Programming - User Support
Applications

Issue Number 40 September / October 1989 $3.00

Programming the LaserJet
The Escape Codes

Beginning Forth Column

Introduction

Advanced Forth Column

Variant Records and Modules

LINKPRL

Making RSXes Easy

WordTECH’s bBXL

An alternative to Expensive Business Software

|

|

|

|

Advanced CP/M

‘ ZEX 5.0 - The Machine and the Language
|

Programming for Performance
Assembly Language Techniques

Programming Input/Output With C

Keyboard and Screen Functions

The Z-System Corner

Real Computing s
The National Semiconductor NS320XX

ISSN # 0748-9331

The Computer Journal

Editor/Publisher
Art Carlson

Anrt Director
Donna Carison

Circulation
Donna Carlson

Contributing Editors
Bill Kibler
Bridger Mitchell
Clem Pepper
Richard Rodman
Jay Sage
Dave Wenstein

The Computer Journal is pub-
lished six times a year by Publishing
Consultants, 190 Sullivan Crossroad,
Coulmbia Falls, MT 58912

(406) 2579119

Entire contents copyright © 1989
by Publishing Consultants.

Subscription rates—$16 one year
{6 issues), or $28 two years (12 is-
sues) in the U.S., $22 one year in
Canada and Mexico, and $24 (sur-
face) for one year in other countries.
All funds must be in U.S. dollars on a
U.S. bank.

Send subscription, renewals, ad-
dress changes, or advertising in-
quires to: The Computer Journal, 190
Sullivan Crossroad, Columbia Falls,
MT 59912, phone (406) 257-9119.

The

COMPUTER

JOURNAL

Issue Number 40

[e [1 (o) 5 - | IR

Programming the Laserdet..............
Using the PCL escape codes. By Art Carison

Beginning Forth Column
The begininning in a series for those who have
hesitated to learn the language.

By David Weinstein.

Advanced Forth Column.........

For those who are ready for advanced topics.
By Dave Weinstein.

LINKPRLoiiiiriiiniinennceeennnecenes

Generating the bit maps for PRL files from a REL
file. By Harold F. Bower.

WordTECH’s dBXLcococeeriennneeeen.

Save money by writing your own custom
designed business program.
By Dr. Charles W. Wiley, DVM.

Advanced CP/Mccccervvenes

Using ZEX, the Z-System executive input
processor. By Bridger Mitchell.

Programming for Performance
Advanced assembly language techniques for
improved performance. By Lee A. Hart

Programming Input/Output with C..
Using C's keyboard and screen functions.
By Clem Pepper.

The Z-System Cornercccecuueen
Remote access systems and BDS C.
By Jay Sage.

Real Computing reererereeanns
By Richard Rodman.

Computer Cornerccccvvevennnennnan
By Bill Kibler.

September / October 1989

.......................... 3

..... ceeneeennennenenns 10

........................ 16

.......... e 23

........................ 41

Plu*Perfect Systems == World-Class Software

(27 o3 s (T o T0 [Lo [T $75

Task-switching ZCPR34. Run 2 programs, cut/paste screen data. Use calculator,
notepad, screendump, directory in background. CP/M 2.2 only. Upgrade licensed
version for $20.

Auto-install Z-System (ZCPR v 3.4). Dynamically change memory use.
Order Z3PLUS for CP/M Plus, or NZ-COM for CP/M 2.2.

Z-System segment loader for ZRL and absolute files. (included with Z3PLUS and
NZ-COM)

P41 010 1 3OO $75, for ZRDOS users just $60

Built-in file DateStamping. Fast hard-disk warmboots. Menu-guided installation.
Enhanced time and date utilities. CP/M 2.2 only.

DOSDISK «oeeeeeeeeeeeeeeeeeeesceeesssnsesesanesesssnnneseeaanaseesaammsssassasssssnnnns $30 - $45

‘Use MS-DOS disks without copying files. Subdirectories too. Kaypro
w/TurboRom, Kaypro w/KayPLUS, MD3, MD11, Xerox 820-1 w/Plus 2, ON!, C128
w/1571 -- $30. SB180 w/XBIOS -- $35. Kit -- $45. Kit requires assembly language
expertise and BIOS source code.

MULTICPY ...ttt st s s ssis s ssssnnnnssssssasannsnnassansnsnnsnnsnsnnn $45

Fast format and copy 90+ 5.25" disk formats. Use disks in foreign formats.
includes DosDisk. Requires Kaypro w/TurboRom.

8 =3 1] T PPt $50

Fastest possible text search, even in LBR, squeezed, crunched files. Also output
to file or printer. Regular expressions.

To order: Specify product, operating Plu*Perfect Systems
system, computer, 5 1/4" disk format. ~ 41023rd St.
Enclose check, adding $3 shipping ($5 Santa Monica, CA 90402

foreign) + 6.5% tax in CA. Enclose invoice
if upgrading BGii or ZRDOS.

BackGrounder ii ©, DosDisk ©, Z3PLUS ©, JetLDR ©, JetFind © Copyright 1986-88
by Bridger Mitchell.

The Computer Journai

Editor's Page

Put the FUN back in Computers

When 1 first became involved with mi-
crocomputers in 1982, I did it because
they were fun. I rationalized that I bought
the Apple II+ because I needed it for
wordprocessing and data management,
but the truth is that I wanted to learn what
computers could do. We had an active
group of enthusiasts who met regularly to
talk computers and help each other with
problems. It was a very fulfilling hobby.
Now, everybody is too busy and too buried
in details to spend any time enjoying com-
puters.

We started with small limited machines
which provided a lot of chalienge and en-
joyment. Now we have very powerful large
machines which are drudgery. It is time to
separate the fun and the work so that we
can again enjoy computers as a hobby. It is
difficult to dissociate the work-for-profit
and hobby aspects when they are per-
formed on the same equipment and in the
same setting. That’s why many of our
readers work on PC-DOS, VAX, or
UNIX systems, and then go home and
hack on a CP/M or some other system.

Starter PC systems can be obtained for
very reasonable prices, but they do not
lend themselves to hobby type hacking.
They are great for data management if
your hobby is stamp collecting, but then
again, that is the hobby of stamp collecting
and not the hobby of computers. CP/M
systems are much more suitable for hobby
hacking because an average person can
understand and modify the operating sys-
tem. The very features which make the PC
so suitable for business functions are the
same features which make it unsuitable
for computer hobby hacking. But, we have
to face the fact that every year there will
be fewer CP/M systems around to serve a
greater number of people. We'll have to
find a way to enable people with different
systems to share in areas of common inter-
est.

Photography is a good analogy. Peopie
using 40 year old 4x5 Speed Graphics, 2V
X 2% Bronicas, and the latest 35mm auto

The Computer Journal / #40

everything marvels can discuss common
interests such as which films have the fin-
est grain, the fine points of composition,
how to be at the right place at the right
time for wildlife pictures, etc. They don’t
spend much time talking about which but-
ton to push when, because, after all, the
camera is only a tool and they’ll probably
be using a different one next year. In fact,
most of them have a number of different
cameras and choose the right one to suit
the application.

In computers, we have been cliquish,
dividing ourselves by operating system,
language, or other minor interest. It is
time to change this and to include areas of
common interest where people with differ-
ent systems can participate. This does not
mean that we should not include some sys-
tem specific subjects such as the Z-System
crew’s excellent series—in fact I would like
to do some articles on S-100 or BIOS
bashing. But there should also be some
areas which are system independent.

System Independence

Because of the current hardware and
operating system architectures it is difficult
to avoid system specifics. That is a fault of
the manufactures because they each try to
lock in their customers by using proprie-
tary designs. In the future, there will be
much more portability, but we have to
work with what we have now (or what we
as a group can devise).

I would like to encourage small hard-
ware and software design projects, and
one approach to system independence is
to avoid the existing systems and use
something else. If we assume that most
systems have a serial and parallel port we
can design projects which interface
through the ports. If they don’t have the
ports we can get system specific for a while
and design a way to implement the ports.
This way the user can use anything for a
platform (Apple II, Mac, PC, CP/M, Atari,
Commodore, etc.).

We are preparing several small micro-
controller projects which can be wirewrap-
ped. These will involve programming in

the microcontroller code and either down-
loading through a port or blasting a
PROM. Providing Hex code, cross assem-
blers, and/or programmed PROMs will be
part of the projects. Learning to use Awk,
YACC, and LEX to produce cross compil-
ers which run on various platforms will be
part of the overall project for some of us.
Contact me if you want to participate
in getting this project off the ground, or if
you have ideas for some of the projects.

Small Market Marketing

It is difficult to market books and soft-
ware or hardware products which are only
suitable for a relatively small technical au-
dience. The publishers, distributors, and
retailers are only interested in items which
will sell in large quantities when displayed
in places like B. Dalton’s or Waldenbooks.
There are excellent products which are
very much needed, but which have a more
limited special appeal. These products can
not justify the expense to advertise in the
stick four color magazines, and it is almost
impossible to successfully market them
under the current conditions.

We are very much aware of this situ-
ation, and have decided to publish and dis-
tribute some selected products. These
products will be plainly packaged, there
won’t be any fancy advertising, and there
will be a minimum of technical
support—but we will provide products
which would otherwise not be available.

The first products will be Hawthorne’s
K-OS One generic 68000 operating system
plus their cross assemblers. This decision
has been made after this issue was laid
out, so there is just a small announcement
squeezed in.

We are interested in contacting the au-
thors of similar products which can benefit
from combined low-overhead promotion.
Contact me if you have suggestions on
products which should be considered. ®

Programming The LaserJet
Part One —The Escape Codes

by Art Carlson

The Hewlett Packard LaserJet printer
is very adaptable. Its built-in fixed width
fonts can be used for simple letters, or im-
pressive layouts can be generated with cus-
tom fonts and graphics. Printing with the
built-in fonts can be done without any pro-
gramming. It is as simple as talking to a
dot matrix or daisy wheel printer. I fre-
quently produce draft copies using the PC-
DOS PRINT command or a generic run-
off program. Incorporating graphics and
proportionally spaced fonts in various sizes
requires programming, and can get as
complicated as you want to make it.

Full featured page preparation and
drawing programs with WYSIWYG
(What You See Is What You Get) screen
display require a lot of programming ef-
fort. I recommend that you purchase
PageMaker for page preparation or
Coreldraw for PC graphics if you need
these capabilities.

My programming interests for the Las-
erJet are in the area of book publishing
and outputting directly from a database.
These applications will be primarily text,
incorporating some graphic elements for
logos, graphic ornaments (dingbats), and
simple illustrations. The book publishing
programs will be command line driven
with no graphics display to the screen, al-
though I may incorporate a counting key-
board display. (A typographer’s counting
keyboard display shows the set width, lead-
ing, selected font, remaining line length,
total column length, etc.) The database
programs will be designed for specific ap-
plications such as producing catalogs, di-
rectories, and invoices and statements
from muitiple related data files.

The PCL Programming Language

The LaserJet is controlled with Hewlett
Packard’s PCL (Printer Control Lan-
guage). It consists of simple commands
delimited with escape characters and can
be written by any editor which can embed
the escape (1B Hex) character. Program-
ming languages such as BASIC, Pascal, or
C are not required, although they will be
useful for the more complex schemes.

The PCL commands are sent to the

printer as an ASCII string without carriage
returns, line feeds, or other wordprocessor
formatting commands. Returns or line-
feeds should be avoided within the control
statements because the printer responds
to them and performs unwanted cursor
movements. This creates a problem when
using line oriented editors which insist on
inserting formatting codes. I use WordStar
v4.0 in non-document mode for short test
programs, but something better is needed
for larger working programs. If you have
problems with your PCL programs, use
debug or a Hex/ASCII dump utility to
check for embedded C/R or L/F code
within the PCL command statements.

While returns and line feeds should be
avoided within the PCL control state-
ments, they can be used within the text to
be printed—but there is another way to
move the cursor to the next line. I wanted
to see how PageMaker handled this, so I
used the “Print To Disk” function which
sends the output which would normally go
to the LaserJet to a disk file instead. This
is a very useful feature for studying the
PCL language, or for transferring the files
to a different system which serves as a
print spooler (even an old CP/M system
can spool the file to the printer). Page-
Maker uses absolute X and Y cursor posi-
tioning commands instead of returns and
line feeds to move to the beginning of the
next line. Absolute positioning is much
better than returns and line feeds where
each line may have a different line spacing
and margin.

I would like to suggest a PCL com-
mand editor which the readers can use
without having to do any programming in
BASIC, C, or some other language — but
there is the problem with returns and line
feeds. The commands are difficult to read
without them, and the commands don’t
perform properly with them. One work-
around would be to reposition the cursor
after any PCL commands. This would be
awkward, but would work except near the
bottom of the page where the line feeds
may have forced a form feed to a new
page. Another alternative is to use the edi-
tor’s search and replace to remove returns
and line feeds from the command

sections—or from the entire file if cursor
positioning commands are used for new
lines.

I will probably write a C program which
reads a header file for the commands, and
then sends the file to be set, stripping all
returns and line feeds. I'll eventually add
light bar (or mouse) menu selections for
setting the PCL command structure. But I
don’t intend to provide WYSIWYG dis-
play of the file. C Source and executable
code will be available, but it will be a while
before it will be ready in usable form.

Cursor Positioning

Although the LaserJet does not actu-
ally have a cursor, the cursor position re-
fers to the currently active printing
position —similar to the cursor on a CRT
terminal. The cursor can be moved any-
where within the logical page using a com-
bination of horizontal and vertical posi-
tioning commands.

The cursor can be positioned to either
an absolute position, or a position relative
to its current position. The absolute posi-
tion is referenced from the upper left hand
corner of the logical page area (0X,0Y).
Commands are included to to Push/Pop
up to 20 cursor positions.

The cursor position can be specified in
three different units —dots, decipoints, or
rows and columns.

For the LaserletII, one dot equals
1/300 inch, which is the smallest printable
unit.

A decipoint (1/10 of a point) equals
1/720 inch.

The width of a column is specified by
the current HMI (Horizontal Motion In-
dex) command in units of 1/120 inch, and
the distance between rows is specified by
the VIM (Vertical Motion Index) com-
mand in units of either 1/48 inch or a se-
lection of lines per inch.

Logical Page
The LaserJet (like most other sheetfed

printers) can not print to the very edges of
the paper. The physical size, for example

(Continued on page 45)

The Computer Journal / #40

Beginning Forth Column

Introduction
by David Weinstein

Forth has an odd reputation in the community. It is viewed
either as the True Meaning and Salvation and Sacred Writ, or as a
peculiar and rather useless language pushed by a group of wild-
eyed fanatics. What Forth is is in fact a bit of both. It is a language
built around a concept. Unlike other such concept languages (Lisp
and Prolog being excellent examples) it is fast, does not require
massive amounts of equipment to do something useful, and is fairly
easy to implement. The problems the language has had (other than
those caused by overzealous programmers) tend to be due to this
inheritance (as are the benefits, but we’ll get to those in a bit).
Because it is easy to implement, the language has proliferated (if it
is not the first high level language ported to a new architecture, it is
one of the first). However it also means that people’s first experi-
ence with the language is from a public domain implementation,
which in the past meant few of the bells and whistles people had
come to expect from computer environments. (Although a Forth
fanatic will instantly reply, quite correctly, that many of these are
easy to implement, they aren’t implemented if the programmer is
too disenchanted to ever learn the language). To further frighten a
newcomer, the implementations generally only supported the Forth
standard for source code manipulation, screen size one K files
known as blocks. To add insult to injury the language insisted that
programmers give up the infix notation carefully drilled in by suc-
ceeding generations of instructors and instead resort to RPN nota-
tion, not only for the math, but for everything. Times have changed
a bit in the Forth community. For those using computers based on
the IBM PC architecture, there is a public domain (not Shareware)
version of Forth known as F-PC. Not only is F-PC an excellent
professional quality implementation of Forth, it comes with many
of the bells and whistles that people have come to expect. And it
doesn’t use those blasted blocks (in fact, it can use any editor the
programmer cares, or the internal SED editor can be used). As for
the last well . . .

Why use Reverse Polish Notation anyway?

The “traditional” compiler takes the arguments given and (in
general) allocates space on the stack for local variables. One of the
features of Forth that makes it so powerful is that the innards of
the interpreter are simple in concept, and it is possible for mere
mortals to understand what is going on. Arguments are passed to
and received from functions (Forth ‘Words') by being placed on
Forth's parameter stack. Unlike most compilers, which combine
data and subroutine threading on a single stack, Forth provides
two. The return addresses for subroutine threading are kept on
Forth’s return stack, while arguments are kept separately on the
parameter stack. This means that unlike a conventional language,
in which (for the most part) returning multiple arguments or pass-

The Computer Journal / #40

ing or returning variable numbers of arguments is a difficult task, in
Forth it is simple. Forth words are in fact generally commented
with a “stack picture” out to the side of the definition. This picture
is used to describe the state of the stack before and after the word
is executed. So (after this quick introduction to Forth mechanics)
Forth doesn’t use RPN to be difficult, it uses it because it is ele-
gant, simple, and it fits neatly into the Forth paradigm. Similarly
Lisp uses prefix notation because conceptually in Lisp a function is
merely a special kind of list. However, languages such as Pascal, C,
and Prolog have chosen to turn away from the functional model
and either make special cases for certain unary, binary, and even
trinary operators. Not only do these complicate the compiler, they
bring it another level away from the programmer. A Forth pro-
grammer can feel free to redefine + (pronounced “plus™) which is
the addition operator if that is his or her heartfelt desire.

Passing Arguments to and from Forth words

After that longwinded theoretical explanation of why Forth uses
RPN notation and how it works, here are some examples to give a
feel of why and how it works. Here are the functional definitions of
a few Forth basics:

Add two numbers

Subtract one number from another

Multiply two numbers

Divide one number by another

Print the number at the top of
the stack

{ n1 n2 -- nl4n2 }
(n1 n2 =~ nl-n2)
{ n1 n2 -~ nl*n2)
(nl n2 -~ nl/n2)
(Nl -)

v N 4

So to add two numbers and print the results the Forth phrase
would be:

S7+.

To multiply three numbers and subtract the results from one thou-
sand and print the result:

1000 20 367 5 * *» - .,

Note that in this case these are all integers. There is a reason.
Although Forth is an extremely weakly typed language (it doesn’t
care what you pass to Forth words, and it doesn’t care how you
handle storage), it has rigidly typed operators. The * word only
multiplies integers (on standard Forths these are 16 bits wide, on
some Forths they are 32 bits wide). For the mathematical words in
Forth, there are separate words for single integers, for double
width integers, and (for those systems that have them) for floating
point, as well as for combinations of the above. Again this is a
function of the language’s simplicity of concept.

How the Forth interpreter works

For a while I've been discussing the Forth “concept.” I think
at this point I need to be bit more clear on the issue. As I said,
the Forth interpreter concept is understandable by mortals. If
Forth is interpreting (which is all we have been doing so far),
when it encounters a word on the input stream it first tries to
find the word in the dictionary. If it does, then the word is
executed. If not, Forth attempts to convert the word into a
number (using the current base), and if the attempt succeeds,
the number is pushed onto the parameter stack. If it fails, an
error message is generated. If we are compiling new Forth
words (more on that in a bit), Forth again tries to find the word
in the dictionary. Then, if the word is flagged as immediate in

Defining a Forth function (known in Forth parlance as a word):

A Quick Intro To Forth
(worde which are used in the example)

: <name> <Forth code> ;

Fetching the contents of a variable
<variable> ¢

Storing data in a variable

<data> <variable> |

- the dictionary, it is executed. If the word is not immediate, it is

compiled into the dictionary at the first free location (which places
" it in the current definition). How the compiling is done is depend-
ent on the implementation. If the attempt to find the word fails,
then again an attempt is made to convert it into a number. If the
conversion attempt succeeds, then the number, and the code to
push it onto the stack at runtime are compiled into the dictionary.
Otherwise again an error will be reported, and the compilation
aborted.

What this means (aside from the fact that the parser is wonder-
fully simple) is that all Forth words, whether they come with the
system or are defined by the programmer, are treated in the same
manner. Although this does seem awkward at first, with a bit of
practice, Forth’s RPN notation becomes second nature. (I
know ... Iknow ... it doesn’t help when you are learning the lan-
guage, but it’s all I can say . . .) The other side effect of this simple
parser is that words MUST be defined before they are used by
other words. (Pascal programmers will have no problem with this
but those who have become used to two-pass compilers may have a
bit of trouble).

Writing your own Forth words

A bit back there were some simple examples of Forth code. But
repeatedly typing Forth primitives is not only time consuming and
annoying, it is also quite inefficient (in terms of program size, both
source and executabie). But let us assume that we want to add two
numbers, and print the result. When defining a Forth word, you
write what is known in Forth parlance as a “colon definition”. To
define a new word, you start with the Forth word (appropriately
enough) : (“colon™). After this the name of the word you wish to
define, and then the Forth code which it performs. Finally, the
definition is ended with a ; (“semicolon™), much like other high
level languages. So our definition would be:

: myplus + dup . ;

The word dup makes a copy of the top of the stack and places
the duplicate itself on the stack. In this case the duplication is nec-
essary because otherwise the word . (“dot”) will print the number
AND remove it from the stack. Were we writing this in a Forth
program (more on how to write code and save it later), we would
define it like so:

: myplus { nl n2 -- nl4n2)
{ Side effect: Print out nl+n2)
+ dup . ;

As you can probably guess, the word “(* (“left parenthesis”)
marks a comment. Because this is itself a Forth word (and not a
quirk of a compiler), it must be separated from the body of the

comment by a space. However, the closing parenthesis is NOT a
Forth word. Rather it is a delimiter, and the word “(“ merely reads
through the input stream until it finds the delimiter, and then exits
(again, how this is done will be explained at least in principle a bit
later on). This is a case where the ability of Forth to flag a word as
immediate is useful, “(* is an immedijate word which keeps com-
ments from being handled by Forth (whether or not Forth is in
interpret or compile mode).

This technique of writing Forth words is one of the most power-
ful features of the language, and yet it can be misused and be no
more useful than the defining of functions in any other high level
language. In this case the difference is a matter of style, not of
language features. You see, because Forth has dispensed with the
myroutine(myargl, myarg2, . . .) notation which languages inher-
ited from mathematics, it is possible to abstract things out to a
degree not possible in other languages. Forth style has as its goal a
“noun modifier verb” phrase structure. That is to say, rather than
using move (TAPE, drive[2], 50) in Forth it would be proper to
say: 50 2 drive tape move. The goal is to hide as much of the “guts”
of the language as possible . . . to make the code clear, and then
allow the reader to go through layer after layer and see what is
going on, but make the purpose clear. Because Forth allows you
more flexibility in defining how words work and how things look
(this one may end up being explained in more detail in another
column), it is possible to define your own syntax to a degree not
possible in more conventional languages. Now when I say this is the
goal, this is not to say that this is what always happens. For one
reason, on most conventional processors subroutine threading is
expensive in terms of clock cycles, and so this goal must be sacri-
ficed in the name of performance. For another, this crafting takes
work, and takes time. While this makes modification more difficult,
it decreases development time. In my experience, it is better to
make the initial investment in readable code, because the very flexi-
bility which makes Forth so powerful also makes it quite possible
(and even somewhat easy) to write truly horrendous (but working)
code.

Saving and loading Forth to and from Disk

This tends to be a problem many people hit head on when
learning Forth. And unlike the problems with the language itself, it
is more a feature of the implementation than the language, and
therefore it is rarely explained in detail in Forth books. It is also at
this point that I am going to start differentiating between various
Forth implementations. Up until this point, what has been shown
should hold true across Forth impiecmentations, but I/O tends to be
very implementation dependent. At this point in time, there are two
basic schools of thought in Forth. There are those who prefer the
original (and only standard) method of Forth 1/O, the 1024 byte

The Computer Journal / #40

Forth “blocks.” These 1K blocks are easy to implement, and can be
placed on multiple architectures. And there are many in the Forth
community who make the claim that, since these 16 line long and
64 character wide screens place a limit on code size, they are useful.
And they are correct when they point out that it is good Forth style
to keep Forth words short. However, this argument rubs me the
wrong way. One of the things I love about Forth is that it doesn’t
get in my way. It does what I ask it, and it lets me define for myself
the terms on which I will deal with the computer. (And if it blows
up...well that’s my fault). I cannot abide parentalistic languages and
compilers which are convinced that they know what I mean. And to
me, declaring that because this artificial code segmentation (which,
unlike the RPN business is NOT an integral part of the Forth
conceptualization) has a beneficial effect when people are first
learning the language is grounds for putting up with the flaws of
blocks later on is a bit distasteful. The alternative (which has be-
come more and more common in Forth over the years) is for Forth
to use the standard files of whatever host the Forth system is sitting
on (assuming of course that the Forth is sitting on something and is
not running as its own operating system). Unfortunately there are a
few partisans of this style of Forth who have gone equally far in the
other direction, declaring that no one should use blocks. Now I am
not fond of blocks (couldn’t you guess?), and I avoid them when-
ever and wherever possible, but if someone wants to use them, well,
that is their business. The “stream” method does have, as one more
benefit in its favor, the advantage that it is easy to implement blocks
on top of a stream Forth. With that introduction out of the way,
many of the older Forth implementations use blocks. These blocks
are referenced by number rather than by name, and in many cases
the Forth may have example blocks included. A Forth with blocks
will use either the word E or EDIT (or both) to edit a block, and
the editor will likely be implementation dependent. But to begin
editing a block you would type 7 EDIT or 49 EDIT. To show the
contents of a block the Forth word is LIST, which takes the same
type of argument (that is to say, the number of the block in ques-
tion). And loading in a block in which you have code is done by
using LOAD (again, leaving the block number on the stack before
the word LOAD is executed). Unfortunately, I cannot give much
help beyond this for block users. The specifics of the editor are
doubtless in the documentation (or you had best hope that they
are). For people using Forths which allow stream files, you gener-
ally have two to three choices. Some, like F-PC, have an editor
written in Forth which can be invoked from inside the Forth envi-
ronment and the editing can be done from there. Others, also like
F-PC (it is a very versatile implementation) allow users to run an-
other editor from inside of the Forth environment. And finally,
there is the possibility of using another editor entirely which does
not displace the Forth environment but which does not interfere
with it. This last (which does not really require the help of the
Forth) can take many forms: DAs like MockWrite for the Macin-
tosh, TSR editors for the PC, and anything for multitasking systems
like the Amiga. Now because stream editors and even more impor-
tant, the handling of stream files, are not standardized, I am not
going to be able to go into detail on the various implementation.
For those using F-PC, the internal stream editor is SED, and is
invoked by either typed the Forth word SED, or SED followed by
the name of the file to edit. Loading a file is done with the word
FLOAD followed by the filename (there are other ways of loading
files into F-PC, but this is a good place to start). Those using F-PC
can also take comfort in the fact that whether in the Forth environ-
ment or in SED, hitting <Escape> pops up a top line menu which
allows the user to see what is available and to get help.

The code which is written in a block or a file and then loaded is

The Computer Journal / #40

treated (at least conceptually) as if it had been typed from the
keyboard. So everything we have done so far will work. Colon defi-
nitions will add new definitions to the Forth dictionary, and code
outside of definitions will be executed.

More Forth words, and changes in State

There are some words in Forth which cannot be executed in an
interpreted mode, but must instead be contained within a defini-
tion. In most cases, these are the flow control words such as IF and
WHILE (more on these later). At the same time there are some
words which are designed for interpreted execution, but not compi-
lation. In previous Forth standards (specifically Forth 79) there
were a plethora of “state-smart” words. These would check which
state they were in (the STATE variable is available to Forth words)
and behave accordingly. The Forth 83 standard moved away from
this concept, and began in earnest to split these state-smart words
into two words. There is a reason I brought this up at this point.
Forth as a standard is very poor in string handling words (although
there are many many string packages available in the public do-
main). One standard, however, is the printing of strings. Those
using a Forth 79 system will use the word .” (“dot-quote™) at all
times, whether in interpreted mode, or inside of a definition. Those
using Forth 83 descended systems will use .” inside of definitions
only, and a companion .((“dot-paren”) in interpreted mode. Now I
don’t like this system, but because it has been standardized I will
explain its use. One of the most common programs written in C is
Hello World. To translate this into Forth is simple:

Method One (Forth 79)
.’’ Hello, world ‘*
Method Two (Forth 83)
.{ Hello, World)
Method Three (Either)

: hi (--)
.’’ Hello, World ‘*

i
hi

The first two methods merely execute the code which is given (simi-
lar to writing an entire program using only main() in C). The third
declares a Forth word (similar to a C or Pascal function or proce-
dure), and then executes the word (similar to executing the func-
tion or procedure from the main() routine). While these are sim-
plistic examples, and do not really demonstrate why Forth is a lan-
guage to learn, they should at least allow you to become familiar
with the language and editor.

