE LEWPEREUR, (041) 234541,
TLX 42621 CANADA: DYNACOMP
COMPUTER SYSTEMS LD, (604) 879-7737
ENGLAMD: QUANT SYSTEMS,

(01) 253-8493, TLX 944240 REF: 19003131
MRANCE: EGAL, (1) 508-1800, TLX 620893

AViR

\\ COMPUTERS INCCRPORATED
\S 67 East Evetyn Ave. « MOUNtain View, CA94041 «

MICROCOMPUTERS, (613) 500-0628
SRAZE: ONC-DATA LEADER LTDA,

(41) 202-226%, TLX 041-6364 DEMNMARK:
OANBIT, (03) 66-20-20, TLX 43558
FORAMD: SYMMETRIC O, (0) 585392,
X 121394 HRARL: ALPHA TERVINALS,
UD, (3) 491695, TLX 341667 SIDEN:
AB AKXTA, (08) 54-20-20, TLX 13702 URA:
CONTACT AMPRO COMPUTERS INC.,

TEL.: (415) 962-0230 TELEX: 4940302

Bme, 1Bm Corp., ZB0AS, Ziloy, Inc., CP/me,
Ovgtal Rcsearch; 7CPRI™ & ZRDOS™,
Echeion, Inc., koo DOSS, Software 2000,
inC, T/MAKER B, T/Maler Co.

(415)962-0%30 « TELEX 4940302 #

we of the enlightened ‘‘New Wave of Eight Bit System Designs’’
will tell it like it is and refer to this parameter as records per
track. Each RECORD we will determine to consist of 128 bytes
of user data.

The DOS doesn’t know anything about sectors and tracks,
nor their size. This is the realm of the BIOS where only those
with at least a brown wizard'’s robe with goid stars might travel.
However, the BIOS demands to speak in the terminology of sec-

- tors and tracks so the DOS must fake it. Knowing the number of
standard RECORDS per track it can do some fancy math
calculations and tell the BIOS what it needs to know to return a
specific record from the disk’s surface. This is not as easy as one
would suspect as records are laid down anywhere there is space,

.seldom one after the other.

" The Disk Parameter Block
In actual application the parameters we have just discussed
are returned to us in a fifteen byte data structure called the
“Disk Parameter Block,"’ which we will refer to as the *“DPB”’
from here on. The address of the DPB is returned from the BIOS
using DOS function call #31. The structure of the DP3 is shown
in Figure One.

NEW MEAN NG

RECORDS PER TRACK

BYTE NAME OLD MEANING

XX SPT SECTORS PER TRACK

X BSH BLOCK SHIFT FACTOR

X BLM BLOCK MASK

X EXM EXTENT MASK

XX DSM DISK SPACE MAXI|MUM D1SK BLOCK MAXIMUM
XX DRM DIRECTORY MAXIMUM . RECTORY NUMBER+]

XX ALO/ALY [NITIAL ALLOCATION
XX CKS CHECK AREA SIZE
XX OFF TRACK OFFSET

AcY INTTIAL ALV MAP

RESERVED TRACKS

Figure One: The Standard Disk Parameter Block

The first byte in the DPB is the RECORDS per track
‘parameter value. Under CP/M 1.4 there were 128 bytes per sec-
tor only. This is why CP/M 1.4 is no longer in use. Modern
technology allows several different values of SECTCORS per
track, with 128 bytes per record within a given sector. This value
represents the number of RECORDS per track, and has nothing
to do with the number of physical sectors per track. This is
where the distinction lies, and must be recognized if we are to
battle confusion. If you think in terms of sectors, with every sec-
tor being 128 bytes, then nothing will make sense from here on.
Think in terms of 128 byte RECORDS only!

The next entry in the DPB refers to the BLOCK SHIFT
FACTOR. Recall I mentioned the DOS doesn’t know anything
about sectors and tracks. This is the first of several data which
allow the DOS to calculate where a given record is upon the disk,
and demand it of the BIOS. The block shift value is the number
of times a given record’s number should be logically shifted to
the right in a 16 bit register to obtain its allocation block num-
ber. The size of the allocation block may be determined by
initializing a 16 bit register with 128 and shifting this value
LEFT the number of times in the BSH byte.

The BSH is followed by the BLOCK MASK byte which con-
tains a value which, if logically ANDed with a record number
will produce the RELATIVE NUMBER of the record within its
allocation block.

The EXTENT MASK field of the DPB shows the relationship
between the physical and the logical extent. The logical extent is
derived from dividing the record number by 128. The physical

42

extent may also be determined from the extent mask, but it is
generally easier to get the record number, shift it right BSH
times, and then divide the result by eight or sixteen, depending
upon the number of blocks in the data map. The 7 =M, or
DISK BLOCK MAXIMUM word reveals the highest possible
allocation block number available for the disk of concern.
Remember that in computers the number zero is the first num-
ber, and a valid number. Hence the number of allocation blocks,
or the highest allocation block number, is one more than the
value in the DSM. The size of the disk may be computed by
initializing a 16 bit register with the value of the DSM+1, and
double that value BSH-3 times. The number of records may be
determined by doubling the result BSH times. If you are slick, as
the byte count will overflow a 16 bit register, the disk size in
bytes may be determined by DSM +1 doubled BSH+7 times.

The maximum number of directory entries, the DIREC-
TORY NUMBER+1, contains the maximum number of direc-
tory entries, plus one, contained upon the concerned disk. This is
a word sized parameter, and indicates that the DOS is able to
support up to 256 directory entries. This large number of direc-
tory entries is generally found only in hard disk systems.

The ALV, or INITIAL ALLOCATION VECTOR is a word
sized parameter which the DOS ma:ntains for each ‘‘active’”
disk. This word is a string of DSM+1 bits in length in which each
bit refers to an allocation block. If the bit is “‘high,” a logical
“1,” then the block is in use. Each byte in the initial ALV may be
used to build a full sized allocation vector for the concerned disk,
with these bytes becoming the ‘“‘leader bytes’ for the vector.
Some number of the ALV bits will be set high to permanently
reserve the directory area of the disk.

Next on the list is the CKS word, which is the DIRECTORY
CHECK SIZE parameter. This word sized parameter is used by
the DOS to see if the disk on the concerned drive has been
changed by the user since the last ‘‘warm boot.” If the disk is
determined to have been changed it is assigned a ‘‘read only”
status and we are given the all too familiar error message when
we try to write to it. If the CKS word is a zero value this ‘‘disk
has been changed” testing will not be done. This is the case only
in hard disk systems, or where the medium is assumed to be
“nonremovable.” If the CKS value is not zero this word will be
given a value representing the number of records in the disk’s
directory, or DRM+1/4. Directory entries are packed four to a
record.

The final entry in the DPB is the OFF word, or RESERVED
TRACKS OFFSET value of the concerned disk. This word tells
the DOS how many tracks are reserved for the operating
system. Knowing that some tracks are reserved the DOS will
add this offset to the track number it computes using the record
number and the RECORDS PER TRACK parameters of the
DPB. It may be interesting to note that the system tracks are
always the first tracks on the disk, hence the OF Fset value poin-
ts to the first byte of the directory area on the disk. The more
enlightened reader may wonder, at this juncture, why this is a
two byte field when only one or two tracks are normally reser-
ved for system use. Well kind reader, the DOS is prepared to
handle 65K of reserved tracks, this is true. The reason this is
done is to allow the use of hard disk systems. If the medium is
continuous, of say 20 megabytes capacity, and CP/M allows a
maximum of eight megabytes per disk, how does one account
for the palm sized AMPRO's ability to support 88 megabytes of
disk storage? You are correct if you feel the offset value is used
to ““lie’ to the DOS segment. On the 20 megabyte Little Board 1
use for writing it is not unusual to see TWO THOUSAND

The Computer Journal / Issue #27

TRACKS reserved on LOGICAL DRIVE D! This offset value is
used to partition a large hard disk into more bite sized portions
compatible with the various limitations of disk space
management. Adding 2000 tracks to a record number points to
the directory tracks on logical drive D of the hard disk. This is a
good way to find your way around the void of a large disk
system! The DOS assumes there are four physical disk drives,
A, B, C, and D, connected to the system. The BIOS knows there
is only one physical drive. What the DOS does not know will not
hurt it.

