|

Programming - User Support

Applications

-

Issue Number 41 November / December 1989 $3.00

Forth Column
ADTs, Forth and Object Oriented Concepts

Improving the Ampro LB
Discard the 88Mb Hard Drive Limit

Data Structures in Forth
Advanced CP/M
The Z-System Corner
Programming Input/Output With C
LINKPRL

Making RSXes Easy

|
|
\
Real Computing
} The NS320XX

SCOPY

Selective File Duplication i

ISSN # 0748-9331

The Computer Journal

Editor/Publisher
Art Carlson

Art Director
Donna Carlson

Circulation
Donna Carlson

Contributing Editors
Bill Kibler
Bridger Mitchell
Clem Pepper
Richard Rodman
Jay Sage
Dave Wenstein

The Computer Journal is pub-
lished six times a year by Publishing
Consultants, 190 Sullivan Crossroad,
Coulmbia Falls, MT 59912

(406) 2579119

Entire contents copyright © 1989
by Publishing Consultants.

Subscription rates—$16 one year
‘(6 issues), or $28 two years (12 is-
sues) in the U.S., $22 one year in
Canada and Mexico, and $24 (sur-
face) for one year in other countries.
All funds must be in U.S. dollars on a
U.S. bank.

Send subscription, renewals, ad-
dress changes, or advertising in-
quires to: The Computer Journal, 190
Sullivan Crossroad, Columbia Falls,
MT 59912, phone (406) 257-9119.

The COMPUTER
JOURNAL

Issue Number 41 November / December 1989

Editorialcccccccccierrremmniiiirenennens teeersssessessessensrrsnessseens 2

Forth Columnoeeeeeviiiireciiinenncrernnnan, erenesneiernnses 3

Implementing abstract data types, and object
oriented concepts. By Dave Weinstein.

Improving the Ampro LB ..., 6
Overcoming the 88Mb hard drive limit. By Terry
Pinto.

Data Structures in Forth ..., 9
How to add data structures. By Joe and Marla
Bartel.

Advanced CP/Miiiiiccciiinncnnrr e cceeeeer e 12
CP/M is still the Hacker's Haven. The Z-System

Command Scheduler offers new capabilities. By

Bridger Mitchell

The Z-System Cornerccccceeriiiicierirncrcceereennnns 16

The Extended Multiple Command Line and more
on aliases. By Jay Sage.

Programming Input/Output With C 20
Part 2 continues with the disk and printer
functions. By Clem Pepper.

LINKPRL cesssssssesnsnsnnnnnnnnanansnninnns vessserrerresessensens 27
Making RSXes Easy. By Harold F. Bower.

Real Computingccccvvvminrcerenrricerrccesceeseceenenn 30
By Richard Rodman.

Copying a series of unrelated file names is a
chore, but the job is simplified with SCOPY. By Dr.
Edwin Thall.

Computer COornercooceeeeeeeiiieccceiireeeeeeeeee e 40
By Bill Kibler.

Editor's Page

Forth

We initiated our Forth section in the
last issue with two articles from Dave
Weinstein. It continues in this issue with
another article from Dave, who will be a
regular contributor, plus and article from
Joe and Marla Bartel. We already have
material lined up for issue #42, and intend
to continue the Forth section in every is-
sue.

There has been a lot of activity in the
Forth community, and not everyone
agrees with some of the changes. One of
the changes which I appreciate is the use
of regular ASCII text files for programs
instead of screens and blocks. Some
people object to the “Maxi-Forth” concept
(such as F-PC) and are more comfortable
with the traditional “Mini-Forth.” Most of
my programming (the little that I have
time for) involves filtering ASCII text files
or accessing dBASE DBF files, so I prefer
the implementation which uses and ac-
cesses the regular system file structure. 1
am also more comfortable with a full
screen ASCII text editor for the program
where 1 can look at the overall program
flow instead of all the separate screens and
blocks. Others who program embedded
real time systems may prefer to continue
to deal with the traditional Forth struc-
ture. There is room for both concepts.

One of the things which turned me off
about Forth in the past was the fact that
the literature concentrated on Forth itself,
and there was little information on how to
actually do something with it. As Dreas
Nielsen (whose Forth article on Dynamic
Memory Allocation is scheduled for issue
#42) stated, “... an exceptional proportion
of the Forth articles appearing in the lit-
erature are about modifications to Forth
itself —new vocabulary structures, word
headers for accumulating profiling statis-
tics, etc. This kind of information is rarely
of any interest, and more importantly, not
of any use to the casual or would-be user
of Forth. I hope that your articles will em-
phasize applications instead.”

We intend to concentrate on practical
examples demonstrating what can be done
with Forth, and how to do it. This will, of
course, involve Forth modifications, but
we also want to include a lot of “how-t0”
application examples to interest new users
in learning to use Forth. I have a hard time
in using Forth because I don’t know how

to tackle my applications. I usually use C
for the simple text filtering programs I use
to illustrate articles (see the DTP and Las-
erlet articles in recent issues) and one of
the challenges for our Forth authors is to
get me started in converting these ex-
amples to Forth.

Dreas also suggested that we sponsor a
competition to produce a set of dBASE
file access functions in Forth using Forth
words similar in name to the dBASE fea-
tures. I think that is a great idea. Creating
these functions will provide a very useful
tool for database applications, while serv-
ing as a wonderful learning tool, and we
can provide the library in both hard copy
and low cost public domain disks. Anyone
interested in getting involved in this?

Let us hear about your Forth com-
ments and questions—what do you want
to see in the Forth section?

Hot Drives
Some time ago I described ST-225
drive problems which were caused by ex-
cessive heat. Since then I have run across
numerous mentions of others with similar
problems.

Recently the ST-251 drive in my ‘286
system has started making a high-pitched
noise after being on for a while. The drive
cage had closed sides which prevented air
circulation and the hard drive became
quite warm. The only forced ventilation in
the system is the exhaust fan in the power
supply, and it does very little towards cool-
ing the drives.

The real problem is that the drive cage
which holds three drives makes absolutely
no provisions for cooling. That’s OK for
floppies which only run intermittently and
generate little heat, but 5% hard drives
generate a lot of heat and need a flow of
cooling air. I drilled some air holes (after
removing the drives from the cage, and the
cage from the main box) in the side of the
cage and mounted a small fan on the cage.
It helps, but there is so little space between
the drives that it is difficult to force
enough air between the drives.

I'm still looking for a better solution
without replacing the entire box. I'm con-
sidering moving one or both of the flop-
pies to an external box so that there is
enough air space around the hard drive. I
hate the thought of another box with
cables—but I need to keep the hard drive

cool.

If you have hard drive problems, con-
sider the effect of the lack of cooling. I'd
like to hear about your experiences. I've
used this drive for a year and I feel that it
is time to back up all the files and do a
complete low-level reformat. This would
also be a good opportunity to clean up the
directories and get rid of a lot of files
which I don’t use very often.

Users Must Program

To many people it is obvious that soft-
ware should be designed and programmed
by a ‘professional’ programmer, and that it
is the user’s responsibility to modify their
application to agree with the
software—and to live with any shortcom-
ings in the programs.

There are a few mavericks who do not
agree. A scientist recently stated, “I've
never seen a useful program which was
not written by a scientist or an engineer.”
He went on to say that it was easier to
teach a scientist to program than it was to
teach a programmer what the working sci-
entist required.

I have always felt that it is necessary to
be able to program if you want something
done your way. I don’t mean that we
should all be able to write our own spread-
sheet, wordprocessor, or Desk Top Pub-
lishing program. I wouldn’t even attempt
something like Microsoft Word, Page-
Maker, or one of the many drawing pro-
grams--they would take too much effort.
But we can write our own text file filters,
printer drivers and runoff programs, and
other modest sized programs to meet our
specific needs.

We will increase our coverage of algo-
rithms (methods of attack) for program
solving. We'll try to include pseudo-code
so that it will be meaningful even if you
don’t use the particular programming lan-
guage used in the illustrations. We'll
spend more time discussing application
problems and approaches than on neat
coding tricks.

What would you like to see covered?
Mail in your suggestions and/or articles. ®

The Computer Journal / #41

Forth Column
ADT's, Forth, and Object Oriented Concepts
by Dave Weinstein

An Abstract Data Type (ADT) is a description of an object.
- For example, given an abstract description of a stack, I can act
upon the stack without knowing anything about the implementa-
tion, so long as I use the legal actions as described (see Figure 1).
The concept behind this is to separate the implementation from
the concept. This aliows the programmer to concentrate upon us-
ing the data structure, rather than upon how the structure works
(in practice it pays to keep the implementation in mind, but not to
act on this knowledge).

The modules provided in the last column allow the program-
mer to build these data structures, and protect them from casual
use. But there is nothing in the modules which prevent the pro-
grammer from using the internals of the data structure outside of
the module in which the structure was designed. So, for example,
there is nothing other than good programming practice to keep
another module from tweaking the internals of a stack. The ability
to “break” layers of abstraction has had computer science theo-
rists up in arms for some time, but paternalistic languages (such as
Modula-2) which enforce this kind of abstraction also tend to con-
fine Forth programmers, who are used to being able to do just
about anything. Since it is possible to write bad code in any lan-
guage (not only possible, but judging by most of the code extant,
also probable), I find enforcing abstraction, especially in a lan-
guage like Forth which depends upon the skill and knowledge of

- the programmer to keep the program from leaping off of the near-
est cliff, to be in general counterproductive.

Figure 1: Stack ADT Design

initialize -- (size “stack --)
Initialize the referenced stack so that it has the speci-
fied size.

Empty? -- (“stack -- f)
Return a flag as to whether or not the given stack is
empty.

Full? -- (“stack --f)
Return a flag as to whether or not the given stack is
fuil.

Push -- { value “stack --)
Push the given value onto the stack.

Pop -- (“stack -- value)
Pop the top of the stack and place the resuit on the
parameter stack.

Top -- (“stack -- value) .
Copy the top of the given stack and place the result
on the parameter stack.

Clear - (“stack --)

An Example Using Forth

Figure 2 provides the code to implement a stack ADT in Forth,
based on the specifications from Figure 1. Each stack in this im-
plementation will consist of three pointers, (the " sign in Forth
code should be pronounced “pointer” if it comes at the end of a

The Computer Journal / #41

word, and “pointer to” if it comes at the beginning). The bottom
and top pointers are used to figure the boundaries of the stack
(this stack grows downwards), while the current pointer points to
the next free element.

The word initialize saves the current here pointer, which is
going to be the bottom of the stack, and then allocates as much
space as was requested (this particular implementation uses stacks
with a width fixed at cell...it is possibie to change the implementa-
tion to use variable width stacks by storing the width in the stack
record, and changing the words used to modify current” [cell- and
cell+ are used] with words such as width- and width+ which use
the specified width). The address of the last (i.e. top) element of

Figure 2: Code to implement a stack ADT
Porth Stack ADT

\
\
\ written by David Weinstein -- 6/25/89
\
module stacks
from records import record as record
import element as element
import end-record as end-record
end-imports

record stack
cell element current”
cell element top~
cell element bottom”
end-record

(Operations on the Stack ADT)

: initialize (size “stack —-)
here over bottom™ !
swap allot
here cell- swap over over
top” |
current” !

.
’

: clear ("stack --)
dup top” @ swap current” |

~

: empty? ("stack —— £)
dup current” @ swap top~ @ ;

: full? (“etack ~~ £)
dyp current” @ swap bottom™ &8 = ;

: push (element “stack --)
swap over current” @ 1
0 cell- swap current” +i

’
: top.of.stack { “stack -~ top-of-stack)
current” @ cell+ @
H
s pop ("stack -- element)
current” dup @ cell+ dup €
-rot swap !

H

end-module

the stack is then computed, and the top” and current”
are set to top leaving the stack empty).

The word clear copies the top™ into the current”,
effectively popping and dropping the contents of the
stack. The dup’s which are floating around serve to
save the pointer to the stack record (remember that
the indexes in a record add themselves to a base ad-
dress).

The word’s empty? and full? compare current”
with top” and bottom" respectively, if they match,
then the stack is either empty or full, if they do not, it
is somewhere in between.

The last three operations are the most common,
push which copies the element into the location
pointed to by current” and then decrements current”,
pop which fetches the value pointed to by current”
and then increments current” to point to the next
value, and top.of.stack, which copies the value pointed
to by current” to the parameter stack.

What Does All This Theory Have to do With
Forth?

Forth is a weakly typed language with rigidly typed
operators. Although variables in Forth are typed ac-
cording to size, all of the operators are typed accord-
ing to content. Each additional “type” gets its own ad-
dition operators, multiplication operators, and so on.
And to make matters worse, operators must be pro-
vided for mixed operations. Unfortunately, this sea of
operators obscures the code. Although I the program-
mer have no problem discerning the difference be-
tween opening a file and opening a window, Forth as it
comes out of the box does. I have to write words like
FILE-OPEN, or WINDOW-OPEN, which hide the
elegance of the code in verbiage. One option is to go

" the route of Fortran, C, and Basic, and overload the
operators. The burden of understanding what needed
to be done and how it should be done would be in the
code handling the operator, not the code in which the
new type was defined. By adding a “type stack” to
Forth this could be done, but at the cost of typing the
language (a step many do not want to take).

Object Oriented

This has been one of the biggest buzzwords in the
programming community in recent years. And much
like Forth, is touted as the ultimate panacea for all

. programming problems by its aficionados, Object Ori-
ented techniques are now being declared the be-all
and end-all of programming techniques by over zeal-

- ous supporters (so Object Oriented Forth should be
unstoppable). Adding to this confusion, and to a large
degree capitalizing on it, are vendors who are declar-
ing any language extension which includes any of the
object oriented techniques to be an “Object Oriented
Language.” So what exactly is an object oriented lan-
guage? With all of the conflicting claims, vendors
would have you believe that almost everything is “ob-
ject oriented” these days. So let’s go back to the basics.
The core idea of “object oriented” is inheritance, the
concept that not only can structures be related to
other structures, they can in fact “inherit” the features
of their “ancestors” (saving code duplication). Single
inheritance systems allow any parent to have any num-
ber of children, but any child class can only be directly
descended from a single parent (although it will also
inherit those classes which its parent inherits). In mul-
tiple inheritance systems, child classes can inherit from
many classes (allowing more flexibility).

Figure 3: Instances, Objects, and Classes

Class - The definition of an object oriented structure.

Object - An object is an “instance” of a class. if a class is Window, then the
DialogueWindow would be an instance of it.

Instance Variable - A special type of variable defined inside of a class. A variable
inside of a class definition is common to all objects (i.e. instances of the
class), but each object has its own copy of an instance variable, which
other instances of the same class cannot access.

Message -A structure which is sends itself to an object, which then decides what
to do.

Method - The portion of an object definition which defines how a message is
handled.

Figure 4: Object Oriented Extension Syntax

Defining a message type:
MESSAGE <name>
{Note that all message namee are common)
Defining a class:
CLASS <name>

SUBCLASS-OF <name>

SUBCLAééLOF <name>

VAR <instance-name> (Cell sized instance variable)

CVAR <instance-name> { Character sized instance variable)

DVAR <instance-name> (Double sized instance variable)

n INSTANCE <instance-name> (n sized instance variable)
(any wanted Forth code)
METHOD: <message-name>
(Forth code t;.implement the method)
END-METHOD o
END-CLASS <name>
Allowing code to send a message to itself:
SELF <message>
Defining an instance of a class:
<class name> <object name>

Sending a message to an object:

<cbject name> <message>

Limitations in the Specification:

© No Incest. A child class may not be a descendent of
multiple classes which have an ancestor in common.

o Instance variables may only be directly accessed in the
class in which they occur. While they will exist in the
child classes, they will not be directly accessible by
the code in the child classes.

But inheritance is not all of object oriented programming. The most popu-
lar of the “pure” object oriented languages (as opposed to the features grafted
onto existing languages) is Smalltalk-80. Key to Smalltalk is the idea that you
do not act on an object, you send a message to an object and it then acts on
itself. Earlier I discussed the problems of rigidly typed operators. This particu-
lar model, the idea of sending a message to an object, fits in very well with the
Forth “noun verb” ideal. I can have code which says “Dialogue Window Open”
and in another place says “OutputFile Open”. In each case, I know what I
mean, and because it is the object (either DialogueWindow or OutputFile)
which decides the action, I can use the same “verb”, preventing the name
clashes or awkward syntax I might otherwise have to deal with. Other examples
abound (I may want to append something to a file, and also append an object
to a linked list), and in each case the common message allows the code to be

The Computer Journal / #41

clear, while still being functional.

Drawbacks to Objects

Forth is by default an early binding language. That
is, a function name inside of a definition binds itself to
an action when the word is first compiled. If a lower
level word is redefined, all other higher words which use
it must be recompiled for the change to take effect.
Because the action of the message is dependent on the
- object it refers to, these extensions tend to be late bind-
ing, the action is decided at run-time. This late binding
has several advantages, one of which being the easy use
of polymorphism (yet another theory word, it simply
means the ability to redefine part of a class and have
the change affect instances of that class which are al-
ready instantiated [in existence]). But it also costs us in
the runtime efficiency of our code (it has to decide what
'to do each time the message is sent, rather than making
that decision when the code is compiled). The use of
objects does make code clearer, and it has definite ad-
vantages in terms of both programming style and ease
of programming, but it costs us in speed. Whether or
not this tradeoff is worthwhile is something which really

must be considered on a case by cases basis.

Objects and Forth

This column (theory overdose and all) began as I
became interested in object oriented programming and
techniques. Rather than sit down and learn yet another
language, I decided to take the theory, and implement
an object oriented system in Forth. It is a tribute to the
power of Forth that adding Smalitalk style Object-Ori-
entation is not a terribly difficult task. The implementa-
tion syntax is described in Figure 4, and by the time you
read this, the source code along with ports for various
Forths should be freely available on various Forth net-
works (such as GEnie and Usenet’s comp.lang.forth, as
well as on the xCFB’s of Forthnet). The idea was to
blend objects with Forth, without losing the power of
either. The first choice was to use the Smalltalk model.
.The second was to go with multiple inheritance. Here’s
why: assuming I have a class Lists, which implements
the code for linked lists, and another class Files, which
implements file handling. I can declare a class FileList
with no additional code which will allow me to handle
linked lists of files, just by declaring the class to be a
descendent of both. It is this kind of modular approach
which makes object oriented tools so powerful (again, it
is possible to write atrocious code using object oriented
extensions, but the extensions make it easier to write
modular code if you so chose...there is no inherent pro-
tection against bad programming in any language).

How do You Implement This?
Warning this can get complicated!

