Programming - User Support
Applications

Pin— —

Issue Number 36 January / February 1989 $3.00

Information Engineering
Introduction

Modula-2
A Bibliography

Temperature Measurement & Control
Computer Control for Agricultural Applications

ZCPR3 Corner

Z-Filer

Real Computing
National NS32032

SPRINT

A Product Review

ZCPR3

Using Named Shell Variables

REL-Style Assembly Language for CPIM
and Z-System
Part 2: Getting Started

Advanced CP/M

Environmental Programming

ISSN ¥ 0748-9331

WORLD'S FASTEST 25 MHz
386 MOTHERBOARD

- Landmark's SPEED Test Rated at 43.5 MHz

-1 or 2 MB Full Static RAM for Zero-Wait-States
- Optional 4/8/16 MB 32-bit DRAM Card

- Disk Cache and Print Spooling Software

- PC/XT (Baby AT) Form Factor

- Optional 80287, 80387 and Weitek

- LIM 4.0 and RAM Disk Utilities

- Made in U.S.A.

- 2-Year Parts & Labor Warranty

- No risk --100% money back guarantee

y
Y 2341 205th Street, #110,

WAVE MATE INC. Torrance, CA 90501

Tel: (213)533-8190 Fax: (213)533-5940
Technical Support: (800)876-5363

THE COMPUTER JOURNAL

Editor/Publisher
Art Carlson

Art Director
Donna Carlson

Circulation
Donna Carlson

Contributing Editors
Joe Bartel
C. Thomas Hilton
Bill Kibler
Bridger Mitchell
Bruce Morgan
Richard Rodman
Jay Sage
Barry Workman

The Computer Journal is
published six times a year by
Publishing Consultants, 190
Sullivan Crossroad, Columbia
Falls, MT 59912 (406) 257-9119

Entire contents copyright©
1989 by Publishing Consultants.

Subscription rates—$16 one
year (6 issues), or $28 two years (12
issues) in the U.S., $22 one year in
Canada and Mexico, and $24 (sur-
face) for one year in other coun-
tries. All funds must be in US
dollars on a US bank.

Send subscriptions, renewals, or
address changes to: The Computer
Journal, 190 Sullivan Crossroad,
Columbia Falis, Montana, 59912.

Address all editorial and adver-
tising inquiries to: The Computer
Journal, 190 Sullivan Crossroad,
Columbia Falls, MT 59912 phone
(406) 257-9119.

The Lillipute Z-Node sysop has
made his BBS systems available to
the TCJ subscribers. Log in on
both systems (312-649-1730 & 312-
664-1730), and leave a message for
SYSOP requesting TCJ access.

The COMPUTER
JOURNAL

Issue Number 36
January / February 1989

Features

Information Engineering

The ftirst part of a series on using the information

in our databases.

BY C.TROMAS HIltON. . .. oottt ee ettt 5

Modula-2

Good reference books are hard to locate. This list

will help you tind the ones you need.

by Dave Moore, Alex Pournelle, Barry Workman....................... 8

Temperature Measurement and Control

An inexpensive, automated, temperature

measuring interface for agricultural applications

of computers.

by Mathew K. ROGOYSKi vt et 1

ZCPR3 Corner

Z-System associates, Z-Nodes, Z-Plan for

computer clubs, Amstrad computer, and ZFILER.

DY JBY SBGO . .« oottt et 21

Real Computing

National Semiconductor NS32032, hardware for

the experimenter, CPUs in the series, and software

options.

bY Richard ROAMAN.ottt et it 27

SPRINT

This may be the best choice for a professional

word processor.

by C.Thomas HiltOnouuiieiaaeaaaeeee e, 29

ZCPR3’s Named Shell Variables

Using shell variables and the shell stack.
DY RICK CRINMES.\ ettt ettt e e e e e e e 32

REL-Style Assembly Language for CP/M and Z-System
Part 2: Segments, EXTRN, and relieving

programming drudgery.

DY BIrUCE MOTGANot e e ettt ea e e 38

Advanced CP/M

Environmental programming and a tale of too

hasty system design.

DY BrdGEr MItGREI\t ee e e e e e et 40

Columns
e |1 0o Y 4 - 1 I 3

Reader's Feedback.................ccooiiiiiiiiiiiniinennn.. 4
Computer Corner by BillKibler....................ocoevinen. 48

Plu*Perfect Systems == World-Class Software

(272 Ted (@] oYU g Lo (=Y o | $75

Task-switching ZCPR34. Run 2 programs, cut/paste screen data. Use calculator,
notepad, screendump, directory in background. CP/M 2.2 only. Upgrade licensed
version for $20.

A5 TE5] = 3 o $69.95

Auto-install Z-System (ZCPR v 3.4). Dynamically change memory use.
Order Z3PLUS for CP/M Plus, or NZ-COM for CP/M 2.2.

8 L 0 $20

Z-System segment loader for ZRL and absolute files. (included with Z3PLUS and
NZ-COM)

ZSDOS ... e eee s eseese s nerenes $75, for ZRDOS users just $60

Built-in file DateStamping. Fast hard-disk warmboots. Menu-guided installation.
Enhanced time and date utilities. CP/M 2.2 only.

DT 011y S $30 - $45

Use MS-DOS disks without copying files. Subdirectories too. Kaypro
w/TurboRom, Kaypro w/KayPLUS, MD3, MD11, Xerox 820-1 w/Plus 2, ON!, C128
w/1571 -- $30. SB180 w/XBIOS -- $35. Kit -- $45. Kit requires assembly language
expertise and BIOS source code.

MULTICPY .ttt ms s r e st s s mem s s s amnces $45

Fast format and copy 90+ 5.25" disk formats. Use disks in foreign formats.
Includes DosDisk. Requires Kaypro w/TurboRom.

8= o 1 3 o $50

Fastest possible text search, even in LBR, squeezed, crunched files. Also output
to file or printer. Regular expressions. :

To order: Specify product, operating Plu*Perfect Systems
system, computer, 5 1/4" disk format. _ 410 23rd St.
Enclose check, adding $3 shipping ($5 Santa Monica, CA 90402

foreign) + 6.5% tax in CA. Enclose invoice
if upgrading BGii or ZRDOS.

BackGrounder ii ©, DosDisk ©, Z3PLUS ©, JetLDR ©, JetFind © Copyright 1986-88
by Bridger Mitchell.

The Computer Journal

Editor’s Page

Industry Watch

The advanced sales bookings for the
semiconductor industry is an important
indication of future computer sales, and
the semi book-to-bill ratio has dropped
from 1.17 in May to 0.92 in October. A
ratio of less than 1.0 which means that
their current shipments are more than the
current new orders is very bad news for
the industry,

Advanced Micro Devices has announ-
ced that it will lay off 1,000 of its U.S.
staff out of a total of about 8,500. Entire
projects, design groups, and manufac-
turing projects will be chopped. This
follows an earlier layoff of 1,400 from
AMD’s Malaysian and Filipino assembly
work force.

National Semiconductor is forecasting
a significant operating loss for the current
quarter due to sharp sales declines because
of market softness. They have not an-
nounced layoffs, but that is the usual
reaction.

Intel has announced that softening
demand will enable Intel to satisfy the
demands for the *386 for the first time.

A British semiconductor market resear-
ch company, Semstat, states that the third
quarter demand was below forecast, and
that there are indications of a European
industry slowdown.

These, and other reports, mean that the
industry is in another of its roller coaster
cycles— and we don’t know where it will
bottom out. Less semi sales means that
the equipment builders are anticipating
lower sales, which means that someone is
going to be stuck with excess inventory,
which means that you may see distress
sales in the next 6 to 8 months. When
semiconductor chips are in short supply,
manufactures place inflated orders with
multiple vendors in an attempt to assure
themselves of a supply. When the
manufactures sales drop, and the chips
become readily available (often at a lower
price), the manufactures cancel all their
orders and pick up their needs from the
spot market. This causes a snowballing ef-
fect which is disastrous for the semi in-
dustry.

Watch for the opportunity to acquire
expansion RAM and memory intensive
products at much lower products. Also bg

The Computer Journal / Issue #36

aware that marginal manufactures and
resellers will be wiped out. I’ve heard that
the PC demand has been met and that
sales are dropping, but I have not seen the
effects yet because of the long advertising
lead times. Watch the page counts for
Computer Shopper and the bloated PC
magazines very carefully. Don’t send
checks to marginal resellers who may be
gone before they ship your merchandise.
Pay the extra charge for COD, or take
other steps to assure that you will receive
what you pay for!

Recalcitrant Vendors

In view of the tightening personal com-
puter market, you would think that ven-
dors should be anxious to make
sales—but there are several major sof-
tware houses which refuse to allow people
to buy their products!

“Foreign companies
are taking over because
they are hungry and
provide what the
customer wants.”

A person who is developing embedded
controllers using 8 bit processors would
like to be able to include copies of the
language and development software for
system maintenance. . He contacted the
vendors, but they said that the 8 bit sof-
tware is obsolete and that they will not sell
it. He offered to reproduce the software
and manuals at his own expense, with.-a
statement that support is nq longer
available from the vendors, and pay the
vendors a license fee. They refused!

Apparently they feel that no one should
use 8 bit systems—even for embedded
controllers—and that they can’t be
bothered collecting license fees (with no
effort) from obsolete products.

This is another example of how
American industry is shooting it self in the
foot. Foreign companies are taking over
because they are hungry and will provide

1’

what the customers want to buy.
American companies sit back fat and lazy
while their ‘experts’ decide what they
want the customer to use.

The success of the foreign countries is
usually attributed to their low labor rates,
but now they are building plants in the
U.S. to build products using American
labor! Their success is primarily due to
good business planning and
management’s concern with what the
buyer wants—they can win even with
higher labor, material, and transportation
costs. American management has squan-
dered too much money on fancy cor-
porate offices with too many layers of
overpaid non-productive management,
while ignoring the customer and the
physical production facilities. Trade em-
bargoes and high import duties will only
force us to pay more for inferior produc-
ts. The rest of the world will advance
while we continue to produce outdated in-
ferior products and lose what little export
market we have left.

Foreign countries are progressing very
rapidly in programming and software
engineering, and we will lose our lead in
these fields too unless we wake up and pay
attention to what the customer wants to
buy!

DTP vs. Wordprocessing vs. Typography

Tom Hilton and I get into some very in-
teresting discussions about our writing
tools. We have different needs, and dif-
ferent preferences, so we seldom end up in
complete agreement. Lately, we have been
talking about the differences between
editors, wordprocessors, formatters, and
Desk Top Publishing programs.

As a writer I spend a lot of time at the
keyboard and I have definite ideas about
what | want in an editor. We have con-
tracted to enter a 75,000 word manuscript
(about 450,000 characters), and have two
more manuscripts waiting. That’s about a
million and a half characters to be entered
in the next few months! With this amount
of typing, I want a simple, friendly editor
which stays out of the way and lets me do
my job. There are several editors which
would be satisfactory, but I am using
WordStar 4.0 because I am familiar with

it. (Continued on page 26)
3

Reader’s Feedback

I am including this note of praise for
TCJ along with my renewal because I
want to give you a pat on the back for
" your efforts as well as my check.
. First off. Thank you for your generous
coverage of CP/M systems. I almost
believed the ‘““CP/M is dead” cry of the
masses until Jay Sage pointed me toward
TCJ at the Trenton Computerfest this
year. That’s when I realized there is a
strong undercurrent moving the 8 bit
world along. This undercurrent seems to
be propelled by the ““Z’’ products and
spearheaded by many dedicated in-
dividuals that are regulars in TCJ.

My complements to Bridger Mitchell,
Bruce Morgan and Jay Sage among others
for contributing so much to TCJ and the 8
bit community. I am constantly amazed at
the depth of the material all of these
authors cover. It is pretty impressive for a
system supposedly stagnant. 1 am fully
aware of the time and effort that must be
expended to get such quality work and
they have my sincere appreciation for that
effort.

I have been very pleased with your
coverage of other systems as well. This is
" well accomplished through Bill Kibler’s
Computer Corner and the many articles
that appear (such as the SAGE 68000).
You always manage just the right mix for
my taste.

Since I brewed my S100 from bare
boards and solder I find it nice that there
is still a magazine that supports
homebrewing and ‘tinkineering’ at the
chip and bit level. With the advent of the
cheap clones we have become a dying
breed.

Finally, I like the format of TCJ, lots of
substance without the gloss, glitz and glit-
ter. Keep up the good work!

D.M.

I bought the minimum parts of a 10
MHz XT clone and had it running till I
had to steal the floppies for a Kaypro IV 1
traded for an Atari 520. My 820-IIs and
MD-3s and Dynabyte S-100 still doing
fine.

I keep saying I will write for you, but
it’s almost all talk so far.

I expect to play with the XT and the ST
as a user, and work on the CP/M system

for hardware, érogramming, and word
processing. I could be tempted with 68000
stuff though.

Keep up on CP/M, ZCPR, MR-OS,
QPM, Bar Coding, S-100, 1/Os for
various machines, KOS, single boards (in-
cluding the old BB1s).

I really need to sell some of my
duplicate systems though, space is ever a
problem and new projects languish
without space.

Happy Forth, keep the faith.

W.M.

Enclosed find a check for a two year
subscription to your fine journal. I have
enjoyed reading it, even if a few of the ar-
ticles are beyond me.

I am presently using a Heathkit H/89,
purchased a year ago on something of a
flyer for the sum of $200. I have added a
pair of 2 height 360K drives, a 2400 baud
Modem, and run the whole thing under Z-
System. I am presently using the latest
version of NZCOM from Alpha
Microsystems. I have used the standard
CP/M for a total of a couple of weeks. I
began with the Z-System that Peter
Shkabara of ANAPRO put out. I have
fun amazing my MS-DOS friends with ac-
counts of the features and capabilities of
the system. Of course, the series of articles
by Jay Sage in your journal have assisted
greatly in the process.

Over the last year, I have acquired the
set of software that I feel will do whatever
I want for years to come. I got SuperCalc
with the machine. I have purchased Wor-
dStar Release 4.0 for CP/M, Condor 3 for
a data-base, and SMART, for a check-
book program for CP/M that works well.
Almost forgot to mention OUTTHINK, a
very good outline program.

Reason for using WordStar is simple:
All of the utilities in Z-Sygtem use same
control sequences, as does SuperCalc and
Condor 3. OUTTHINK can be configured
to use that same set. Result is not having
to remember a new set of controls for
each program. And, although I haven’t
used it yet, most of these programs will
exchange certain kinds of files with each
other. If I really wanted to get fancy, I am
sure that using the ALIAS capabilities of
NZCOM, one could pretty well automate
most of such things.

I would really like to see some articles
by someone who has put together his/her
own Single Board Computer. I am plan-
ning to do so myself, when the finances
allow. I am interested in an SB180FX,
DT42, Grudge, Little Board, and any
other Z80 or compatible equipment.

Otherwise, keep up the good work. This
non-hacker does appreciate what you and
all of the other bright folks do and share
with us.

C.T.

I am using a British computer— an
Acorn BBC (which is 6502 based) + a Z80
coprocessor which runs the ZSystem
(NZCOM + ZCPR3.4). I have implemen-
ted BGii for this system and hope to also
implement DOSDisk as the machines at
work (a university) are all PC com-
patibles. My interest in TCJ is in the ar-
ticles on ZSystem and CP/M primarily,
i.e. Jay Sage and Bridger Mitchell. I use
my system for word processing,
programming in Pascal and Modula-2
(and occasionally to play Infocom games).

I am a researcher in Computer Scien-
ce—my interests are in Object Oriented
Programming and interchanging word
processor documents using ODA (Office
Document Architecture).

T.A. (England)
Editor’s Note: Our readers would be in-
terested in articles on interchanging word
processor documents using ODA.

My own system is a SB180 which I use
for ‘hacking’ around. At work I use ’286
and ’386 systems running MS-DOS and
UNIX to develop device drivers for high
resolution graphic cards (1024 by 768 and
1280 by 1024). These cards are based
around AMD’s QPDM, with a Brooktree
palette and 2 Megs of ‘Zig-Zag U-RAMs’
on board.

I have also written other software run-
ning on 8080, Z80, and 32016, including
VT52 terminal firmware, I/O processor
firmware for a TEK 4108 emulator and
code to drive Western Digital Floppy Disk
contrbllers and NCR’s 5380 SCSI con-

troller. I’'m therefore interested in all
aspects of software and hardware
available today.

The Computer Journal is a real ‘gem’
and 1 consider it a must for anyone in-
terested in the ins and outs of 8 bit
systems—which is where most of the ar-
ticles lie. But why not? Eight bit com-
puting’s got a lot of life left in it yet!

K.P. (ENGLAND) [

The Computer Journal / Issue #36

Information Engineering

Series Introduction
by C. Thomas Hilton

Information Engineering is a new science, especially to the
world of microcomputers. This discipline is quite apart from
dealing with a collection of raw information to achieve some prac-
tical end. It is important that this concept not to be confused with
the world of data processing, as we have come to know it.

The tools used in Information Engineering, (IE) need not be as
new as the discipline. The essence of the thought is in how the tool
is used. There are a number of familiar products which lend
themselves to the IE concept. There are also new products
available, and being developed specifically for this facet of the
““Information Age.”’

Tool Selection

Selecting the right tool can be a monumental task. Selecting the
wrong tool can be as frustrating as it is expensive. The purpose of
this series is to assist you in the selection and application of IE
tools.

To these ends, we will review books directed at understanding
the fundamental IE concepts. We will also review conventional,
as well as new, software technologies which lend themselves to
our purpose, and have been made available to us by their respec-
tive publishers for this series. To demonstrate fundamental IE
concepts, these products will be applied to real world ap-
plications.

Real-World Application Projects

Many of the projects we will present, as examples, will be of
special interest to educators, counselors, psychologists, and other
professionals. It always seems that those who could most benefit
from a series like this are seldom computer programmers. The
projects we will present will avoid computer programming con-
cepts whenever possible. This decision was made for several, ad-
ditional, reasons. Conventional programming languages are just
not up to the task. The purpose of this series is to demonstrate
practical, usable concepts. These concepts can easily be lost in the
depths of programming discussions. Finally, the tools we will be
discussing are generally off-the-shelf products of such
sophistication that they actually write their own error-free
program source code, where programming is required.

While the projects presented in the series will be of specific in-
terest to some, they will not be of interest to all readers. If you
have a particular problem you would like presented in this series,
feel free to join right in. These are public forums where your in-
put, suggestions, and applications are considered important.

User Product Support

The basic tools we will be using are SPRINT® , QUATTRO® ,
PARADOX 2.0® , 1ST CLASS FUSION® | and the CLARION
PROFESSIONAL DEVELOPER® . Other tools and products
may be introduced or reviewed during the course of events, but
these are the products I will personally be supporting.

While these products were selected for use in the IE series, by
virtue of their universal nature, I have committed myself to

The Computer Journal / Issue #36

moderating additional support columns for Borland & Clarion
products, if reader interest dictates. So, if you have a problem, a
tip, hint, or application note to share, do let us hear from you. As
our publisher is fond of saying, ‘If you don’t contribute
anything, don’t expect anything.”’

Looking for Knowledge Tools

The person reading this series is expected to be new to the con-
cepts presented, or a data processing person looking for a new
way to deal with old problems. The best way, I think, to deal with
the many demands of ‘‘Information Engineering,”’ (IE), as a
whole concept, is to break the task into smaller pieces.

One half of the series will deal with concepts of information
management, as we have come to think of it. Here we will take a
look at the tools that can be used, the concepts important in in-
formation systems design, from a modern, nontraditional per-
spective, and new ways to get information from old data. This
half of the series will also be broken down into smaller facets
which deal with specific parts of the overall concept.

The primary tools will be:

1. QUATTRO, For
Graphics.

2. Clarion, For Medium To Large Projects That Are Fully
Defined.

3. PARADOX, For Projects That Deal With Large Amoun-
ts Of Information, And Information Management.

Smali Projects & Presentation

I have selected Borland products almost exclusively for use with
this series. While the products 1 have received are evaluation
copies, they were solicited. That is, I asked for these tools for use
in this series. The reasoning is simple. SPRINT, QUATTRO, and
PARADOX are from a single software publisher, hence their file
types are compatible. Where there is a compatibility issue, the
manuals show how to move data from one product to another.
The ability to freely move data between products, without con-
version errors, is critical in the IE field. I cannot recommend the
use of SPRINT, QUATTRO, and PARADOX strongly enough
for any person looking for good tools to work with.

For those with an investment in a favorite relational database
manager, please note that you are not required to purchase
PARADOX to participate in the series projects. Your database
structure must be table oriented, however. Data tables may be
moved between PARADOX and R:BASE, as an example, using
the dBase I + import/export facilities common to both systems.

The primary use of QUATTRO will be the manipulation of
smaller databases, or specific information parsed from
PARADOX. QUATTRO, thoughea spreadsheet, also contains
database management and presentation graphics facilities. These
‘“‘extra’’ facilities are generally thought of as “‘options’’ in other
spreadsheet packages. While you may be able to follow the con-
cepts we present using the spreadsheet for Information
Engineering, you will not be able to use the query & graphics
features found only in QUATTRO.

At the end of each project a report must be prepared. If you
feel that any word processor will produce a report, you have not
seen SPRINT in action. SPRINT makes the hard work of sharing
printed information easier than any other word processing system
I have dealt with. In fact, I have switched from XyWrite II1+®
to SPRINT, which tells a grand tale in the world of professional
writing.

You can follow the series without the tools I have mentioned.
. You will not be able to participate directly in the project unless
you have the Borland products, or products which are com-
patible. The concepts are universal, and can be adapted easily. If
you desire copies of the actual product data, scripts, or files,
using the same tools as we use in the series is highly recommen-
ded.

Expert Systems & Development

The second facet of the series will deal with Expert Systems.
This new world of IE goes beyond the simple, mechanical forms
of dealing with raw data. Technically speaking, once our basic in-

formation has been collected, we have found an acceptable way
of managing it, and have converted it into a logical format, we
will then turn this information into knowledge.

Knowledge engineering is very much a part of the IE concept,
but something different. 1 can recall many times feeling that, after
completing an information system, ‘‘Now that I have all of this
information, what can I really do with it?”” Where the infor-
mation system design project ended is where 1 wanted to start, not
walk away.

The fundamental, mechanical, aspects of data management can
be thought of as cold and lifeless. It differs little from collecting,
storing, moving around, and sending out copies of little boxes.
Knowledge engineering brings this collection of inanimate data to
life, and allows us to communicate intelligently with it. This is
where the fun can begin.

I tried to deal with data in the world of artificial intelligence,
but, at the time, the tools available for microcomputers left a
great deal to be desired. LISP required more effort than it retur-
ned value. PROLOG seemed to offer the most promise. Of the
dialects I could afford, most lacked the power to do serious work.
-1 have been looking at Borland’s Version 2.0 Prolog with
something more than lust. If it were supplied for evaluation, I
might explore its real-world possibilities. Right now, however, 1
do not have the time to learn a new programming language. In
fact, I really don’t have a lot of time to do any programming at
all.

The lack of time, interest, or ability to learn an exotic
programming language is a common one. Where time is money,
what can be found off-the-shelf, with a flat learning curve, is wor-
th whatever price asked for it—if it will do the job.

I cannot stress enough that selecting the wrong tool for the job
can be expensive and frustrating. The purpose of this series is to
assist you in selecting the proper tools without the expense and
frustration of error. If we do nothing else but convince you of this
fact, I will feel I have accomplished something important.

While I am willing to go as far as I can in helping you, I cannot
possibly cover all facets of the subject matter. The theoretical
concepts you will require will be presented in a project oriented
way. But, this will only be a smali part the of IE and Knowledge
Engineering worlds.

There are many ways you can prepare yourself for this series.
One of the foremost is to read some books on the subject. Two
books worthy of mention are discussed below. They will fill in any
areas that we may overlook in the task oriented approach to our
subject matter.

Expert Systems: Artificial Intelligence in Business
Harmon & King

John Wiley & Sons General Books Division

ISBN 0 471-80824-5 $18.95 Retail

Expert Systems: Tools & Applications
Harmon, Maus, & Morrissey

John Wiley & Sons General Books Division
ISBN 0 171-83950-7 $22.95 Retail

¢ What are Expert Systems?

e What are they supposed to do?

e What kinds of programming languages will have to be acquired
& learned?

¢ How many programmers will I need?

® Have others dealt with problems similar to mine?

o If so, what are the costs of their solutions, and who do I contact
for assistance?

All of the questions above are valid, and very important to
YOQU, as an Information & Knowledge Engineer. If any one of
these questions have come to mind in reading this introductory
column, then you need these books. It is simple as that. There is
no question or debate on the subject.

The first Harmon book of interest, Artificial Intelligence in
Business was released in 1984. In the way the industry travels
along at light speed, this book could be considered slightly
historical. But, if your interest is in understanding, then we have
another case altogether.

Instead of dealing with the program code of some lost and
forgotten language, Harmon has dealt with the fundamental con-
cepts of what is now being called Information Engineering. He
does call upon the products of the time for use in his examples,
but these are systems which are still available today.

Harmon’s approach to his subject renders his information
timeless. The concepts are as accurate and applicable today as
they were in 1984. I could think of few fundamental questions
that Harmon did not answer. The how and why of his subject
matter are presented clearly. Examples & graphics illustrate and
support the textual material tastefully.

As with any conceptual exploration of a complex subject, Ar-
tificial Intelligence in Business would not be considered light
reading. A definite desire to understand the subject matter will be
required.

The age of the work is its only defect, but only in one area
which could not have been anticipated. Harmon relies heavily
upon Rule based technologies, which were dominate at the time.
If the reader takes this into consideration, then a complete under-
standing of Rule based systems will be had. Rule based
technologies are very much in existence, though few are suitable
for microcomputer applications.

All aspects having been considered, Artificial Intelligence in
Business should be purchased along with Harmond’s latest book,
Expert Systems, Tools & Applications. The two book set gos
together extremely well.

In Tools & Applications Harmond recognized the shortcomings
of his first book, shortcomings caused by the passage of time. The
second book continues on where the first book left off, as an up-
date of the original information. The skill in which this task was
accomplished was well accepted.

The concepts of Rule based systems are updated, and the con-
cepts of Inductive Tools are introduced. While Rule based
systems still dominate the minicomputer and mainframe worlds,
Harmond discusses the role of each tool as it is found in commer-
cial software offerings. Having explained the new material, he
completes this volume with an introduction of hybrid products,
which combine the best of both Rule based & Inductive -
Reasoning tools into a single product.

In both of Harmond’s books commercial tools and final ap-
plications are presented in a classic, ‘‘what they do, who has
them, and what they cost’’ format.

Of particular interest in Tools & Applications are lengthy
discussions concerning ‘‘I1st CLASS,” and ‘“‘Ist CLASS
FUSION,”’ Inductive Tools we will be using in our series.

The Computer Journal / Issue #36

Subjective Commentary

Here is the way I personally view these two books. I was presen-
ted with a copy of ““‘Ist Class FUSION”’ to be used in this series.
Having been presented with the tool, a discourse on other tools
was really not high on my priority list. But, I had to read the
books as part of the project. In thinking of the material in the
FUSION manuals, I often got bored, or fell asleep reading the
about seemingly unrelated concepts. This is no reflection upon

_the books themselves! I just wasn’t all that interested in anything

but the FUSION product. Then, when the second book started
discussing the tool that was driving me to distraction, the *‘world
moved.”” All of a sudden everything started making sense! Some
of the material was hard to grasp, but only because I had not paid
attention in my earlier readings.
. What had begun as task became a glorious adventure! This is
what I meant when I said you have to have an interest in the
material. Once I had grasped what Harmond was telling me about
FUSION, as well as interesting tidbits about the mind that devised
the product, everything he had to say was interesting, from the
perspective of how other systems related to FUSION.

I personally was not all that interested in Artificial Intelligence,
having found it lacking for real-world applications. 1 wanted
something that would help me in my daily tasks dealing with in-
formation. What Artificial Intelligence is, holds little interest to
me, personally. What it will do for me is well covered in Har-
mond’s presentations. But promises are promises. I still need
something more concrete, or so I thought.

If you are going to follow our series, then you really should get
BOTH of these books. Here is why. You will find the discussion
in Tools & Applications that are of extreme interest because they
deal with FUSION, the product we will be using in the series. The
discussions about FUSION are, in themselves, reason enough to
buy the book. Once you have read the areas that deal with
FUSION, which are interlaced throughout the text, you will have
fits of meaningless curiosity that will drive you nuts, unless you
are one of those souls who can put such thoughts out of your
mind, Most computer people cannot do that. So, you need the
first book to provide the background information that will satisfy
your curiosity.

You should be able to follow the parts of the series dealing with
Expert Systems without having these two books. 1 could have
written the series without them. The difference in understanding
these books will provide you is the difference between cake, and
cake with frosting. Having read the two books will make
everything a whole lot sweeter at the end of the meal.

Well, I am about out of space for this issue. In the issues which
follow we will present an interesting project dealing with “Deficit
Identification & Reduction,”” as it would be applied to the
analysis of SAT (Stanford Achievement Test) scores. As we begin
that project, I hope to hear from some of you educators out
there. It should be an interesting first installment. Once again, in
closing, let us hear your thoughts.

The products mentioned are available from:
Sprint, Quattro, and Paradox

Borland International
Call (800) 543-7543 for the dealer nearest you.

1st Class Fusion

1st Class Expert Systems
286 Boston Post Road
Wayland, MA 01778
(508) 358-7722

Clarion Professional Developer

Clarion Software

150 E. Sample Road

Pompano Beach, FL 33064

(800) 354-5444]

The Computer Journal / Issue #36

" FTL Modula-2:

The One to own!

¢ Runs on MS-DOS, CP/M & the Atari ST

* Programs up to 1 Meg on MS-DOS

* Supports terminals on MS-DOS

e Full library source included

* Fast compiles and links—in memory!

* Assembly-language interface included

* Source to editor only $30 extra!

e Advanced Programmer's Kit has real-time
kernel, debugger and overlayer

Prices:
FTL for CP/M is only $49.95!
FTL for MS-DOS or Atari $99.95

Add $30 for Editor/ToolKit (Editor source) or
Advanced Programmer's Kit. Special: get FTL plus
both for only $99.95 (CP/M) or only $149.95 (MS-
DOS or Atari)! Please specify disk format on order;
call for more information. FTL works on PCs, H/Z-
100s, TIs and MS-DOS systems with terminals.