There a few more I/O words with which you should become famil-
iar before we go on to a few other topics (such as the promised flow
control and the declaration and use of constants and variables).
The first of these is the word EMIT. EMIT takes as its single
argument the ASCII value of a character which it then echoes to
the screen. The word bell can be declared using emit with the code:

t bell (--)
7 emit ;

This is a bit cumbersome, however. It is impractical to look up
ASCII values in a table every time one wishes to print a character.
There is a (non-standard but often implemented) word ASCII

which is of help here. ASCII takes its single argument differently
from most Forth words. You have probably noticed that words like

: take their argument after the word is executed, and this would
seem to violate the rule that Forth standard words do not have
some special privilege which user defined words do not. In fact it is
possibie for a word to pull characters out of the input stream them-
selves. This is how : works, and how any Forth word which needs to
get an argument in such a manner (i.c. any word which needs a
name which is not defined already). In the same manner, ASCII
pulls out a single, space delimited word from the input stream. It
then leaves the character on the stack. So to define a word which
prints, say, the letter G we would write:

2 G (=)
ascii G emit ;

Forth and Flow Control

So far the code we have written is fairly simple...no branches, no
loops. But obviously they are running about somewhere in the lan-
guage. Before we start working with them, I must warn you that on
many Forths, these words can ONLY be used inside of a colon
definition. Some of the newer Forths either have made them state
smart, or have provided “interpret time” versions of the words. The
first case is the IF statement. The traditional form of the Forth IF
statement is:

IF

(code}
ELSE

(code)
THEN

As you can probably guess, IF examines the top cell on the
stack. If it is true, then the first set of code is executed. If there is an
ELSE clause (as in most languages the ELSE clause is optional),
then the second set of code is executed if the statement is false, and
either way execution resumes afier the THEN. The problem I (and
many others) have with this is that although it is in fact an RPN
version of a conventional IF statement, the choice of the name
< THEN to end it makes little or no sense. Fortunately this is Forth.
If your Forth does not already provide the alternate name ENDIF
(or FI if you are a fan of the Bourne shell), ENDIF (or FI if you
truly desired) can be added with the following code:

: endif (alias for IF)

{compile] then ; immediate

Now as it happens this introduces another concept. IF, ELSE,
and THEN are all immediate words (they aren’t special parser fea-
tures, they execute during compilation and handle setting up the
branches). We want a word which does the same thing as THEN.
We can’t define it simply as THEN, on most Forths you will get a
“Stack Changed” error, as these words keep the marks for branch-
ing on the stack. To compile an immediate word into a definition so
that it will run at runtime rather than compile time, the word
[COMPILE] is used. But since ENDIF is an alias for THEN, it
must also be immediate (and hence the definition of ENDIF as
immediate). If your Forth has a word ALIAS (and many do), it
would be better to use that, as an ALIAS will in most cases be just
a duplication of the header information about a word with a differ-
ent name, whereas defining ENDIF like this also takes up space for
the code.

For an example of using these words, let’s use a simple function
which converts its input to either -1, 0, or 1 depending on whether it
is negative, zero, or positive. The code is:

s limiter (n---1J0]1)

dup if
0< if
-1
else
1
endif
endif

The stack notation of LIMITER indicates that it will always
return either a -1, 0 or a 1. The first IF takes advantage of the fact
that in Forth, the value for FALSE is 0. So if the word is non-zero,
we enter the second IF statement. If it is less than zero, -1 is put on
the stack, if it is greater than zero 1 is put on the stack. Since the
0< comparator uses up the argument and leaves a flag which is
itself used by IF, the stack is empty for those two clauses, and so
the only value on it is either -1 or 1. If, however, the value is zero,
then the original zero which was duplicated for the comparison is
still on the stack, and so the function returns zero. And this is not
an utterly useless function either, this sort of limiter is useful in
some models of Neural Networks.

The other key area of flow control involves looping. The first
type of looping in Forth uses, appropriately enough, the DO and
LOOP words (as well as a word +L.OOP). The word DO takes as
its arguments the limit and starting index of the loop. The word
LOOQP adds one to the index and proceeds to repeat the loop,
unless the limit is equal to or greater than the the index, in which
case the loop is exited and the instructions after it executed. If a
step other than 1 is required for the loop, the word +LOOP is used
instead of LOOP. +LOOP takes an argument on the stack which is
the step to apply to the index. So to work backwards from 0 to -10
the code would be -10 0 DO . . . -1 +LOOP. Note that as with the
IF clauses, loop constructs on most systems must remain inside of
colon definitions. To make life easier for the programmer, the limit
and index are not kept on the parameter stack inside of the loop. In
most Forths they are moved to the return stack, although I have
heard tell of some Forths which have a separate “LLOOP Stack” to
hold them. To allow access to the limit and index (and more than
just the first limit and index in the case of nested loops), Forth
provides a special set of words. These are I, which leaves the index
of the most recent loop on the stack, J, which leaves the index of
the first nested loop, and K, which does the same for the second.
Above three levels of nesting you need to write your own code. An
example to show how this kind of nesting can be used:

¢ show-nesting { --)

10 0 do
0 ~10 do
-10 0 do
'’ Innermost: ‘‘ I . cr
.’* First nested: ‘' J . cr
.’’ Second nested: ‘'’ K . cr
-1 +loop
loop

loop

The only new word introduced here is CR, which prints a CR/
LF combination. While SHOW-NESTING is a generally useless
word, it should provide a feel for how the simple looping constructs
work. The other looping constructs provided are
BEGIN ... AGAIN (an infinite loop), BEGIN . . . UNTIL, which
loops until the flag which is left on the stack for UNTIL in each
loop becomes TRUE, and BEGIN ... WHILE . .. REPEAT,
which executes the section between BEGIN and WHILE at least
once, and executes the code for the
BEGIN ... WHILE . . . REPEAT clause as long as the flag on

The Computer Journal / #40

the stack for WHILE remains true. These words, along with the IF
clauses and the DO . . . LOOP construct form the standard Forth
flow control section. Some Forths, such as F-PC, also provide a
FOR ... NEXT construct, and most Forths provide some sort of
CASE (or SWITCH) statement (and if the one you have does not,
there are a plethora of public domain CASE implementations).

Constants, Variables, and dealing with Memory

- So far everything we have done has used only the stack for the
storing and passing of information. Not only can this not always be
done easily (and the byword of Forth is to keep things simple), but
in many cases trying to do too much too fast with the stack actually
makes the code longer, slower, and much more complex than if a
judiciously chosen variable had been used. Defining a variable in
Forth is a simple matter. If, for example, we need a variable to hold
a pointer to some dynamically allocated memory, we would declare:

variable ptr.to.memory

Note that there is no special pointer type, we just chose the
name appropriately. Variables in Forth are typed only by their size
(variables can be one cell wide [usually 16 bits], one character wide,
or two cells wide). Since the addresses in Forth are only one cell
wide, a VARIABLE can serve quite well as a pointer (just as in
many C compilers an integer and a pointer take up the same
amount of space and can be cast to each other). Unlike most lan-
guages, however, variabies in Forth do not return their values on
the stack, they instead place their addresses on the stack. To check
and alter the value of a variable, we use the words @ (“Fetch”) and
! (“Store”). @ takes the address on the stack, and leaves the con-
tents of that address on the stack. ! takes the value to be stored and
the address to which it is to be stored on the stack, and leaves
nothing behind. So, for example, to initialize our pointer to 0, we

would type:

0 ptr.to.memory !

‘By the same token, if we want to see the value of the variable we

might type:
ptr.to.memory ¢ .

or

ptr.to.memory € u. (u. is an unsigned version of .

Perhaps the best way to get used to variables and @ and ! in
Forth is to play around with the system variable BASE first. BASE
determines the arithmetic base for all mathematical operations.
Setting base to binary (2 base !) will accept numbers only in
binary, and display numbers only in binary. Similarly Octal, Hex,
and any other base you care to try are also available. This easy
numerical switching and the inclusion with most Forths of an inter-
nal assembler to write Forth words in assembly make Forth one of
the best systems I can think of for learning Assembly Language. (In
fact I generally learn the assembly language for a new chip by get-
ting a Forth for it and writing small words first).

Constants in Forth are different from variables in two important
ways. They are initialized when they are created, and they return
their values rather than their addresses. So to define NIL as 0, we
would type:

0 constant nil

The Computer Joumnal / #40

Whenever in later code the word NIL is executed, it will leave
the value 0 on the stack.

Some Final Thoughts, Hints, and Tips

This article has been meant to give a brief overview of many of
the simpler features. By its very nature topics thve been covered
briefly, and few examples given. The characteristics which make
Forth so very very powerful (namely the defining words) have been
left for another time. Those who are already hooked should look at
the companion article in this issue, which is aimed at those with
some experience with Forth. It contains the complete code (and
explanations) to add Pascal style RECORDS (complete with
nested and VARIANT records) to Forth, and the code and expla-
nation to add Modula-2 style modules to the language. For a
deeper introduction to the language I highly recommend “Starting
FORTH,” by Leo Brodie and published by Prentice-Hall. Be sure
to get the second edition, as the first concerns the Forth 79 stan-
dard as opposed to the Forth 83. For a style guide, “Thinking
FORTH,” by the same author is superb. I would very much like to
hear from you (comments, questions, recipes, death threats), and I
can be reached either by the US Mail at 9036 N. Lamar #274,
Austin, TX 78753, or for those with various electronic connections
as:

olorin@wailt.cc.utexas.edu
DHWEINSTEIN on GEnie
Olorin (User #216) on Flight

(Internet)

For those on Usenet I regularly read comp.lang.forth, and for
those with GEnie accounts, not only is the Forth RT a wonderful
resource, but it has a CATegory (13) which has been set aside for
discussion of this Forth column (thanks!). Sending electronic mail is
a much better way to keep in touch (the desk doesn’t remind me
that I have mail buried under 4 inches of debris), and generaily gets
answered faster than paper mail. @

Forth Resources On-Line

GEnie - (800) 638-9636 (for information) Forth resources in the
Forth (page 710) and Mach2 (page 450) Roundtables

Bix - (accessed via Tymnet) Forth resources on Bix can be
reached by typing “j forth”

CIS - (800) 848-8990 Forth resources from Creative Solutions,
Inc (!GO FORTH), and from Computer Language
Magazine (!GO CLM)

Well - Reachable from CompuserveNet or (415) 332-6106 (con-
tains a Forth conference)

Wetware - (415) 753-5265 (contains a Forth conference)

ECFB - (703) 442-8695 East Coast Forth Board

BCFB - (604) 434-5886 British Columbia Forth Board

RCFB - (303) 278-0364 Real-time Control Forth Board

LMI BBS - (213) 306-3530 Laboratory Microsystems, Inc. BBS

DrumaBBS- (512) 323-2402 Druma, Inc. BBS

Flight - (512) 7948511 (soon to have a Forth conference) This
BBS runs on =M=C=D=8, a multi-user BBS from
FYT written in a custom version of CONVERS (a
Forth descendent)

Advanced Forth Column
Variant Records and Modules

by David Weinstein

This particular column is directed a bit more at intermediate
Forth programmers. Since explaining every bit of Forth syntax or
providing a stack description for standard words would take more
space than the rest of the column, if you aren’t familiar with Forth
it would help to have an introductory work (such as Starting Forth)
with you.

Programmers familiar with Pascal or C become used to the abil-
ity to define groups of data structures (Pascal Records or C Struc-
tures). Although Forth provides the ability to define your own data
structures in a much more flexible manner, standard Forth does
not provide a higher level interface (such as the Record/Structure)
out of the box.

In assembly language, in most cases, equates are used to pro-
vide offsets into the data region and are used as selectors (again,
computer jargon for methods of referencing data). These selectors
are essentially used as an index. The base address of the data is
added to the offset, and then the resulting address is the result of
the data.

If we were to do this in Forth, the code would look something
like this:

0 constant NameSize
2 constant NameBuffer
66 constant Income

create Client allot 78

This code does the same thing, however it does not take advan-
tage of Forth’s features. To use this code, we would, for example,

Client Income +

This would leave on the stack the address of the Income field of
the record (record.Income for you Pascal or C fans). To place the
value of this field on the stack, we would use the phrase:

Client Income + €

This code is still awkward. People learning Forth might argue
that using the character @ (pronounced ‘fetch’) to read in a value
from an address is implicitly awkward, however, with a bit of Forth
programming practice it becomes second nature. And of course, if
you don't like it, the phrase:

: fetch @ ;

solves the problem. But at this point we are still essentially coding
in pseudo-assembly language, lending credit to the assertion that

10

Forth is no more than an obscure dialect of assembly, or a pre-
processor. Forth however provides an elegant method for the crea-
tion of “templates.” These “defining words” allow programmers to
create a Forth word which not only creates other Forth words, but
defines both their creation time and runtime actions. So, since we
have decided that these offsets are in fact indexes into a data block,
we will create a defining word called index.

(Creation time: <name> | offset -—-)
(Runtime: base -- base+offset)

: index

create

'
does>

e +

The comments between the parentheses are just that, com-
ments. In this case they describe what the word requires in the way
of parameters. For my code, words in angle brackets are expected
on the input stream. The vertical bar separates the comments of
expected input from the comments declaring the stack status of the
word. These “stack pictures” are critical to understanding Forth
code, because they allow programmers to see the effects each word
has on the stack. Words which consume arguments are data sinks
(although they may have side effects, in ‘which case they share some
characteristics with filters); words which produce data are data
sources, and those which alter data or act upon it are filters. In this
case, the creation time action of the word index is a data sink with
side effects. It will create the word specified as <name>, and take
the specified offset and “comma it into the dictionary”. This last is a
bit of Forth jargon which simply means to take a vaiue off the stack
and store it into the first spot of free memory in the dictionary (the
data heap which Forth uses for almost everything). The runtime
declaration specifies what words created by index will do when they
are executed. In this case index creates data filters. They take as an
argument the base address and add their offset to it, leaving the
result on the stack. So rather than our earlier example of:

Client Income + €

we would use:
Client Income @

In this case we would have defined Income with the phrase:
68 index Income

But our definition of index is not terribly efficient. Since defining
words are generally used less often than the words they generate,
we probably want to put as much logic as possible in the create

The Computer Journal / #40

clause of index. We know that adding a zero offset to a base is
always going to return the base itself, and we know that the offset
value is always defined before the index word is called, we have an
invariant condition. So, we could therefore change index to change
its actions based upon the value of the offset. If the offset is zero,
then we don’t want to create a standard index, we want to instead
create a word with no stack affects whatsoever . . . a NO-OP. So
the revised logic would be:

: index { Creation time: <name> | offset —-)
(Runtime: base -- basetoffset)
create
(offset) 0 if
(create)
’
does>
e+
endif

.
’

NOTE: This would be ideal, however Forth syntax does not
allow an IF construct to surround the DOES> clause. Further-
more, all words defined with creat leave their address on the stack
at run time.

Now this code looks slightly more complex. The offset is com-
pared with zero, and if it is indeed nonzero, we go ahead and create
the standard index we defined earlier. The phrases (offset) and (
create) are provided as comments to make code clearer. In this
case (offset) is used to show what is being compared to zero, and (
create) is used to show that this is in essence a create phrase, with
the call to create factored out. At this point we have a word which
does nothing. It still costs us. It costs us in dictionary space (only
critical in very small or very large applications), and it costs us in
execution time. We pay the price when we call the word and then
return, because on conventional processors jumps to and returns
from subroutines are cycle expensive (this problem is solved on
processors like the RTX-2000). But there is still a way around this;
we can define the created word as being immediate if it has a zero
offset. Since the word we.create in this case has no effects whatso-
ever (no stack effects or side effects), making it immediate does not
change the action of the code, it just makes it faster. However, in
cases where the selector with the null offset is used (to make code

\ A convenient alias for THEN

s endif
[compile] then ; immediate
\ "Cell” words to make code more portable
\ (Values eset for F-PC)
2 constant cell
s cells { n -- n+cell }
2+ ;
: cell- (n == n-cell)
2- ;
3 cellw (n -- n*cell)
2*r ;
: cell/ (n--n/cell)
2/ ;
t cells+ { nl n2 -~ nl4(n2*cells})
cell* + ;
Nonstandard Code

The Computer Journal / #40

easier to read), the selector will not show up in a decompilation of
the code (because it does not exist in the compiled code). Here is
the revised code which is valid syntax and avoids runtime overhead
by making null indexes immediate.

(Creation time: <name> | offset --)
(Runtime: base —— base+offset)
create (<name>)

¢ make.index

’
does>
e+
H
t make.zero.index { Creation time: <name> | offset —--)
(Runtime: —-)
create (<name>)
immediate
does>
drop

.
1

t index (Creation time: <name> | offset --)

(Runtime: base -~ base+offset)
{ Runtime [alternative}: -- [if offset is zero])
?dup (offset) 0= if
make.zero.index
else
make.index
endif

’

This iterative refinement of index may seem a classic example of
spending too much time optimizing trivialities. However, with a bit
of experience the optimizations become obvious, and are faster to
code than to describe. Unfortunately saying this doesn’t mean
much to someone first learning the language. In this particular case
however, we are going to use the word index quite a bit more. At
this point in development we are a step above assembly language in
terms of code readability, but not terribly far up. We still have to
handcompute and define all of the offsets for each record we de-
fine. What we really want is a way to automate these definitions;
essentially we do want the record or structure format provided by
languages like Pascal and C. So far we have dealt with common
Forth words, and with Forth defining words. But if that were not
enough, we are going to declare “second-order defining words”,
that is to say, words which define defining words (don’t worty, it can
get worse, nth-order defining words have been written, words which
can define words which can define words which can... and so in into
infinity). The word record which we will write will be a second-order
defining word, we want to define record types, not have to go
through the whole definition for each instance of the record.

The offset of a record is the size of the record up to the current
point. So if the current size is known, we can automatically define
the offset. In fact, if we assume that the size of the record up to this
point is on the stack, we can very simply define the word element:

: element { Compile Time: <name> | record.size }

(element.size -- new-record.size)
(Runtime: base -- basetoffset)
over index
(record.size) (element.size) +

.
1

Editor’s note: The first line in the above code was folded 1o fit the
column width.

In this case, we will assume that the size of the record up to the
current point is always kept on the stack (it is initialized to zero by
the word record). So if we were defining a record element, the
phrase used would be something along the lines of:

11

64 element NameBuffer

Specifying the size is not only easier for the programmer, it also
makes the resulting code clearer. The word over is a standard
Forth word, which copies the second item down on the stack (in
this case the current size of the record. We could make the code
more readable to people unfamiliar with Forth (at the cost of some
efficiency) by defining a word offset as:

1 offset
over ;

Or, if the facility is provided in the Forth implementation, we can
keep the code efficiency at the cost of some dictionary space, by
declaring offset to be an alias of over. (The word alias is provided in
some Forth systems as a way to duplicate dictionary entries with
minimal or even no runtime cost). Whether or not this choice
would be made would depend on the programmer, the application
(is size and/or code speed or efficiency a critical consideration, or is
slightly more readable code more important), and on whether or
not we need the name offset for something more important (pos-
sible namespace clashes should be considered in cases like this). In
this case, I would leave the code as is, because element is such a
short word.

Now we have a mechanism for defining elements of a record, but
we do not have the code to define the record itself. And before we
lay down the code, we need a clear definition of both the structure
of the record, and how we plan to implement it. The elements are
already defined as indexes (which makes them Forth words in their
own right), and these indexes define the internal structure of in-
stances of the record. Since the elements (or fields) of the record
are defined as separate Forth words, the information which they
contain does not need to be duplicated in the record template. In
fact, all we do need in the way of data for the record template is the
size of the record. But this size is not known when the record
template is created (if we chose to create the record template when
the word record is executed), it is only known at the end of the
definition (it is left on the stack by the word element as either the
offset of the next element or the final size of the record). So we
want record to leave two things on the stack, the address of its
sizefield (which we do know), and the constant zero to serve as the
starting size of the record. At the same time it should also create a
defining word which is capable of using the record size to create an
instance of the record. The code to do this is:

(Compile Time: <templatename> | -- size.addr 0)
(Template runtime: <instancename> | --)
(Instance runtime: -- base.of.record.data)
create (<templatename>)
here cell allot 0

s record

does>
create (<instancename>)
¢ allot

The Forth word here returns the address of the first free byte of
memory in the Forth dictionary. In this case it will be the address of
the size field. This space is then reserved by the phrase “celi allot”,
which allocates enough space in the dictionary for the size field.
When a template is executed, it creates an instance of the record.
‘When words generated by the Forth word create are executed, they
have the address of their body on the stack. In this case the body of
a record contains its size. So the address of its size is on the stack
when the template is executed, and the template fetches its size,
and allocates enough memory for the body of the record itself. You
will notice that there is no does> clause for the second create. It

12

isn’t needed. If no does> clause is specified, the default action is to
leave the address of the body on the stack, which is precisely what
we want.

We now have enough information to define the word end-rec-
ord, which we will use to end a record definition. All this word
needs to do is to set the sizefield of the record template, and the
information required is already on the stack. So the (rather simple)
definition of end-record is:

¢ end-record
swap !

(sizefield size --)
i

After all of the defining words, and higher order defining words,
end-record is refreshingly simple. With the code already defined,
we can now define records in Forth. The example could be coded
as:

record CustomerRecord

2 element NameSize

64 element NameBuffer

2 element Income

2 element Age

2 element Height

2 element Weight
end-record

This record definition can be used like so:
CustomerRecord WorkingCustomerRecord

With individual elements referenced with code as simple as:
34 WorkingCustomerRecord Age !

Although we have not kept the dot notation used in C and
Pascal, we have gained record definitions, and the resulting code
uses Forth’s “Noun Modifiers Verb” format...a coding style I per-
sonally find preferable. But we also might want to nest records.
This is no problem at all, because of the implementation method
chosen. We don’t need to know the structure of an element, just its
size, and as each element is calculated as an index, rather than a
fixed address, nesting presents no problem at that level either.
Since the size of a record is stored in the template body, all we need
to use records as elements in other records is a means of extracting
the size. Stealing a beat from C, we will define a word sizeof :

: sizeof (<record name> | -- size)

* >body ¢ ;

There is a problem with this code. It isn’t necessarily portable.
There is no “standard” way to go from the code field of a Forth
word (which is what the word ‘ [pronounced ‘tick’] returns) to the
body of the word (in which the size is stored). In F83 descended
systems, the word >body is used to convert code field addresses to
parameter field addresses (otherwise known as the body of the
word). But this isn’t standard. There is almost certainly a way to do
so in whatever Forth you may use, but if it is not documented you
made need to go digging into the innards of your Forth. However,
the word sizeof does allows us to include Forth records in other
Forth records. An example would be:

record CaseFile
6 element Date
sizeof CustomerRecord element Client
2 elexent CaseNumber
end-record

But there is still one feature we are missing. Both Pascal and C

The Computer Journai / #40

provide a method of defining records with variable con-
figurations. In Pascal this is calied a variant record, in C,
a union. In both cases the effect is the same. It is pos-
sible to reference the same section of memory, but have
it aliotted in differing sizes, for differing purposes. In
cases where different data may be needed depending on
the case (for example marriage data is not needed for
single people), we can keep the data in the same record
without wasting space.

To implement variant records is actually quite simple
with the implementation chosen. The variant portion of
a record will have the size of the largest variant clause.
In this case, let’s take a look at the syntax we'll use first:

record Client
6 element BirthDate
sizeof String element Name
1 element MarriageStatus
variant: (Based on MarrijageStatus)
{ Married)
6 element MarriageDate
variant: (Divorced?)
(yes)
6 element DivorceDate
ors
(Separated)
6 element SeparationDate
or:
3 element SpousePointer
end-variant;
ors
{ Single)
2 element SOPointer
end-variant;
end-record

From the goal example above, the variant records
have to be able to support more than two clauses, and
to allow nesting. You also may have noticed that end-
variant; has a semicolon at the end, while end-record
does not. This is a case of naming choices (I'm not fully
satisfied with these names, but I haven’t been able to
think of anything better). I wanted to be able to use the
word or as a separator of clauses. But or is already a
Forth word. So I added a colon to variant and to or. But
as a general convention in Forth, words which contain a
colon and signify the beginning of a segment of code
have a semicolon in the corresponding clause ending
word. Of course if you don’t like the naming choice,
changing it is no problem.

To implement the variant records, we need to save
the size of the record before the variation (this is the
offset to the first element of EACH variant clause, they
all start at the same location because they overlap). We
also need to keep track of the clause with the largest
size, because the entire variant section will take up as
much space as the largest clause. From the above speci-
fications, we know that the words variant: and or: have
to leave the same type of arguments in the same order
on the stack (because or: can follow either variant: or
another or:). We also know that the word element re-
quires the “size” of the record on the stack to generate
the offset, and therefore the topmost stack element left
by both variant: and or: must be a copy of the size at the
start of the variant clause (a copy because we need to
keep the original for other clauses). This also means
that at some depth the words variant: and or: need to

The Computer Journal / #40

pouse

TN TN TS

Usage:

: MarriageStatus?
CurrentClient MarriageStatus cé ;

Record Package for F-PC 2.25
written by David Weinstein

Defining a simple record type:

record NameString

2 element NameSize
64 element NameBuffer

end-record
Using records as elements of other records:

record Client

6 element BirthDate
sizeof NameString element Name
7 element PhoneNumber

end-record
Using variant clauses in defining record types:

record Client

6 element BirthDate
sizeof NameString element Name
1 element MarriageStatus
variant: (Based on MarriageStatus)
(Is or was married)
6 element MarriageDate
variant:
Divorced)
6 element DivorceDate
ors:

—

Seperated)
element SeperationDate

N -

ors:
(Still Married)
6 element SpouseBirthDate
sizeof NameString element

end-variant;
ors
{ Single)
sizeof NameString element

igotherName

end-variant;
7 element PhoneNumber

end-record
Using a record type and record:

Client CurrentClient

(=-- status)

nodule Records

: make.index (Creation time: <name> | offset --)
{ Runtime: base -- basetoffset)
create { <name>)

L4
does>

e+

.
H

: make.zero.index (Creation time: <name> | offset --)
(Runtime: --)
create .(<name>)
immediate
does>
drop

.
’

: index (Creation time: <name> | offset --)
(Runtime: base -- base+offset)

(Runtime [alternative}: -- [if offset is

13

zero})
?dup (offset) 0= if
make.zero.index
else
make.index
endif

7

: record
size.addr 0)

{ Compile Time: <templatename> | --

(Template runtime: <instancename> |
(Instance runtimes --
base.of .record.data)
create (<templatename>)
here cell allot 0

does>
create (<instancename>)
€ allot
;
: element (Compile Time: <name> | record.size
element.size -- new-record.size)
(Runtime: base -- base+offset)

over index
(record.size) (element.size) +

H

: end-record (sizefield size --)

max.size rec.size)
max over ;
: end-variant; (rec.size max.size prev.size -~
nax.size)
max swap drop ;

the record structure defining word element uses the cur-
rent size as its offset and leaves the modified size on the
stack. Furthermore since the word variant: only requires
the size of the record up to that point on the stack, vari-
ant: can be used inside of other variant clauses, satisfying
our other design consideration. Please note however that
since the word element is separate from the variant fea-
ture, the structures inside of variant clauses share name-
space with all other element names, even in other variant
clauses, so that duplicate names cannot be used. Now all
we need to do is write the word end-record;, and the
package is complete. Since end-record; follows a variant
clause, it will have the same entry conditions as or:. Since
it marks the end of the variant clauses, it no longer needs
to preserve the original size, in fact, it only needs to leave
the size of the record using the largest clause on the stack
(as was said earlier, variant clauses will take up as much
room as the largest clause). So, we can define the word
end-record; as:

-

: end-record; (rec.size max.size prev.size)
(-- max.size)

max swap drop ;

Editor's note: The first line is folded to fit the column

swap ! width.
' The above package adds full records to Forth. Unfor-
: sizeof hody & <record name> | -- size) tunately all of the indexes are kept as Forth words, which
v & means it is possible for names to clash. Forth does pro-
: variant: (rec.size -- rec.size max.size rec.size vide a way around this, in the form of Forth dictionaries,
) but these, as they exist in the standard, are a bit cumber-
dup dup ; some to use, and do not allow easy or neat inclusion of
: or: (rec.size max.size prev.size -- rec.size words from various dictionaries. This next set of code

very simply uses the existing dictionary structure of Forth
to create Modula-2 style modules in very few lines of code
(14 to be precise). The only feature of Modula-2 modules
not implemented is declaring words or variables “private”
by use of a definition module. The main use of this pack-
age is to allow words to be grouped by function, and pre-

keep the original size on the stack. And finally, since we need to
keep track of the size of the largest clause, we need to keep the
size of the largest clause up to this point on the stack. Upon
entry into the word or:, the size of the record if the clause were
used is on the stack. If we compare this with the previous largest
clause and keep the larger, we have the new largest clause size.
Since there is a Forth word which will return the maximum of
two numbers, we want the largest size up to this point to be the
second item deep on the stack, the copy of the size on the first,
and the original size the third upon exit from both variant: and
or:. When or: is entered, the stack will contain the original size
as the third element, the largest clause up to this point as the
second, and the size of the previous clause at the top. So we can
now define both variant: and or:. Note that variant: leaves as the
largest size so far the current size of the record (in case of a null
variant clause).

t variant: { rec.size -- rec.size max.size rec.size)
dup dup ;

(rec.size max.size prev.size --)

(rec.size max.size rec.size)
max over ;

$ ors

All either of these words does is manipulate the stack, since

14

vent name space clashes.