Each class is a defining word (which makes the class
structure itself a second order defining word, a defining
word which defines other defining words). The struc-
ture of the class contains pointers to a linked list of
methods (each method has a number, which is associ-
ated with a given message), a linked list of inherited
classes, and a size field (other fields can be and will be
added as this toolbox grows). Each object consists of a
pointer to its class (which allows polymorphism, be-
cause changing the class will change already created ob-
jects, and also allows Forth code to check the classes of
objects), and a block of allocated space in which the
instance variables are stored. These objects themselves
when executed leave a pointer to themselves on the
stack (and you thought C went overboard with point-
ers). It is this pointer which a message uses to execute

The Computer Journal / #41

Figure 5: A simple complex-number definition.
from object-extensions import class as class
import end-class as end-class
import message as message
import var as var
import method: as method:
import end-method as end-method immediate
import subclass-of as subclass-of
end-imports

message add
message subtract
message store
message fetch
message display

class complex

var real
var imaginary
variable complex-state 0 complex-state !
method: add
complex-state @ 0= if
real € imaginary €
true complex-state |

rot add

else
false complex-state !
imaginary € +
swap real € +
swap

endif

end-method

method: subtract
complex-state @ 0= if
real @ imaginary @
true complex-state |
rot subtract

else
false complex-state 1
imaginary €@ swap -
real € rot -
swap
endif
end-method

method: store
imaginary ! real !
end-method

method: fetch
real @ imaginary @
end-method

method: display
real € .
imaginary € .
end-method
end-class complex

the method, and because a pointer is the size of a Forth cell, it can be swap’d,
dup’d or otherwise manipulated just as other values can (because the objects
are meshed in with the parameter stack rather than being separated into an
“object stack™ it is not practical to add compile-time binding except in the
simplest of cases). Instance variables (which are only used inside of a class
definition) consist of an offset, which is added to an “instance base” which is
computed at runtime to determine which position in the object corresponds
to the instance variable. At runtime, a message uses its method number (a
unique value) and searches the method list first of the object, and then of the
objects ancestors, and executes the first method it finds which is coded to
handle the given message. If no method is found, the deferred word NO-
METHOD is executed (it is deferred to allow user definable error trapping.

Examples of Object Code
The package described above provides the basis for writing object ori-
ented code, but what you do with it is up to the programmer. How accessible
the innards of an object are to the outside world is dependent upon what
messages the programmer decides to put in. If two objects are added (for

{Continued on page 8)

Improving the Ampro LB
Discard the 88Mb Hard Drive Limit

by Terry Pinto

Note from Jay Sage: When I met Terry Pinto in Portland in
May, he told me about the technique he had developed to overcome
the 88 Mbyte limit on the Ampro Litile Board he uses to run his
remote access computer system. My immediate response was,
“Please write it up for TCJ!”’ And here it is. ‘

That old saying that “Necessity Is The Mother Of Invention”
certainly holds true. After purchasing my Ampro, I noticed that I
was limited to a maximum of 88Mb of hard disk space. My
feelings then were, WHO CARES! How could I ever fill that
much space! I found a good price on a Priam V150 60Mb RLL
certified hard disk and added it to the system. Well, you guessed
it. It certainly didn’t take long to fill up the disk. I run a BBS,
Access Programming RAS, and my users were slowly eating away
any free disk space I had. The time had come to enlarge the
system. The problem was that I couldn’t justify the expense of
expanding to an 88Mb drive just to gain the additional space, and
the extra 20Mb was a small addition that would disappear rapidly.
The only solution was to engineer a way to utilize the fact that the
Adaptec 4070 controller I used could support two hard disk
drives. I purchased a copy of the source code to the Ampro BIOS
and set to work writing HDS v1.00 (Hard Disk Select).

Before explaining how HDS works, a brief description. of Am-
pro’s drive table is in order. This table contains the information
necessary to relate the logical drives to the physical drives on the
system and to select the driver routine needed for each logical
drive. The table is arranged in 16 groups of 4 bytes each for
logical drives A-P. The information in byte 2 is used to select the
physical drive on the controllier (see Tables 1 and 4). Setting bits
7, 6, and 5 to a value of 000 will select physical drive 0 on the
controlier while a value of 001 will select physical drive 1.

Provided that both drives are physically compatible (for ex-
ample, the same make and model) and are partitioned identically,
simply changing bit 5 in byte 2 from 0 to 1 for a given logical drive
(partition) will cause the system to access (read/write) the drive
set up as SCSI drive 1in place of the drive set up as SCSI drive 0.
As you can seg, the fact that both drives are partitioned the same
is VERY IMPORTANT! The only thing I attempt to do with
HDS is to tell the controller to use the other hard disk. HDS
gives you double the disk space without the loss of any additional
TPA.

Hard Disk Select

The Ampro BIOS can be set up to accommodate hard disk
space up to 88Mb. This is due to the fact that a CP/M system can
address sixteen drives, A-P, of up to a maximum of 8Mb of space
each. Ampro defines drives A-D as floppy drives and drive E as
the foreign format floppy. These allocations are predefined and
cannot be changed, although by using the SWAP utility they can
be moved around. For the purposes of this article, we will assume
that the original drive mapping is intact and that you have not
used SWAP to redefine the drive parameter tables. In fact, the
use of SWAP is not restricted, and you may feel free to swap your

drives at will either before or after running HDS.

With five drives being predefined, this leaves us eleven drives of
8Mb each, which gives us 88Mb of space. This will leave a TPA of
about 56k. Ifyou have elected to size your system to allow 88Mb
of space, you may use HDS to ‘mount’ any eleven drives available
to the system. What this means is that although you may have 22
logical drives attached to the system, you may only define eleven
of them as currently active. This action is referred to as ‘mount-
ing’ the drive. HDS will allow you to select any eleven drives
available and make them active on the system. You may select an
individual logical drive, a group of logical drives, or an entire
physical drive. HDS will accept options passed on the command

line describing what actions you want to take.
Syntax: HDS [n|d]
priority)
n=logical drive number (global select)
d=list of drives to select

(one option allowed - global select has

When HDS selects a drive from the appropriate hard disk, it
toggles the selection. To reset the drive, you must either reselect
the drive, or do a global select to drive 0. You should either select
a global option or a set of individual drives. If both options are
specified, the global select will occur.

Examples:
HDS fghi selects drives F,G,H and I from HD 1
HDS bij (the drives do not need to be consecutive)
HDS ¢ selects drive C from HD 1
HDS 0 global select to HD 0 (reset).
HDS shows map of system

In the first example above, HDS will attach drives F,G,H and I
from logical drive 1 to the system replacing their counterparts on
drive 0. The drives do not have to be contiguous, as the second
example shows. In this example, drives B, I, and J are attached,
replacing their counterparts on drive 0. In the third example, just
drive C is exchanged. In the fourth example, a global select is
issued to select all drives on logical hard disk 0. This can be used
as a quick method of resetting the system. The last example, HDS
is run without a command line argument. This causes the system
to display a map of the available drives on the system and how they
are selected.

HDS will monitor both the QUIET flag and the WHEEL byte
in order to control the display features and to provide system
security. The use of the global select function requires that the
wheel byte be set, if selected during assembly. If the wheel byte is
not set, the user is given an illegal function error and control is
returned to the operating system. To give you a higher level of
security, I have provided a bitmap of the drives on the system.
Setting any of the drives in this bitmap will secure the drive and
will require that the wheel byte be set to mount that drive.

ABCDEFGH IJKLMNOP

Example: DRVMAP: DB 01000000 00000000k

In the example above, drive B has been set as secure. This

The Computer Journal / #41

Drive A 01 00 C6 00 Floppy Drives A-D
Drive B 01 11 C6 00
Drive C 01 22 86 00
Drive D 01 33 86 00
Drive E 02 44 00 FF Foreign Format Drive E
Drive F 03 50 OA 01 Hard Disk Drives F-P
Drive G 03 60 OA 01
Drive H 03 70 OA 01
Drive I 07 8? OA 01
!
| +--- SCSI Address
Fomm— Drive Type Identifier
o Physical Offset and Drive Unit
Number
B Disk Drive ID 0 = Not Installed
Table 1. Physical Driver Table
00 = Reserved for errors
01 = Floppy Drive
02 = Foreign Format Drive
03 = Hard Disk Drive
04 = Currently Undefined
05 = Currently Undefined
06 = Currently Undefined
07 = RAM Disk (N/Systems)
Table 2. Values of the Disk Driver ID (byte 0)

Bits 7654 Offset to base 0-F

Bits 3210 Physical device address to be passed
to the respective driver.

(For floppies, this is the drive unit§. For
hard disks, these are reserved.)
Table 3. Physical offset from start of disk parameter
headers and the drive unit number (byte 1}.

Floppy Usage:
Bit: 76543210

Density X 0=Single 1=Double

Sides X 0=Single 1=Double

Sectori's X 0=Same l1=Contiguous

Track Cnt X 0=Down 1=Down Front - Up Back
Alloc Unit XX 00=1k 01=2k 10=4k 11=8k
Sector Size XX 00=128 01=256 10=512 11=1024

Hard Disk Usage:
Bit: 76543210

LUN XXX Logical unit number (0-7)
Reserved X
Alloc Unit XX 00=1k 01=2k 10=4k 11=8k

Sector Size XX 00=128 01=256 10=512 11=1024

Table 4. Drive Type Identifier (byte 2).

Bit: 76543210
X

SCS1 address 0 This is the actual bit pattern
SCSI address 1 X supplied during the SCSI select
SCSI address 2 X routine. No internal address
SCSI address 3 X translation or bit scaling is done.
SCSI address 4 X

SCSI address 5 X

SCSI address 6 X

SCSI address 7 X

Table 5. SCSI bus address for hard disks (byte 3).

means that if the wheel byte is not set, the user could not issue a
command of ‘HDS B’. Attempting it would generate the illegal
function error and return the user to the operating system.

For use on a remote access system, I've tied the display func-
tions of HDS to the QUIET flag. When the quiet flag is on, no
screen output is generated during the selection of drives. This will
enable you to include HDS in an alias and have it totally transpar-
ent to the user. With the QUIET flag off, a signon message will
appear each time you run HDS. The same is true for the display
function of HDS. If you call HDS without a command line op-
tion, it will give you a map of what drives are selected and from
which physical drive. Table 6 shows an example of a typical run of
HDS.

The Computer Journal / #41

A0 :BASE>HDS

Hard Disk Select v1.03 (c) 05/17/89
Written by Terry Pinto

ZCPR v33 ZRDOS v19 Ampro BIOS v3i8
(Type 3 - Loaded at 8000H)

Selected Drives

PHYTAB DO72H

- Floppy Drive

- Floppy Drive

- Floppy Drive (not installed)
- Floppy Drive (not installed)
- Foreign Format Drive

- Drive
- Drive
- Drive
Drive
~ Drive
- Drive
- Drive
- Drive
- RAM Disk

- Does Not Exist
- Does Not Exist

WOZIXIHNUHNORBOO D
1
coooO00O00

Table 6. Example of screen display after running HDS.

AQ0:BASE>HDS FGHI

Hard Disk Select v1.03 (c) 05/17/89
Written by Terry Pinto

ZCPR v33 ZRDOS v19 Ampro BIOS v38
(Type 3 - Loaded at 8000H)

selected Drives

PHYTAB D072H

A - Floppy Drive

- Floppy Drive

- Floppy Drive (not installed)
- Floppy Drive (not installed)
- Foreign Format Drive

- Drive
~ Drive
- Drive
- Drive
Drive
- Drive
~ Drive
- Drive
- RAM Disk

- Does Not Exist
- Does Not Exist

WOZREHAGUHMNONMBIUOOWD
|
COC OO MMM~

Table 7. Example of screen display after
running HDS a second time.

You can see from the output that HDS reads the parameter
table to determine if a drive is on the system and, if so, what kind
of drive it is. Notice that all four floppy drives are always defined
by Ampro but that on this system drives C and D are ‘not in-
stalled’. The foreign format floppy is drive E and is used for the
reading/writing of disks formatted for other systems. The display
shows that hard disk drives F-M are defined and are currently the
drives residing on the hard disk defined on your system as being
physical drive 0. Drive N is defined as a RAM Disk (N/Systems)
and drives O and P do not exist on the system.

If you select drives FGH and I, you get the output shown in
Table 7. Notice that the drive identifier for drives F,G,H and 1
now show that these drives are currently attached from the hard
disk defined on your system as physical drive 1.

After the selection of the requested drives, it is necessary for
HDS to perform a disk reset to log in the newly defined drives.
To accomplish this, HDS must know what type of DOS you are
using. A check is done to determine if you are running vanilla CP/
M 2.2, ZRDOS, or ZSDOS. In either case, an appropriate disk
reset is called upon to log in the new drives. During the check
process, HDS also determines if you are running a vanilla CP/M
or a ZCPR3 system and gets the version number. This is neces-
sary to enable HDS to find the physical tables in your BIOS. The
type of system you are running will be displayed during the signon
if the QUIET flag is off. For now, HDS only detects Z33, 734,

HDSEL echo;The Following Hard Disk Selections are Available;echo;echo
AMPRO; echo;MSDOS ;echo; ZCPR;echo; SYSTEM;if wh;echo;EXTEND;fi;echo

AMPRO echo;Loading AMPRO Drivers - Please Wait...;hds 0;hds c

MSDOS echo;Loading MSDOS Drivers - Please Wait...;hds 0;hds dfghi

ZCPR echo;Loading ZCPR Drivers - Please Wait...;hds 0
SYSTEM echo;loading SYSTEM Drivers - Please Wait...;hds 0
EXTEND echo;Loading EXTENDED Drivers - Please Wait...;hds 1

Figure 1: ALISA.CMD file.

the MSDOS programs stored there. ZCPR and SYS-
TEM actually perform the same function for now.
ZCPR will grant access to the ZCPR specific files on HD
0. The SYSTEM command will serve as a system reset.
I've made BYE an alias on my system allowing me to
include the command ‘HDS 0’ in the signoff module.
This effectively resets my system for the next caller. This
allows me to maintain a default status so that each new

and CP/M operating systems. Future versions may include detec-
tion of CP/M plus.

Online examples from Access Programming...

To enable an easier way for the remote user to use HDS, I've
placed the alias’ shown in Figure 1 in my ALIAS.CMD file. (The
case switching symbols have been eliminated to make the alias a
little easier to read).

The HDSEL command will display the following selections:
AQ :RCPM>HDSEL

The Following Hard Disk Selections are Available

AMPRO
MsDOS

A0 :RCPM>

This gives my users an online guide to what is available. Running
AMPRO will attach drive C from HD 1. This is where all the
Ampro specific files are located on my system. MSDOS will load
drives D, F, G, H and I from HD 1 and allow the users to access

caller will enter the operating system with the same

drives attached. The EXTEND command selects all
drives from HD 1 to the system. Much of my commercial soft-
ware is kept here so I've set HDS to require that the wheel byte be
set to do a global select to drive 1. I've also set up drive B as a
secure drive. This is done by setting the corresponding bit in the
drive bitmap to 1. If HDS detects the security bit on any drive
passed on the command line, access will be denied.

Acknowledgments

Many hours of research have gone into the development of
HDS. Release of this software would not have been possible with-
out the information that was obtained from the source code of
version 3.8 of the Ampro BIOS. Much of the information describ-
ing the bit selections necessary for HDS were quoted directly
from the source code listing.

If you would like a copy of HDS or have any questions about
the software or its operation, please contact:

Terry Pinto
Access Programming RAS
14385 SW Walker Rd. B3
Beaverton, OR 97006

(503) 646-4937 6:00pm-10:00pm PST
(503) 644-0900 300/1200/2400 8N1
PCP ORPOR Starlink 9164/222 (local exchange)

Forth Column

(Continued from page 5)

example, complex numbers), should the sum be put in one of
them, in a temporarily created object, in a static but previously
defined object, or should the result be left on the stack for the
programmer to deal with? These answers depend more on how
much of a “pure” system you want to use. (Smalltalk systems gen-
erate and destroy an incredible number of temporary objects each
second). Figure 5 is a simple complex number definition which
handles only addition and subtraction, as well as the displaying of
the object. By using a variable which is common to all members of
the class, it is possible for objects to pass messages to each other
(such as in this case what state an operation is in). Furthermore,
the word SELF allows an object to send itself messages (letting an
object use code defined in its ancestors).

An End to Objects

Looking back over what I've written I see an awful lot of theory
in this column. Whether or not this is good or bad, I don’t know.
This is a new column, and I don’t know whether or not you want
more articles like last issue (all implementation details), or this one
(a large amount of theory). Please tell me what 'you want to read.
For that matter do you want language extensions, language tutori-
als, or examples of Forth applications?

Right now Forth is going through a standardization process,
the directions the language will take in the future are to a large
degree being decided now. What form the standard takes, and
whether or not the upcoming ANS standard is usable for Forth
programmers depends on the actions of Forth programmers now
(inaction now could well lead to much grumbling over beer later).
So (he said jumping firmly onto the soapbox) let the people on the

Standards committee know what you want, think, or absolutely
demand in Forth (they do want to know). The committee can be
contacted via GEnie (there is a large discussion on CATegory 10
of the GEnie Forth RoundTable about the ANS standard), or via
comp.lang.forth on Usenet (and if you can’t get to either I will be
glad to forward any comments, questions, or threats to them).
Also coming up soon is the second annual SIGForth Forth confer-
ence (in Dallas in February). Considering that this year, despite
problems with the publication of the Call for Papers and schedul-
ing conflicts, the first conference still produced more papers than
attendees and some truly breathtaking ideas (““You are going to
write this up for the proceedings!” kept popping up more and
more often after the informal talks). These conferences are per-
haps the best way to keep up with what is happening in Forth, the
discussions with other Forth programmers alone make them
worthwhile. @

The Computer Journal / #41

Data Structures in Forth
by Joe and Marla Bartel, Hawthorne Technology

Is Forth Out of Date?

In the early days of computing, programming languages didn’t
provide for complex data structures. Languages like BASIC and
. FORTRAN only have arrays and single variables. Personal com-
puters have greatly affected programming style. COBOL has al-
ways had complex data structures but only a few people use CO-
BOL on a personal computer. It was only when Pascal and C
became popular that many people started using a language that
supported complex data structures. It was then that they started to
think about using fields and records. Forth is one of those lan-
guages that has been around since the early days of computing. Its
definition does not include data structures. Does this mean that
Forth can not be the best language choice for an application that
should be handled with records? This article shows why Forth
shouldn’t be neglected when dealing with data structures.

Are Pascal and C the Only Way to Go?

(Data Structures Make the Difference.)

In Forth it is necessary to be explicit about pointer usage. Lan-
guages like C or Pascal do the same things with pointers but the
means are hidden from the programmer. One result of this is that
in C or Pascal, large, slow access routines can be generated with-
out the programmer being aware of it. There is nothing that can
be done in C that can’t be done just as well in Forth when field
words have been added. Another advantage to using Forth is that
it doesn’t take 500K of RAM and a hard disk to do useful pro-
gram development.

Some programming styles and languages fit better with a par-
ticular programming problem than others. There are many cases
where data structures can organize data and make a program €as-
ier to understand and cleaner to write. Pascal and C have data
structures. Unfortunately there are many times, particularly in
embedded systems for using small micros, where Pascal or C is not
available, or costs too much, or is too inefficient. By using the
same types of structures in Forth, you can continue to use familiar
structures and algorithms. By doing so you can avoid the problems
that might creep up on you when you are forced to use new meth-
ods.

Forth is Dynamic so Data Sstructures

(Records / Field Words) Can be Added
Forth is a very flexible language that is easy to modify. A very
useful way to take advantage of Forth’s flexibility is by adding field
words. With field words it is easy to create any kind of record or
structure you need just as you can with Pascal or C.

HTForth (Hawthorne Technology) has field words included to
simplify the use of abstract structures. The field words define an
address that is an offset from a base address. The base address can
be a fixed location in memory or it can be a pointer that is on the
stack. The definitions for field words are provided in Forth so they
can be used with any Forth. The words that are used for fields in
HTForth are written in assembler and generate macros that are
inserted in-line in the code when they are used. The result is the
same as with threaded Forth but the speed is greatly improved.
The examples presented here should work with any Forth but they
have not been extensively tested.