Hard Disk Problems?

We Can Help!
Drive repairs & data recovery—
fast and easy!

“We Bring ’‘em back alive!
One Call Does It All:

Drive Repair -°

File Recovery

We've recovered data from hard disks and
floppies for over three years. Our special tools
make Lotus and dBase recoveries fast. We
work on PCs, Macs, STs, CP/M machines, etc.
Don't panic! Call us instead.

Workman & Associates

1925 East Mountain Street
Pasadena, CA 91104
(818) 791-7979 BBS: (818) 791-1013
BIX: “w.and.a” conference

Please add $3.00 for US shipping, $10.00 overseas. We

accept COD, Visa/MC, checks and some POs. Please
\ contact us for more information and our free cataiog. _/

Modula-2
A Bibliography

by Dave Moore, Alex Pournelle, and Barry Workman

This month’s topic is ‘‘by popular demand’’: we’re forever
hearing the question, “‘Are there any good books on Modula-2?>
The short answer is yes, there are; the ‘where’, though, is easier
than the ‘what’. We raided the Computer Literacy bookstore in
San Jose, California, for many of these titles; that’s one source.
Most technical bookstores, and some chains, will have these titles.
And if they don’t, they can be ordered (be sure to bring the ISBN
along).

The bibliography is probably less current than it was two mon-
ths ago. Books on Modula-2 are rapidly appearing, and most are
quite readable. Modula-2 is being discovered (at last) by more and
more people. When we released our first compiler, there were a
grand total of two books available. This list contains twenty-six
titles. We know of at least four more titles that are to appear but
which are not contained in the following list.

If you have any other titles to recommend, drop us a note.
We’d appreciate as much information as in our other listings—it
makes ordering easier. If you have comments on them, too, they
would be welcome.

There are ongoing attempts to completely standardize Modula-
2, especially by the BSI (British Standards Institute). When it in-
deed becomes standard, Workman & Associates will conform. At
the moment, we (and all the other vendors, too) are waiting for
the shoe to drop, rather than conforming to the interim recom-
mendations.

One of the best ways to keep up with progress in the language is
to join MODUS, the Modula-2 User’s Society. MODUS
publishes The MODUS Quarterly which includes the very latest
developments in the language. MODUS also has semiregular
meetings. Membership is US$20 or SFR45. Write to George
Symons, P.O. Box 51778, Palo Alto, CA 94303 or Heinz Wald-
burger, Postfach 289, CH-8025 Zuerich, Switzerland.

The facts in this list are as good as we can make them but we
deny any responsibility for accuracy. The capsule reviews are of
course subjective. We urge you to examine books for yourself
before buying.

Book Reference Convention

The ISBN (International Standard Book Number) of each
book, where available, is the American English edition number.
Then follows a capsule review, where available, and a rating of
‘Beginner’, ‘Intermediate’, ‘Advanced Intermediate’ or ‘Expert’.
Book Sophistication Level

‘Beginner’ means someone just starting to learn programming
or someone migrating to Modula-2 as their second language,
without much structured programming experience.

‘Intermediate’ means familiar with system programming and at
least two computer languages, or having passed a comparative
programming course.

‘Advanced Intermediate’ means having written a fairly large
application in one or more languages, feels comfortable reading
EBNFs, criticizes language texts for unclear examples, etc.

‘Expert’ means one of those semimortals who dreams in EBNF,
draws DFAs as graffiti, knows three or more languages. Experts

8

will probably learn Modula-2 from (a) our manual or (b) Wirth’s
Programming in Modula-2, or (c) their own textbook!

BIBLIOTHECA — Modula-2
Programming in Modula-2, Niklaus Wirth. Springer-Verlag, New
York, 1982, 1983, 1985. Third Corrected Edition , 1985, 202pp.
ISBN 0-387-15078-1.

This is the de facto ‘standard’ for Modula-2, as much as one
exists. There are rumors of a fourth edition about to be released,
but we know of no one who has actually seen it. FTL Modula-2
conforms to the third, corrected edition; most older compilers
conform to the second. This book is not recommended for begin-
ners, light reading or learning the language. It is, however, the
standard. Workman & Associates has this book for sale if you
cannot find it.

Advanced.

Modula-2 for Pascal Programmers, Richard Gleaves. Springer-
Verlag, New York, 1984, 145pp. ISBN 0-387-96051-1.

This is a very concise book for anyone who knows Pascal well.
The examples are good as a quick reference when you’re conver-
ting Pascal code to Modula-2. Richard Gleaves was part of the
team that put created Volition Systems Modula-2, the first
Modula-2 compiler for microcomputers.

Intermediate.

Modula-2 A Seafarer’s Guide and Shipyard Manual, alias
Modula-2 A Seafarer’s Manual & Shipyard Guide, Edward J.
Joyce. Addison-Wesley, Reading, MA, 1985, 270pp.
Comprehensive and certainly not dry. The first title is given on
the cover, the second on the frontispiece. The first 5 chapters are
designed for those learning Modula-2 right after BASIC; then it
explores the language in depth. I think it’s terminally cute, but af-
ter dull textbooks, it’s certainly refreshing. The examples are
good.
Beginning to Intermediate.

Modula-2--Problem Solving and Programming Style, W.C.
Jones, Jr. Harper & Row, New York, 1987, 580pp. ISBN 0-06-
043469-4.

Intermediate.

The next three books have exactly the same title—beware!

Modula-2 Programming, 1. Kaplan and M. Miller. Hayden, 1987,
228pp. ISBN 0-8104-6480-2.
Unreviewed.

Modula-2 Programming, E. Kepley and R. Platt. Reston
Publications, Virginia, 1987, 390pp. ISBN 0-8359-4602-9.
Unreviewed.

Modula-2 Programming, J.W. Ogilvie. McGraw-Hill, New York,
1987, 304pp. ISBN 0-07-047770-1.
Unreviewed.

The Computer Journal / Issue #36

An Introduction to Computer Science with Modula-2, J. M.
Adams, Philippe J. Gabrini, Barry L. Kurtz. D. C. Heath and
Company, Lexington, MA, 1988, 592pp. ISBN 0-669-12171-1.

A collegiate-level textbook with very nice examples and em-
phasis on classroom use. Early coverage of procedures and
modules. Not just a rewrite of a Pascal book; designed as a first
course. The D.C. Heath Company is now offering this text to
colleges and universities with or without the FTL Modula-2 com-
piler.

Beginner.

Modula-2: A Complete Guide, K. N. King. D. C. Heath and
Company, Lexington, MA, 1988, 640pp. ISBN 0-668-11091-4,

A Modula-2 reference with comparisons to Pascal, real-world
examples and an emphasis on advanced features. Dr. King
teaches at Georgia State University, is on the ISO Modula-2
committee and knows his Modula.

Advanced Intermediate.

A First Course in Computer Science With Modula-2, 1.. Pinson,
R.F. Sincovec, R. S. Weiner. John Wiley & Sons (Wiley Inter-
science), New York, 1987, 491pp. ISBN 0-471-81692-2.

A textbook with comprehensive examples, designed for
classroom use.
Beginner.

Algorithms & Data Structures, Niklaus Wirth. Prentice-Hall,
New York, 1987, 288pp. ISBN 0-13-022005-101.

See next reference. As with its predecessor, Wirth uses very
short identifiers and doesn’t present examples well. Still, it’s bet-
ter written and uses Modula-2 for examples.

Advanced Intermediate.

Data Structures Using Modula-2, R.F. Sincovec, R.S. Weiner.
John Wiley & Sons (Wiley Interscience), New York, 1987, 500pp.
ISBN 0-471-81489-X.

Niklaus Wirth wrote Algorithms + Data Structures =
Programs after he invented Pascal; he wrote Algorithms & Data
Structures after refining Modula-2. This book is in the same
vein—a coursebook and guide to better, structured programming.
Advanced Intermediate.

An Introduction to Programming With Modula-2, P.D. Terry.
Addison-Wesley, Reading MA, 1987, 460pp. ISBN 0-201-17438-
3.

Clearly written with good examples. Terry teaches Modula-2 at
Rhodes University; he’s also on the ISO Modula-2 standards
committee. He knows his Modula. This is a text more than a self-
learning book.

Beginner.

Modula-2--An Introduction, D. Thalmann. Springer-Verlag,
New York, 1987, 292pp. ISBN 0-387-13297-X.

Modula-2--Programming With Data Structures, B.K. Walker.
Wadsworth, 1987. ISBN 0-534-05917-1.

Advanced Programming Techniques in Modula-2, T.A. Ward.
Scott Forresman & Co., New York, 1987, 293pp. ISBN 0-673-
18615-6.

Advanced Intermediate to Expert.

Modula-2, J. Beidler, P. Jackowitz. PWS Publishers, Boston,
MA, 1987, 347pp. ISBN 0-87150-912-1.
Intermediate.

The Computer Journal / Issue #36

Modula-2 Primer, S. Kelly Bootle. Howard W. Sams, In-
dianapolis, IN, 1986, 453pp. ISBN 0-672-22560-3.

Bootle also wrote The Devil’s DP Dictionary, a hilarious satire
on data processing. He has written a nice textbook, with clear
examples and humor. Useful as a self-teaching book. He con-
trasts Modula-2 with other structured languages, too. Doesn’t
start into the language as early as Joyce (above). This book uses
Logitech’s Modula-2 and is a little dated in that the compiler was
second edition rather than third.

Beginner through Intermediate.

Introduction to Modula-2, P. M. Chirlain. Matrix Publishers,
Beaverton, OR, 1987, 248pp. ISBN 0-916460-41-X.

Introduction to the language.
Beginner.

A Guide to Modula-2, K. Christian. Springer-Verlag, New York,
1987, 436pp. ISBN 0-387-96242-5.

A guide and reference rather than a beginner’s book.
Intermediate to Expert.

A Software Development Approach, G.A. Ford & R.S. Weiner.
John Wiley & Sons, New York, 1987, 404pp.
Advanced Intermediate to Expert.

Software Engineering and Modula-2, G. Pomberger. Prentice-
Hall, New York, 1987, 264pp.

A discussion of software engineering coupled with Modula-2, not
a Modula-2 textbook.

Advanced Intermediate to Expert.

Using Modula-2, D.D. Riley. Boyd & Fraser, Boston, MA, 1987,
641pp. ISBN 0-87855-236-8.
Unreviewed, but certainly comprehensive (look at its length).

Modula-2 Discipline and Design, A. Sale. Addison-Wesley,
Reading, MA, 1987, 452pp. ISBN 0-201-12921-3.

Intended for use as the supporting text for a course in Modula-
2.
Intermediate.

Programming Expert Systems in Modula-2, B. Sawyer, D. Foster.
J. Wiley and Sons, New York, 1987, 20ipp. ISBN 0-471-85036-5.
A book on a specialized topic rather than a general textbook.

Advanced Modula-2, H. Schildt. Osborne/McGraw-Hill,
Berkeley, CA and New York, 1987, 379pp. ISBN 0-07-881245-3.
Advanced Intermediate to Expert.

Modula-2 Wizard, R.S. Weiner. John Wiley and Sons, New
York, 1987, 209pp. ISBN 0-471-84853-0.

Companion to Pascal Wizard, also by the incredibly prolific
Weiner (5 books in this list). Designed as a reference to those who
already know the language. More readable than Wirth.

Advanced Intermediate and especially Expert.

Software Engineering with Modula-2 and Ada, R. Weiner and R.
Sincovec. John Wiley & Sons, New York, 1987, 451pp. ISBN 0-
471-89014-6.

Advanced Intermediate and Expert. u

Big power
for smaller systems.
Little Board/286 is the newest

221111 %

shbkhadi

REAURERERBNERBAARE

1 2 MHz 80286

AT- Compatlble
1Mb on: board“;D

Full'set of AT
compatlble controllers..

Compare features.

‘'you see here.
THEAMPRO LITTLEBOARD"/286

o EGA/CGA/Hercules/MDA Better answers for OEMs.

member of our family of MS-DOS Both systems offer: ona daughterboard Little Board/286 is not only a smaller
compatible Single Board Systems. It gives ~ ® 8 or 12MHz versions with no increase in answer, it’s abetter answer . . . offering
you the power of an AT in the cubicinches ~ ® 512Kor IMbyteon-board volume the packaging flexibility, reliability, low
ofahalfheight 5 1/4” disk drive. It requires ~ DRAM ¢ SCStbus support fora power consumption and 1/O capabilitics
no backplane. It'sa complete AT-compat- * 80287 mathco-processor ~ wide variety of devices: OEMsneed . . . atavery attractive price.
ible system that’s functionally equivalentto ~ °ption , Hard disk to bubble And like all Ampreo Little Board products,
the 5-board system above. But, inlessthan ~ ® Full setof AT-compatible drives o Little Board/286 is available through
controllers ¢ On-board 1Kbit serial

6% of the volume. It runs all AT software.
And its low-power requirement means

o 2RS232C ports EPROM. 512 bits

representatives nationwide, and world-
wide. For more information and the name

high reliability and great performance in : :ﬁ)r;:)lsldg;ﬂcts;ggﬁter . :W‘v’s(‘)lgl;lti_f&r d(()aigcskets ofyour nearest Rep, call us today at the
harsh environments. o EGA/CGA/Hercules/MDA for EPROM/RAM/ number below. Or, write for Ampro Little
Ideal for embedded & dedicated video options NOVRAM expansion Board/286 product literature.
applications. The low power and tiny o AT-compatible bus (usable as on-board 40 8 13 4- 2 8 o o
form factor of Little Board/286 are perfect expansion solid-state disk) -

for embedded microcomputer applica- » A wide range of expansion e Single voltage operation Fax: 408-734-2939 TLX: 4940302
tions: data acquisition, controllers, options (+5VDC only)

portable instruments, telecommunica- o [BM-compatible Award e Less than }OW power m F qn
tions, diskless workstations, POS terminals ~ ROMBIOS consumption

.. .virtually anywhere that small size and But only Little ¢ 0-70°C operating COMPUTERS, INCORPORATED
complete AT hardware and software Board/286 offers: range 1130 Mountain View/Alviso Road

compatibility are an advantage.

¢ 5.75" x8" form factor

*AT is a Registered Trademark of IBM Corp.

Sunnyvale, CA 94089

Reps: Australia-61 3 720-3298; Belgium-32 87 46.90.12, Canada-(604) 438-0026, Denmark-45 3 66 20 20; Finland-358 0 585-322; France-331 4502-1800; Germany, West-49 89 611-6151;
Israel-972-3 49-16-95, Haly-39 6 811-9406; Japan-81 3 257-2630; Spain-34 3 204-2099; Sweden-46 88 55-00-65, Switzerland-41 1 740-41-05; United Kingdom-44 2 964-35511; USA, contact AMPRO.

Temperature Measurement and Control
Computer Control for Agricultural Applications

by Matthew K. Rogoyski

Abstract

A simple, inexpensive temperature
measuring interface for an IBM
personal computer has been
developed for use by orchardists. The
conversion of analog to digital signal
has been accomplished with the use
of an IBM Game Control Adapter card
connected directly to the computer
bus. Two systems, the first utilizing
the thermistor and the second a
voltage output transducer, are
discussed. The program for data
acquisition and storing temperature
with allied information is written in
IBM PC BASIC. Another program,
written in the C language, that stores
transducer resistance data is also
presented. Hardware and software
can be readily expanded for use with
other sensors. Concurrent usage of
the MS-DOS personal computer for
data acquisition and other tasks is

- explored. The role of the above
interface in computer-aided orchard
management is discussed.

Introduction

Producers of agricultural and
horticultural commodities in Colorado are

gradually adopting the powerful
technology offered by personal
computers. Present usage of these

computers by orchardists is mostly limited
to spreadsheet applications, accounting,
and word processing (13, 22, 30). Another
potential agricultural application of
personal computers, explored in this
paper, is the logging of weather data. A
temperature monitoring system for the
use by orchardists has been designed
around the IBM PC Analog Input card,
also known as the Game Control Adapter
(7, 16, 18, 19, 25, 27). Interfacing of two

types of temperature transducers:
thermistor and voltage output
temperature transducer is examined.

Estimated cost of the system based on a
IBM Analog Input card is less than $100
(US) including the card, electronic parts,
and wire.

The Computer Journal / Issue #36

Many Colorado fruit growers are
already manually recording daily
minimum and maximum temperatures, as
numerous mathematical models of
biological processes that predict insect
emergence, disease incidence, and
occurrence of tree growth stages as a
function of temperature, are available (11,
22, 28). The intermountain climate of
fruit growing areas in Colorado is
characterized by large microclimatic
differences even between closely located
sites (31). These differences are
biologically significant. The closer the
temperature transducer to the orchard,
the more biologically valid data can be.
Assuming that the majority of orchardists
will own a personal computer in the near
future, the weather data logging system

based on these computers would
considerably facilitate design of
computer-aided orchard management
systems.

The first system (thermistor based) was
developed to record temperature readings
in the 10° to 31° C range. This range
corresponds to the minimum and
maximum threshold of a degree-day
model for the codling moth (11, 28),
generally accepted as the number one fruit
pest in Colorado orchards. The second
system, based on a voltage output
temperature transducer, has been
designed to serve as an alarm for the
upper temperature range encountered in
the field. Usage of this circuit as an alarm
is of interest in Colorado as heat stress
related disorders are encountered in the
state (31). The voltage output transducer,
used in the alarm system, has been utilized
in several temperature measuring systems
described recently (14, 29).

The programming of the Game Control
Adapter card is relatively simple as direct
access to input ports is accomplished with
the BASIC function, in the case of
Microsoft IBM PC BASIC, called STICK
(6). This greatly simplifies programming
and eliminates need for costly commercial
data acquisition software packages. The
programming in C, on the other hand,
requires definition of user functions. The

Matthew Rogoyski works as a
researcher at Rogers Mesa Research
Center located in Hotchkiss, Colorado.
He is assistant professor of pomology at
Colorado State University. He graduated
from University of Guelph with B.Sc. and
received his Ph.D. degree from Cornell
University. His work includes, among
others, the development of various
decision support systems for the fruit
industry. His interests are in the area of
computer interfacing and applied artificial
intelligence. Correspondence can be
directed to 3058 Hwy.92, Hotchkiss, CO
81419.

major factor in simplicity of software and
hardware design is the direct placement of
the Game Control Adapter card in the
computer bus; it eliminates potential
complexity of interfacing data loggers,
especially through an interface such as RS
232 (12). The resolution for this particular
card is 256 discrete points, when software
written in BASIC is used. This is
equivalent to a conventional 8 bit analog
to digital converter. The transducer
resistance range, measured with aid of an
Analog Input card, was expanded by
software written in the C programming
language. ’
Design of Interface and Testing
Procedures

An IBM PC XT computer equipped
with 256 KBytes RAM, 10 MBytes hard
disk and one 360 KBytes floppy disk, and
PC DOS version 2.00 (5) was used in the
experiments. The program was written in
Microsoft IBM PC BASIC (version
A2.00). A similar program was also
written in C and compiled with Ecosoft
Eco-C-88 compiler (version 3.21). The
data presented in this paper was obtained

Funding was provided by Colorado
Agricultural Experiment Station: (Project
#157)

"

with the aid of a program written in
BASIC. The analog signal from the
temperature sensor was digitized by IBM’s
Analog Input half size card (7) (Table 1).
The functional block diagram of the two
systems tested is presented in Figure 1.

The temperature transducer of the first
system was composed of two thermistors
. (type RL-D1) (Table 1). Two thermistors

were connected in series (Figure 2) and
mounted in the center of a perforated,
unpainted aluminum box (10 cm x 8 cm
X 4 cm). The transducer of the second
system was the voltage output precision
temperature sensor LM35CZ (8) (Table
1). A small heat sink (Table 1) was placed
- directly over the case of the LM35CZ
transducer. The important component of
the circuit needed for interfacing this
transducer was a hermetically sealed cell
combining a light emitting diode and a
photo-conductive element (2,27) (Table 1
and Figure 3).

The sensors were placed inside the
weather shelter (35 cm X 60 cm X 65 cm)
about 135 cm above soil level. The shelter
was located directly in the orchard.
Approximately 90 m of twin-lead type
cable was used (20-ga copper conductor
twin-lead 300 Ohms impedance, with
polyethylene foam insulation and weather
sealed jacket). The wire was buried in 25
m vented PVC pipe under the road, the
remaining wire was suspended aerially in a
tree canopy. Partial protection from
lightning for both systems was provided
by the overvoltage, overcurrent circuit
(Figure 2) (4, 15).

Transducers were calibrated and tested
"against a Polycorder Model #516
equipped with 32 K RAM and General
Purpose Interface Board with six copper-
constant thermocouples. The Polycorder
itself was calibrated and programmed as
described in Omnidata application note
(3). Using data pairs sampled at the same
instant of time, a model equation was
derived. Thus, the transducer resistance
value, R , was considered the independent
variable and the corresponding
temperature value, T, obtained with aid
of Polycorder, was defined to be the
dependent variable. Using Forsyth’s
method of generating orthogonal
polynomials (24),a final second degree
equation,

T = 0.00062 R* - 0.3043 R + 44.525

was generated for the system based on the
thermistor. A similar second order
equation,

T = 0.00031 R* - 0.1143 R + 47.894

was generated for the system utilizing a
voltage output temperature transducer.
Experiments were conducted at a later
date, using Polycorder. The temperature
values obtained with aid of Polycorder
were compared with temperatures

12

Table 1 Sources for electronic components and parts.
Part Manufacturer Part Number Source

Game Control 1BM 150 1 00 18M

Adapter

Thermistor Keystone Carbon KCO19N-ND Digi-Key

RL-01 Company Corporation
P.0.Box 677
Thief River
Falls, MN
56701

Voltage Qutput National LM35CZ Hami | ton/

Temperature Sensor Semiconductor Avnet
Etectronics
068765 Orchard
Road
Englewood, CO
801114

Voltage to Clairex CLM 8000 Clairex

resistance Electronics Electronics

convertor 560 South
Third Ave.
Mount Vernon,
NY 10550

Heat Sink Avid Eng. Inc. HS 100 Digi-Key

Signal Archer 15-1175 Radio Shack

Transmission

Wire

Transient/surge Panasonic ZNR K22056 Digi-Key

adsorbers ZNR 20K201U S53

ZNR 10K820 47
Gas Discharge DSARI-441LA Radio Shack
Tube
Spark Gap Custom Made
Assemb |y

"
System Based on Thermistor:

Personal Computer
with Game Control
Adapter Card

#
System Based on Voitage
Output Transducer

Overvoltage
Qvercurrent
Protection

Signal Transmission Line

(Length up to 100 m)

|

Thermistors

Figure 1: Block Diagram of functions

of systems 1 and 2.

|

Voltage to
Resistance
Conversion

|

Signal
Amplification

[

Overvoltage
Qvercurrent
Protection

Signal Transmission

Line

|

Voltage Output
Transducer with
Battery

The Computer Journal/ Issue #36

Figure 2: Circuit for thermistor sensor, overvoltage and over-
current protection.
IN40OI
ZNR ZNR ZNR DSARI
K220 20K201U 10K820 -44ILA
56 s53 47 SPARK
GAP
L] *
3
CANALOG tAan) N\ it Ga
0-25A
INPUT KE%WN
CARD L I >
o ' 1 r 5\’) T —:,
0-25 A
ZNR ZNR DSARI
K220 10K820 -44|LA SPARK \y
56 47 GAP
L]
IN40O!1

Figure 3: Circuit for voltage output temperature sensor.

4.9 VDC (I1BM)
F

i
+

8.4 VDC
— (MALLORY TRI26) ouT LM35CZ
GND
200 2K
1% 1%
8
[o
“ - -
_____ 200 2K
r cLm 8000 | 1 % 1%
o._
To | || l 10 K
OVERVOLTAGE :G, /9 | 82 mF 18K
OVERCURRENT | /4 | METAL FILM
PROTECTION | | .
R ! ' =
L J
27 K

(COMPUTER BUS GROUND)

The Computer Journal / Issue #36

13

calculated using the above model equation
and the recorded transducer outputs.
Statistical analysis on the above data was
conducted as outlined by Daniel (17).

The thermistor based system was tested
and calibrated under normal temperature
fluctuation in the orchard. Performance
of the system at the upper part of the
_ temperature scale (20° C to 31° C) was
evaluated by placing a forced air heater in
the weather shelter which was covered
with blankets to decrease temperature
fluctuations. The thermistor sensor was
located 1 cm to 3 cm from the
Polycorder’s thermocouples. In the case
of the second transducer, the voltage
-output temperature sensor, its
performance was also evaluated in the
covered weather shelter equipped with a
forced air heater. In this case, the
thermocouples were taped with a electrical
tape directly around the heat sink of the
transducer.

Results and Discussion

The Game Control Adapter based
system is an inexpensive alternative to
dedicated data loggers and automated
weather centers. The average correlation
coefficient, for data from the thermistor
based system was 0.96, indicating that the
model was adequate (Table 2). The
correlation coefficient for data generated
by the system based on the voltage output
transducer was 0.81 (Table 2). The
precision was adequate for the circuits
tested as indicated by the standard
deviation (Table 2).

The practical range of the Analog Input
"card under test was 3 to 254 KOhm, when
the software written in BASIC was used;
the C based software expanded the upper
range of resistance that could be sampled
by this card to values above 1 MOhm. The
output of the BASIC program for every
data point consisted of the date and the
time when the reading was taken, the
actual resistance value read by the card,
and the calculated temperature value. The
accumulated samples of data were forced
to be stored on the disk every hour on the
hour to prevent loss of data in event of
power failure. It is important to note that
a rapid change in input resistance,
resulting in out of range value, caused a so
called static condition to occur; i.e., a
constant reading was returned each time
the card was sampled. Because of this
potential problem, the BASIC program
tested for this condition and did not store
these values.

The type of cable, used for a signal
transmission line, had major impact on
the absolute values returned by the card.
A twisted pair of copper conductors
coated with polyvinyl chloride (PVC)
proved to be totally unacceptable
resulting in excessive fluctuations of

14

Table 2: Statistical results for curve fitting of experimental data
for thermistor and voltage output transducer based systems.

System Transducer | Experiment | Correlation F-value! Standard
Transducer Temperature | Number Coefficient Devlafion2
Range
0.99 1097** 0.52
10-23 °C 0.97 639%* 0.65
0.87 132* 0.78
Average 0.94 0.65
Thermistor
0.98 1048** 0.49
20-30 °C 0.98 g59** 0.58
0.98 877*% 0.76
Average 0.98 0.61
0.65 85* 2.1
Voltage
Qutput 37-47 °C 0.82 65% 1.9
Transducer
0.97 338%* 0.8
Average 0.81 1.6
'Significance level for F-value: *x 54 * 10%

(The F-value was calculated from the partitioned total sum of

squares as outlined by Daniel (17).)

2This is estimeted standard deviation, defined by (17) as the
square root of the residual mean square.

readings. Noise was reduced to
manageable levels when polyethylene-
coated conductors were used. It is
postulated that PVC coating might be a
cause of the excessive noise as the
dielectric constant of PVC is 2.8 versus
2.2 for polyethylene (10).

The thermistor proved to be a well
suited transducer for the Game Control
Adapter card. This type of sensor had
similar characteristics to the
potentiometer for which this card was
designed. No signal conditioning was
necessary other than protection from
overvoltage and overcurrent. The
thermistor based system was not overly
sensitive to sources of electromagnetic
radiation encountered in the orchard
environment, such as ignition systems of
gasoline powered engines. The self
heating of the thermistor was unlikely, as
very low current was involved (less than 10
mA). Under the field conditions the
thermistor needed to be painted with non-
conductive coating, as the possibility
existed that condensation water will short
the electrodes attached to the
semiconductor material of the sensor
element.

The second system based on the voltage
output temperature transducer was not
directly compared with the thermistor
based system. The complexity of the
circuit was considerably higher than that
of the thermistor based circuit, though
manipulation of the signal could be
readily accomplished because of an

operational amplifier. The LM35CZ
temperature transducer was linearly
related to the temperature change (8); this
linearity was lost when the signal was
modified by the circuit for Game Control
Adapter card input.

The MS-DOS operating system is not a
multitasking system and the need exists
for a computer to be used for tasks other
than weather data logging. The simplest
solution to this problem was to manually
interrupt, for example, an execution of
spreadsheet program, run the data
acquisition program, and come back to
the original task. This arrangement was
not convenient, but it was workable. A
number of commercial software packages,
that simplify rapid manual switching
between different programs, is available
on the market for MS DOS (20). Some
(e.g., Double DOS, Soft Logic Solutions,

Manchester, N.H.) claim to allow
concurrent use of programs and
multitasking on some MS DOS

computers. The Double DOS package,
though not extensively tested, has allowed
the apparent concurrent use of the above
mentioned BASIC program and a word
processor.

Acknowledgments

The author wishes to thank Dr. H.
Larsen for fruitful discussions, Mr. L.
Coffin for expert advice and assistance
with curve fitting, statistical analyses, and
programming, and Mr. J. Tembrock for
technical assistance.

The Computer Journal / Issue #36

(Start)

Dsfinine Temp. Equation;
Set Error Trap;
Initialize

Input File Name &
Sampling Intervai

Set up Sequential
Input/Output

Print OP. Message

o

Stop
Program

v

Close Disk
Files End/Stop

Time to
Sample

Force Data
to Disk

Get Avg.
Resistance &
Compute Temp

Write Data
to Disk

A

Figure 4: Flowchart for program to collect resistance vaules,
calculate and store temperature values on disk.

* % % The diagrams for Figures 1 and 4 were prepared with Generic
CADD® (Generic Software, Inc., 11911 North Creek Parkway
South, Bothell, WA 98011 (800) 228-3601, output on a 9 pin Ep-
son MX-80, and reduced to 75%. The text was set separately and
pasted in.

The Computer Journal / Issue #36

References

1. Allocca, J. A., A. Stuart, 1984,
Transducers: Theory and Application,
Prentice-Hall Co., Reston, Virginia,
USA, pp. 497.

2. Anonymous, 1985. ¢“CLM6000,
CLMS8000: LED - Photoconductor
Isolators.”” Optoelectronics Designers
Handbook, pp. 8.21-8.22, Clairex Elec-
tronics Mount Vernon, NY 10550, USA.