The first place to start is a defining word MODULE. This word is
going to not only create a vocabulary, it is going to make that vocabu-
lary the CURRENT vocabulary (the one in which new definitions are
entered). But to do this we need to first save CURRENT and CON-
TEXT (the dictionary searched for new words), create the vocabulary,
execute it (which makes it the CONTEXT vocabulary), and execute
DEFINITIONS, which makes it the CURRENT vocabulary. To do
this we are going to use one non-portable word, LAST. LAST (and
some incarnation of this word exists in every Forth) is in this case a
variable which contains the name field address (NFA) of the last word
in the dictionary...which will be the word we have just created as the
new vocabulary. So by using this address we can execute the most
recently defined word. With this problem solved, here is the code to

start a module:
s module { <name>)
context @ current @
vocabulary
last € name> execute definitions

Ending a module is fairly simple, we just need to restore the pre-
module values of CONTEXT and CURRENT (which were stored on

the stack to allow nested modules). This is done with the word END-
MODULE:

The Computer Journal / #40

: end-module
current ! context t ;

The slightly more complicated code concerns the use
of words from other modules. The syntax we will be us-
ing is:

FROM <module> IMPORT <name> AS <name>

IMPORT <name> AS <name>
END-IMPORTS

We know that FROM must save the values of CUR-
RENT and CONTEXT so as to preserve the environ-
ment. And we also know that after FROM and the mod-
ule name (which will make the module the CONTEXT
dictionary), the stack conditions (at least at the top of the
stack), must be the same as the conditions when IM-
PORT is entered after an AS clause. So what IMPORT
will do is save the current CONTEXT (which is the
CONTEXT of the module from which we are import-
ing). It does this because we are going to need to change
the value of CONTEXT when creating the imported
word to avoid the (harmless but annoying) “xxx already
defined” warning messages. We also want to leave on the
stack for AS (which creates the new word) the code field
address (cfa) of the old word. So the code for FROM
and IMPORT is:

Pl A G G g G B Bl i i P P A e P

.

: from (~- current context)
current € context @ ;
import (context -- context)

(include-context context cfa)

context & over

.
’

And now we know the entry conditions of AS. AS
gets the copy of the old value of the context, the context
of the module from which we are importing, and the cfa
of the word to import (although not in that order). So
the code for AS, which will create a word to execute the
imported word is: ’

t as (<name> | include-context context cfa --)
swap context 1} { Avoid REDEFINED errors)
create

swap context | (Bring back the)

(include context)

(And put the cfa in

(was the arg)

)

’

does>

¢ executs (Execute the imported word)

.
.

Since AS leaves the same stack as FROM (we were-
n’t looking at the lower levels of the stack since these are
only copied and never altered), IMPORT will work
equally well after both FROM and AS. And so all we

Poor Man's Module Package
written by David Weinstein for The Computer Journal
copyright David Weinstein 5/30/89

License:
The holder of this copy is hereby given full rights
to use the code for both private and commercial
purposes, and to pass the code on, so long as full
credit is given to the author.

Module Usage:
To define a module:

module <module-name>

Module Body (Forth Code)
<Privacy Declarations (see below)>
end-module

To extract a word from a module:

from <module> import <word> as <destination>
import <word> as <destination>
end-imports

Module Definition Words
Create a vocabulary and make it the current vocabulary
module (<name> | -- context current)
context @ current €
vocabulary
last @ name> execute definitions

.
H

End a module definition
end-module (context current --)
current | context |

-
H

Module Access Words
(=~ current context)
current @ context ¢

from

.
1

(current context -~ current context)
(include-context context cfa)
context @€ over °

import

.
.

{ include-context context cfa --)
swap context ! (Swap contexts to avoid)
{ REDEFINED errors)
create
swap context | (Bring back the include context)
’
does>
¢ execute (Execute imported word at runtime)

.
’

end-imports (current context --)
context | current 1

(And put the cfa in as the argument)

need to do is write END-IMPORTS which is:

t end-imports (current context --)
context | current !

These two packages are examples of how the powerful defin-
ing features of Forth, and the access Forth gives to its innards
allow Forth programmers to add powerful (and reasonably port-
able) features to the language, with relatively littie effort. e

The Computer Journal / #40

15

LINKPRL
Making RSXes Easy
by Harold F. Bower

The September 1982 issue of the now-defunct LIFELINES
magazine carried an article on a simple program to create a small
RAM disk from TPA memory. This appeared to be a neat thing to
program at the time, so armed with my trusty old version of Micro-
Soft’s M80 assembler, I attacked it. The one bugaboo in the whole
episode was determining what a “PRL”-type file was, and how to
generate one. Since none of my tools contained documentation on
“PRL” files, the only answer was to count bytes in the program and
manually generate the bit map characteristic of a PRL file type.
Having survived one episode of this nature, I do NOT recommend
it as a normal programming technique.

The beauty of the simpie, yet not totally practical, resident mod-
ule was again applied in early 1983 when I was preparing for a
transfer to Germany. Not wanting to suffer keyboard withdrawal
while waiting for my household goods to arrive, I had prepared one
of my computers for shipment in a suitcase. Unfortunately, only
one disk drive would fit. For those who have used a single-floppy
system, you know how much wear and tear is placed on the me-
chanical parts. The solution was to minimize all unnecessary me-
chanical movements on the drive by using..you guessed it..a resi-
. dent module! The technique was to copy the disk directory infor-
" mation to a resident module, and access the memory image instead
of the real directory for disk reads. The normat load sequence of;
seek to the directory, read directory, seek to first extent, read first
extent, seek directory, ESC was thereby reduced to seek to the first
extent, read, seek second, etc. An updated version of this module
will be used to demonstrate the linker program described here.

Having designed the resident module, the problem once again
became one of how to generate the bit map. The remembered pain
of the RAM disk program convinced me that there was a better
way. Since 1 had become a littie smarter in the meantime, I exam-
ined the three basic alternatives; first, assemble and link two ver-
sions of the program ORGed at different addresses and run a spe-
cial program to build a map from the differences (a kludge), sec-
ond, buy an upgraded linker which would generate PRL files (pay
money???), and third, write a linker to generate PRL files directly
from the MicroSoft REL file. This latter course was selected since
it cost the least and had future potential.

The recent articles in these pages by Bridger Mitchell and others
on RSX modules, and Bridger’s release of the RSX standard have
done much to lend a sense of coherency to the topic of resident
modules. In return, I would like to donate this little linker to the
same purpose. Size constraints on the amount of source code in
these pages prevent listing of the complete code, but
LINKPRL.LBR has been made available on the Ladera Z-Node
(213/670-9465) and Sage MicroSystems East (617/965-7259). The
Disk Directory Buffer program used as an example in the second

16

part of this article is also available on the same systems in
SPEEDUP.LBR.

LINKPRL is not intended to replace any of the bigger linkers,
and will not fink multiple modules or other fancy things. Adding
these features is left as an exercise for determined readers.
LINKPRL will, however, produce either a standard PRL or COM
type file from a MicroSoft format REL file produced by M80,
ZB0ASM, ZAS, or any number of other assemblers. Furthermore,
it is only 2k smali!

Before delving into the details of how this program works, some
background on PRL files is in order. Bit Maps produced by
LINKPRL contain one bit for each byte in the combined Code and
Data areas. Loaders for PRL files read a byte from the Code/Data
area, and a bit from the Map. If the bit is a “1”, the desired offset is
added to it. For example, the examples in Figure 1 show what
assemblers and LINKPRL produce in response to source code in-
structions.

SOMETHING is assumed to be a routine in the Code area, and
DATA is assumed to be a location in the Data area. The High
order address byte in both cases is denoted as relocatable by the
“1” bit in the Map. The “LD HL,(0006H)” instruction refers to a
fixed address, and is not relocatable as shown by “0” in all Map bits.
While the original intent of the PRL files appears to have been to
relocate files on page, or 256-byte boundaries, relocation to any
byte boundary is often performed by using 16-bit addition on the
byte corresponding to a “1” Map bit and the preceding byte.

Design

Writing LINKPRL was a learning experience in the MicroSoft
REL format. As such, not all link items are implemented, nor are
they needed for the generation of simple RSX modules. When link
items are encountered in the REL file which cannot be handied,
the linker prints a message identifying the item with any other asso-
ciated information. From this display, you can easily identify the
problem statement in the source listing.

I selected the Z80 processor as the target for this little effort
since it was, and still is, among the most popular. Since the Z80 is a

Figure 1:
Source statement Assembler out/
LINKPRL input

Map bits
from LINKPRL

LD HL,(0006E) 2K 00 06 000
CALL SOMETHING cp 00 00 001
cp 32 ¥E 20 00
LD DE,DATA 11 00 00 001

The Computer Journal / #40

register-oriented device, and I have a fetish for fast
programs (see ZSDOS), LINKPRL makes maximum
use of the internal CPU registers. The specific register
selections used here have only two known side-effects;
no bounds checking is performed on the output code
(for speed reasons), and the BDOS/BIOS system
must preserve or not use the alternate nor index regis-
ters. This constraint is in effect for other programs as
well (see “ZSDOS, anatomy of an OS” in issues #37
and #38) and is only known to be a problem on a few
systems. For most programs, the lack of bounds
checking on output code should also be no problem.

In bit-oriented files, such as the MicroSoft REL
format used by LINKPRL, individual bits, rather than
bytes, have distinct meaning. This is in contrast with
the byte-oriented structure of the Z80 microprocessor
and character-oriented (seven or eight bit) text and
HEX files. The Z80’s expanded instruction set with bit
rotates, tests and sets proved invaluable in efficiently
handling the bit-oriented files.

As previously mentioned, maximum use is made of
the Z80 registers to obtain the smallest code and fast-
est possible execution times. Register usage within the
main body of LINKPRL is shown in Figure 2.

Much of LINKPRL consists of standard routines
to Read a file, write a file, receive your input from the
console, and print messages to you. These sections will
not be covered in detail since numerous examples are
available in other documents and programs. The
unique parts of LINKPRL are those dealing with
processing of the bit-oriented REL files and we will
concentrate on these parts.

How it Works

As with most well-behaved programs, LINKPRL
begins with code to set a local stack, check for a Help
request instead of execution, and check for the pres-
ence of a valid filename argument. If no file type is
entered, REL is assumed. The specified file is then
opened. The next action taken is to clear all available
memory from the program end to the base of the
BDOS to zeros. This initializes all data areas to a
known value (0) as an aid in debugging, and to assist
your code reduction efforts by possibly reducing the
need to initialize data areas within your relocatable
module.

After clearing memory, you are prompted for the
mode (COM or PRL), and the starting address which
defaults to 100H for each mode if only a Carriage
Return is entered. With that, the preliminaries are
complete and LINKRL gets down to work at label
DEFAULT (Figure 3) where the first file read occurs.

LINKPRL reads a byte at a time from the input
file to the C register and shifts the byte, bit-by-bit to
recover the command and data elements from the file.
GETBIT is the basic routine to get a bit from the file.
The Most Significant bit (Bit 7) of register C always
reflects the current bit of concern. When a new byte
from the source file is required, the byte is loaded into
C and an eight count is loaded into the B register to
serve as a control to indicate when a fresh byte is re-
quired. Each call to GETBIT decrements the counter,

The Computer Journal / #40

Figure 2:

General Purpose
Bit Count for Source Byte
Source byte shifted (B7 is current)
General Purpose Counter
Bit Map Output Byte
Pointer to Input File
General Purpose and Byte Transfer
Program "ORG" Location
DE' = Data "ORG" Location
HL' 16-bit accumulator for Displacement Calculations
IX = Physical Load Location
IY = Points to FLAGS Byte

g;q_ﬁmuow:v

o

Figure 3:
DEFAULT: POP HL ; Get address from stack
LD (ORGADR),HL
LD HL,BUFF

CALL READ ; Set bit position
JR LOOPO ; ..and jump to test bit

H H
; Main Program Loop ;

. .
’ 7

LOOP: CALL GETBIT ; Get a source bit into position
LOOPO: JR NZ,LOOP1 ;7 +.jump if 1x form and test next
CALL BYTEO ; 0 = load 8 bits absolute
JR LOOP ; ..and back for more
; We have 1x form. Check the second bit
LOOP1: CALL GETBIT ; Get a source bit into position
JR 2,LOOP2 ; -.jump if it is 10x form
CALL GETBIT ; We have 11x, Check 3rd bit
JR NZ,COMREL ; 1 = Common, 0 = Data

; We have 110 = Data Relative.

CALL ADDR16 ; Get 16 bite, data relative
EXX ; Do the math in alternate regs

LD HL, (TEMP) ; Load the offset
ADD HL,DE ; ..and add DSEG base from DE'
JR OUTV ; Write a 01 to Bit Map

; We have 111 = Common Relative.

COMREL: CALL ADDR16 ; Get 16 bits, common rel
PUSH HL ; Write 01 to map
PUSH DE

LD DE, (COMMAD) ; Add Common Base address
LD HL, (TEMP) ; ..to accumulated offset

ADD HL,DE

POP DE

EX (SP),HL

EXX

POP HL

JR OUTV ; Save value &k write 01 to Bit Map

; We have 10x form. Check the third bit

LOOP2: CALL GETBIT ; Get a bit in position
JR Z,SPECL ; ..jump if 100 (Special Link Item)

; We have 101 = Program Relative.

CALL ADDR1§ ; Get 16 bits, prog relative
EXX ; ..writing 01 in bit map
LD HL, (TEMP)
ADD HL,BC
OUTV: LD A,L ; Vector here to output
EXX ; ..relative addresses
CALL BYTEOV ; Low byte has 0 Map Bit
EXX
1D A,H ; Get Hi byte
EXX

17

CALL BYTElV ; ..write with 1 Map Bit
JR LOOP

; Arrive here if special link (100xxxxxxxx)
; We don't do much with these, most just print information

SPECL: CALL GETTYP ; Get 4 bit type
BEXX ; Swap to alternates to get free HL'
LD HL,SPLTBL ; Offset from table start
ADD A,A ; Double value for 2-byte entries
ADD AL
D L,A
JR NC, SPECLO ; Bypass next if no Overflow
INC B

SPECLO: 1D A, (HL) ; Addr.low to A..
INC HL
LD H, (HL) ; Addr.high to H

D L,A ; Complete address to HL

PUSH HL ; Address to stack to simulate CALL

EXX ; ..back to primary registers

RET ; Jump to Address on stack

SPLTBL: DEFW
DEFW COMNAM ;
DEFW PGNAME ;
DEFW SEARCH :
DEFW UNDEF0 s
DEFW COMMON ;
DEFW CHNEXT ;

DEFW ENTRPOINT ;

r
:
’
;
;

ENTRY ; 0 = Entry Symbol
Common Block Name
Program Name
Library Search
{(undefined)
Common Size
Chain External
Entry Point
(undefined)
External + offset

= Data Size

= Load Location
12 = Chain Address

DEFW UNDEF1
DEFW EXTOFF
DEFW DATSIZ
DEFW LODLOC
DEFW CHNADDR

OO~ A WwN

DEFW PRGSIZ ; 13 = Program Size
DEFW FINI ; 14 = End of Program
DEFW FINI 3 15 = Module End

and rotates the byte in C one position to the left.

When the file and the BC registers are loaded, the main portion
of the program is entered at label LOOP (Figure 3). This entry
. point expects a basic identification structure of one or three bits. If
" the first bit is a “0”, the next eight bits form a byte to be loaded
immediately into the file. If the first bit is a “1”, then the next two
bits must be loaded to determine the specific action needed. The
three bit field at this point is interpreted as shown in Figure 4.

Special Link items are of particular concern to LINKPRL, even
though only a few of the 16 possible items are used. These items
specify such things as Names for various program parts, Load ad-
dresses (due to assembler ORG directives), and Sizes of the Data
and Program areas. These last two items must be recognized be-
fore any bytes are sent to the destination file. When both Data and
Code size statements have been received, the remaining registers
and values are set and program loading begins in earnest.

LINKPRL builds a memory image of the output file, writing it
to disk when the entire REL file is read, or either the End of
Program or Module End Special Link items are encountered. The
image begins with a 256-byte header record (only two bytes used) if
a PRL file is being generated. The header record is absent for a
COM file. The next section (the first for a COM file) is Program
code, followed by Data specified by the DSEG assembler pseudo-
op. For PRL files, the byte after the end of the Data area marks
the beginning of the Relocation Bit Map and this address relative
to the start of the Code area is placed in the first two bytes of the
header record. In this manner, loaders can determine the size of
the file Code and Data area, and the address of the Relocation Bit
Map. For COM files, the end of the Data area marks the end of the
file.

18

Fiqure 4:

100 Special Link item

101 Load 16-bit word, Program Relative
110 Load 16~bit word, Data Relative
111 Load 16-bit word, Common Relative

As bits are read from the input file, various routines are ac-
cessed to write output bytes as required. The principal ones for the
purpose of generating PRL files are BYTEOV and BYTE1V (Fig-
ure 5) which save a byte value with a “0” and “1” Map bit respec-
tively. For word addresses relative to Code, Data or Common Seg-
ments, the single entry point OUTYV (Figure 3) is used to send the
low-order byte with a “0” Map bit followed by the high-order byte
with a “1” Map bit. CHKWRT (Figure 5) is the routine which sets
Map bits indicated by BYTEOV and BYTE1V and writes a byte to
the Bit Map area when eight bits have been accumulated.

One of the more difficult things to handle in a simple linker such
as LINKMAP is the Set Load Location directive resulting from
assembler ORG and DEFS (reserve space) directives. The easy
path was taken in which a pseudo program counter is maintained in
memory, and used to calculate the displacement values resulting
from Load Location directives. Null bytes with “0” Map bits are
then written until the desired location is achieved. As you can de-
duce, there is one “gotcha” -- an ORG resulting in a negative dis-
placement will probably fill the entire memory space, including the
operating system! Consequently, do not attempt to use LINKPRL
on routines which use the ORG directive in a negative direction.

The remainder of the code consists mostly of general routines
performing utility functions, and interfacing to the operating sys-
tem. If you are particularly interested in the internal functioning,
download the source and examine away! For the rest of you, let’s
cover the operational details.

LINKPRL operation is simple (how else could it be kept to
2K?) requiring that a REL file name be entered as an argument to
the LINKPRL invocation as:

LINKPRL filename

An opening banner will be displayed, and LINKPRL will check for
a filename entry in the default File Control Block. If a double-slash
(/) is detected instead of a filename, LINKPRL displays a brief
Help message summarizing the syntax and operation returns to the
Command Processor. Any other entry is assumed to be a filename,
and LINKPRL will try to open the file in the current User area.
Any error in opening the file will return you to the Command
Processor.

Assuming that a REL file is successfully opened, you will then
be prompted for the remaining two items needed to start the link-
age with:

Produce .COM or .PRL file (C/P) :
Enter Hex load addr (Default = 100H) :

1f you enter a “C” or “c” at the first prompt, the specified file will
be linked to a file of the same name with an extension of COM. No
Bit Map will be included in the output, and it may be directly exe-
cuted as any other COM file. Entry of a “P” or “p” will create a file
of the same name with an extension of PRL. This file will contain
the header record and Bit Map described earlier.

For most applications, the default load address requested in the
second prompt will be selected with a simple Carriage Return. Spe-
cial uses where LINKPRL may be used with different values in-
clude generating a ROM image, or linking for execution in high

The Computer Journal / #40

Figure 5:
; Output a byte with a 1 Map Bit
BYTE1V: SCF ; Set Carry flag for 1 in Bit Map
JR CHRWRT ; -.and do it
; Accumulate 8 bite into a byte and output with a 0 Map Bit
BYTEO: CALL GETBYT ; Gather 8 bits into a byte
BYTEOV: OR A ; Reset Carry for 0 in Bit Map

;..fall thru to..

; Check for output write status on Map Bit
7 Carry Flag unaffected until shifted into E Register

CHEWRT: BIT 2, (IY+0) ; Check ok-to-load
JR Z,CHKWR2 ; ..Error if flag = 0

LD (IX+0),A ; Save Code byte
INC IX ; ..and bump code pointer

PUSH HL ; Preserve regs
LD HL, (PCNTR)
INC HL ;i Increment Pseudo-Program Counter

LD (PCNTR),EL

RL E ; Rotate Map from Carry into E

LD HL,COUNT

INC (BL} ; Bump count..

BIT 3, (HL) ; ..check = 8?2

JR Z,CHRWR1 ; Exit if < 8

LD (HL),0 ; ..else reset counter to 0

LD HL, (BITMAP) ; Write 8 Map bits out

LD (HL),E

INC HL ; -.bumping address

LD (BITMAP) HL

LD E,0 ; Preset next map byte to 0
CHKWR1: POP BL ; Restore regs

RET
CHKWR2: CALL ERRV ; Print message & Abort

DEFB CR,LF,BELL, 'Write attempt before areas sized 1$*

XED4/5/8 Integrated Editor Cross-Assembler

XEDA4/5/8 is a fast and convenient method to develop and

debug small to medium size programs. For use on Z80

machines running Z-system or CP/M. Companion

XDIS4/5/8 disassembler also available.

Targets: 8021, 8022, 8041, 8042, 8044, 8048, 8051, 8052.
8080, 280, HD64180, and NS455 TMP.

Documentation: 100 page manual.

Features include:

* Memory resident text {to about 40 KB) for very fast

execution. Recognises Z-system’s DIR: DU:. Program

re-entry with text intact after exit.

* Built in mnemonic symbols for all 8044,51,62 SFR and

bit registers, NS455 TMP video registers and HD64180 {/0

ports.

* Output to disk in straight binary format. Provision to

convert into Intel Hex file. Listing to video or printer. A sorted

symbol table with value, location, ali references to each

symbol.

* Supports most algebraic, logic, unary, and relational

operators. Eight levels of conditional assembly. Labels to 31

significant characters.

* A versatile built in line editor makes editing of individual

lines, inserting, deleting text a breeze. Fast search for iabels

or strings. 20 function keys are user configurable.

* Text files are loaded, appended, or written to disk in whole

or part, any time, any file name. Switchable format to suit

most other editors.

* The assembler may be invoked during editing. Error

correction on the fly during assembly, with detailed error and

warning messages displayed.

For further information, contact:

PALMTECH cnr. Moonah & Wills Sts.

{a division of Palm Mechanical) BOULIA, QLD. 4829
Phone: 6177 463-108 Fax: 6177 463-198 AUSTRALIA

memory such as for ZCPR3 Type 3 modules. For these cases, select the
“C” option, and the appropriate starting location.

When you have entered a terminating Carriage Return after the load
address prompt, LINKPRL takes off to “do its thing” and will display some
informative status such as Module Name, Program Size and Data Size. If
linking to a PRL file, the relative starting and ending addresses of the Bit
Map will also be displayed. Other than these items, any unrecognized link
items wili also be displayed. Since this article is already becoming quite
lengthy, I refer you to the source code for descriptions of such items.

When the link is completed, you will be returned to the Command
Processor prompt. In the next part of this article, we will demonstrate how
LINKPRL is used in both COM and PRL modes to generate a Disk Direc-
tory Buffer RSX module. In the meantime, enjoy your new mini-linker. ®

The Computer Journal / #40

For Sale

Turbo Pascal—Version 4.0 (NOT current
version). Never used, complete with manual,
original disks, registration card. For IBM-PC with

SYadiSKS . .eoceireectreeeerr e $45
Sheet feeder for Quem Sprint 15 —Single
bin feeder in excellent condition. $50
Bi-directional Forms Tractors for Quem
Sprint 15— Excellent condition. $50
Zenith Z-19 Terminal—Needs work (video
Doard ?)cccoccnirrrne e $75
GX-10 Printer Motherboard—Apparently
complete and workingccccccecerueunnen. $25

All prices plus shipping

The Computer Journal
190 Sullivan Crossroad
Columbia Falls, MT 59912
Phone (406) 257-9119

19

WordTech's dBXL

An Alternative to Expensive Business Software

by Dr. Charles W. Wiley, DVM

Dr. Charles Wiley owns and operates a veterinary hospital in Al-

" ice, Texas. He became interested in computers in 1984 and pur-

chased an IBM PCjr. Since that time, he has taken a correspondence
course in computer science and has written several office programs
in BASIC. He now uses dBXL on an IBM compatible PC-XT with
640K RAM, 20MB hard drive, 5.25 and 3.5 inch floppy drives. He
wrote his very functional office program without any outside help. He
used as references, “Understanding & Using dBASE III Plus” by
Rob Krumm and the Manual for dBXL..

Summary

Trying to find software for a particular type of business can be
very difficult and frustrating in the least. Purchasing pre-packaged
software is expensive and may leave the buyer with a product that is
hard to learn or contain parts that are useless for their applications.
WordTech’s dBXL will allow even the novice computer operator,
the ability to fully computerize their business. The program has
very powerful search and retrieve functions and can be pro-
grammed, if the user wishes, to include some very fancy screen
displays. Plain or fancy, dBXL can do it for you.

WordTech’s dBXL

How much would you expect to spend on a custom designed
business program? $1000? $2000? More? What are the chances
that it will do everything you want it to? Will their program fit your
needs, or more likely, will you have to fit your business into their
program?

What if I show you how you can custom design your own pro-
gram, allowing you to input only the infor-
mation you need and print out only the

was “Understanding & Using dBASE III Plus” written by Rob
Krumm and published by Simon & Schuster, Inc. Now, how about
cost? dBXL lists for $249 (you can get it cheaper from a discount
software distributor) compared to $499 for dBASE III +.

One important feature that dBXL has is the ability for the user
to set up their database(s) and begin inputting information right
away. Fancy screens, windows, bells and impressive displays are all
possible, if you want them. They are not necessary for the program
to be functional. They can be added as you go, later, or not at all.
You have the choice of what you want the program to do, not vice-
versa.

If you don’t think you have enough time or knowledge to do
this, think again. I am a veterinarian and I do not have a degree in
computer science. I have moderate knowledge in the basics of IBM
compatible computers, but by no means am I an expert.

I purchased dBXL and started programming between patients.
As I developed more intricate parts to the program, I became en-
grossed in what it could do and wanted to do more. Even now,
although the program works fine, I'll think of something new for
the program to do. I'll get out the programming guide and learn to
do it. The more you add, the more pride you take in it.