The Computer Journal / #41

HTForth field words:

BFIELD defines a 1 byte field
WFIELD defines a 2 byte field
LFIELD defines a 4 byte field
$FIELD defines a variable length field

You can achieve the same effect of the other field words by using
asize of 1, 2, or 4 with the SFIELD.

These are defining words that create new words that have spe-
cial actions when used. The compile time behavior is to create a
new word that will add the value that was on the stack at compile
time to the value that is on the stack at run time. The other com-
pile time action is to increment the value on the parameter stack
by the size of the field that is being defined.

The declaration of a record using the field words is like the
declaration of a record type. No actual memory is allocated for any
variable but the offsets and order of the fields is set up for when
they are used. To actually allocate memory for a record that is
defined some other method must be used.

The listing of the Forth definition for the field words can be
used to define field words for any implementation of Forth that
does not include them. Data structures can then be created with
the field words that have been defined.

How to Define and Use Records and Pointers
The main example we will use will be a symbol table for an
assembler. The symbol table for a conventional assembler has an
entry for each symbol the user defines. Each entry consists of sev-
eral fields that must be kept together for each table entry. This
group of fields would be a record that you would define in
HTForth like this:

0
LFIELD LINK
WFIELD TAG

(offset of first field

(

(
LFIELD SYMVAL {

(

(

)
4 byte link to next symbol)
2 byte tag }
4 byte value)

12 byte symbol name)
size of record)

12 $FIELD SYMNAME
CONSTANT SYMREC

The field words use the top of the stack as the offset into the
structure for the field currently being defined. The size of the field
being defined is then added to the top item on the stack. This way
a field can be inserted into a structure and all the offsets used will
be automatically adjusted.

After all the fields in a record have been defined, the value on
the stack can be made into a constant that will give the size of the
whole structure. A constant that has the size of the structure is
very useful for defining arrays of structures, allocating new in-
stances of a structure, and for reading or writing disk files. The
constant can also be used to increment or decrement a pointer
into an array of the structure. By using a named constant that is
produced when the structure is defined you don’t have to worry
about the structures’ exact size and future changes will be much
easier to make.

Here are some examples of how to access the elements of rec-
ords:

To access the tag of the symbol entry that variable SYMPNT
points to, use:

SYMPNT @ TAG €W

To allocate a fixed array of 30 symbols use:
30 CREATE SYMTAB SYMREC 30 * ALLOT

To access the value of the 5th entry of the array use:
SYMREC 4 * SYMTAB + SYMVAL @

To allocate a new data item of the type SYMREC:
HERE SYMREC ALLOT

The result is the address of a new node that then can
be linked into the rest of the table.

How to Define and Use Substructures
Substructures are records that are one element of an-
other record.

A Pascal example of this would be:

friends = record

name : string [32] ;
address = record
street : string [32 } ;
city : string [16] ;
state : string [2] ;
zip : string [5] ;
end ;
phone s string [15 } ;
notes = record
birthday : date ;
favorite color : string [10] ;
hobbies s string [20] ;
end ;
end ;

In this example, NOTES is a substructure of
FRIENDS. You could go on to another layer of substruc-
ture by making HOBBIES a record.

To define substructures, push a zero on the stack and
define the fields that make up the substructure. At the
end of the definition of the fields use the variable field
word S$FIELD followed by a name (in this case
‘NOTES’), to give the substructure a name. This will
make the size of NOTES equal to the total size of the
substructures’ fields.

A substructure that will be common to many struc-
tures can be defined separately and its size saved in a
named constant. The size value that is saved can be used
with $FIELD to create a name and space for the sub-
structure in the new structure being defined. This way a
common substructure doesn’t have to be re-defined for
each of the structures it is to be used with.

0
32 SFIELD NAME
0
32 S$FIELD STREET
16 SFIELD CITY
2 $FIELD STATE
5 SFIELD ZIP
$FIELD ADDRESS
32 $FIELD PHONE
0
WFIELD BIRTHDAY
BFIELD SEX
16 SFIELD HOBBIES
$FIELD NOTES
CONSTANT FRIENDS

To create a record of this type for BILL and one for ART
we can write:

CREATE BILL FRIENDS ALLOT
CREATE ART FRIENDS ALLOT

To access the ZIP code for BILL we would write:

BILL ADDRESS ZIP

10

And to do the same for ART we write:
ART ADDRESS ZIP

The parameter stack would then have the address of the first byte of his
zip code.

How to Define and Use Variant Records

Variant records, or unions (as they are sometimes called), are when two
or more fields are assigned to the same location in a record. A tag field is
often used to determine which of the variant records is stored in the struc-
ture. For example, a record for DINNER might have a tag to indicate if
you are eating out or cooking at home. If the TAG indicates EATING
OUT, the RESTAURANT LIST will be using the WHERE TO GO field
in your record. If the tag indicates COOKING AT HOME, the GRO-
CERY LIST will be stored in that field. The programmer has to keep track
of the tag indication so you don’t end up at the local steak house and order
a dozen eggs and gallon of milk.

Figure 1:Cross assembler look up routine in Pascal

{
{ Pascal linear search of alphabetical symbol table list -- }
type
stringl2 = string{ 12 J);
symbolpointer = “symrec;
symrec = record
link : symbolpointer;
tag : integer;
value : integer;
symbol : stringl2;
end;
{ Global Variables }
‘- var
counter : integer ;
firstsym, cursym : symbolpointer ;
{ }
function newsym(labnam : stringl2): symbolpointer;
var
tempsym : symbolpointer;
begin

new{tempsym) ;
newsym := tempsym;

newsym” .link := nil;
newsym” .tag := 0;
newsym” .value 3= 0;
newsym” .symbol := labnam;
counter := counter + 1;

end; { newsym }
{
procedure lookup(var labnam : stringl2; var whr : symbolpointer);
var

nextsym : symbolpointer;
begin

nextsym := firstsym;

if firstsym <> nil then begin

whr := nil;
while whr = nil do begin
cursym := nextsym;

nextsym := nextsym”.link;
if cursym”.symbol = labnam then whr := cursym
else if labnam < cursym”.symbol then begin
firstsym t= newsym{labnam);
whr := firstsym;
firstsym”.link := cursym;

end
else if nextsym = nil then begin
cursym”.link := newsym(labnam);
whr := cursym”.link;
end
else if labnam < nextsym”.symbol then begin
cursym”.link := newsym(labnam);
whr := cursym”.link;
curs: := cursym”.link;
cursym”.link := nextsym;
end;
end;
end
else begin
firstsym := newsym(labnam);
whr := firstsym;
end;
end; { lookup }
{ }

The Computer Journal / #41

{ =——mmomeee Field words for F-83 style Forth ————————n~)
: bfield (n-n+l) (byte field)
dup 1+ swap
create , does> @ +
;
: wfield (n=-n+2) (word field)
dup 2+ swap
create |, does> @ +
i
s 1lfield { n -n+d) { long field)
dup 4+ swap
create , does> € +
H
: $field (ns - n+s) (variable field)

over + swap
create , does> € +

.
’

()
-- FORTH linear search of alphabetical symbol table --)

(=eme=- Define a symbol table record)
]
lfield link { pointer to next symbol)
wfield tag { 2 byte tag)
1field value { 4 byte value)

12 $field symbol
constant symrec

(12 byte symbol name)
(size of record)

0 constant nil
variable counter variable firstsym

$<12 ("stringA “stringB -- tf)
12 0 do

over C@ over C@ {--"A"Bab)

<> if leave then

1+ swap 1+ swap
loop
Cé swap C@ swap <
H

)
: $=12 { "stringA “stringB -- tf }

12 0 do

over Cé over C@ (-~ "A"Bab)

<> if leave then
14+ swap 14 swap
loop
Ce@ swap C@ =

Figure 2: Cross assembler look up routine in Forth

r
()
: newsym { create a new symbol)

here symrec allot

nil over link 1!

0 over tag !

0 over value |

over over symbol 12 cmove

swap drop counter 1+!

12

()
variable nextsym variable labnam variable whr
variable cursym

s+ lookup (labnam -- whr)
labnam ! nil whr 1
firstsym € nextsym 1!
firstsym @ nil <
if
begin whr @ nil = while
nextsym € cursym !
nextsym @ link € nextsym !
cursym @ symbol 1labnam @ $=12
if
cursym € whr !
else labnam @ cursym € symbol $<12
if
labnam € newsym dup firstsym ! whr !
cursym € firstsym @ link !
else nextsym € nil =
if
labnam € newsym dup cursym @ link { whr |
else labnam @ nextsym € symbol $<12

labnam @ newsym dup cursym € link |
dup whr ! cursym !
nextsym € cursym @ link !
then then then then
repeat
else
labnam € newsym dup firstsym | whr !
then
whr
;7 (lookup)

~ o—~

s

To define variant records DUP the size constant value on the
stack and then define the first variant of the record. The variant
can have multiple fields defined and can have variants of its own.
After defining the variant portion use MAX to get the larger size
of the structure. This will insure that there is enough space allo-
cated for the largest variant when variants are of different sizes.
This method can also be used to create alternate definitions on the
same level. If two different variants are wanted as substructures
use MAX before + to add the largest variant substructure to the
main structure.

Sample Forth Data Structure Code

The program examples in Figures 1 and 2 are from a lookup
routine for a cross assembler Marla wrote this summer. To make
it more understandable to those who are new to Forth, the same
routine is presented in Turbo Pascal and then in F-83 style Forth.
The cross assembler was written in Pascal. We carefully translated
the Pascal into Forth but have not actually run the Forth code.
The data structures allow for an almost line for line translation
from Turbo Pascal to Forth but the Forth version results in more
compact code.

When a program is being assembled, as each symbol is encoun-
tered, the lookup routine is called and the table is searched. If the
symbol is not found, it is added to the table in alphabetical order.
These symbols are being stored in a singly linked list. The link field
of the defined record points to the next record in the list. The
lookup routine steps through the list comparing the symbol from
the assembly to those stored in the list. If it finds a match for the

The Computer Journal / #41

symbol, it returns a pointer to the record containing the matched
symbol. The cross assembler can then use the information in the
record or add things such as flagging multiple definitions of labels,
undefined symbols, or recording the value of the symbol to be
used in the rest of the program.

Each time the lookup routine compares a symbol that doesn’t
match, it checks to see if the entry in the list is still higher in the
alphabet than the symbol being searched for. If it is not, you know
the symbol is not in the list because you have passed the place
where it would have been. If the symbol is not found, the
NEWSYM routine is used to make a new entry in the table. The
new entry is then linked in to the list just before the last item it was
tested against.

List before new symbol is inserted:
Asymbol.link —» Bsymbol.link =» Csymbol.link —* Esymbol.link

List after new symbol is inserted:

Asymbol.link —* Bsymbol.link =» Csymbol.link Esymbol.link
i U
Deymbol.link

By linking things into the list in this manner, the symbols are kept
in alphabetical order. This has several benefits. You don’t have to

(Continued on page 26)

11

Advanced CP/M

Hacker's Death Greatly Exaggerated!

and

Z-System Command Scheduler

by Bridger Mitchell

In a column closing out the fifth anniversary issue of Computer
Language (July, 1989), Tim Parker laments the “Death of the
Hacker.” He recalls that in the early days, clever programmers
pushed CP/M’s limits by adding capabilities to the operating sys-
tem, and were driven by the desire to share innovations and dis-
coveries with fellow programmers. But now, he writes, the evolu-
tionary process is disappearing. “CP/M reached its zenith with
ZCPR just as the IBM PC emerged...The hacker is a dying breed:
there is little left to hack.”

Surely, I wrote the editor, Mark Twain would say that the re-
port of the “Death of the Hacker” is greatly exaggerated! Indeed,
CP/M continues to attract exceptionally talented and community-
minded programmers who have steadily pushed the frontier out
far beyond the capabilities of the first PCs.

A Celebration of System Hacking

CP/M from its beginnings has been a relatively portable and
open operating system. Gary Kildall concocted its first versions to
enable early software to run on 8080 computers that used differ-
ent types of peripheral hardware —in those days paper tapes, cas-
sette tapes, eight inch floppy disks, and teletype terminals. A fun-
damental design concept was to encapsulate the “low level” hard-
ware interface code into one BIOS module, put the file manage-
ment code into the BDOS module, and leave command interpre-
tation in a third CCP module.

CP/M system hackers—the early 8080 computer
hobbyists — got a copy of the (legendarily unreadable) Digital Re-
search Inc. (DRI) manuals and CP/M 1.4 files and set to work
writing a BIOS for their own hardware. As microcomputers
spread, small business applications flourished; each original equip-
ment manufacturer (OEM) wrote a BIOS for its particular hard-
ware and bundled a bootable CP/M 2.2 system with the equip-
ment. In this way CP/M spread to a very wide variety of hardware
platforms.

The ready availability of a running CP/M system shifted hack-
ers’ attention from getting a BIOS running to improving the per-
formance of the user’s interface with CP/M -- the command proc-
essor. This lode has been a rich one, indeed, and it has been mined
continually since the first ZCPR committee replaced the DRI
8080 CCP with a Z80 version and packed additional features into

Bridger Mitchell is a co-founder of Plu*Perfect Systems. He’s the
author of the widely used DateStamper (an automatic, portable file
time stamping system for CP/M 2.2); Backgrounder (for Kaypros);
BackGrounder ii, a windowing task-switching system for Z80 CP/M
2.2 systems; JetFind, a high-speed string-search utility; DosDisk, an
MS-DOS disk emulator that lets CP/M systems use pc disks without
file copying; and most recently Z3PLUS, the ZCPR version 3.4 sys-
tem for CP/M Plus computers.

Bridger can be reached at Plu*Perfect Systems, 410 23rd St.,
Santa Monica CA 90402, or at (213)-393-6105 (evenings).

12

the 2K module.

Today’s Z-System is a mature, many-featured descendent of
those early system hacks, and one that continues to evolve. The
system provides a path of directories to search for a command,
conditional execution of commands (the Flow Control Package),
command history-and-recall (EASE, LSH, BGHIST), error-proc-
essing (EASE, ZERRLSH, BGERR, ERRORn), named directo-
ries, and password security. Command shells can provide a friendly
visual menu environment tailor-made to the user’s types of appli-
cations (ZFILER, MENU, VMENU, FMANAGER).

Message buffers allow applications to communicate results to
their successors. Command-line and even user input to programs
can be automated (ZEX).

Aliases give the user great power. In their simplest guise they
substitute a single, readily remembered word for a complex set of
command instructions (SALIAS). But the extended command
processor ARUNZ has extensive power to symbolically manipu-
late the user’s command line. Parameters return not only whole
tokens, as in MS-DOS, but can decompose the tokens into their
components (drive, user, filename, filetype). Other system infor-
mation is also available (date and time, memory and register con-
tents, system file names, etc.).

In the Z-System, extended command processing is automatic.
Thus, the user can extend —in any way he wishes —the entire com-
mand processing system. When a user’s command cannot be proc-
essed in its present form by the Z-System command processor, it is
automatically handed over to another (possibly far more powerful)
command processor. ARUNZ, with its great power and flexibility,
is rightly viewed by many users as the single most important Z-
System tool.

Perhaps the ultimate Z-System hack has been to make all of
these features effectively self-installing. Until the arrival of NZ-
COM and Z3PLUS (and their named-common relocatable ZRL
files) the many ZCPR advances still required BIOS surgery and
reassembly. No more —the Z-System can be installed from menu-
driven instructions on virtually every Z80 computer.

BackGrounder ii, another marvelous CP/M system advance
that surpasses such MS-DOS system accessories as SideKick, en-
ables users to switch between two active applications, and to use
an extended set of built-in commands while a program is active. It
provides two full-screen windows where hardware permits, and the
ability to “cut” information from one task and “paste” it into a
second.

A few CP/M veterans have pried open the BDOS module, di-
agnosed its few, obscure bugs, and then gone on to code improved
versions. This is system hacking at its most demanding, for a single
oversight can bring entire filesystems to total destruction. ZSDOS
is the latest, best tested, and most accomplished of these efforts. It
includes generalized search-path features and the ability to make
files publicly accessible from any directory.

The Computer Journal / #41

Another noteworthy system hack is in the crossover category.
Several application tools provide the ability to transfer files between
MS-DOS and CP/M disk formats (MediaMaster, UniForm). The
most ingenious of these is DosDisk, which effectively converts a
drive to MS-DOS and allows CP/M programs to use and modify
files on a DOS disk directly. In addition, DosDisk supports the MS-
DOS hierarchical subdirectories. And, it preserves file date stamps
between MS-DOS and CP/M systems.

DateStamping Matures
Which brings me to the growing availability of file time-and-date
stamping. It’s been gratifying to watch DateStamping spread to
more and more CP/M systems since the “early days” when Derek
McKay and I came up with a design to overcome this basic defi-
ciency in the original CP/M 2.2 operating system. We strove for

.maximum portability, with the aim that every CP/M 2.2 system could

be extended to include automatic filestamping, and users could ex-

- change disks between systems and maintain accurate file stamps.

The design has withstood the test of time. The original Date-
Stamping system runs on both 8080 and Z80 systems around the
world. The resident stamping module can be loaded as a resident
system extension (RSX) below the command processor, or as code
installed above the BIOS in highest memory. We released Date-
Stamper with two fundamental tools -- SDD, a version of Super Di-
rectory, that displays file datestamps, and DatSweep, a multi-pur-
pose file utility that also displays and selects files by datestamp.

Such outboard DateStamping works very well, but it was always
an appendage. About two years ago, two cfforts to integrate file
stamping directly into the operating system began. Hal Bower and
Cam Cotrill, both users of DateStamper, started building Date-
Stamper into their formative ZSDOS. Independently, Carson
Wilson was experimenting with a filestamping format similar to that
used by CP/M Plus in his prototype Z80DOS tests.

Carson and I had a vigorous and interesting exchange of views
on the Lillipute Z-Node in which we debated the merits of filestamp
formats and the value of a unified approach. Finally, out of all of
this emerged a united and technically unsurpassable team — Bower,
Cotrill, and Wilson—working to develop a single new CP/M 2.2
DOS. Integrated DateStamping is now a reality in the new ZSDOS

~ Operating system.

DateStamping Tools

As DateStamping has become more widely used, the number
and variety of tools that use its features has expanded steadily. File
datestamps can be maintained when files are compressed and later
expanded (CRUNCH and UNCRUNCH v 2.3D), archived and ex-
tracted from libraries (LPUT, LBREXT), and copied (COPY,
DATSWEEP). This crucial functionality “marries” a file and its
date of creation and modification; as a result you always know which
is the latest version of a manuscript, program or database, even
when it has been copied, compressed, and put into deep storage in a
library on another system.

Disk directories can be viewed and sorted by date and time
(FILEDATE, ZXD, SDD).

We have tools for manipulating files based on temporal relations.
CRUNCH and DATSWEERP can process files by date. And MAKE
can determine whether interdependent files are out of date and
automatically compile, assemble, link, or otherwise process them
into updated condition. (MAKE deserves a column of its own; I
hope to do one before much longer.) Jay Sage has suggested the
need for a small, general-purpose tool, say DATECOMP, that
would compare or test two files’ datespecs and set the error flag or a
register according to the result of the test.