3. Anonymous, 1985. “Using the
Polycorder Electronic Notebook to
Measure Temperature Using Thermistors,
TRD’s and Thermocouples.’’ Application
Note 2419/2460 Version 1.0, Omnidata
International, 750 West 200 North,
Logan, Utah 84321, USA, pp. 182.

4. Anonymous, 1985. ‘‘ZapNot
Technical Description,”’ ZapNot
Technical Bulletin 85-1, Omnidata Inter-
national, Inc., Logan, Utah, USA.
mS. Anonymous, 1983. Disc Operating
System. Version 2.00 by Microsoft Corp
IBM part number 6024061.

6. Anonymous, 1983. BASIC. Version
2.0 by Microsoft Corp., iBM part number
6025010.

7. Anonymous, 1983. Technical
Reference Personal Computer XT. Ver-
sion 2.02 IBM Part Number 6936808,
pages 1203-1208 and D76.

8. Anonymous, 1982, “‘LM35/
LM35A, LM35C/ LM35CA, LM35D:
Precision Centigrade Temperature Sen-
sors.”” Linear Data Book. PP. 9.2-9.5.
National Semi-conductor Corporation,
2900 Semiconductor Drive, Santa Clara,
CA 95051.

9. Anonymous, 1982. ‘“LMI158/
LM258/ LM358, LMI58A/ LM258A/
LM358A, LM2904: Low Power Dual
Operational Amplifiers.”” Linear Data
Book. pp. 3.216-3.219. National
Semiconductor Corporation, 2900
Semiconductor Drive, Santa Clara, CA
95051.

10.Bruins, P. F. 1968. Plastics for Elec-
trical Insulation. Interscience Publishers,
New York, N.Y., USA, pp. 201.

11.Brunner, J. F., F. C. Hoyt and M.
A. Wright. 1985. “Codling Moth Con-
trol.”’ Extension Bulletin #1072,
Cooperative Extension, Washington State
University, Pullman, WA, USA.

12. Campbell, J. 1984, The RS-232
Solution, Sybex Inc., Berkeley, CA, USA.

13.Cardiff, J. 1985. Farming and the
Computer, Group Four Publication, Inc.
Seattle, WA, USA, pp. 231.

14.Carr, J. J. 1986. ‘‘Using an LM-335
Voltage-mode Temperature Sensor’’
Modern Electronics, (2):55-61.

15.Ciarcia, S. 1983. ‘“‘Keep Power-line

Pollution Out of Your Computer,”’ Byte
8:36-44.

15

£ IXaN OTLS » 0162
$L INTMd © G&“9T ALYOOT 2996 Burddeas jjo uani ‘umouy 30U JoaIs, @ 0IOD HOHMA NO @982
T IXAN aT9¢ OTOZ INNSTY : $42°. .0, NIJO NIHI £6=H4d 41 @182 ©
£eTop , @T OL T=I HOd 8955 Zutddeay Joats |, @942 ¥
I+ =4 @T¢s 0TLE o
(T)¥01LIS=X @9%¢ | 8192 a
(@)¥0118=X oTYS 1 9962 =
@oT OL T = £ ¥04 @9 | ~ TTTTTTToTemsosooooosoosooeseooooe- 07807 UTBY JO PUF ----===--==mmee . 0162 ©
¢=Y 01£¢ + 0972 5
$ANIL = $1 @926 ' 0TYe s
@TZE dNS0D : STI0 ¢ @TLL dNS0D @T2¢ Butpaooal Jog sntea jxou 383 03 door 29TZ 0L09 @9tz 5
@T2¢ NHNIAY @9TS 9TTJ MSTP 03 SONTBA 3ABS, dWIL‘TY ST $ALVA ZHTLIUM BTES 5
440 ¥EWIL OTTS (*3ae) onTBA 20UB}ISTSAL UTBIQO, @99 €NS0D 0922 =
@T6y 010D 090< *Teaxsgur 3ndut jo ardriTnu & moys o3 swiy Jurrdwes 188, @9Lf 4ANS0H @TZZ nmv
I IXAN 0706 QOPW 0} S3UBM J3SN JT 89S | S@m@ qanson S@.HN O
819377 ® £BT3p , @€ OL T = [¥0d @96% sfessouw Jojerado qutad, @ree 4NSOD QTTT 2
(@)MOIIS=X @Té% JUT4NOI 338pP JI0J 3TUT, 66= HHI @902 .
soTuUoI3»9Ta dn wass, @TTS 9nNS09 (T)YAWIL NO @98y dooT Buiwiy J0j 9TgBTJIBA 92ZTTBTITUT, 66=1SV11 @102
NO MAWIL @T8Y Sutpusdde 1oy dn jes 03 - S3STX® 3T, @9€@T dNSOD @96T
. B9LY @8z 18 dBal TTTA JOLI® JT - S3STX2 O[T JT @95 , $J°T,:I1.,, NAJO QT6T
. OTLY 0/1 103 8weu 8TTJ 39S, ¢4 = $INIYHND @98T
aanjeladwss a3ndwod pus BiBP ©0UBLSTSAL 388 01 SUTINOIANS | PIGY STO @28t
. @T9Y AINIf,, sejnuTw ul Tearsjur swiy Burtdues ut 2ddl,, INdNI @QTST
L 09%Y INIMd ‘INI¥d @9LT
L 0TSy $d+ .8y =84 QTLT
-—- L 09y ¢4 ¢, ,aweu 5TTJ eyep UT odAY,, INdNI €997
» 0Ty J40 AN :ST0 0797
. 09EY 0/1 JI83BT I0J 388, coxdwed e, =$ISVT Q94T
anTea 2WTY 3X3U 388 |, @9LL 010D @TLY I INIJ3A @T6T
Suttdwes Joj Apeal S,27, NUAILIY NIHI @=(AINI QOW NI) 4T @92% GZG oY+ XUxEHQL" - 2, XdxZ900Q " = (XM)TUNJ 430 @9%T
@9TZ NEAIEYM :@9£0T @NS0D :GTTIT nS0D :@99% €nS0D NAHL @=NI 41 @12y 0/1 203 Burddely Joils 38s, @T8Z 010D ¥OWYA NO @T4T
*YSTP O} P32IOJ ST BIBP pUB PajBOTPUT ST JINOY 38U} UO ‘@=UT UsUM , @@y « @9€T
NI = ISVII @9T% . OTET
3WT3 3BT SOUTS PAJUBYD 30U 9ABY $3INUTW, Q9L 010D NAHL ISYVII=NI dI @TTY 1 @92t
anTeBA OTJSWNU O3 SIJNUTW JISAUOD, ($Y)TYASNT @9@% | T T e e s . o012t
Sutays sjnutw 30BI3X3, (ZT+I‘$L)$AIN=3Y oTOY - - 096
uoTod 3sa1J Jo uotiysod uanied, (,,:,, ‘$1)MISNI=I @96¢ - - 0Té
$1 INTMd @T6f - = Q98
¢G*HT TIVOOT @98€ - rweadoad ay3 Jo SutuurSeq 8yl 3B 1USWLLBIS -, Q18
dojs 01 s3jusm Josn JT 89S , @949 dNS0H OI8E - uoTyouny Jaq 2u3 Suthyipow Lq KT1Isee -, 09
WMZHHN%B SON._M - Owwcmno 3q Lo uotrjouny sadnd pajiljsad - QT4
QLS - *0d IX WEI Ue UO yOISYd UT U2337as werdoad isqusumo) -, @99
swr4 Suirdues JI0j HO9UO O SUTINOIQNS | @99E - -, 919
. 0T9€ - *aanjeladwsy pue aNTBA 90UBISTSAI -, 09¢
. @9¢E - 3wty ‘93BpP JO BUTISTSUOD SPIOOAT BTTd (andang -, QTS
- —— . 0TS - *(AINI) Teaxsijur Buriduss -, 09%
 B9YE - aU3 pue 238I035 BIBD IO ($J4) SwWeU STTA ssindur - | g1
NUALIY @T%E - =~ . 09¢
INT4d ¢ 1,8 NV NI 3dXI ‘NOIIOITIO0 YIVQ NI OL.: INIHd 09€€ - "9TTJ ASTP TBTjuenbas ® UO ‘938P DUB BWTI UITA - , @TC
82T ALYO0T @TEE - BuoTe ‘sanTea 28U} 8ABS 03 pus (8aano pa3jTjead ® gutsn) - |, g9z
INIMd : ,,ONINNOY ST WOd dWEL - ENIHOVW 40 NMAL ION 0., INI¥d @92¢ - enfea aanjeredusy 3uppuodssdtod B 93ndwoo f(uoiloung YOIis - , @T2
¢‘gT EIVI01 @TZE . - oy} Buisn) sanTea sousisysax aTduss o3 weaSoxd ® - SBQTCLEX -~ 29T
l SO.HM - - 01T
a9sssaw Joisasdo jutad o3 aurinoxqns |, PIIE - - .09
\ 290¢ i 0T
, @Tec ©
1 0962 ONILSIT WY¥D0Hd 0ISvd

SBQ'GLEX JO puR [

1
NUNLIY
AWAL TY ST $ALYA ZHALIUM

9TTJ NSIP 0% BIEp 8ABS 01 2UTINOIQNS ,

]
NBNLIY
$ISYT ‘$INIHEND VYMS

usdo aT1J 3ndinoc aasaT, T dS0T10
ANIH
XLH‘$L¢q‘2# ELIUM
XLULa‘T# INdNI

(T)404 ION ITIHM

$INAHHND ‘T4, Tyy NIJO

$ISVTZ¢. .0, NELO

IS010

1

anoy sY3 Uo XSTp 01 BIBD 92I0J 03 BUTINOIQNS ,
1

SemssmesmomeSsssssEm s 1

[

NYNLEY

£,, = anTeA FY,, INIMd : @%‘0Z ILVOOT
,189WTY |, fISNODIS, . onTea 3uUBLSUO),, INIHd : @%‘6T IIVOOT NIHL 2=<ISNOOI 4AI
T+ISNOOI = ISNOOI

[

sonTBA 3UBLSUOO jurad 03 auTInCIqns R
1

)

Mt]

1
NYNII™
spuooas ¢ 3TeM , @998 dNS0D
Mfy = onTeA FM,, INIHd : @%°LT JLVOO1

L 1S9WTY ,, fIN0T¢, . PSusl JO 3nO,, INIMd :@% ‘8T ALVOOT NIHL Z=< INOT 41
T + I00I = 100I

i

g3Bp 9duel Jo 4no jutad o3 surinoagns \

NYNLIY
0959 dnsoD
I IXAN
2959 4nsSo
$AWIL INTHd GG ‘YT FLVO0T
oss ¢ xoxdde dooT Jawi3l , @@RL OL T = L HOJ
1
3TBM puUB SUT} PEMHQ 01 auI3InoIqns i

pus 0% SjUBM JaSN JT 89S

2ey1T
09¢TT
RTETT
29211
2121t
29111
aTTTT
29011
21011
29607
21607
2980T
01801
29.01
aTL0T
29901
21901
89407
)87
29ve1
Q1701
e9tet
oTeoT
29201
21207
39101
aT1eT
29001
01001
2966
2166
2986
2186
2946
oTL6
2996
2196
2946
BTS6
29%6
2TY6
29¢6
a1£6
926
o126
2916
2116
2926
2106
2968
o168
2988
G288
@288
4188
0188
29.8
2148
2998

anTBA MaU 13933, @964 0109
1TeM puB w3 uTad, @998 €1S0D
sentea 1suod jutad |, @T66 dNS09D

*8A8 03 ovq 03 + NUALIY NAHL 0 <> OT dI
T ILXEN

b IXAN

£vTep 2T 0L T=b ¥0d

T +0I = O0I NIHL TIK>H 4T
(T)¥0I1S = M * (@)M0ILS=A
P0T 0L T = I HOJ

Ja3unod adusyo 3IUT @ =01

anTBA 1SBT 94BS, M= T

anTeA MOU 383, @964 OL0D : B9€6 €9NS0Y NIHL %62 < M ¥O IT > M 4l
(T)NOILS =# : (B)MOIIS =A

@=LSNOOT

1unod s3usd JO 3nO 3TUT, 3=1001

1
UOTATPUOD 03BES UT IO s
SsonTBA 80UBLSTSaL 9JUBI JO 4NO JOJ 18§33 O3 duTInoaqns .

aNg 5710

$4 SV $INIHHND HWYN

$4 TIIX

ONd :STO NAHI $4 = $INTHHND 41

450710

pus pus S8TTJ 2SOTO 03 3urjinoaqns i
i

i

== === = Ty

i

i

NYNLEY

@T2L G0S09 NAHL .44, ,=$d ¥O 119,,=%9 41
NHNLAY NAHL +.04=89 AT

$ALYA INTHd 468 TIVOOT

pus 04 S3UBM JISN JT 995 0% o8Uud, ¢$AMINI=$4

]

*£ay & J0 § BUT JIYITS)

Butssead £q peTJTudys - pue 03 S}UBM JdSn JT 995 0F dUTINOIQNS

NYNIEY

@T2E 40809

$3a1vQ INIHd 668 ILYO01

sweu STTd,, INIHd @ @%‘TZ JLVOOT
Vi fdWELS . = eanjeaadwal,, INTHd
INTHd : F¥f,, = &%, INIHd

INIHd : $1f,, = BWIL.,, INTHd

(dWAL)INID= dWdl
(U)FUNS =dNAL
(¥4)INIO =34
@01/4 = vd

o198
0948
o148
2978
a8
29¢£8
a1Es
2928
a128
2918
o118
2908
2108
@964
oT6L
2984
0T84
Q9LL
0TLL
8994
0794
0954
aTSL
9vL
2872
29¢L
0TEL
292L
o012L
29TL
eTTL
098L
aTeL
2969
0169
2989
2189
B9L9
0TLY
2999
2799
2949
159
29%9
01%9
09€£9
0TEY
2929
2129
@919
2119
2909
0109
2964
2166
298¢
2186
834

17

The Computer Journal/ issue #36

¢(13d-a‘sweu—y)3s93 wSd-dogs } suti jonays

£ (38)suyy303 ¢

/% 9INUTW dUO ITBM xx/ wﬁa == (¢ § 83nuiW*y))sTTUA . .m
/xSBsu pue sytnsax LeTdstq wx/ ¢ (13d"I)sBwsssuaos fawaf juy paudisun
/% OSTD 03 91TIM xx/ ((a23d7a ‘WU])OSTP U0 9I0%S , fep Ul paudisun
foouBlsysed = wuQy - J9d7Z fyjuow JU] paudrsun

/% SWUOY OI8 SITUR ¥ xx/ } #38p jonays

fINVISNOO » 3UDI(38OTJ) = @oUB}STSaI

/%1ndano x03sTWISYL %x/ ! ()eousysysea Bas9ad = Juod /% 90UBLSTSdI 93BINOTBO O} DIs xx/ @€°9 INYISNOD SULjop#
{puooaes-q = o095 - J3d7a /% £T¢ 3a0d 01 3USS 8q O} SNTBA ¥/ @ ANTIVA SUTJODH
foqnuiurg = upw ¢- J3dTa. /% UBds duo Jod soTdwes UNUTXBY xx/ £ SITINVSXVW SUTISD#

fanoyr g = ay ¢- 13d-a /% DPOMOTT® SUBDS UNUTXBW xx/ 0000T SNYOSXVW SUTJap#
‘fep'p = Ap ¢~ J3d~a /% 3x0d UBdS PIBOQASY ¥x/ 96 140dN¥ SUTJep#
/%9IN3ONIAS ATNSBI O3 yx/ fHiuow'p = yu ¢- 2342 /% 310d paeo 3ndur SOTBUY xx/ €T¢ 1M0dS SUTJep#
/% OW[} pPUB 91BD SAOK xx/ f1eaf'p = I8 ¢- J3da C(U\U\U\) F3utad ANIIMAN SUTJop#
£(3%)our3393
¢ (p3)a3spired U TRUDI> 9PNTOUTH
} (T++ fSNVOSXYH > T ‘@ = T)I0J <UoTp3Isy 2pnTouty
/% ~dojs 0% xx/
/% S}UBM J8sn BU} JT 998 xx/ ! (13d a‘ewsuj)iser udddogs JHERERRH K KRN H NN N NN NN NN 6 36606 2606060606 260606 06 0696 369636363636 36 36 36 363036 36 6 96 36 96 26 36 ¢ ¢ ¢ %
} AT > T)eTium

(19 = a3d-x *I9ONPSUBIY U} JO 8OUBLSTSAI 8yl
{ 01 TBUOTYJIodoxd UOT4BAND BWI3 B JI93J8 PJ XoU
04 23uBUO TTIM T@e X8y 3Iod 3yU3 WOIJ PAaUIN3SI dnTBA 3Y3 °*O
*UOTFBIND BWTY
STU3 SUTWIZSpP O3 pasn ST (3Ud) I9JUN0O ¥y *JJ XaY SUTBWAL

(T-)3TX2
£(y1 9TTJ ® 838aId 0% SIQBUN U\, ,)Jjutad
} (1= == x3)31

/% S3STX9 oWeU aWBS 3UF UITM xx/ 37 BuOT MOU SUTWILLSP 03 paufwexs sT (TPZ X9y 3xod woij)
/%9T1J AIBUTQ B JT 3881 %/ ¢ (@°I0XT 0|IVIHI O[unaE 0 ‘suew—3)uado = XJ uot3oung ()qirodut sy £q pauInisr onyeBA BYI USUL - DUODBS '
{ (ewBu—])s%93 *A18IQTT 0009 BY} WOIJ UOTIONY
£(,,U\ BwWeu BTTJ Iajug I\U\,,)Frutad ()q3xodino 3utsn ,,@,, onTwAa Jutpuss Aq PatBATIOE ST
/% BIBP SUT} pUB‘91BD ‘20UBLSTSSL FUTLO}S JOF oTTJ AI8UTq ® dn 195 xx/ (£T¢ TBWIOBP) T@PZ XY Ssadppe 8yl 38 310d Ul - ISITJ °8
(z# Teuusyd SOTBUB 9Y3 0% pPaITA JOISTWILUL)
f23d-Ix ‘I 3INS8J 30TILS 14ndino Jo3sTwday} Y3 I0J 90BJISIUT dUt JOo uoT3diLosaq /L
fa3d7ax ‘3 BWT} 3ONILS *pIgoqhay woxy L8y Auw
fx3dTpyx ‘P 938p 30NILS Butrsssad £q uoTaTSINbOB BIBP UL QOpM :mm Jasn msw)
‘[gglausu—3 ‘()s3e8x JIBYD ‘(12" € uoTsasa
‘ fo0UBYSTSaI 4BOTJ 29T1dwod) gg-0-00F U} UITA peTTdwod SBM 8DPOD B0INOS BYL ‘G
f3Uoa ‘g = T ‘X3 jug rqusas Juirdwes yoss
} JI99J8 0STp UO 3TTJ AJBUTQ B 0} U333TJIM ST BIBD PaJots 8yl %
()uysu *938p pus auwr} Juipuodsartoo
‘30UBLSTSaAI :S3TNSAI aU3} aJ035 03 pasn ST aInjonais aul °f
«M *S83NUTW § oq 03 3988 ST Teagajur Jurrdwss ayl ‘2
{098 Uy paudtsun *SWYQY UT snTeA
futw jup peudTsun 20UBYSTSa ST SUIN}SI PUB ‘IOISTWISAYUYG £8 UONS

‘I90nNpsuBa) JO 90uBISTsal ayj soTdums wsafoad syl T

Iy qup paudisun
:uotidraosaq usxdoxd

‘Lp Ut paudisun

‘ue jul paudysun QYYD INdNI S0TYNY SiIX Od WHI HO4
f1£ quy paudisun WYH50dd NOILISINDOV VIVA
/% 90UB1STSad JO3STUISUL %x/ [21:5(5) QA - To% b 1103 9pODd 3DINOG
1 31nsal jonaas FHHH ORI OHOO00HHO0OHHEHOO0ROHH0HOO0RHE0HORHONEO0OROONHOHONEONENY

¢f /%%% LB=6T=G A %xx/
{paapuny Ut paudrsun
{puooss juy pasudsun /XA RAHNH N RHHIRH NN NN HNINNNN O URTUT 33306 336906 3696 3 3363 306 3 33 3 36 3 %/
fenuiu 4uf pauftsun

fanoy qup paudisun

The Computer Journal / Issue #36

Sunsr1 weidord D

18

JERRERRRRNXRERRNXRHIOOO00F UOTIOUNT BUTTAWRS JO PUB ya k¥ ¥ MM HHHHHHHRRK N KR/

{ (388I2AB)UING DI m
/% S3TNOITO OTUOILDSTD %%/ H t
/% 92TT1Q83S 0} papeau LBTap HI0US #x/ ([++ ‘€€ > [@ = [)a103
¢1 , uns = a3vJlaAB
(U0 =+ uns
{
f(@)uanyag
£(,, MOT 00} Y IO P33BATIOR 2Q JOUUBD 3104 uy,,)Frutad
} (9 == 2wo)yT
{
£ (@@@T)uanial
/% @@@T JI9A0 I83unoo uaym doig xx/ (@00T < 3uUd)JT
/% 9ATIOB ST xx/ £Ud++
/% 31od oy} BuoTl moU 389 xx/ | (JJX@ == (IHOLS)AII0dUT)STTUM
/% £T6 320d 93BATIOV xx/ ¢ (ANTYA‘IHOJS)a3xodino
‘g = 3ud
} (T++ (STTIWYSXVH => T T = 1)103
fa8eaoAB ‘@ = UNS UL
fquo ‘f ‘1 juy
}

()sousisysar 3as 403
/%¥%¥x%%% UOTIOUNJ JOSUSS JORSTUIBUJ JO INTBA 2OUBISTSAI SFBISAB 33D %xsxix/

JRENRXERRHRRBRXRNENRR UOTIOUNY I938TI SUTTAWES JO DUS sk kMMM HHHNRRRNNR/

{
furnjad
{
/% dois o3 %%/
/% S3UBM J3SN aYl JT 998 xx/ £ (13d w’ jqaweu)3se3 wdd doys
,) £ (1%)our1yad
/% seanutw £ 0] KBTad ¥x/ w (@ =1 (€% 9numw3))sTTus
(T = sjnulw-}
9 9WI4 3O0NJ4S
T 3ut
}

fayd g 4INSaL 3oNILS
f(gz]ljqaweu IBYO

(a3d™w’ jqaureu) 138113

/% 8Injongss 3Insad ayj} o3 sjutod juaum3a puooas oy

*uoTouUNy STUZ UTYITA palTeo ()isejwdddois £q pesn aq 03 3T1J
RIeUTq SY} JO SWBU 8Y3 ST UOTLOUNJ STY3 03 passed jusundae 3SITI UL xx/

JERRRRRRRRRHOER RN RN UOTIOUNJ ISBBTIY BUTTAUES sk 3% MMM MR NI NH %/

ANITMAN
f(wuoy <- Jadu

¢, wyoy JT°9% SBM 90UBISISSY JOISTUIAYL a8saoay BUL 3\)Jeutad
ANTTHEN

f(098 «- apdw ‘utw ¢- J3dw ‘au - Jadw
. py : pg : py sem auwyl SupTdusg 3sBT 3\,)Jsutad
ANITAEN
, sejnulw ¢ ST TeAId3UI But rdwsg p/p/p/__VMP:Hpa
ANITMAN

((af ¢- 1adu ‘Ap ¢- adU ‘UW <- xadu
‘., p% - pg - P¥ SI 938Q s,£Bpol 3\,)Jrurad
ANITMEN
£(,,89UT] TBI8ASS Loy Auy ssaxd ‘uoIINOIXY uea8oxd doig oep/p/__vacﬂpa
ANITMAN
¢(,,393ndwoy JJo wIng 30N oq - ssa18014 UT uOT3TsInboy BiEB(Q 3\)drutad
ANTTMIN
(T++ € > 1T ‘@ = 1)a03
‘T Ut

/% Uosxos au} Jo 1a8d B JIBITD %%/

faqduy 4InsSad 3onais

(a3d u)ad8ss8UW IOS
/A RN ERAAF RN HNAY UOTIOUNJ JUSWOFBUBW 2FBSSOU USBIOG ¥k kMUK HUKHNAN/

/%FRRRHHHHHRRHHRRNHEN %K% % UOTIOUNY O3S JO DUS ¥ksk%¥¥%HIHHRXRXRIHHNNK/

{
fuIngad
{
/% 800 ©% 3TXT %%/ f(@)aTxd
INITMEN
/% U92I08 IBAT) %%/ (T++ 2T > T ‘0 = 1)a03
/% OSTp UO BABD U3 9I0IS ¥x/ mﬁppals.mnwamcvomHU|dolwpopm
/x£ax Lue ssexd wexdoxd su3 dois Ol xx/ } (@8x@ == (I1¥0d)) a3Lodut) JT
T T
}

fxqduy 3Insad 3onal}s
‘[{gzlyqawsu JBUD

AppalsamnwamcvPmmp|ewn|m0pm

/%' 10NI3S 4Tnsal ayj o3 sjurod uoriouny STUI 0% possed jusundas puodds UL
-agaTeOd £oX ® SUT4BOTPUT ‘@8 XoU JO 9pOO UBDS I0J 389} UOTIDUN SUL
*5T1J AJBUTQ JO BWBU 3U} ST UOTLOURY STUI O% possed jusundas 35ITJ SUL ¥x/

/E¥%EX¥¥RX¥E¥% UOTIOUNJ UOTIN09XS Wes30ad JO UOTIBUTUISY BUL k¥ kMAXXAXXH/

7 ¥ IR RRRR IR RHION Kk UTBU JO DUF FRRRRIARNH IR RNI AR R/

{
/% dooT (T)aTTus ® JO DUT xx/ {
/% DOMOTT® susds umuixsw Ioj dool B JO PUT xx/ {
/% ute8e SuirTdwes xx/
/% JJBIS 0% USUM 39C8 xx/ mAnpalnameaslavamwﬂpw

{

19

The Computer Journal / Issue #36

JRHEHEOHEERERERRRNER Store data on the disc function X¥E¥KXEXEXXIARNKKXKXKX /

/%% The first argument of this function is the name of the binary file.
The second argument is a pointer to the structure containing experimental
results from the single evaluation of the thermistor's resistance.
This pointer points to output buffer for the write function. ¥/

store_on_disc(namebf, k_ptr)

char namebf[20];
struct result *K_ptr;

fx = open(namebf,O_RDWR|O_APPEND,@); /%* Open binary file for append*/

w_er = write(fx, Xk _ptr, number_bytes); /¥¥ Put results to binary file¥/

{
int fx, c_er, w_er, number_bytes;
number_bytes = sizeof(unsigned)*6 + sizeof(float);
if(w_er == -1) {
printf(''\n Error writing to file '');
exit(-1);
c_er = close(fx); /¥% Close binary file %/
if(c_er == -1) {
printf(''\ Error closing to file '');
exit(-1);
}

JERKRRKXRRKXRKKRNKAN end Of storage FUnCLion HHMXXKIXIKKAKKARKKXKXKKKKKRKRK /

16.Ciarcia, S. 1979. ‘““‘Joystick Inter-
faces,”’ Byte 4:10-18.

17.Daniel, C. and Wood F. S., 1971.
Fitting Equations to Data, Wiley-
Interscience, New York, USA, pp. 342.

18.DeJong, M. L., 1985. “Game-
paddle Control Linearity Test,”” Byfe 10:
161-162.

19.Eggebrecht, L. C., 1983. Interfacing
to the IBM Personal Computer, H. W.

‘Sams Co., Inc., Indianapolis, Indiana,

USA, pp. 246.

20.Fullerton, P. 1985. IBM PC Expan-
sion and Software Guide, Que Cor-
poration, Indianapolis, Indiana, USA,
pp. 900.

21.Hanan, J. J., 1984. Plant Environ-
mental Measurements, Bookmakers
Guild, Longmont, Colorado, USA pp.
326.

22.Hatch, A. H., 1984. “‘Orchard
Management With Help of Computers,”’
Proceedings of the 41st Annual Conven-
tion of Western Colorado Horticultural
Society, pp. 34-39.

“The Grudge is Coming!”’

Watch For It

20

23.Horowitz, P. and W. Hill, 1980. The
Art of Electronics, Cambridge University
Press, Cambridge, U.K.

24 Kelly L. G., 1967. Handbook of
Numerical Methods and Applications,
Addison-Wesley, Publishing, Reading,
Massachusetts, USA, pp. 354.

25 Kettman, S. C., T. J. Yorkey, and
K. Kaumarek, 1986. Interfacing User In-
put Devices in Interfacing Sensors to IBM
PC, ed. by W. J. Tompkins and J. G.
Webster, pp. 11.1-11.16 (in preparation).

26.Lambert, J. R., 1985. Editorial,
Computers and Electronics in
Agriculture, 1:1-5.

27.Mims F. M., 1985. Forrest Mims’s
Computer Projects McGraw-Hill, Inc.,
Berkeley, CA, USA, pp. 249.

28.Riedl, H., Croft, B. A. and Howitt,
A. J., 1976. ‘“‘Forecasting Codling Moth
Phenology Based on Pheromone Trap
Catches and Physiological Time Models,”’
(Entomol, 108:4).

29 Penfold, R. A., 1986. ““Tem-
perature-analogue Interface,”” Practical
Electronics, 22(4):28-31 (U.K.).

30.Rogoyski, M. K., 1987. ‘“Computer
- Aided Orchard Management,”
Proceedings of the 44th Annual Conven-
tion of Western Colorado Horticultural
Society, pp.20-24.

31.Rogoyski, M. K., 1985. ‘‘Hor-
ticultural and Physical Aspects of Fruit
Sunburn,” Proceedings of the 42nd An-
nual Convention of Western Colorado
Horticultural Society, pp. 39-42.

32.Siemer E. G., 1977. “*Colorado
Climate,”’ Colorado Experiment Station
publication.

M0V NG,

Make certain that TCJ follows you
to your new address. Send both old and
new address along with your
expiration number that appears on
your mailing label to:

THE COMPUTER JOURNAL
190 Sullivan Crossroad
Columbia Falls, MT 59912

If you move and don’t notify us, TCJ
is not responsible for copies you miss.
Please allow six weeks notice. Thanks.