The Reality of the Situation

A full description of how to apply the variables we have just
discussed would be beyond the scope of what we wish to achieve,
and the design of each reader’s disk would be different. Each
would make different trade-offs according to his needs,
opinions, phase of the moon, and other factors unmentionable in
print. The results of these decisions, the values placed in the
DPB, and the many algorithms which would be required to sup-
port them would be called “DISK FORMATS,” and each of them
would be incompatible with another’s. Are you beginning to get
the picture on why there are so many different disk formats, and
why no one wishes to second guess the thoughts of the author of a
BIOS?

The BIOS is the only portion of the operating system which
speaks directly to the system hardware, and the only program,
user or otherwise, which should speak to the system hardware.
It would follow therefore that each BIOS is concerned only with
the specific disk controller chip chosen by the hardware
designer. It is also proper to assume, if you wished to physically
format a disk in any style other than that specified by the author
of the BIOS, you will be required to write your own algorithms to
deal with the hardware specific disk controller chip.

The AMPRO Emulator Disk Parameter Block

Turning your attention to LISTING ONE you will see
several DPB’s such as we have been discussing. Three of these
segments describe the decisions made for disk format design by
the original author of the AMPRO BIOS. These decisions mark
the characteristic AMPRO format from all other combinations
of disk format design. FIGURE TWO shows the standard con-
figurations of format design practice. We have far to go in a
short space. I will leave the study of the various examples for
your leisure time.

Let us pay particular attention to the “E” disk parameter
block. It may be located by the label, “EPRAM.” Before I con-
verted to AMPRO systems I owned a Kaypro 4-84. The “E" disk
in the example is set to the Kaypro 4/10 format by default. I
traded in the Kaypro for a Televideo terminal. With most of my
software library in the Kaypro format, the default setting allows
direct access to my software.

Just above the “E" disk’s DPB we will find a label entitled,
“TYPETAB,” which means the disk TYPE TABLE. As if all the
different possible parameter values weren’t enough to deal
with, we now have to deal with the physical characteristics of
the disk drive, and a few ‘‘small details” about how the alien
format designer reads, and writes, his disks. In the default type
table make note of the byte containing the value, “0E6H.” The
value E§ describes the physical Kaypro disk format.

Each bit in the disk type table has a meaning as depicted in
the listing’s chart. Bit seven defines whether the disk is single,
or double density.

Bit six defines the number of sides the disk has, which also
defines the number of heads the drive will have.

The Computer Journal / Issue #27

Bit five defines how the sector numbers are organized.
Some formats consider both sides of the disk as a single surface.
Sector numbers are numbered with the first sector on side one of
the disk, continuing on the other side. Other formats consider
each side of the disk as different with sector numbers defined as
*‘side one, sector one/ side two, sector one."

Bit four defines the ‘‘track count,” which refers to the way
the disk is read. In some formats the disks are read down one
side of the disk and back up the other side. The alternative is to
read the disk down one side, return, switch side, and read down
the disk again.

The bit structure this far contains some obvious, and some
not so obvious information. That information which is not ob-
vious will seldom be found in any of the target system’s
technical data. It is one of many circumstances which make
dealing with alien disk formats frustrating.

Bits two and three define the size of the disk's allocation
block. The “E” disk supports four options of allocation size, 1K,
2K, 4K, and 8K. Other allocation sizes will require change of disk
handling algorithms.

Bits one and zero define the size of the sectors. Remember,
we are not speaking of 128 byte units! Those are records. We are
referring to the physical size of the disk sector.

An examination of the “E” disk parameter block will show
that it is a standard DPB. Following the DPB is a group of con-
stants which are called the “‘skew translation table."”

This far our theory has been a logical one, with *“many small
details” inferring that everything on the disk is in a neat order.
Think again, nothing comes this easy. If it did we would be
flooded with articles like these. The term, *‘skew” means that
consecutive groups of data are not placed on consecutive sectors
within a disk track. Data which should logically follow one
another are separated by some predefined number of sectors.
Dropping a record every few sectors improves disk performan-
ce. Disk access is already slow, and all tricks possible are used
to improve access times. The philosophy of the skew is that it
takes time for the processor to deal with data. This time factor is
such that the processor may not be fast enough to lay down
records as fast as the destination spot spins under the heads of
the drive. By spacing the sectors the processor ‘‘access win-
dow” is made larger. The access window is designed to
eliminate an additional revolution of the disk for a missed sec-
tor. In hard disk systems skew is called the “interleave” factor.

The DOS can determine if skew is used by calling the BIOS
function SELDSK, select disk, which returns the address of the
DISK PARAMETER HEADER. We will refer to the disk
parameter header as DPH from here on. DOS will check the fir-
st word of the DPH to see if it is a zero value. If the value is zero
then no skew is used, and the record position calculated from the
record number represents the actual record position on the disk.
If the first word of the DPH is not a zero value it will be the ad-
dress of the skew table in the BIOS.

The algorithms which deal with the skew factor are often as
unique as the results of the other trade-off decisions made by the
author of the BIOS. If the disk uses skew the DOS will call the
BIOS function SECTRAN to translate the logical record position
into the physical record position. This table is required to
manage the skew factor of an alien disk, and that it is data we
must have to read, or write, an alien format.

We now at least know something of the parameters con-
tained in the DPB, and have a basic understanding of the data
we must provide the “E" disk support algorithms. Fine, but
where do we get this information?