There are going to be some of you out there that don’t want to
spend any time doing such trivial things. That’s okay, you guys are
necessary to keep the programmers in business. In fact, call me and
I'will be glad to write a program on dBXL for you for half of what
you will pay for custom programmed software.

Now, let’s get a little more specific. I am not going to attempt to

give a complete course on programming dBXL or dBASE I +. 1
do want to give you some pointers on getting started though.

information you want? How much? How
about less than $250. No gimmick, please

read on.
There are software programs on the

E Edit # Top Bottom Save Abandon
Define fields for this database.

market today that will allow an individual
to custom design his/her own business pro-

Database: CLIENTS.DBF

Bytes left:4000

gram without investing a small fortune.

The one that I am going to talk about is Name Type Length Dec Name Type Length Dec
WordTech’s dBXL.
Most of us have seen articles for CLIENTNO Numeric 4
dBASE II, III, and III+. They are the I‘ASTNME Character 15
GFIRSTR " seuncaens etc,etc

most powerful database programs on the
market, right? Wrong. Everything dBASE
does, dBXL does better and with less

wasted space. dBXL was advertised as a
dBASE clone. After using it, I feel that
dBASE is a clone of dBXL! To demon-
strate how similar dBASE is to dBXL, the

Figure l: Using the CREATE command to set up a database named CLIENTS.DBF

textbook that I used to write my program

20

The Computer Journal / #40

Structure for database : C:\DBXL\CLIENTS.DBF

Number of recorde t 1483
Last update : 05/31/89
Field Field Name Type Length Dec
1 CLIENTNO Numeric 4
2 LASTNAME Character 15
3 FIRSTNAME Character 15
4 ADDRESS Character 20
5 CITY Character 15
6 STATE Character 2
7 2IP Character 10
8 PHONE1l Character 8
9 PHONE2 Character 8
10 STATUS Character 1
11 LASTVISIT Date 8
w* Total 107

Figure 2: CLIENTS.DBF database structure

Structure for database : C:\DBXL\HOSPITAL\PETS.DBF

Number of records : 728

Last update 3 05/31/89

Field Field Name Type Length Dec
1 CLIENTNO Numeric 4
2 PETSNAME Character 10
3 PETNO Numeric 4
4 COMMENTS Character 15
5 SPECIES Character 8
6 BREED Character 15
7 COLOR Character 10
8 SEX Character 2
9 MATE Logical 1
10 WEIGHT Character 3
11 BIRTHDATE Date 8
12 RABIESTAG Character 7
13 VACCDATE Date 8
14 OTHERVACCS Character 10
15 NEXTVISIT Date 8

16 NEXTPROC Character 20
17 CLINICAL Memo 10

** Total *w 144

Figure 3: PETS.DBF database structure

Record No. 729
CLIENTNO

LASTNAME

PETSNAME

PETNO

COMMENTS

SPECIES

BREED

COLOR

SEX

MATE ?
WEIGHT

BIRTHDATE / /
RABIESTAG

VACCDATE /7
OTHERVACCS

NEXT VISIT /7
NEXTPROC
CLINICAL

Figure 4: To enter the memo field,
press Ctrl-Pg-Dn

The Computer Journal / #40

First of all, you must decide what information you want in your
database. A well thought out database is imperative to good opera-
tion. Each database can have as many as 128 different fields in
version 1.2c (this is compatible with dBASE HI Plus). Version 1.3
has added the command SET COMPATIBLE which determines
whether the maximum number of fields in a database is 128 or 512.
Those fields can be either character, numeric, logical, date or
memo.

Each field must have a field name that is not ionger than 10
characters and must start with a letter. Use field names that are
simple and as short as possible. You can always change them later
if you don’t like them. I will describe another way to have custom
inputs and outputs a little later.

Now, after we have decided what we want in our database, we
need to set one up. This is where dBXL really makes it easy for
novices. They have a built in INTRO program that makes it very
easy for new and inexperienced persons to immediately begin using
dBXL. Once the program is loaded, a prompt will appear at the
bottom of the main screen:

XL [1) >

At this prompt, type the letters, “intro” and the program will lead
you through with very easy menus. dBXL’s INTRO program beats
the one in dBASE, hands down.

For some of you, this is all you will need to begin and run a pro-
gram. For others, like myself, there is the desire to create our own
visual screens, with our own personal messages, inputs and data
outputs. For us, we will want to learn the “command language” of
dBXL.

I will briefly describe how I set up my program, giving you some
insight into some of the features of dBXL. To set up a database,
enter the command “CREATE” at the prompt. Figure 1 shows the
CREATE screen where the fields are set up.

I set up three databases, CLIENTS, PETS and TRANSACT. I
used separate databases for clients and pets so that I wasn’t repeat-
ing clieut information in multiple pet situations.

From Figure 2, you can see that I have only the information that
is necessary about my clients. The “lastvisit” field was added so that
I can keep track of the last time a client was in the office.

The PETS database (Figure 3) has only the information that I
need to keep on each pet. You will also notice the last ficld called
MEMO.

I want to explain the MEMO fieid in more detail. When we are
editing a record in the PETS database, we can place the cursor on
the MEMO field and press Cntrl-Pg-Dn (Figure 4).

The user is then put in the dBXL'’s text editor (Figure. 5). The
text editor is a word processor and can be used to store any text
that is too long to fit into a field. The data can then be stored under
that particular record for retrieval and editing at any time. For
businesses that need to input text, this part of the program is price-
less. It allows input of text, in any format, up to a total of 10,000
characters. Without the MEMO field, we would have to set up a
separate field called “clinical history.” Then, a designated amount
of space would be reserved in each pet’s record for this informa-
tion, whether you needed it or not. This would be a waste for some
pets and not enough for others. Therefore, by using the MEMO
field, we can write what is needed and only use the amount of space
necessary. It can be used to store any type of infébrmation the user
wants, within the memory limits. To leave the text editor, we press
Cntrl-Pg-Up.

Our last. database is entitled TRANSACT. It contains daily
transactions. Each file contains the date, client’s number, pet’s
number, and the services they obtained. After entering the services
that the client received, the data is printed out on paper and serves

21

dBXL Word Processor total lines=2 Caps line=1 col=0

*« % * top of file * w
5/31/89 Rabies, DA2PL-CPV, Fecal Exam (neg)
Physical exam= OK

+ * w end of file » * «

Figure 5: The word processor allows entry of text. Press
Ctrl-Pg-Up to exit and go back to the screen in Fig. 4.

PETFORM.FMT total lines=48 line=1 col=0

* * + top of file * * ¥

0,11 SAY "Alamosa Animal Hospital, Inc."
1,20 SAY "Pet Information Database®
3,15 SAY "Client Number:"

3,30 GET clientno

3,45 SAY "Pet's Number:"

3,57 SAY petno

4,15 SAY "Owner's Lastname:"

4,30 GET lastname

5,15 SAY "Pet's Name:*"

5,30 GET petsname

6,15 SAY *"Comments:”

6,30 GET comments

7,15 SAY *Species:”

7,30 GET species

8,15, ccceesccssesassssclc,etc,

Figure 6: Format file for custom designed screen inputs

XL [1] PETS> LIST PETSNAME, LASTNAME FOR SPECIES="CANINE"
.AND. BREED="LABRADOR"

Record# PETSNAME LASTNAME

513 BUDDY OWENS

549 CBRIS VILLARREAL
575 JAKE FARRIS

614 LADY THOMAS

629 SUE DAUGHTRY
634 SUSIE NESLONEY
651 SBAMIE MATBIS

658 TAZ RICHTER

713 PRINCESS HOELSCHER

XL [1) PETS>

Figure 7: Listing information is dBXL's strongpoint

ALAMOSA ANIMAL HOSPITAL, Inc.

select one of the following operations:

A. Add New Clients

B. View/Edit Client Records

C. Add Pet Records

D. View/Edit Pet Records

E. Enter Transactions

F. View Transactions

G. Print Transactions

H. Print Vaccination Certificates
I. Print Records

J. Print Reminders

Q. Quit and Return to dBXL prompt

Enter Selection:

Figure 8: Main menu for Alamosa Program

as a receipt.

Once our databases have beemrset up with the informa-
tion we want, we can add to or remove fields at any time.
What if we decide we want to add or remove a field? No
problem. We use the command MODIFY STRUCTURE,
and then add or remove fields. We can also change the
name of a field.

If you use the INTRO program to run your program,
the data will be entered just as you set uo the field names,
vertically down the screen. As I mentioned earlier, if you
want to have your own personally designed screens, you
can do so by setting up “format screens”. I can’t go into
depth on setting up screens, but I will give a brief descrip-
tion. We use a series of @...SAY...GET commands to posi-
tion the input areas of the fields anywhere on the screen. I
have shown part of my format screen for listing my PETS
database on the screen in Figure 6.

As the format starts, it says, @ 0,10 SAY “ALAMOSA
ANIMAL HOSPITAL, Inc.” This prompts the program to
put the cursor at line 0 and row 10 and prints the message
“ALAMOSA ANIMAL HOSPITAL, Inc.”. The fourth
line says, @ 3,30 GET clientno. This positions the cursor at
line 3 and row 30 and allows the user to input data for the
field of “clientno”. Once the data has been inputted with a
GET statement, it is stored in the database.

The same thing can be done for displaying the data on
the screen or on the printer. For printing purposes, the
user must use the command SET DEVICE TO PRINT.
As you can see, the possibilities are endless.

The most powerful parts of this program are the many
ways you can retrieve the data. Searching for information is
quick and easy. For instance, if I were wanting to find all
the dogs in my PETS database that were male labradors, I
would use the PETS database and enter the following filter
command:

LIST PETSNAME, LASTNAME FOR SPECIES='‘CANINE’’ .AND.
BREED= ‘‘LABRADOR’’ .AND. SEX=‘'MA’’

This would start dBXL searching each of the fields (spe-
cies, breed, and sex) for that particular information. If it
found the information, it would list the pet’s name and
owner’s lastname on the screen for each matching file (Fig-
ure 7).

If I wanted the information printed, I would enter the
command LIST TO PRINT PETSNAME, LASTNAME,

ing.

The best of the show is yet to come...to get really elabo-
rate, you can use the WSET WINDOW and WUSE WIN-
DOW functions to create windows to display or input data.
Window sizes can be varied as well as the information they
display. The windows can be overlapped and as many as 99
different windows can be opened on the screen at one
time! This makes a very impressive program. Figure 8
shows my main menu. If we enter selection “B” from the
menu, then a window screen opens right over the previous
screen (Figure 9). If we then enter sclection “2” from the
second screen, we have a third window screen that prompts
us for the name that we want to search for (Figure 10).

There are many more functions to dBXL. My intent
was to give a brief overview of what the program is capable
of. I hope I have convinced some of you that you can write
your own program with very little investment of time, effort

(Continued on Page 26)

The Computer Journal / #40

Advanced CP/M

Zex 5.0 —The machine and the Language

by Bridger Mitchell

The Z-System batch processor is ZEX —the Z-System EXecu-
tive input processor. In TCJ #38 I focused on redesigning the ZEX
language used to specify input in the form of a script of lines in a
file, or entered interactively from the console.

My goal was to make a ZEX script easy to write and read—by
using keywords rather than reserved punctuation symbols as
directives —and to distinguish clearly between input for the com-
mand processor and input for a program. Implementation, testing,
and excellent suggestions from Carson Wilson, Jay Sage, Howard
Goldstein, Cam Cotrili and Rick Charnes have improved and
streamlined the draft specification I put forward then. A summary
of the nearly-final specification is found later in this column.

At deadline time for this column the new ZEX —dubbed ZEX
5.0—appears to be nearing the end of its testing cycle. It will be
available on Z-Nodes about the time this issue reaches you and
included on future NZ-COM and Z3PLUS release disks.

ZEX will doubtless continue to evolve, and it should. It is an
outstanding example of the cumulative contributions of the Z-Sys-
tem community. One of my goals in rewriting earlier versions by
Rick Conn, Joe Wright and Jay Sage was to make the functional
routines more modular and the logic more transparent, so that
further experimentation and new extensions would become easier.

Nevertheless, ZEX is intrinsically a complex and highly interde-
pendent software machine. In this column I will attempt to give you
an overview of its more important components. The source code,
which is too extensive to even excerpt here, will also be available on
Z-Nodes for closer study. I do ask, however, that you not release
any modified version without coordinating with me and Jay Sage,
the ZSIG Librarian.

Preprocessing and Loading.

ZEX divides naturally into two functional components. The first
preprocesses the ZEX script and loads it and the ZEX monitor
into high memory. The second is the resident ZEX monitor itself
which interprets the script as the command processor and pro-
grams request console input.

The ZEX loader reads a script written in the ZEX language

Bridger Mitchell is a co-founder of Plu*Perfect Systems. He’s the
author of the widely used DateStamper (an automatic, portable file time
stamping system for CP/M 2.2); Backgrounder (for Kaypros); Back-
Grounder ii, a windowing task-switching system for Z80 CP/M 2.2
systems; JetFind, a high-speed string-search utility; DosDisk, an MS-
DOS disk emulator that lets CP/M systems use pc disks without file
copying; and most recently Z3PLUS, the ZCPR version 3.4 system for
CP/M Plus computers.

Bridger can be reached at Plu*Perfect Systems, 410 23rd St., Santa
Monica CA 90402, or at (213)-393-6105 (evenings).

The Computer Journal / #40

(from a file, or interactively) and compiles it into a compact, inter-
nal format that is stored in resident memory in a buffer within the
ZEX monitor. (The format consists of substituting 8-bit codes for
each of the ZEX directives and carrying along the command lines
and program input as entered.) The loader code then relocates the
monitor module to high memory, and links the BIOS and BDOS
intercepts into the monitor.

Compilation involves parsing input directives such as |UNTIL
x| into their internal format, converting the ends of each script line
intoa <CR>,a <CR> <LF>, or neither, performing textual sub-
stitution for dummy parameters such as $1, and marking each line
as input for the command processor or program.

Two versions of the monitor module, one for CP/M 2.2 and one
CP/M Plus, are contained within the ZEX.COM image as two
blocks of PRL (page-relocatable) code. ZEX detects which system
is running, and relocates and installs the appropriate monitor.
Thus, a single ZEX.COM file serves for all Z-Systems.

Implementing the ZEX Monitor

The active portion of ZEX is an RSX —a resident system exten-
sion to the Z-System DOS and BIOS that is located in memory
below the command processor (and any other pre-existing RSXs).
It intercepts the three BIOS console input and output
functions — constat, conin, and conout. In addition, as an RSX| it
must intercept the BIOS warmboot function to prevent a complete
warmboot that would otherwise reload the command processor
and change the top of user memory (TPA) address at location
0006.

The RSX design of ZEX 5.0 follows the standards I set out for
CP/M 2.2 RSXs in TCJ #34. It begins with a Plu*Perfect Systems
RSX header containing vectors to the BDOS entry, the BIOS
warmboot intercept, and the RSX removal routine, plus values of
the original warmboot address, the lowest address in the RSX that
must remain protected in memory, and a pointer to a nul-termi-
nated name of the RSX (“ZEX 5x”).

Using what I hope is now the standard method of coding a (CP/
M 2.2) RSX gains several advantages. A ZEX script is able load
(run) another standard RSX, and can also remove it, because the
interface between the two is fully defined. ZEX can also be used
when a standard RSX is already present. And finally, the standard-
ized header and intercept routines largely prepackage the intrica-
cies of coding the linkages to the BIOS and BDOS.

The CP/M Plus version of ZEX 5.0 also begins with a standard-
ized header —the one defined by Digital Research for CP/M Plus
RSXs. Because ZEX intercepts BIOS functions that will be called
by the BDOS in banked memory it must be loaded (and removed)
with careful attention to the secondary jump table used by the
banked BDOS to access BIOS functions.

In addition to providing the standard memory-protection func-

23

tion, the ZEX warmboot routine checks to see whether ZEX
should be removed from memory. Usually, if the ZEX script has
been exhausted (or ZEX has been canceled by an application, such
as an error handler) it should be removed no later than the next
warmboot. But if an RSX has been loaded below ZEX, its removal
must be postponed until that lower RSX is no longer present.

When its time has come, the removal routine restores each
intercepted BIOS jump vector to its status at the time ZEX was

‘loaded. (In the CP/M Plus version this also requires restoring the

secondary jumps used by the banked BDOS). It also restores the
original status of the Z-System quiet flag.

The Console Intercept Functions

- The heart of ZEX is the logic of the three key RSX
routines — constat, conin, and conout. I'll summarize the major fea-
tures.

In its simplest form, ZEX redirects console input to the com-
mand processor —instead of having command lines come from the
keyboard, they come instead from a script. In this form, ZEX is
effectively just an in-memory form of the original SUBMIT pro-
gram for CP/M, the most basic form of batch processing.

This degree of redirection is straightforward. As an RSX, you
intercept just the BIOS conin function, and each time it is called by
the command processor you return the next character in the script.

Script input to a Program

The first major advance of ZEX over vanilla SUBMIT is that it
can also redirect the console input of a program. This means that
what is ordinarily an interactive application can be scripted to run
on auto-pilot.

Unfortunately, achieving this step is fraught with tangies. ZEX
must now intercept BIOS constat as well as conin and intelligently
indicate to an application whether a character is waiting to be read
(console status true) or not. At first, it scems “obvious” that the
ZEX constat function should always return “true”, so long as there
is another script character to be returned.

But this turns out to be wrong for a number of major applica-
tions that attempt to “look ahead” to see if the user is typing faster
than they are processing input. Depending on the application, such
programs may repeatedly call conin to remove the characters, stop
displaying any output, or even overrun their buffers (a bug). Con-
sequently, ZEX’s constat routine must sometimes pretend that no
character is yet ready to be read.

Providing script input to an application as well as to the com-
mand processor creates another major complication--how to keep

the input destined for each clearly separated. Prior to ZEX 5.0, the

script consisted of an undifferentiated stream of bytes--command
line, program input, next command line, etc. All too frequently, an
extra (or a missing) character caused the rest of an extensive script
to crumble into gibberish, and even wrought disaster if the wrong
character answered an interactive reply such as “Delete all?”.

By extending a feature in CP/M Plus’s SUBMIT, ZEX 5.0 dif-
ferentiates script input to a program from input to the command
processor. Each line of program input begins with the ‘<* charac-
ter; any other line is command processor input.

In order for this to work, ZEX must know at all times whether
the command processor or an application is calling conin. This in-
formation is provided in a one-bit message controlled by ZCPR3--
when the command processor is requesting input (or sending con-
sole output) the bit is set, when it transfers control to a program
(including an RCP) the bit is cleared.

Adapting to Run-Time Conditions

24

ZEX’s second major advance over SUBMIT is a considerable
degree of flexibility in tailoring the script to run-time conditions.
The script can provide input to an application up to a certain point,
then switch to console input, and later resume with additional
script. Or, the program can obtain input from the console until the
program sends a specific output message, then obtain further input
from the script. Portions of the script can be conditionally exe-
cuted--for example, only if the ZCPR3 command-flow state is true
(or false).

Controf of Output

Finally, ZEX provides flexible control over console output. Out-
put from the command processor, or also from a program, can be
turned off, so that a complex sequence of operations runs “si-
lently,” without any distracting (or revealing) screen displays. And
the script may at any point emit its own messages to the screen. In
effect, it is possible to completely “repackage” the view the user has
of a sequence of applications.

Implementing these advanced features requires a quite complex
web of conditional routines and state flags in the constat, conin, and
conout intercept routines. ZEX keeps track of the current state
(command processor, application), the previous state, and the cur-
rent input mode for each state (console, script, waiting-for-key-
board-character, watching-for-output-string).

ZEX attempts to keep the script synchronized with the current
state. If there is no script input for the current state, ZEX switches
to console mede. So if the script, for exampie, provides the answers
to the first of an application’s two questions, the keyboard will be
used for the second. When a state transition occurs (from ccp to
application, or the reverse), ZEX will discard any input that might
remain for the just-finished state. If there were unread script input
for an application when it terminated, ZEX would move ahead to
the next command-line input.

Hopefully, synchronization, coupled with the discipline of clearly
designating each line of input for either the command processor or
the application, will greatly reduce the difficulty of developing and
running complex scripts.

Thinking about ZEX

ZEX is an unusually complex RSX, and it’s not always easy for
even the developer to get his head clearly around everything that is
going on! It’s helpful, however, when planning a script, to keep in
mind just how ZEX interacts with the rest of the system.

A ZEX script is a linear stream of bytes--console input supple-
mented by directives and console output messages. Since ZEX
intercepts only constat, conin, conout, and warmboot, it is only
when one of those functions is calied that ZEX can have any effect.
The next byte in the script is normally processed only when conin is
called. (An exceptions: if a | WATCHFOR| directive is the first
element of program input, it becomes active as soon as the applica-
tion calls conout or conin.) Thus, most directives do not actually
take effect when a program begins (or when the command proces-
sor is reentered), but when it requests the first console character.

Examples of ZEX scripts

Time and space don’t allow me to include actual scripts, but you
will see them showing up as files with filetype .ZEX on the Z-
Nodes. To get familiar with ZEX it’s handy to use it in interactive
mode, typing in a couple of test lines and watching what happens.
The “ZEX //<cr>” command will remind you of the directives,
and a “GO<cr>" will immediately reinvoke ZEX.

More extensive applications should be composed as a file, in-
cluding lots of comments that make the scripts self-documenting. I
would enjoy receiving any favorites that you work up. @

The Computer Journal / #40

A Reference Guide to the ZEX Language

The ZEX script consists of lines of ASCII text, each terminated by a <CR> <LF> pair. You can create the script with a text editor in
ASCII (non-document) mode. For short, one-off uses, invoke ZEX with the command “ZEX <cr>" and type the lines into ZEX when
prompted.

A number of reserved words, called directives, control the various features. Each directive begins and ends with the verticule character
‘|. The directives may be entered in upper, lower, or mixed case; I use upper case here to make them stand out. All script input that is to be
sent to a program begins with a ‘<‘ character in the first column; all other lines are sent to the command processor or, when specifically
directed, are messages sent directly to the console output.

Command-processor input:

- is any line of the script that doesn’t begin with ‘<*

- is case-independent.

- spaces and tabs at the beginning of a line are ignored

- The end of a script line is the end of one command line. Use the JJOIN| directive at the end of a script line to continue the same
command line on a second script line. (The <LF> is always discarded).

- all white space immediately preceding a |JOIN |, and all characters on the line following [JOIN|, including <CR >, are discarded.

- use |SPACE] to precede a command with a space, or to insert a space after a command and before a comment.

- begin each command on a new script line, optionally preceded or followed by white space. Although multiple commands may appear on
the same line, each separated by a semicolon, this should be avoided to reduce the chance that the Z-System multiple command line
buffer will overflow.

Program input:

- is normally obtained from the console.

- begin each script line of program input with a ‘<‘ in the first column.

- input is case-sensitive.

- data from the script includes the <CR> (but not the <LF>) at the end of a script line. To omit the <CR >, use the |JOIN| directive.

-use |LF| for linefeed, | CRLF] for carriage-return-linefeed, | TAB| for tab, | DEL| for 7fh, [NUL| for 00h.

- if the program requests more input than is supplied in the script, the remaining input is obtained from the console

- use | WATCHFOR string] to take further input from the consocle, until the program sends “string” to the console output, then resume
input from the script

Both:

- use |SAY| to begin text to be printed on the console, and |END SAY| to terminate that text. Within a |[SAY| directive that extends
over more than one line of script, the <CR> and the <LF> are both output to the console. Use |JOIN] if this is not desired.

-use |UNTIL X| to take further input from the console, until a keyboard ‘X’ is entered. The ‘X’ character may be any character; pick one
that won’t be needed in entering console input.

-use |UNTIL| to take further input from the console, untif a keyboard <CR> is entered.

Script Comments
A double semicolon “;;” designates the beginning of a comment. The two semicolons, any immediately-preceding white space, and all
fext up to the <CR> of that line of script are ignored.
A left brace ‘{* in the first column designates the beginning of a comment field; all text, on any number of lines, is ignored up to the first
right brace ‘}’.
Other Directives
Within a directive, a SPACE character is optional. Thus, |IF TRUE| and |IFTRUE]| have the identical effect.

Conditional script directives:

IF TRUE| do following script if command flow state is true
IF FALSE| do following script if flow state is false
END IF| end conditional portion of script

IF TRUE| <a> |ELSE| |END IF| do <a> if true, do if false
Miscellaneous directives:

RING| ring console bell

RING WAIT| ring bell and wait until a <CR> is pressed

WAIT| wait until a <CR> is pressed

AGAIN| repeat the entire ZEX script

ABORT| terminate the script

Directives that control console output:

CCPCMD| / |CCPCMD OFF| ‘Show/ Don’t show: CCP command output
ZEXCMD| / |ZEXCMD OFF | Show/ Don't show: the ZEX command prompt

FALSECMD| / |FALSECMD OFF| Show/ Don‘t show: commands in false flow state
SILENCE| / |SILERCE OFF| Suppress/ resume: console output
QUIET| / |QUIET OFF| Set/ Unset: ZCPR quiet flag

For each of these console-output directive words (...) the following synonyms are recognized: |...| or |... ON| or |... YES|, and |... NO|
or |.. OFF| or |END ...|.

The |SILENCE)| directive suppresses all console output except that in a {SAY | message.
Special character directives:

JcR| carriage return

|r| linefeed

|crR LF| carriage return, line feed
| TAB| horizontal tab

|NUL | binary null

The Computer Journal / #40 25

| sPACE| space character
|{DEL| delete (7Fh) character

Parameters
ZEX (like SUBMIT) provides for formal parameters designated $0 $1 ... $9. When ZEX is started with a command line such as:

A> ZEX SCRIPT1 ARGl ARG2 ARG3

then ZEX reads and compiles the SCRIPT1.ZEX file. In the script, any “$0” will be replaced by “SCRIPT1”, any “$1” is replaced by the
“first” argument “ARG1”, etc.

The script may define “default parameters” for the values $1 ... $9. To do so, enter the three characters “~$n” followed (with no space)
by the nth default parameter. When ZEX encounters a formal parameter in the script, it substitutes the command-line parameter, if there
was one on the command line, and otherwise the corresponding default parameter, if it was defined.

Control characters
You enter a control character into the script by entering a caret **’ followed by the control-character letter or symbol. For example, “~A”
will enter a Control-A (01 hex). Control-characters may be entered in upper or lower case.

Quotation

ZEX uses a number of characters in special ways: dollar-sign, caret, verticule, left and right curly braces, less-than sign, semicolon,
(space, and carriage-return). Sometimes we might want to include these characters as ordinary input, or as output in a screen message. For
this, ZEX uses ‘$’ as the quotation character. (This is also called the escape character, because it allows one to escape from the meaning
reserved for a special character.) “Quotation” means that the next character is to be taken literally; I use this term to avoid confusion with
the control code 1B hex generated by the escape key.

If ‘$ is followed by any character other than the digits from ‘0’ to ‘9, that character is taken literally. Thus, if we want a caret in the text
and not a control character, we use ‘37", If we want a ‘<‘ in the first column of a line that is for the command processor and not for program
input, then we use ‘$<* there instead. And don’t forget that if we want a ‘3’ in our script, we must use ‘$$’. There are some cases, like ‘$a’,
where the ‘$’ is not necessary, but it can always be used.

To pass a ZEX directive to a program, or the command processor, use the quotation character with the verticule. For example, to echo
the string “| RING | ”, the zex script should be:

echo $|RINGS|

WordTech's dBXL
{Continued from page 22)

[ALAMOSA ANIMAL HOSPITAL, Inc. — ALAMOSA ANIMAL BOSPITAL, Inc.