The Computer Journal / Issue #36

The ZCPR3 Corner

by Jay Sage

1 wonder if the approach of a TCJ deadline will ever find me
with no pressing commitments to interfere with my writing this
column. That is always my dream, but the prospects of its hap-
pening get dimmer by the month. My schedule just keeps getting
worse and worse. This time I was not even able to start the
column until after the deadline had passed. As a result, it will
surely be shorter than usual, and it will probably not have
benefited from my usual multiple rewrites and the careful scrutiny
of Howard Goldstein, on whom I have relied in the past not only
to check my code but to check my writing as well. He is
remarkably good at both jobs!

As has become the pattern for my columns, before I turn to the
main technical subject, which will be a discussion of some of the
capabilities of the ZFILER shell, I would like, to talk about a few
nontechnical issues.

Z Systems Associates

It may have taken the retirement of Frank Gaude’ and the
demise of Echelon (at least as a force in the Z community) to
make me realize just how much work Frank must have been
doing, and I can now understand why he was so burned out in the
end. The reason why I now appreciate his efforts in a way that
was impossible before is that I have been in the process these last
few months of setting up a new company—Z Systems Associates
or ZSA—to serve as a central marketing organization for Z-
System and related products.

Frank’s retirement probably could not have come at a worse
time for us. With NZ-COM and Z3PLUS we finally had Z-
Systems that did not require a programmer’s mentality and
programmer’s abilities to be able to set up and use. We were also
no longer limited to CP/M-2.2 computers. Our potential market
had now become the literally millions of people with CP/M com-
puters of any kind, including especially the Commodore 128s and
Amstrads running CP/M-Plus and the CP/M-2.2 ADAMs. We
have never had any contact with those communities in the past,
and it is going to take a lot of work to develop those contacts
now.

The community of CP/M-2.2 hobbyists will, of course, be our
marketing front line. To that end, we have established two plans,
one involving the Z-Node remote access computer systems and
the other, the hundreds of computer clubs around the world.

The Z-Node Plan

Echelon had a nice plan that recognized the important role Z-
Node sysops play in disseminating information about the Z-
System and in providing support to those who use it. It allowed Z-
Nodes to act as dealers for Echelon’s products and thus to gain
some compensation for their efforts. Z Systems Associates has
started a similar plan. I will not go into the details here, but if you
are a Z-Node sysop and have not heard from me, please drop me
a line at the address in the Sage Microsystems East ad.

Unfortunately, we do not have a list of the names and addresses
of the Z-Node sysops. Somewhere along the way that information

The Computer Journal / Issue #36

Jay Sage has been an avid ZCPR proponent since version 1,
and when Echelon announced its plan to set up a network of
remote access computer systems to support ZCPR3, Jay volun-
teered immediately. He has been running Z-Node #3 for nearly
five years and can be reached there electronically at 617-965-7259
(on PC-Pursuit) or in person at 617-965-3552 or 1435 Centre St.,
Newton, MA 02159.

Jay is best known for his ARUNZ alias processor, the ZFILER
file maintenance shell, and the latest versions 3.3 and 3.4 of ZC-
PR. He has also played an important role in the architectural
design of a number of programs, including NZ-COM and
Z3PLUS, the new automatic, universal, dynamic versions of Z-
System.

In real life, Jay is a physicist at MIT, where he tries to invent
devices and circuits that use analog computation to solve
problems in signal, image, and information processing.

got lost and was never passed on from Echelon. So, a couple of
weeks ago I sat down at my computer on a Saturday afternoon
and started to call all the Z-Nodes in the United States and
Canada. I did not count how many numbers were listed in
Echelon’s last ZNODES.LST file, but there must have been well
over 50. At first I tried to figure out which ones were accessible by
PC-Pursuit, but the task was monumental enough without having
to put up with the perpetually busy PCP circuits. My phone bill
came a few days ago, and it was amazing to see the number of
pages of calls. Since each call was rather short, however, the bill
was surprisingly low.

Although I started making the calls in the afternoon, I kept at it
well into the night. At a point when I could hardly keep my eyes
open, I connected to a system out West and, as a new user, went
through the procedure of identifying the city and state from
which I was calling. The system then greeted me very nicely and
reported that the time was 1:05 a.m. Amazing, I thought! That
was just what my watch showed here in Boston. This was the first
system I had ever called that was so sophisticated that it actually
adjusted the time display to the caller’s time zone. Well, it wasn’t
until the next morning that I realized that the battery in my wrist
watch was failing and that the watch had jumped back three
hours. It had really been 4 a.m.! No wonder I felt so tired.

The whole experience of calling the Z-Nodes was rather
disheartening. 1 discovered that many Z-Nodes had long ago gone
off the air. The numbers of the more recently departed were an-
swered with messages from the phone company reporting that
they were no longer in service. Those long gone were answered by
actual people, who usually had had that number for over a year.
Considering that when my watch said 11 p.m., it may actually
have been as late as 2 a.m., it is amazing how civil all of these
people were to me. Yes, they admitted, they did get an awful lot
of calls with no one on the other end. I explained why this was
happening, that they were being called by a computer, and I

21

promised to try to get their numbers removed from the lists.

Several Z-Nodes had become private systems, and I was prom-
pted for a password without any signon message at all or just a
brief, ‘‘private system, enter password.”” A few systems, as one
would expect, had gone over to MS-DOS. All in all, no more than
half the nodes on the list appear still to be active.

In view of this situation, I would like to encourage the
establishment of new nodes. Some of the nodes on Echelon’s list,
I learned, actually never went into operation because the sysop

- was unable to get Z-System running on his computer. With NZ-
COM and Z3PLUS this will be much less of a problem. If you
think you might be interested in setting up a Z-Node or converting
your present system to one, please give me a call or drop me a
note in the mail.

The Z-Plan for Computer Clubs

. Computer clubs are probably the single most effective and
valuable source of support to computer users. To promote mem-
bership in clubs and at the same time to encourage more people to
take advantage of the new Z-System software, we have
established a plan whereby clubs can purchase the programs at a
discount. It is their option how that discount is distributed. It can
be passed on entirely to the club members, or the club can keep at
least part of it to support its activities.

The Z-Plan project was initiated by Tony Parker, who serves as
a marketing representative for ZSA. He uploaded a file to many
bulletin boards describing the plan, and you may be able to find it
on a system near you. ZSA had not yet been formed at that time,
and the file instructs clubs to send the necessary registration forms
to Alpha Systems. Alpha Systems has agreed that ZSA should
take over responsibility for the administration of this plan.

A revised version of the Z-Plan file should be on systems by the
time you read this column, but if you already sent information to
Alpha instead, it would be a good idea to send another copy to
ZSA (again, see the Sage Microsystems ad for the address). More
importantly, if you belong to a club that has not registered, have
them write to me requesting a description of the plan and
registration forms.

My New Amstrad Computer

One of the computers on which Z-System now runs and one
which exists in very large numbers, especially in Europe, is the
Amstrad. This CP/M-Plus machine—once sold in the US by
Sears, Roebuck—uses a very unusual 3” diskette (unique might be
a better word for it). We were afraid that we would not be able to
produce Z3PLUS diskettes for this machine, so I bought one
second hand (just what I needed, another computer!). Since it
appeared that we really had to have the machine, I probably paid
a good bit more than it would otherwise be worth, but I must say
that it has been a very pleasant surprise. (On the other hand,
paying close to $400 for a hundred diskettes was a most un-
Dpleasant surprise.)

I expected the Amstrad to be little more than a toy. Instead, I
have found it to be a very capable machine and an excellent plat-
form on which to run Z-System. The main reason for this is its
very nice RAM disk. My PCW8512 (it started life as a PCW8256,
but it was upgraded) has a total of 512K of RAM, about 350K of
which is available as a RAM drive. With ARUNZ, EASE,
ZFILER, all their support files, and a few other critical files on
the RAM drive, the Z-System really zips along.

The native (non-CP/M) mode has also proved to be quite
useful. The Amstrad was largely promoted as a stand-alone wor-
dprocessor, and its Locascript wordprocessing software is ac-
tually rather nice. Like Macintosh software, it is very easy to use,
and my 12-year-old son has really taken to it in a way he never did
to my super-sophisticated PMATE editor. The keyboard is set up
specially for the software, and the computer includes an integral
printer.

That printer is, in fact, rather interesting in its own right. To

22

keep the cost down, Amstrad buys just a raw printer mechanism,
and they supply the software drivers to emulate an Epson FX80 in
the host machine. The printer is pitifully slow, but I actually use it
myself now for quick letters because the Amstrad is so much
faster to set up than my fancy systems. The printer even loads
single sheets of paper automatically, and that’s more than my (at
one time) $3000 Diablo HyType-1I printer can do. If you have an
Amstrad computer or know of someone who does, I would be
happy to help them get started on Z-System.

Special Acknowledgments

Before we go on to ZFILER. I would like to acknowledge
publicly some very special recent contributions to the develop-
ment of Z-System.

David Johnson of Sunnyvale, CA, took my ZCPR34 source
code and must have gone over it not only with a fine-toothed
comb but with an electron microscope. In programming, I always
give top priority to writing code that has good features and runs
reliably. Code compactness is secondary. Thus, I am never sur-
prised when 1 learn that one of my.routines can be improved
slightly. Nevertheless, I would never have believed that the Z34
code could reduced by close to a hundred bytes, but David John-
son did just that! Even Joe Wright, who is deservedly acclaimed
for his coding skill, had only taken out 10 or 20 bytes, and he was
especially impressed by David’s achievements. With all the new
space available, I can now start to think about more new features!

The second person whose contribution I want to acknowledge
is Bill Tishey of Severn, MD. Bill has proven something I have
been trying to get across for a long time: that you do not have to
be a programmer to contribute in a significant way to Z-System.
Bill has systematically compiled the documentation for the com-
plete collection of Z-System programs in a set of help files that
runs (uncompressed) to more than a megabyte! He has grouped
the help files into libraries with names of the form Z3HELP-
n.LBR, where ‘n’ is the first letter of the command name.
Z3HELP-A.LBR, for example, contains 21 files covering
ARUNZ, AFIND, ALIAS, and many other commands. To my
mind, this contribution is at least as valuable as those of program
authors because it makes the programs accessible to the user.

The complete set of files is posted on my Z-Node #3 and will
gradually make its way around the world (slowly probably,
because of their size). In view of the exceptional value of Bill
Tishey’s help system, Sage Microsystems East will make it
available on diskette for only $10 (SME’s usual copying charge is
$15 to $20 per diskette). Here are the rules. You have to send (1)
preformatted diskettes clearly marked with the exact format and
sufficient to hold 800K of files; (2) a disk mailer for returning the
diskettes (unless the one you sent the disks in is reusable); (3)
return postage; and (4) a return address sticker. We can accept 8”
SSSD IBM standard format (including ‘flippy’ diskettes) and
most 5” soft-sectored formats (anything on the menus of Uniform
or Media Master on either the SB180 or an IBM AT). Bill, him-
self, has an Apple and (I just spoke with him) is willing to make
the same offer for diskettes in that format. His address is 8335
Dubbs Drive, Severn, MD 21144,

ZFILER, The Point-and-Shoot Shell

Now let’s turn to the technical subject for this issue, the
ZFILER shell. Having written about shells so much in the past
few columns, I am tempted to jump right into the thick of the
subject. However, judging from the number of new subscriptions
that SME alone takes each month, TCJ must have lots of new
readers with each issue. Therefore, I will begin at the beginning.
Since time and energy are in short supply, however, I will not at-
tempt to provide the same comprehensive documentation that I
did for ARUNZ. Instead, I will concentrate on the basics, on the
one hand, and on some of the special features that many users
may overlook, on the other.

The Computer Journal/ Issue #36

Z-System Shells

A Z-System shell is a program that takes over the user-input
function of the command processor. The way this works is that
the Z-System environment includes a special area in memory
called the shell stack where shell command lines can be kept.
Whenever the ZCPR3 command processor is finished processing
all the commands that have been passed to it in the command line
buffer (another special area in memory), it checks the shell stack.
Only if no command line is present there does the command
processor itself prompt the user for the next command line. If
there is an entry in the shell stack, then that corhmand line is run
instead, and the user no longer sees the command processor direc-
tly.

Some shells, like the EASE history shell, while making a big
change in how the system is actually running, make relatively little
change in how it appears to run. A command prompt is still
presented, and one enters commands more or less as usual. The
difference is that one has a more capable editor at one’s disposal,

Once the pointer
has been positioned on a file, pressing a key (or two or three)
causes any of a great number of functions to be invoked to act on
that file. We will describe how this works in more detail shortly.

Invoking ZFILER

Since ZFILER performs full-screen operations, a proper Z-
System terminal descriptor (TCAP) must have been loaded. If
you have not done that, or if you have selected a terminal that
does not support all the functions ZFILER needs, then ZFILER
will give you an error message. The TCAP, unfortunately, does
not include information about whether dim or reverse video is
used by the terminal, and since these two modes for highlighting
regions on the screen are so different, ZFILER is made available
in separate versions for each.

There is also an option to have either four or five columns of
file names in the display. Personally, I prefer the four-column
version, which gives an uncluttered screen with plenty of restful

and the commands are saved to a history
file from which they can be recalled,
edited, and run again. As we shall see, the
ZFILER shell presents the user with a
dramatically different user interface.

What is ZFILER For?

Historically, ZFILER is a descendant in
the line of file maintenance utilities like
SWEEP and NSWP (hence the “‘filer”’
part of the name). File maintenance is
generally concerned with copying files,
looking at their contents, renaming them,
erasing them, and so on. ZFILER
provides all these functions and more.

ZFILER’s immediate parent was
VFILER, where the ““V’’ stood for video.
The TCAP facility in Z-System makes it
easy for programs to take advantage of
the full-screen capabilities of whatever
video display terminal happens to be in
use at any time. In contrast to ap-
plications under CP/M, Z-System
programs need not be configured to mat-
ch the terminal. It was, therefore, natural
to build a file maintenance program in
which the files are displayed graphically
on the screen. When I decided to explore
some new directions with VFILER, to
avoid confusion I gave the program the
new name ZFILER, for Z-System Filer.

The file maintenance tasks described
above would not require a shell. Making
the program a shell, however, allows it to
go beyond the functions included in the
program’s own code. Because a shell can
pass command lines to the operating
system, ZFILER can perform any
operation that the computer is capable of.
Like a menu system, however, it helps the
user by generating the commands
automatically at the touch of a key.

When ZFILER is running, the screen is
filled with an alphabetized display of the
files in a specified directory, and there is a
pointer that the user can manipulate using
cursor control keys. If we had a mouse to
move the pointer, it would be a little like
having a Macintosh. Actually, it would be
a lot more. It would be like having a
mouse with fifty buttons!

SAGE MICROSYSTEMS EAST

Selling & Supporting the Best in 8-Bit Software

e New Automatic, Dynamic, Universal Z-Systems

— Z3PLUS: Z-System for CP/M-Plus computers ($69.95)
~ NZ-COM: Z-System for CP/M-2.2 computers ($69.95)
— ZCPR34 Source Code: if you need to customize ($49.95)
e Plu*Perfect Systems
— Backgrounder II: switch between two or three running tasks un-
der CP/M-2.2 (375)

— DateStamper: stamp CP/M-2.2 files with creation, modification,
and last access time/date ($50)

— DosDisk: Use DOS-format disks in CP/M machines, supports
subdirectories, maintains date stamps ($30 — $45 depending on
version)

e SLR Systems (The Ultimate Assembly Language Tools)

— Assembler Mnemonics: Zilog (Z80ASM, Z80ASM+), Hitachi
(SLR180, SLR180+), Intel (SLRMAC, SLRMAC+)
— Linkers: SLRNK, SLRNK+

— TPA-Based: $49.95; Virtual-Memory: $195.00
e NightOwl (Advanced Telecommunications)

~ MEX-Plus: automated modem operation with scripts (360)

— MEX-Pack: remote operation, terminal emulation ($100)

Same-day shipping of most products with modem download and support
available. Order by phone, mail, or modem. Shipping and handling $4 per
order (USA). Check, VISA, or MasterCard. Specify exact disk format.

1435 Centre St., Newton Centre, MA 02159-2469
Voice: 617-965-3552 (9:00am — 11:30pm)
Modem: 617-965-7259 (password = DDT)(MABOS on PC-Pursuit)

Sage Microsystems East

The Computer Journal / Issue #36

23

white space and a very distinct, easy-to-spot pointer. Others think
it is more important to be able to see the maximum number of
files on each screen and prefer the five-column display.

Then there is the issue of support for time and date stamping of
files. ZFILER contains the code for preserving the time stamps
when files are copied. So as not to inflict the overhead of this code
on those who have not implemented DateStamper (though they
should do that!), ZFILER is also provided in versions with and

_ without the DateStamper code.

If we supported all combinations of the above choices, there
would be eight different versions of ZFILER. Typically, the
distribution library contains four or five of the combinations. For
example, a five-column file display is not particularly compatible
with reverse video highlighting, because the reverse video of
tagged files runs into the reverse-video pointer.

When you get ZFILER, you have to choose which version you
-prefer, extract it from the distribution library, and give it a
working name (some of the early Z-System shells had to have a
specific name, but you can give ZFILER any name you like). I
prefer the name ZF, since it is very quick and easy to type, and I
will use that name in all the examples that follow.

The general syntax for invoking ZFILER is

ZF filespec

where ‘‘filespec’” is a standard Z-System ambiguous file
specification (that is, it may contain the wildcard characters “*7”’
and ‘“*’*). The filespec selects the directory area and the files from
that area to be included in the screen display.

Various parts of the filespec can be omitted. If no filespec is
given at all, then ‘“*.*”’ for the currently logged directory is
assumed. Similarly, if only a directory is specified (¢.g., B: or 3:
or B3: or WORK:), then all the files (‘“*.*”’) in that directory are
displayed. If a file name/type is included, then it will serve as a
mask on the files to be displayed. Thus ‘‘ZF WORK:*.DOC”’ will
show only files of type DOC in the directory WORK:.

The directory and file mask can both be changed from inside
ZFILER as well using the ‘L’ or LOG command. I bring this up
now because there is a confusing difference in the way the L’
command works. VFILER originally allowed one to change only

_the directory and not the file mask from inside the program. To
save the user the trouble of typing the colon after a directory, its
inclusion was made optional. Since users became so accustomed
to this shorthand, it was carried over into ZFILER. Because of
this, if you want to change only the file mask, you must remember
to precede it with a colon. Otherwise your mask will be taken as
the name of a directory (which generally results in an error
message).

One brief aside for programmer types. ZFILER can be loaded
from any directory. One of the special features of Z-System since
version 3.3 of the command processor is that it allows a program
to find out both its own name and the directory from which it was
actually loaded, perhaps as the result of a path search. ZFILER
builds the shell stack entry to invoke ZFILER under its current
name from the directory in which it is actually located. This
sometimes makes it run faster, and it allows ZFILER to be in-
voked from a directory that is not on the search path.

The ZFILER Display

The main ZFILER display contains three parts. At the top of
the screen there is a message line. In the version of ZFILER that is
current at the time I am writing this column (version 1.0L), this
line contains, from left to right, the following information: (1) the
directory that has been selected, in both DU and DIR (named
directory) format; (2) the indicator *[PUBLIC]"’ if that directory
is a ZRDOS public directory (if you don’t know what this is, just
ignore it); (3) the current time of day if DateStamper or one of the
new DOSs (ZSDOS or ZDDOS) is running; (4) the program’s of-
ficial name and version; (5) the text string ‘‘Current File:”’; and
(6) the name of the file currently being pointed to (this changes as

24

the pointer is moved).
At the bottom of the screen is a command prompt of the form

Command? (/=Help, X=Quit):

The cursor (don’t confuse this with the file pointer) is positioned
after this command prompt to indicate that ZFILER is waiting
for you to press a key.

The center 20 lines of the screen show the selected files. The
character string ‘‘-->*’ (only “->’’ in the five-column display)
floats between the rows of file names and designates the so-called
“pointed-to’’ file. Many of the ZFILER commands
automatically operate on this file.

What we have described so far is the main ZFILER screen, but
it is not the only one. As the command prompt suggests, pressing
the slash character (or ‘“?’’ if you prefer) brings up a help screen
that summarizes the built-in commands of ZFILER. This help
screen replaces the file display but leaves the status line at the top
and the command line at the bottom, except that ‘‘/=Help”’
changes to ¢/ =Files”. As you might, therefore, guess, pressing
slash again will take you back to the file display screen.

I do not know if anyone makes use of this feature, but all
ZFILER command operations can be invoked from the help
screen. Although you cannot see the file pointer, you can
manipulate it in the usual way, and you can tell what file you are
pointing to from the name displayed at the upper right on the
status line.

ZFILER Commands

I am not going to attempt to describe all of ZFILER’s com-
mands, but I will try to list most of them. Basically, the comman-
ds fall into several classes.

One classification reflects where the code for the command
resides. There are two categories:

A. Built-In Commands
B. Macro Commands

Class A includes the functions for which the code is part of
ZFILER. Macro commands are like aliases in that they generate
command lines that are passed to the command processor for
execution. These commands make ZFILER a shell. In this
column 1 will discuss only the built-in commands, and I will take
up the more complex subject of macro commands next time.

A second classification depends on what the command acts on.
Three categories describe the object of the commands:

1. the pointed-to file
2. a group of tagged files
3. neither of the above

We will begin the discussion with commands of class A3, resident
commands that do not perform any action on the files.

Pointer Commands

Class A3 includes the commands that move the file pointer.
These are shown on the help screen, and I will not list them here.
One can move the pointer to the next file on the screen or to the
previous one (with wraparound); up, down, left, or right (with
wraparound); to the first or last file on the current screen; or to
the very first or very last file of those selected by the file mask.
One can advance to the next screen of files or to the previous
screen. Obviously, some of these functions will be redundant in
some cases, such as when all the selected files can fit on one screen
(think what happens when there is exactly one file selected).

ZFILER learns from the TCAP the control characters sent by
any special cursor keys on the keyboard (provided they send a
single control character and provided the TCAP has been set up
correctly), and it makes them generate the up, down, left, and
right functions. If the cursor keys generate control codes nor-
mally used for another function, then that function will be lost
(the cursor keys take precedence). That can cause problems. One

The Computer Journal / Issue #36

solution is to eliminate the definition of the cursor keys in the
TCAP and simply use the default WordStar diamond keys for
those functions. Alternatively, one can patch ZFILER to use dif-
ferent keys for its own functions, but this is not straightforward
to do, and I will not describe it here.

The “J”’ (Jump) command allows you to jump to a file that
you name. This is very handy when there are many files in the
display or when the file you want is not on the current screen.
Press the ¢‘J*’ key, and you will be prompted for a file name. You
 do not have to enter the exact name. ZFILER automatically con-
verts what you type into a wildcard filespec, and it finds the first
file that matches. For example, if you enter only ““Z’’ followed by
a return, this is equivalent to “Z*.*”’, and ZFILER will move the
pointer to the first file that starts with a ““Z”’. Similarly, if you en-
ter *“.D”’, ZFILER will move to the first file with a file type that
starts with ‘D”’,

The ““J” function is very handy; however, there is more. Many
people are not aware that you may press control-J to repeat the
same search and find the next matching file. The search will wrap
around from the end of the files back to the beginning. This fun-
ction is not listed on the help screen because I could not find room
for it.

Other Non-File Commands

Some other commands that do not act on files are: X, L, A, S,
E, H, Z, and O. ‘X", as the command prompt reminds you, is
used to exit from ZFILER. Besides terminating the current
execution of the program, it also removes ZFILER’s entry in the
shell stack (if it did not, you would just reenter it right away).

We already spoke about the ““L’’ (Log) command earlier. The
““A”’ (Alphabetize or Arrange or Alpha sort) toggles the way in
which the files are sorted, namely alphabetically by the file name
or by the file type.

The *“S” (Status) command prompts you for a disk drive letter
and then tells you the amount of space remaining on that disk.

The “E’’ command (refresh scrEEn—I know that’s stretching
things, but ‘‘R”’ was already used) redraws the screen. You might
think that this would never be needed, but there are two circum-
stances in which it comes in very handy. One is when ZFILER is
being used on a remote system. It is true that very few RASs make

" ZFILER available, but I do on Z-Node #3. If you get some line
noise, the screen can become garbled. Then the ““E’’ key can be
used to draw a fresh screen.

The other circumstance in which the ““E’’ command saves the
day is with Backgrounder-ii if you do not have a screen driver (I
don’t for my Concept 108 terminal—never got around to writing
one, partly because all the programs I use frequently have a
redraw key like this one). I simply define a BGii key macro
specifying “‘E”’ as the ‘‘redraw’’ key, save the key definitions to
ZFILER.BG, and attach that definition to ZF.COM. Then
whenever I swap tasks back into ZFILER, BGii simulates my
pressing the ‘°E”’ key, and the screen is redrawn. This often gives
a faster screen refresh than one gets with a full-fledged screen
driver.

The ‘“H’’ (Help) command generates a macro command to in-
voke the Z-System HELP facility. To tell the truth, I have not
used this and don’t even remember precisely what it does. I would
have to look at the source code.

The *‘Z” (Z-system) command prompts you for a command,
and whatever you enter is passed on to the Z-System multiple
command line buffer for execution. When that command line is
complete, ZFILER is reinvoked automatically.

When you use the ““Z’’ command, you will normally be logged
into the directory that is currently displayed. However, this will
not always be possible. ZFILER allows you to select directories
with user numbers from 0 to 31. Unless you are using a version of
ZCPR33 or ZCPR34 with the HIGHUSER option enabled, you
cannot log into user areas above 15. In that case ZFILER will put
you in the directory your were in when you invoked ZFILER. In

The Computer Journal / Issue #36

any case, the command prompt will indicate the directory from
which your command line will be executed.

Since commands you run using the ‘“Z’’ function may put some
information on the screen that you would not want ZFILER to
obliterate immediately, there is a flag set that signals ZFILER to
prompt you and to wait for you to press a key before putting up
its display. Here is a tip for advanced users. If you enter your
command line with one or more leading spaces, this shell-wait flag
will not be set, and ZFILER will return without your having to
press a key. The leading spaces are stripped from the command
line before it is passed to the command processor. This means
that you cannot use a leading space to force invocation of the ex-
tended command processor (ECP); you have to use the slash
prefix instead. A space and a slash will force invocation of the
ECP and will disable the shell-wait flag.

The final command in class A3 is the ‘O’ (Options) command.
It is a complex topic, and I will leave it for next time. If you can’t
wait until then, experiment with it. It should not be able to do any
harm to your system.

Single-File Built-In Functions

Now let’s discuss the commands in class Al, the built-in com-
mands that act on the pointed-to file. These are invoked by
pressing one of the following keys, whose meaning is indicated in
parentheses: C (Copy), M (Move), D (Delete), R (Rename), V
(View), P (Print), F (File size), T (Tag), and U (Untag). Some of
these are self-explanatory, and I will not discuss them.

The “‘C”’ command copies a file to another directory under the
same name; it does not allow one to give a new name for the
destination file (however, you can do that with a macro com-
mand). The ‘“M”’ command does not really move a file; it copies
the file and then, if the copy was successful, deletes the original
file. It is really a combination of ‘“C’’ and “‘D’’. Moving a file this
way is inefficient if the destination directory is on the same drive
as the source file. A macro command that invokes an ARUNZ
alias can get around this limitation (and almost all other ZFILER
limitations).

The tag and untag commands are used to select a group of files
on which operations can be performed. Tagged files are indicated
in two ways. A special character (‘‘#’’) is placed after the file
name in the display, and, if the terminal supports video
highlighting, the file is highlighted.

Two related commands are W (Wild tag) and Y (Yank back?).
“W’’ allows you to tag or untag groups of files designated by an
ambiguous file spec. After tagged files are operated on by the
built-in group commands described below, the tag marker “#’ is
changed to ‘*’*’ (a soft tag). The ‘Y’ command changes the soft
tags back into hard tags so that further group operations can be
performed on those files.

Built-In Group Commands
Group commands are initiated by pressing the ““G”’ (Group)
key. The command prompt at the bottom of the screen changes to

Command? (/=Help, X=Quit) Group: (A,C,D,F,M,P,R,T,U,V)

For now we will consider only the built-in group functions (class
A2) and will take up group macro commands (class B2) next time.

Except for the four functions described below, the letters in-
voke the same action as the individual command corresponding to
that letter, but the function is performed on all the tagged files.
We will not discuss those further. Note in particular that the keys
“A’’ and ““R”’, however, have a group function that is completely
different from the individual function.

The ‘U’ and ‘“T” group functions do not act on the tagged
files; they change the tagging. The former untags all files; the lat-
ter tags them all.

The “R”’ group function is another one that does not, strictly
speaking, act on the tagged files. It reverses the tags, tagging the
files that had been untagged and untagging the ones that had been

25

tagged. This can be very handy in several circumstances. For
example, you might want to copy all the files except two. It is
casier to tag those two and then to reverse the tags. As another
example, you might want to copy some of the displayed files to
one diskette and the others to a second diskette. I do this frequen-
tly. I begin by tagging the ones to go to the first diskette. Then I
group copy (‘‘GC”’) them to the destination diskette. Next, I yank
back the tags using the ‘“Y’’ command and then reverse the tags
with “GR”’. Now I can group copy the rest to the second diskette.
The ““A” (Archive) group command is very handy for
automating backups. When it is entered, the tags are removed
from any tagged file whose archive flag is set. As a result, only
files that have been modified since the flag was last set will remain
tagged. In addition, the ‘“A”’ group command automatically
initiates a group copy operation but with one special feature. Af-
“ter the file has been copied successfully, the archive flag on the
. source file is set to indicate that the file has been backed up.
Under later versions of VFILER, the group ‘““A’’ command

automatically tagged all unarchived files; under ZFILER it untags
the archived ones. This difference is very important. With
VFILER, you were forced to back up all the files selected by the
VFILER file mask. Under ZFILER you can select the files that
will be candidates for backing up. If you want the achieve the
same function as under VFILER, just tag all the files first with
““‘GT”’ and then archive them with *“GA”’. On the other hand, if
you want to exclude BAK files from the backup, you can ““GT”’
all files, untag the “*.BAK" files using the ‘“W”’ command, and
then use the ““GA’’ command.