43

woysAs pejoe|es Aue u) sojq yebiey ey, u| peujejujew ! x_M\uomm or :uuo. -
©1Qe4 UOC|JO|SURIY ROYS BU4 PUR OO|q Jojewesed ¥S|p oyy SAR|dS|ID WYNJNSIQ ¢ pepis e|qnop 1d} 96! 196HYY40]
woySAS ONJWY OY4 UO OAjUp :3 eyj dn jos oy pesn ¢ +0m:ow z M430 o
98q Aew 1353 pou|w.oyep 8ue eue siojowe ed weysAs ysoy eyy 4844y welaboud ! ez|s xuo;u“ [AY LEEd] 2
M¥SQ1 LW Osdwy Of uej (e wayshs © 4O ITIEVE NOILIVISNVYL MINS Ou4 pue 018 ¢ m wmuﬂuu Now N“wm .
[O senjea ayy ayy sujwae o4 S| esn ueju H ;]
Y31 MVYHVd MS1a 8yy) | Y4 ay4 [48p O4 S| PepuBLUl WYHINS 1 Q : xew Asogo84|p! Lz M430 c
‘ |- 8Z|S %s|p! v61 Md430 W
. p WSeW jueixs! l 89430 n}
WSV hVEIS 10 ¥sew %00|q! sl 8430 5
+414s ¥o|q! v g430 5
. . Wdy/oes! oy mi3a a
SJejewe.1ed ¥S{(Q OUJW.ie4aQ O |00) :om) Bujis|q WS1P OIOWE PBP|S—5]qnop @ WY m
) ‘ tesy 0! z M430)=
o1 $430) 8Z(s ¥oeyd! 9l M330 =
oojte!
6°8°0°9°6°¥°C 2 170 8430 G ILX o 2ol les g od4x0
OA1Up JOJRINWD IO} B|QR} 4R |Suedy! xew AJojoeu|p! o %30
(enjea 4|nejep q ©A(Ip) SA[Ip J|NejEp! 1 9430 :0S03 o215 Y5 1p!
4054 401 . n130 I- 2745 xsip* v6 M330
ez|s Mieyo! 91 M43a Rsew A_cm«xm.. t 8430
| 20j|e! 0 9430 Nsew 3oo0iq: Gl 9430
0 d0jje! HOD0 8430 +414ys ¥00(q! v 9430
I- xow Aioydeu|p! Hi€0 M430 Ad4/0s: Or A430
- 921S ¥syp! HYD0 M330 HS|p OJudwe papis-o|bujs e "Im<mm
Asew jueixe! ! 9430 . . . ;
Xsew 3¥J0|q! H40 8430 YAV PASD“WHVd3 dnBY I a M430
+414s wo|q! v 8430 ASIP & oyy! 0‘0°0" 117X M430
Na4/008 ¢ H8Z M430 Wavd3 n>4<.n>mu.zm<¢o”uomm.o #3430
(+ineyep pg-p oudAey) o3Aq adhy wsip! H930 q 0°0°0°01X M430
_ i _ ue m“wm ZAV ZASO WHVdA® ANBY¥IA M43Q
1@v13dAl 0°0°0°01 X m43Q
. LAV LASO'WaYdQ® 408410 M43Q
: ¢ 0°0°0'0LX L EEN]
01ZEYS9L 418 : .)
¥20i=11 Z16=0l 96Z=10 BZ1=00 XX 8715 Jojoeg ! OATV'OASO‘Wivda’ 4n8HI0 430
=11 =01 MZ=10 N1=00 xx +1un 50| |y ! 070707047 M430 :35VBdd
woeq dn ‘juosy umop=| umop=(x 4unod woeu) ¢ HOB+S018 940 ,
SNONU | Ju0d=1 awes=(Q x S, # 104065 ‘ :
8)qnop=| e1buys=0 x sep|s ‘ Tov0 Burieia
2| qnop=| a16uys=0 X Apisueq ‘ SHO0|§ Jejewe.ded YS|(Q JO4R|NWI PUR PIBPURLS OHIWY :©UQ Buj4s|T
OlZEPSoL 418 “
cAprrpan wOd*ySp | 4|nw oudwe sy Buysn peJdej|e Qnm S ST RIS S rsSTSCITEES=CSsrsEESsSCCaascossosssc=-romzssssssszzsossssso=
Aow sen|ea eseyy -eA|Up Joyeinwe 4inesep oYy S| Q 9A[Jp *pote|NWe 8Q O} woysAs! NOI1dO W31 NV SI MS1G ¥3d SHO0MB SGZ NVHL JHOW HLIM 371S MO0718 MI V :3LON
$IneJop 8y4 se ~w0_L0w ve OLQ>°¥ ~O—\v OLQ>0¥ © Se %S|p JOje|NWS Byy 4os’ SRS RE IS TEE S EEssCrEsss=s=szsssrcosCcSsTrs=ETSERTISsocsscossss=ssorazsszmscssmsses
suoty|utjep Bujmo) |0y BYy <glsen|RA POUINYSL By} Se pou|4ep S| UO|4{ed0} o|qey! HLO 8 M8t 8 [1T4S
UO| 4R |SuRLy BYy * |- wiRde BY4 JO PBUINLBI BN|RA BY4 SB POUINLBI S| Aijus o|qey’ H40 9t %962 9l 962> HAaL HLO ¥8£91
edA4 eyy -wiede ;o sseuppe eyy suanjed ys|pereb uojoun, S01q 04 ||ed @ H HEOo v w9 8 662«
‘ HLO 8 A8zl 91 962> HAC H90 618
01°6°8°L°9°¢“p ¢ 't @430 HLO 4 xs 8 562¢
o|qey maxs y1dy gy! 101X HEO 14 hi2% 91 962> H4l HGO 960
4954 40! 2z M430 HOO i 91 8 [174S
o71s woyo! ¥ M430 HLO 4 2§ 91 967> H40 HYO 8¥0Z
| dopje! o a430 HOO l X9t 91 962> HLO HEO | 2401
0 20| ! S====szzzocsmssrssssrsooesssszossszsassoscosszoooossssssssrssmssscscsssEssseons
xow 4104264 p! mmw m“wm SV SINILX3 EVARS dYW VIVQ NS10 ¥3d NSVW L4IHS ErdL
i~ @I1s wsp* ves M430 INIIX3 0 WOI90T UINIEXI ¥3J SO0 SHI0TE 078 X018 X018
Sow Juexe! 0 8430
sew »o|q! .
*u_:m “uo"“u mh M“wm *suajowesed ubisep jewioy Wsip yo S}40-apeu) e|qeuoseey :om] eunb) 4 “

30 dod 9
Aeidsyp ! Emmm Jw@om dunp Joj 4 enes o Hsnd
sseuppe Joj ebesseow aejieuy ¢ HdQ’ M al 1ENDA4 TV
ssesppe ydp Aeids|p ¢ MOVXIH TTVD . _¥iINOd VO
eAes pue ! I (HAVHAD) gl , Y Au>_xm: al .
iy uy ydp M 30 X3 ojqejujad apod> eA|up eyew ! W'Y aqv
8 HSNd 408185 10}y oAes ! V'3 o : 2840
30 HSNd GINOA VO
H HSNd 28d40°d df
ydp=op ! (MH)Y‘Q a1 0 O4 (=2 {JeAuod ! v 230
H N L uea1b epod eayp ¢ (1804 'y al 1840
(M3 an !
o1qey4 eyeix=ap ‘ydp=|y ! solg 1Yo . 13y
IqSpies o} jes)jo ! ZAA" a , ™'dS a1
soeuy ued spuodes 4oy sseuppe ydp eaes ¢ IHCSIIUN) al J4d woeys ,da> ieaode ! M d0d ".—_xw
TH30 X3 . :
(M) ‘a A 400Q wJem OU §ixe “
. n] Jleu heidsip ¢ IS0 TWO
ydp jo sseuppe jeb ! LEND 4 Vo epessew diey o4 4ujod ISR THH ar M
OA|JD yD8|eS ! ¥ IND T :
Vo an 11x3 dr
v‘3 a1 :zo3Y M3 1VO
8A|Jp 4uesnd jeb ‘ou ¢ GINDA V) 840 TWo
BA)Up 420195 ‘SOh ! 2034°d dr d13H‘z df
Ou=j}) 4sey ! v 230 s &0
pe)jioeds sem BA|Jp 4| B85 ¢ (1824) ‘v 01 djey !¢ d13H‘2 dr
eAes ! V(LN ¥dN) al /s dd
(141804 ‘'Y a1 1S
Ueeuds ssouse Aelds|p Of SPUODeU JO Jequnu ! SSOMOV ‘Y a1 CMINS uJsnjaa soy uejujod dod eyy eaes ¢ ™ HSNd
' ¥oeys (edo| dn jes ! MOVLS ‘dS al
13y 4ejutod soeys doo=jy ¢ ds '™ agy
4000 R %) 0‘M Q1 :LMviS
474000) !
adp jo dunpxey jujad ¢ IWOXIH 1D HoO1 9¥0
si1'sg a1 ‘
M d0d eoeds ! HOZ nod3 odS
11e 4| 4uyad ¢ ¥1S00 YD uanged obe|ased ! HOO nd3 w
®jqey ydp ¢ AVIISQ ‘M al peej euyy ! HYO no3 E)
¢ qe4 zuoy ! H60 nod3 vl
ZIAD VO Iteq ¢ HLO nd3 138
440730 al !
Z1AD TV sejenbe ||ose ¢
$M030 @ :
11AD TV QOUR OARS Pl AS P wo_n o dwe
1AW 30 al : Y
1A WO 8 nd3 SSO¥IV P
0AWV ‘30 an H 3
AT Y I V! sejenbe seyjo ¢ H
WH0 30 a ! =
ZIAD WO : HOG nd3 1804 ©
WsQ*30 al ¢ HSO nd3 5008 £
(1AD VD ' 0 3 1008 3
Wx3‘3q a1 H 2
LLAD T 1PWIO) DVWH O} 8pOd> pey Jeauo) : e
W9 30 al UO4[IH Sewoyl D 98/80/L0 4O Se [Q°|A ! 2
11AD Vo MULL)IM POIY $8/01/LT JO Se 00 1A H 3
HS8°330 a1 ISuo|IS|ABY ¢ Q
ZIAD WD ‘ o
21qejuiad senjea ydp eew ! 14530 ol “W/d0Y 4SON S,04) eyj jo dosAs ‘uewyny *5 yueqoy ¢ 2
‘ AQ WSY*M3INS PUR WSV*8dQ 1O UO|4EUIqWOD Byy S| WYSd¥S 10 ¢ =