Select one of the following operations select one of the following operations:
A. Add New Clients
B. View/Edit Client Records
C. Add Pet Records

A. Add New Clients
B. View/Edit Client Records
C. Add Pet Records ‘

View/Edit Client Records View/Edit Client Records

1. Search for Client's Record Number

2. Search for Client's Lastname search for a Client's Record by Lastname

3. Quit and Return to Main Menu
Enter Lastname to search fo

Enter Selection

Figure 10: As many as 99 windows can be opened on

Figure 9: Demonstration of windowing capability for .
the screen at one time

secondary screens.

or money. You will develop a sense of pride at your finished prod- charge. I suggest you do that. Their address is PO ng 1747,
uct, and, who knows, you may develop a marketable program that Orinda, CA 94563. Their phone is (415)254-0900. I might a}so
you can sell to other individuals in your profession. suggest that you look over a copy of “Understanding & Using

If you write to WordTech, they will send you a demo disk at no ~ dBASE III Plus™ by Rob Krumm. - @

26 The Computer Journal / #40

Programming for Performance
Advanced Assembly Language Techniques

by Lee A. Hart

Truly efficient software has an intimate, almost incestuous rela-
tionship with its hardware. They merge so thoroughly as to become
inseparable; neither makes any sense without the other.

This requires that you, the programmer, must TOTALLY
understand the hardware. I cannot stress this point too strongly.
The strengths and weaknesses of the hardware influence program
structure at every level, not just the low-level drivers. A system with
weak disk 1/O will be slow and unresponsive if your program relies
on overlays. A shallow keyboard buffer requires frequent checks to
avoid missing keys. The characteristics of the console device deter-
mines your whole approach to data displays. If you try to hide from
these limitations in a high-level language, your program will work as
if it were written in BASIC 101. Let’s consider some actual case
histories of what can be gained by paying attention to the hardware.

CASE #1

A customer needed a faster way to transfer data between two
computers. He had been using a serial port at 9600 baud but com-
plained that it was too slow and tied up the computer’s serial port.
Hardware mods were ruled out.

After study, I found that each computer had unused handshake
" lines in its RS-232 port. A special “Y” cable was built to cross-
connect two of these lines, providing one bit of serial 1/O in each
direction. A “software UART” program was then written to trans-
fer data between the two machines. This worked to about 30K bits
per second before timing dither (due to interrupts, memory re-
fresh, etc.) caused errors.

The serial port’s UART could be programmed to generate an
interrupt when the handshake line went low. Therefore, an inter-
rupt-driven protocol with handshaking was devised. A ‘0’ was sent
by pulling the output low until the other computer echoed the low
on its output. A ‘1’ was sent by pulsing the output low and immedi-
ately back high and waiting until the other system echoed it. The
data rate increased to over 100K bits per second, and transfers
were now unaffected by disk I/O, keyboard activity, etc.

CASE 2

The firmware for a CRT terminal was to be upgraded to run
38400 bits per second without handshaking. Now, 38400 bps is fast,
only 260 microseconds per character (about 75 instructions for a 3
MHz 780).

The slowest routines need the most attention. For example,
clear-line was accomplished by moving the stack pointer to the end
of the line and executing 36 PUSH HL instructions. The interrupt
handler needed a 4-level stack, so the last 8 bytes were cleared
normally. Clear-screen used 25 iterations of clear-line.

This still isn’t fast enough to complete every ESC sequence be-
fore the next one is received. This calls for an interrupt-driven sys-

The Computer Journal / #40

tem. Each character received generates an interrupt. The interrupt
handler pushes the character into one end of a FIFO (First-In-
First-Out) buffer in memory. The main program pops characters
out the other end and processes them. The FIFO fills while we
process slow commands like clear-screen and empties back out dur-
ing fast commands.

But what if some idiot sends a long string of slow commands
(like 100 clear-screens in a row)? The FIFO would eventually over-
flow, and data would be lost. I prevented this with “look-ahead”
logic. When the interrupt handler spots a clear-screen command, it
sets a flag so MAIN expects it. MAIN can then ignore unnecessary
commands (no sense altering a screen that’s about to be cleared).

Scrolling is one of the most difficult actions. The obvious algo-
rithm is to block move lines 2-24 up 1, then clear line 24. But that’s
what IBM did on the PC, and we all know how well that worked. So
examine the 6845 CRT controller. The Start-Address register holds
the address of the first character on the screen, the one displayed in
the top left corner. If we add 80 to it, line 2 instantly becomes the
top line, and we’ve scrolled the whole screen up a line. All that
remains is to clear the 80 bytes that form the new 24th line, for
which we have a fast routine.

Each scroll moves the start address up another 80 bytes. This
obviously can’t go on indefinitely, so the original program spent a
great deal of time checking for overflow outside its 2K block of
screen RAM (F800-FFFF). For instance, the old code read as
shown in Figure 1.

But is this really necessary? The schematic revealed that the 2K
RAM was partially decoded and actually occupied 16K in the 780’s
address space (CO00-FFFF). It’s far easier to insure that an address
lies within this range as shown in Figure 2.

CASE #3

Fast Disk [/O. Way back in 8 B.C. (eight years Before Clones) I
had an S-100 system. Its 8080 CPU blazed along at 1.843 MHz,
through 32K of RAM spread over half a dozen furnace boards.
Two Shugart SA-801R single-sided 8" drives provided disk storage,
with CP/M 1.4 tying it all together. That old war horse and I fought
many battles together, until it finally died the Death-of-1000-Inter-
mittents.

Many of its “features” I'd rather forget, but it had one outstand-
ing attribute: the fastest floppies I've ever seen. Warm boots were
done before your fingers were off the keys; Wordstar loaded in
under a second; PIP copied files at 10K bytes/sec. All without a fast
CPU, DMA, vectored interrupts, or even a disk controller IC. The
“controller” was just a bunch of TTL chips implementing a parallel
port, an 8-bit shift register, and a CRC checkcode generator. The
real work was done by the CPU, byte-banging out the IBM 3740

SD/DD format in software.

How good was it? An 8" disk spins at 360 rpm, or 6
revs/sec. Each track held 6.5K (26 double-density sectors
0f 256 bytes each). That makes the theoretical maximum
transfer rate 6.5K x 6 = 39K bytes/sec. It actually
achieved 50% of this, or 20K bytes/sec.

Few modern micros come anywhere nezr this level of
performance. The Kaypro 1 wrote this artiie on creeps
. through the disk at 4K/sec. My PC clone is closer, at
12K/sec. The problem is that the CPU spends most of its
time in wait loops; waiting for the drive motor to start,
for the head to load, for an index hole, for a certain

sector to come around on the disk. The capabilities of
fast CPUs, elaborate interrupt systems, DMA, and fancy
disk controllers are thrown away by crude scftware.

The CPU has better things to do. If the disk isn’t
ready when an application program needs i, the BIOS
should start the task, save the data in a buffer, and set up
an interrupt to finish the task later when k< disk is RE-
ALLY ready. The time lost to wait loops is thus re-
claimed to run your application programs.

That’s how my antique worked. The BIOS main-
tained a track buffer in RAM. The first read from a
particular track moved the head to the desired track and
read the whole thing into the buffer. Furtber reads from

Figure 1:
1d (hl),a ; put character on screen
inc hl ; advance to next
14 a,h ; get new address
or 0F8h ; if overflow to 0000,
1d h,a ; force it to F800-FFFF
Figure 2:
1d {(hl),a ; put character on screen
res 6,h ; insure we don't wrap to 0000
ine hl ; advance to next
Figure 3:
T-states
23 time to finish longest instruction

13
11
11
13
13

4
13

7
10
10

128

r
; 280 interrupt mode 0 or 1 response
int: push af ; save registers used
in a, (data) ; read data byte from disk controller
next: ld (buffer),a ; store it in buffer (a variable)
1d a,(next+l) ; get buffer address
H
i
;
r
’

that track simply came from RAM, takir; virtually no
time at all.

Similarly, writes to a sector on the current track just
put data in the buffer and marked it as changed. The
actual write was performed later, when a oew track was
selected for read/write, or just before the drive timed out
from a lack of disk activity.

Physical track reads/writes were fast as well. The key
was to simply begin wherever the head was. After seek-
ing to the desired track, it read the ID# of each sector
. encountered and transferred it to/from the appropriate
place in the RAM buffer. No need to find the index hole,
wait for a particular sector ID#, or worry about inter-
leave; one revolution got it all.

Such a system must be implemented carefully. CP/M
does not expect delayed error messages, which can pro-
duce some odd results. For instance, a BDOS read error
might be reported when the real cause was a write error
in flushing the previous track buffer to disk. Also, mod-
ern drives do not have door locks to prevent disk re-
moval if unwritten data remains in the track buffer.

Figure

T-stat
23
19

11411
4+ 4
7+ 7
4+ 4

12+ 7

11

7
10
10
14

188

inc a increment
1d (next+1),a save for next time
jr nz,done ; if end of page, done
pop af else restore registers
ret and return
T-states max = 32 microseconds with a 4 MHz 280
4:
es
; time to finish longest instruction
; 280 interrupt mode 2 response time
int: push af ; save A and flage
in a, (data) ; read 1st byte from disk controller
push hl ; save HL
next: 1d hl,buffer ; get buffer address (a variable)
1d (hl),a ; store byte in buffer
ine hl ; advance buffer pointer
inc hl ; for next interrupt
1d (next+1),hl; & store it
dec hl H point to current address
check:in a,{status) ; check disk controller status
rra ; if not busy (bit 0=1),
jr nc,done H then we're done
rra ; if next byte not ready (bit 1=0),
jr nc,check H then loop until it is
in a,(data) ; get 2nd byte from disk controller
1d {hl),a H & store it in buffer
pop hl ; restore registers
pop af
reti ; return

or 226 T-states (for 1 or 2 passes through status loop)

The main factor limiting my S-100 system’s perform-
ance was the slow CPU and lack of DMA. A double-density
8" disk has a peak data transfer rate of 500K bits/sec, which
only allows 16 microseconds between bytes. This required
polied 1/O where the CPU was 100% devoted to the disk
during actual reads/writes.

5.25" disks have a slower maximum iransfer rate, but
modern hardware has advantages that can make up for it. A
normal 5.25" disk spins at 300 rpm, or 5 rev;sec. Assuming 9
sectors of 512 bytes per track, the maximum transfer rate is
22.5K bytes/sec. The peak data rate is 250K bits/sec, or 32
microseconds per byte. This is slow enough for a 4 MHz Z80
to (barely) handle it on an interrupt basis. Figure 3 shows an
interrupt handler to read 256 bytes from a disk controlier
chip at 32 microseconds max. per byte.

28

But this routine barely squeaks by. It can’t use interrupt mode 2
(which adds 6 T-states to the response time) or signal Z80 periph-
erals that the interrupt is complete with an RETI (which adds 4 T-
states). It’s limited to a 256-byte sector. Worse, some disk control-
ler chips need processing time of their own. The popular Western
Digital FD179x series only allows 27.5 microseconds for each byte.

So we have to get clever again. The example in Figure 4 reads
pairs of bytes, the first on an interrupt and the second by polled I/
O. This improves performance to allow interrupt mode 2, larger
sector sizes, and the slow response time of a FD179x chip.

This routine reads bytes from the controller chip within 17.75
microseconds worst-case. Interrupt overhead averages 80% for a 4
MHz Z80, leaving 20% for the main program execution. The pecu-
liar way of incrementing the address pointer minimizes the worst-

The Computer Journal / #40

case delay from an interrupt or status flag change until the byte is
read. We want to maximize the chance that the second character is
ready the first time the status is checked.

Why improve your disk system? Because, as a practical matter,
there’s more to be gained by improving it than any other change
you could make. It’s disk I/O that sets the pace, not CPU speed or
memory size. Users almost never wait on CPU speed; it’s the disk
that keeps you twiddling your thumbs with the keyboard ignored,
- the screen frozen, and the disk drive emitting Bronx cheers. Put a
Commodore 64’s tinkertoy disk system on an AT-clone, and you’d
have high-priced junk that only a masochist would use. Conversely,
the AT’s DMA-based disk I/O would transform a C64 into a fire-
breathing dragon that would eat its competition alive.

Algorithms
. When a hardware engineer sits down to design a circuit, he
doesn’t begin with a blank sheet of paper. He has a vast library of
textbooks, data sheets, and catalogs of standard circuits to choose
from. Most of the task is simply connecting off-the-shelf compo-
nents into one of these standard configurations, modifying them as
necessary to satisfy any unique requirements.

Algorithms are to programmers what IC chips are to hardware
designers. Just as the engineer builds a library of standard parts and
circuits, every programmer must continually build his own aigo-
rithm collection. Whether it’s a shoebox full of magazine clippings
or a carefuily indexed series of notebooks, start NOW.

Programming textbooks tend to concentrate on traditional com-
puter algorithms for floating-point math, transcendental functions,
and sorting routines. The old standby is Knuth’s “The Art of Pro-
gramming”. Hamming’s “Numerical Methods for Scientists and
Engineers” explains the basics of iterative calculations. “Digital
Computation and Numerical Methods” by Southworth and
Deeleeuw provides detailed flowcharts and sample code as well.

Magazines are a great source and tend to be more down-to-
earth and cioser to the state of the art. Read carefully! Good algo-
rithms may be expressed in BASIC listings, assembly code for some
-obscure processor, pocket calculator key sequences, and even dis-
- guised as circuit diagrams. Professional journals like EDN or Com-
puter Design are often better than the popular magazines, which
have pretty much abandoned education in favor of marketing. Es-
pecially check out back issues. The cruder the hardware, the trick-
ier the algorithms had to be to make up for it.

Manufacturers’ technical literature is a gold mine. Get the
manufacturers’ own manuals, not some boiled-down paperback
from the bookstore. They won’t be models of clarity but are full of
hidden gold. Read everything, hardware and software manuals,
data sheets, application notes, etc.

User groups are the traditional source of solutions to specific
problems. Even better, they provide actual implementations in
printed listings, on disk, or even by modem.

Don’t waste time reinventing the wheel. Learn from others what
works, and what doesn’t. Some of the best (and worst) algorithms I
know were found by disassembling existing programs. And once
you find a good algorithm, recycle it. That clever sort routine for an
antique 8008 may be the foundation of the fastest ‘386 sort yet!

Conclusion
These techniques are not new; in fact old-timers will recognize
many of them from the early days of computing when hardware
limitations were more severe. However, they have fallen into dis-
use. A whole generation of programmers has been taught that such
techniques have no place in modern structured programming.

The theory goes something like this: Programs written in a high-

The Computer Journal / #40

level language are faster and easier to write, debug, document, and
maintain. Memory and speed are viewed as infinite resources, so
the performance loss is unimportant. Programs shouid be totally
generic; it is the compiler’s or run-time library’s job to worry about
the hardware interface.

These rules make sense in a mainframe environnfent, where the
hardware resources are truly awesome, and teams of programmers
spend years working on one application. But they impose severe
penalties on a microcomputer system. The user must pay for the
programmer’s luxuries with higher hardware cost and lackluster
performance.

It’s easy to forget that “microcomputer” literally means “one
millionth of a computer”. Microprocessors make abysmally bad
CPUs. Build a computer with one, and you’ll wind up needing
$5000 worth of memory and peripherals to support a $5 CPU chip.

But micros make superlative controllers. That’s what they were
designed for, and what they do best. A single microcomputer can
replace dozens of boards and hundreds of ICs with as little as a
single chip. That’s why 90% of all microprocessors go into non-
computer uses: calculators, auto emission controls, home entertain-
ment equipment, industrial controls, and the like. Of 30 million
780s sold last year, fewer than 1 million went into computers.

Programming a controller is different than a computer. Most
applications demand real-time multi-tasking capabilities, and there
is never enough speed or memory. Inputs and outputs are physical
hardware devices, not abstract data structures, so the code must
inevitably be hardware-dependent. Computer languages are just
not cut out for this sort of thing.

The question is not, “How do I write a computer program to
handle this data?” Instead, you should ask yourself, “How must I
manipulate this hardware to do the job?” The techniques in this
article may be out of place in the bureaucracy of a large computer
but are right at home in the wild-west world of a microcomputer.

Lest you think this has nothing to do with a “real” computer like
your PC clone, consider this. Instead of a 286 with 1 meg of mem-
ory, suppose it contained ten Z80 controller boards, each with 64K
of memory and a fast network to tie them together. Each Z80
handles a different device: keyboard, screen, printer, modem, and
one for each disk. The rest are free to run application programs,
several at a time!

Suppose you're doing word processing on this system. The key-
board does spelling correction on data entry. The screen Z80 dis-
plays your text in bit-mapped fonts to match the printer’s Z80,
which is simultaneously printing a file. The Z80 running the word
processor itself suffers no annoying pauses or hesitation, since disk
I/O is handled instantaneously via each drive’s Z80 track buffer.
Meanwhile, the modem’s Z80 is downloading a file while another
assembles a program. Pop-up utilities are ready and waiting in still
other Z80s in case they’re needed.

Such a system would clearly have half the hardware cost of a
PC, yet would outperform it by a wide margin. True multi-tasking
becomes child’s play with multiple processors. More processors can
be readily added for even higher performance, or removed to save
cost (or continue operation while waiting for a replacement).

If the computer scientists really want to further the micro-revo-
lution, they should stop trying to force antiquated mainframe lan-
guages onto micros and concentrate on developing tools to maxi-
mize the use of micros as they are! @

Programming Input/Output With C

Part 1: Keyboard and Screen Functions

by Clem Pepper

Cis unique among programming languages in not providing for

'input and output as an integral part of itself. Obviously, the means

to communicate are provided somewhere. The “somewhere” are
library functions to be included for compilation with our programs.
These in general are provided as a library with the compiler at the
time of purchase. Library files are not ASCII so we are unable to
read them unless we have obtained the source code.

As the forthcoming ANSI standard wends its way toward final
acceptance the majority of vendors are adhering to its functional
specifications. The standardized library functions are quite power-
ful in paving the way for program communication between the key-
board, the screen and external devices. Adherence to the standard
assures input/output portability.

The Stream Concept

I first encountered the stream concept about four years ago
when I obtained TOOLWORKS C compiler, provided by The
Software Toolworks. Simply stated, the stream is the flow of data
characters organized as a series of bytes. There are two kinds of
streams: text and binary. The focus of this article is on text, but with
some few exceptions the requirements will apply to binary files as
well.

Stream variables are of the type FILE. FILE is a

extern FILE *atdin;
extern FILE *stdout;
extern FILE *stderr;

/* from the keyboard */
/* to the screen */
/* to the screen */

stdin and stdout may be re-directed to disk files, a printer or other
peripheral. stderr is always directed to the screen.

Keyboard Input

Two basic situations complicate reading the MS DOS keyboard.
The first is that two kinds of keys are present, ASCII and non-
ASCIL The ASCII keys are those we associate with a typewriter,
plus some others such as ESC and Back Space and CTRL func-
tions. The non-ASCII are the remaining: notably the ten (or 12)
function keys and the keypad. These may be in any one of four
modes: unshifted, shifted, control (CTRL) or alternate (ALT). The
description non-ASCII is used as these keys provide a two part
number having a numerical value unrelated to any standard ASCII
function.

Decimal scan code values for the non-ASCII keys are listed in
Table 1. The “scan code” is a number identifying the pressed key.
DOS replaces the scan code with its ASCII equivalent where such
exists. The ASCII values are easily read by our program. The non-

structure defined as a type by typdef. FILE * is a KEY UNSHIFTED SHIFTED CONTROL ALTERNATE FUNCTION
pointer to structures defined in the library file
<stdio.h>. Note that “h” and “c” files are written and F1 0 59 0 84 0 94 0 104 Function Key 1
compiled identically. However the “h” extension iden- Fi 0 :0 g :: g :i g ;gz :“u:ctim :ey ;
. . . F 0 1 ction Key
t!ﬁes these as header files to be mcluded.at compile iy o 62 0 87 o0 97 0107 Punction Key 4
time. The header files make calls to other library func- FS 0 63 0 88 0 98 0 108 Function Key S
tions. Although header files are embedded within the | s 0 64 0 89 0 99 0109 Function Key 6
library code, we are liberty to write header files of our : Z : :: g :g g :g‘l’ 0 ::‘1’ x"n::;:: ::z ;
own to take advantage of frequently used functions of | 5, 0 67 0 s2 0 102 0112 Function Rey 9
our creation. F10 0 68 6 93 0 103 0 113 Function Key 10
4 (1] M H ”

We typically put ‘#include <std|o.h>. at the top JDEL 0 83 46 83 mmmew - Delete Character
of our programs. “stdio” means standard input/output. 0/INS 0 82 8 82 e 0 Key Pad/Insert Mode
stdio.h is in the library provided with our compiler. 1/End 0 79 49 79 0117 1 Key Pad/End of Line/File

. . N 2/Down 0 80 50 80 cmee-e 2 Key Pad/Cursor Down

The keybqard is the default device for stream in- 3/Pgdn 0 81 51 81 0 118 3 Key Pad/Page Down
put; our monitor screen the default for stream output. 4/left 0 75 52 75 0 115 4 Key Pad/Cursor Left
Structures in stdio.h direct the stream flow. A third -’; P :2 ;: Tire 2 :ey :a:/c Right

fe faleco1: ey Pad/Cursor g
structure, stdc.:rr, is initialized to a screen output 7/HOME 0 71 55 71 o 118 7 Key Pad/Curmor Home
stream to receive error messages and unexpected out- 8/Up 0 72 56 72 e—eee 8 Key Pad/Cursor Up
put from a program. The declarations for these are: 9/Pgup 0 73 57 73 0132 9 Key Pad/Page Up

*/PrtsSc 42 55 = —cooeo 0 114 - */Print Screen
Table 1. Special Punction Key Scan Codes.

The Computer Journal / #40

ASCII are another matter.

It is necessary to see just how keyboard scan codes are dealt
with by MS DOS. Keyboard Input/Output is dealt with by one of
three operation codes, 0, 1 or 2, under interrupt 16H (INT 16H).
To perform a keyboard function a program loads the operation
code into register AH and then executes a INT 16H instruction.

Operation Code 0 gets the character from the keyboard. When
a character is typed its ASCII code will be entered in register AL.

“The scan code will be entered in register AH. An illustrative func-

tion for reading non-ASCII keys is:

/* == read function or other non-ASCII key == */
int rd_nonasky()
{
" union REGS rege; /* dos.h union */
regs.h.ah = 0; /* Operation code, replaced by ASCII */
regs.h.al = 0; /* Operation code, replaced by scan
code */
int 86 (SFKEY, &kregs,&kregs);
/* transfer register values to memory */
asc = rege.h.ah; /* ASCII code ¥/
scn = regs.h.al; /* scan code */

In application, variables asc and scn are declared as integers from
the calling program, or declared as globals. (Listing 8 is a complete
program using this function.)

Operation Code 1 determines if a key is waiting to be input
from the keyboard buffer. If the Zero flag is set, no character was
present. If the flag is clear the ASCII code will be in AH; the scan
code in AL as above. The keycode is retained in the buffer; the next
function to code 0 will return the key value.

Operation Code 2 returns the keyboard’s shift status. The value
returned in register AL is bit-mapped as follows:

Right SHIFT key pressed.

Left SHIFT key pressed.

CTRL key pressed.

ALT~SHIFT pressed.

Scroll-lock state; 1 returned if active.
Numeric-lock state; 1 returned if active.
Caps-lock state; 1 returned if active.

Insert mode; 1 returned if insert mode active.

NV e WO

The second situation is that we do not always wish to have key-
board input “echoed” on the screen. A key press inputs a unique
value to a location in memory. We are able to read displayable
characters only because the operating system writes (echos) them
via stdout. But there are also times, with games and passwords for
instance, when we prefer not to see the input echoed. Sometimes
we want the keyed input to initiate an immediate action of some
kind, or we may wish the input to be saved in memory for later
interaction with other data.

Standard Library Functions

There are several functions in the standard library for reading
input from the keyboard. Which we make use of depends on our
need, which will vary as the program advances. Definitions follow:

Echoed character Input:
* Int getchar(void);
#include <stdio.h> /* declares getchar function */

Reads the next character in the input stream associated with
stdin. Chars are echoed as entered and saved in a buffer until the
ENTER key is pressed.

Usage: int ch; ch = getchar();

Listing 1 is an example of using getchar() in a program. The
keyed input is saved in an array and printed back. There is no need

The Computer Journal / #40

/ *

++ GET_CHAR.C

*+ A program illustrating buffered keyboard input.

*/

{include <stdio.h>

#define MAX 81

#define CLRSCRN *\033{2J*" /* ANSI screen clear */

main()

{

int i = 0;

char chr{MAX];

puts{CLRSCRN) ;

printf("Key in less than 80 characters and press ENTER.\n*");
while({chr[i] = getchar()) l= '\n’ && i < MAX) i++;

chr(i} = '\0'; i = 0;

while(chr[i] t= "\0*) {
printf(*Sc®,chr(i]); i++; }
exit(0);
}
Listing 1.

/*
*+ GET_CEE.C
*+ A program illustrating unbuffered keyboard input with
«+ echo.
*/
$include <stdio.h>
tinclude <conio.h>
#define MAX 81
§define CLRSCRN =\033[2J* /% ANSI screen clear */
main()
{
char chr; /* Keyboard input char */
puts (CLRSCRN) ;
printf(*Key in less than 80 characters.\n");
printf(*Press ENTER when done.\n");
do {
{chr = getche());

while(chr != ‘\r'); /* do not use '\n' */
exit(0);
}

Listing 2.

/*
++ GET_CH.C
*+ A program illustrating unbuffered keyboard input without
** echo.
*/
tinclude <stdio.h>
tinclude <conio.h>
fdefine CLRSCRN "\033({2J* /+ ANSI screen clear */
main()
{
char chr; /* Keyboard input char +/
puts(CLRSCRN) ;
printf("Key in any number of characters.\n");
printf("The screen will remain blank.\n");
printf(“Press Q to exit.\n");
do (
{chr = getch());

while(chr 1= 'Q'});
exit(0});
}

Listing 3.

for the array, as will be seen in the example for putchar(chr). An
array is needed only if we intend to use the input later in the pro-
gram.

* int getc(stdin);

#include <stdio.h> /* declares getc function */

31

Same as getchar except the source must be provided. For the
keyboard this is stdin.

Usage: int ch; ch = getc(stdin);
Listing 1 will run with gete(stdin) replacing getchar().

* int getche(void);
#include <conio.h> /* declares getche function */

Reads a character directly from the keyboard with no buffering.
The program receives the input as soon as the key is pressed; the
ENTER key is not pressed.

Listing 2 is an example of using getche() in a program. Note the
comment not to use \n’ in place of \r’ to terminate the do loop.
Using “\n’ will put the program into an endless input situation.

i Non-echoed input:
* int getch(void);
#include <conio.h> /* declares getch function */

Reads a character directly from the keyboard with no buffering
AND no echoing. The program receives the input as soon as the
key is pressed; the ENTER key is not pressed. Same as getche()
except for no echo.

Listing 3 is an example of using getch() in a program.
Keyboard test functions:

* int kbhit(volid);
#include <conio.h> /* declares kbhit function */

Checks to see if a key has been pressed. Returns zero if no key
is pressed; otherwise a non-zero return. This function does not wait
for a key to be pressed.

Listing 4 is an example of a program using kbhit() in conjunc-
tion with getch() to identify which of the ten function keys has been
pressed. On running the program the screen is cleared, then no
further screen action is observed until a key is pressed. If the
pressed key is not one of the function keys an error message is
displayed and the program exits.

String input:
* char *gets(string)
char *s;
#include <stdio.h> /* declares gets function */

This function is useful for interactive programs. Two require-
ments must be met when reading in a string. The first is a function
to provide the reading. The second is there must be a location in
memory in which to store the string. gets() reads the string until it
encounters a newline, \n’. The \n’ is not saved, it is replaced with
the NULL character, \0". Listing 5 is an example of a program
using gets() in an interactive keyboard application.

* int scanf(char *format, ...);
#include <stdio.h> /* declares scanf function */

Formatted keyboard input. Because of its complexity this func-
tion is described separately further on.

Screen Output
The stream concept simplifies program output to the screen.
Four functions for displaying characters on the screen are
putchar(chr), putc(chr,stdout), puts(string) and printf(). As with
scanf(), printf() is complex compared to the others and is described

"later following scanf().