As I mentioned earlier, DosDisk provides a unique link between
the CP/M and MS-DOS operating systems by preserving dates-
tamps when files are copied to or used in MS-DOS format.

Quite appropriately, all of these applications use the filestamp
feature of DateStamper. But DateStamper has another, equally
portable feature that is more direct—a hardware-independent

The Computer Journal / #41

method of obtaining the current date and time. DateStamper’s
portable access to the system clock is used by ZCAL, by MEX
Plus overlays, and a number of tools that incidentally display the
date and time in the course of their major tasks.

Z-System Command Scheduler

Reading “Death of the Hacker” and reviewing the progress of
CP/M led me to muse about what we haven’t accomplished with
system extensions. One of them is an alarm-clock feature —the
ability to set appointment reminders or schedule tasks for auto-
matic execution.

Until recently I had dismissed this as not really feasible for CP/
M. After all, “smart” pop-up calendars in MS-DOS systems hook
into the interrupt-driven clock, and job-schedulers in minicomput-
ers spawn independent processes under multi-tasking operating
systems.

But gradually it dawned on me that we do have the essential
system ingredients for a scheduler! DateStamper provides the ac-
cess to the system clock and the Z-System multiple-command line
provides a queue for future tasks—there must be a way to use
these components to start a task at some future time! I kept mull-
ing over these facts, trying to see how they could be made to fit to-
gether. It began to take shape ... suppose we squirrel a command
away in protected memory and somehow monitor the clock regu-
larly until the set time arrives. When it does, we move the com-
mand into the multiple command line. After that the ZCPR com-
mand processor will execute it when the current task is completed.

This was getting exciting! But how to rig things up to monitor
the clock while everything else is happening on the system? Unlike
MS-DOS, CP/M has no BIOS software interrupt (or BIOS jump)
that provides regular clock ticks. My first thought was to design an
interrupt-service routine that could extend the host system’s real-
time clock routine. This would be complicated, and system-spe-
cific, and probably introduce unknown problems.

At this point Cam Cotrill reminded me that the trick of moni-
toring the BIOS console status routine, which BackGrounder ii
uses so successfully, should work here too. ('m good at forgetting
my best ideas!) And, indeed it does. We can intercept calls to
constat, call the DateStamper clock and compare the current time
with the alarm time, and finally proceed to check console status. It
will work because the DateStamper clock is implemented by low-
level code that does not endanger BIOS or BDOS routines that
happen to be in use at that moment.

As this concept took clearer form I rushed to hack a proof-of-
concept test. I had been cleaning up the development work for
ZEX 5.0 and thus had the routines for hooking up an RSX and
pushing a command onto the Z34 multiple command line readily
available. In one evening I succeeded in lashing together a proto-
type “AT”. This scrawny, still primitive beast with wires poking out
everywhere and dozens of stub ends, was silently monitoring the
DateStamper clock from its position in high memory and ready to
pop into action at a hard-wired, preset time. The “hour” arrived,
and, lo, the command line changed. And, when I exited the debug-
ger, my “ECHO TESTING” command ran!

AT Takes Shape

“The rest is history.” Except it’s never that easy! At this writing,
I’'m steadily teaching the AT puppy (named for her UNIX grand-
dad) some manners, though she’s not yet fully housebroken. I am
again mildly surprised at how much code, and repeated testing,
goes into protecting a program against both user mistakes and
system errors (not to mention the programmer’s own blunders!).
My first prototypes are very raw, user-intolerant beasts, demand-
ing precise operator attention to prevent horrendous crashes.
They often require, and assume, all of the operating system fea-
tures I know are present on my test machine. Slowly, as the central
functions and data structures take more solid form, I add in-
creased error checking, recovery, and finally user-interface fea-
tures.

13

Toward the end of this phase I will again seek out a diverse
group of “alpha testers” —stalwart souls whose joie de vivre en-
courages them to live recklessly with infested and untried code.
The ideal hacker for this role is doggedly persistent in trying to re-
produce an anomaly, suspicious of “obvious” explanations for ab-
errant performance, observant of the precise sequence of events,
patient to a fault in accepting yet another test version from the
hapless developer, suffers wordlessly when his hard disk is crashed,
and doesn’t complain when his suggestions for improvements are
brushed aside! Moreover, he routinely uses all sorts of obscure
hardware, runs the widest spectrum of software applications, and
has superb diagnostic tools at the ready. Finally, after pinpointing
the precise cause of the developer’s mistake, he cuts through the
fog with a clairvoyant suggestion that I could perhaps more easily
“do it this way”, lays out a brilliant simplification, and then mod-
estly declines to take credit for his insight!

This breed of hacker is alive and well. Most computer users
have heard of beta testers, but it is the alpha testers who are the
unsung test pilots of our field. I owe much of the success and
quality of my CP/M programs to them, and I salute their cockpit
courage and good humor -- Jay Sage, Howard Goldstein, Cam
Cotrill, Hal Bower, Rob Friefeld, Al Hawley, Bruce Morgen.

At this writing, AT has just been submitted to the alpha circle,
and is moving ahead. A beta version might be found on Z-Nodes
about the time this TCJ reaches you. I am particularly interested
in feedback and suggestions from all types of users. A scheduler is,
by its nature, a tool of especially wide possibilities, and I expect
several of you will invent some quite unexpected uses for it.

AT’s commands
At the moment, this is how it will work. You type:

AT <date> <time> command line

AT then adds that command line to its internal database. If
there is no earlier command in the database, it schedules that
command by informing the AT RSX of the specified alarm time.
Then, when that time arrives, the RSX causes AT to run again;
this time it fetches the command line from the database and
pushes that line onto the command processor’s multiple command
line. Finally, it also schedules the next command in the data base.
Immediately thereafter, your command runs.

So far I have largely resisted the temptation to make AT any
sort of command processor. I think it’s best to maintain the clean
division of labor between scheduling (AT.COM), alarm sensing
(AT.RSX), and command processing (ZCPR34). ARUNZ’s ex-
tended command processing facilities, and ZEX scripts, enable
you to expand the scheduled command line into extensive and
arbitrarily complex sets of tasks.

I am experimenting with one variant command:
AT <time> RING command_ line

which rings a set number of times as soon as the alarm time is
reached, and then executes the command line whenever the cur-
rent application has finished.

AT will eventually include the ability to schedule periodic com-
mands (daily, weekly) and a basic set of options for maintaining
and displaying the database of scheduled commands.

Here are a few initial ideas for commands.

AT 08:00 DATEBOOK -- review daily calendar
AT 17:30 RING ECHO CALL JAY

AT 21:00 MEX READ DOWNLOAD LADERA

AT 23:50 BACKUP A:

I hope the promise of a command scheduler will prompt sev-
eral of you to develop new applications. And I am eager to learn
what uses all readers may find for AT.

A TEX Postscript
I'was just putting this column into the mail to our editor when

14

word of another, earlier command scheduler effort reached me.
Called TEX (Timed Execution), it’s by Ron Murray. The discovery
of a new, kindred Z-System development from down under (Ron is
in Perth, Western Australia and can be reached via Z-Node 62
there), one that took more than a year to migrate to me in southern
California, is somehow slightly akin to the Voyager 2 transmissions
from Neptune that have so fascinated us in the last weeks!

I've just begun to look at TEX (not to be confused with the
powerful formatting language TeX). It is somewhat like AT, but
also quite different. TEX is a Z-System shell. It runs as an applica-
tion in low memory whenever the system command line is empty,
and accepts normal command lines from the user. It also accepts
scheduling commands, which TEX stores in a separate database file.
Once a command has been entered in the database, TEX checks
the clock against the next-scheduled command, and when its time
has come, it pushes the command onto the multiple command line
for execution. When the command line buffer becomes empty, the
command processor again invokes TEX (because it is a shell) and it
resumes checking the clock and getting the next user command.

Ron’s original version was based on Carson Wilson’s first BDOS
replacement, Z80DOS. Jim Lill has taken Ron’s modular code and,
by using the now-standard routines in DSLIB, has been able to
make TEX version 1.3 portable across all DateStamper, ZSDOS,
and CP/M Plus Z-Systems. This is a particularly apt demonstration
of the way the Z-System can grow and spread across diverse CP/M
platforms.

TEX and AT will surely learn from each other in the coming
months!

TEX’s implementation as a shell allows the TEX scheduler to be
added to the system without permanently reducing memory avail-
able to applications (the TPA). TEX runs in low memory, and this
effectively removes the handy GO command from ZCPR’s reper-
toire. (Although TEX could be relinked to run as a type-3 or type-4
tool in upper memory, it is large enough that at least some applica-
tions could not be safely re-executed with GO.) Also, it seems that
by using TEX you are committed to it as your command-line inter-
face, giving up the opportunity of using command-line history shells
(LSH, EASE, BGHIST).

More generally, the TEX shell, and therefore any scheduled
commands, will only run when TEX is the active shell. So, for ex-
ample, while ZFILER is in use, command scheduling is suspended.

There is always some cost in performance in using a shell to
process every command line. It’s not very noticeable on a fast ram
disk, but may be aggravating on a floppy system. This price is worth
paying when the shell adds capability to most command-line entry
operations (as command history or full-screen menu shells do). It
proves more of a burden than a boon when the added features only
occasionally get used (i.e., when a scheduled event’s time arrives).

AT’s rather different design, built around an RSX, enables it to
watch the clock more or less continually, regardless of what is run-
ning. It accomplishes this without the overhead of reloading a shell
for each command, but at the price of reduced user memory.

Shells also raise complications for AT, namely —how or whether
AT can interrupt a shell to run a scheduled command. This question
has just begun to be discussed among the alpha testers, but one
promising idea (suggested by Jay Sage) is to terminate an active
shell if it has had no console activity for several minutes. We'll be
experimenting with several approaches. Stay tuned!

This short tour of recent CP/M system developments demon-
strates a wealth of vigorous innovation. Perhaps in MS-DOS-land
the true hacker is a dying breed, but in CP/M there is much left to
hack. Tim Parker and others longing for the old challenge are most
welcome to (re)join us and push the envelope further! e

The Computer Journal / #41

Plu*Perfect Systems == World-Class Software

BaCKGIOUNAEY i cueeeeeeceeeccncenssrseessmmssssasssnssssesssesnsssssssssnamessssnssnrmnnsasssansass $75

Task-switching ZCPR34. Run 2 programs, cut/paste screen data. Use calculator,
notepad, screendump, directory in background. CP/M 2.2 only. Upgrade licensed
version for $20.

Z-SYSTEM ..ueceenceeceesrrenneaccsstssasssasussssamsssssssssnmansasssssnsssasssnrasnessnesansnns $69.95

Auto-install Z-System (ZCPR v 3.4). Dynamically change memory use.
Order Z3PLUS for CP/M Plus, or NZ-COM for CP/M 2.2.

JEtLDR ... ceeecenecintnisenestsssessnassea st n s ansee e s n s sn s e s s s s s e e s s annn $20

Z-System segment loader for ZRL and absolute files. (included with Z3PLUS and
NZ-COM)

457 5 10 13— $75, for ZRDOS users just $60

Built-in file DateStamping. Fast hard-disk warmboots. Menu-guided installation.
Enhanced time and date utilities. CP/M 2.2 only.

DOSDISK coveeeemieieeeesemeceeseenssesmmnssessssssennssseessnensmmnsssssennnramnnnassnnnnnsnes $30 - $45

Use MS-DOS disks without copying files. Subdirectories too. Kaypro
w/TurboRom, Kaypro w/KayPLUS, MD3, MD11, Xerox 820-1 w/Plus 2, ON!, C128
w/1571 -- $30. SB180 w/XBIOS -- $35. Kit -- $45. Kit requires assembly language
expertise and BIOS source code.

MULTICPY . cceemnmemceeeemccassssas s s s e e s e e e e e s anssssnasasmmmaassessennnenee $45

Fast format and copy 90+ 5.25" disk formats. Use disks in foreign formats.
Includes DosDisk. Requires Kaypro w/TurboRom.

O TN oo iiiseecuseeesreesaemasresssanmssmssssnssssasssensssnnsanessnnssmmmnsanasssnssssnsanaans $50

Fastest possible text search, even in LBR, squeezed, crunched files. Aiso output
to file or printer. Regular expressions.

To order: Specify product, operating Plu*Perfect Systems
system, computer, 5 1/4" disk format. _ 410 23rd St.
Enclose check, adding $3 shipping ($5 Santa Monica, CA 90402

foreign) + 6.5% tax in CA. Enclose invoice
if upgrading BGii or ZRDOS.

BackGrounder ii ©, DosDisk ©, Z3PLUS ©, JetLDR ©, JetFind © Copyright 1986-88
by Bridger Mitchell.

The Computer Journal

The Z-System Corner
by Jay Sage

By the time you read this, summer vacation will probably be
just a fond memory for you, but it is August as I write this, and I
have just returned from three weeks in Israel. This was a total
vacation. I didn’t touch or even think about computers the whole
time I was away, except at the very end when my mind started to
refocus on the responsibilities that awaited me at home, including
this TCJ column. It was so nice to get “computer compulsion” out
of my system that I have not been all that eager to get back imme-
diately to my old routine...but I know it will happen soon enough.

Having not thought about computing for a month, I had to
work to recall the things I was excited about before I left and
planned to discuss in this issue. Fortunately, I left myself some
notes. One item was the continuation of the BYE discussion, this
time covering the extended DOS functions implemented in BYE.
The truth is I have neither the energy nor the time to take up that
subject now. Instead, I am going to come back once again to my
favorite subject: aliases and ARUNZ.

I think ARUNZ is the one thing that keeps me hooked on Z-
System and not eager to follow after the MS-DOS crowd. Al-
though I have looked hard, I have not found anything with the
combined simplicity and power of ARUNZ for MS-DOS. The
mainframe batch processing language REXX, which has been
ported by Mansfield Software to DOS machines, is far more pow-
erful, and some day I hope to port a greatly simplified version to
Z-System. The DOS version of REXX, you see, takes over 200K
of memory while it is running! That often does not leave enough
memory, even on a 640K machine, for application programs to
run. I think I actually have more problems running out of TPA on
my Compaq 386 than I do on my SB180!

Anyway, for this column I am going to begin with a very brief
report on a rather dramatic change in the works for ARUNZ and
the Z-System as a whole. Then I am going to describe two
ARUNZ applications that I recently developed for my own use. I
think they illustrate some interesting general principles, and you
may even find them useful as they are.

The Extended Multiple Command Line
Most people who use ARUNZ aliases—or even standard
aliases —sooner or later run into a situation where the command

Jay Sage has been an avid ZCPR proponent since the very first
version appeared. He is best known as the author of the latest
versions 3.3 and 3.4 of the ZCPR3 command processor and for his
ARUNZ alias processor and ZFILER file maintenance shell.

When Echelon announced its plan to set up a network of remote
access computer systems to support ZCPR3, Jay volunteered imme-
diately. He has been running Z-Node #3 for more than five years
and can be reached there electronically at 617-965-7259 (on PC-
Pursuit). He can also be reached by voice at 617-965-3552 (be-
tween 11pm and midnight is a good time to find him at home) or by
mail at 1435 Centre St, Newton, MA 02159. Finally, Jay recently
became the Z-System sysop for the GEnie CP/M Roundtable and
can be contacted as JAY.SAGE via GEnie mail.

In real life, Jay is a physicist at MIT, where he tries to invent
devices and circuits that use analog computation to solve problems
in signal, image, and information processing.

16

line overflows and the whole process comes to a crashing halt
(well, not really a crash, but a sudden stoppage). The standard Z-
System configuration supports a multiple command line buffer
(MCL) that can accommodate 203 characters. The largest size
possible is 255 characters. Either way, there comes a time when
aliases are invoked from command lines that already contain addi-
tional commands, and the combined command line is too long to
fit in the MCL. People like Rick Charnes would have this happen
constantly if they did not adopt a strategy to avoid the problem
(more about that in one of our examples later).

I have long been intrigued by the possibility of having a much
longer command line. The command processor (CPR) has always
used a word-size (16-bit) pointer into the command line, and so,
without any change in the ZCPR34 code, the CPR couid handle a
command line as big as the address space of the Z80.

To verify this, I performed a simple experiment. I configured a
Z-System with free memory after the MCL, and then, using the
memory utility program MU3, I manually filled in the command
line with a very long multiple command line sequence terminated,
as required, by a null character (binary zero). Sure enough, after
exiting from MU3, the huge command line ran without a hitch.

The next step was to write a special new version of ARUNZ
that could be configured to recognize an oversized MCL. Richard
Conn set up the environment descriptor (ENV) with a one-byte
value for the length of the command line that the MCL buffer
could contain. Thus there is presently no way to support an ex-
tended MCL (XMCL) in a system-invariant way, that is, in a way
that allows programs to determine at run time how big the MCL
is. We are working on that problem right now, and, by the time
you are reading this, there will almost certainly be a new ENV type
defined (81H) that uses one of the remaining spare bytes in the
type-80H ENV to report the size of XMCL to programs smart
enough to check for it.

The original, single-byte MCL size value in the ENV has to
remain as is and contain a value no larger (by definition) than 255
(OFFH). That value is used by the command processor when new
user input is being requested. There is no way for the CPR to
allow users to type in command lines longer than 255 characters
without adding a vast amount of code to perform the line-input
function now so conveniently and efficiently provided by the DOS.
A shell could be written that included such code, but I really can’t
imagine anyone typing in such long command lines. If they do, it
probably shows that they are not making proper use of aliases.

I have decided to use only one of the spare ENV bytes for the
XMCL size and to let that value represent the size—in
paragraphs —of the total MCL memory buffer allocated, including
the five bytes used by the address pointer, size bytes, and terminat-
ing null. The term ‘paragraph’ as a unit of memory is not often
used in the Z80 world. I believe it was introduced with the 8086
processor, where the segment registers represent addresses that
are shifted four bits right. Each unit in the segment register is,
therefore, 16 bytes and is called a paragraph. With this system, the
XMCL buffer can be as large as 255 * 16 = 4080, which allows
command lines with up to 4075 characters. Rich Charnes, do you
think you can live with that without cramping your style too
much?!

The Computer Journal / #41

Most people will not want to allocate that much memory to the
operating system, and I would never have considered this step be-
fore the new dynamic versions of Z-System were available. While I
might be willing to allocate 1K to the XMCL most of the time, I
certainly would want to be able to reclaim that memory when I need
it. ’'m not sure whether NZCOM or Z3PLUS can be cajoled into
handling this kind of flexibility yet; new versions may be needed at
some time in the future.

~ Iputthe new version of ARUNZ out for beta test, and it worked
just fine, and one could write very long alias scripts. Rick Charnes,
however, quickly identified a problem. Suppose a conventional alias
appeared in the command sequence. After expanding itself and con-
structing the new command line, the alias would find that, as far as it
knew, there was not enough room for it in the MCL. In a nutshell,
.the hard part with going to the XMCL is that it is not enough to
have an advanced ARUNZ; all programs that operate on the MCL
- must be upgraded. We hope to have new versions of the library
routines in Z3LIB that perform these functions. Then, if we are
lucky, most of the utility programs can be upgraded simply by relink-
ing. 'm sure it won’t be quite that easy, of course!