$upad
0487 04 48s

Jegoeueyd 4ufud
ouez Buipes| dyys
8404564

6eyy o woey2

ou
L1 ueyy ssey

sunoo yeb

ep
Juewe | dwod

Jequnu Beu ppe

$unod | jose

4e(|e2> 04 uinjas puve jujud
se|q ||ose

suey
speJpuny

1114 ouez bu|pee|

CENETN

49400.0yd ouez-uou 4o} BR[|} 40S

A sa em

“a a v

IEN

TS

.

.

re EYPPN

I3

{ew|dep

ededs 4u|ad
e 4upad
mou ybnouyy §y ees

104 4uyud
QARS pue
UMODp JUNOD
048z }) euop

5,087 Auew moy

FENETS

LESETNEPN

119s@ 04 jy u| AuRujq jueAuod

13y
1n0o df
H440°8 g7 :0Y32N

RPN

1n0d dr

z 13y

o'V al

v O

9'y ol
O¥3IZN‘ON dr
A dd

046z J0j Moeyd

o'y al
30°H aay
30 ONJ
v‘3 al
0

'y al
v‘a al
140

a‘v al

Xovq 6uo ppe Auew 04 Buo

[ENERPYY

z1ens‘o dr

30°H aav
0 ONl :z1ens
I-i04°0 a1 -yiens

01 JO suemod joeuiqns

CENRTNRPN

1n0o dr
00 'Y aay
YV al
u1ens TV
01-'30 a
H18ns TIv0
001-‘30 al
o‘g Q1 :1n093a

EENEPNNTN

14932 dr
JvdS00 v
10D 10
Y al
z 13y
0 d0
(L1S0d) ‘¥ al
1002 1o
04 'Y a
v (LISOd) al
v 030
b4 134
0 40

(11S0d) ‘v a7 71383z

8AQS pue
UmOp JuUNOD
J0pujeWes |1}

euop }| ees
ededs juesuj

SWWOD 4 Iesu|
uanges ‘seh
euop }| ees

4unod 4eb
en|ea |ewjdep jujJd

enjea sey {y

SOJeZ peeu j| 0es

0Z 40 voy4qsod 4siyy
QR4 U] BUSYA B80S
@50y} 4O euou

uo|41sod jeym
e|qey JO j4Jaeys

enjea ysebue)

R uj enjea

p ouez

o4Aq 40b

41 eAaes

pue ejepdn
uoj4|sod 4se| 4eb

4| eaes

sseuappe ydp jeb
Jejunod jes
$8|J4ue JO Jequnu
Ae|ds|p

©)qRy MOYS U0y

ybnoayy 114

sy|nsed Aejdsip
(2q) e4w|x=|y
URUYdeS Of 485440

JB4UNOD B2 |e|4|Y]
Q u408|2
Joqunu pioded Jee|d

ebessow oye|sueuy ou

OUOPp 840 |SuRJIy OU OUOZ }|
ybiy yyym Jo

e4Aq moy 486

CENPEN LSRR NS

M tm Tm sa tm ta @ sa tEm sm cA cm sm sa ea A

4 sa e s sa sa

o

sa saem ca

EENET YN

TR TS

IHOW
V' (11S0d)

v
4432°7
0
(11S0d) ‘v
JVdS00
1n09
'y

z

0
(11S0d) ‘v
100230
™30
134432° 7N
(174
(1150d) ‘Y
3dON‘ ZN

0

YIHMZ

|
RIEEYAe
x4

3'v

0‘a

(M) ‘3
THUSYD
™

1SV ‘™

AYIN3
WSV
(HAVHJO) ‘ M
v (1150d)
0z'v

yLS0D
9SWTEL‘ H

dO 03

08
IH(SOFUN)
QMOHS ‘2

H

'y

™

(SO3IN) “H
INI¥d
solg

(12"

¥‘(1150d)
v

008
¥1S00
JLVIXN'TH
£03Y°‘2N

a
3'v
H

dr
a1
030
dr

a
R\)
1Yo

a
13

(]
W0

X3
dr

Q1
dr

dr
df

a
a
al

ONI
a

df
a1
[¢]
a

*NOQ1ON

S 3Y3HM

$AYIN3

* 340

at.

MY
a1

dr
ONI
a1
dfr

a1
03¢
a1
1V
10
[¢h]

a1
HOX
a1

13y
V0
[e]
dr

a

"oxoxm

n&oqou«

€03y

The Computer Journal/ Issue #27

*PAIOYS BQ O} S| X8Y-| IS0 UGYM pesn
©,e, Ul Juedijtubrs ysow ‘2, uf jiey juedjubys ysoe)
‘.0, JO BnjeA X8y 8Yy UINieJ Of Bu|uinogns

104°Y

HYE = Vs 'Y

YIX3IHD

HY0

o1aqiu $ybiu axew ! H40
e|qqlu 4| aew !

dupad 1002

pue jiey 4ybja ¢ LHYX3H

a1Aq 810)500 ! v

julud pue ! 1noo

jtey 448 406 ! 143K

21Aq oaes ! v

12, Ul BiAg

X3HOD

'Y

X3HOD

H'V

X8y u} SseJppe ue se |y jujud

08

R
ZIX3IHZIN
g

™
2¥dS00
X3HOD
(MY 'Y
™
29

ededs
X8y u| |y Ae|ds|p

o om

J¥Yd4S0D
1n0D
V'Y

X8y Ul sjueiuod |y Ae|dsyp ¢ HAVYX3H

30
CARE)]
2'v

13y
aav

aagy
dr
d0
ONV

A2:1]
vy
\2-1-]
AL 1]

13y
RRLA)
WO

d0d
WO
10
HSNd

X0y 8y}

13y
TWVo
al
WO
a1

0} ®8uf4noiqng

13y
d0d
d0d

dr
030

ON1i
TWo
TWO

a1
HSNd
HSnd

L
WO

a
1v0

] ujbue) sey ,g,
ejep o4 jujod 4 +8uf| suo jo dwnp pesseuppe ue Op 04 8u|4nOIqQNg