Character output:

* int putchar(chr)
#include <stdio.h>

char chr; /* The TURBO C Ref Guide declares chr as int, but
programs compile and run with the char declaration. */

32

/*
** GET_FUNC.C
** A program illustrating non-ASCII keyboard input.
*/
tinclude <stdio.h>
t#include <conio.h>
#define CLRSCRN *“\033[2J" /* ANSI screen clear */
tdefine FUNC1 “"The key you have pressed is F1."
tdefine FUNC2 °The key you have pressed is F2.*
tdefine FUNC3 "The key you have pressed is F3."
#define FUNC4 "The key you have pressed is Fd.*"
f#define FUNC5 "The key you have pressed is F5."
#define FUNC6 "The key you have pressed is F6."
tdefine FUNC7 "The key you have pressed is F7."
#define FUNC8 "The key you have pressed is F8."
#define FUNC9 "The key you have pressed is F9.*
fdefine FUNC10 "The key you have pressed is F10."
#define DUMMY “Im not a function key, dummy!®
main()
{
int k_in s, k_in c; /* k in 8 == 0, k_in_c == f_key code */
puts(CLRSCRN) ;
printf(“Press any one of the 10 function keys.\n");
do {
k_in 8 = getch();
if{k in_& 1= 0) { puts(DUMMY); break; }
k_in_c = getch();
if(k_in_c
else if(k_in c
else if(k in ¢
else if(k in ¢
else if(k_in ¢
else if(k in ¢
else if(k_in ¢
else if(k in ¢
else if(k_in c
else if(k_in ¢
else if(k_in c
puts (DUMMY) ;

59) puts(FUNC1);
60) puts{FUNC2);
61) puts(FUNC3);
62) puts(FUNC4)};
63) puts(FUNCS5);
64) puts(FUNC6);
65) pute(FUNC7);
66) puts(FUNC8);
67) puts(FUNC9);
68) puts(FUNC10);
69 || k_in ¢ <= 58)

v
]

}
while(1kbhit);
exit(0);
}

Listing 4.

/%
** GET_S.C
** A program illustrating interactive keyboard string input.
*/
#include <stdio.h>
#define CLRSCRN "\033[2J" /* ANSI screen clear */
main()
{
char name[81); /* 80 chars plus closing NULL */
char *ptr, *gets(); /* declared as pointers +/
puts(CLRSCRN) ;
printf(“"Please type your full name and press ENTER.\n");
ptr = gets{name);
printf(*\nSo you're 3s? Welcome to my keyboard,
s.",name, ptr);
exit{0);
}

Listing 5.

putchar is complementary to getchar(). This is illustrated in the
simple program of Listing 6. When you run this program each key
entry is echoed back immediately. On entering a ‘Q’ the do- while
terminates, and the complete entry is repeated below the original.
‘This because getchar() is buffered. To experiment try replacing
getchar() with getch().

* int putc(chr,stdin)

#include <stdio.h>
char chr; /* As with putchar the TURBO C Ref Guide declares

The Computer Journal / #40

chr as int, but programs compile and run with the char decla-
ration. */. This function is essentially the same as putchar()
with the added requirement to include the destination in the
function call. This can be verified by replacing putchar(chr)
in listing 6 with putc(chr,stdout).

String output:

* int puts(string)
char *string;

" #include <stdio.h>

All the examples have made use of puts() for clearing the
screen. It is simpler and easier to use than printf(), and also
faster, but quite limited in what can be done. Each
puts(string) will begin on a new line; this because when puts()
detects a NULL char (0’) it replaces it with the newline

character, \n’.

Listing 7 is a program applying puts() with an assortment
of source lines. Observe the NULL character in the charac-
ter array str4[]. Never write a character array for puts() with-
out the closing NULL as it will not know when to stop with-
out it.

Formatted Input and Output With SCANF and
PRINTF

I am combining the discussion of these two functions be-
cause they uniquely complement each other. Our discussion
of getchar(), getc(), getche(), getch() and gets() covered
most of the keyboard situations that arise, but not all. Simi-
larly for putchar(), putc(), putch() and puts(). The functions
scanf() and printf() differ from these in providing for type
specification and line formatting.

scanf
scanf() is derived from the general function fscanf() de-
fined as:

int fscanf(FILE *stream, char *format[,argument,...]); to

.yield the keyboard input function:

int scanf(char *format|,argument,...]);

While fscanf() accepts its input from any stream pointed to
by “stream” scanf() accepts its input only from stdin. The
reference guide for TURBO C lists seven variations of
scanf() which is far beyond the scope of this article. This
writing applies to scanf(); fscanf() will be discussed in part 2.
The format specifications direct the scanf() function to read
and convert characters from the input field into specific types
of values and store them in the locations given by the address
arguments. The format specifications have the following
forms:

$ [*] [width] [F|N] [h|1l] type character

The format specification begins with the percent symbol
{%). Not every form in the above is required in the format. If
used, they are provided in the following sequence:

[*] an optional assignment-suppression character. Sup-
presses assignment of the next input field.

[width] an optional width specifier. Sets the maximum num-
ber of characters to be read.

[F|N] an optional pointer size-specifier. Overrides the de-
fault size of the address argument. N = near
pointer, F = far pointer.

The Computer Journal / #40

/t
** PUT CHAR.C
*» A program illustrating character output to the screen.
*/
#include <stdio.h>
#define CLRSCRN "\033{2J*"
main()
{
char chr;
puts (CLRSCRN) ;
do {
chr = getchar(); putchar(chr);

}
while(chr 1= 'Q');
exit(0);
}

Listing 6.

/>
** PUT_S.C
+** An example using the puts(string) function to display
*+ gtrings on the screen.
*/
$include <stdio.h>
#define CLRSCRN *\033[2J"
fdefine STR1 "You are viewing this string courtesy of puts.®
main()
{
static char str2[] = "I'm all strung out in an array.”";
char *str3 = "Now I'm the object of a pointer, tee heel*;

static char strd(] = { 'B','y','e',* *','n’,'o','w','.','\0"' };

puts(CLRSCRN) ;
puts(STR1);
puts{stx2);
puts(str3);
pute(strd);
exit(0);
}

Listing 7.

/ﬁ
** GETRFUNC.C
*v Reading a function key from the register values.
*/
#include <stdio.h>
#include <dos.h>
$define SCRNCLR "\033{2J"
#define INSTRCT "Press the Fl key."
fdefine WRONG “That don't look like F1 from in herei*
idefine RIGET “How about that, right ont*
fdefine SFKEY 0x16 /* interrupt 16H, keyboard I/0 */
int scn, asc;
int rd nonasky()
{
union REGS regs;
regs.h.ah = 0;
regs.h.al = 0;
int86 (SFKEY, ®s,iregs);
/* transfer register values to memory */
asc = regs.h.ah; /* ASCII code */
scn = regs.h.al; /* scan code */
}
main()
{
puts({SCRNCLR) ;
puts(INSTRCT);
rd_nonasky(scn,asc);
if(asc I= 59} puts(WRONG);
else puts(RIGHT);
exit(0);
}

Listing 8.

{h|1] an optional argument-type modifier. Over-
rides the default type of the address argu-
ment.

The type_character.

[F|N] and [h|l] are beyond the scope of this
article.

The definition of input field applies to any one
of the following:

' 1. All characters, up to but not inciuding, the next

whitespace character.

2. All characters up to the first one that cannot be
converted in accordance with the existing
format specification (an 8 or 9 under an

. octal format, for example).

3. Any number of characters within the specified

' field width.

Whenever input is to be used within our pro-
gram it must be preserved in some manner. In List-
ing 1 we created an array to enable further use of
getchar(). With scanf() we write the input directly
to an address in memory. We specify the
type_character, i.e., int, char, float, ... , of what is to
be inputted to ensure the necessary memory is pro-
vided.

We frequently make use of scanf() in an inter-
active mode. That is, we may display a request such
as:

puts(‘ ‘Please enter your name:’’};
scanf(’‘8$15c’’,&my_name);

When run, the screen displays:
Please enter your name:

and waits for our entry. If our name entry exceeds
15 characters it will be truncated on the screen.
~In this call to scanf() %ec is the type specifica-
tion, 15 the maximum number of characters, and
&my_name the storage location in memory. The
most commonly used type specifiers are defined in
Table 2.

Listing 9 illustrates usage of scanf(). If you ex-
perience a problem with your program skipping
over the age query to print QUERY 3 without
waiting for your Y or N input try replacing “c” with
“s” in:

scanf({’'‘%c’’,kqry);

/*
** SCANF_IN.C
*+ A program illustrating the use of scanf.
*/
#include <stdio.h>
#define CLRSCRN "\033[2J"
#define LF "\n"
#define QUERY1 "Hil What name do you answer to?"
#define QUERY2 "Mind my asking your age? <Y/N>"
#define REPLY! "Don't be a meanie. Tell me."
#define QUERY3 *"C'mon, what is it?*"
#define QUERY4 "How many dollars do you make in a month?*
main()
{
char name{], qry[];
int *age;
float pay;
puts{CLRSCRN) ;
puts(QUERY1);
scanf ("%s", knaxe) ;
printf("%s? That's a great namel\n",name);
puts(QUERY2) ;
scanf ("%c",&qry); /* may require change to %s. */
if(*qry == 'Y'|| *qry == 'y’) puts({REPLY1);
puts(QUERY3);
scanf({"%i”", kage);
printf(*Only 8i? Just a babe in the woods!\n",age);
puts (QUERY4);
scanf ("V6e”,&pay);
printf{*Only $£? Wow! How about a new hard disk?\n",pay);
exit(0);
}

Listing 9.

I*
*+ PRINTFX.C
** A program illustrating the use of printf.
*/
#include <stdio.h>
#define CLRSCRN *\033[2J"
#define BEX AGE "Ah... That's better!\n*®
main()
{
char *FULL NAME = "Thigmom O. Tourniquet®;
int my age = 49;
int my son_age = 22;
puts (CLRSCRN) ;
printf("Hi! I am $s.\n",FULL NAME);
printf("My age in octal is %o.\n",my age);
printf(°My age in hexadecimal is $x.\n®,my age);
printf(HEX AGE);

printf(*I was %d years old when my son was born.\n®,my_age-my son_age);

exit{0);
}

Listing 10.

or, as another approach, delete the three lines relating to the name
query and re-compile the program. My TURBO C version 1.5
compiles correctly with “%c” but runs correctly only if I replace
“%c” with “%s.” It will run correctly also with all reference to
name removed.

I have found scanf() to have a variety of quirks - it is not the
easiest of functions to use. With Mix’s POWER C, for instance, I
had to declare the float variable as double, not float, and specify
long float (“%If") in the scanf() statement instead of simply “%f”
in order to get the program to compile without error.

printf

Listing 9 provides three typical examples of applying printf() in
our programs. In general, the specification list for scanf() applies
equally to printf(). There are, however, additional features of

34

printf() that can benefit our programs. Table 2 includes the specifi-
cation and format coding for printf().

As with scanf(), printf() is derived from a general function:

int fprintf(FILE *stream,char *format(,argument,...});

fprintf() places its argument on the named stream whereas printf()
directs its output to stdout. There are six variations of printf() pro-
vided with TURBO C, the other five being cprintf(), sprintf(),
vprintf(), viprintf() and vsprintf(). Only printf() is discussed in this
writing. cprintf(), like printf(), directs its output to the console, but
does not translate line-feed characters into CR/LF combinations.

A floating point format specification not defined for scanf() is
%g. With this specification the signed value will print in either ex-

The Computer Journal / #40

ponential (e or E) form, depending on the given value and its preci-
sion. An advantage is that the decimal point and trailing zeroes are
printed only if necessary. To see this, try compiling and running
Listing 9 with %g replacing %f for printing the monthly salary.
That is:

scanf(’'‘s6e’’,kpay);
printf(‘‘Only %g? Wow! How about a new hard disk?\n’’, pay);

The *format term in the function prototype allows us to set
conditions on the print field. That is, the unformatted %f specifica-
tion in Listing 9 displays a half dozen trailing zeroes following the
monthly salary. Replacing %f with %g eliminates the decimal and
the zeroes. There is a better way: format %f. Revise this statement
again by replacing “%f” with “%4.2f”. Recompile and run, and on
.the salary query include a decimal point with more than two trailing
digits. Bear in mind that scanf() will only accept up to 6 characters.
The 4.2 sets a field width of four digits preceding the decimal point
and 2 following it. So now:

scanf(‘‘\6e’’, Gpay);
printf(‘’Only %4.2f? Wow! How about a new hard
disk?\n’’,pay);

A point of interest about the field width specified is that scanf()
will accept six numbers while a width of only four is provided in
printf(). So, compile and run and make a variety of entries to see

what happens. The field width with printf is flexible, when the num-
ber of entries exceeds the specified width, it adapts. So the true
limit here is set by scanf().

Another formatting character that is useful to us is the minus
sign (-). Normally when a quantity is printed from @ specification,
formatted or unformatted, the first character is all the way to the
left. Now suppose we set a field width of 10 in our printf() state-
ment. We only have six characters, so what happens with regard to
the four blanks? Printf() starts the display with four leading blanks,
that’s what. Preceding the format with the minus sign instructs
printf() to begin the display with the first character, climinating the
leading blanks. Try it with:

printf(‘‘Only $-10.2f? Wow! How about a new hard
disk?\n’’,pay);

Actually, there is more we can do with printf() that might be
imagined. Like conversions between number bases and in-line
arithmetic. Examples of these are provided in Listing 10.

Summary

At this time we have covered the most useful of the keyboard
and video I/O library functions. Those that have not been discussed
are narrower in their application and may not be available for all
compilers. Part 2 will continue with disk file input/output and out-
putting control codes to our printer. ®

SCANF() FORMAT SPECIFICATIONS

SPEC FUNCTION

¢ character input.

vhitespace is not read.

an octal integer.

a decimal integer.
unsigned decimal integer.
a hexadecimal integer.
floating point input.
floating point input.

La B I -2 - O - B

PRINTF() FORMAT SPECIFICATIONS

SPEC FUNCTION

A field width W may be included; that is,
85¢c specifies an array of five characters.

s a string input is read and stored in an array.

The string is input until the next

whitespace; a space or newline terminates the input field. A

NULL terminator is appended as the final array element.

a decimal, octal or hexadecimal integer.

a long decimal, octal or hexadecimal integer.

c variable to be printed is a character.
s variable to be printed is a string.
i wvariable to be printed is an integer.
1 wvariable to be printed is a long integer.
o variable to be printed is an octal integer.
x variable to be printed is a hexadecimal integer.
e variable to be printed is floating point.
f variable to be printed is floating point.
g variable to be printed is floating point.
- use with a field width definition to begin printing with the first
non-blank character.
Table 2. Format specification listing for scanf() and printf().

Leading

The Computer Journal / #40

The Z-System Corner

by Jay Sage

For some time I have been planning to
discuss issues connected with setting up a
remote access system (RAS), such as a Z-
Node. There is still a great need for new
nodes, and I think there are quite a few
people toying with the idea of setting one
up; they just aren’t sure they know how to
doit.

In fact, I am going to take up only a
very small part of this question here -- and
not even the part that would really help
someone implement a system. After think-
ing about it, I realized that I am not the
best person to talk about the procedures. 1
may not even be a good person. In fact,
I’'m not even sure that I know any longer
howtodoit!

To solve this problem, I am going to try
to take the approach I have been taking
more and more recently -- recruit some-
one else to write a TCJ article. Specifically,
I hope to get the sysop(s) of one or more
of the newer nodes to document the pro-
eedures they went through. After all, they
are the real experts on the subject. My dis-
cussion here will instead cover only theo-
retical issues. I hope that even those who
have no interest in setting up their own
RAS will find such a discussion interesting.

As usual, before I get to the main tech-
nical topic, I have a number of other mat-
ters to cover first. Here is my list for this
issue: Z-Node update, Z-Helpers, GEnie,

and BDS C.

Z-Node Update

It has been three issues since the last
update on the Z-Node roster, and there
have been quite a few changes. The com-
plete list is reproduced in Listing 1. Many
inactive nodes have been dropped, and
four new nodes have been added.

Chris McEwen’s Socrates board in
New Jersey is now Z-Node #32. The sys-
tem is running under NZCOM on a Xerox
16/8 computer. Besides offering general
support to the 8-bit community, Chris is a
special resource for owners of Xerox com-
puters. Unfortunately, the recent changes
in the Newark outdial of PC-Pursuit have
cut ZN32 off from a lot of its regular call-
ers. As a result, Chris has switched to an
alternative low-cost data transfer service
called StarLink.

Briefly, StarLink provides much wider
geographical access and full support for
2400 bps connections without the packet-
switching delays encountered on PCP. It is
more expensive than PCP at higher
monthly usage rates but cheaper at lower
usage levels. In the future we want to in-
clude in the Z-Node roster the StarLink
addresses as well as PCP outdials. I'd ap-
preciate it if anyone with such information
would could get it to me using any of the
methods indicated in the sidebar to my
column.

Jay Sage has been an avid ZCPR proponent since the very first version appeared. He
is best known as the author of the latest versions 3.3 and 3.4 of the ZCPR3 command
processor and for his ARUNZ alias processor and ZFILER file maintenance shell.

When Echelon announced its plan to set up a network of remote access computer
systems to support ZCPR3, Jay volunteered immediately. He has been running Z-Node #3
Jor more than five years and can be reached there electronically at 617-965-7259 (on PC-
Pursuit). He can also be reached by voice at 617-965-3552 (between 11pm and midnight is
a good time to find him at home) or by mail at 1435 Centre St, Newton, MA 02159.
Finally, Jay recently became the Z-System sysop for the GEnie CP{M Roundiable and can be

contacted as JAY.SAGE via GEnie mail.

In real life, Jay is a physicist at MIT, where he tries to invent devices and circuits that
use analog computation to solve problems in signal, image, and information processing.

36

The NYOUG (New York Osborne
User Group) Fog #15 node (sysop Living-
ston Hinckley) has become a Z-Node as
well, with the same number 15. The sys-
tem is running on an Osborne Executive
(CP/M-Plus) with the Z3PLUS version of
Z-System. It is, thus, the first Z-Node --
though, I believe, not the first RAS -- to
run under Z3PLUS. The board supports
data rates up to 9600 bps using a USR
Courier HST modem.

Dave Trainor in Cincinnati, Ohio, has
signed up as Z-Node #7. His NZCOM-
based system has many of the Z-System
tools, such as VLU and VFILER, avail-
able for use on-line.

Greg Miner established a new frontier
for Z-System as he became Z-Node #11
in Port Williams, Nova Scotia. Greg is
fairly new to the Z-System but has already
made a significant contribution as a pro-
grammer. He realized that on properly ali-
ased Z-Systems, a “DIR *.COM” com-
mand does not really indicate to the user
the commands that are available. So, he
wrote ADIR (Alias DIRectory). It exam-
ines the ALIAS.CMD file, figures out the
names of all the ARUNZ aliases (allowing
for the multiply named scripts), and dis-
plays a sorted listing of them. A very fine
program!

Finally, Ludo VanHemelryck, with as-
sistance from Michael Broschat, will be
setting up a new Z-Node in Seattle to re-
place Norm Gregory’s system, which has
gone over to MS-DOS. Recently, while on
a business trip to Portland, Oregon, I had
the pleasure of meeting Ludo and Michael
(frankly, I was rather flattered that they
were willing to drive all the way down from
Seattle), and I think they will do a lot to
boost Z-System interest in the Seattle
area.

Z-Helpers
In the early days, getting ZCPR3 in-
stalied on a computer was a very arcane
process, beyond the capability of most po-
tential users. Echelon had the wisdom to
compile a list of people all over the coun-
try (actually around the world) who were

The Computer Journal / #40

willing to help other users get
through the process. These people
were called Z-Helpers.

Today, thanks to NZCOM and
Z3PLUS, getting the Z-System in-
stalled is very easy. It’s even easy to
get started using it, since it can be
run just like CP/M. Taking full ad-
- vantage of its capabilities, however,
is another story. With a richness of
function comparable to that of
Unix, the Z-System can be daunt-
ing, but when one remains ignorant
of its capabilities, one misses out on
a lot of its utility and fun.

In looking over the Z-Helper
list that is posted on the Z-Nodes
and included with the NZCOM
and Z3PLUS packages, I realized
that this list has not been updated
for many, many years, and most of
its information is obsolete. It’s high
time that the list be rebuilt!

My plan is to discard the current
list and start over, keeping only the
few people I know to be active still.
I would like to expand that list
greatly. If you feel that you could
be of some assistance to new Z-
System users, please send me a
post card or short note with the fol-
lowing information: name and ad-
dress, voice phone number and
hours, EMAIL addresses, if any
(BBSs, GEnie, Compuserve, AR-
PAnet, BITNET, etc.), special ar-

eas of expertise, if any (specific

* computers, Z3PLUS). Remember,
you do not have to be a Z-System
know-it-all —none of us is. Willing-
ness and eagerness to help are the
most important qualifications of a
Z-Helper, and by working with oth-
ers, you will end up learning a lot
yourself.

GEnie CP/M Roundtable

Some of you may have noticed
the change in the sidebar to my ar-
ticie listing a GEnie mailbox for me
(JAY.SAGE). GEnic has been
making a determined effort to pro-
vide support to the CP/M commu-
nity. The indefatigable Keith Pe-
tersen is the main force behind it,
and he recruited me several

Listing 1. Z-Node List

Revised Z-Node list as of May 30, 1989.

Z-Node List #53
Sorted by State/Area Code/Exchange

An

R

indicates a node that has registered with Z Systems Associates.
changes or corrections to Z-Node Central (#1) or to Jay Sage at Z-Node #3 in
Boston (or by mail to 1435 Centre St., Newton Centre, MA 02159-2469).

NODE SYSOP

Z-Node Central

R 1 Richard Jacobson
R 1 Richard Jacobson

Satellite z-Nodes:

2 Al Hawley

9 Roger Warren

66 Dave Vanhorn

81 Robert Cooper
36 Richard Mead

oo

17 Bill Biersdorf
{node 17 expected

b

Jay Sage

Chris McEwen
R 15 Liv Hinckley
R 7 Dave Trainor

R 33 Jim Sands
R 58 Kent R. Mason

R 4 Ken Jones
60 Bob Peddicord
R 8 Ben Grey

R 6 Robert Dean
R 38 Robert Paddock

R 77 Pat Price
R 45 Robert K. Reid

10 Ludo VanHemelryck
R 78 Gar K. Nelson

R 65 Barron McIntire

R 5 Christian Poirier Montreal Quebec
Terry Smythe Winnipeg

50 Mark Little

CITY

Chicago
Chicago

Los Angeles
San Diego
Costa Mesa
Lancaster
Pasadena

Tampa

CA
CA
CA
CA
CA

FL

to be up beginning

Newton Centre
Plainfield
Manhattan
Cincinnati

Enid

Oklahoma City
Salem

Selma
Portland

Drexel Hill
Franklin

Austin
Houston

Seattle
Olympia

Cheyenne

MA
NJ
NY
OH

OK
OK

OR
OR
OR

PA
PA

X
X

WA
WA

WY

STATE ZIP

60606
60606

90056
92109
92696
93535
91105

33618

RAS Phone

312/649-1730
312/664-17330

213/670-9465
619/270-3148
714/546-5407
805/949-6404
818/799-1632

813-961-5747

of summer)

02159

07080

10128

45236

73703
73107

97305
97538
97229

19026
16323

78745

77088

98502

82007

617/965-7259
201-754-9067
212-489-7370
513-791-0401

405/237-9282
405/943-8638

503/370-7655
503/597-2852
503/644-4621

215-623-4040
814/437-5647

512/444-8691
713/937-8886

206/481-1371
206/943-4842

307/638-1917

in the left column

Report any

PCP

ILCHI/24
ILCHI/24

CALAN/24
CASDI/24
CASAN/12

FLTAM/24

MABOS/24
NINEW/24

NYNYO/24

ORPOR/12

PAPHI/24

TXHOU/24

WASEA/24

H1G 5G5 CANADA 514/324-9031
CANADA 204/832-4593

Manitoba R3N 0712

Lindsay Allen Perth, Western AUSTRALIA 6153
Alice Springs, N.T. AUSTRALIA 5750 61-089-528-852

61-9-450-0200

Verified

05/20/89
05/20/89

05/20/89
02/01/89
10/30/88
12/29/88
11/01/88

{down)

05/20/89
05/20/89
05/20/89
05/20/89
11/01/88
09/15/88
11/01/88

05/20/89

05/20/89
11/01/88

10/31/88
05/20/89
09/10/88
12/12/88

12/10/88
11/01/88

12/21/88

months ago to join the staff as a sysop specializing in the ZCPR3

and Z-System areas.

A system like GEnie offers a significant advantage over individ-
ual Z-Nodes: universal connection. With the Z-Nodes, if you want
to leave me a message, you have to call one of the Z-Nodes that I
call into regularly, and then you have to call around again to see if
and where I might have left a response. Systems like GEnie and
Compuserve offer central communication points readily accessible
from most places in the US and Canada (and with worldwide

The Computer Journal / #40

access developing rapidly —Japan is on-line already).

One of the activities on GEnie is called a real-time conference
(RTC), in which users can communicate interactively. These con-
ferences are held on many subjects. The CP/M RTC takes place
every Wednesday evening at 10 p.m. eastern time, with the first
Wednesday session of each month generally led by me and ear-
marked for Z-System discussion. So, if you have questions or sug-
gestions that you would like to discuss with me and other Z-Sys-
tem users, please consider joining us on the GEnie RTC. If you
don’t already belong to GEnie, check BBS systems near you for

37

information on a special GEnie signup offering that
gives you $20 of free connect time as a new regis-
trant.

BDS C Update
A couple of issues back I announced that a spe-

Listing 2.

Files that comprise the four DSDD diskettes in the 2z

version of BDS C (directories captured using the BGii SCREEN command).

XD III Version 1.2
Filename.Typ Size K RS Filename.Typ Size K RS

Standard BDS C, Version 1.60

Pilename.Typ Size K RS

cial Z-System version of BDS C would soon be avail- cce ASM 34 ROBOOT .C 2 DEFF2B .CSM 24
able, and a number of people have been asking me BUILD .C 6 RM € 2 DEFF2C .CSM 8
about its status. The standard CP/M version 1.60 of | €A -C 24 sTLIBL .C § WILDEXP .CZ ¢
’ . CCONFIG .C 12 STDLIB2 .C 8 CDBUPDAT.DOC 6
BDS C has been available about a year already, and CCONFIG2.C 8 STDLIB3 .C 6 FILES .DOC ¢
a working Z-System version is now being sold. We coB ¢ 6 TAIL .C 2 CCONFIG .H 2
will probably eventually make a few more changes CHARIO .C 4 UCASE .C 2 CDB -H 4
(such as adding support for type-3 program genera- e b e o S 2
tion). In that case, everyone who ordered the earlier CMODEM2 .C 8 cc2 T ooM 18 pIo ‘B 2
version will be offered an update at a price not to cP c 6 cDB .COM 16 HARDWARE . H 4
exceed the cost of media and shipping. DATE c 4 CLIB .COM 6 STDIO .H 2
Some peopie have criticized the $90 price, com- gio g 1; g:;:x gg: 1: :Ein :g‘ f
paring it to Turbo Pascal, which sells for only $60. 12 .c 26 DEFF2 .CRL 6 c .SUB 2
‘What they don’t realize is how much more one gets LPR .c 4 DEFF2A .CSM 20 CASM .SUB 2
with BDS C for the extra $30. Listing 2 shows the F 1: -- 48 Files Using 384K (18K Left)
contents of the four DSDD diskettes in the release, XD III Version 1.2 Standard BDS C, Version 1.60

comprising well over 100 files and more than a
megabyte of material!