A MEX Alias

For those who are not familiar with it, MEX (Modem EXecu-
tive) is an advanced telecommunications program written by Ron
Fowler of NightOwl1 Software. Early versions were released for free
to the public (up to version 1.14), while the most advanced versions
(called MEX-Plus) are commercial products. I use version 1.65, and
some of the specifics in my example apply to that version. I am
pretty sure that the technique I describe can be applied to the free
version as well.

Rather than being a telecommunications program, MEX should
probably be considered a telecommunications programming lan-
guage. It supports a very wide range of internal commands for man-
aging telecommunications tasks, and it even has a script language
for automating complex sequences of operations.

The MEX command line allows multiple commands to be en-
tered just as in Z-System, and a MEX command allows the user to
define the command separator. Although I depend on aliases to
generate complex Z-System commands and MEX script files to
~automate complex MEX command sequences, 1 still frequently
make use of simple, manually entered multiple commands.

Being accustomed as I am to entering Z-System commands
separated by semicolons, I naturally set up my version of MEX to
use the semicolon as its separator, too. Now I can comfortably work
in both environments. However, I also frequently like to invoke
MEX with some initial commands, which MEX allows one to in-
clude in the command tail. Here’s a simple example.

B1l:TEMP>mex read mnp on

This command invokes MEX and tells it to run the script file
MNP.MEX with the parameter “ON”. This script causes a string to
be sent to my modem which engages the MNP error correcting
mode (yes, when I purchased my most recent modem -- replacing a
USR Password -- I decided to spend the extra money for MNP,
although at the time there weren’t many systems that supported it;
now I'm glad I did).

That command line works fine. But often I want to do more, and
so I always wanted to enter something like:

Bll:TEMP>mex read mnp onj;call zitel

This would start out by doing what the first example did but would
then continue by placing a call to the ZITEL BBS. [If you can keep
a secret, I'll tell you that the ZITEL BBS is the MS-DOS system
that I run for the ZI/TEL Group of the Boston Computer Society.
ZI/TEL comes from the letters in Zilog and Intel, and it symbolizes
the fact that we support the two main operating systems run on
chips from those companies: CP/M and MS-DOS. The BBS ma-
chine, a Kaypro 286/16, is sitting in the other room (you don’t think

The Computer Journal / #41

I’d allow it in the same room with the Z-Node, do you?), and it has
an HST 9600 bps modem with MNP error correction. If you want
to contact me there, by the way, the number is 617-965-7046.]

An on-the-ball reader already realized that the above com-
mand will not work, because the semicolon separator before the
CALL command, which I intended as the MEX separator, will be
interpreted by the CPR as its separator, and it will terminate the
MEX command. What can we do about this?

Some compromise here is inescapable, and 1 was willing to
accept—from the CPR command line only—a MEX separator
other than semicolon. Thus the following form would be accept-
able

Bl1:TEMP>mex read mnp onl!call zitel

with an exclamation point as the separator as in CP/M-Plus. But
for years I could not figure out how to accomplish this.

At first I thought there was a very simple solution. When MEX
starts up, it can be set up to automatically run an initialization
script file INLMEX. So, I created a version of MEX (the MEX
“CLONE” command makes it easy to create new versions) that
used “!” as the separator, and I created an INLMEX file with the
command

STAT SEP ";*

Thus, as soon as MEX was running, the separator would be set
back to a semicolon. Unfortunately, to my chagrin, I learned that
MEX invokes the INLMEX script only when no commands are
included on the command line. With the ZITEL command line
shown earlier, MEX would be left with the exclamation point as
the separator.

Here is what I thought of next (at least momentarily). Rename
MEX.COM to MEX!COM and set up a MEX alias in
ALIAS.CMD with the definition

MEX mex:mex! $*!stat sep ";"

The idea here is that the user’s MEX commands from the com-
mand line (separated by “!””) will be passed in by the $* parameter
and will have the STAT command added. Thus our earlier ex-
ample will turn into the command line

B11:TEMP>mex:mex! read mnp onlicall zitellstat sep *;*

This, of course, fails for the same reason that I could not just
enter commands with semicolons in the first place. The trick to get
around this is to use a command that for some reason Ron Fowler
does not document in the MEX manual: POKE. It works like the
Z-System command of the same name and places a byte of data
into a specified memory address.

I knew the value I wanted to poke: 3BH, the hex value for the
semicolon character. The question was, where should it go? To
find out, I took a version of MEX set up with semicolon as the
separator and the version with exclamation point as the separator
and ran the utility DIFF on them (in verbose mode to show all the
differences). Then I looked for the place where the former has a
semicolon and the latter an exclamation point. For MEX-Plus this
turned out to be 0D18H so that the MEX poke command would
be

PORE $0D18 $3B

Note that MEX uses a dollar sign to designate hex numbers. The
alias now read

MEX mex:mex! $*lpoke $$0d18 $$3b

Observe that a double dollar sign is needed to get a single dollar
sign character into a command. A lot of people forget this and end
up with scripts that don’t do what they’re supposed to.

I tested this, and it works splendidly—but with one possible

17

‘gotcha’. The commands passed to MEX must not invoke any
script files that depend on the command separator being a semico-
lon (because it will be exclamation point until the final poke com-
mand runs); nor may the read files change the command separator
(because the rest of the command sequence still assumes it is the
exclamation point). For this reason, it is prudent to write all script
files with only one command per line so that no separator is
needed. I haven’t been doing this, but I will from now on!

One final word on the script. I actually did not do this exactly as
I have described. Instead, I left my MEX.COM set up with the
semicolon separator, and I created a distinct ARUNZ alias called
MEX! so that I would be reminded of the separator. This alias
script reads

MEX! get 100 mex:mex.com;poke di8 *!;
go $*lpoke $$0d18 $$3b

. This uses the famous poke&go technique originated by Bruce
Morgen. MEX.COM is loaded into memory by the GET com-
mand, and then the Z-System POKE command sets “!” as the
command separator. Then the modified loaded code is run by the
GO command. The rest is as described previously.

A Spell-Check Alias

I try to remember to put all my writing through The Word Plus
spelling checker that came with WordStar Release 4 so that as
many typos as possible will be caught. The procedure for doing
that on a Z-System is a bit complicated because the text file is
generally not in the same user area as the spelling check program.
While writing my last TCJ column, I finally got fed up with the
complexity and automated the whole process using a set of aliases.

I wanted to support the following syntax:
Cl:TCJ>spell filename.typ dictname

If just the file name was given, the alias would prompt for the
name of the special dictionary to use, and if not even a file name
was given, then the alias would prompt for both names. A special
version of the command, ZSPELL, would take only the file name
and would automatically use ZSYSTEM as the name of the spe-
cial dictionary (it knows about mnemonics like ZCPR, MCL, and
RCP, and about all those special words like debugger, relocatable,
and modem). We'll describe the general alias set first. In listing the
aliases, we will write them in multiline format for easy reading;in
the ALIAS.CMD file the scripts have to be on a single line
(though I hope that will change soon).

The user-interface alias, SPELL, deals only with the matter of
how many parameters the user has provided. It reads as follows:

SPELL
if nu $1;
/TWO;
else;
if nu $2;

If no parameters at all are provided (IF NULL $1), then the sec-
ondary script TWO is run. The leading slash signals ZCPR34 that
the command should be directed immediately to the extended
command processor. If a first parameter but no second parameter
is present (IF NULL $2), then the secondary script TW1 is run.
Finaily, if both parameter are provided, then script TW2 is run.
The script TW1 includes a prompt only for the name of the
special dictionary file:
™1
$"Name of special dictionary: "
/TH2 §1 §$'el

The first token in any user response to the first prompt ($'E1 --
when working with ARUNZ you should have a printout of the pa-

18

rameter DOC file) is used along with the file name that was already
given, and both are passed to TW2.

The script TWO includes prompts for both the file name and the
special dictionary:

TWO
$"Name of file to check: "
$"Name of special dictionary: ™
if “nu S$’'el
/TW2 $'el $’e2
fi

The first tokens in the responses to the prompts are passed to script
TW2.If no file is specified for checking, the alias simply terminates.

Before we look at TW2, which does the real work, let me ask a
rhetorical question: why do we break this process up into so many
separate aliases. There are two main reasons. The first is that the
command line buffer would overflow if all these smaller scripts were
merged into a single big script. The extended MCL we discussed
earlier could overcome this problem, but for another reason we
would still have to use separate aliases.

As T have discussed in past columns, ARUNZ cannot know at
the time it expands a script what the results of conditional tests will
be later when the IF commands are run. Thus ARUNZ must proc-
ess all user input prompts that appear in the script. This would
mean asking for a file name and special dictionary even when the
names were given on the command line. The solution to this prob-
lem is to put the prompts in separate scripts that get invoked only
when the information requested in those prompts is actually
needed.

Now let’s look at the script TW2.

TW2
path /d=tw:;
$tdistuls:;
twetw $tfl $tn2.cmp;
path /d=;
/twend $tn2;
$hb:

This is simpler than what you expected, no? Well, there is still a lot
of work imbedded in the subroutine script TWEND, which we will
cover later. Here we broke up the script solely to prevent MCL
overflow.

The first command makes use of the ZSDOS file search path
(see the articles by Hal Bower and Cam Cotrill on ZSDOS in TCJ
issues 37 and 38). Although there was an attempt to update Word-
Star Release 4 to include some Z-System support, no such attempt
was made with The Word Plus spell checker. In general, the file to
be spell-checked will be in one directory and The Word files in
another directory. The main program TW.COM could be located by
the command processor using its search path, but TW.COM needs
a number of auxiliary files, such as the dictionary files. How can the
system be made to find all of these files at the same time. ZSDOS
provides the answer.

I have replaced the standard Z-System PATH command with
the ZSDOS utility ZPATH (renamed to PATH). The first com-
mand in TW2 defines the DOS search path to include the directory
TW:, which is where I keep all the files that are part of The Word
Plus spell-checking package. Once that directory is on the DOS
path, all files in it will more-or-less appear to be in the current
directory. Very handy! If you use ZDDOS, the search path is not
available. I will not show it here, but you can accomplish the same
thing using only public files. It’s just not quite as neat and straight-
forward. I am willing to pay the small memory penalty to get the
nice extra features of ZSDOS over ZDDOS.

The second command logs us into the directory where the file to
be checked resides. If we did not include a DIR: prefix, we were
already there, but the extra command does not hurt, and it is nice to
know that a directory can be specified explicitly (in either DU: or
DIR: form) for the file to be checked. There could be a problem if
the file is in a user arca above 15, since you may not be able to log

The Computer Journal / #41

into that area. My configuration of 734 al-
lows this, but when I run BGii I lose this
feature (and I sure miss it). If you can’t log
into those areas, then you should not keep
files there that you want to spell-check.

The third line actually runs the spell
checker (you knew that had to happen some
time!). Notice that even if the user specified
a file type for the special dictionary, type

" CMP is used. Only the name ($TN2) with-

out the type is taken from the user. As the
master program TW.COM is run, it will find
its component program files (e.g.,
SPELL.COM, LOOKUP.COM,

MARKFIX.COM) and the various diction-

aries in the TW: directory thanks to

- ZSDOS, and it will find the text file in the

current directory. As it works through the
text, if there are any questionable words, it
will write out a file ERRWORDS.TXT to
the current directory. If any words are added
to the special or UPDATE dictionaries, then
the modified dictionaries will be read from
TW: but written out to the current direc-
tory. You must understand these facts in
order to understand the rest of the script.

Once the spell-checking is complete, the
ZSDOS path is set back to null (unless 1
have a special need to have the DOS per-
form a search, I leave it this way to avoid
surprises). Then the ending script TWEND
is run, and finally the original directory
($HB:) is restored as the current directory.

Now let’s look at TWEND. As it is in-
voked, the name of the special dictionary is
passed to it. TWEND?’s job is to clean up
scratch files and to take care of any updated
dictionaries. It reads

TWEND
if ex errwords.txt;
era errwords.txt;

£i;

/dupd $1;

SAGE MICROSYSTEMS EAST

Selling & Supporting the Best in 8-Bit Software

e New Automatic, Dynamic, Universal Z-Systems

— Z3PLUS: Z-System for CP/M-Plus computers ($69.95)
— NZ-COM: Z-System for CP/M-2.2 computers ($69.95)
— ZCPR34 Source Code: if you need to customize ($49.95)

e Plu*Perfect Systems

— Backgrounder II: switch between two or three running tasks un-
der CP/M-2.2 ($75)

— ZDOS: state-of-the-art DOS with date stamping and much more
(875, $60 for ZRDOS owners)

— DosDisk: Use DOS-format disks in CP/M machines, supports
subdirectories, maintains date stamps ($30 — $45 depending on
version)

e BDS C — Special Z-System Version ($90)
e SLR Systems (The Ultimate Assembly Language Tools)

— Assembler Mnemonics: Zilog (Z80ASM, Z80ASM+), Hitachi
(SLR180, SLR180+), Intel (SLRMAC, SLRMAC+)
— Linkers: SLRNK, SLRNK+

— TPA-Based: $49.95; Virtual-Memory: $195.00
e NightOwl Software MEX-Plus ($60)

Same-day shipping of most products with modem download and support
available. Order by phone, mail, or modem. Shipping and handling $4 per
order (USA). Check, VISA, or MasterCard. Specify exact disk format.

/dupd updict

For efficiency and to prevent MCL overflow,
the dictionary updating is performed by yet
another subroutine script, DUPD. It gets
called twice, once with the special dictionary
(if any) and once with the update dictionary.

1435 Centre St., Newton Centre, MA 02159-2469
Voice: 617-965-3552 (9:00am — 11:30pm)
Modem: 617-965-7259 (password = DDT)(MABOS on PC-Pursuit)

Sage Microsystems East

It reads as follows:

DUPD
if ex $tnl.cmp;
meopy tw:=$tnl.cmp /ex;
£i

If an updated version of the specified dictionary exists in the cur-
rent directory, then it is copied to the TW: directory, overwriting
any existing file of that name (MCOPY option E). The source file
is then erased (MCOPY option X). Oh yes, I almost forgot; the
MCOPY here is my renamed version of the COPY program sup-
plied with ZSDOS.

That is it except for showing you the special ZSPELL version of
the alias. Notice that I make the “ELL” part of the command op-
tional by inserting the comma in front of that part of the alias
name. I also allow the script to be invoked under the name ZTW.
The main SPELL script actually has the name “TW=SP,ELL” on
my system. Since TW: is not on my command search path, the com-
mand “TW” will invoke the ARUNZ script unless [am in the TW:
directory at the time.

The Computer Journal / #41

2TW=ZSP,ELL
if nu $1;
/2TW1;
else;
/TW2 $1 zsystem.cmp;
fi

2TW1)
$"Name fo file to check: "
if “nu $’el
/TW2 $'el zsystem.cmp
fi

I hope you find these alias examples useful and instructive. That’s
all for this time. See you again in-two months. @

19

Programming Input/Output With C

Part 2: Disk and Printer Functions

by Clem Pepper

The “stream” concept and the definition of FILE as a structure
defined in <stdio.h> were described in part 1. The application
there is with respect to the keyboard, stdin, and the screen, stdout.
In this writing a stream defines the connection to a file (disk file or
a device such as a printer) which makes the file appear to be a
sequence of bytes.

The multiplicity of file input/output related library functions
can appear overwhelming. This, in part, because 1/O files exist at
two levels--lower and-upper. The lower level functions are un-
buffered and operate with data bytes. The upper level are buff-
ered and operate with blocks of data. In addition, under MS DOS,
there are differing standards for two types of files: text and binary.
(Under UNIX a single standard applies to both types.)

The typical sequence in reading a disk text file is to (1) open the
file, (2) read the content, and (3) close the file. We typically will do
more than that, depending on how we plan to use the file content.

Files that we wish to work with may be called from the com-
mand line or from within our program. Each has its place. We will
begin with an overview of command line procedures. We will then
look briefly at low level I/O functions before delving rather deeply
into the higher level, which are those we commonly work with.

Command Line Arguments

There are two approaches to reading in disk files from the
command line. The most general, offering the best flexibility, is the
use of “argc” and “argv” as arguments to main(). However we can
also read a disk file by redirection.

My introduction to C several years back was with The Software
Toolworks C/80. For a long time I was baffled by the meaning of

main(argc,argv) /* command line arguments */
int argc; /* number of arguments */
char *argv(]; /* argument name strings */

{

“argc” stands for “argument count.” It defines the number of
arguments on the command line. The “command line”, by the
way, is simply the instruction we enter on the keyboard. When we
wish to clear the screen, we type CLS and press the ENTER key.
CLS is the command line. When we use our word processor we
enter the command line followed with a single argument; the first,
the command line, calls the editor and a second entry, the com-
mand line argument, names the file.

“argv” stands for “argument values.” (I am sure I could have
come up with something a lot better here.) “argv” represents an
array of strings, one argument per string. The first string is
‘argv[0]’ as the first element of an array begins with the ‘0" sub-
script. Right here is an excellent source of confusion, as argc has a
value of 2 when two argument values, 0 and 1, are present.

We are not compelled to use arge and argv, and, as a matter of
fact, 1 do not. I use

main(num, fname)

int num; /* in place of argc */

char *fname[]; /* in place of argv */

{

A formal argument declaration employing the array symbol {]
as in “char *fname[]” is the same as assigning a pointer; that is, we
could also write “char **fname.” Either form declares fname
(argv) to be a pointer to a pointer to a char.

Listing 1 is a program illustrating command line redirection
(ASC_VAL < filename). This program reads a text file and dis-
plays each character with its ASCII value. Listing 2 illustrates
main(argc,argv) for command line input. This program reads a
text file from disk and writes it to an array. The array content is
then written to a designated disk file while also displaying its con-
tent on the screen. This program thus requires two files as its
argument: the source and a destination. These may be from or to
another directory.

/* >
** ASC VAL.C Adapted from Ref 1, p 60 %
** Reads a file and displays its ASCII char values. b
** Uses command line redirection: ASC_VAL < filename **
** Compiled using TURBO C Ver. 1.5 *x

/

t#include <stdio.h>
#define CNZ '\032' /* Cctrl 2z */
main{)

int ch;
printf("Text Mode:\n");
do {
ch = getchar();
switch(ch) {

case '\n' : printf("LF : "); break;
case '\r' : printf("CR : "}; break;
case CNZ : printf(""2 : "); break;
case EOF : printf("EOF : *); break;
default ¢ printf("%c : *,ch);

}
printf("$3d\n~,ch);
} while (ch 1= EOF);
fclose("stdin");
exit(0);

Listing 1. A program to read a disk file and display the
ASCII value of its characters.

Low Level File Functions

The descriptions found in the majority of C programming texts
hardly touch on the subject of the low level functions, if they do at
all. This because the higher level functions are the easiest and
fastest to use with the least possibility of programming errors. In
fact, among the books in my C library, only one, “Advanced C
Primer ++”* provides a detailed description of the lower level
functions.

When we look at the source code for the higher level functions
we discover they rely heavily on the lower level functions. This is
not too surprising.