13y
ONI
al
a

t1HYX3H

F14X3H

$X3HO0D

juyad

[P,

SHAYX3H

STIX3H

SNEIX3H

* INOX3H

TR Ry

30 ONI

*v(30) al

Aeyds|p y)osesd’e ! 1AGXIH V0

™ NI

11U, 40 e4Aq Aedsp ! CHY ‘Y a
13y

™ dOd

11AD TV

T (dS) X3

11AD IV

, b] NI

Jobequ| 41q 91 Aejdsyp ¢ ™ HSNd
13y

o8 dod

30 dod

5008 1V

NS|P 4uesund Joy qdp = |y ¢ 1€‘0 n
30 HSNd

o8 HSNd

sseuppe qdp=, |y, suinjes ‘sieojowe.ed %s|p job

13N

o8 d0d

3a d0d

™ d0d

S0 TIV0

AS|1Pp 4ueaund 4eb ‘uea|b eajup ou ¢ (748 a1
™ HSNd

3a HSNd

o8 HSNd

W@ U] S|P 4UBJUND SUUNLEJ ‘lequnu NS|P Luesund jeb

J0quWNU BA|Jp SBY 8, ‘NS|p jDe|es

13y

Q78 d0d
30 d0d
H dOd
$S009 WV
vi°o al
™ HSnd
el HSNd
o8 HSNd

13y

oul| meu jueys ¢ 474000 70

oAus ! V* CINTEIN) (o}

$S040R Seu|| Auew moy ! SSOMOV ‘Y al
IN 134

e4epdn ¢ vV’ (IN1¥dN) al

Y 230

eu|| JO pue }| ees ! (LNTY¥dN) ‘Y a1
eoeds juesu| ! IVdS00 TV

spJom xey se |y gujud ¢ HAVX3H TV

Aague paodeus

S1ENDS

CENET IR

+GINDS

‘. re sa

‘PINOJ

LENE TN

AN NS

Juyad

EENET NPT N

47

The Computer Journal / Issue #27

JOA(P PO4D8|OS U0} SO|qe] -
(BALIP J|RjEP JOJ ©1QRi MINS PUR 840 -

N

/ 40 1 WYBdNS1O<OV, ‘ 1°H0
P WYHINS10<0V, ‘41°¥0
<42> WYHANS | Q<OV,
471°40° i xR uds,
4197780 i<d 71 3 H> - WOO WYHINS!IQ,

obessew s|y} she|ds g -

1n02
adS ‘Y
v

41 4ujad pue
ededs

FENETN

@)|0SUOD BY4 O ©oeds @ 8L um

Ei)

41 4uyad pue ! 1n0o
peey eu|| ! Ny

41 4upad ¢ 1n0o

uanjeu ebeyased ! WY
Ei)

©|OSUOD ayy 04 ‘4D jujad

28
30
™
s00d
‘0
v‘3
L 419 dyys ¢ H4L
™

30

08

FENRPN

Z udj wydd

8{OSUOD O4 @, 8)|Jm

ejqqu }48) ¢ 134X3H

466 pue euoyse. ! E\]
> u| eres ! VD
81qqtu jubya yeb ¢ LHYX3H
aaes ! v

HOB+41°H0*, (SS8JppPe HAQ) ©,
HOB+41°¥0‘ SON|eA |ew|d8p ©|qey mexs,
HOB+41 80 UOI 4R |SURI} OU SPesu ©}48%s|q, ‘1138

HO8+471°4D
\w@1GR} 4O dunp X8y pue $se.ppe gdq,,

I 41MD 1 (SadeUy pBAIBSE.s JO JOQUNN) 4O5}40, ‘YL’ H,
v

v 1440,

4180 071 Woeyd Auoydel|q, ‘avl’ i,

o4

oy

8430
9430
8430
8430
8430
8430 ‘OSHdH

V0
a
HSNd *JvdS0D

.
euyjnouqns !
‘

13y
d0d
VY0
a1
1V
a1
HSNd 478000

EENET TN

134
d0d
d0d
d0d
w0

[¢R]

al
ONV
HSNd
HSNd
HSNd <1noJ

au{ {nouqgns

em saia

13y
7v0
d0d

(eR]
1D
HSNd ¢ LABX3H
diey dsesp ¢
8430 ‘Hd

Y=

9430 uwmzqm+
9430 “uh<4x¢

8430
9430 "ow:&2@

8430
S43Q
9430
9430

$440

12

. nmxo-

1°80°avL’ H,

z

v OCEATY

471°40 { J04D0A UO|4@DI0] 1Y, ‘GY] " \H,
z

v OASY,

4780 1-821S Au0yD041Q, a9Vl o H,
v

- v TN,

47°80° 1-921S AS1Q, ‘avL’ . H,

2

v WSOy

4717807 SO 4uByx3, ‘avL‘ H,

z

vOIAXT

4740 o dSeW %209, ‘8vL‘ H,

4

PR a1

4740, 104304 4314S 204G, ‘avL‘ H,
z

s SHSE,

477407, DR L Jed SPUODAY, ‘gVL‘,H,
v

« 11dS,

ERIE <N

1
+ BALID JOJ 3OO0 HILIWVHVL NS1Q, ° 41°HD

S$330 S0

9430
9430

$430 LAY

89430
8430
$430
8430
8430
S33a
9430
€430
S$43a
89430
8430
S33a
d430
9430
$330
89430
6430
S$430
8430
8430
$43Q
843a
89430
S$430
8430

Hel W\)

*RY0

‘WSQ

‘WX3

‘W8

tHSH

*1dS

*3A1¥0

SAVdSa

sbujuys sbesseus

o 3|

30

(H)

WdS)

SSeJppe uunjea ! 13¥019° H

41 oeres ! ™

9D |AU4BS JO SSsaudppe O} ! Al
J00QR O} 185440 ppe ! 'y
sseuppe 400q w.iem job ! (1+41008) ‘™M
0

o8

1@, U} gesyy0

enu|4uod pue ! ¥1S0D

e4Aq 4xou ¢ M

uanged “‘sek ! o)
489S [41qQ 4o} !

1584 pue c_omu ! (H) ‘v

upad ! 1n0o

o4Aq 4ob ! (H) ‘v

U4im 84Aq 4se| Aq pejeujuwiey ‘jy AQ pesse.ppe sejAiq o4 |um

v

13y
d0d

RS

d0d :134018

al
HSNd
HSNd

‘90| Au0s so|q

dr
ONI
134
L Joht-]
(]
10

*501

ca s s

a1 “H1S0Q

*495 {i{q 08
04 °eu|4nouqns

13y
dod

PESCT T NRYN

The Computer Journal / Issue #27

DEFB CR,LF,'This program is designed to provide the user with a'

DEFB ' tool!

OEFB CR,LF,'that is able to display the DPB and SKEW table of a'

DEFB ' CP/M!

DEFB CR,LF,'2.2 system. This information can be used as the'

DEFB ' decimal'

DEFB CR,LF,'input for a program such as ESET.COM written for the'

DEFB ' AMPRO'

DEFB CR,LF,'system. With ESET the AMPRO''s E: drive may be used tc

DEFB ' read’

DISKPRAM, show in Listing 2, is a
public domain tool which is designed to
provide us with the basic information we
will require. What is needed is to run
DISKPRAM on the alien system, and
make a record of the parameters listed.
The values returned by this tool may be
installed in the “E" disk DPB. The disk

DEFB CR,LF,'and write alien 5" diskette formats',CR,LF,LF+80H type byte information will generally be

NRECS: DEFS

The Computer Journal

190 Sullivan Crossroad, Columbia Falls, MT 59912 Phone (406) 257-9119

5 known. Those portions of the type byte
NPRINT: DEFS 1 data which are not known may be deter-
— Poeir DEFs 1 mined by some experimentation with the
LAST: DEFS 2 available parameters. The menu driven,

H OEFS 30 public domain utility “ESET.COM'’ may

STACK: EQU $ be used to temporarily redefine the “E"

— ; disk parameters. This program is
END described in the AMPRO technical

manual.
(Continued on page 51)

| TCJ ORDER FORM !