After you enter the command ‘“GA”’, you will be prompted for
a destination directory. You do not have to supply one! If you
simply enter a carriage return, the copy operation will be skipped,
and you will be left with tags on the files that need to be backed
up. You can then use a macro function to back them up in a
specialized way, such as crunching (compressing) them to the
backup disk (instead of copying them as they are) or putting them
into a library on the backup diskette. Next time we will discuss the
macro techniques required to do this. W

Editor

(Continued from page 3)

I prefer a simple, but powerful, editor
without a lot of bells and whistles which 1
don’t need for the kind of writing I do.
For the initial work on book manuscripts,
which may run 400 pages or more, I don’t
need multiple windows or on-screen italics
and bold facing. I absolutely do not want
WYSIWYG (What You See Is What You
Get) or any fancy formatting. I just want
a spell-checked ASCII file which I can
dump to a dot-matrix printer for editing.
It is foolish to talk about WYSIWYG at
this stage because we will be adding and
removing words, combining and breaking
up sentences, restructuring and moving
paragraphs, determining what
.illustrations and graphics are required,

" and all the nasty things that editors do.

After the editing is completed and we
know how much text there is and how
much space will be required for graphics,
we'll define the design parameters (ac-
tually, rough layouts are done while
editing). The design decisions include the
front matter—Testimonials, Bastard
Title, Frontispiece, Title Page, Copyright
Page (Title Page Verso), Dedication Page,
Epigraph Page, Table of Contents, List of
Illustrations, The Foreword, The Preface,
Acknowledgments, and possibly an In-
troduction.

Next comes the text design, which in-
cludes Divisions, Chapter Title Pages,
Subheads, Footnotes, and of course, the
basic page design including line length,
column length, type size, line leading, and
type fonts.

This is followed by the back mat-
ter—such as The Appendix, Authors
Notes, The Glossary, The Bibliography,
The Index, The Afterword, and possibly a
Colophon and/or a Coupon.

At this point we want to see hard copy
for the front and back matter, a few (3 to
4) sample text pages, plus a report of the
exact number of pages in the books and a

26

printout of all the design parameters for
all three sections. It is very important to
know the exact number of pages because
trade books are printed on large presses
which may print 16 or 32 pages on a single
sheet. These pages, called signatures, are
bound together to produce the book, and
the bindery operations become very ex-
pensive if the book does not use an integer
number of signatures. For example, if the
printer’s standard signature is 16 pages, it
is less expensive to produce a 48 (16 X 3)
page book than it is to produce a 44 page
book—you either expand the material or
add four blank pages (now you know why
you see blank pages in many of the
books).

The reason I want a total page report is
so that I can adjust the number of pages
by changing the parameters (line length,
line leading, column length, etc.) before 1
set the book—it can be very expensive to
reset a large book using high resolution
Linotronic® output. The reason I want a
printed list of the parameters is that I may
present three or four alternatives to the
client with sample pages, and I want to be
sure that I remember exactly how a par-
ticular sample was produced—even if the
client comes back six months later.

Laser Programming

Within the next few years, laser printers
will replace the daisy wheel and dot matrix
printers in almost all business applications
except possibly for mailing labels (and
that’s being taken over by ink jet printers
which print directly on the mailing piece).

We are going to have to learn to talk
directly to the laser printers, just as we did
with daisy wheel and dot matrix printers.
We’'ll have to either learn Postscript®
and PCL® or have libraries with the
needed routines so that we can access the
laser directly from our programs.

I’m starting to design a laser driver
designed for publishing books, because

the available programs do not meet my
requirements. Feedback and articles from
others working with lasers will be ap-
preciated—as will suggestions for ad-
ditional features (let us know what you
can’t do with existing programs).

If we get enough response, we will add a
regular section. W

Registered Trademarks

It is easy to get in the habit of using
company trademarks as generic terms, but
these registered trademarks are the
property of the respective companies. It is
important to acknowledge these
trademarks as their property to avoid their
losing the rights and the term becoming
public property. The following frequently
used marks are acknowledged, and we
apologize for any we have overlooked.

Apple II, 11+, Ilc, Ile, Lisa, Macin-
tosch, DOS 3.3, ProDos; Apple Com-
puter Company. CP/M, DDT, ASM,
STAT, PIP; Digital Research. DateStam-
per, BackGrounder ii, DosDisk; Plu*Per-
fect Systems; Clipper, Nantucket; Nan-
tucket, Inc. dBase, dBase 1I, dBase III,

dBase III Plus; Ashton-Tate, Inc.
MBASIC, MS-DOS; Microsoft. Wor-
dStar; MicroPro International Corp.

IBM-PC, XT, and AT, PC-DOS; IBM
Corporation. Z80, Z7Z280; Zilog Cor-
poration. Turbo Pascal, Turbo C;
Borland International. HD64180; Hitachi
America, Ltd. SB180 Micromint, Inc.

Where these, and other, terms are used
in The Computer Journal, they are
acknowledged to be the property of the
respective companies even if not
specifically acknowledged in each oc-
currence.

The Computer Journal / Issue #36

Real Computing

The National Semiconductor NS32032

by Richard Rodman

~ Return with me to the halcyon days of
yesteryear, when Grace Hopper pulled
literal bugs from the relays of the ancient
computing machines. Before there was
magnetic core, memory was storage
CRT’s with photocells, or it was a rotating
magnetic drum. Alan Turing scattered in-
structions throughout the drum so that
the next instruction would be coming un-
der the head just as it was needed.

Back in those days, an address was an
address. If you went to address 0410,
those were the address bits that went
direct to memory. The first generation of
microprocessors and personal computers
all followed this flat, linear addressing
scheme, with a 64K addressing space with
16 bits of address.

When Zilog designed their 16-bit
microprocessor, the Z-8000, they wanted
to be able to address more than 64K bytes,
so they implemented segmentation, a
scheme which had been implemented on
the PDP-11 earlier. The Z-8000 used a
‘memory management unit (MMU) that
allowed any 64K segment to exist
anywhere in a 16M addressing space. In-
tel’s 8086 implemented a simple segmen-
tation scheme using a fixed translation.
This segmented architecture gave rise to
the second generation personal computer,
now in vogue.

The third generation personal com-
puters soon to come will feature an
enhancement developed long ago in the
mainframe and minicomputer world, vir-
tual memory. Virtual memory means that
you can run a program that needs 256K on
a system having only 32K. The computer
will save a memory image on disk and
“move’’ the physical RAM around as
needed by manipulating the translation
tables. The only way to do this without
causing fragmentation is to handle the
memory in blocks of fixed size, called
‘““pages’’. This is what is known as
‘“‘demand-paged virtual memory’’ (DP-
VM).

Now, all of the major 32-bit
microprocessors claim to support DPVM,
the 68010/68020, 80386, and
32016/32032. But in the case of the Intel
and Motorola chips, DPVM has been ad-

The Computer Journal / Issue #36

--- LISTING ONE ---

;MMUTEST.A32 -

;This is a program to test the operation of the 32082 MMU.

;The level-1 page table (1824 bytes) is built at 00000400, and
;the level-2 page table(s) (512 bytes each) at 20000800 up.

;Assemble with Z32. Remember that in Z32, numbers beginning with
;0 are interpreted as hexadecimal.

;880925 rr initial version

LEVIADDR = 00000400

LEV2ADDR = Q0000800
MODBASE
DD [
DD LNKBEG-MODBASE
DD CODBEG-MODBASE
DD CODEND-MODBASE
LNKBEG
CODBEG

;Clear all the tables to zero

MOVD LEV1ADDR,R1 ;where to start clearing
MOVW 512,R2 ;how many words to clear
CLEAREM
MOVQD 9,8(R1) ;clear a word
ADDQD 4,R1 ;bump the pointer
ACBW -1,R2,CLEAREM ; loop
;Set up level-1 table. Each entry in the level-1 table controls
;64K bytes.
MOVD LEV1ADDR,R1 ;where level 1 table should be
MOVD LEV2ADDR+0007,8(R1) ;entry @ (00000000 - @ODOFFFF)
MOVD LEV2ADDR+0207,4(R1) sentry 1 (00010000 - QBO1FFFF)

;A couple of others are necessary for the I/0 and PROM

MOVD LEV2ADDR+9407,768(R1) sentry for DOCQ0000 - OOCOFFFF
MOVD LEV2ADDR+0607,1020(R1) ;entry for OOFF0@09 - DOFFFFFF

;Set up level-2 table for 64K RAM no translation

MOVD LEV2ADDR,R1 jwhere level 2 table @ should be
MOVW 128,R2 ;how many entries
MOVD 20000007,R0 ;first entry
L2LOOP
MOVD RO,0(R1) ;Store entry
ADDD 20000200,R0 jbump to next page
ADDQD 4,R1 ;increment entry pointer
ACBW -1,R2,L2LO0P ; loop

;Set up level-2 table for I/0 no translation

MOVD LEV2ADDR+0400,R1 ;where level 2 table for C@ should be
MOVW 128,R2 jhow many entries

27

MOVD 0@CPO007,RO
102LOOP

MOVD RO,®(R1)

ADDD @@0P0200,R0

ADDQD 4,R1

ACBW -1,R2,102LOOP

;first entry

;store entry

jbump to next page
j;increment entry pointer
3 loop

;Set up level-2 table for PROM no translation

MOVD LEV2ADDR+0600,R1

MOVW 128,R2

MOVD QOFFR007,R0
PR2LOOP

MOVD RD,0(R1)

ADDD 20000200,R0

ADDQD 4,R1

ACBW -1,R2,PR2LOOP

;A11 ready to turn on the MMU chip

SETCFG [M]
LMR PTB®, LEV1ADDR
LMR MSR, 80430000
RXP ?

CODEND
END

;where level 2 table for FF should be
;how many entries
;first entry

;store entry

;bump to next page
s;increment entry pointer
;1loop

;enable use of MMU instructions
;set level 1 page table address
;set mmu status register
;return to srm

ded on to the existing processor.
National’s architecture, on the other
hand, was designed around implementing
DPVM at the outset. Most current NS32
designs include the 24-bit MMU, the
NS32082.

The 32082 Memory Management Unit
(MMU)

National’s 32082 MMU is tightly in-
tegrated with the CPU. It is connected by
the slave processor bus, a private com-
munications channel to the CPU used by
it and the FPU, and the CPU has special
instructions for programming the MMU.
Thus, in any NS32 system, the MMU will
always be programmed the same way. It is
as though the MMU were on the same
chip as the CPU, and it is in the case of
the 32532.

The MMU'’s basic function is address
transiation. This means that the 24-bit
address from the CPU is translated to a
24-bit physical address. By means of this
translation, we can not only rearrange our
memory space at will, but we can also
protect parts of it from being damaged.
For example, a user task can have its ad-
dress translation set up so that it cannot
access the operating system’s memory
areas. We can also catch a program that
goes haywire and stop it cleanly. We can
catch a program that tries to use too much
memory—and give it some more, if we
think it deserves more.

The MMU also has a number of other
features such as hardware breakpoints. It
keeps track of accesses to the memory
pages, so that we can know if they have
been used or changed.

Basically, the MMU points to a table in
memory which, in turn, points to a num-
ber of other tables. The first table is the
““level 1 page table.”” This table selects,

28

based on the high-order byte of the 24-bit
address, which of the level 2 page tables
will be used. Thus, the level 1 page table
has an entry for each 64K bytes of
memory (we’ll call this a ‘‘superpage’’). In
the 32082, this table can have 256 entries,
so it takes up 1024 bytes.

The level 2 table entry pointed to by the
level 1 table then supplies the physical ad-
dress, down to the page boundary (the
page size is 512 bytes). One of the most
pleasant aspects of the 32082 MMU is that
the address bits are in the right places. For
example, bit 10 of the address correspon-
ds to bit 10 of the table entries.

The low-order 9 bits of the page table
entries are used for the write-protect,
modified and accessed flags. Any given
entry can also be flagged as an invalid
reference by having its low-order bit be
zeroed.

I’ve included, in Listing 1, a program
which sets up a one-to-one translation of
addresses 000000-00FFFF, C00000-
COFFFF and FF0000-FFFFFF, then
enables the MMU. What happens when
you run it? Nothing seems to happen.
However, if you access memory outside of
those areas, the access will be caught.
(The first time I ran this program, I'd
forgotten about the 1/O and PROM
memory areas, and nothing worked!)

Once that program is running, you can
start moving your memory around. I set
up the level 1 and level 2 table for 010000-
O1FFFF also. Now, to move an unused
page of memory from 001000 up to ad-
dress 010000, just store the value
00001007 at location 000AQ00 (remember,
LSB first).

The program as listed will work under
the SRM monitor. You can modify it
easily for TDS or some other monitor. If
your RAM does not begin at zero, change

the equates at the beginning. The level 1
table must be on a 1K boundary, and the
level 2 tables must be on 512-byte (page)
boundaries.

How Do We Use the MMU
in an Operating System?

In an operating system, we can use
separate page table sets for the system
mode and for the user mode. The
operating system should have read-write
access to all of the system memory; the
user mode should have access only to
memory areas for the running task. Any
attempt by a user task to use memory out-
side of its allotted area will be caught by
the MMU and handled appropriately by
the OS.

Task switching can be done quickly by
having a separate level-1 page table for
each task, which takes 1024 bytes. When
switching tasks, the supervisor needs only
to load the PTBI register with the task’s
level-1 table address. If we only allocate
task memory on superpage (64K) boun-
daries, then we only need one set of level-2
page tables. The write protection, et al.,
can be handled by the level-1 tables.

The user task must have read-only ac-
cess to the system base superpage (000000-
00FFFF) so that it can make service calls.
It should have read-write access to its own
memory.

Page swapping would be done on a 512-
byte page basis. The valid bit would be
cleared on a page being swapped out. If
the modified bit in the entry is not set,
there is no need to write the page to disk.
When an access occurs to a swapped-out
page, the MMU will generate an abort
trap. The OS will see if the page is valid
but swapped out. If so, it would free some
other physical page (the least-recently-
used one, perhaps) and assign it to this
logical page, then reload the memory
from disk. Upon the return from the
abort trap, the instruction that caused the
trap would simply be re-executed.

More on the Free Operating System

Version 1 of the free operating system
will be single-tasking, like CP/M or MS-
DOS, and will not make use of the MMU.
It is currently called Bare Metal (Metal for
short).

In version 2, multitasking will be im-
plemented, and an MMU will be required.
Most NS32 systems already have MMU’s,
and if not, the chip is not expensive. We
will have memory protection and virtual
memory, and hope to implement MMU-
based, built-in debugging. Yet, the system
will maintain the ease of use and
customization of version 1.

We will be needing lots of programs
and utilities for the OS. If you'd like to
join this brave group of hardy pioneers,
please write to me care of this magazine or
to my home address.

(Continued on page 39)

The Computer Journal/ Issue #36

Sprint, The Professional Word Processor

A Product Review
by C. Thomas Hilton

While awaiting my evaluation copy of Borland’s new word
" processor, Sprint® , I was intrigued by the varied evaluations in
other publications. Some reviewers loved it, some hated it, and
some could not make it work. In all cases I had the feeling that the
reviews left something to be desired.

Installation

My first impression of Sprint is that of another fine Borland
product. I had no problem loading or installing the system. Fur-
ther, T am using Sprint to write this column, less than an hour af-
ter taking the system out of the box.

If you take the time to read the screens presented to you by the
installation program, you can install Sprint with confidence. I
found it difficult to improperly install Sprint! I certainly tried to
anticipate every error a user could logically make. The system is
just too smart to accept too much bad information in the in-
stallation process.

The Nature of the Beast

Once the installation sequence has been completed, Sprint is
ready for use. Sprint is a very complex word processing system.
As with all complex and powerful software, if you are not atten-
tive to detail, you have the capability to get yourself into trouble.

Sprint’s complexity is well hidden, and you do not need to deal
" with the underlying structure of the system, unless you want to.
Should you desire to deal with the program at the base level, ex-
pect to spend a nominal amount of time with the program’s
documentation. While Sprint can be used without ever touching a
manual, it is complex enough in its design to require a minimal
understanding fundamental design concepts.

The bottom line is, if you have used other Borland products, or
are familiar with WordStar® , Sprint is usable right out of the
box!

Who is Sprint For?

I could be convinced that Sprint may not be the best choice for
the novice who just has to know everything about everything,
without an understanding of his limitations, or who must tinker
with every possible option. Again, the availability of power brings
with it the ability to get yourself in to deep trouble, quickly.

Out of the box, Sprint does not implement all the features it is
capable of, but neither does XyWrite III+® , another popular,
professional, word processing system. Some may feel that Sprint
needs to be configured to accommodate individual preferences.
The difference between Sprint and other professional systems is
that you can add features as you recognize the need for them. In
the meanwhile, the program is perfectly usable.

Sprint is a system that can grow with a person’s individual
skills. As your skills and understanding develop, so may Sprint’s
capabilities. Even if you are a seasoned professional, Sprint will
not restrict your growth potential. Such a dynamic nature is made
possible by the fact that Sprint is only marketed as a ‘““Word
Processor.’’ In actuality, Sprint is something totally different and
amazing.

The Computer Journal / Issue #36

Will the Real Sprint Please Stand Up

Sprint is a word processing development environment. It has a
built-in compiler. Sprint’s programming language is similar in
syntax to the *‘C’’ language. In typical Borland fashion, the com-
plete source code for the system is included in archive format.
While you have the opportunity to alter the source code, and
compile yourself a creature of your own design, you are not
required to do so.

This softly spoken feature is one of many unexpected treats.
Sprint presents itself, out of the box, as a powerful system in its
own right, but permits you the ability to change the entire system
to something more to your liking. It is quite easy to modify the
Sprint system into something totally yours, and totally
unrecognizable as the original product. Sprint will not soon
become obsolete, as you can add any features you feel are missing
from the base model, or delete features you may not care for.
This feature is in itself more than enough for me to grow instantly
fond of the product.

Format Conversions

Until Sprint arrived 1 had a number of text editors and word
processors that I was forced to use quite often. The reasoning was
simple, some publishers like text in a Wordstar type format.
Another magazine would prefer another format, and so on.
Sprint has the ability to import from and export to a wide variety
of alien product formats. With Sprint, a single system can provide
all the formats that are normally required of me. Instead of
becoming marginally skilled in the use of many text editors and
word processors, I am free to devote myself to only one system.

A separate value of Sprint’s import and export facilities have to
do with an experience at my office worthy of sharing with you.
The client was new to computers, and did not have any idea as to
what editing system was right for his application. The State of
Montana specified one popular word processor that had such a
steep learning curve that productivity suffered. As each new
editor was tried, existing text files had to be converted to the new
editor’s format. In some cases, important files were lost during
the conversion frenzy. Using Sprint would have allowed them to
convert their files into the native format without the loss of a
single character.

Sprint’s versatility does not end with the ability to import and
export document files. In the series we will be presenting on In-
formation & Knowledge Engineering, we need to access infor-
mation in the process of preparing reports. Sprint will allow ac-
cess to Reflex® , Paradox® , and dBase III® data files. Data
format compatibility is a concept that is often overlooked when
software products are selected. Data compatibility is critical to the
Information Engineer. The authors of Sprint understood this
concept, and made provisions for importing information, within
the scope of what a word processor is supposed to do. The Sprint
manuals clearly define the procedures required to import data
from other Borland products, as well as popular data base
management programs. As our series develops, the true impor-
tance of these concepts will be recognized.

29

The Learning Curve

The concept of the learning curve is very important in a produc-
tion environment. Sprint has the ability to emulate the command
sequences of popular editing and word processing systems.

The “‘look and feel”’ of the editing screen, when an alternate

user interface is used is pure Sprint, not that of the emulated
product. There are many reasons for not emulating the ‘‘look and
feel’’ of another product. Not the least of which has been those
software publishers who felt the need to litigate the concept. It is
important for the user to recognize that Sprint is not one of these
other products. There are some variations, when emulating
another word processor system, from the expected way exotic
command sequences may function. I can not disagree with the
way Borland chose to approach this concept. If you want to
emulate Word Perfect® exactly, then purchase a copy of Word
Perfect!
- The alternative user interface options allow temporary or new
workers to use the system with the least application of the lear-
ning curve. The screen display remains Sprint, but the basic
editing commands emulate a familiar editing package. With a
familiar environment, the new worker is faced with a reduced
learning curve, and increased productivity. In attaining this goal
Borland has done an excellent job! Will the person who has
become immediately functional with an alien software product
please stand up and tell his tale? For we mere mortals time is
required to ‘‘get up to speed’’ with any new product. I wish to
wax redundant and say that I began this article less than an hour
after receiving the product. Your experience with Sprint may, or
may not be similar.

The Many Faces of Sprint

Sprint is not a WYSIWYG, (What You See Is What You Get),
type of system, technically speaking. It does a reasonably good
job of faking it though. Sprint consists of an editor and a text
formatting and printing module. Each of the two parts may be
used as a stand-alone program. The use of these two parts of the
system is something many would not be aware of.

Many professional writers prefer to use an external text format-
ting and printing program. The primary reasons for this are foun-
ded in the fact that off-the-shelf editors, and word processors,
lack the needed text processing power. An external program
allows you to build a document ‘style’’ with great sophistication.
Sprint has skillfully presented the best of all possible worlds in
combining a user transparent text formatting program with a
powerful editing system.

The debate over the value of an external, post-processing type
of text formatting & printing system is an old and unresolved one.
It centers on the quantity of the work to be done, basically
speaking. Some would also argue that the issue of the quality of
the work to be done is equally important. If all you want to do is
write a few memos, or letters, then perhaps Sprint’s power may be
overwhelming—not the best choice for you. If, on the other
hand, you need to prepare large, or complex reports, as would be
consistent with our IE series, then Sprint deserves your serious at-
tention. But, if you have a need for consistent looking memos and
correspondence, Sprint will allow to to create a document style,
or ‘“‘format’’ that will exceed any need you may demand of it.

Sprint’s screen display is clean. It isn’t as fast as XyWrite I1 +
in some key responses or screen updating. But even on an eight
megahertz V-20 machine the performance is acceptable.

The spelling checker is healthy, containing some 100,000 wor-
ds. Its response is slower than some spelling systems, but that
could be because of its large word selection. I hate those spelling
systems which omit the words I most often misspell. Sprint’s
system has shown me that it is as professional as the rest of the
system. The Thesaurus is as healthy, though no faster than the
spelling system. Sprint seems to know just how much delay I will
tolerate, and does not abuse my tolerance. Of course, I really do
not need to keep the auto-spell-check mode active all the time,

30

which would probably speed the system up substantially. I don’t
really have a problem with Sprint’s operational speed. It is cer-
tainly more responsive, faster, and cleaner than many of the other
popular word processors 1 have been using. Keep in mind that I
am more demanding than the average user. With operational bad
points, as well as good points, considered together, Sprint is the
only word processor active in my system, and I expect this circum-
stance to become permanent.

Sprint is Goof Proof

I read where Phillip Kahn has a habit of turning his laptop
computer off in the middle of an editing session! Horror of
horrors! Well, I just had to try it for myself! Imagine my surprise
when I turned the system off in the middle of an edit, waited a few
seconds for the system to settle, and turned it back on to find
everything as it was, including the proper positioning of the cur-
sor! This is a nice feature! Here in rural Montana the power is
subject to go off at any time, for any reason. Knowing that Sprint
will save my work every few seconds, without really making me
aware of it, is in itself, enough to endear me to the product. The
automatic save feature Sprint uses is not a new concept, but I
have yet to have a product that implemented this concept without
becoming intrusive. I hate it when the system stops every few
seconds to write the text to the disk file. With Sprint, the only in-
dication of this activity is when the disk access light goes on for a
brief period.

Now Let’s Talk Printing

I use an off-brand printer that I found in the pages of some
discount rag. We have all heard the claims that this, or that, sof-
tware package supports 50 million different printers. Well, Sprint
is the first word processor that ever knew what a Seikosha printer
was, and how to use it properly! Normally I have to install the
Seiko as an Epson ‘‘work-alike”” and hope for the best. I was
quite pleased that Sprint knew all about the printer, and returned
an excellent print quality THE FIRST TIME! I like the little Seiko
printer, but was not thinking of purchasing another because it
was too hard to interface with some software. With Sprint’s in-
tellect I will be buying another ‘‘discount’ printer that will
outlast the name brands, be just as fast, and have better font
quality. Thank you Sprint!

When they say that Sprint supports over 200 printers, what they
mean is that Sprint supports 200 printers that mere mortals buy
and use. If you have anything from a laser printer to something
left from over the kid’s last Christmas, Sprint will find a way to
use the beast to its maximum capability.

Fresh out of the box, I really didn’t expect much from any prin-
ter and text formatting interface. A very large part of any editing
system concerns itself with formatting and printing of text. There
are word processors which attempt to allow you to print in the
background and continue editing. Thus far I have never found a
word processing system that can implement this concept properly.
The problem is seldom in the word processing software, but in the
ability of the printer to accept text at the speed at which the
editing system wants to send it. If the printer is too slow in accep-
ting data, then the word processor will ‘‘hang’’ for a fraction of a
second waiting for the printer to catch up. If the printer can ac-
cept data faster than the word processing system can send it, then
the word processing system spends more time than it should ser-
vicing the printer. In the text editors I have written it was always
required that I adjust the balance of service between the key
board and printer service.

Sprint does not attempt to print a document as a background
process. The main reason is that the editor is inactive while the
formatting and printing module has control of the environment.
Most people use the time while a document is being printed as a
break period. I admit to being one of those people. I do not miss
an attempt to do two things at once.

The formatting of documents can be as complex as your

The Computer Journal / issue #36

imagination will allow them to be. The text formatting program is
smart enough to know about leaving reserved areas for
photographs and graphics, though graphics are not totally sup-
ported by Sprint. If you make an error in a complex format com-
mand structure, the formatting module will advise you of the
error. Of course, Sprint will work just fine without a single for-
matting command being used. It is this lack of reliance upon
other modules that demands a great deal of respect for the
product. How you prepare your document is entirely up to you. If

" you want to keep it simple, Sprint does not force you into any

form of complexity. This is not the case with other programmable
word processing systems.

Considering the way the industry has been heralding desktop
publishing, I at first thought that Sprint’s ability to only support
POST SCRIPT® graphics was a serious defect. While I am
disappointed that there isn’t a whole world of graphic support in

.Sprint, 1 do understand the reasons why graphics were down-

played, and agree with Borland’s concept. In fact, I have some
question about the wisdom of including POST SCRIPT support.
The reason is for this paradox is simple. What Borland wanted to
do, with Sprint, was to present a word processing system that
would last. Products in the computer industry have a very short
life. Sprint has great appeal to professional writers, the target
market. Professional writers generally do not, and cannot, put
graphics in their text. This is a separate process in document
production. Typesetting systems just do not understand graphics
data. The number of writers who will actually become involved in
the printing of their work is extremely low. That is just the nature
of the publishing business.

While the desire to wax creative in a personal document is high,
I have read too many tales of woe concerning the arrival of
desktop publishing systems in an office environment. Multiple
fonts and cute graphics are not really appreciated in the world
where Sprint will be found most useful. This is not a fault of
Sprint, but of humans such as myself, whose artistic perception is
often found to be abhorrent.

The control Sprint gives you over your printer is total. Sprint
knows just what your printer is capable of, and will do its best to
produce documents of fine quality. I am not really thrilled with

printer test programs. What Sprint caused my aging Seiko to

produce was impressive, and 1 have been known to be highly
critical of document appearance.

My old favorite, XyWRITE II1 + would ‘‘snake’’ columns of
text, (like newspaper columns), with the best of them, providing
you asked it nice enough, did not alter the page format in mid-
stream, and did not want to change fonts in column structure. If
you changed fonts in one column, the placement of text in any
column to the right of a larger, or smaller font, would be upset.
This is one advantage to Sprint’s use of a powerful text format-
ting program deal with the printing tasks. Sprint will allow you to
change column formats anywhere in a single page, change fonts,
do paragraph titles, chapter titles, or just about anything your
imagination can devise.

The Sprint text formatting and printing program is so powerful
that you would expect all the graphics features of a full powered
desktop publishing system. But, graphics standards come and go.
Sprint’s ability to conform to the needs of the day is such that it
will be around for quite some time. If you actually need a form of
graphics interface for your application, you can create your own
software driver, Sprint’s approach to all things is an open design
architecture. Remember that you can alter and recompile the
complete Sprint system to suit your particular application. The
basic Sprint concept, is quite profound: ‘‘Just because you don’t
see a feature you need does not mean Sprint is not capable of
adapting to your desires.”” For my applications, presentation
graphics would normally be too large to attractively mix with my
text. For graphics I would prefer to use Quattro’s excellent
presentation graphics facilities.

The Computer Journal/ issue #36

Sprint’s Documentation

Sprint comes with three thick manuals and a small manual
dealing with alternate interface emulation. Sprint’s manuals are
written in classic Borland style. For some this will be enough said.
For those who have never dealt with Borland products, allow me
to say that Borland produces excellent manuals. Sprint’s
documentation is simply elegant, which ignores the fact that the
manuals were developed using Sprint.

Whatever your level of understanding, there is a section of a
manual that covers what you want to know, written in a manner
to assure comprehension. Where one manual deals with complex
inner workings of the development environment, sections are in-
cluded with literal ‘““How To’’ paragraphs.

To get the most from any system one must resign their self to
spending some time with the documentation. While you may use
Sprint with effectiveness and never look at a manual, to do so is
similar to having purchased a fancy sports car with no intention
of ever driving it!

Adapting Sprint to Your Needs

You do not need to be a computer programmer to adapt Sprint
to your needs, whatever they might be. If you do take the time to
look through the manuals, you will be impressed. 1 was surprised
to discover that Sprint can be made to work with terminal based
systems. A few years ago there were no lack of terminal based text
editors and word processors. Today they are rare for the terminal
based, multiuser, office automation system. When considering
software for my information systems, it would be nice to have a
word processing system that can easily be adapted. When the
choice is between expensive networking systems and simple, inex-
pensive terminal systems, Sprint has again provided an impressive
feature.

The many ways Sprint can be programmed is beyond the scope
of this review. However, it is a subject that should be dealt with in
greater detail. We all have the need to develop reports, of some
design in our work. Each of our demands upon a word processing
system are different. This would be a good place to share our ex-
periences, and deal with problems which may be just beyond our
immediate grasp. Let me hear from you if there is an interest in
supporting Sprint though the pages of TCJ.

The Bottom Line

Sprint may not be suited for every user. The casual user may
desire something else. On the other hand, Sprint can grow with an
unskilled person as few other word processors can. For the
professional, Sprint will be found to be an extremely powerful
tool that will save many hours of document production. For the
programmer, Sprint is a ‘‘dream’’ product that can be molded to
suit any taste. For all users, Sprint will always produce
professional looking documents, whether you like it or not.