Table 1 summarizes the lower level functions. Definitions and
program examples in this writing are based for the most part on
Borland’s TURBO C, version 1.5. I purchased the library source

The Computer Journal / #41

/* *
** COUNT1.C From ref 1 p 66, Advanced C. *x
** Counts chars in a file, one at a time. *x
** Compiled using TURBO C Ver. 1.5 * ¥
* /

#include <stdio.h>

main(argc,argv)
int argc;
char *argv[]); /* Use command line to get filename */

char ch; /* Place to hold each char as read «/
int f4; /* file descriptor - identifies file */
long count = 0;

if(argec 1= 2)
{ printf(“Requires a command line argument."); exit(1l); }

fd = open(argv(1],0);
while(read(fd, &ch, 1) > 0)
close(£fd);

count ++;

printf("File $s has 31d characters.\n", argv[l},count);
exit(0);

Listing 2. A program for counting characters in a file and
writing the count to the screen.

/* *
** FI_ARRY.C by Clem Pepper ¥
*% Entering disk file text into an array for *»
** writing to the screen and a new file. o
** Compiled using TURBO C Ver. 1.5 hid
*k /

tinclude <stdio.h>
#define CLRSCRN "\033{2J* /* ANSI screen clear */
#define CMD LN ERR "Source and destination files required.\n*®

/* == Begin program == */
main(num, fname)

int num;

char *fnamef];

FILE *in, *out; /* input and output streams */
char file in[880]; /* maximum array size */
int ch, i =0, n = -1;

puts(CLRSCRN) ; /* clear the screen */

if(num 1= 3) { puts(CMD_LN ERR);

exit(0); }
/* == open the source file for reading == */
else if((in = fopen(fname[1],"rt")) i= NULL)
{
{
/* == read the source file into array file in[] == */

while({ch = fgetc(in)) 1= EOF) /* get char from in */
{

file_in[i++) = ch;

}

/* == close the source file == */
fclose(in);

/* == Convert final char to '\0'; transfer count == */
file in{i] = '\0‘;
/* == assign the destination file for writing == */

out = fopen(fname[2],"wt");

/* == write to the screen and the destination file == ¥/
while(n++ I= i & file_in[n] 1= '\0") {
putchar(file inin});
fputc(file_In[n],out); }

/* == close the destination file == ¥/
fclose(out);
exit(0);

}

Listing 3. A program which reads a text file into an array
and writes it to the screen and a disk file.

The Computer Journal / #41

codes for this, and also for Mix’s POWER C. Both compilers con-
form closely to the projected ANSI standard. That is, I have com-
piled a number of programs on both with only minor changes
required. Even so, their library files read significantly different.
The low level library functions for TURBO C, for instance, are
written with large amounts of inline assembly, which is not the case
for POWER C.

We must open a disk file before we can perform work on it.
When our work is complete the file must be closed. The two lower
level functions for these tasks are open() and close(). Listing 3,
COUNT1.C, illustrates open(), read(), and close(). In this pro-
gram the type long variable count is counting the elements of array
argv[]. Note that a FILE declaration is not required.

Sometimes there is a need to save the file for further activity.
That need did not exist in the example just used. Suppose we look
at a situation where we want to save the file so as to make use of it
later in the program. The following lines read the source code
character at a time and save them in the array file_in[].

while{{ch = getc(in)) 1= EOF) /* get char from in */
{

file in[i++) = ch;

}
fclose(in);

/* *+ Replace final char with ’‘\0’; transfer count ** ¥/

file in{i) = ‘\0’;

The manner in which getc() reads the input stream character
by character should be understood. As each characters is read it is
written into the array file_in[i]. The array variable “i” is incre-
mented following each array entry. (C’s ability to combine opera-
tions in this way can be confusing.) The file is read until the EOF is
detected, at which point the file is closed. One operation remains:
to replace the EOF with the required \0’.

By saving the file in an array we are able to access any specific
character through its element number. In Listing 2 we simply write
the array content out to the screen and to a designated disk file.
However there are often situations in which additional operations
are needed. This example, as an illustration, is taken from a typing
tutor program I am working on. There the array content is read
back to the upper part of the screen. At the end of each line,
detected by testing for \’, a tilde () is added to inform the user
that a carriage return should be made. The leading character is
then intensified to mark the beginning of the text and an instruc-
tion displayed for the student to begin typing the file. We can see
where it would be quite difficult to conduct all these operations
without the benefits of array data storage.

Listing 4, REVERSE.C, employs open(), Iseek(), read(), and
write(), to read a file and print it out in reverse order. Again, note
that a FILE declaration is not required.

High Level File Functions

There is very little reason for us to write application programs
with the low level functions. There is a great deal of reason not
too. Which of course explains why application programs are writ-
ten using the high level functions. Table 2 is a summary of the
major high level functions. Notice the similarity of many of these
to the keyboard functions defined in part 1 of this series. In fact we
can often elect to use getc() or gets() in lieu of fgetc() or fgets() in
our programs.

Basically there are three operations we might wish to perform
on a file after opening it. These are 1) read the file, 2) write to a
new file, or 3) append to an existing file. The initial step, of course,
is to open the file. The function call for fopen() requires two argu-
ments: the first to name the file, the second to define the mode in
which the file is to be opened.

The file to be opened may be identified by redirection, with a
command line entry or within the program. If our program has

21

** REVERSE.C Ref: Advanced C p73
** Uses write() and lseek() to print out a file in reverse order.
** Compiled using TURBO C Ver. 1.5

%
-
i

$#include <stdio.h>
#include <fcntl.h>
#define CNTL_2Z *\032°

/* used by open() */
/* text mode EOF */

main(argc,argv)
int argc;
char *argv[];

char ch; int f£d;
long count, last, lseek();

if(arge t= 2) {
printf(“"Useage:reverse filename\n"); exit(l);
}
if((fd = open(argv[1],0 RDONLY | O_BINARY)) < 0)
/* read only and binary modes */

printf("reverse can't open %s\n", argv[l]); exit(l);

}
last = lseek(£fd,0L,2); /* go to end of file ¥/

for(count = 1L; count <= last; count ++)

{
lseek(fd,-count,2);
read(fd,&ch,l);
if(ch 1= CNTL 2z && ch 1= 'r’)
write(l,&ch,1l); /* 1 ies the screen */

/* go backwards */

}
close(fd);
exit(0);
}
Listing 4. A program read a short text and write it back to the

screen in reverse order.

** LINE PRN.C by Clem Pepper ol
*+ A program for inserting line numbers intc **
** a C file before displaying or printing it. ¥
*% Compiled using TURBO C Ver. 1.5 L

tinclude <stdio.h>
tinclude <dos.h>
#define MAXLEN 81
J* *¥ == Begin program == %% %/

main(num, fname) /* num == argc, fname == argv */

int num; /* Looks for two files on command line */
char *fname[]; /* file name to be printed */

FILE *in; /* Pointer to file input stream */
int line cnt = 0; /* line counter */
char *string{MAXLEN]; /* array holding program line */

/* ** Test for filename; print message and exit if missing ** */
if(num != 2) { printf(*“A source file is required.\n"); exit{0);

/* ** print file name information line; open file ** */
printf(*\nFile being printed is %s\n\n",fname[1]};
in = fopen(fname{l],*rt");

/* ** increment line counter, read next line, display & print ** */

while(fgets(string,MAXLEN,in) != NULL)
{

line cnt += 1;

printf("%d %s",line cnt,string);
}

fclose(in); /* Close the disk file */
exit(0);
}

Listing 5. A program for inserting line numbers into a text file.

}

/* Open file for reading */

application to many files we would prefer to use the com-
mand line. If the program is unique to a specific task we
most likely will identify it within the source code.

A command example is:
main(argc,argv)

int argc;
char *argv(];

/* command line arguments */
/* number of arguments */
/* argument name strings */

{
FILE *in;
in = fopen{argv[l], 'r’'’);

where “in” is the stream pointed to and “r” is the mode in
which the file is opened.

We may specify one of three basic modes for fopen(): r, w,
and a.

r Opened for reading only. The file must exist or a
NULL is returned.

w Opened for writing. The file need not exist. If it does
exist the CONTENT IS DELETED, so be careful.

a Opened for writing. If the file exists new text is added
at the end. If the file does not exist it is treated as
though opened in the “w” mode.

There are options to these. Appending a “t”, i.e., “rt”,
specifies the file is to be opened in the text mode. Similarly,
appending a “b” indicates the binary mode. If neither is
appended, the mode is governed by global variables de-
fined by O_... constants in the library file fentlh.

Appending a + (r+, w+, a+, rb+, etc.) opens the file
for readéwrite updating. The “TURBO C Reference
Guide” < states that when a file is opened for updating
both input and output may be requested. However there is
a requirement for intervening calls to flush the buffer and
reset the file pointer when changing from the one to the
other.

In summary, fopen() opens the specified file, creates a
buffer to hold blocks of data from the file and creates the
structure of type FILE describing the file and the buffer.
The return value is the pointer “*in” to the FILE struc-
ture. In other words, the data stream designated “*in” is
read into a buffer defined by the structure of type FILE.
Future reference to the file is by “*in”, not the name em-
ployed in argv[].

Before attempting to read from or write to the file we
will want to test for the correct command line entries. The
minimum number of arguments for a disk file are 2: our
program name followed by the disk file name. If the pro-
gram name alone is entered the user must be alerted and
the program aborted. An example of a condition test when
in the read mode is:

if (name == NULL) { puts{‘‘A source file is required.’’});

exit(0); }
In the write mode the test might be:
if (name == NULL) { puts(’‘Cannot open destination file.''’});

exit(0); }

What we do next depends on the application. In the
simplest case we may simply wish to display the text on our
screen as it is read in or perhaps pass it on to the printer.
On occasion we will create a new file or modify an existing
one.

Suppose as an opening illustration we read in a short
file, insert a line number at the beginning of each new line
and pass it on to the screen. Listing 5, LINE_PRN is both
an illustrative example and a useful utility. By the use of
command line redirection (or CTRL-P for printing) the
text with the line number inserted can be written to a new
file or printed out.

For line number insertion we need two additional dec-

The Computer Journal / #41

** PRN_SET.C by Clem Pepper

=% A program for printer code selection applicable to

=* Epson and other printers responding to the Epson codes.
+* Compiled using TURBO C Ver. 1.5

*
*
*
*r

#include <stdio.h>

#include <dos.h>

#define VIDEO 0x10 /* interrupt 10H - screen functions
#define SFKEY Ox16 /* interrupt 16H - keyboard I/0

#define PRNT 0x17 /* interrupt 17H - parallel printer I/0

/* === useful global declarations === #/
static int col; /* column variable */
static int row; /* row variable */

J* kkkkkkdhdhhhkkkkhh kb n &/

/* == Begin utility functions == */
Jh ARk kakEAARARRRRRRRRERREREXAS X/

/* == gend desired codes to the printer == */
void prnt_code(char pchr)

- A

union REGS regs; /* dos.h union */
regs.h.ah = 0; /* print char in AL */
regs.h.al = pchr; /* char to be printed */
regs.h.dh = 0; /* port © */
regs.h.dl = 0;
int86 (PRNT, ®s, ®s);
}
/% == screen clear == */
elx_scrn()
{
union REGS regs; /* dos.h union */
regs.h.ah = 6; /* scroll up 25 lines */
regs.h.al = 0; /* when al is = 0. */
regs.h.ch = 0; /* top row */
regs.h.cl = 0; /* upper left screen col */
regs.h.dh = row; /* row to scroll up from */
regs.h.dl = col; /* col to scroll from */
regs.h.bh = 7; /* attribute byte */

int86(VIDEO, ®s, &xegs);
}

/* == position cursor at row and col valueg == */
void pos_cur(col,row)

union REGS regs; /* dos.h union */
regs.h.ah = 2; /% set cursor position */
regs.h.dh = row;
regs.h.dl = col;
regs.h.bh = 0; /* video page ¢ */
int86 (VIDEO, &xegs, ®s);
}

/* == Begin program == %/
main()

{
char pehr;
col = 79; row = 24; pos_cur(col,row};
clr_scrn(};
col = 0; row = 0; pos_cur(col,row);
menu();
exit(0);

}
/* == The leading graphic is made from ALT 199 == +/

*/
*/
*/

#define BONDRY "L

/* == display printer options menu == #/
menu() /* From main() */
{
col = 10; row = 0; pos_cur(col,row);
printf(~PRESS FUNCTION KEY FOR DESIRED PRINTER OPTION");
row += 1; pos_cur(col,row);
printf (BONDRY);
row += 1; pos_cur(col,row);
/* == The leading graphic is made from ALT 199 == */
printf(“L Fl: Near Letter Quality ON");
row += 1; pos_cur(col,row);
printf(*L F2: Near Letter Quality OFF");
Tow += 1; pos_cur(col,row);
printf("L F3: Elite Print ON*);
row += 1; pos_cur(col,row);
printf(“L F4: Elite Print OFF");
row += 1; pos_cur(col,row);
printf(“L F5: Compressed Print ON"});
row += 1; pos_cur(col, row);
printf ("L Fé: Compressed Print OFF");
row += 1; pos_cur(col,xow);
printf ("L F7: Compressed Elite Print ON");
row += 1; pos_cur(col,row);
printf(“L F8: Compressed Elite Print OFF"};
row += 1; pos_cur({col,row);
printf ("L F9: Emphasized Print ON");
row += 1; pos_cur(col,row);
printf(”"L F10: Emphasized Print OFF¥);
row += 1; pos_cur(col,row);
printf (BONDRY);

col = 12; row = 15; pos_cur(col,row);
select();

f#define MODE1A *“Is Near Letter Quality ON correct? <Y/N>: =
#define MODE1B "Is Near Letter Quality OFF correct? <Y/N>: *
$define MODE2A *Is Elite Print ON correct? <Y/N>: *

#define MODE2B "Is Elite Print OFF correct? <Y/N>: =

#define MODE3A "Is Compressed Print ON correct? <Y/N>: *
$define MODE3B "Is Compressed Print OFF correct? <Y/N>: *
$define MODE4A "Is Compressed Elite Print ON coxrect? <Y/N>: *
$define MODE4B "Is Compressed Elite Print OFF coxrect? <Y/N>: ™
$define MODESA "1s Emphasized Print ON corxect? <Y/N>: *
fdefine MODESB "Is Emphasized Print OFF correct? <Y/N>: *

/* == make printer mode selection == #*/
select() /* From menu() */
{ int i = 80; int choice_s, choice_a; int pflag = 0;
char verify;
choice_s = getch(); choice_a = getch{();
if(choice_s 1= 0) exit(1);

else if(choice_a == 59) (printf(MODEl1A); pflag = 1;)
else if(choice_a == 60) ({ printf(MODE1B}; pflag = 2; }
else if(choice_a == 61) { printf(MODE2A); pflag = 3; }
else if(choice_a == 62) (printf(MODE2B); pflag = 4;)
else if(choice_a == 63) (printf(MODE3A); pflag = 5;)}
else if{choice_a == 64) { printf(MODE3B); pflag = 6; }
else if(choice_a == §5) (printf(MODE4A); pflag = 7; }
else if(choice_a == 66) (printf(MODE4B); pflag = 8; }
else if(choice_a == 67) { printf(MODESA); pflag = 9; }
elese if(choice_a == 68) { printf(MODESB); pflag = 10; }
verify = toupper(getch());
if(verify == ‘N') {
col = 12; row = 15; pos_cur(col,row);
while(i--) { putchax(' '); col += 1; }

col = 12; pos_cur(col,row); select(); }
else if(verify == 'Y') set_mode(pflag);
return;

}

/* == execute printer mode instruction == */
set_mode(int flg) /* From select() */
{ char pchr;

/* m= the modes require ESC as initial input == #/
pchr = *\033'; prnt_code(pchr); /* escape */

/* == turn on Near Letter Quality print == #/
if(f1g == 1) {
pchr = 0x78; prat_code(pchr); /* char °'x° */
pchr = 0x1; prnt_code(pchr); /* decimal 1 =/
return; }
/* == turn off Near Letter Quality print == #/
if(flg == 2) (
pchr = 0x78; pxnt_code(pchr); /* char 'x°* */
pchr = 0x0; prat_code(pchr); /* decimal ¢ */
return;
/* == turn on elite print == #/
if(flg == 3) {
pchr = Ox4D; prnt_code(pchr); /* char ‘M* */
return;
/* == turn off elite print == */
if(flg == 4) {
pchr = 0x50; prnt_code(pchr); /* char *'p' */
return; }
/* == turn on compressed print == */
if(flg == 5)
pchr = OxOF; pxnt_code(pchr); /* decimal 15 */
return;
/* == turn off compressed print == */
if(flg == 6) {
pchr = 0x12; prnt_code(pchry); /* decimal 18 */
return; }
/* == turn on compressed elite print == */
if(flg == 7) {
pchr = 0x4D; prnt_code(pchr); /* char *M* */
pchr = OxOF; prnt_code(pchr); /* decimal 15 */
return;
/* == turn off compressed elite print == */
if(flg == 8) (
pchr = 0x50; prnt_code(pchr); /* char ‘p°* */
pchr = 0x12; prnt_code(pchr); /* decimal 18 */

return;
/* == turn on emphasized print == */
if(flg == 9)
pchr = 0x45; prnt_code(pchr); /* char *E°® */
return;

/* == turn off emphasized print == »/
if(flg == 10) {
pchr = 0x46; prnt_code{pchr); /* char 'F* */
return; }

}

Listing €. A program for writing control codes to a dot matrix
printer.

The Computer Journal / #41

23

clearerr()

fclose()

fcloseall()

feof()

ferror()

fflush()

fgetc()

fgetchar()

fgets()

filelength()

fileno()

findfirst(

findnext()

Table 2: High level I/O function definitions

#include <stdio.h>
void clearerr(FILE *stream)
Resets the stream’s error and end-of-file indicators.

#include <stdio.h>

int fclose(FILE *stream)

Closes the named stream. All associated buffers are
flushed prior to closing.

#include <stdio.h>
int fclose(void)
Closes all open streams except stdin and stdout.

#include <stdio.h>

int feof(FILE *stream)

A macro that tests the given stream for an end-of-file
indicator. Once the indicator is set read operations
return the indicator until cleared by rewind() or the file is
closed.

#include <stdio.h>

int ferror(FILE *stream)

A macro that tests the given stream for a read or write
error. Once set, the indicator remains set until cleared
by clearerr() or rewind(). Returns non-zero if an error is
detected on the named stream.

#include <stdio.h>

int filush(FILE *stream)

Flushes any output buffer associated with stream.
Returns non-zero if an error occurs.

#include <stdio.h>

int fgetc(FILE *stream)

Returns the next character from the input stream.
Performs the same as getc() except that getc() is a
macro where fgetc() is a true function.

#include <stdio.h>
int fgetchar(void)
A function the same as fgetc(stdin).

#include <stdio.h>

char *fgets(char *string,int n,FILE *stream)

Reads at most n-1 characters from stream into string.
Stops reading at n-1 or a newline char. The newline char
is retained. The last character read into string is followed
by a null char.

long filelength{int handle)
Returns the length in bytes of the file associated with
handle.

#include <stdio.h>

int fileno(FILE *stream)

A macro which returns the integer file handle for a given
stream.

#include <dir.h>

#include <dos.h>

int findfirst(char *pathname,struct ffblk *ffblk)

Makes a search of a disk directory by using the MS DOS
system call OxX4E. Pathname is a string with an optional
drive specifier, path and file name of a file to be found.