} I

_ . |
| Subscriptions U.S. Canada Surface Total I

| Foreign |

| I

- | 6 issues per year I
| O New C Renewal lyear $16.00 $22.00 $24.00 |

| 2years $28.00 $42.00 i

- = Back Issue§ - ————————— —— — — — — — $3.50ea. $3.50ea. $4.75ea. l
I Sixor more -—————————— — — — — $3.00 ea. $3.00 ea $4.25 ea. i

| £ |

— | Total Enclosed |
| |

_ , : All funds must be in U.S. dollars on a U.S. bank. :
| o Checkenclosed T VISA O MasterCard Card # '

I |

- : Expiration date Signature :
' Name '

| |

| Address |

. |

: City State ZIP |

I |

| {

| |

| |

| |

| |

|

e ————

- *** Orders can also be entered by modem on the TCJ BBS (408) 752-1038 by leaving a private
message for SYSOP with the required information.

The Computer Journal / ssue #27 L J

Feedback

(Continued from page 35)

vironmental monitor. All data will be
collected as frequencies (counts), so the
sixteen bits will provide a convenient in-
put mode. This is primarily because my
moisture detector (the most difficult) is
a frequency dependent device. Then
resistance, light and events will just be
counted, and entered as numbers also, to
be decoded by software.
Yes, software — I have none. Some
modifications have been made to the
- board to make it more transportable to
other beginners. The memory is now a
" 6116 2Kx8 RAM, which exactly matches
a 2716 EPROM and a 52B13 ($1.95
Jameco) EEPROM. (See Byte
February, 1984, pages 343-344). The sof-
tware (which does not exist — yet!) is to
be completely dumped from a CP/M
machine over the parallel or serial ports.
This is to be a ROMless computer. If the
builder/user does not have a EPROM
Programmer handy, the entire program
could be dumped from disk into the RAM
or EEPROM by way of a full computer.
Thus far, the needs for the software
areas follows: Warm boot and reset
commands to initialize the system. There
should be some user commands to set up
the ports for data collection. These will
be in English (on the screen) but the
responses will cause the host computer to
send appropriate machine language in-
structions to the Z-80 board. These will be
in the form of ; “‘Port 0 is to be examined
every : [A] MINUTE; [B] HOUR ; [C]
DAY.” Answering this question sets the
timer function to collect data from port ¢
at the appropriate interval, and store it

give you the answer.

"The darndest thing
I ever did see..."
"... if you're at
all interested in
what's going on in
your system, it's

Jerry Pournelle,
BYTE, Sept '83

just edit and assemble.

in RAM memory. The menu would also
have items like ““To return data enter D
[RETURN]”. At this time the small
board would dump the RAM data into the
host.

Using the EEPROM makes the
operating system non-volatile and easily
upgraded. The entire assembly process
could be supplied on a disk. I have the
wire list and component layout for wire
wrap in a WordStar format now. I don’t
see why it could not be put in a CP/M file
like README.TYP. Anyone building
this should buy the book. Some of the
items (such as the video and casette
storage) are obsolete, but he has some
very good discussions on the CPU and
programming, as well as the operating
theory of computers in general.

My soldering iron is warm now. If this
project works, I will let you know. If
anyone is interested in developing sof-
tware of the type described above, the
assiz ance would be appreciated. The
profiiability of this system is close to ab-
solute zero — that's why it should be in
the public domain.

NE.

Editor’s Note: The documentation will
be very much appreciated for our
reference files which will be used to
assist people working with older
systems. Can anyone help with the info
N:.E. needs?

His project sounds interesting and if
enough readers express an interest we’ll
try to get him to submit an article, in the
meantime if someone is willing to assist
him with the software, contact TCJ for
his address.

Ever Wondered What Makes TURBOPASCAL Tick?

Source Code. Generators
by C. C. Software can

worth it."” The

SCG~TP program produces
fully commented and labeled
source code for your TURBO-
Pascal system. To modify,

Version 3.00A (280) is $45.
SCG's available for CP/M 2.2 ($45) and CP/M+ ($75).
Please include $1.50 postage (in Calif add 6.5%).

C. C. Software, 1907 Alvarado Ave. Dept M
Walnut Creek, CA 94596 (415)939-8153

CP/M is a registered trademark of Digital Research, Inc.
TURBO Pascal is a trademark of Borland International

Echelon Responds

On page 46 of TCJ issue 24 appears a
letter from. “D.D.” Item (4) of the letter
states ‘“The Z-System is public domain,
but surely the BIOS from Micromint or
Ampro is not public domain;
specifically, which files is one allowed to
copy for friends?”

Our reply. First, Z-System is NOT
public domain, period. All aspects of ZC-
PR3 and ZRDOS that make up the Z-
System are copyrighted. But ZCPR3,
CP/M CCP replacement, is special.
Programs and utilities written by
Richard Conn can be freely copied and
given to friends, but they can not be sold.
You need a license from Echelon to sell
ZCPR3 programs

Second, ZRDOS, the CP/M BDOS
replacement combined with ZCPR3 is Z-
System, is licensed and supported by
Echelon. You need a license from
Echelon to sell ZRDOS. And it is against
the law to copy is and give it to friends.
Subject files are ZRDINSnn.COM and
ZRDOSnn.BIN, where “nn” is the ver-
sion number. But support utilities
associated with ZRDOS can be feeely
given to friends who have obtained ZR-
DOS package from us. These are AC,
VTYPE, VIEW, SFA, DFA, COMP,
DOSERR, DOSVER, DISKRST,
LOGGED, DRO, SRO, and SRW. Each
was written to take advantage of
features of Z-System and thus only run if
ZRDOS is present.

Z-System is fully copyrighted by
Richard Conn, Denis Wright, and
Echelon. To sell and support Z-System is
one reason Echelon is in business.

Last, those who receive Z-System fully
installed on their computer, e.g., on
Micromint’s SB180, and want to become
involved with the Z-System community,
should subscribe to our fortnightly
newsletter, Z-NEWS. It sells for $24.00
per year. Also we have a free catalog of
interesting Z80 and HD64180 Z-System
and CP/M compatible software produc-
ts. Additionally, we support over 60
remote access systems called Z-Nodes
around the world acting as electronic
forums for people interested in Z-
System.

Frank Gaude’

President
Echelon, Inc.

The Computer Journal/ Issue #27

Computer Corner

(Continued from page 52)

cheap), it is standardized, plenty of sup-
pliers, biggest assortment of cards and
CPUs. I think the biggest thing going for
the STD bus is the manufacturer’'s in-
novative abilities. There are several
manufactureers who have complete
systems with 3 inch disks all in a stan-
dard cage running compatible PC
operations.

The most important aspect is support
and STD bus people have been suppor-
ting other manufacturers for some time
and know just what they need. One com-
pany I have had some experience with is
Giddings and Lewis they make big lathes
as well as the electronics to drive them.
We happen to have their old style
systems but they also make STD produc-
ts, or I should say they buy most of their
cards (CPU and memory) except the
special I/0 they need. I attended one of
their sales seminars on the STD unit
(also a factory school on the big system)
and was given not only a demonstration
of how the system worked but all their
source code for the special math routines
they use. They feel that if you are going
to properly use the product (or maintain
it) you must have all the code they use.
When asked about who supplies the cards
which they don’t make, they gladly tell
you where to get them. Their attitude is
that they sell a complete service of large
machines and controllers and your
satisfaction with their entire line is more
important than a few lines of code they
wrote.