No product is perfect, being all things to all people. In my work
as a consultant I have always said that the word processor you
need is very much dependent upon the work you intend to ac-
complish with it. Now I simply say, ‘‘All you really need is
Sprint.”” Sprint comes highly recommended for all users.

If you are using Sprint, and have an idea, problem, hint, or tip
to share, let us hear about it. TCJ exists as a forum for infor-
mation exchange. While a regular column concerning a word
processing system is not regular TCJ fare, Sprint is not a common
product. Did you know that you can access DOS functions, or
develop database structures from within Sprint? If Sprint will
allow these functions, what else can a clever reader devise? Let us
know, eh? I

k|

Using ZCPR3's Named Shell Variables

by Rick Charnes

Hello, Z-System aficionados. I have been so pleased that Jay
. Sage and Bridger Mitchell are writing for TCJ that I wanted to see
what I could do to pitch in and help our grand cause along, and
am honored to be writing for such a fine magazine. By way of in-
troduction, I’ve had a Morrow MD-3 since April of 1984 which I
purchased for writing. Around about the summer of 1986 a series
of articles by Ted Silveira appeared in our local San Francisco
computer magazine, Bay Area Computer Currents, about
something called ZCPR3. Stars appeared, the ground shook, the
walls trembled, and when I woke up I was a changed man. ZC-
PR3 has since been a part of my life that has provided an unen-
ding source of joy and utter delight.

I actually have been intending to write an article for TCJ for
quite some time, but it was only recently that I completed a
project about which I was so excited that I could no longer con-
tain my enthusiasm. I find that my experience with Z-System is
often like that: I go on and on using my own inventions,
discoveries, aliases, ZEX files and other assorted odds and ends,
mostly keeping them to myself until finally at some point I realize
that what I am doing is really quite exciting and enjoyable. 1
figure if I like it so much there must be someone out there who
might feel the same way. The Muse usually appears just around
then and informs me in no uncertain terms that should I make any
further attempt to keep what I’ve done to myself it will be judged

_a sin of vanity and punishable by a permanent visit to Computer
Purgatory. A week or so ago I came to that point, and in the spirit
of appeasing the spirits that animate our wonderful world I am
enjoined to set the experience down on paper.

Jay Sage and I have for a year or more been having a conten-
tious if good-natured argument about the use of the shell stack.
Since my Eureka! experience involved heavy and unorthodox use
of said stack and most good things in life come out of conflict of
one form or another, I am moved to write about my use of the
shell stack.

Most of the shell programs that we use might be called ‘‘menu-
based’’ utilities: ZFILER, VMENU/ZMANG, MENU, etc. Steve
Cohen’s ZPATCH and W use the shell stack in a slightly different
but generally similar manner. However, there is an entirely dif-
ferent set of utilities, surprisingly little-known and infrequently-
used, that use the shell stack in a very different manner and per-
mit the user access to a feature of the shell stack referred to as
named variables. I have been using these utilities since the very
beginning of my enjoyment of ZCPR3 and it is about these that I
now wish to write.

It will take me two articles to get it all down. I wish to devote
this first to a discussion of my original involvement with the shell
stack utilities and then a description of the special Shell Named
Variable utilities upon which I relied for my project. With the
next issue we will get into the project itself.

SHSET and CMD

I recall my first involvement with ZCPR3 way back in the
spring of 1986. The particular love of my life at the time was
spending night after sleepless night writing MEXPLUS scripts to

32

log on and upload messages to computer bulletin boards. I would

have 3 or 4 messages previously prepared to send to various in-

dividuals. The script was set up so that with a single command

and appropriate parameters each message would be uploaded one

by one to the appropriate individuals. It was quite lovely and

satisfying to watch. It involved more than the usual amount of -
testing and trial and error: normally when you write a program

you have only your own system to worry about, but here I had the

BBS software as a variable as well.

I’m sure my neighbors were rudely awakened on more than one
occasion when at 2 a.m. they would hear victorious shouts of joy
emanating from my living room when I had finally gotten my
script successfully honed to give me completely automated
operation: logon, message upload to 4 different people, and
finally logoff. What an achievement! Naturally it involved a great
deal of (1) running the script, (2) going back to it for debugging,
and as you can imagine, looping back and forth many times bet-
ween these two procedures. Luckily, BBSs give you a certain
amount of time to work on your own system while still connected,
so though I may have antagonized a sysop or two for which I
here, finally, offer apology, I was able to get much work done on
my script in this manner.

I use the wonderful public domain VDE for all my editing and
writing. The actual command lines, then, for which I was soon to
realize ZCPR3 was ready-made, was to loop back and forth bet-
ween: (1) VDE SENDMESS.MEX and (2) MEX. It’s very tedious
to have to close your editing session with VDE and manually type
in ‘MEX<ret>’ (or if I was actually running the script from the
command line, ‘MEX SENDMESS PARMI1 PARM2
PARMS2. ..’ each time. But how specifically to set up this loop?

Enter the dynamic duo, the wonderful SHSET and CMD. My
hat is off to these tiny hard-working utilities for starting me down
the adventurous and cosmic road to ZCPR3 those many moons
ago. For that I can never be thankful enough.

I’m not sure how familiar Z users are with these and other
similar utilities, so I'd like to take some time to describe their pur-
pose and use. First, SHSET. SHSET defines the commands which
follow it as the command sequence to be placed on the top of the
shell stack. Anything appearing after SHSET on the command
line will be placed in the command buffer and executed, repeating
and looping from beginning to end over and over again until the
shell stack is cleared or popped. In other words, the command
“SHSET VDE”’ would run

VDE; VDE; VDE; VDE; VDE; VDE. . .

infinitely.

How to get out of this never-ending loop? It was for this pur-
pose that we have CMD. CMD was built specifically for use as
SHSET’S counterpart. It is a lazy utility. It does nothing—or
rather it does nothing itself. It prompts the user for input.
Whatever the user enters at its prompt gets executed. It’s perfect
for our purposes, because if we add it to the end of our SHSET
command line, it will stop the sequence and allow us to ex-
periment with one more shell stack-related utility and the one that

The Computer Journal / Issue #36

can get us out of this loop, SHCTRL.COM. We need only to en-
ter “SHCTRL P” (or, if you are using Bruce Morgen’s latest
CMD13, simply CTL-C) at the CMD prompt. The purpose of
SHCTRL.COM is, as the name states, to control the shell stack.
The ““P’’ parameter ‘‘pops’’ the shell stack, in other words clears
whatever is on the first level—which in our case is, of course,
“SHSET VDE.”’ Hence the sequence is terminated and we are
returned to the regular ZCPR3 prompt.
You say you can’t think of uses for this? Have you ever been in
-a position where you are doing several different things on your
system, performing a number of diverse procedures, but you
realize you want to get a directory listing after each operation?
Try “SHSET DIR CMD”’. You will first get your directory
listing, then CMD will prompt you for a command. Enter
whatever you like and do your operation. When you are finished
DIR is automatically run once again. And so on. ‘‘SHSET
DIR;CMD?”’ is like having a menu shell such as ZFILER without
ZFILER; you are constantly returned to a file display after each
qperation.
Or how about when you are writing and testing a ZEX script? I

often find myself in the situation of wanting to loop back and for-
th between debugging and running it.

SHSET VDE SCRIPT.ZEX;ZEX SCRIPT;CMD

provides a wonderful degree of automation to your work, saving
many keystrokes. I think the next time you are writing a ZEX
script and try this you will wonder how you ever did without it.

Another example: the major programming work I do with Z-
System is writing ARUNZ aliases, which are often quite complex.
I generally need to test them many times before they work
properly. Looping back and forth between editing them in my
ALIAS.CMD and executing them is another operation tailor-
made for SHSET and CMD:

SHSET ALIASNAME;VDE ALIAS.CMD;CMD

So as we have seen we don’t have to limit SHSET’s parameters
to a single command such as DIR. The beauty of SHSET for my
purposes in writing the MEXPLUS script was its ability to recycle
through my entire command sequence, until it finally hits CMD.
So for the MEXPLUS script I was working on,

' SHSET MEX SENDMESS PARM1 PARM2 PARM3;VDE SENDMESS.MEX;CMD

worked like a charm for me and saved me lots of repetitive typing.
(Don’t try a command line of this length, by the way, without ex-
panding your shell stack entries to 64 bytes each as I have done.)
It has allowed me to stay connected to a BBS and quickly switch
back and forth between executing and debugging my MexPlus
scripts. Since MexPlus has for years been so much a part of my
life 1 wouldn’t do without this convenient little combo for the
world. It was, as I have said, my introduction to ZCPR3 and I use
it constantly, for many different purposes, to this day.

Shell Named Variables

There is an extraordinary feature of the ZCPR3 shell stack that
has not received its due since the esteemed Dreas Nielsen stopped
writing ZCPR3 programs, named shell variables. Those among us
with experience with MS-DOS will be familiar with the concept of
environment variables, and ZCPR3’s named variables are quite
similar. Mr. Nielsen’s superb ZCPR3 programs GETVAR and
RESOLVE are the two most common named variable utilities and
we are all indebted to him for the immense amount of work he has
done in the field. I would like to thank him for the tremendous in-
spiration he has given me over the last two years to work further
with these and other tools to find many new and creative uses for
them, for which which debt I hope to partially discharge through
this article.

Throughout one’s general ZCPR3 operations, but especially in
writing ARUNZ aliases, one often wants some way of storing a
string of characters to a variable, and then accessing the string
later through the variable. The GETVAR/RESOLVE duo does

The Computer Journal / Issue #36

this perfectly. The command:

GETVAR FOOD WHAT IS YOUR FAVORITE FOOD:
will display on the screen:

WHAT IS YOUR FAVORITE FOOD:

If in response you enter ‘‘Eggplant Parmesan,”’ that string will
then be stored into the variable ‘food’. Later the command:

RESOLVE ECHO YOUR FAVORITE FOOD IS %FOOD
will display:
YOUR FAVORITE FOOD IS EGGPLANT PARMESAN

Many of you will remember Frank Gaude’s excellent use of
GETVAR and RESOLVE in some of the early ZCPR3 aliases he
gave us in Z-NEWS, R.1.P.

The string “‘%FOOD’’ (note the “‘%"’) is what we call a named
shell variable. Both the variable and its definition are stored in a
file with the extension of VAR which you will find on the last
directory of your path. By default it is called SH.VAR, though as
we learn and explore more we will be creating and using other
* VAR files. It is to the wonders of these shell variable files that
we will turn as we mine their depths and explore their mysteries in
order to tackle many interesting projects. . .

Any number of individual variables may be stored in a VAR
file, and they are available for use at any time. We may even have
as a variable definition a multiple command line sequence! For in-
stance, if we type:

GETVAR COMMAND ENTER A COMMAND LINE:
the computer will come back and say

ENTER A COMMAND LINE:
If we then respond with a multi-command sequence:
ECHO HERE IS A DIRECTORY;DIR;ECHO THAT WAS A DIRECTORY LISTING

that entire sequence, including the semicolon, will be stored into
the variable named ‘COMMAND’. If we then enter at the ZCPR3
prompt;

RESOLVE %COMMAND

this will ‘‘expand’ or ‘‘resolve’’ into “ECHO HERE IS A
DIRECTORY;DIR;ECHO THAT WAS A DIRECTORY
LISTING”’ and run precisely that entire command line.

We may use GETVAR (or other utilities to be explored later) to
store any number of variables into our *.VAR file. These
variables are all then available to us through the courtesy of
RESOLVE at any time—tomorrow, next week, or whenever, sin-
ce they are saved to disk. It is this basic concept that makes the
shell variables so powerful and such a joy to use.

SH

If we are the adventurous sort we may even take this concept
one step further. Here we will find ourselves swimming in waters
where only the bold (and with RAM or fast hard disks) dare to
tread. Those who have had the experience of spending some time
browsing in awe through our erstwhile bible, Richard Conn’s
ZCPR3: The Manual, turning each page with trembling hands as
if it were a precious leaf, might have come across a utility named
simply SH.COM. SH is a fascinating utility. The latest version,
v2.0 by Dreas Neilsen, is a command editor/history shell in the
fashion of EASE or HSH but is an entirely different type of
program as well. It loads just like EASE or NHSH and stays
resident. Where it is different, however, is that it then gives you a
working environment in which it is possible to access any of your
named shell variables directly from the command line without the
need for any other program. I like to think of it as like having
RESOLVE loaded permanently without RESOLVE being there at
all. One might think of it as another way to set up something
similar to aliases, or perhaps more like a key redefinition program
(though feasible only from the command line and not from within

33

a word processor).
Suppose you have several single-letter strings in your *.VAR
file defined as filenames:

S = samantha.ltr
T = thomas.doc

B = Dbertha.z80

F = frankie.txt

In the course of today’s work session you were often editing
these four files, but perhaps switching among several different
editors, such as VDE, LZED and WS. With SH.COM permanen-
tly loaded, if you wanted to look at SAMANTHA.LTR with
VDE, you could type on the ZCPR3 command line simply ‘“VDE
%S’’. Then perhaps when you were ready to do some fancy prin-
ting with it and you needed WS4’s print commands, ‘“WS %S”’

. would take care of that. Similarly with the other four files.

It’s almost as if you had used your key redefinition program to
define your “‘S”’ key to that string, or perhaps written an alias
named ““S”’. There is no need with SH to include RESOLVE on
the command line; with SH.COM permanently loaded all strings
‘preceded by a ““%’’ are automatically processed as shell variables.

SH20.COM is also a history shell in itself similar to EASE,
providing for the recall of up to 20 previous command lines, so we
have the convenience of a history shell plus the new type of utility
that expands shell variables. It is a very interesting experience to
spend an entire computer session with SH20 as one’s history shell;
I believe you will find it fascinating and will find many previously
unthought-of uses for its shell variable expansion facility. Keep in
mind, though: due to its slowness it is most useful on RAMdisks
and fast hard disks.

SHYAR

You might be wondering at this point how we get a large num-
ber of these variables into our *.VAR file so that SH or
RESOLVE may expand them. The only way we have learned up
to this point is with the GETVAR utility, which is somewhat slow
as it requires the setting up of a question-and-answer situation.
There are two additional utilities Rick Conn provided for this
task, however, which make our job much easier: SHVAR and
SHDEFINE. The former is command-line driven and best where

. we are defining only one or two variables at a time, and the latter

is interactive and good when there are a large number involved.
Syntax for SHVAR is straightforward. The first parameter is
the name of the variable and the second its definition.

SHVAR S SAMANTHA.LTR

will define ‘S’ as “SAMANTHA.LTR’’ and put those into our
* VAR file.

I have found SHVAR indispensable inside an alias where we are
echoing to the console a long text message, itself containing a
variable string. An example will explain.

IF ARC $1

ECHO THE ARCHIVE BIT ON FILE $1 IS SET
ELSE

ECHO THE ARCHIVE BIT ON FILE $1 IS CLEAR
FI

This is a fairly typical alias and usually we think of this as the
standard way to conceptualize something that we often want to
express in ZCPR3 (or any other system, for that matter.) This
format could be generalized as follows:

IF CONDITION A EXISTS

ECHO ''CONDITION A EXISTS''
ELSE

ECHO ''CONDITION B EXISTS!'!
FI

But SHVAR gives us another possible way to conceptualize

what we want. Notice above that we have TWO separate ‘ECHO’
command lines in our alias which to an outside eye might seem a
waste. Generally since we have 200 characters in our multiple

34

command line buffer we can afford to be slightly profligate. In
the first example above, our echoed text is fairly short so we do
not mind having two ECHO strings in the alias, each with the
symbol *“‘$1.”” In writing aliases, though, we must always write
with an eye towards conciseness. We must particularly keep in
mind that though our alias uses the symbol “‘$1’° which would
seem to take up only two spaces, in actuality when the alias ex-
pands it could fill up to 12 characters in the command buffer if
our filename parameter is, for instance, SAMANTHA.LTR. Fur-
thermore, we must keep in mind that both occurrences of ““$1°’
above will be expanded to 11 characters in this case, whether
SAMANTHA.LTR does or does not exist! So that’s an additional
22 characters of our buffer we must account for.

If we want to get a little more fancy, however, we cannot afford
to be so wasteful. For instance:

IF ARC $1
ECHO WITH THIS ALIAS WE HAVE JUST DETERMINED
THAT THE ARCHIVE BIT ON FILE $1 IS SET
ELSE
ECHO WITH THIS ALIAS WE HAVE JUST DETERMINED
THAT THE ARCHIVE BIT ON FILE $1 IS CLEAR
FI

I am making the ECHO’ed text especially long here to make my
point, but it is not inconceivable that one could write an ECHO
string of this length. This otherwise perfectly legitimate alias will
overflow the 200-character limit.

Of course we notice that the two long ECHO strings are exactly
similar except for a single word. Why not instead put SHVAR to
use for us:

IF ARC $1
SHVAR A SET
ELSE
SHVAR A CLEAR
FI
RESOLVE ECHO WITH THIS ALIAS WE HAVE JUST DETERMINED
THAT THE ARCHIVE BIT ON FILE $1 IS %A

Get it? Note the ‘%A’ at the end. See how RESOLVE precedes
and defines the ECHO command line. This ensures that when
ECHO sees the ““% A’ at the end of the string, it will be processed
as a string variable. I like this method of processing a conditional.
It feels more ‘“‘logically correct’’ since we really only need to
define one word and we can simply make this a variable; there is
no need to repeat an entire string for one word. This method,
however, is somewhat slower, as RESOLVE does take time to
load. In certain circumstances such as here where command line
buffer space is at a premium, however, this technique is indispen-
sable.

Other Examples Using SHYAR

I ran into a similar situation when writing my alias PLF,
Process Library Files. In the section of this multi-element alias in
which 1 wanted to print the file, I had as my second input
parameter the name of a compressed file. However, the file had
already been uncompressed, and it was this file’s type that I
needed in order to print it. There is really no way to get this name
from the name of the compressed file as the middle letter remains
unknown. I decided to make a list of several commonly used
filetypes and then use SHVAR to help me expand the possibilities.

To save space I renamed SHVAR.COM to S.COM. I have
‘ELSE’ permanently renamed to ‘L’ on my system. Finally I
created the following ARUNZ alias (remember, ‘$tt2’ means the
fileTYPE and ‘$tt2’ the fileNAME of the second parameter.)

The Computer Journal/ Issue #36

plf7 if eq $tt2 zzz;8 p ;1 [store null to 'p']
if eq $tt2 u?d;s p upd;l [store 'upd' to 'p']
if eq $tt2 2?0;s p 280;1 [store '280" to 'p']
if eq $tt2 i?f;s p inf;l ...ete...
if eq $tt2 h?s;s p his;l

if eq $tt2 n?t;s p not;l

if eq $tt2 d?c;s p doc;zif

resolve print $tn2.%p

. As always, note the “‘%p’’ at the very end, our nugget of gold.
Do you see how it works? The middle letter of the compressed
filetype could be either “‘z” if crunched or “qV¥ if squeezed, so I
represent that with a 7¢‘. We set up *’p‘‘ as the name of the string
variable and define it with SHVAR (’’S*‘) according to the results
of the IF EQ test on the filetype of the second parameter. Then,
.once we have its definition, in the last line we print it, with
RESOLVE picking out the *’%p** at the very end of the line and

" expanding it to the name of the filetype that we have defined with
SHVAR.

1 can’t imagine any other way to do this in a single alias. I was
very pleased that I was able to rely on such a splendid tool as SH-
VAR. I find this concept of >’string variable‘‘ to be very handy in
many situations.

SHDEFINE

So much for SHVAR, which being command-line driven is ex-
cellent for use in aliases. Sometimes, though, we will want to
define a large number of variables in one setting. Enter SH-
DEFINE. This utility is menu-driven. The crucial command for
our purposes is ’E*“ for Edit, which allows us to interactively
define as many variables as we wish. It is this almost never-used
utility upon which I relied heavily in working with my project. We
will use it later.

SHFILE

Now to the last utility in this series, SHFILE. If you use SH-
FILE once a year you’re doing well, but when you have a need for
it nothing else will do. I mentioned above that though the default
name for the file in which our named variables are stored is
SH.VAR, we can also create other named variable files. It is for
- this task that SHFILE was created.

Users of key redefinition programs such as NUKEY know that'

they can store a large number of >’sets*‘ of key definitions, one set
to a file. We may want one set of key redefinitions when we are
writing computer documentation, one for when we are writing let-
ters to friends, and yet a third for our Ph.D thesis in botany. Each
one is simply loaded as necessary with the key redefiner *’loader,**
such as NUKEY.COM. We may want the letter >’s‘** to produce
»software‘* in the first circumstance, >’Sandy O’Brien‘* in the
second, and *’serrate-leaved‘‘ in the last.

The concept here with SHFILE and named variables is similar.
We may have several different applications for which we wish to
use the same named variable. Instead of ’loading‘‘ a new set of
definitions with a *’loader,‘‘ however, we use SHFILE. The par-
ticular parameter provided to SHFILE informs ZCPR3 which will
be the *’current‘‘ named variable file, i.e. which one will be sear-
ched and used by whatever variable-expanding utility we are
using, whether it be RESOLVE, SH, SHVAR, etc. If SHFILE is
not specifically invoked all variable expansion is done to the file
named SH.VAR, and only this single file is ever used.

Here’s a good example of where we might use the combined
power of SHFILE and SHDEFINE, Recent versions of ARUNZ
allow for hooks into DateStamper, whereby the symbol $Dm will
return the current month, $Dd the date and $dy the year, in two-
digit numerical format. However, recently I wanted to create an
alias that would tell me today’s date with the name of the month
and not just its numerical equivalent. Using only ARUNZ was out
of the question as we would very quickly overflow the command
line buffer as we can see (as always, I have renamed ‘ELSE’ to
‘L’):

The Computer Journal/ Issue #36

IF EQ $DM 01;ECHO TODAY IS JANUARY $DD, 193DY

L

IF EQ $DM 02;ECHO TODAY IS FEBRUARY $DD, 19$DY
L

IF EQ $DM 03;ECHO TODAY IS MARCH $DD, 193DY
L

IF EQ $DM 04;ECHO TODAY IS APRIL $DD, 19$DY

and we are already at our 200-character limit.

For fun we could see if we could do it with SHVAR.COM,
renamed to S.COM, where our variable named ’D‘‘ would be
expanded to the name of the month:

IF EQ $DM 01;S D JANUARY
L

IF EQ $DM 02;S D FEBRUARY
L

IF EQ $DM 03;S D MARCH
L

IF EQ $DM 04;S D APRIL
L

IF EQ $DM 05;S D MAY
L

IF EQ $DM 06;S D JUNE
L

IF EQ $DM 07;S D JULY

RESOLVE ECHO TODAY IS %D $DM, 19$DY

but again we are past 200 characters. SHDEFINE and SHFILE to
the rescue.

Since this is a fairly specific use of the named variables, we
don’t want to waste space in our default SH.VAR as we want to
keep it *’clean‘ and leave it for other purposes. We are going to
make the month numbers our actual variables and the month
names our variable definition, the string to which it will be
defined or expanded. If we define *’01¢‘ to be ’’January‘‘ inside
the default SH.VAR then we will not at some future point be able
to define *’01°¢¢ to anything else, such as if we have an itemized list
and we want *’01¢‘ to represent the first item on the list, etc. It is
more convenient to, as it were, load different sets of key
redefinitions and keep strings for different applications distinct
and separate.

We can use SHDEFINE to define variables within a file other
than SH.VAR simply by providing its name as a parameter on the
command line, so we enter: ’SHDEFINE MONTHS‘‘. Then
using the E)dit command we simply define *’01¢* as ’’January,*
’02¢¢ as ’February,‘‘ >’03‘¢ as ’"March,‘‘ etc. ’X‘* will exit and
updates MONTHS. VAR on disk.

(Note, by the way, that the bottom part of the SHDEFINE help
file:

Exit: X. Exit and Update SH.VAR on Disk

Q. Quit without Updating SH.VAR

is in error. It will say ”’SH.VAR*‘ even when that particular VAR
file is NOT the current named variable file or the one being
edited. This is the result of the programmer Rick Conn incorrectly
hard-coding the text ’SH.VAR‘‘ into SHDEFINE.COM’s help
routine where it should instead be reading the name of the file
being edited.)

Then we write an ALIAS.CMD alias—we’ll name it
TODAY —using SHFILE as follows:
TODAY shfile months
resolve echo today is %$dm $dd, 19%dy
shfile sh
35

It is here that we use SHFILE to define ’MONTHS.VAR*‘ as
the current variable file, so that RESOLVE will know that it is
this file that it must search. Note, of course, the *’%*‘ preceding
the ’$dm*‘, which indicates to RESOLVE to process what
follows as a named variable. ARUNZ processes ‘$dm’ to the
correct month, e.g. ‘11°, so we then have ’%11¢‘ as our named
variable. RESOLVE looks inside MONTHS.VAR and finds that
the variable named ‘11’ is defined as the string ‘NOVEMBER.’ It
sends that to ECHO which then miraculously displays to the user:

" TODAY IS NOVEMBER 12, 1988

The last line in the alias returns the system to SH.VAR, the
default, as the current named variable file.

I find this use of the VAR files as a ’’data file‘‘ to be very
creatively satisfying. Those who know how to write an assembly
"language COM file to do the same thing (DATE.COM, for in-
_ stance) would use a routine inside their source code almost exactly
as what we have in MONTHS.VAR.

Named variables are
the poor man’s assembly language.

The final example of SHDEFINE and SETFILE I will describe is
a routine I used when I wrote a demo graphics program for Mex-
Plus. It is a demo script for users of PC-Pursuit, the national
satellite BBS hook-up for modem star travelers. It will par-
ticularly illustrate the importance of SHFILE and how we often
want to assign different definitions to the same variable depen-
ding on our application, and that therefore we should keep
separate named variable definition files for different purposes.

PC-Pursuit allows access to some 40 or 45 ’’city nodes,**
metropolitan areas users may access via modem. These nodes are
identified by either a city name or a five-letter code. The script 1
wrote displays to the user both the name and the associated code
of the last city called. Since it was essential to me that this infor-
mation be retained even if the user exits completely from Mex-
Plus, I opted to store this information in memory, and the logical
place was in one of the ZCPR3 registers. But of course this
" presents a challenge since one cannot store (and subsequently ac-
cess) a string of text characters but only a single numerical value
in a byte of memory. Here we have SHDEFINE and SHFILE,
and—as always—ARUNZ to the rescue.

I assigned a numerical value to each of the 40 or 45 PC-Pursuit
nodes according to their alphabetical order, and stored this value
in the MexPlus script. I then had the script poke ZCPR3 register
C (3 bytes above the " official** register 9) with this value. Then I
put SHDEFINE to work. I created PCPCITY.VAR with the
command *’SHDEFINE PCPCITY** and defined ‘01’ as ‘Atlan-
ta,” ‘02 as ‘Boston,” ‘03’ as ‘Chicago,” ‘04’ as ‘Cleveland,’ etc.
until all 40 city names were assigned.

1 then created PCPCODE. VAR and used SHDEFINE to assign
‘01’ to Atlanta’s code, GAATL; ‘02’ to Boston’s code,
‘MABOS’; ‘03’ to ‘ILCHI’, the code for Chicago; ‘04’ to ‘OH-

CLE,’ Cleveland’s code, and so forth, PCPCITY.VAR and PC-
PCODE.VAR were now both in place and ready to be accessed by
RESOLVE or SH.

For demonstration purposes in this article I created two aliases
slightly different from that which I used to begin my script but
which perfectly illustrate the concept. The aliases, which display
the code and city name respectively of the just-logged PC-Pursuit
node, are as follows:

PCPCITY:

shfile pepeity

resolve echo last pep city name was %3rtOb
PCPCODE:

shfile pepcode

resolve echo last pep city code was %$riOb

In order to understand what’s going on, let’s take a look at that
last string in each alias. Remember that Jay Sage has enhanced
and expanded the symbols that represent the ZCPR3 registers. To
represent “’the value in register B displayed as two hex digits*‘ we
now have the symbol $rtOb‘¢, and it is this that we are here
using. The "’%°* in front is simply our old friend the symbol that
tells RESOLVE or SH to treat what follows as a named variable.
Suppose I had just logged off from the Lillipute Z-Node in
Chicago. When the PCPCITY alias runs, PCPCITY.VAR
becomes the current variable file and RESOLVE sees:

ECHO LAST PCP CITY CODE WAS %03

RESOLVE knows that ‘03’ is the name of a variable it is being
asked to expand. It then looks to PCPCITY.VAR, finds that in-
side that file the variable ‘03’ is defined as ‘CHICAGO’, and
ECHO displays:

LAST PCP CITY NAME WAS CHICAGO

When we run PCPCODE, SHFILE changes the current
variable file to PCPCODE.VAR, and it is this file that
RESOLVE then searches for the definition of ‘03’. This time we
will be displayed:

LAST PCP CITY CODE WAS ILCHI

Notice the way that we are being very creative in transforming
numeric values in memory into strings of text, here names of
variables. The named variable feature allows us this flexibility and
power. I’'m sure you can think of many more uses for this won-
derful feature of ZCPR3.

I think now we have enough background in the named variables
and their associated utilities. Next column I will describe my big
project about which I wrote at the beginning that inspired me to
set pen to paper in the first place. 1 will whet your appetite here by
saying that it not only uses SHDEFINE to enter the variables into
the *.VAR file and SHFILE to define this file as current, but also
another little-known ZCPR3 utility (SETFILE) that uses the
»system file* feature that I will describe. To top it all off it is all
snugly wrapped inside a ZEX file. Be sure to bring a good ap-
petite next issue for this sumptuous ZCPR3 feast.

Write with any comments. Z you next time... W

If You Don’t Contribute Anything....

....Then Don’t Expect Anything

36

TCJ is User Supported

The Computer Journal/ Issue #36

The Best-Kept Secret in the Modem Industry!

Every active modem user would like to have a high-quality 2400 bps modem. After all, phone
calls aren’t free—and the sQoner you can get your on-line business over with, the sooner you
can have your computer back for other things. Buying a high-speed modem, however, is not a
comfortable decision. On one side are the good-but-overpriced ‘‘name-brand’’ products of
Hayes, Racal-Vadic, Prometheus, USR, Okidata, etc., on the other, cheap-but-how-good-is-it-
and-how-long-will-it-last Taiwanese and Korean imports, usually sold by mail-order houses
with questionable reputations for after-sale service. It’s enough to keep you at 1200 or even 300
bps forever!