#include <dir.h>
int findnext(struct ffblk *ffblk)
Is used to fetch subsequent files which match the

fopen{)

fprintf()

fputc()

tputs()

tfread()

fscanf()

fseek()

fstat()

ftell)

fwrite()

pathname given in findfirst(). ffblk contains information
needed to continue the search. findfirst() and findnext()
each return 0 following a successful file match. When nol
more files or an error exists -1 is returned and errno() set
to one of the following:

ENOENT Path or filename not found.

ENMFILE . No more files.

#include <stdio.h>
FILE *fopen(char *filename, char *type)
Opens the file defined by filename and associates a
stream with it. Returns a pointer for stream identification
in later operations. The type string is one of the
following:

r open for reading only

w create for writing

a append: open for writing at end of file or to create
a new file if none exists.
Attach a t for text, b for binary, i.e., rt, wb, etc.

#include <stdio.h>

int fprintf(FILE *stream, char *format[,argument,...})
Sends formatted output to a stream. Same features as
printf().

#include <stdio.h>

int fputc(int ch, FILE *stream)

Puts a character on a stream. Same features as putc().

#include <stdio.h>
int fputs(char *string, FILE *stream)
Puts a string on a stream. Same features as puts().

#include <stdio.h>

int fread(void *ptr,int size,int nitems,FILE *stream)
Reads nitems of data of length size bytes from the
defined stream into a buffer pointed to by ptr.

#include <stdio.h>

int fscanf(FILE *stream,char *format[,argument,...])
Provides formatted input from a stream. Same features
as scanf().

#include <stdio.h>
int fseek(FILE *stream,long offset,int fromwhere)
Sets the stream file pointer to a new position offset bytes
beyond a location given by fromwhere. Clears the end-
of-file indicator.
fromwhere File Location
SEEK _SET (0) file beginning
SEEK_CUR (1) current file pointer position
SEEK_END (2) end-of-file
#include <stat.h>
int fstat(char *handle,struct stat *buff)
Obtains open file information.

#include <stat.h>
int ftell(FILE *stream)
Returns the current file pointer.

#include <stdio.h>

int fwrite(void *ptr,int size,int nitems,FILE *stream)
Wirites nitems of data of length size bytes to the defined
stream into a buffer pointed to by ptr.

bering the lines, and another for declaring a character string of
some maximum length. For screen display we do not want to ex-
ceed 80 characters. The two declarations then are:

|
|
|
|
larations; one for an integer counter, initialized to zero, for num-

tdefine MAXLEN 80
int line_cnt = 0;
char *string(MAXLEN];

The routine for reading a line, inserting its number, increment-

24

ing the line counter and displaying the line is:

in = fopen(fname[1l],’''rb’’");
while(fgets(string,MAXLEN,in) != NULL)

line cnt += 1;

printf(‘‘%d %s’’,line cnt,string);

fclose(in);

The reference to NULL is with respect to the \0’ character termi-

The Computer Journal / #41

nating the line. fgets() adds the 0" when it detects a carriage
return or on reaching the limit set by MAXIEN. While the loop is
active fgets() reads a character from the stream “in” (file
fname[1]) and saves it in memory at the location pointed to by
“string.” Note that one full line is being read. At the line’s end the
line counter is incremented. Then its value is printed followed by
the string. fgets() detects the EOF character denoting end of the
file and terminates the read. fclose() then closes the file and the
_program goes on to another activity, or exits.

Presetting Printer Modes from the Keyboard

When I acquired my first printer, an Epson MX-80 I soon
wished for a simple way to pre-sct its type mode from the key-
board. It could be done with BASIC but I sure didn’t care for the
hassle of loading and running BASIC just for that. I solved the
problem then by writing four short routines in 8080 assembly to
set and reset the compressed and emphasized modes, all then
available for the MX-80.

The printers available today enable presetting a variety of
modes directly at the printer by manipulating the printer’s “ON-
LINE”, “FF”, and “LF” keys. This can be aggravating, in particu-
lar if the printer is not close by our keyboard. Particularly so when
we consider the printer mode will be changed by any program we
happen to run that implements its own controls.

I find it super great to set a given mode whenever needed by a
simple instruction from the keyboard. The program PRN_SET.C
is given in Listing 6. PRN_SET permits setting or resetting any
one of five modes from the ten function keys on our keyboard.
‘Your modes may not agree with mine, but the principles described
here should enable you to set your printer to any mode desired.

When reading from or writing to a disk file the FILE declara-
tion provides the set ups for us through the library I/O functions.
For writing to the printer we do not employ FILE. Instead DOS
provides an interrupt just for parallel printers, INT 17H.

A necessary first step is to review our printer manual. Though
I'll be referring to the Epson its codes are widely used. I have used
PRN_SET with several Epson and Panasonic models. Of course a
specific mode can be set only if the printer features it.

- The manuals I have provide the mode codes in the appendix.
Typical codes begin with ESCAPE (ESC), but not all. The empha-
sized mode, for instance, responds to ASCII 15 alone. Making a
table such as that below is a good beginning.

MODE CPI ON OFF

Near Letter Quality 10 ESC “'x*'‘ 1 EsSC ‘’'x'' 0
Elite 12 ESC ‘'M’’ ESC ‘‘P’'’
Compressed 17 15 18
Compressed Elite 20 ESC ‘‘M’'’ 15 ESC ‘’'M’’ 18
Emphasized 10 ESC ‘‘E'’ ESC ‘‘F'’

Note: CPI is ‘‘Characters Per Inch.’’

Although the compressed mode does not require a a preceding
ESC it does not object to finding one, which simplifies the pro-
gram.

Editor’s note: The manual for my old Epson MX-80 shows the
use of the escape code (1B hex) only with the printable ASCII char-
acters. Control codes, such as the control O (OF hex, or 15 decimal)
used for compressed do not require the escape delimiters because
they are not printable characters. ’

Our next step is to become familiar with our operating system,
in this instance MS DOS. Unfortunately, the standard MS DOS
manuals provided do not tell us what we need to know. We either
have to purchase the Programmer’s Utility Pack or its equivalent,
or a good text on MS DOS like Robert Jourdain’s “Programmer’s
Problem Sotver for the IBM PC, XT & A 3

A parallel printer Input/Output interrupt, INT 17H, is pro-

The Computer Journal / #41

vided for printer I/O. The interrupt employs two of the 8088 CPU
registers, AX and DX, in their eight bit modes; that is: AH, AL,
DH and DL. We must write a zero (0) to AH, then place the
character to be printed in AL. MS DOS provides for up to three
paralle! printers with port assignments of 0, 1 and 2. Normally the
assignment is to port 0, and we enter that into DH. We also enter
a zero in DL. These are shown in the “void prnt_code(char pchr)”
function following. I have compiled this with both Borland’s Turbo
C and Mix’s Power C with minor differences so expect the same
will be true for other compilers conforming to the proposed ANSI
standards.

The library function int86 executes routines associated with the
I/O interrupts. The function is:

int86(int interrupt, union REGS*inregs, union REGS*outregs};
The function I wrote for PRN_SET is

tinclude <dos.h>

#define PRNT 0x17 /* interrupt 17H - par. printer I/O */
/* == send desired codes to the printer == */

void prnt_code(char pchr)

{

union REGS regs; /* dos.h union >/
rege.h.ah = 0; /* print char in AL */
regs.h.al = pchr; /% char to be printed */
regs.h.dh = 0; /* port 0 */
regs.h.dl = 0;

int86 (PRNT, ®s, ®s);

Now that we know how to communicate with the printer we
can go about configuring the communication between ourselves
and the computer. This consists of 1) deciding on a screen menu
format, and 2) the keyboard input for responding to the menu
options. It is also advantageous to include an “oops” recovery
from a wrong press on a function key.

A menu of printer options must be provided. These are printed
using standard printf() statements. The menu text for Near Letter
Quality is shown below.

printf(‘‘PRESS FUNCTION KEY FOR DESIRED PRINTER OPTION'’);
printf(’‘Fl: Near Letter Quality ON’‘);
printf(‘‘F2: Near Letter Quality OFF’’);

The user is instructed to press one of the ten function keys to
select the desired mode. Two calls to getch() are made: “choice_s”
and “choice_a.” This, if we recall from part 1, is because the non-
ASCII keys have two responses, the first of which is zero. So if
choice_s does not return a zero a wrong key has been pressed and
the program exits. Choice_a corresponds to one of the ten keys.
Keys F1 and F2 have codes 59 and 60, respectively. (Ref Table 1
of Part 1.)

Pressing a function key causes two things to happen: the print-
ing of a query message on the screen, and the setting of a printer
flag, pflag.

#define MODE1A ‘‘Is Near Letter Quality ON correct? <Y/N>:’’
#define MODE1B '‘'Is Near Letter Quality OFF correct? <Y/N>:''

Defines are often a convenient way to print strings. The query
offers the user a means to correct a press of the wrong key.

/* == make printer mode selection == */

select() /* From menu() */

{ int i = 80; int choice_s, choice a; int pflag = 0;
choice s = getch(); cﬂbice_a = getch();

if (choice_s != 0) exit(l);
else if(choice a == 59} { printf(MODElA); pflag = 1; }
else if(choice a == 60) { printf(MODE1B); pflag = 2; }

Variable “pchr” carries the instruction to the printer. Two or three
transmissions are required. The first, universal for all modes, is
ESC, shown here as octal \033°. Then, depending on the value of
the flag variable one or two more assignments to pchr are trans-
mitted via the union REGS regs;.

25

/* == execute printer mode instruction == */
set_mode(int flg) /* From select() */
{ char pchr;

/* == the modes require ESC as initial input == */
pchr = ‘\033’; prnt_code(pchr); /* escape */

/* == turn on Near Letter Quality print == */
if(flg == 1) {
pchr = 0x78;
pchr = 0x1;

return; }

/* == turn off Near Letter Quality print == */
if(flg == 2} {
pchr = 0x78; prnt_code(pchr);
pchr = 0x0; prnt_code(pchr);

return; }

prnt_code(pchr); /* char ‘x’ */
prnt_code (pchr); /* decimal 1 */

/* char ‘x’ v/
/* decimal 0 */

Summary

This article has covered a considerable amount of material. We
have learned that two levels of file input/output exist and how to
program in either. Also that the command line arguments and
redirection provide considerabie flexibility in reading from and
writing back to disk files. And then we saw that writing to the
printer is simplified by the provision of interrupt 17H.

And that’s it, mostly. Of course it doesn’t just happen. A fair
amount of time and effort must be invested as we descend into the
depths of our machine’s inner workings. The reward is a great deal
of satisfaction in expanding our program activity beyond the key-
board and screen. @

Reference Listing for
PROGRAMMING INPUT/OUTPUT WITH C

1. “Advanced C Primer + +” by Stephen Prata,
The Waite Group
Howard W. Sams & Co, Indianapolis, IN
2nd printing 1986
This text, chapter 3, “Binary and Text File I/O” provides a very
thorough coverage of the low and high level file I/O functions.

2. “TURBO C Reference Guide”
Borland International, Inc.

4585 Scotts Valley Drive

Scotts Valley, CA 95066

3. “Programmer’s Problem Solver for the IBM PC, XT & AT”
by Robert Jordain

A Brady Book

Published by Prentice Hall Press

New York, NY 10023

1986

XED4/5/8 Integrated Editor Cross-Assembler

XEDA4/5/8 is a fast and convenient method to develop and

debug small to medium size programs. For use on Z80

machines running Z-system or CP/M. Companion

XDIS4/5/8 disassembler also available.

Targets: 8021, 8022, 8041, 8042, 8044, 8048, 8051, 8052.
8080, Z80, HD64180, and NS455 TMP.

Documentation: 100 page manual.

Features include:

* Memory resident text (to about 40 KB) for very fast

execution. Recognises Z-system’s DIR: DU:. Program

re-entry with text intact after exit.

* Built in mnemonic symbols for all 8044,51,52 SFR and

bit registers, NS455 TMP video registers and HD64180 |/0

ports.

* Qutput to disk in straight binary format. Provision to

convert into Intel Hex file. Listing to video or printer. A sorted

symbol table with value, location, all references to each

symbol.

* Supports most algebraic, logic, unary, and relational

operators. Eight levels of conditional assembly. Labels to 31

significant characters.

* A versatile built in line editor makes editing of individual

lines, inserting, deleting text a breeze. Fast search for labels

or strings. 20 function keys are user configurable.

* Text files are ioaded, appended, or written to disk in whole

or part, any time, any file name. Switchable format to suit

most other editors.

The assembler may be invoked during editing. Error

correction on the fly during assembly, with detailed error and

warning messages displayed.

For further information, contact:

PALMTECH

{a division of Palm Mechanical}

cnr. Moonah & Wills Sts.
BOULIA, QLD. 4829

Phone: 6177 463-109 Fax: 6177 463-198 AUSTRALIA

26

Data Structures in Forth

(Continued from page 11)

search the whole list for each symbol, only till you reach the point
where the symbol should have been. Another advantage is that the
symbol table does not have to be sorted into alphabetical order to
print it out at the end of the assembly. This can be useful in many
lists. You have to search the list anyway and you can save the sort
time and space that would be needed to change the order of things
later.

In the Forth example, the word $<12 is used to test if a 12
character string is less than another. The word $=12 tests to see if
two 12 character strings are equal. The word newsym allocates
space for a new symbol node.

No matter what language you choose, you should try to write
good, understandable code. Try to keep things simple. Don’t be
lazy or try to save a couple of bytes or a few lines of code at the
expense of being understandable. Design your code so it can be
changed without falling apart. Spend some time and effort on find-
ing good ways of doing what you are trying to do. After you write
something, look at it again in a few days. Most people will not send
out the first draft of a letter without reading it and trying to make
it better, so do the same with your code. A little effort in this area
will be noticed by your boss or your peers as well as save you effort
figuring out your own code. It can pay off in many indirect
ways. ®

The Computer Journal / #41

LINKPRL
Making RSXes Easy
by Harold F. Bower

The first part of this article described a simple MicroSoft REL
linker and detailed its operation. This linker, LINKPRL, produces
either a standard COM file for execution under CP/M and com-
patible operating systems, or a “Page-Relocatable” PRL file suit-
able for making Resident System Extensions (RSXes) or ZCPR 3
Type 4 modules. In this second part of the article, both modes will
be demonstrated using an example of a disk directory buffer RSX
following the Plu*Perfect standard definition. Before proceeding
to the detailed “how to” instructions for linking and forming the
SPEEDUP RSX, as we shall call it, let us first examine the “how”
of its operation.

SPEEDUP is a routine which caches part or all of a disk direc-
tory in memory, and accesses the image instead of the real disk
directory for read operations. Writes to the cached disk update
both the memory image and the actual disk directory to protect
against data loss. The advantage of caching the directory is to
obtain greater speed when reading files. For example, loading
needed system files for ZCPR 3 becomes a lightning-fast series of
reads, and reading large files is no longer punctuated by seeks to
the directory when opening new extents. Memory for the cache is
obtained from the Transient Program Area (TPA) in high mem-
ory, and will function under CP/M 2.2, ZRDOS 1x and ZSDOS
1x.

Architecture.

SPEEDUP is comprised of three logical segments grouped in
two physical modules. The first module, SPEEDLDR.Z80, is a
loader which performs the functions of validating certain system
parameters, determining selected addresses to be passed to the
relocated module, and performing needed address relocations for
the Page Relocatable portion. All program-dependent parts of the
loader, except for a couple of configuration options and built-in
Help, are added to the second physical module. With this architec-
ture, only minimal changes are needed to adapt SPEEDLDR to
other RSX applications.

SPEEDLDR is linked to a .COM file for execution at 100H. It
is exactly 1024 bytes (1K) long to make combination with the next
module easier. The next few bytes after the end of the loader are
reserved for the RSX header structure which appears at the begin-
ning of the module to be relocated.

The second physical module, SPEED22.7Z80, is relocated to
high memory immediately below the Console Command Proces-
sor, or lowest existing RSX in its entirety. Two logical sections of
code exist in SPEED22; a final installation section, and a resident
core of code. Final installation consists of; determining the remain-
ing addresses and values needed, patching the BIOS jump table,
resident module and Page 0 addresses, and exiting via the resident
module Warm Boot entry point. Installation is only needed once,
so the code storage space in high memory is reclaimed for use by
the resident portion of the RSX. Since both SPEEDLDR and the
installation portion of SPEED22 are relatively self-explanatory,
they will not be described in detail here, but may be obtained in
source code form from at least the two Z-Nodes cited at the end
of this article.

The Computer Journal / #41

The final logical portion of code is the resident part of
SPEED?22 and is the heart of this RSX. Fewer than 650 bytes of
code and data make up this segment. This functional division was
selected to provide the maximum possible Transient Program
Area and maximum re-usable source code for other projects. 1
hope you too find this structure applicable in RSX generation.

How SPEEDUP Works.

In order to understand how SPEEDUP works, you must
understand the table-driven nature of CP/M and the interface be-
tween the Basic Disk Operating System (BDOS) which works on a
logical file basis, and the Basic 10 System (BIOS) which contains
the physical device drivers. CP/M and many programs which ac-
cess the BIOS directly for disk functions specify Track Number,
Sector Number, DMA Transfer Address and Disk Selection be-
fore performing a physical Read or Write. The resident portion of
SPEEDUP traps each of these BIOS entry points. A few of them
(Set Track, Set Sector and Set DMA Transfer Address) merely
store the specified values locally before passing them to the real
BIOS. Other entry points are acted on locally and may not, in the
case of a Sector Read, access the real BIOS at all. Listing 1 con-
tains an extract of the SPEED22 source code and will be used to
explain the inner workings of this RSX.

The BIOS Select Disk function is the first unit of SPEEDUP
which takes local action. BIOS calls are routed to the RSX at label
SELDSK where the disk number is compared against the one we
specified when loading SPEEDUP. If the drive is not ours, we de-
select the RSX and go directly to the real BIOS. If it is for us, we
then check a cue flag which the BDOS provides as Bit 0 of the E-
register. If this bit is Non-Zero (Set), the BDOS has already
logged this disk and we again exit to the real BIOS just to keep
everything synchronized. Only when a new mount request is re-
ceived signified by this bit being reset (Zero) do we act locally by
calling the real BIOS Disk Select function and returning. In re-
sponse to a Select Disk function, BIOS returns a pointer to the 16-
byte Disk Parameter Header (DPH) for the subject drive which
contains a table of pointers to various drive parameters. Two of
these, the address of the Skew Translation routine, and the ad-
dress of another table —the Disk Parameter Block (DPB), are
used by the RSX. The DPB provides us with the number of logical
128-byte Sectors Per Track on the drive, the number of Directory
entries, and the number of reserved tracks on the disk before the
the beginning of the Directory.

Values obtained from the BIOS Select Disk call are used to
detect when a Read or Write request reference a Directory sector,
and to determine whether the requested sector is in the memory
buffer. When SPEEDUP is first loaded, it allocates memory in 1K
increments as specified by calling parameters, with each 1K repre-
senting 32 directory entries. Actually, slightly more than that is
allocated since one extra byte for the logical sector number is
needed for every 4 Directory entries representing a logical sector.
These logical sector numbers are placed in a table immediately
below the resident module base, with sector storage extending
downward from there. This sector number table incorporates any

27

needed skew by calling the Sector Translate routine obtained from
the DPH as it is built. After the table is built, Directory sectors are
read into memory until either the allocated memory is full, or the
entire Directory is read. Execution then returns to the calling pro-
gram, or the BDOS.