On the other side of the coin is a
product which I personally was able to
buy recently. The same friends who sold
me my portable, also had a GIMIX
system they got at auction which was
gathering more dust than use. I removed
this unit from their warehouse and have
been trying to use it ever since. What
really got me was the factory response
when I called them for information. Now
their literature says they do not make
any consumer products, only industrial
use is warranted, but if my use had been
industrial I certainly would not use them.
What happened was nothing, they stated
they destroyed all information on older
products and would not sell me anything
to help me bring the unit up. When I
asked what I shouid do they said to use it
for parts. I was able to use a third party
to receive information and have since
found out that these units are their
current versions but with them
destroying their documentation it is

The Computer Journal / issue #27

rather hard to know what is really
current. I have several disk cards to sell
as this unit was a disk drive tester with
eight disk cards and must have cost
someone over $9,000 in the beginning. If I
had been a manufacturer and spent nine
grand for several systems, only to have
the manufacturer say I must buy a whole
new system to fix my old one, that would
be the last time I did business with him.

Well that one call is the last time I will
call GIMIX and they are not the only
company I will refuse to do business with
due to poor support or documentation,
Another big company which I will have
little to do with is GE. We have one of
their big industrial controllers and it
must be the most difficult unit to work
on. Becuse I had had so much trouble
figuring out their documentation and
many other forms of troubles with them,
when it became time to upgrade an oid
lathe I got our managers to buy a older
style Gidding and Lewis (G&L) con-
troller. The managers wanted to buy
another GE controller because of the
name, until I explained all the trouble I
had, then they knew why they hadn’t
heard the G&L name much before this,
the product caused little problems. The
GE was a mess and they lost $300,000 to
G&L. You might say that was only one
case, not so, we are buying our second
wrapping machine from another com-
pany because the first company’s sof-
tware people and support engineers were
unorganized and too tight with their sof-
tware. This unit used a G&L controller
but they couldn’t program it properly, so
we went with a company that was open
and using a multibus system running
multiple CPUs. The first company’s poor
manament structure cost them two
wrapping machine at over $300,000 each.
So when people talk to me about how im-
portant support is, I say very.

Trying to pull ail this together and con-
clude this column is not an easy task.
Art’s editorial last issue got me thinking
of what type of products to use and how
the industry has gone hardware crazy. 1
pointed out how support is important and
keeping in mind the basic functions you
hope to achieve with your system. I have
many systems at home and work to play
with, but still find my old CP/M systems
running Wordstar to be the best. Why,
because they are easy to use and simple
to run. I can learn all the insides without
too much problem, and do all my own
work without spending a lifetime of
study. For me SIMPLE is still the best.

Things to keep in mind are your objec-

tives, costs, support, and your skills
level. Programs that do ten times more
than you need may do what you want so
poorly that a simpler and cheaper
product would be more appropriate
(which is why I like WordStar). Har-
dware systems that have complex
operating systems may leave less than
64K for your programs (PCDOS running
Framework and 384K mem). Graphic
systems are nice but if they are so com-
plex to program that you will not be able
to write to them yourself, why bother?

A solution for some user may be the
same one [have chosen. Some time ago I
started on a 68K FORTH operating
system. Hawthorne Technology has
saved me from that task (at present) but
I have become stronger in my feelings
that scme form of a standard language
and operating system is needed. I can
use four dif{erent CPUs (6809, Z80/8080,
8088, 68K) and need some common way
of going between them freely. FORTH is
currently the only option for me. STD
Bus users are also using FORTH because
it is fast and can work in small memory
systems. If you're interested in FORTH
look at past FORTH articles as well as
my TUTOR program eisewhere in TCJ.

I think I will save some comments for
next month, so happy computing. ®

Disk Parameters
(Continued from page 49)

Well, we have more theory than ap-
plication in this article,and because of
the size of the listings and figures we had
better bring this session to a halt. I
suggest you study the data given in this
issue until the meaning of each byte of
these parameters is understood fully. It
would not hurt to design a disk format of
your own, in practice, to better under-
stand the decisions made by the designer
of the AMPRO format. ®

The public domain DISKPRAM
program source code and object code
files plus other related files are available
on eight bit 5.25* AMPRO, Kaypro,
Morrow, and several other popular for-
mats for $10 postpaid in the U S.

51

THE COMPUTER CORNER

A Column by Bill Ribler

Well here 1 sit before my new com-
puter on Thanksgiving Day putting down
my thoughts before 1 forget them. You
might think I am at my home, but no I
am at my mother’s waiting for the rest of
the family to arrive. The machine I am
using is my new Heath/Zenith 171® por-
table PC. This is the same unit the IRS
bought and yea the same one that
Morrow sold to ZDS for a small sum of
money, without any royalities. I needed
the machine for my college work and it is
my only PC compatible machine (and
will be the only one too). Thanks to some
friends of mine I was able to pick it up for
much less than the going price, but even
then the unit is a bit expensive for what
you get. I have found the keyboard to be
very good, in fact I like it better than any
PC or PC clone’s keyboard I have tried.
After getting this I noticed how far apart
most of the other keyboards keys were
(PC types). What all this is leading into is
my increased use and knowledge of PC
programs. '

My masters work is moving along well
and most of the work I am doing now is
on PCs with PC type programs. What I
have found out so far is the current trend
in PC programs — use of the function and
cursor keys exclusively. I must admit
that my first wordprocessing program
was WordStar, mostly because I worked
there. Now I still use this program and
am writing this article on it. I have tried
several other PC word processors and
have not liked a single one of them. The
reason is their use of the function keys.
WordStar® can use function keys if you
want, but most of the cursor movement
can be made without lifting your hands
from the home postion. I recently spent a
month on Framework® , an integrated
package of wordprocessing, database,
and spreadsheet. This program has some
good features but for the most part I
hated it. It seemed every third keystroke
was a function key or cursor movement
key, without any optional ways around
them. What really made me hate the
program was their use of the + and - cur-
sor position keys. If you look at the key
codes produced by a PC keyboard there
are different key codes for every possibie
use of the keys. The number pad can be

52

numbers, cursor positioning functions,
as well as control and alternate options
too. What Framework and other
programs do is use all these possible
combinations to get their options.

Wordstar divided their options into
groups and you get to those groups by
doing a control key entry, then use a
regular key to run the option. These other
prorams are using a single keycode for
an option. This means you must have a
compatible keyboard and you must also
(in most cases) move your hands from
the home keys to use or invoke an option.
I will admit that iny user will probably
always like their first system and first
wordprocessor, but these new unit didn't
really look at the old unit and build on
their good or bad options. Some of these
new units handle text better than Wor-
dstar for desktop publishing options (like
multicolumn formating), but overall I
feel the programmers got impressed by
the options available and went crazy.
This going crazy with options and
technology is really what I want to talk
about.

I just finished reading the last issue of
Computer Journal and feel that what Art
was trying to say and what I just talked
about are related. In the early days,
computers did very little and anything
that worked was wonderful. Most of us
bought systems just to see what could be
done. That time is gone now, althought I
still buy systems to check out (more
later), but I basically buy them to use for
some productive work. When doing wor-
dprocesing (which is approximately 70%
of al! computer use) I want something
which allows me to write easily and
quickly without a lot of hand movement.
Now all these extra bells and whistles are
nice as long as they don’t stop me from
doing the original objective, writing. I
have found that statement to be true also
for operating systems as well as com-
puter languages. I think anybody who
has used Turbo Pascal® to write a
program will say that one of its best
features is the ease with which you can
use it. From the Wordstar like editor to
the error correction process, I find that
with Turbo I can do in four hours what
would have taken two days using conven-

tional systems. The why is the objective
approach of the system.

I currently feel that the computer in-
dustry is running amuck with all the new
found speed and options. Programs (and
hardware too) are being pushed to their
limits, in many cases just to find those
limits. Now I have little complaint about
finding out just how far you can push
things, I did that when I first learned how
to drive. After finding myself in a ditch
one night, 1 learned when to push and
when not to. The industry hasn’t learned
when not to push, and I feel this is due to
sell, sell, and more sell. The competion is
fierce and only getting worse. Anybody

_ who really says ‘I liked it when...”", will

be considered old fashioned or not with it
by most computer users. Nice ideas, but
what really are we trying to do, I feel the
objective is to get the job done in the
most cost effective and time efficent
manner. Computers can do that but only
if used properly.