Our EMEX 2400 external modem represents a sensible alternative to confronting this
dilemma. The EMEX in made in the U.S.A. by Incomm of Wheeling, Illinois, one of the most
respected manufacturers of professional data communications equipment. Incomm does not
advertise its products, preferring to sell them through a select group of technically-
knowledgeable distributors. We get our EMEXs from one of these companies, a $100
million + /year organization with branches all over the country and a fully-equipped service
department, headquartered right here in suburban Philadelphia.

Not only is the EMEX probably the only U.S.-built modem without an inflated price tag, it’s
also the only modem we know of that’s ‘‘speed-upgradeable.”’ That means that when the
industry settles on a 4800 or 9600 bps standard, your modem can be factory-retrofitted to the
higher speed (and MNP error correction as well) for a modest, under-$100 service charge.
What’s more, the EMEX is, to our knowledge, the only modem sold in the U.S. that carries a
FIVE YEAR WARRANTY—not 90 days or a year. No wonder the EMEX is recommended for
costly, multi-port UNIX systems as well as for “‘little”” CP/M and Z-System computers, Big
Bluish PCs, and other single-user systems.

The EMEX modem is not the cheapest on the market—after all, you can get a no-name 2400
bps unit for under $150. But, considering its exceptional quality and the value added by its
unique up- gradeability and unsurpassed warranty, it’s a true bargain at only $225 plus shipping
and handling (usually $15 or less—the modem itself weighs less than 2 pounds, but the heavy-
duty 3-prong power supply is hefty). The EMEX is truly Hayes-compatible—its command set is
very close to that of the Hayes 1200 Smart-modem(tm), much closer than 2400 bps modems
from USR or even Hayes itself, There are only three DIP switches to set, every thing else can be
set up in terminal mode and saved to non-volatile memory. The EMEX has been tested with all
the popular PD, shareware, and commercial communications software packages, including
ProComm(tm), BOYAN, MEX(tm), CrossTalk(tm), etc. It is also known to work with RBBS-
PC(tm), FIDO(tm), WildCat(tm), BYE and most other remote access system software.

To order your EMEX 2400, gall North American One-Eighty Group at 215-443-9031 with
your MasterCard or VISA handy—or write us at P.O. Box #2781, Warminster, PA 18974, If
writing, be sure to include your name as embossed on your credit card, along with the card
number and its expiration date. If paying by check, please allow $15 for shipping and
handling—if that comes out to be five or more dollars less than $15, we’ll mail you a check for
the difference. If you have questions, we can be reached via modem on the “DHN*’’ system in
Philadelphia (215-623-4040) or *‘Lillipute Z-Node’’ in Chicago (312-649-1730 or 312-664-1730),
just leave a message for ‘‘Bruce Morgen’’ and we’ll usually reply within 48 hours. Thanks for
your time!

The Computer Journal/ issue #36 37

REL-Style Assembly Language for CP/M

and Z-System
Part 2: Getting Started
by Bruce Morgan

Once you’ve acquired a compatible assembler and linker as

" described in the Part I, you’ll be ready to break out you trusty

ASCII editor and key in some simple REL-style assembly
language programs. Note that the editor or word processor you
use must be capable of producing a pure ASCII file, also known
as “‘straight ASCII” or *‘flat ASCIL.” WordStar® and
NewWord® can do this in their ‘‘non-document’’ mode, as can
the standard CP/M line editor, ED.COM. Free-for-the-
downloading programs like VDE266 by Eric Meyer and VDO25
by James Whorton will also do the trick.

We generally use LZED (the Little Z-System Editor) for short
programs—as a matter of fact, when a source file becomes too big
for LZED to load (about 40K), we generally figure it’s time to
break it up into LZEDable pieces. Other suitable commercial
editors include PMate (no longer available, but the favorite of Jay
Sage and Richard Jacobson, two very demanding and trusty
users), Perfect Writer® (a derivative of Mark of the Unicorn’s
famous MINCE editor that Bridger Mitchell uses), and VEDIT.

Since we’ll be presenting our examples in Zilog dialect, you
might also want to equip yourself with a Zilog-to-Intel translation
tool like Irv Hoff’s XZI.COM (from XIZI-x.LBR) if you’re using
RMAC® or M80® in Intel mode.

Segments and the EXTRN Directive

REL-style assemblers and linkers can work with several
relocation bases in a single module or program. Informally called
segments, they are controlled with assembler directives (pseudo-
ops) like CSEG, DSEG, ASEG and COMMON. This means that
within a single source file, the assembler and linker can keep track
of a few distinct sets of instructions and data.

This is an extremely powerful and useful capability, and one
that advanced programmers can take spectacular advantage of.
For now, we will be working strictly with the code segment, con-
trolled by the CSEG directive. CSEG is the default mode of all the
REL-style assemblers mentioned in Part I, so including the ex-
plicit directive in your source file is strictly optional. In CSEG
mode, it is the linker rather than the assembler that determines the
absolute origin of the program, so the first CP/Mish habit you’ll
have to discard is the inclusion of an ‘“ORG 100H” direc-
tive—this can result in 256 bytes of useless filler at the start of
your program after it has been linked.

Anyone with a modicum of experience with assembly language
is familiar with the advantages of structuring repeatedly-used
multi-instruction functions as subroutines. After all, why have
the same code more than once if it can be repeatedly used via
CALL instructions?

In a sizable conventional ASM-style assembly language
program this very good practice usually results in dozens of
subroutines cluttering up the source file, sometimes making it
many times larger than the mainline code that defines the
program’s actual function. For example, a simple program to
send a message to the screen could have this as its mainline code:

38

CALL PRINT

DB BELL ; ding...
DB '"You goofed!’

DB 0 ; terminate
RET

In the ASM style, you’d have to code or copy the PRINT
subroutine into the source file, with MAC you could use the
MACLIB directive to read in an assembly language LIB file that
included the routine. The ASM method is just too darned much
typing, and the MAC alternative will generally introduce a bunch
of unCALLed-for code into the final COMfile.

REL-style coding using SYSLIB makes the entire program
source only slightly larger than the mainline code:

EXTRN PRINT

BELL EQU 07H

CALL PRINT

DB BELL ; ding...
DB "You goofed!!

DB 0 ; terminate
RET

The EXTRN directive tells the assembler that the PRINT
routine isn’t in the source it’s currently working on, so the value
of the label PRINT is left for the linker to resolve. If you use your
editor to make the above code into DING.Z80, you could have
MBS0 assemble it into DING.REL with the command line:

A>m80 =ding.z80/z

The “/z”’ trailing parameter is optional, since the code at this
point is acceptable as either Intel or (rather loose) Zilog dialect.
With RMAC, name the file DING.ASM and use this command:

A>rmac ding $-s pz

Either way, you’ll shortly be in possession of DING.REL, a
Microsoft-format relocatable object file. To make it into a
CP/M-compatible program, you need to use your linker and
SYSLIB.REL, the Microsoft-format library of relocatable
subroutines that includes one called PRINT. SYSLIB’s PRINT is
a rather elaborate version of the ILPRT (In Line PRinT) routine
commonly found in many CP/M programs. To build your
DING.COM with the L80 linker, make sure DING.REL and
SYSLIB.REL are on the same drive and in the same user area and
type:

A>180 /p:100,ding,syslib/s,ding/n/e

With RMAC'’s companion, LINK.COM, this is the command
line to use:

A>1ink ding,syslib[snr)

The Computer Journal/ Issue #36

In either case, the ‘‘s”’ parameter tells the linker to treat
SYSLIB.REL as a library, linking in only the required routines
rather than SYSLIB in its 24K entirety. The additional ‘‘nr’’ in
the LINK command line suppresses creation of a symbol file,
which is something you won’t want to do during your own
program development work—this file (e.g. DING.SYM) is used
by a symbolic debugger like SID, ZSID, Z8E or WADE to allow
use of symbol names as well as numeric addresses in disassembly
and breakpointing operations. To make L80 generate a symbol
file, use a trailing ‘‘/y’’ (no spaces) parameter.

What’s The Big Deal?

Although REL-style’s ability to relieve programming drudgery
should be somewhat apparent, even with as simple an example as
DING, what makes it a truly time-saving technique is the easy,

" free availability of extensive subroutine libraries like SYSLIB.
Take almost any programming project for CP/M or Z-
System/Bgii and SYSLIB (along with its more specialized
brethren, Z3LIB, VLIB and Z33LIB) can shorten development
time and, in many cases, significantly improve the quality of the
finished product.

One of the most onerous tasks faced by CP/M assembly
language programmers is ‘‘simple’’ command line argument par-
sing. Entire programs have gone unwritten because the program-
mer did not want to facing coding YAP (Yet Another Parser).
With SYSLIB, such excuses pretty much evaporate. There’s a
whole family of routines that the SYSLIB help files call ‘‘parsing
aids’’ plus such parsing-related goodies as numeric evaluators,
complete drive/user/filename-to-FCB (CP/M File Control
Block) translators, and specialty parsers for the Z-System en-
vironment.

For an example, suppose your program’s design calls for get-
ting the binary value of the number in the third command line
token. ARGV, SYSLIB’s UNIX-like argument parser could find
the token, and the EVALI10 routine could convert the ASCII
decimal number found there to a register value like so:
extrn argv,evall(

tbuff equ 80h

bell equ 07n

1d a,0ffh

call argv

Jp z,argsok

call print

db bell

db '"Too many args.',0

rst 0 ; abort
argsok: 1d hl, (arg3)

call evalll
; Value is in DE now, go use 1it,
; test 1ts validity, ete....

; ARGV's argument table

argtbl: db 3
argl: ds 2
arge: ds 2
arg3: ds 2

This is a simplified example and assumes that the command line
tail as parsed by command processor has not been corrupted. On
entry, the HL register points to 82h, the first address where a
command token might be found, DE points to the program’s
argument table data structure, and A contains a non-zero value
(we could have stolen the 82h value in the L register and saved a
byte) to signal ARGV not to null-terminate the arguments.

ARGV is then called, it does all the grunt work and fills in the
defined spaces in the table with the addresses of the tokens. the

- defined byte at the head of the table is the maximum number of

arguments ARGV is allowed to handle, it will return with the Z
flag set if that number is not exceeded.

With the token’s address loaded into HL, the EVALI10 routine
is called. This routine returns (in the DE register) the binary
equivalent of the ASCII decimal string pointed to by the HL
register. When EVAL10 returns, HL is pointing at the first non-
decimal character in the string, so an invalid number can be trap-
ped by comparing HL’s contents on return from EVAL10 with its
entry value.

In the next episode of the REL-style saga, we’ll to some file
1/0, along with some Z-System magic with Z3LIB—heck, we
might even start to build something useful while we’re at it. We’ll
also delve into some linkage lore like the mysterious ‘“‘SMEMRY”’
label and provide some handy patch points for RMAC and

14 hl,tbuff+2 PROLINK, so stay tuned. W
1d de,argtbl
Real Computing NS32 public domaln disk #5

(Continued from page 28)

Next Time

In the next installment of this column,
we’ll discuss the NS32081 floating point
unit. National’s FPU is tightly integrated
with the CPU and makes floating point
painless and easy. There may be some
other announcements to make as well.
Until then, liberate your dreams! W

Richard has moved since issue #35, and
his new address and BBS number are as
Sollows:

Richard Rodman
8329 Ivy Glen Ct.
Manassas, VA 22110
BBS (703) 330-9049

The Computer Journal / Issue #36

NS32 Public Domain Software Disks

This is the start of our public domain user disk library
for the National Semiconductor NS320XX series. Your
contributions are needed to make this library grow.

Most disks are available on MS-DOS format 5.25 360K
or 1.2M, or 3.5 720K, but some are only available in a high
density format because of the file size. These excep-
tions are noted in the catalog listing.

The price is $12 per disk postpaid in the U.S.A. and
Canada, or $14 per disk in other countries. Funds must
be in American dollars on a U.S. bank, charge cards are
acceptabie.

L]
NS32 public domain software disk #1
Z32 Cross Assembier for NS32 by Neil R. Koozer

This cross assembler runs under CP/M. It will run un-
der MS-/PC-DOS by using the Z80MU package or any
other Z-80, CP/M emulator. This disk contains 352K in 18
files.

Z32 is a one-pass assembler. It has a somewhat
unusual syntax, but assembles very quickly, even under
the emulator.

NS32 public domain disk #2
A32 assembler for NS32 by Richard Rodman

Originally described in Dr. Dobb’s Journal, 12/86. This
disk contains 120K in 19 files.

SRM—Simple ROM Monitor for NS32
by Richard Rodman
Version 0.7

This is a simple ROM monitor which allows for
memory display and change as well as downloading. it
will fit easlly in two 2716 EPROMs. It assembles with
Z32. The two CHRxxx.A32 files are I/O routines. Edit
SRM.A32 to include the appropriate one. This disk con-
tains 181K in 17 files.

The CompuPro System Support 1 driver routines were
written by Mike Prezbindowski.

NS32 public domain disk #8
€16 C compiler for NS32—Copyright 1987
by Philip Prendevilie

This is a full K&R C compiter. it is NOT public domain
but is released for unlimited free distribution for non-
commercial use only.

it is being furnished on a 1.2M AT-style diskette with
the DECUS C preprocessor. This disk contains 690K in
46 files. Inquire if you can not read the 1.2M AT format.

The DECUS C Preprocessor is from the DECUS sof-
tware library and is furnished as-is. It seems to work
well. Don’t worry about any of the “model"” switches.
The NS32 is an advanced processor that doesn’'t need
any of that “‘memory model” garbage.

Use TCJ Order Form

39

Advanced CP/M
by Bridger Mitchell

BackGrounder ii Update

BackGrounder ii is like no other CP/M
program—it simply feels different. A
touch of the “‘suspend’’ key and you pop
into the background command processor,
a touch of a user-defined macro key and
you can switch to a second program,
literally in mid-sentence. The built-in
calculator, notepad, screen-dump, and
cut-and-paste function turn out to be ex-
tremely handy desk accessories, especially
because results on one screen can be ex-
ported to another task. But the magic of it
all—black magic, perhaps—is the feeling
that comes over you when you first ex-
perience the screen flashing back, cursor
in place, with no trace of having been
away!

BGii and the Z-System stand as twin
pinnacles of advanced CP/M operating
systems. At a conceptual level, they are
orthogonal. By providing memory buffers
for the command processor and ap-
plications and supporting conditional
execution, ZCPR 3.4 allows tasks to
communicate sequentially. By making the
BDOS and command-processor recursive,
BackGrounder ii creates two-way com-
munication between simultaneous tasks,
under user control. When com-
bined—BGii running in a ZCPR 3.4
system—they elevate 8-bit computing into
another dimension. The results are
awesome.

Bringing BGii fully up-to-date to sup-
port the latest ZCPR version 3.4 has been
a largely enjoyable task. I had put it off
more than once, wanting to finish up
DosDisk and then Z3PLUS.

When I finally returned to the BGii
code I was pleasantly surprised to uncover
several new coding shortcuts. They
enabled me to squeeze in almost all of the
““Z34” features and add some new con-
veniences, including enabling the user to
rename the built-in BGii commands. Ex-
pert testing by Cam Cotrill and Jay Sage
greatly firmed up several soft spots. It’s
now the production version and licensed
users can order an update at low cost.

Environmental Programming

A customer of long-standing called the
other night, as I was drafting this column.
He enthused about BackGrounder ii, but

40

then noted that ‘‘it sometimes finds bugs
in other programs!”’

Alas, bugs are always with us, even
when we think we’ve got our own code
pretty solid! This column is going to be
about writing code that is respectful of the
environment in which it is running. The
sage (Sage?) advice collected here, and
culled from the programming experience
of many old hands, surely won’t eliminate
bugs. But it will greatly increase the chan-
ces of your programs living more har-
moniously with a wide variety of CP/M
systems.

Make a Good Start

The command processor starts your
program by calling it. This means that you
can speed up the flow of jobs by returning
to the CCP when your program ter-
minates, instead of causing a warm boot
that reloads the CCP. To do this, you
must save the stack pointer and stay clear
of the CCP in the 2K of memory just
below the BDOS.

Use a local stack for all but the simplest
programs. The command processor’s
stack may not be deep enough for your
functions, BIOS calls, and interrupts.
And that stack could be in the TPA, part
of the CCP that may be overwritten by
your program or data.

Know the Territory

A shockingly large number of programs
assume that they will always be run only in
the environment for which they were writ-
ten. Drop them into a different world and
they almost always injure their host. So,
please, join the environmentalists and
take the responsible programmer’s oath:
Do No Harm! Survey the territory before
plunging ahead, and pose these questions:

Is our host a Z80? An HD641807 A
22807 That determines which opcodes can
we safely use. Is our host running CP/M
Plus? or ZSDOS? What system calls are
available? Is DateStamper running?

Is one of the drives set to MS-DOS
format under DosDisk? If so, we must not
make assumptions about internal data in
the file control blocks on that drive or
about the structure of the disk directory.

Is the host running a Z-System? With
an extended environment? If so, we

Bridger Mitchell is a co-founder of
Plu*Perfect Systems. He’s the author of
the widely wused DateStamper (an
automatic, portable file time stamping
system for CP/M 2.2); Backgrounder (for
Kaypros); BackGrounder ii, a windowing
task-switching system for Z80 CP/M 2.2
systems; JetFind, a high-speed string-
search utility; DosDisk, an MS-DOS disk
emulator that lets CP/M systems use pc
disks without file copying; and most
recently Z3PLUS, the ZCPR version 3.4
system for CP/M Plus computers.

Bridger can be reached at Plu*Perfect
Systems, 410 23rd St., Santa Monica CA
90402, or at (213)-393-6105 (evenings).

should allow for possible non-standard
sized BDOS and CCP modules and get
their addresses from the environment. If it
is not a Z-System, we must avoid any
references to Z-environment parameters;
if we are a Z-tool, put out a short message
of requirements and quit.

Finally, if we should need to know, can
we determine what BIOS and type of
machine our host is?

Figure 1 is a routine called
TERRITORY that does these checks. It
should be called at the very beginning of a
prbgram. If the host system has a Z-
System command processor (ZCPR 3.3 or
later, or BackGrounder ii) the program
will begin with the HL register containing
the address of the Z-System external en-
vironment.

TERRITORY first checks for a Z80-
compatible processor, and then uses ob-
scure differences in register operations to
identify HD64180 and Z280 processors.
The system addresses (BIOS, BDOS, and
CCP) are determined from a Z-System ex-
tended external environment, if there is
one, so that non-standard BDOS and
CCP modules can be used correctly.

The BIOS check demonstrates how to
detect an NZ-COM system and find the
address of the original CBIOS. Several
systems have bios-specific references to
such things as function-key tables, foreign
disk parameter blocks, and extended
BIOS functions that cannot be located
from the address at 0001h when NZ-COM
is running.

The Computer Journal / Issue #36

Figure 1. Determine characteristics of CP/M host's environment

bdos equ 5

; Call this routine immediately.
; Enter with HL = value from command processor.

H
TERRITORY:

3
; Test for z80-compatible cpu.

H

sub a ; sets even parity in 8080
Jp po,ck_189

14 c,9 ; announce 280 requirement
1d de,notz80msg

call bdos

rst /] ; ..and exit to warmboot

H
; Test for HD64180/218D

’
ck_180:
14 be,101h ; prepare to multipy B=1 x C=1
db @EDh, 94Ch ; MLT BC opcode
dec b ; if Z8P, B will be unchanged
jr z,ck_280 ;
14 a,c ; 180 leaves 16-bit result (1) in BC
1d (z180flag),a

H

; Test for 2280

ck_280: 14 a,10 ; Z28@ doesn't use refresh register
1d r,a ; load it
1d c,a ; save it
14 b,8a ; cause some refreshes
loop: djnz loop
1d a,r ; if value hasn't changed
cp c
Jjr nz,ck_rest
1d (z280f1lag),a ; ..it's a 280
k
ck_rest:
push hl ; save possible env address from ccp
call ck_dos ; check type of BDOS
pop hl
call ck_23 check for Z-System

check for DosDisk
check type of BIOS
check for BackGrounder ii

call ck_dosdisk
call ck_blos
call ck_bg

ret

e e we e

H

;
; Check for BDOS version

’
ck_dos: 1d c,12 ; get CP/M version number
14 e,'D' ; with DateStamper id request
call bdos
cp 30h
Jjr c,ck _ds
1d (cpm3flag),a ; set flag if CP/M 3
ret

; Check for DateStamper

k]
ck_ds:
cp 22n
Jr nz,ck_xdos ; .. not CP/M 2.2
1d a,h
cp ‘D'
Jr nz,ck xdos ; ..no DateStamper
1d (dasflag),a ; set flag
1d (dsclock),de ; and save clock pointer

;
; Check extended dos version

H
ck_xdos:1d c,48 ; use extended version number call

The Computer Journal / Issue #36

You can use the flags and addresses
established by TERRITORY for your
own requirements. You might also want
to make a version of it into a simple
diagnostic tool that prints out messages
identifying exactly what the host system
consists of.

Identify Yourself

Unless yours should be a silent
program, announce yourself to the user
with an appropriate message that includes
a version number. All programs change,
get updated, and gain features. You and
other users need to be able to identify
which model they’re driving. Most Z-
System tools use a standard format, which
is well worth adopting for other
programs:

ADPROGNAME Vers. 1.5-terse functional description

If you are the silent type, include suf-
ficient version identification in the data
area so that a debugger can be used to in-
spect the program. Alternatively, include
the information in a help screen. Z-
System tools use the standard ‘‘double-
slash’> command line to request help,
another worthwhile convention:

A>PROGNAME //

Protect the Environment

Save the current drive and user number,
SO you can restore them on exit.

Explicitly allocate memory and check to
prevent overflowing the available tran-
sient program area. The TPA is always the
memory from 100h to the value that is
stored at 0006, less 1 byte.

If there are no RSX’s in memory, that

«value is the entry address of the BDOS
and is the target of the jump instruction at
0005. This is the most common case; in
CP/M 2.2 the CCP will occupy 6 + 800
hex bytes below that. But if an RSX has
been loaded, its address will be at 0006. In
that case the CCP will already be protec-
ted, and you can use all of the TPA and
still return to the CCP.

So, if no RSX is loaded, if you intend to
return to the CCP, and if you are not run-
ning under CP/M Plus, allow 2K of space
below the BDOS. Figure 2 gives a routine
that makes this calculation. It calculates
the largest usable memory that will still
preserve the CCP and returns the address
of the first byte beyond that.

Applications have the right to have
their register values treated systematically
when they call on the operating system for
services. CP/M is an 8080-based
operating system, and from the beginning
it put programmers on notice that it
would not preserve the user’s registers.
That was logical, as the OS needed most

of them for returning values.

The introduction of the Z80 and sub-
sequent 8080-compatible CPUs led to
more compact and more efficient BIOSes.

41

Unfortunately, more than one BIOS
writer began using the additional Z80
registers without preserving their values
for the user. The consequences have been
erratic havoc—programs test out
flawlessly on a variety of systems, then
fail to start, or die mysteriously on
another machine.

The environmentally-conscious rule
Here is: if your code will become part of
the operating system—the BDOS, BIOS
or an RSX extension—save and restore all
Z80 registers you use. Why? Simply
because it’s a far greater burden on an ap-
plication to preserve IX, 1Y, AF’, BC’,
DE’, and HL’ in order to run on an ar-
bitrary system, than it is for the system
programmer to protect exactly those
registers he needs to use.

“If your code will
become part of the
operating system, save
and restore all registers
you use!

The extreme case of environmental
wantonness is a ROM-based-based BIOS
for the early Osborne Executive, which
used alternate Z80 registers for an in-
terrupt service routine, without preserving
them! A moment’s thought should per-
suade you that there is no way an ap-
plication could ever use those registers
and run on that machine. Was the system
designer so naive as to think that only
8080-code would ever be run on an
Executive?

Expect the Worst

Test for all disk errors. Proceeding after
one error (a full disk, a non-existent file,
...) can wreak disaster.

Have a recovery strategy. Tell the user
enough about the problem that he can
alter the environment and try again. Give
him a choice (insert a disk, restart the
program, exit, .. .).

Limit the Damage

Before writing a file, check the disk
space remaining. If there isn’t enough
room, give the user the chance to delete
something, or to insert a new disk.

If a write error occurs, try to close the
file to save as much data as possible. Offer
the user a second chance, by changing
disks or drives. Clean up file fragments af-
ter recovering.

Before printing, test to see if the printer
is ready. If it isn’t, ask the user to make it
ready before retesting. Otherwise, if you
start sending characters, the computer will
hang and you can’t inform the user what'’s
wrong. A short routine to do this, derived

42

’

call
1d
ret

bdos

(dosvers),hl ; save version number and type

; Check for Z-System.
; Enter with HL = value from command processor. If ZCPR 3.3
; or BackGrounder ii, HL -> external environment

H

3
ck_z3:

i

push
inc
inc
ine
1d
14
call
pop
Jr
14
add
14
cp
Jr
inc
1d
cp
jr

1d
1d
1d
add
1d
and
1d

Jr

hl

hl

hl

hl
b,Z3ENVLEN
de,z3envsig
match

de
nz,set_std
hl,1Bh
hl,de
a,(hl) ; Check low byte
e
nz,set_std
hl

a,(hl)

d
nz,set_std

save possible ENV address
Offset to 'Z3ENV'

-

recover de = ENV address

-

Offset to self-reference address

..

Check high byte

(zsysflag),a ; set flag
(2z3env),de ; save environment address

hl,98h ; get env. type

hl,de

a,(hl)

80h ; test for extended type (>= 8@h)

(extenvflag),a ; and save result
z,8et_std

; Set system addresses for a Z-System with an extended environment

’

1d
call
1d
1d
call
1d
1d
call
1d
ret

hl,45h ; -> bios address in environment
addderef

(biosbase),hl

hl,42h

addderef

(bdosbase),hl

nl,3Fh

addderef

(ccpbase),hl

; Set system addresses for a standard system.

H

set_std:

1d
1d
1d
1d
add
1d
1d
add
1d
14
or
ret

1d
1d
call
1d
call
1d
1d
1d

hl, (9901h)

1,9

(biosbase),hl

de,-PEQOh

hl,de

(bdosbase),hl

de, ~800h

hl,de

(ccpbase),hl

a, (cpm3flag) ; 1f not CP/M Plus
a,a ..all done
2

¢,49 for CP/M Plus, w/o extended environment
de,getscbpb ; get system control block address

bdos

1,98h

deref

1,0
(bdosbase),hl
hl,1@2h

offset to address of resident bdos
dereference pointer

The Computer Journal/ Issue #36

1d
ret

’

addderef:
add

deref: 1d
inc
1d
1d
ret

match: 1d
cp
ine
ine
ret
djnz
ret

ck_dosdisk:
1d
call
cp
ret
14

ret

ck_bios:

1d
1d
1d
1d
call
Jr
1d
inc
inc
1d
1d
1d

H

(cepbase),hl

hl,de ; offset pointer by DE
a, (hl) ; dereference HL pointer

a,(de) ; match'B bytes at DE, HL

c,113 ; get DosDisk id

bdos

OFDh

nz ; ..1f not DosDisk, quit
(dosdiskflag),hl

set flag (L) and drive with MS-DOS format (H)

hl, (2001h) ; => normal CBIOS warmboot address
1,90 ; => NZ-COM 1d in NZ-COM pseudobios
de,nzname ; 1f NZ-COM 1d is exactly there
b,NZNAMELEN

match

nz,ck_turbo

hl, (z3env) ; ..get CBIOS (page) addr from

hl ; ..23env+2

hl

h, (nl) ; ..get page

1,0

(biosbase),hl ; ..and save correct ptr to CBIOS

; Check for Kaypro TurboRom

’

ck_turbo:
1d
1d
1d
call
ret
1d
ret

hl,@FFF8h

b, TURBOSIGLEN
de, turbosig
match

nz
(turboromflag),a; set flag

-> location of TurboRom signature

; Check for BackGrounder ii

2

ck bg:: 1d
push
1d
add
id
1d
call
pop
ret
14
1d
call
dec
1d
ret

H
notz80msg:
db

hl, (bdosbase) ; => location of BGii signature
hl

de, -800h+5Bn ; in BGii CCP

hl,de

b,BGSIGLEN

de,bgsig

match

hl

nz

(bgflag),a ; set flag

de,-800h+1 ; => BGii ccp entry +1

addderef ; get that address

hl ; BGii task flag is 1 byte lower
(bgtaskptr),hl ; save ptr to task flag

'Not 280.$!

The Computer Journal / Issue #36

from BackGrounder ii, is shown in Figure
3. It’s important to send a test character (a
carriage return) in order to actually test
the printer itself, because a serial printer
channel will normally have a UART with
a one-character buffer. If the UART’s
buffer is empty, it will report that if is
ready to receive a character, even if the
printer isn’t.

Don’t Take Shortcuts

The TERRITORY routine doesn’t
check for Z-Systems earlier than ZCPR
version 3.3 (which supplies the external
environment address in HL. when it calls
each program). It can be extended to do
so by searching memory for the
PZ3ENV string and verifying that the
self-reference address indeed points to the
environment area being examined.

Note that if the string is found, but the
address test fails, the search must be con-
tinued; it’s quite possible to have more
than one ’Z3ENV*‘‘ string in memory.
Jay Sage tells me there is a group of
programs that, regrettably, take a shor-
tcut and stop searching on the first match.
They fail to run on his system because it-
includes, quite appropriately, a directory
named ’Z3ENV*.

The new Z3PLUS and NZ-COM
systems have exposed shoddy program-
ming practices, bugs that have been
hibernating in widely used utilities. A
common one results from the faulty
assumption that the Z-System external
environment address began on a memory
page (xx00 hex). When this happens to be
the case, then:

14 1,offset

is a shorter route pointing to an environ-
ment parameter than:

1d de,offset
add hl,de

But when it’s not, the path leads over the
cliff.

Clean Up

Use a common exit point. This makes it
easier to ensure that nothing is overlooked
as your program grows to include new
branches.

Close open files and delete temporaries.

Restore the default drive and user.

If you’ve used full-screen terminal
features, leave a clean screen below the
cursor. For some applications you may
want to clear the entire screen. In other
cases, having the final lines of data remain
allows the user to make use of the infor-
mation when she or he enters the next
command; in that case, put the cursor on
the bottom line and send a newline.