Filename.Typ Size K RS Filename.Typ Size K RS

Filename.Typ Size K RS

First there are the core COM files you would ex- [APoREAx -C v ey S 260 pooowm o
pect: the compiler (CC.COM), the code generator BREAK .C P REDS ¢ p BUGS .DOC >
(CC2.COM), the linker (CLINK.COM), and a li- CDB2 .c 2 RED6 .C 2 CRCK .DOC 2
brarian (CLIB.COM). CC, CC2, and CLINK come CDBCONFG.C 6 RED7 .C 4 BDSCIO .H 4
in both standard CP/M and Z-System versions, with COMMARND .C 6 REDS .C 14 coR2 .H 4
separae run-time packages mel 3 mm o1 wwen

Then there is the stuff that almost no one gives LONG .C 4 TSTINV .C 2 RED1 H 2
you—the source code. True, you dom’t get the PARSE .C 12 uTIL .C 2 REDBUF .H 4
source for the core items, but you do getsource code | prs o e eIc m g Loo-RmADAS 4
for everything else. Assembly-language source is in- RED11 .C 18 CRCKLIST.CRC ¢ CRED .SUB 2
cluded for the run-time package, and C source is RED12 .C 16 BCD .CRL 16 L2RED .SUB 2
provided for the collection of standard libraries. REDI3 .C 6 DASM .CRL 2 LRED .SUB 2
Some of the items are provided only in C source | ~of S oS ocRe 13 WRL .SW 0
code; you have to compile them to produce COM F 2: -- 50 Files Using 376K (18K Left)

iles configured for your system and tastes. This in-
cludes two assemblers—one that uses Intel mne-
monics (CASM) and one that uses Zilog mnemonics
(ZCASM)—and a symbolic debugger (CDB). And

XD III Version 1.2

Special Z-System Files

Filename.Typ Size K RS Filename.Typ Size K RS Filename.Typ Size K RS

y -BDSZ 0 cc2 .COM 18 DEFF2A .CSM 20
while you don’t get the source for CLINK, you do cecc .ASM 50 CCONFIG .COM 20 DEFF2B .CSM 24
get the source for another linker, L2, that has even cp .C 6 CLINK .COM 6 ZUTIL .CSM 2
more capability (such as handling code that won't all D1 ¢ ‘4 TAIL .COM s STDIO .H 2
fit in memory at one time ECH .C 2 DEFF «CRL 12 BDS .LIB 8

ry) TAIL .C 2 DEFF2 +-CRL 6 READ «ME 18

RED, an editor with special hooks into the C er- WILDEXP .C 8 DEFF3 .CRL 4 CASM .SUB 2
ror listing, is also provided, again in source form. gc gg: 1: TAIL .CRL 2 NDEFF2 .SUB 2
You al_so geta nun}ber of sample programs, ranging P 1: -- 25 Files Using 244K { 420K Left)
from simple ones like CP (copy files) to an implem-
entation of the MODEM?7 file-transfer protocol XD III Version 1.2 Zilog-Mnemonic Version of Assembler

(CMODEM.C). [P.S. If you absolutely and irresisti-
bly crave the assembly-language source code to the

Filename.Typ Size K RS Filename.Typ Size K RS Filename.Typ Size K RS

-ZCASM 0 ZCASM .DOC 8 READ -ME 2
BDS C core components (for personal use, not re- ZCASM .C 24 —-READ—— .ME 2 JCASM .SUB 2
sale, of course), they can be purchased as an extra ZCASM .COM 18
option for $200,] F 2% == 7 Files Using 56K {(420K Left)

Support is another important issue. Who sup-
ports Turbo Pascal? The same people who when
asked about Turbo Modula 2 vigorously deny that
they ever offered such a product at ali! [Alpha Sys-

tems, unfortunately, acquired only the right to sell Turbo Pascal;

not only invites you to call him, d evening, he actually is h;
Borland did not give them the source code and does not allow ly yo m, day or evening, he actually is happy

when you do!
them to maintain it.] With BDS C, the situation is quite the oppo- .
site. On page 1 of the BDS C manual, at the top of the page, prolgl:ai:):z::a’rBDs C is a remarkable product from a remarkable 1

author Leor Zolman’s personal phone number is listed, and he

38 The Computer Journal / #40

Remote Access Systems

I had hoped by now to have gone
through the process of completely re-
vamping the RAS software on my Z-
Node. It has been many years since I de-
signed that system, and I really do not re-
member all the details of what I went
through. Being the sort I am, I made a
great number of custom modifications to
all the programs, and, as a result, I have
been stuck using old versions of every-
thing. I use a derivative of BYES03 when
the latest version is BYES520; I run a
modified KMD09 when KMD has not
-only advanced to a much higher version
~ number but has really been superseded by

Robert Kramer’s excellent ZMD. Admit-
tedly, I already incorporated a number of
the improvements that these versions of-
fer; nevertheless, my node is quite out-
moded.

With the TCJ column as an excuse to
look into all these new developments, 1
thought I would be able to modernize Z-
Node #3 and be able to tell you how to go
about creating a new Z-Node in the easi-
est possible way. Alas, as usual, [have
been too busy with other things. As I said
earlier, I hope to get one or more of the
new Z-Node sysops to contribute articles
to TCJ on this subject.

Since I can’t give a prescription for cre-
ating a standard remote access system
(RAS) using the current software, 1 will
instead discuss some of the basic concepts
behind a remote access system and the
ways in which Z-System facilities can be
. used to advantage. The standard RAS
software is designed to work under stan-
dard CP/M and is far less efficient than it
could be.

1/O Redirection

Once you have a secure Z-System run-
ning, as we described last time, the next
step is to make it possible for the system to
be operated via the modem. The standard
software that does this is called BYE, and
it traces its roots all the way back to the
work of Keith Petersen and others from
the days of Ward Christensen’s first re-
mote CP/M (or RCPM) system in the late
1970s.

A great deal of development has oc-
curred since that time, and BYE now pro-
vides a rich array of services. Its essential
function, however, is to provide redirec-
tion of the console input/output functions.
Program input is allowed to come not only
from the local keyboard but also from the
modem; program output is sent not only
to the local screen but also to the modem.
In this way, either the local operator or the
person connected via the modem can op-
erate the computer. With a secure Z-Sys-

The Computer Journal / #40

tem, this alone would be enough for a ru-
dimentary RAS.

BYE works by installing itself as an
RSX, or resident systém extension, gener-
ally just below the command processor. It
patches the data in page 0 of memory (this
is where programs find out how to request
services from the operating system) and in
the actual BIOS. These patches do two
things. They protect BYE so that a
warmboot will not result in its removal
from memory, and they allow BYE to in-
tercept software calls to the BIOS and
DOS from any running programs. BYE
can then substitute its own additional or
special functions.

In a Z-System, the extended character
I/O functions of BYE could properly be
implemented using an IOP (Input/Output
Package). The IOP is a generalization of
the concept from early CP/M of the so-
called IOBYTE, which was controlled by
the STAT command and used to select
from a fixed set of I/O devices (up to four
possibilities in the case of the console).
Richard Conn conceived of the IOP mod-
ule as a way to handle just the kind of /O
operations needed for a RAS, and his
book, “ZCPR3, The Manual,” has some
examples of this. Alternatively, the BIOS
functions could be implemented directly in
an NZCOM VBIOS (virtual BIOS),
which could be loaded as needed.

Consider the case where the console is
an external terminal connected to an
RS232 serial port. The standard BIOS
CONOUT (console output) function
takes the character in register C and sends
it to that serial port. For a remote system,
the BIOS would send the character first to
the terminal’s serial port and then to the
modem’s serial port.

Similarly, the standard BIOS CONST
(console status) function checks the termi-
nal’s serial port to see if a character has
been received. If so, it returns with a
nonzero value in register A; otherwise it
returns a zero value. For a remote system,
the CONST routine would check both se-
rial ports and return a nonzero value if ei-
ther one has a character ready. CONIN
(console input) would poll the two serial
ports alternately until it got a character
from one or the other of them.

Conceptually, this is really all pretty
straightforward. The biggest problem is
that the code depends on the specific com-
puter hardware, so no universal routines
can be supplied. The BYE program has
been cleverly designed, like an operating
system, with the hardware-specific code
separated from the hardware-independent
code. As a result, customized versions of
BYE can be assembled easily by putting
source code inserts for one’s specific hard-

ware at designated places in the master
file. There are two collections of inserts,
one for many computer types and one for
many types of real-time clocks (more
about this later).

There are also some fine points about
how the console redirection is handled.
BYE, of course, knows the difference be-
tween the local console and the modem
and can treat them differently where ap-
propriate. For example, since modems
commonly produce certain noise charac-
ters that rarely appear in intended input
(such as the left curly brace), these can be
filtered out (i.e., ignored). Also, some spe-
cial functions can be assigned to local con-
trol codes. For example, pressing control-
N at the local console will immediately end
the callers session (used when the sysop
doesn’t like what a user is doing); on the
other hand, control-U removes any con-
nect time limit, and control-A allows spe-
cial access by turning on the wheel byte
(toggling it, actually).

The screen output can likewise be
handled differently. Pressing control-W Jo-
cally causes a local display of the current
caller’s name. Something I added to my
version of BYE was a filter that prevents
escape sequences from going to the local
console. I allow (encourage) users to take
advantage on-line of virtually all Z-System
capabilities, including the full-screen utili-
ties like ZFILER, ZMANAGER, and
VLU. When 1 first started to do this, 1
found that the escape sequences going to
the users’ terminals sometimes did very
bad things to my own terminal (the smart-
est terminals, like the Wyse and Televideo
models, have the worst problems; they
have sequences—that cannot be disabled
—that lock out the keyboard!). I simply
borrowed the code used in BYE for the
incoming-character filter.

Modem Initialization and Call
Detection

The first real complication we have to’
face is that the actions described above
make sense only after the local modem is
in communication with a remote modem.
Consequently, BYE has traditionally been
given the additional task of initializing the
modem and monitoring it for an incoming
call. A ‘smart modem’ (one that processes
the Hayes “AT” commands and returns
the Hayes result codes) is generally as-
sumed, though BYE apparently will work
with other modems to some extent.

The standard procedure today for an-
swering calls (unless it has changed again
since my BYES03) is not, as one might
have expected, to set the modem to auto-
answer mode. There are some subtle rea-
sons why this is less desirable. Instead,
BYE monitors the modem port for an

39

SAGE MICROSYSTEMS EAST

Selling & Supporting the Best in 8-Bit Software

e New Automatic, Dynamic, Universal Z-Systems

— Z3PLUS: Z-System for CP/M-Plus computers ($69.95)
~ NZ-COM: Z-System for CP/M-2.2 computers ($69.95)
— ZCPR34 Source Code: if you need to customize ($49.95)

e Plu*Perfect Systems

— Backgrounder II: switch between two or three running tasks un-

der CP/M-2.2 ($75)

— ZDOS: state-of-the-art DOS with date stamping and much more
(875, $60 for ZRDOS owners)

— DosDisk: Use DOS-format disks in CP/M machines, supports
subdirectories, maintains date stamps ($30 — $45 depending on

version)

e BDS C — Special Z-System Version ($90)
e SLR Systems (The Ultimate Assembly Language Tools)
~ Assembler Mnemonics: Zilog (Z80ASM, Z80ASM+), Hitachi
(SLR180, SLR180+), Intel (SLRMAC, SLRMAC+)
— Linkers: SLRNK, SLRNK+
— TPA-Based: $49.95; Virtual-Memory: $195.00

o NightOwl Software MEX-Plus ($60)

‘Same-day shipping of most products with modem download and support
available. Order by phone, mail, or modem. Shipping and handling $4 per
order (USA). Check, VISA, or MasterCard. Specify exact disk format.

Sage Microsystems East
1435 Centre St., Newton Centre, MA 02159-2469
Voice: 617-965-3552 (9:00am — 11:30pm)
Modem: 617-965-7259 (password = DDT)(MABOS on PC-Pursuit)

output string from the modem indicating
that it has detected a ring signal. This
string will be “RING” if the modem is in
verbose mode or “2” if it is in terse mode.
BYE then sends the command “ATA” to
the modem so that it will answer the call.
Then BYE waits for another string that
indicates the data rate of the connection;
in terse mode these are “1” for 300 bps,
“5” for 1200 bps, “10” for 2400 bps, and
other values for higher speed or error-cor-
recting modems. Finally, the serial port is
synchronized to the modem’s data rate.

If no connect indication is received

within a prescribed time, BYE recycles the
modem to make it ready for another call.
Once a connection has been established,
BYE generally displays a welcome mes-
sage, and it may ask for a password. Then
it loads an initial program, typically the
bulletin board program.

The functions we just described do not
really have to be handled in BYE at all,
and TPA could be saved (remember, the
BYE code remains resident in high mem-
ory at all times) if they were performed by
a transient program. With a Z-System
there is also no need for BYE itself to load
a program file into memory. All it has to

do is place a command line into the
multiple command line buffer. This re-
quires much less code and is faster and
more flexible. Moreover, the full power
of the command processor is available
to locate and load the program code.
Resident, type-3, and type-4 programs
can be used. I modified my BYE to
load the simple command line STAR-
TRAS, which, as you probably guessed,
is an alias (it can be an ARUNZ alias,
in fact). This makes it very easy to
make changes and experiment.

Carrier Monitoring

There is one further function of
BYE that cannot easily be performed
anywhere else. That is monitoring the
carrier-detect line for a loss of connec-
tion. After all, a caller might hang up or
become disconnected at any time.
Some special clean-up functions must
then be performed. The currently run-
ning program must be aborted, any sys-
tem maintenance functions performed
(such as updating the database of caller
information), and the modem must be
reset and readied for another call
Without going into any detail, I do
want to point out that terminating a
running program can be tricky, espe-
cially if file I/O is in progress.

Besides detecting when a user dis-
connects, either voluntarily or acciden-
tally, BYE can also enforce a time limit
on the caller. For many of its timing
functions, BYE requires a real-time
clock. As I mentioned earlier, there is a
library of clock inserts that can be in-
stalled in the BYE source before it is
assembled.

This completes the discussion for
this issue. So far we have touched on
the BIOS and modem-control func-
tions of BYE; next time I plan to take
up the DOS services that BYE pro-
vides. @

The Computer Journal / #40

Real Computing

The National Semiconductor NS32032

by Richard Rodman

What, I have been asked, is “Real Computing”? Real comput-
ing is where performance counts, where work is done, where
people think and machines work. Real computing is where the ma-
chine fills a purpose in a larger system, such as a company or a
factory.

This time I'm going to talk about embedded computing, where
programmed control is embedded within the structure of a larger
machine. More often than not, the “user interface” to such a proc-
essor is very limited, such as a button or two, a couple of lights, a
few TTL or analog I/O lines. The operation may be completely
invisible to an outside observer.

Many TCJ readers work in the embedded computing environ-
ment, as shown by their interest in interfacing unusual devices.
Those of you who do not should consider this: About 10 million
PCs have been sold in ten years. More than that many embedded
processors are installed each year. Furthermore, the applications
software market fluctuates with the fortunes of the PC vendors; a
big downturn occurs every couple of years. The embedded comput-
ing market has grown every year since the 4004 came out.

Embedded Systems

National Semiconductor has decided to reorientate their mar-
keting plan to embedded systems, instead of to the more glamor-
ous Unix, workstation or PC markets. Obviously, a lot more chips
are sold in that market.

There are basically three sub-markets in the embedded com-
puter market. From the low-end to the high-end, each sub-market
is about one-tenth the size of the one below it.

The low-end sub-market is ruled by 4- and 8-bit microcon-
trollers, principally the 8051. These processors typically have some
on-chip memory and peripherals, and an instruction set with “hard-
wired” support for the on-chip I/0. While C compilers are avail-
able, no real programmer would use one. These chips have to be
programmed in assembler to achieve any semblance of perform-
ance. Devices in this section are sold in tens of millions of units
each year, and control simple devices such as microwave ovens,
keyboards, . . . No bus is ever used in these devices, because this
sub-market is extremely cost-sensitive: a few pennies difference
might dictate the choice of a processor.

The mid-level sub-market is the broadest region of the market,
and it is almost completely ruled by the Z-80. These processors are
used in areas where greater performance or more memory is
needed, such as in industrial process controls, data buffers, disk and
printer controllers, fax machines, high-speed modems, multiplexers,
printer buffers, plotters, and so forth. Programming is mostly in
assembler, because C compilers for the Z-80 exact too high a per-

The Computer Journal / #40

formance penalty. Buses are sometimes used in these devices,
which are 8-bit buses such as the G64 and STD buses. Because of
high cost-sensitivity, 8 bits is the main bus size, and that isn’t likely
to change.

The high-end sub-market is used in high-performance, real-time
device control or data manipulation systems. Processors in this
market need high performance, fast interrupt response, and simple
and fast access to, and manipulation of, large memory buffers.
‘These actually have a broad range of application such as laser print-
ers, X.25 multiplexers and packet switches, synchronous data link
protocol converters or front-ends, laboratory data acquisition sys-
tems, signal processing, image processing, rasterizing, and so on. In
this market, the ruling processor is the 68020, and the ruling bus is
the VME bus. However, the number of units is only in the hun-
dreds of thousands. These systems are programmed about half in
assembler, half in C, depending on whether high performance or
quick time-to-market is the overriding concern.

Intel has made a little inroads into the mid-level market with the
80186 and 80188, and has been struggling to enter the high-level
market with the 80386, 80376 and 80960. However, their seg-
mented architecture has been a significant limiting factor.

Another approach which has gained some attention is the use of
Forth in the mid-level and high-end submarkets. Harris has tar-
geted their RTX-2000 chip specifically to the high-end submarket.

National has targeted the low-end with their COP and HPC
processors, the mid-range with the 32008 processor, and the high-
end with the 32016, 32CG 16 graphics processor, 32332, 32532, and
the new 32GX32 processor.

Another factor in the embedded systems market is the availabil-
ity and quality of good, inexpensive development tools. This means
that chips and boards must be available in experimenter’s quanti-
ties at low prices, and development software must be available for
common computing platforms at low cost. There are a number of
low-cost boards available for the NS32 chip sets, or you can “roll
your own.” As for software, the C compilers and assemblers avail-
able from TCJ are first rate.

The 32GX32 CPU

In April, National announced the 32GX32 CPU. Many people
assumed that, because of the letters in the middle, this part was
very similar to the 32CG16. This, however, is not the case. Embed-
ded computing usually needs a “hot rod” CPU, where the power
steering and electric windows have been removed, and that’s what
the 32GX32 is--simply put, it’s a 32532 without an MMU. By re-
moving the MMU, National dramatically reduced the number of
transistors on the chip, making it smaller and therefore less expen-

41

sive to produce. It still has the on-chip data and instruction caches.

In the same month, Motorola announced the 68332, which is a
68020 CPU with some 1/O and a peculiar timer circuit added. This
device, and its timer, was specifically designed for one particular
high-volume customer, so whether the part appeals to anyone else
is probably immaterial. National has indicated that they are willing
to undertake similar projects based on the 32GX32.

Although National has been very careful to never mention the
" 32532 and the 32GX32 in the same breath, very interestingly, the
two parts are pin-compatible, so that it would be possible to up-
grade a system based on the 32GX32 to a 32532 in the future.

Assembly Language

You'll notice that, in embedded systems, assembly language is

. used except in the very high-end. In the application software world,

assembly language is disdained as being non-portable. It’s true, as-

sembly language is not portable (although there have been at-

tempts made at “universal assembly language”). Tricks and special

techniques used in specific processor instruction sets are also non-
portable.

However, assembly language skills are in fact quite portable.
Thus, the real programmer working in assembly language must
develop techniques that he can reuse. Some of these might be a
tool box of common algorithms, or a naming convention for global
variables.

Assembly language is a good place to learn how to really make
your software reliable. In C, it is possible to limit the scope of
variables and functions by calling them “static” (Dennis Ritchie
saved adding a new keyword by reusing an old one—a penny-wise,
pound-foolish decision all C programmers suffer from), but almost
nobody does it. The assembly language programmer learns that a
global variable is like an open door—you never know who might
come in there —so he wisely limits the scope of variables as much as
possible, and combines functions into modules in such a way as to
reduce the number of globals.

' Further, an assembly language program is a lot bigger —in terms
of lines of source —than a C program. To keep the size in bounds,
the programmer learns to make subroutines which are general,

taking parameters, so that they can be used by many different parts
of the program. C programmers often take a “when in doubt, write
another function” approach.

The main problem with the C language is that it is caught in the
middle between a high-level language like Ada and low-level assem-
bler. In some cases (for example, the freeness of “casting” pointers
or performing pointer arithmetic), it follows the assembier philoso-
phy; in other cases, such as arithmetic expressions, it follows high-
level thinking. The result is a schizophrenic language that acts in
bizarre ways. For example:

long longvarl, longvar2;
longvarl = ((long) funcl{) + longvar2) + 2;

Even though funcl is casted to long and added to a long and the
result is a long, the compiler sees a single int-sized quantity (the 2)
and truncates the intermediate result to an int, just before sign-
extending it to store it in longvar1.

Assembly language makes no pretensions of any Kind. It’s ex-
plicit. It says what it means and means what it says, nothing more,
nothing less.

“But assembly language is hard,” some might say. While the
Intel family of processors scems to have been fiendishly designed to
make assembly language frustrating and confusing, the NS32 in-
struction set is simple and easy to pick up. Why, your first program
might run the first time.

Next time

Next time Pll return to the NS32 architecture and discuss the
trap mechanism, including the built-in single step mechanism. Plus,
I'll cover some new information about Neil Koozer’s 32HL, origi-
nally described in issue #30. @

Where to write or call:

Richard Rodman
8329 vy Glen Court
Manassas VA 22110
BBS: 703-330-9049

/

K-OS ONE — Single user generic 68000 operating system
for your 68000 hardware. It uses the MS-DOS disk format,
and includes the operating system with source code (written
in HTPL), an editor, assembler, and HTPL compiler. A
sample BIOS code and a boot loader are included. This is
not ready-to-run—you have to install the BIOS on your sys-
tem, but the source code and language compiler are in-
ClUAEA .o s s $50

HT-Forth—A full featured, interactive Forth that works
with the K-OS ONE operating system. It uses a full 32 bit
stack and 32 bit arithmetic to take full advantage of the
68000. Programs are position independent and are limited in
size only by the memory available. Source code compiles to
inline macros, JSR, or BSR so there is no inner interpreter
overhead. Standard ASCH files are used. includes full screen
Leditor and a Forth style 68000 assembler $100

~

68000Cross Assembler—Written entirely in 8086 assem-
bly language, it is small and fast. All input and output is done
with standard MS-DOS calls so it will run on any MS-DOS
system, even those which are not totally PC compatible. All
68000 and 68010 instructions are supported. It has condi-
tional assembly, the symbol table is in alphabetical order,
and cross referencing is included. Include files are sup-
ported so it is easy to assemble big programs, but edit them
in small pieces. An equate file can be produced for PROM
based Programmingcccecvrisereiimerisisisnenesennnsens $50

ORDER FROM

The Computer Journal
190 Sullivan Crossroad
Columbia Falls, MT 59912
Phone (406) 257-9119

Visa and Mastercard accepted
Prices postpaid in the U.S. and Canada

J

42

The Computer Journal / #40

Issue Number 1:

* RS-232 interface Part One

» Telecomputing with the Apple |l

s Beginner's Column: Getting Started
* Build an “"Epram"”

issue Number 2:

Issue Number 18:

* Parallel Interface for Apple Il Game Port
* The Hacker's MAC: A Letter from Lee
Feisenstein

* S-100 Graphics Screen Dump

+ The LS-100 Disk Simulator Kit

* BASE: Part Six

o Interfacing Tips & Troubles: Com-
municating with Teiephone Tone Control,
Part 1

issue Number 19:

Fiie Transfer Programs for CPIM

RS-232 Interface Part Two

Build Hardware Print Spooter: Part 1
Review of Floppy Disk Formats

Sending Morse Code with an Apple It

* Beginner's Column: Basic Concepts and
Formuias

issue Number 3:

e Add an 8087 Math Chip to.Your Dual
Processor Board ’

¢ Build an A/D Converter for Apple I

¢ Modems for Micros

* The CP/M Operating System

¢ Build Hardware Print Spooter: Part 2

Issue Number 4:

* Optronics, Part 1: Detecting,
Generating, and Using Light in Electronics
® Multi-User: An Introduction

¢ Making the CP/M User Function More
Usefut

« Buiid Hardware Print Spooler: Part 3

¢ Beginner's Column: Power Supply
Design
Issue Number 6:

* Build High Resoiution 5-100 Graphics
Board: Part 1

* System Integration, Part 1. Selecting
System Components

* Optronics, Part 3: Fiber Optics

¢ Controliing DC Motors

¢ Multi-User: Local Area Networks

¢ DC Motor Applications

issue Number 16:

* Debugging 8087 Code

* Using the Apple Game Port

¢ BASE: Part Four

* Using the S-100 Bus and the 68008 CPU
¢ Interfacing Tips & Troubles: Build a
““"Jellybean” Logic-to-RS232 Converter

The Computer Journal

* Using The Extensibility of Forth

* Extended CBIOS

« A $500 Superbrain Computer

¢ BASE: Part Seven

¢ Interfacing Tips & Troubies: Com-
municating with Telephone Tone Control,
Part2

* Muititasking and Windows with CP/M: A
Review of MTBASIC

Issue Number 20:

¢ Designing an 8035 SBC

¢ Using Apple Graphics from CP/M: Turbo
Pascal Controls Apple Graphics

+ Soidering and Other Strange Tales

* Buitd a S-100 Floppy Disk Controller:
WD2797 Controller for CP/M 68K

1ssue Number 21:

* Extending Turbo Pascal: Customize with
Procedures and Functions

* Unsoldering: The Arcane Art

s Analog Data Acquisition and Controt:
Connecting Your Computer to the Reat
World

* Programming the 8035 SBC

Issue Number 22:

o NEW.DOS: Write Your Own Operating
System

* Variability in the BDS C Standard Library
* The SCSI Interface: Introductory
Cotumn

* Using Turbo Pascal ISAM Files

¢ The AMPRO Little Board Column

Issue Number 23:

* C Column: Flow Control & Program
Structure

e The Z Column: Getting Started with
Directories & User Areas

* The SCSl Interface: Introduction to SCSt
* NEW-DOS: The Console Command
Processor

* Editing The CP/M Operating System

* INDEXER: Turbo Pascal Program to
Create Index

* The AMPRO Little Board Column

THE COMPUTER JOURNAL

Back Issues

issue Number 24:

» Selecting and Building a System

¢ The SCS! Interface: SCSI Command
Protocot

* Introduction to Assembly Code for CP/M
+ The C Column: Software Text Filters

+ AMPRO 186 Column: Installing MS-DOS
Software

* The ZColumn

o NEW-DOS: The CCP Internal Commands
¢ ZTIME-1: A Realtime Clock for the AM-
PRO Z-80 Little Board

Issue Number 25:

* Repairing & Moditying Printed Circuits
* Z-Com vs Hacker Version of Z-System

« Exploring Single Linked Lists in C

* Adding Serial Port to Ampro L.B.

* Building a SCS! Adapter

* New-Dos: CCP Internal Commands

o Ampro '186 Networking with SuperDUO
* ZSIG Column

Issue Number 26:

* Bus Systems: Selecting a System Bus

¢ Using the SB180 Real Time Clock

¢ The SCSI Interface: Software for the
SCSI Adapter

¢ inside AMPRO Computers

« NEW-DOS: The CCP Commands Con-
tinued

¢ ZSIG Corner

+ Affordabie C Compilers

* Concurrent Multitasking: A Review of
DoubleDOS

Issue Number 27:

* 68000 TinyGiant: Hawthorne's Low Cost
16-bit SBC and Operating System

e The Art of Source Code Generation:
Disassembling Z-80 Software

¢ Feedback Control System Analysis:
Using Root Locus Analysis and Feedback
Loop Compensation

e The C Cotumn: A Graphics Primitive
Package

* The Hitachi HD64180: New Life for 8-bit
Systems

¢ ZSIG Corner: Command Line Generators
and Aliases

* A Tutor Program for Forth: Writing a For-
th Tutor in Forth

» Disk Parameters: Modifying The CP/M
Disk Parameter Block for Foreign Disk
Formats

Issue Number 28:

* Starting your Own BBS

* Build an A/D Converter for the Ampro
L.B.e HD64180: Setting the wait states &
RAM refresh, using PRT & DMA

* Using SCSI for Real Time Controi

¢ Open Letter to STD-Bus Manufacturers
* Patching Turbo Pascal

* Choosing a Language for Machine Con-
trol

Issue Number 28:

* Better Software Filter Design

¢ MDISK: Adding a 1 Meg RAM disk to
Ampro L.B., part one.

* Using the Hitachi HD64180: Embedded
processor design.

¢ 68000: Why use a new OS and the 680007
+ Detecting the 8087 Math Chip

¢ Floppy Disk Track Structure

¢ The ZCPR3 Corner

Issue Number 30:

* Double Density Floppy Controtler

¢ ZCPR3 IOP for the Ampro L.B.