I think Art and others like him are
heading in the right direction by using
combinations of existing products to
achieve their goals. One area that I have
been pushing for some time is the use of
the STD bus for industrial control. Any
company that started using STD bus with
Z80 or 6809 CPUs can now upgrade to 8088
or 68000 by only changing their CPU car-
ds. All their I/0 and memory will most
likely work without any changes. This
type of upgrading is hard to beat. Where
I work we have many industrial con-
trollers all with different software and
hardware. To maintain or program these
systems requires sending the personnel
to a factory school (always on the other
side of the USA) and then being locked in
to their price and service. STD bus
products are available in many con-
figurations with some local dealer or
manufacturer support available.
Because the basic CPU can be the same
for all uses, only learning one system is
needed for programming or maintaining.
When it comes to really special uses
where you must build your own, with
STD you only build that part which can't
be found elsewhere. The reason I like
STD bus over others is cost (they're

(Continued on page 51)

The Computer Journal / Issue #27

Back Issues Available:

Issue Number 1:
. kzaz Interface Part One
» Telecomputing with the Apple II

* Beginner's Column: Getting Started
¢ Buildan “Epram”

I Number 2:
* File Transfer Programs for CP/M

— < RS-232 Interface Part Two
* Build Hardware Print Spooler: Part 1
* Review of Floppy Disk Formats
¢ Sending Morse Code with an Apple II
— ¢ Beginner's Column: Basic Concepts
and Formulas

—_Issue Number3:
* Add an 8087 Math Chip to Your Dual
Processor Board
;I Build an A/D Converter for the Apple

¢ Modems for Micros
* The CP/M Operating System

— ¢ Build Hardware Print Spooler: Part 2
Issue Number 4:
e Optronics, Part 1: Detecting,
Generating, and Using Light in Elec-
— tronics

¢ Multi-User: An Introduction

¢ Making the CP/M User Function More

Useful

* Build Hardware Print Spooler: Part 3
— o Beginner’'s Column: Power Supply

Design

Issue Number5:

e Optronics, Part 2:
— plications

¢ Multi-Processor Systems

* True RMS Measurements

¢ Gemini-10X: Modifications to Allow

both Serial and Parallei Operation

sue Number 6:

¢ Bui esolution S-100 Graphics

Board: Part 1

¢ System Integration, Part 1: Selecting
~~ System Components

* Optronics, Part 3: Fiber Optics

¢ Controlling DC Motors .

¢ Muiti-User: Local Area Networks

e DC Motor Applications

r8:
+ Build VIC-20 EPROM Programmer

e Multi-User: CP/Net

» Build High Resolution S-100 Graphics
Board: Part 3

» System Integration, Part3: CP/M 3.0

¢ Linear Optimization with Micros

Issue Nuﬁagr 9:
= '« Threaded Interpretive Language, Part

1: Introduction and Elementary
Routines
e Interfacing Tips & Troubles: DC to DC
-~ Converters
¢ Multi-User: C-NET
¢ Reading PCDOS Diskettes with the
Morrow Micro Decision
e DOS Wars
= o Build a Code Photoreader

Practical Ap-

—

Issue Number 14:
» Hardware Tric

¢ Controlling the Hayes Micromodem II
from Assembly Language, Part 1

¢ S-100 8 to 16 Bit RAM Conversion

* Time-Frequency Domain Analysis

¢ BASE: Part Two

o Interfacing Tips and Troubles: Inter-
facing the Sinclair Computers, Part 2

Issue Number 15:

* Interfacing the 6522 to the Apple II

¢ Interfacing Tips & Troubles: Building
a Poor-Man's Logic Analyzer

¢ Controlling the Hayes Micromodem II
From Assembly Language, Part 2

* The State of the Industry

* Lowering Power Consumption in 8"
Floppy Disk Drives

* BASE: Part Three

Issue Number 16:

. EBug&mg 8087 Code

» Using the Apple Game Port

e BASE: Part Four

¢ Using the S-100 Bus and the 68008 CPU
¢ Interfacing Tips & Troubles: Build a
*‘Jellybean" Logic-to-RS232 Converter

Issue Number 17;

* Poor Man’s Distributed Processing

* BASE: Part Five

* FAX-64: Facsimile Pictures on a
Micro

¢ The Computer Corner

Interfacing Tips & Troubles: Memory
Mapped 1/0 on the ZX81

Issue Number 18:

* Parallel Interface for Apple II Game

Port

* The Hacker’s MAC: A Letter from Lee
Felsenstein

¢ S-100 Graphics Screen Dump

¢ The LS-100 Disk Simulator Kit

¢ BASE: Part Six

* Interfacing Tips & Troubles: Com-
municating with Telephone Tone Con-
trol, Part 1

¢ The Computer Corner

Issue Number 19:

* Using The Extensibility of Forth

¢ Extended CBIOS

¢ A $500 Superbrain Computer

* BASE: Part Seven

¢ Interfacing Tips & Troubles: Com-
municating with Telephone Tone Con-
trol, Part 2

» Multitasking and Windows with CP/M:
A Review of MTBASIC

e The Computer Corner

l!ﬁé Nnmg[20;

. igning an 8035 SBC
e Using Apple Graphics from CP/M:
Turbo Pascal Controls Apple Graphics
¢ Soldering and Other Strange Tales
* Build a S-100 Floppy Disk Controller:
WD2797 Controller for CP/M 68K
¢ The Computer Corner

¢ Exten urbo Pascal: Customize

with Procedures and Functions

¢ Unsoldering: The Arcane Art

* Analog Data Acquisition and Control:
Connecting Your Computer to the Real
World

¢ Programming the 8035 SBC

¢ The Computer Corner

¢ Using Turbo Pascal ISAM Files
¢ The AMPRO Little Board Column
¢ The Computer Corner

Issue Number 23:
D umn: Flow Control & Program

Issue Number 22: ‘

o - : Write Your Own Operating

System

¢ Variability in the BDS C Standard

Library ‘

* The SCSI Interface: Introductory

Column l
\
|

Structure

e The Z Column: Getting Started with
Directories & User Areas

éc'lél;e SCSI Interface: Introduction to
e NEW-DOS: The Console Command
Processor

¢ Editing The CP/M Operating System

* INDEXER: Turbo Pascal Program to
Create Index

¢ The AMPRO Little Board Column

¢ The Computer Corner

Issue Number 24:

*» Selecting and Building a System

¢ The SCSI Interface: SCSI Command
Protocol

e Introduction to Assembly Code for
CP/M

* The C Column: Software Text Filters

¢ AMPRO 186 Column: Installing MS-
DOS Software

¢ The Z Column

e NEW-DOS: The CCP Internal Com-
mands

e ZTIME-1: A Realtime Clock for the
AMPRO Z-80 Little Board

Issue Number 25:

* Repairing & Modifying Printed Circuits
* Z-Com vs Hacker Version of Z-System

¢ Exploring Single Linked Lists in C

* Adding Serial Port to Ampro Little Board
* Building a SCSI Adapter

¢ New-DOS: CCP Internal Commands

¢ Ampro '186: Networking with SuperDUO
¢ ZSIG Column

Issue Number 26;
* Bus Systems: Selecting a System Bus

» Using the SB180 Real Time Clock

¢ The SCSI Interface: Software for the
SCSI Adapter

+ Inside AMPRO Computers

* NEW-DOS: The CCP Commands Con-
tinued

¢ ZSIG Corner

» Affordable C Compilers

o Concurrent Multitasking: A Review of
DoubleDOS

¢ The Computer Corner