Finally, if you have not overwritten the
CCP, restore the stack and return.
Otherwise warmboot.

43

I certainly don’t follow these guidelines
slavishly, though I do pay them regard
before releasing any software for wide
testing. My own temporary programs, run
in a known test environment, are often
rude, slap-dash pasteups to get the job of
the moment done rapidly. But I guard
against giving them out to others. It’s no
favor to pass on code that may explode a
friend’s system at some unsuspecting
moment. Which leads me torecall . ..

A Tale of Too-hasty Design

Some months ago a well-known
programmer, author of CP/M several
BIOSes, gave me a copy of the BIOS to a
particular new computer. 1 was
developing customized operating-system
code for this box, and had a similar
machine for the debugging and testing
cycle. I had re-assembled the BIOS, made
several rounds of modifications that were
converging to a stable new system running
on my box when, poof, I exited from a
program and the system went to lunch. It
wouldn’t reboot, even from power up.

A systems programmer learns (from bit-
ter experiences!) to sit quietly, write down
everything he can remember, and think
long and hard before he touches anything
besides a pencil. Some clues to the crash
may remain behind, on disk or in memory
(although in this case memory was fully
reset). In this case, the A: drive had been a
ram disk with uninterruptible power, so I
assumed that its system tracks had
somehow been damaged.

I decided to make a systematic tour of
the A: disk drive by booting up from a
floppy system, and looking at different
tracks with DU. (Yes, I try always to have
a couple of bootable systems stored away
on floppies for that black day that a hard-
disk or ramdisk goes bad. You should
t0o.) Sure enough, I found what appeared
to be file data in the directory tracks.
More investigation disclosed that the
following tracks, which should have been
the directory, had also been corrupted. 1
took a deep breath, made a mental note to
write down what I could still remember of
what I had typed in during the last two
hours of iterations since backing up the
experimental system code. I continued
checking the disk. Suddenly, several
tracks later, the disk appeared normal.

What could cause such systematic
damage? Hypotheses poured forth, only
to be discarded. Finally, I saw the glimmer
of a pattern. The start of the ram
disk—the start of banked memory—con-
tained data related to the data at the very
end of the disk. Wraparound! The BIOS
had literally gone off the deep end of the
ram disk and started writing on the front,
clobbering the system, the directory, and
the first files after that. As soon as a war-
mboot was attempted, the system loaded
the corrupted system track and was dead.

44

{Continued)
getschbpb:
db 3Ah ; return address of scb
db] ; ''get'' code
3
; 2-System environment signature
H
z3envsig:
db 'Z3ENV!
z3envlen equ $-23envsig
i
; NZ-COM's signature in the pseudo-bios, at offset 90.
H
nzname: db 'NZ-COM'
nznamelen equ $ - nzname
3
; BackGrounder ii's signature
bgsig: db 'BGii!
bgsiglen equ $ - bgsig

H

; Kaypro TurboRom signature, at FFF8h

;
turbosig:db 'PPS!
turbosiglen equ § - turbosig

H

H
; System flags (any NZ value means TRUE)

H

2180flag: db 4 ; HD64180/2180 cpu

2280flag: db] ; 2280 cpu

cpm3flag: db [4] ; CP/M Plus

dsflag: db [4] ; DateStamper

zsysflag: db [} ; Z-System (ZCPR 3.3 or later)
extenvflag: db %] ; extended Z-System environment
bgflag: db 2 ; BackGrounder ii

turboromflag: db [; Advent/Plu*Perfect Turborom

H

dosvers: db 2 ; } a palr version number (hex)
dostype: db [} ;3 'St = ZSD0S, 'D' = ZDDOS, © = ZRDOS
dosdiskflag: db [4] ; } a pair DosDisk

dosdrive: db [} i} MS-DOS format drive
bgtaskptr: dw %}

; BGii internal flag pointer: bit 1 set = upper task

B
; System Addresses

L
23env: aw

] ; Z-System external environment
biosbase: dw %] ; BIOS
bdosbase: dw '] ; BDOS
ccpbase: dw [} ; CCP
dsclock: dw [} ; DateStamper clock

Figure 2. Find Top of Usable Memory that Preserves the CCP

; Return HL = top of usable memory + 1

2’
top_of_mem:

14 hl, (2006) ; load protect address

1d a, (epm3flag) ; if CPM Plus

or a ;

ret nz ; ..return it

push hl ; for CP/M 2.2

1d de, (ccpbase) ; if protect address is below CCP
sbhe hl,de

pop hl

ret c ; .. return it

ex de,hl ; else return CCP address
ret

The Computer Journal/ Issue #36

Figure 3. A Printer-Ready

; Return: NZ if printer is ready

s’
test_list:
call b_lstat H
ret 2z 5
1d c,Pdh ;
call b_list H
call wait ;
’
b_lstat:1d de,2dh-3 H
call becall
or a,a
ret
H
b.1list: 1d de,@fh-3 ;
beall: 1d nl, (9001)
add hl,de
Jp (n1)
walt:
H AN ;
ret

Test

if printer is busy

..return

send carriage-return

..to flush UART buffer
allow printer to process it
and re-test status

call BIOS list-status entry

call BIOS 1list entry

; any 10-20 mS routine

Computer Corner

A hot theory. But where was the bug? 1
consulted with the author, and then he
remembered— he’d given me the large
ramdisk version of the BIOS. With less
ram installed on my box the addressing
had wrapped around.

I wasn’t pleased to learn he’d
overlooked putting in a runtime check for
the amount of memory the system
possessed. A simple test to make, yet
because it was omitted, I now had several
hours of reconstructing and testing files
ahead of me,

" This bug was in hibernation, waiting to
byte just when a large disk filled up. Only
extreme testing is likely to have disclosed
it before it zapped a directory on a
customer’s machine. We were lucky it
happened when it did. Yet it could have
been prevented, by systematic design. En-

vironmentally conscious programming
would have done it.
Identifying the BIOS

How can a program determine who its
host is? What hardware is available?
Digital Research (DRI) had no BDOS
function to return a version number in
CP/M 1.4 and never did introduce one for
identifying the BIOS. I have no idea why
DRI failed to anticipate this question; a
BIOS call to return version information
seems now the obvious way to do things.
And MSDOS is no better.

Anyway, we are stuck with CP/M’s
warts; there is no portable BIOS call that
will identify an Ampro from a Kaypro

The Computer Journal / Issue #36

from an S-100 box. Even if a particular
manufacturer had the vision to include
this entry point, it’s catch-22. We can’t
safely use the call until we know that it’s
available!

The best approach is to identify the
BIOS by reading memory bytes in the
BIOS. Every BIOS should include a
unique signature and version information.
The signature can be an ASCII string,
such as ”’PPS*‘ (in the Advent/Plu*Per-
fect TurboRom BIOS) or ’XBIOS‘* (in
the XBIOS for SB180’s), at a known of-
fset from the start of the BIOS. Once the
program has identified the type of BIOS,
it knows it can make an extended BIOS
call, if one has been provided, to obtain
additional information. The XBIOS
system, for example, provides infor-
mation on the available hardware devices
and their corresponding ASCII names in
the system.

The TERRITORY routine includes a
ck_bios routine to identify Kaypro
systems with a TurboRom BIOS and
systems running NZ-COM. Other checks
can be added to identify other particular
systems.

Unfortunately, a number of BIOSs
were written by people who apparently
never thought others might write software
for their very computer! In these cases,
the safest approach is to tell the user in a
message that the type of BIOS cannot be
determined, and ask him to confirm or en-
ter the model manually before
proceeding. A

(Continued from page 48)

customer support. WordStar now
provides free support for six months. A
move closer to WordPerfect’s support,
but not far enough for many businesses.
Another business need of late is graphic
support—WordPerfect yes, WordStar no.
WordPerfect supports a number of
graphic interfaces which make letterheads
and newsletters considerably better. I
have never found this a problem as I
always paste up my work, integrating pic-
tures and text at that time. I know the in-
dustry is moving toward being able to do
both on one machine, but I still (at least
for now) say I can do it faster with a waxer
than a desk top publisher (that is however
a different article).

One major point which could set the
programs apart for some is the ability of
WordStar to be changed. In WordPerfect
you can set some of the variables, but
most of the user interface is fixed
(changed only at the factory). WordStar
however has always provided a patch list
and program to make changes. These
changes can be important too. Suppose
you are using a not so standard version of
PC. WordStar patches shows you where
and what variables to change so that you
can handle those problems.

Now not everybody will want to change
parameters or even be able to understand
what you are doing. That of course is why
WordPerfect is completely content to let
the factory do it. I have known people
however that had used a certain word
processor for many years and changed all
the key codes in WordStar to match their
previous system. I guess I would call this
the advanced system user.

That is about all the differences I can
find. I must admit my study is not
exhaustive but then each company is
trying to be one up the other. So if you
find a difference, 1 am sure it will not be
there the next version.

Reviewing

In summary about the two programs,
the point of division occurs, in when and
how you were trained. If you started back
in the beginning like I did, where you
learned by yourself, you will find Wor-
dStar more to your liking. If you are a
new comer to computers and started in
some class or other, WordPerfect may be
what you started on and will continue to
be excellent for you. Remember, both of
these programs are excellent and have few
faults. I find WordStar designed for the
casual and special user, while WordPer-
fect has become very popular with the
larger middle group of trained workers.

45

The Home Front

What is happening on the home front is
work and more work. I have spent far too
many days lately looking for work. While
not out pounding doors, I have been
pounding nails around the homestead.
Our ten acres is badly in need of work,
and I dare say I will be doing roofing and
carpentry long into the winter months.

"Until some of that work gets done, my
evenings are spent working on software
projects and not hardware. The WS/WP
comparison was a series of nights. I have
been having some problems with my Atari
ST in trying to get it to do fractals under
Forth. It is beginning to look like I should
do the fractals on the NOVIX first, but I
do so want to be able to compare PCs,
STs and the NOVIX running essentially
the same code and program.

I have just read the articles on the
NEXT computers. 1 think they are ex-
cellent in design but can see Job’s influen-
ce. Apple users will remember the
problems they have always had with disk
formats and disk hardware. Well here it is
again, all the hardware for the disks is
part of the main system. That has some
advantages, but makes big headaches for
others wishing to modify or use cheaper

components. One feature little shown is
the NuBus interface which the Mac IIs use
as well. This should certainly add some
fuel to their standard interface.

Speaking of standards interface, the AT
and PS/2 battle still seems to be going on.
I feel the modified AT bus will win out in
the long run, with the PS/2 never reaching
much impact, especially in after market
additions. The standard bus keeps getting
better as several companies are making
PC and AT compatible system with that
bus. I have even read where the VME bus
(long the home of the 68000) will have PC
compatible boards. This really goes to
show how a product can develop a life of
it’s own. It may have started out the sole
idea of IBM but everybody now calls it
theirs.

Hardware Conclusions

1 have a note here, which I have been
forgetting to include. A long time ago 1
added 5.25 inch drives to the Atari ST. I
have many brands floating around and
found one of them unable to work. After
much head shaking and looking, 1
discovered the input lines were terminated
with 150 ohm resistors. Normal values are
470 or 680 ohms. Changing to the higher

values solved all the problems. Those were
Mitsubishi drives, but I feel that problem
could exist with any system or drive type.
Just check a problem line with a scope or
voltmeter and make sure it drops below
0.8 volts and goes above 3.0 volts. At 150
ohms my signal lines were not dropping
below 2.0 volts.

My hardware bits of wisdom for this
issue have to do with soldering irons. One
end is hot, the other cold, and one who
grabs the wrong end seldom forgets
which,

WordPerfect 5.0 Upgrade

81 North State Street

Orem, UT 84057

Phone (800) 222-9409

1. Send $60

2. Letter with Name/address

3. Indicate number of copies

4. Indicate 3.5 or 5.25 media

5. Include ORIGINAL TITLE page

WordStar Release 5.0 (PC ONLY)
(800) 227-5609

1.$129.00

2. Have serial of CP/M version

Back Issues Available:

Issue Number 18:

* Parallel Interface for Apple Il Game Port
¢ The Hacker's MAC: A Letter from Lee
Felsenstein

* S$-100 Graphics Screen Dump

* The L5-100 Disk Simulator Kit

* BASE: Part Six

* Interfacing Tips & Troubles: Com-
municating with Telephone Tone Controi,
Part 1

issue Number 19:

¢ Using The Extensibility of Forth

* Extended CBIOS

* A $500 Superbrain Computer

« BASE: Part Seven

* Interfacing Tips & Troubles: Com-
municating with Telephone Tone Control,
Part 2

* Multitasking and Windows with CP/M: A
Review of MTBASIC

Issue Number 20:

¢ Designing an 8035 SBC

* Using Apple Graphics from CP/M: Turbo
Pascal Controis Apple Graphics

* Soldering and Other Strange Tales

* Build a S-100 Fioppy Disk Controller:
WD2797 Controlier for CP/M 68K

issue Number 21:

¢ Extending Turbo Pascal: Customize with
Procedures and Functions
¢ Unsoldering: The Arcane Art

46

* Analog Data Acquisition and Control:
Connecting Your Computer to the Real
World

* Programming the 8035 SBC

Issue Number 22:

* NEW-DOS: Write Your Own Operating

System
* Variability in the 8DS C Standard Library
e The SCSi Interface: Introductory
Column

* Using Turbo Pascal ISAM Files
¢ The AMPRO Little Board Cotumn

Issue Number 23:

* C Column: Flow Control & Program
Structure

e The Z Column: Getting Started with
Directories & User Areas

* The SCS! interface: Introduction to SCS{
s NEW-DOS: The Console Command
Processor

* Editing The CP/M Operating System

¢ INDEXER: Turbo Pascai Program to
Create Index

* The AMPRO Little Board Column

Issue Number 24:

¢ Selecting and Building a System

* The SCSI Interface: SCSI Command
Protocol

* Introduction to Assembiy Code for CP/M
* The C Column: Software Text Filters

* AMPRO 186 Column: Installing MS-DOS
Software

* The Z Column

* NEW-DOS: The CCP Internal Commands
e ZTIME-1: A Realtime Clock for the AM-
PRO Z-80 Littie Board

Issue Number 25:

Repairing & Modifying Printed Circuits
Z-Com vs Hacker Version of Z-System
Exploring Single Linked Lists in C
Adding Serial Port to Ampro L.B.
Building a SCSt Adapter

New-Dos: CCP Internal Commands
Ampro '186 Networking with SuperDUO
ZSIG Column

Issue Number 26:

¢ Bus Systems: Selecting a System Bus

¢ Using the SB180 Real Time Clock

¢ The SCS! Interface: Software for the
SCS! Adapter

* Inside AMPRO Computers

* NEW-DOS: The CCP Commands Con-
tinued

* ZSIG Corner

* Affordable C Compilers

¢ Concurrent Muititasking: A Review of
DoubleDOS

Issue Number 27:

¢ 68000 TinyGiant: Hawthorne's Low Cost
16-bit SBC and Operating System

* The Art of Source Code Generation:
Disassembiing Z-80 Software

¢ Feedback GControl System Analysis:

The Computer Journal/ Issue #36

Using Root Locus Analysis and Feedback
Loop Compensation

¢ The C Column: A Graphics Primitive
Package

¢ The Hitachi HD64180: New Life for 8-bit
Systems

¢ ZSIG Corner: Command Line Generators
and Aliases

¢ A Tutor Program for Forth: Writing a For-
th Tutor in Forth

« Disk Parameters: Modifying The CP/M
Disk Parameter Block for Foreign Disk
Formats

Issue Number 28:

* The ZCPR3 Corner
Issue Number 30:

* Doubie Density Floppy Controlier

» ZCPR3IOP forthe Ampro L.B.

¢ 3200 Hacker’s Language

* MDISK: 1 Meg RAM disk for Ampro LB,
part 2

* Non-Preemptive Multitasking

¢ Software Timers for the 68000

¢ Lilliput Z-Node

* The ZCPR3 Corner

e The CP/M Corner

Issue Number 31:

e Starting your Own BBS

* Build an A/D Converter for the Ampro
L.B.e HD64180: Setting the wait states &
RAM refresh, using PRT & DMA

* Using SCSI for Real Time Control

.» Open Letter to STD-Bus Manufacturers
* Patching Turbo Pascal

¢ Choosing a Language for Machine Con-
trol

Issue Number 29:

+ Better Software Filter Design

+ MDISK: Adding a 1 Meg RAM disk to
Ampro L.B., part one.

* Using the Hitachi HD64180: Embedded
processor design.

* B8000: Why use a new OS and the 680007
¢ Detecting the 8087 Math Chip

* Floppy Disk Track Structure

e Using SCSI tor Generalized I/O

¢ Communicating with Floppy Disks: Disk
parameters and their variations.

* XBIOS: A replacement BIOS for the
SB180.

¢ K-OS ONE and the SAGE: Demystifing
Operating Systems.

¢ Remote: Designing a remote system
program.

* The ZCPR3 Corner: ARUNZ documen-
tation.

Issue Number 32:

* Language Development: Automatic
generation of parsers for interactive
systems.

* Designing Operating Systems: A ROM
based O.S. for the Z81.

¢ Advanced CP/M: Boosting Performance.
e Systematic Elimination of MS-DOS
Files: Part 1, Deleting root directories & an
in-depth look at the FCB.

e WordStar 40 on Generic MS-DOS
Systems: Patching for ASCIl terminal
based systems.

* K-OS ONE and the SAGE: Part 2, System
layout and hardware configuration.

* The ZCPR3 Corner: NZCOM and ZC-
PR34.

{ssue Number 33:

s Data File Conversion: Writing a filter to
convert foreign file formats.

¢ Advanced CP/M: ZCPR3PLUS, and how
to write self relocating Z80 code.

¢ DataBase: The first in a series on data
bases and information processing.

» SCSi for the S-100 Bus: Another example
of SCS1I's versatility.

* A Mouse on any Hardware: Implemen-
ting the mouse on a 280 system.

¢ Systematic Elimination of MS-DOS
Files: Part 2—Subdirectories and extnded
DOS services.

e ZCPR3 Corner: ARUNZ, Shells, and pat-
ching WordStar 4.0

Issue Number 34:

* Developing a File Encryption System:
Scramble data with your customized en-
cryption/password system.

e DataBase: A continuation of the
database primer series.

e A Simple Multitasking Executive:
Designing an embedded controller

multitasking system.

¢ ZCPR3: Relocatable code, PRL files,
ZCPR34, and Type 4 programs.

¢ New Microcontrollers Have Smarts:
Chips with BASIC or Forth in ROM are easy
to program.

¢ Advanced CP/M: Operating system ex-
tensions to BDOS and BIOS, RSXs for
CPIM 2.2.

* Macintosh Data File Conversion in Tur-
bo Pascal.

Issue Number 35:

¢ All This & Modula-2: A Pascal-like alter-
native with scope and parameter passing.

¢ A Short Course in Source Code
Generation: Disassembling 8086 software
to produce modifiable assem. souce code.
+« Real Computing: The National
Semiconductor NS32032 is an attractive
alternative to the Intel and Motorola CPUs.
¢ S-100 Eprom Burner: a project for S-100
hardware hackers.

* Advanced CP/M: An up-to-date DOS,
plus details on file structure and formats.

* REL-Style Assembly Language for CP/M
and Z-System: Part 1-selecting your
assembiler, linker, and debugger.

e ZCPR3 Cornerr How shells work,
cracking code, and remaking WordStar 4.0.

7 S S S e s S S e e s e |
l R
| TCJ ORDER FORM {
|
| Subscriptions U.S. Canada Surface Total :
: Foreign |
|
| 6 issues per year |
| O New 0O Renewal lyear $16.00 $22.00 $24.00 |
}~ 2years $28.00 $42.00 |
I Back Issue§ ———— — —— — — — — — $3.50 ea. $3.50 ea. $4.75 ea. }
I Sixor more--———Hm—" H- —— — —— — $3.00 ea. $3.00 ea $4.25 ea. I
#s
I Total Enclosed {
| |
= All funds must be in U.S. dollars on a U.S. bank. I
: O Checkenclosed O VISA O MasterCard Card# I
: Expiration date Signature =
| |
1 Name |
: Address I
= City State Z1P :
| I
| The C ter J | |
i € Lomputer Journa |
= 190 Sullivan Crossroad, Columbia Falls, MT 59912 Phone (406) 257-9119 l .
| |
e e

The Computer Journal / Issue #36

47

THE COMPUTER CORNER

by Bill Kibler

It seems like so many years ago that I
started writing for Art. It seems like even
“ longer ago when I first used Wor-
dStar + ed. I think I got my first copy, ver-
sion 2.8 beta copy, just after becoming
their 25th employee. Back then MicroPro
thought they could do no wrong.
Everyone wanted a copy and they could
care less what they had to go through to
get one.

Times have changed. It is now eight
years later and I have spent hundreds of
hours using WordStar. It is hard to
believe but I have been writing articles for
Art for almost six years now. I have done
this corner for over four years (seems like
longer). WordStar is not the only word
processor I have used either. For a while [
had to use WordPerfect+e4 in my
Masters program and have since taught
several how to use it.

It is pretty hard these day not to find
some magazine which hasn’t reviewed the
two. Most of the time it comes out that
the reviewers like WordPerfect. 1 never
. have agreed with them, so I decided to
buy both of their version fives and com-
pare them.

WordPerfect 5.0

When WordPerfect 5.0 came out, they
offered upgrades from 4.XX (whatever)
for $65. 1 had just returned from the SOG
and was visiting a friend who was using
5.0. He showed me where to get the
upgrade and why he liked the new version.
I mumbled something about still not bet-
ter than WordStar and he shook his head,
saying ‘‘got em beat by a long shot.”
Most of that was after he explained how
they helped him on the phone to do things
it was suppose to do but didn’t for him.
We spent lots of time talking about how
WordPerfect has 144 phone lines and
operators 24 hours a day seven days a
week. Hard to beat support like that even
if the product didn’t work, which is not
the case.

I have my copy now, took about three
week after I mailed them a check and the
inside front cover of my version 4.0. What
I got was 10 new disk, some sales
literature, a pamphlet listing changes, new
manual pages (sorted and divided dif-
ferently than before), and a 400 page

48

workbook. The workbook and their
tutorial program give you guided hands
on practice with the most common word
processing activities. I have mainly played
with their newsletter example which I will
have more to say about later.

WordStar 5.0

Since I bought version 4.0 for CP/M, 1
have received a newsletter from
MicroPro. An 800 number was listed for
updates and customer service. When their
version 5.0 came out for the MSDOS/PC
systems, they covered it and stated they
had a special upgrade price for all their
users. Well, that price is not as good as
WordPerfect, but $129 is much better
than their full list price. True that is twice
what the WordPerfect price is, but then 1
like WordStar better, or at least that was
my premise.

I called the 800 number on Wednesday,
and the lady said it would take up to four
weeks. On Friday UPS dropped it at my
door. That means they put it in UPS’s
hands the same day I called, which is what
I call service. I just wish the operator had
been a little more knowledgeable about
the true shipping schedule. I could tell
that the two companies had been reading
the same complaint columns in computer
magazines as I got 10 disks, a short pam-
phlet on what is new, and a bound work-
book like manual for version five. A big
difference is that WordStar has also in-
cluded some other software in that set of
ten disks. You get a telecommunications
program, a file finder program, and PC-
Outline by Brown Bag software. The
manual has 550 pages and is broken down
several ways; training, alphabetize topics,
extra programs, references section (Wor-
dPerfect’s manual is the same also).

Some Comparisons

A long time ago I explained how I felt
documentation should be prepared, and
both companies have pretty much
followed what I said. It is not that I am an
authority, it is just, that is what users need
to understand and to properly use
programs. Any company staying in
business long enough will find those facts
out, some faster than others. Of the two
manuals, I might lean toward WordStar

over WordPerfect on one fact—it is all
bound in one book. If you are learning
some feature and need to seek the referen-
ce section WordPerfect has it in a dif-
ferent book. That is a pretty minor dif-
ference if you ask me, and shows just how
close the two are in quality.

The place that you find the most dif-
ference is the user interface. Both
programs now support almost all printers
made. Each has special abilities to handle
the laser printers. The number of fonts
possible are endless in most cases. They
both have features to display the page
completely.

My complaint about WordPerfect from
day one still exist, and is why I still prefer
WordStar. Untrained and casual users will
find WordStar easier to use, especially
with their new help level 4. This new level
uses pull downs and does away with the
old ““classic’” menus. The main menu is
replaced with three choices; files, other,
additional. This gives the user a known
place from which to start. In WordPerfect
they start at the blank screen approach. If
you haven’t been trained in WordPerfect,
it is impossible to find your way around
the program. I must say that most users
do not complain (at least to me) about the
hundred or so options they need to learn
to use the program.

The WordStar approach is similar to
the Xerox papers (the source of Macin-
tosh’s interface) where you are led
through a series of menus to the desired
function. Typically this is never more than
two keystrokes to get the desired action,
but it can be more. WordPerfect on the
other hand uses no such menus. Yes many
of their choices do appear in menu selec-
tions, but the documentation and ap-
proach is not based on that idea. I have
not found a causal user of WordPerfect.
Either you use it as your sole processor or
not at all. It reminds me a bit of many
people and their love hate relationship
with UNIX. Power users love it, casual
user never know what is going on.

The Major Differences

A couple major differences do exist
which many organizations can’t do
without. We talked before about the

{Continued on page 45)

The Computer Journal/ Issue #36

AUS)TIN
*

COMPUTER
SYSTEMS

YOUR CHOICE

AUSTIN 386/20

CACHE

Standard Features:

* Intel 80386 Double Sigma
Processor runs 20 MHz

* 30 MHz Throughput
Performance

* American Made Mother-
board Expands to 8 MB,
32 Bit RAM

* 64K Static RAM Cache
@35 Nano's

* 1-32 Bit, 6—16 Bit,
I -8 Bit Slots

* DeskTop Chassis
— Tower Optional —

* Dual Floppy/Harddisk
Controller

*3.5" 1.44 MB or 54" 1.2 MB
Floppy Disk Drive

* Keytronics Enhanced 101
Keyboard

*» 2 Serial Ports & 1 Parallel Port

* Clock with Battery Backup

* 80287 & 80387 Math Co-
Processor Support

* Users & Technical Reference
Manual

* Built-in Setup & Diagnostics
Program

* Fully DOS 4.0 & 0S8/2
Compatible

Austin Gomputer Systems: Heavy on
Power and GE Service, Light on Price

* VGA Color Monitor

* VGA 640-480 Analog Display
Adapter

* 80 MB 28 mls Fast Access
Hard Drive

* 1 Full MB of 32 Bit RAM

* GE 1 Year On-Site Service
Contract

3795

Complete as shown

AUSTIN 286/12.5
CACHE

Standard Features:

s True Intel 12,5 Mz
80286 Processor

* Dual Floppy/Harddisk
Controller with 1:1 Inter-
leaving & 32K Harddisk
Cache

| B 1 @ ° Amcerican-Made Mother-
‘1]‘:";,’5'2‘1,‘»“:;}?; - f‘; x‘? bouard Expands to 4 MB,
UL Gk 1% 16 MB total

* Shadow RAM bufters
slow BIOS into Fast RAM
*3.5" 144 MB or 507
1.2 MB Floppy Disk Drives
* Phoenix B10S
* Keytronics Enhanced
101 Keyboard

* EGA Display Monitor

* Paradise EEGA Autoswitch
Display Adapter

* 40 MB Fast Access Harddisk

» 1 FULL MB of RAM

* Supports EMS LIMM 4.0

Standard * 2 Serial Ports &
*GE1 On-Site Service I Parallel Port
Contrif::r ! Tvie * 1 PS/2 Mouse Port

¢ Clock with Battery Backup
* 80287 Math Co-Processor
Socket

$2295%°

Austin | WONO | EGA VGA | VGA DELUXE Complete as shown * FCC Class B Approved
38620 | 7206350 | 640X350 | G40X480 | 800X600 i ! * Users & Technical
40 we* | $3095 | $3495 | $3595 | $3795 288's WL SCAN Reference Manual
s o |$3395 | $3695 $3995 40 Mo* $2445 * Diagnostic & Utility
0 MB- Programs
2o we| $4795 | $5195 | $5395 | $5495 11 $2745 * Fully DOS 4.0 & 08$/2
“ALL HARDDAIVES ARE FAST ACCESS =40 MLS or LESS *ALL HARDDRIVES ARE FAST ACCESS —40 MLS or LESS Compatible

% GE Computer Service

CALL AND ORDER TODAY!

1.800-752-1577
Fax (512) 454-1357 e
Overseas {512) 458-5106

MONDAY ~FRIDAY: 8AM—7PM CENTRAL

SATURDAY: 10AM-5PM

AUSTIN

COMPUTER
SYSTEMS

7801 N. LAMAR - SUITE E-198
AUSTIN, TEXAS 78752

MIPS Test and Bottomline:
Performance You Gan Really Gount On

AUSTIN 286/12.5 BOTTOM LINE
- AUSTIN 386 MIPS | [, AUSTIN 266 MIPS 261230
: FEATURES 286:12.5 COMP CLUB CMO ZEDS ADD
4.33 One-year on site
2.01 service included YES NO | NO | MO | NO L 1]
4 2 200 ~ Uses surtace mount |
3.54 construction YES NO | N0 | MO | WO NO
1.50 : 1.80 Supports up to 4 mb N
- of ram on the YES N0 | NO | NO | NO L.
1.58 ey -
3 1.5 intorleaving YES | N0 | %0 | W0 |YES| NO
2.52 6 layer motherboard | YES MO | NO | NO L]
640 - 480 EEGA auto-
2 1 switch dispiay YES NO | NO | NO L
adapter
- AR ST - st oS Built-in mouse port YES n NO | NO | MO NO
"
COMPAD | MODELTO} SYSTEM 388 20 WOUEL Su| pmemwm | sysTem | 285 Cache Motherboard made
1 wss | ez | wez | cacwe | |0.5] woem | sz e inUSA. YES | M 1 YES | 0 l W | %

IBM. AT, OS/2. AND PS/2 ARE. TRADEMARKS OR REGISTERED TRADEMARKS OF THE IBM CORPORATION. OTHER BRANDS AND PRODUCT NAMES ARE
TRADEMARKS OR REGISTERED TRADEMAFKS OF THEIR RESPECTIVE HOLDERS. PRICES AND SPECIFICGATIONS ARE SUBJECT TO CHANGE WITHOU T NOTICE