* 3200 Hacker's Language

* MDISK: 1 Meg RAM disk for Ampro LB,
part 2

* Non-Preemptive Muititasking

Software Timers for the 68000

Liltiput Z-Node

The ZCPR3 Corner

The CP/M Corner

Issus Number 31:

* Using SCSI for Generalized /0

* Communicating with Floppy Disks: Disk
parameters and their variations.

e XBIOS: A repiacement BIOS for the
S$B180.

* K-OS ONE and the SAGE: Demystiting
Operating Systems.

* Remote: Designing a remote system
program.

* The ZCPR3 Corner: ARUNZ documen-
tation.

Issue Number 32:

e Language Development: Automatic
generation of parsers for interactive
systems.

« Designing Operating Systems: A ROM
based O.S. for the Z81.

* Advanced CP/M: Boosting Performance.
* Systematic Elimination of MS-DOS
Files: Part 1, Deleting root directories & an
in-depth look at the FCB.

e WordStar 4.0 on Generic MS.DOS
Systems: Patching for ASCIl terminal
based systems.

* K-OS ONE and the SAGE: Part 2, System
layout and hardware configuration.

* The ZCPR3 Corner: NZCOM and ZC-
PR34.

issue Number 33:

* Data File Conversion: Writing a filter to
convert foreign file formats.

s Advanced CP/M: ZCPR3PLUS, and how
to write self relocating Z80 code.

¢ DataBase: The first in a series on data
bases and information processing.

* SCSI for the $-100 Bus: Another example
of SCSI's versatility.

* A Mouse on any Hardware: Implemen-
ting the mouse on a Z80 system.

* Systematic Elimination of MS-DOS
Files: Part 2—Subdirectories and extnded
DOS services.

* ZCPR3 Corner: ARUNZ, Shetls, and pat-
ching WordStar 4.0

Issue Number 34:

* Developing a File Encryption System:
Scramble data with your customized en-

cryption/password system.

* DataBase: A continuation of the
database primer series.

e A Simple Multitasking Executive:
Designing an embedded controller
muititasking system.

s ZCPR3: Relocatable code, PRL files,
ZCPR34, and Type 4 programs.

o New Microcontrollers Have Smarts:
Chips with BASIC or Forth in ROM are easy
to program.

* Advanced CP/M: Operating system ex-
tensions to BDOS and BIOS, RSXs for
CPiM2.2.

* Macintosh Data File Conversion in Tur-
bo Pascal.

issus Number 35:

e Ali This & Modula-2: A Pascal-like alter-
native with scope and parameter passing.

e A Short Course in Source Code
Generation: Disassembling 8086 software
to produce modifiable assem. souce code.
e Real Computing: The National
Semiconductor NS32032 is an attractive
aiternative to the intel and Motorola CPUs.
» $-100 Eprom Burner: a project for S-100
hardware hackers.

e Advanced CP/M: An up-to-date DOS,
ptus detalls on file structure and formats.

* REL-Style Assembly Language for CP/M
and 2Z-System: Part 1-selecting your
assembler, linker, and debugger.

e ZCPR3 Corner: How shells work,
cracking code, and remaking WordStar 4.0

Issue Number 38:

¢ |nformation Engineering: Introduction

¢ Modula-2: A list of reference books

* Temperature Measurement & Control:
Agricultural computer application

s ZCPR3 Corner: Z-Nodes, Z-Plan, Am-
strand computer, and ZFILEI
* Real Computing: NS32032 hardware for
experimenter, CPU's in series, software
options

* SPRINT: A review

* ZCPR3's Named Shell Variables

* REL-Style Assembly Language for CP/M
& Z-Systems, part 2

* Advanced CPIM: Environmental
programming

tssue Number 37:

* C Pointers, Arrays & Structures Made
Easier: Part 1, Pointers

s ZCPR3 Corner: Z-Nodes, patching for
NZCOM, ZFILER

* |Information Engineering: Basic Concep-
ts; fields, field definition, client
worksheets

* Shells: Using 2ZCPR3 named shell
variables to store date variables

* Resident Programs: A detailed look at
TSRs & how they can lead to chaos

* Advanced CP/M: Raw and cooked con-
sole 110

¢ Real Computing: NS320XX floating
point, memory management, coprocessor
boards, & the free operating system

e ZSDOS-Anatomy of an Operating
System: Part 1

issue Number 38:

o C Math: Handling Dollars and Cents
With C.

o Advanced CP/M: Batch Processing
and a New ZEX.

e C Pointers, Arrays & Structures Made
Easler: Part 2, Arrays.

¢ The Z-System Corner: Shelis and ZEX,
new Z-Node Central, system security un-
der Z-Systems.

o information Engineering: The portabie
Information Age.

o Computer Alded Publishing: Introduc-
tion to publishing and Desk Top Publish-
ing.

® Shells: ZEX and hard disk backups.

o Real Computing: The National Semi-
conductor NS320XX.

e 2SDOS-—-Anatomy of an Operating Sys-
tem, Part 2.

Issue Number 39:

e Programming for Performance: Assem-
bly Language techniques.

o Computer Aided Publishing: The Hewl-
ett Packard LaserJet.

e The Z-System Corner: System en-
hancements with NZCOM.

e Generating LaserJet Fonts: A review of
Digi-Fonts.

e Advanced CP/M: Making old programs
Z-System aware.

o C Pointers, Arrays & Structures Made
Easier: Part 3: Structures.

e Shells: Using ARUNZ alias with ZCAL.
¢ Real Computing: The National Semi-
conductor NS320XX.

¢ The Computer Corner.

TCJ ORDER FORM

Subscriptions U.S. Surface Total
Foreign
6 issues per year
0O New O Renewal lyear $16.00 $22.00 $24.00
2years $28.00 $42.00
Back Issues —_ — —— $350ea. $3.50ea. $4.75ea.
Six or more -——— — —— e ————— ———— $3.00 €a. $3.00 ea $4.25 ea.
's
All funds must be in U.S. dollars on a U.S. bank. Total Enclosed
O Checkenclosed O VISA [MasterCard Card#
Expiration date Signature
Name
Address
City State ZIP

THE COMPUTER JOURNAL ’

#40 190 Sullivan Crossroad, Columbia Falls, MT 59912 Phone (406) 257-9119

Programming the LaserJet
(Continued from page 4)

8.5 x 11, refers to the cut paper size. The
logical area (also called the addressable
area) which defines where the cursor can
be positioned, and the printable area
which defines where the printer can place

.a dot, are smaller. The manuals include a

chart of the logical and printable areas.
For 8.5 x 11 physical size, the logical area
is 8 x 11, and the printable area is 8.16 x
10.66.

The LaserJet IID manual states that it
performs pixel level clipping at the print-
able area boundaries so that any portion
of a character or graphic which is outside
of the printable area will be clipped. I am
using a LaserJet II (not IID), and I lose
the entire character if a portion of the
character extends beyond the printable
area boundary.

The cursor positioning commands
place the cursor at the lower left hand cor-
ner of the character cell, and the character
extends up and to the right of the cursor
position. For raster graphics the cursor
position is at either the upper left or upper
right corner of the graphics cell. Keep the
position of the character or graphics cell
with relation to the cursor in mind before
you place the cursor.

The Escape Codes

The LaserJet IID Technical Reference
Manual lists 66 PCL escape sequence
commands as shown in Figure 1, and re-
quire specific arguments. I will only cover
about half of them in this series, and
strongly recommend that you obtain the
reference manual if you intend to do much
PCL programming.

In this series, I am using the symbol
<ESC> to indicate where the 1B Hex es-
cape code will appear, since the escape
code is not a printable character. The PCL
codes are case sensitive—use lower and
upper case as shown.

There are a few two-character escape
sequences (¢.8. <ESC>E and <ESC>9),
but most of the commands are parameter-
ized. The form is: 1) the ASCII 1B hex
escape character, 2) a parameterized char-
acter in the range 21 to 2F Hex which indi-
cates that the escape sequence is parame-
terized, 3) a group character in the range
60 to 7E Hex which specifies the group
type of control being performed, 4) a
value field with numeric characters in the
range 30 to 39 Hex. It may be preceded by
a “+” or “-” sign and may contain digits
after a decimal point. If an escape se-
quence requires a value field and a value is
not specified, a value of 0 is assumed, 5) a
parameter character which specifies the
parameter to which the previous value
field applies. This is upper case except in a
combined sequence.

The Computer Journal / #40

Escape sequences can be combined if
the first two characters (the parameterized
character and the group character) are the
same. An uppercase parameter character
indicates the end of the sequence, while a
lower case parameter character indicates
that the sequence continues in a combined
sequence. For example, the code
<ESC>&I12A specifies that the page size
is 85 x 11, and <ESC>&I00 specifies
that the orientation is portrait. Since the
first two characters after the <ESC> are
the same, these can be combined as
<ESC>&12a00. Note that the “A” in the
first sequence is changed to lower case. I
will try to avoid using combined sequences
so that each sequence can be
commented.The demonstration programs
in this issue will use the following com-
mands:

-<ESC>E - reset. The Reset returns
the printer to the user default environ-
ment. It deletes any macros and tempo-
rary soft fonts. Any partial pages of data
which have been received will be printed.
H-P strongly recommends the use of
<ESC> E at the beginning and end of
each job.

-<ESC>*c#D - font ID. The font ID
command is used to specify an ID number
for use in subsequent font management
commands. The ID number can range
from 0 to 32767.

-<ESC>*c#F - font control. The
Font Control command provides mecha-
nisms for manipulating soft fonts with the
in the value field replaced with values as
shown below:

0 - Delete all soft fonts

1 - Delete all temporary soft fonts

2 - Delete soft font (last ID specified)

3 - Delete Character Code (last ID and
Character Code specified)

4 - Make soft font temporary (last ID
specified)

5 - Make soft font permanent (last ID
specified)

6 - Copy/Assign current invoked font as
temporary (last ID specified)

-<ESC> (#X - primary font selection
by ID

-<ESC>)#X - secondary font selec-
tion by ID. The printer maintains two in-
dependent font characteristic tables for
use in selecting a primary font and a sec-
ondary font. You can select either font
(only one is used at a time) with the SI (OF
Hex) Shift In which selects the primary
font, or SO (OE Hex) Shift Out control
codes. Soft fonts can be assigned as the
primary or secondary fonts by using their
associated ID numbers.

-<ESC>*p#X - horizontal cursor po-
sitioning (dots). The Horizontal Cursor
Positioning Command moves the cursor
to a new position. If the value is preceded
by a plus sign (+) it indicates that the new
position is to the right and relative to the

current position. If the value is preceded
by a minus sign (-) it indicates that the new
position is to the left and relative to the
current position. No sign indicates that the
value is an absolute distance which is ref-
erenced from the left edge of the logical
page. If the indicated position is outside
the logical page, the cursor is moved to the
logical page limit.

-<ESC>*p#Y - vertical cursor posi-
tioning (dots). The Vertical Cursor Posi-
tioning Command moves the cursor to a
new position. If the value is preceded by a
plus sign (+) it indicates that the new posi-
tion is downward and relative to the cur-
rent position. If the value is preceded by a
minus sign (-) it indicates that the new po-
sition is upward and relative to the current
position. No sign indicates that the value is
an absolute distance which is referenced
from the top margin. If the indicated posi-
tion is outside the logical page, the cursor
is moved to the logical page limit.

Demonstration Program

I believe in starting with the simplest
possible examples when learning a new
technique. Something like C’s “Helio
World” example. The above escape se-
quences are enough to write a very simple
demonstration program.

The example in Listing 1 resets the
printer to the user default environment,
positions the cursor 2 inches to the right of
the left edge of the logical page and 2
inches down from the top margin, prints
“TCJ”, and ejects the page. Since no font
selections were made, the user default
font selected by the front control panel is
used.

The example in Listing 2 is in two parts.
First the printer is reset and a font ID
number is assigned. Then an existing soft
font is downloaded to the printer using the
MS-DOS COPY command (be sure to
use the /B binary switch). Then this font is
made permanent so that it will not be de-
leted during a reset, the font is designated
as the primary font, the cursor is posi-
tioned, and “TCJ” is printed. Finally, as
an example of relative positioning, the cur-
sor is positioned for a new line and is
shifted vertically between the characters.
The results are shown in Figure 2.

Different type faces and/or sizes can be
sclected for each character, and the char-
acters can be positioned to overlap. This
technique can be used to create special
symbols or logos with only a few bytes of
code, assuming that the fonts will be in the
printer anyway. If the logo requires char-
acters which are not in the fonts normally
used, the characters can either be con-
verted to a raster graphic image or a spe-
cial font with only the required characters
can be generated.

If you are using the Digi-Fonts font
management program (see review in issue

45

Hewlett Packard Printer Control Language Commands
From the LaserJet lID Technical Reference Manual

<ESC>E - reset

<ESC>9 - clear horizontal margins
<ESC>= - half-line feed

<ESC>Y - display functions, enable
<ESC>Z - display functions, disable

<ESC>&a#C - horizontal cursor positioning (columns)
<ESC>&a#H - horizontal cursor positioning (decipoints)

<ESC>&a#L - left margin
<ESC>&a#M - right margin

<ESC>&a#R - vertical cursor positioning (rows)
<ESC>&a#V - vertical cursor positioning (decipoints)

<ESC>&d#D - underline enable
<ESC>&d@ - underline disable
<ESC>&f#X - macro control
<ESC>&f#Y - marco ID (assign)
<ESC>&k#G - line termination
<ESC> &k#H - horizontal motion index
<ESC>&l#A - page size
<ESC>&l#C - vertical motion index
<ESC>&I#D - line spacing
<ESC>&l#E - top margin
<ESC>&I#F - text length
<ESC>&l#H - paper source
<ESC>&l#L - perforation skip
<ESC>&I#0 - orientation
<ESC>&l#P - page length

<ESC>&l#S - simplex/duplex command
<ESC>&I#U - left offset registration command
<ESC>&I#Z - top offset registration command

<ESC>&l#X - number of copies
<ESC>&p#X - transparent mode
<ESC> - end-of-line wrap

<ESC> (#B - stroke weight

<ESC>(#X - primary font selection by ID #
<ESC> (3@ - font default

<ESC> (ID - primary symbol set

<ESC> (s#H - primary pitch

<ESC> (s#P - primary spacing

<ESC>(s#8S - primary style

<ESC> (s#T - typeface

<ESC> (s#V - primary height

<ESC> (s#W - character descriptor/data
<ESC>)#X - secondary font selection by ID #
<ESC>)3@ - font default

<ESC>)ID - secondary symbol set
<ESC>)s#B - secondary stroke weight
<ESC>)s#H - secondary pitch

<ESC>)s#S - secondary style

<ESC>)s#V - secondary height

<ESC>s#W - font descriptor

<ESC>)s#P - secondary spacing
<ESC>*b#W - transfer raster data
<ESC>*c#P - fill rectangular area
<ESC>*c#A - horizontal rectangle size (dots)
<ESC>*c#B - vertical rectangle size (dots)
<ESC>*c#D - font ID (specify)

<ESC>*c#E - character code

<ESC>*c#F - font control

<ESC>*c#G - areafill ID

<ESC>*c#H - horizontal rectangle size (decipoints)
<ESC>*c#V - vertical rectangle size (decipoints)
<ESC>*p#X - horizontal cursor positioning (dots)
<ESC>*p#Y - vertical cursor positioning (dots)
<ESC>*r#A - start raster graphics
<ESC>*r#F - raster graphics presentation
<ESC>*rB - end raster graphics

<ESC> *t#R - raster graphics resolution

Figure 1: PCL Escape codes.

<ESC>E
<ESC>*p600X
<ESC>*p600YTCI
<ESC>E

Listing 1: Program to set “TCJ” using
the default font.

First reset the printer and assign a font ID
number.:

<ESC>E
<ESC>*c3D

Next, download the soft font:

COPY /B fontfile.ext > PRN
Then, the font is made permanent,
selected, and used:

<ESC>*c5F
<ESC>(3X
<ESC>*p600X
<ESC>*p600YTCJ
<ESC>*p600X
<ESC>*p740YT
<ESC>*p-30YC
<ESC>*p+30YJ
<ESC>E

Listing 2: downloading and using a soft
font.

TCJ
TC4

Figure 2: Output from Listing 2.

#39), the font can be generated, assigned
a font ID number, designated as perma-
nent, and loaded to the printer directly
from DFIL.

in the Future

Next time, we will take a close look at
the structure of the H-P soft font files.
We’ll develop a program to download and
manage the softfonts, and start dissecting
the files in preparation for developing a
program to read the height and width val-
ues.

After we can manage the font loading,
and can obtain the height and width val-
ues, we’ll develop a runoff program which
will position and justify proportionally
spaced fonts.

Another project will be to output pages
in non-sequential order for special binding
requirements. I am using PageMaker v3.0
for a 5.5 x 8.5 inch book which will be per-
fect bound. The camera ready copy will be
run on 8.5 x 11 inch in landscape mode,
and I need to place pages 24 and 1 on one
side of the first sheet and pages 2 and 23
on the other side of that sheet, etc. 1 also
need to emulate a duplex laser printer by
running all the odd number pages first,
then putting the paper back in and run-
ning all the even number pages on the
other side of the sheets.

So far only the expensive ($3,500 and
up) programs have provisions for imposi-
tion (non-sequential page output). Since
my needs are to do this with PageMaker,
I'!l print to disk and then break it up into
separate pages for outputting.

Remember, we are interested in your
questions, tips, and problems. Take time
towrite or call. @

The Computer Journal / #40

The Computer Corner

(Continued from page 48)

ports). The I/O ports are just addresses in
the memory map, mostly the first 32 loca-
tions. Most importantly is the assembler
was free from the Motorola BBS. I also
got a copy in the 68HC705 training man-
ual. A large number of program samples
are also available to show you how to pro-
gram for things like 16 bit math.

There is most likely lots more to ex-
plain about the devices, but the best way is
to use one. I had good feelings about the
device to start with and it only got better.
Code generation went very fast and was
extremely easy. Motorola makes a whole
line of simulators, all about $500 each.
Most allow using RAM to store and test
your program. We choose not to buy one
and will find out later if we really needed it
or not. I have written my code in such a
way as to be able to hopefully test the unit
even with some code problems. It is this
modularity that I hope keeps me from
needing an emulator.

Contest Anyone?

This reminds me of last times request
for a contest. I mentioned it to Art, (our
editor) and he seemed very interested. We
are waiting to find out about your interest
as well. Now I am not saying this project
shouid be anything big or elaborate, much
the opposite to be sure. The idea is to
have fun! Create something beautifully
useless, but educational all the same. It
reminds me of the recent school contests
called “ challenges of the mind.” The ob-
ject is for students to create interesting
working displays that perform a number of
actions. We need to do the same.

One possible rule is that it must be self-
contained. How about talk to you either
visually or audibly. Perform at least 5
scparate and different operations. Have at
least 10 inputs, either as keypads or sen-
sors. All with a limit of 5 to 10 IC devices,
preferably the smaller the better. All we
need now is your input.

ORCAD Latest

Went around with the PC Board house
last week, seems ORCAD drill informa-
tion is a bit off. The board house’s pro-
gram needed leading zeros and ORCAD
liked to chop them off. When we got the
board back and started checking hole
sizes, many were way off. Their feed thrus
are too large for the pads. The IC sockets
are for smaller chips and sockets. They will
not allow the larger pinned ZIF or LIF
sockets to work. The holes for large tran-
sistors and TOS regulators are many sizes
too little.

All is not a loss as we only had two sets
of boards made. What I can do is just
change the tool assignments. The drill tape

The Computer Journal / #40

is a list of board locations and a tool num-
ber for drilling the hole. The numbers re-
lates to a certain size hole drill. In many
cases I need only change the assignment,
but in others I need to assign different
sizes to different parts of the device. My
biggest concern is the pad left after some
of the drilling operations. The pads consis-
tently were under sized, and leave far too
little for good soldering. I have already had
a number of traces lift off the board after
soldering. So little is left that minor heat-
ing will break the bond between the PCB
and the trace.

My advice is to check and recheck both
your choice of components as well as the
drill information. I assumed that ORCAD
did it correctly, but alas I was wrong. I had
looked everything over several times, but
had not put as much emphasis on hole size
as I should have. Looking back I know
where I was having problems and that was
parts orders. 1 have bad considerable
problems with suppliers and find it has dis-
tracted me from doing the PCB work.

If T were doing this project over, 1
would design and prototype the entire
board before orderirig parts in quantity.
We have a local used electronics place and
I would have gotten all my parts there.
Then breeze through the design stage and
get one running. At this point put the proj-
ect aside and start your purchasing. You
know the design and concept work, now
the question becomes finding the parts in
quantity to meet your needs. Some
changes in availability and thus changes in
design will take place, but if your design is
somewhat fixed, you will know the limits.

A typical problems has to do with some
terminal strips I designed in. They are a
common screw down strip with vertical
mounting. I received 10 of the upright and
40 of the 45 degree style. The 45 degree
made access to both the screw and wire
holder easier. My supplier was short the
one I needed (80 in all) but could get the
45 degree version faster. I opted to change
to 45 degree design. Well when I got my
boards and mounted things I discovered
the height of the EMI Fliter blocked ac-
cess to the screw holes. proto-typing
means not only the design but the con-
struction as well. Sometimes it is impos-
sible to see all the relationships of parts
from fact sheets, only actually building it
points out the problems.

Next Time

Well this is about all this time. Prom-
ised myself and Art to get this to him a bit
early. I hope to hear more about our con-
test from you and Art, so drop us a card if
you are interested. I find sitting on my
tractor working, or fishing, excellent places
to think about totally useless ideas. Sounds
like a great place to design that perfectly
useless computer project tome. ®

MOVING?

Make certain that TCJ follows you
to your new address. Send both old and
new address along with your
expiration number that appears on
your mailing label to:

THE COMPUTER JOURNAL
190 Sullivan Crossroad
Columbia Falls, MT 59912

If you move and don’t notify us, TCJ
is not responsible for copies you miss.
Please allow six weeks notice. Thanks.

Registered Trademarks

It is easy to get in the habit of using
company trademarks as generic terms, but
these registered trademarks are the
property of the respective companies. It is
important to acknowledge these
trademarks as their property to avoid their
losing the rights and the term becoming
public property. The following frequently
used marks are acknowledged, and we
apologize for any we have overlooked.

Apple 11, II+, Ilc, 1le, Lisa, Macin-
tosch, DOS 3.3, ProDos; Apple Com-
puter Company. CP/M, DDT, ASM,
STAT, PIP; Digital Research. DateStam-
per, BackGrounder ii, DosDisk; Plu*Per-
fect Systems; Clipper, Nantucket; Nan-
tucket, Inc. dBase, dBase II, dBase III,
dBase III Plus; Ashton-Tate, Inc.
MBASIC, MS-DOS; Microsoft. Wor-
dStar; MicroPro International Corp.
IBM-PC, XT, and AT, PC-DOS; IBM
Corporation. Z80, Z280; Zilog Cor-
poration. Turbo Pascal, Turbo C;
Borland International. HD64180; Hitachi
America, Ltd. SB180 Micromint, Inc.

Where these, and other, terms are used
in The Computer Journal, they are
acknowledged to be the property of the
respective companies even if not
specifically acknowledged in each oc-
currence.

47

The Computer Corner

by Bill Kibler

It seems like just last week I wrote the
last article, and yet here I am doing an-
other one. That feeling of things moving
too fast is no stranger around this place.
Let’s see if I can make some logical under-
standing of the last few weeks.

On Forth

I keep plugging away on little Forth
projects. My latest one is writing a ROM
based Forth system for embedded use.
Needs to fit in 4K of memory with only
512 bytes of RAM available. It is a bit like
the New Micros 68HCI11 products but
with more constraints. Hopefully next time
a few more details on this one.

I ordered a few more publications on
Forth and keep being amazed at just how
many books are available. I can remember
several years ago only having one or two to
choose from. Now there is a rather broad
selection available. The problem remains
to find one that fits your needs. Unlike the
Turbo series, there is usually only one
book for a given topic, while Turbo may
have ten or fifteen on a single aspect. I am
‘not sure which is best, personally however
I would like to read a few more opinions
about a topic than just one.

One of my fellow workers asked me
about Forth. Seems he had just read an
articie that pointed out how the new SUN
SPARC work station has Forth in it. He
has been wanting to buy one, since they
are now under $10,000. They use Unix,
but SUN had lots of problems configuring
them, their answer was a Forth kernel un-
der the Unix. They are not unlike many
companies that use Forth for their diag-
nostics or startup test procedures. SPARC
however is the first I have heard of that
uses it for I/O. What was interesting is how
this worker has suddenly found a interest
in Forth. Link the words Forth and Unix
and the whole world stops and listens.

6805

In the next few weeks my proto-types
of the 68705 based lab system will be run-
ning. I finished all the software and should
be testing it next week. I was concerned
about the limited ROM space (3.7K), but
it looks like I will have more than 1.5K left
over. That is important, because I know

418

the next version will have even more bells
and whistles than this one. The 68705
however is so simple to work with, it takes
very little code to achieve some powerful
operations.

For those who use the Intel and not the
Motorola line of products, I thought it
might be helpful to review the 6805 style
of devices. The 6800 series of devices have
been around for a rather long time. I just
tried to find out how long, but my books at
hand miss saying when. I think (mostly
guess) early 1970's as they are related to
the 6502 (of Apple fame).

What Motorola did was create a linear
style of CPU. I know the term, linear, is
used often without much explanation. The
explanation is simple, the same instruction
can be used with every thing, or more
simply — no special instructions! The inter-
nal design was so straight forward, that it
could be built in discrete logic quite easily.
I know that because I have worked on an
industrial controller based on the 6800 de-
sign.

Internals

The basic concept is a register for
doing the main work, and a index register
for pointing into arrays. Now that is the
6805 design, which has been trimmed
from the A and B registers of the 6800.
One index not two are also features of the
6805. Right away some people wonder
how you can program anything with so few
registers. Simply use the entire address
space as registers, that was the Motorola
answer to more registers. The point to
remember is, this is a processor for con-
trolling simple tasks, not doing major feats
of processing.

The hardware is simple, 4 ports of 8 bit
data. No fancy handshakes for addressing
other memory either. Just simple inter-
rupts, a timer, and data ports. The 6805
can only do one thing, talk to I/O devices,
typically switches, relays, and other on or
off devices. There are a few variations on
the main design, like a 68705, R3, P3, T3,
and U3.

The 68705R3 is what I am using. It has
3 data ports and one analog port. The ana-
log port has 4 channels which the system
can read. The numbers 705 means it is an

EPROM, or user programmable (and
erasable) device. It also is very efficient by
having a boot strap loader to be able to
program its own memory. 1 got the bare
programmer’s board free from Motorola.
About twenty dollars and a few minutes
later I can program the 68705 from a
ROM T programmed in a regular
EPROM programmer. The boot strap
loader signals the user when the chip has
been programmed (copies the EPROM)
and then signals when a verify has been
completed successfully.

The newer HC series of the 6805 has a
serial port instead of analog port. They
also can be programmed by down loading
your program over the serial port. This
opens some interesting possibilities. I
would like to see a version with both a se-
rial and analog section however. I can al-
ways use bus switching to increase the
number of lines in and out, where as add-
ing an analog device is usually more costly
and programming intense.

There are lots of new analog devices
and I guess I could cover them next time.
The HC devices were intended to use se-
rial interfaced analog converters. The soft-
ware interface really is not that much
more than an internal port. Possibilitics of
more than 8 bits are also available when
going serial. Their cost is now often below
$10 and so the cost of extra board space
can be less important. Overall my objec-
tions to NOT having a analog section in
the HC series is rather mute at best.

Software

A quick review of software features
shows that they have a number of nice op-
tions. You can index into tables using the
X register as long as you don’t exceed 256
bytes. This forced me to break a table into
several sections before indexing. Your reg-
isters are all 8 bit but you have several
memory instructions that work with more
than 8. Most computers require all action
to be on an internal register. The 6805
however lets you use memory much like a
register. You can compare A register to
memory locations. Clear memory, increase
or decrease memory, ADD or SUB mem-
ory, logical operations on memory, as well
as set and clear bits in memory (and 1/O

(Continued on page 47)

The Computer Journal / #40