Requests for BIOS Writes and Reads are similarly vectored
through the resident module at labels WRITE and READ respec-
tively in the listing. Write requests, as with Select Disk calls, are also
furnished a flag clue by the BDOS. In this case, the clue is the byte in
the C-register which will be 01H if a Directory write is being re-
quested. Any writes other than those for the Directory are simply
routed directly to the real BIOS for processing. Those which involve
the Directory first call the real BIOS, then check to see if the subject
sector is in the memory cache (subroutine SETUP). If the Sector is
present, the cache contents are also updated before returning to the
calling program.

Read requests are not furnished with any special clues by the
BDOS as in Write and Disk Select routines. A determination of
whether or not the request involves cached sectors involves simply
checking to see if the desired Track and Sector is in memory (subrou-
tine SETUP). If not, we go directly to the real BIOS. If we have the
sector cached, we merely move the sector to the location specified by
the DMA address.

If you carefully think about the way this all works, you will detect
the one pitfall in caching the Directory. A disk change without a
Relog (Control-C or Dos functions 13 or 37) preceding a Write will,
in all probability, trash the disk. Even the advanced Disk Change
logic in ZSDOS will not detect a swap under these circumstances, so
ALWAYS REMEMBER TO DO A WARM BOOT IMMEDI-
ATELY AFTER CHANGING DISKS!

How To Make SPEEDUP.

Assuming that you have, by now, obtained LINKPRL from one
of the available Z-Nodes, and the source code library for SPEEDUP,
you are ready to form the executable RSX. First assemble both
SPEEDLDR.Z80 and SPEED22.Z80 with M80, ZAS or any other
assembler which produces a standard MicroSoft REL file. Next link
SPEEDLDR with LINKMAP in the COM mode. The following in-
teraction should be displayed where <cr> signifies the “Enter” or
“Return” key on your keyboard.

>LINKPRL SPEEDLDR<cr> <-- Invoke LINKPRL
Bit-map Linker V3.2 13 Aug 89 (C) H.F.Bower
Link to .COM or .PRL (C/P) :C<cr> <-- Link to COM

Enter Hex load addr (Default = 0100H) :<cr><-~ Use Default
Program Name : SPEEDL

Data Area Size : 0000

Program Size : 0400

If you examine your current directory at this point, you should
have generated the file SPEEDLDR.COM. Next, we use LINKPRL
to generate a PRL file for the segment which will be relocated to high
memory. The following interaction should be displayed for this op-
eration. :

>LINKPRL SPEED22<cr> <-- Invoke LINKPRL
Bit-map Linker V3.2 13 Aug 89 (C) H.F.Bower
Link to .COM or .PRL (C/P) :P<cr> <-- Link to PRL

Enter Hex load addr (Default = 0100H) :<cr><-- Use Default
Program Name : SPEED2

Data Area Size : 0000

Program Size 03D2

Load Location : 01B3

.

Bit Map begins € ORG + 03D2
Bit Map ends @ ORG + 0444

As before, a check of your current directory will show that you have
created SPEED22.PRL. See the first part of this article for a descrip-
tion of what special characteristics are exhibited by this type of file.
For now, we merely want to use it. We do this by combining
SPEEDLDR.COM and SPEED22.PRL into a single module called

28

Listing 1: An extract of the SPEED22 source code.

A e e e e e
Hd M O D U L E B O D Y *

A R A e s e A A A e e e e e A dd

1
; Modified BIOS Select function loads buffer on New Login

SELDSK: LD A, (LDISK) ; Is it this drive ?
CP C
LD A,0 ; Deselect first...

1D (FSEL),A
JR NZ,BSDSKE ; ..jump if not here

DEC A ; Else select with OFFH

LD (FSEL),A

BIT 0,E ; 1s it a logon request?
JR NZ,BSDSKE ; ..jump if no to BIOS
CALL BSDSKE ; Else Do BIOS & return
PUSH HL ; Save Regs for routine
PUSH BC

PUSH AF

LD E, (HL) ; Get skew addr

INC HL

1D D, (HL)

LD (SKWTBL),DE ; ..and save locally

LD DE, 9

ADD °~ HL,DE : DPB is at DPH+10

LD E, (HL) ; ..and get DPB's address
INC HL

LD D, (HL)

EX DE,HL

LD DE,SPTRK ; Move DPB to local area
LD BC, 15 ; ..all 15 bytes

LDIR

1D HL, (DIRMAX) ; Load # Dir entries - 1
INC HL : Correct dirmax

SRL H ; Conv DIRMAX to # Sctrs.
RR L ; ..by dividing by 4

SRL H

RR L

EX DE,HL ; Save in DE while we..

LD HL, (DMAX) ; ..compare to avail #
1D H,0

PUSH HL ; (preserve count)

OR A

SBC HL,DE ; Compare by subtraction
POP HL

JR C,SMALR ; Jump if this won't fit
EX DE,HL ; ..else save whole Dir

SMALR: D A,L ; Get LS Byte
LD (NDIRS),a ; ..and save it
1D DE,-1 ; Preset counter
LD BC,(SPTRK) ; ..get Sectors per Track
CALCLP: INC DE
XOR A
SBC HL,BC ; How many trks for Dir?
JR NC,CALCLP ; Fall thru if DE = #Trks
LD HL, (OFFSET) ; Get reserved trk count
ADD HL,DE ; .add # of Dir tracks
LD (TOPTRK)},HL ; ..and save top Dir Trk
LD HL, (SECTBL)
LD A, (DMAX) ; Store this many entries

1D B,A
XOR A ; Fill table with Zero
CLRLP: 1D (HL),A
INC HL

DJNZ CLRLP ; .-looping til done

LD (CURSEC),A ; Set Curr Log. Sctr to 0
LD HL, (OFFSET)

LD (TRK),HL ; Set starting Track

LD HL, (SECTBL) ; Get Sctr ID Table start
LD (TEMP),BL ; ..and save

LD HL, (DIR) ; Get start of Sctr Buff
LD A, (NDIRS) ; .% of Dir Sctrs therein
LD B,A ; ..to count register

;s Load translated sector table and sector data buffer

SETTBL: PUSH BC ; Save Cnt and Addr regs
PUSH BEHL
LD DE, (SKWTBL) ; Set up for translation
LD A, (CURSEC) ; ..on current sector
1D C,A
1D B,0
INC A ; Bump Log. Sctr number
LD (CURSEC),A 4]
CALL BSCTRN ; Find translated sector
1D A,L
1D HL, (TEMP)

The Computer Journal / #41

LD (HL),A
INC HL ;
LD (TEMP),HL
1D C,A

CALL BSETSC
POP BC ;
PUSE BC ;
CALL BSTDMA

; Store translated sector
..and bump table Addr

; Set Sector Number
Retrieve Buffer Address
..and keep on stack

; DMA addr to Buffer Sctr

~e we e N

SETUP:

EXIT: Found -

Zero flag set

C has relative 128-byte Sctr offset
Not Found - Zero flag cleared (reset)

Reg A

OR A
JR Z,SETUPS ;

is Non-Zero

LD A, (FSEL) ; Is this drive selected?

..error return if not

LD BC, (TRK) LD BC, (OFFSET) ; Calc # tracks from lst
CALL BSTTRK ; Set Physical Trk Number LD HL, (TRK)

CALL BREAD ; ..and read Disk Sector XOR A ; Get offset from Direc.

SBC HL,BC

POP HL ; Restore registers LD A,L ; ..should be < 255

POP BC LD HL,0 ; Make # of Sctrs offset
LD DE,128 ; Increment cache address LD DE, (SPTRK) ; Get # of Sectors/Track
ADD HL,DE SETUP2: OR A

LD A, (CURSEC) JR Z,SETUP3

LD DE, (SPTRK) ADD HL,DE ; .adding to base

CP E ; Check Track overflow DEC A
-JR C,SETTBO ; ..jump if same Track JR SETUP2 ; ..loop til finished
LD DE, (TRK)

INC DE ; Else bump track #.. SETUP3: LD C,L ; Copy # sectors to BC
1D (TRK),DE 1D B,H

XOR A ; ..and zero Sctr Number EX DE,HL ; ..and store in DE

LD HL,{NDIRS) ; Get # Dir Sctrs stored
LD H,0

XOR A ; Subtract offset sectors
SBC HL,BC

JR C,SETUP8 ; Not Found if overflow

LD B,L ; Put 8-bit Sctr cnt in B
..Sector offset is in C

LD (CURSEC),A
SETTBO: DJNZ SETTBL
JR WEXIT ; Restore parms & Exit

i
; BIOS Write Sector routine. If sector resident,
; update memory image in addition to disk data ;

LD HL, (SECTBL) ; Get addr fm table start
WRITE: LD A,C ADD HL,DE
DEC A ; directory write? LD A,(SCTR+1l) ; Is Sctr § > 25672
JP NZ,BWRITE ; .jump if not to BIOS OR A
CALL BWRITE ; ..else write to disk JR NZ,SETUPS ; ..not here if so
PUSH HL ; save status LD A, (SCIR) ; See if sectors match
PUSH BC RL1: CP (HL)
PUSH AF JR Z,SETUPY ; .jump if found
CALL SETUP ; Is this Trk/Sec in RAM? INC C
JR NZ,WEXIT ; ..quit if not INC HL
OR OFFH ; Show thie is a Write DJNZ RL1 ; ..else loop til done
JR RAMW ; ..and update Cache SETUP8: DEFB OF6H ; Set Error w/"OR OAFH"
SETUP9: XOR A ; Return Ok conditions
Jesaee RET
; BIOS Read sector routine. If sector in memory, simply
; move, else jump to real BIOS and get data from disk ; ;
;s DATA AREA ;
READ: LD DE, (TRK) ; Directory track? H ;
LD HL,(TOPTRK) ; See if trk <= toptrk ’ ; Storage for data passed to BIOS
OR A
SBC HL,DE ; Compare by subtraction SCTR: DEFS 2 ; Sector passed to BIOS
, JP C,BREAD ; ..if not dir, read disk TRK: DEFS 2 ; Track passed to BIOS
CALL SETUP ; Else is Trk/Sec in RAM? DMADDR: DEFS 2 ; DMA Addr passed to BIOS
JP NZ,BREAD ; ..jump to Disk if Not
LD HL,0 ; Set "good read" status ; DPB and Skew Table address for active disk
PUSH HL ; .once for HL
PUSH HL ; ..and once for BC SPTRK: DEFS 2 ; Sectors per track
XOR A ; Show this is a Read DEFS 5 ; Room for BSH, BLM etc
PUSH AF ; ..with good status DIRMAX: DEFS 2 ; Max # of Dir entries
DEFS 4 ; Room for CHK & ALV
; Calculate address of desired sector in RAM buffer OFFSET: DEFS 2 ; Track offset
; ENTRY: Reg C has relative sector number
; EXIT: HL register pair has buffer absolute address SKWTBL: DEFS 2 ; Skew table address
RAMW: PUSH AF ; Save flag status ; General Purpose pointer and buffer area
PUSH DE
b D,C ; Use Sctr # as index FSEL: DEFS 1 ; drive selected flag
b E,O0 ; .into RAM Cache LDISK: DEFS 1 ; Disk # active in RAM
SRL D ; Multiply index by 128 DIR: DEFSs 2 ; Start of Dir Buffer RAM
RR E SECTBL: DEFS 2 ; Addr of Sector #s Table
LD HL, (DIR} ; Get base of Cache TOPTRK: DEFS 2 ; Top track of Directory
ADD HL,DE ; ..and add offset
POP DE CURSEC: DEFS 1 ; Current working sector
POP AF DMAX: DEFS 1 ; Maximum # Dir sectors
NDIRS: DEFS 1 ; % of DIR Sectors stored
LD DE, (DMADDR) ; Data transfers go here TEMP: DEFS 2 '; Temp pointer area
OR A ; Check which operation
JR Z,RAMO ; «.jump if read DEFS 32 ; Local stack space
EX DE,HL ; Swap direction if Write STACK: DEFS 2 ; Storage for entry stack
RAMO: LD BC,128 ; Move a logical Sector
LDIR END
WEXIT: POP AF ; Restore statue & Regs
POP BC
POP HL
RET .
(Continued on page 31)
’
1

ROUTINES :

;
Check for presence of requested sector in memory buffer
ENTRY: None

The Computer Journal / #41 29

Real Computing

The National Semiconductor NS32032

by Richard Rodman

I'm going to imitate Jay Sage this time and write about some-
thing other than what I said I was going to write about.

Hobby computing started out as an exciting pastime for com-
puter professionals because the early machines were simple and
easy to understand. You could know the whole machine. When
you wrote data to an I/O port, there were no Session and Trans-
port layers. These pioneers (arrows in their backs and all) brought
many newcomers into computing, and they got used to having that
kind of simple interface and complete control. But when PCs be-
came “legitimized” by the latecomer IBM, they lost their innocent
simplicity and headed down the road towards the bulky, inefficient
traits of the Computing Status Quo.

Similarly, RISC started out as a clumsy effort to regain simplic-
ity and cleanness of design. When it went commercial, it soon lost
its direction, because it had to be “dressed up” to meet the re-
quirements of all of the old stuff.

But as hardware designers have run into stiffening limits to
improving performance, more and more people have wondered
where in the world all of these MIPS and megabytes per second
are going, and found that 40 percent or more are going into a
black hole called “Overhead”. That overhead is why a little Z-80
could do things faster than a mighty VAX or a mainframe.

That is why the computing world will soon be hit like a lightning
bolt by a new design philosophy, which I refer to as Low-Overhead
Systems (LOS). LOS designers will strive, not to minimize the
overhead or shift it into hardware, but to eliminate it altogether.
The OSI 8-layer model will wane in favor of a new “connection-
less” 3-layer model.

Imagine the simplicity of CP/M being moved to an IBM main-
frame. Just think of the MIPS that’ll be freed. This is the shared
vision of simple beauty that made the hobby computer, that typi-
fies many experimenters of today, and that typifies TCJ readers.
We’ve been designing low-overhead systems all along.

Free OS Update

Version 0.4 of Bare Metal is released now and is available from
this magazine. This is an intermediate release, of course, and is not
a complete system yet. However, if you've got some NS32 hard-
ware that you want to run programs on, it should be
useful to you.

header is based on the NS32 Module Table entry. The first dou-
bleword contains the BSS size, that is, how much uninitialized
memory should be prepended to the initialized data to form the
program’s data area, which is pointed to by the SB register. The
second doubleword contains the offset to the link table for the
module. The third doubleword contains the offset to the code for
the module. The fourth doubleword contains the total size of the
module, which includes the BSS size. After this comes the initial-
ized data and then the code.

Most importantly, the program must be relocatable without
modification —it cannot contain any address constants (such as ini-
tialized pointers). This is a key concept of Metal. On the one hand,
this “breaks code” —C programs which would work fine in other
OSs have to be modified. On the other hand, it significantly quick-
ens program loading and will allow Metal to support multitasking
without an MMU.

OS Calis

The operating system calls shown in Figure 1 are available from
Metal. (By the way, keep this article, this is the best documenta-
tion there is right now!)

The value of “handle” in the calls might be 0, for stdin/stdout,
or 3 and up for files. Handle 1 is reserved for Aux, and handle 2
for the printer.

To perform the operation, load the registers as shown and per-
form an SVC instruction.

BIOS Entry Points
The BIOS for Metal may be written in C if desired. The entry

points are defined in terms of C functions. The definitions shown
here may change in future versions.

void coldboot(void); initializes everything used by the BIOS.

void consout(char); sends a character out to the console. An
assembler routine will find the character at 4(SP).

int consinp(void); reads a character from the console. It waits
for the character to be available. The character should be returned
in RO.

int writesec(int sectornumber; char *ioaddr); writes a sector

Version 0.4 supports two devices, a remote de- | F199re 1*

vice, REM:, and a MS-DOS-compatible 360K drive, |ro
DOS:. Programs may be run from either device. The
REM: device is for serial-link or coprocessor board
access. The HOSTX program, which otherwise is a
simple terminal program with download capability,
has been extended to support this device.

Metal has a really crummy built-in command |5
interpreter. It currently offers the following com-

WK

-~

mands: DIR, TYPE filename, ERASE filename, and 10
COPY filenamel filename2. ;i

Programs to be loaded must have the standard | ;5
16-byte header used in the SRM monitor. This

Metal operating system calls.

R1 R2 R3

- - handle getc - Read a character

char - handle putc - Write a character

buffer count handle read - Read count characters
(Disk not implemented yet)

buffer count handle write - Write count characters
(Disk not implemented yet)

filename - - open - Open a file

- - handle close - Close a file

filename - - create -~ Create a file

filename - - erase - Erase a file

oldname newname - rename - Rename a file

dirname - - mkdir - Create a directory

dirname - - chdir - Change directory

30

The Computer Journal / #41

(512 bytes) from memory address ioaddr to the disk absolute
sector sectornumber. This call’s usage is reminiscent of the MS-
DOS int 25. The value returned in R0 should be 0 for success or
some negative number for failure. An assembly routine will
receive sectornumber at 4(SP) and ioaddr at §(SP).

int readsec(int sectornumber; char *ioaddr); is like writesec
but reads the sector instead.

- The sample BIOS distributed with Metal is written in assem-
bler for the Cromemco 16FDC board, which has a floppy control-
ler and a serial port on it.

Compiling and Assembling

Metal is about half C and half assembler. The current system
generation method is rather clumsy. First, the C source file is pre-
processed with the Decus C Preprocessor and compiled with Phil
Prendeville’s C compiler. Then, the assembly output of the C com-
piler must be edited to include the assembly language routines.

At the beginning of the file, you have to include, first, the file
METSTART, then your customized BIOS. Then, at the end of
the file, you have to include the file METMEM.

One other pain is that the C compiler tends to generate non-
relocatable instructions of the form ADDD #label,RO. If label is
an address, this sequence needs to be replaced with a two-line
sequence ADDR label,R1 foilowed by ADDD R1,R0.

The resulting enormous file is assembled with A32. I suggest
using the nobyte option, which prevents the branch optimization
from using the 1-byte short offsets, in order to save assembly time.

The output from this is a .E32 file which can be loaded with
SRM or, with some tinkering, TDS. Currently, that is the only way
to load Metal.

Future Plans for the BIOS

In version 0.5, multiple drives per device type will be supported.
There will be a table which will aliow you to re-use a manager
routine, such as the MS-DOS file manager, for multiple different
drives, each of which will have a driver routines. This will allow you
to mix and match managers and drivers independently. This will
aiso remove the 360K format restriction.

* Version 0.5 will also include drivers for the PD32 coprocessor
board and possibly the 532 Designer’s Kit board.

Booting, of course, is a problem. The MS-DOS boot procedure
is quite complex, with all the various formats in use now. 'll enter-
tain suggestions from readers on this one.

Metal handles nearly all of the NS32 traps now. In the future, it
will incorporate program tracing and debugging right from the
command line.

Next Time

Next time we return you to your normally scheduled informa-
tion, where I promised to cover the NS32 trap mechanism and
built-in single step mechanism. @

‘Where to write or call:

Richard Rodman
8329 Ivy Glen Court
Manassas VA 22110
BBS: 703-330-9049

The METAL Version 0.4 Operating System on a 360K MS-
DOS disk is available from TCJ for $12.

The Computer Journal / #41

LINKPRL
(Continued from page 29)
SPEEDUP.COM. The simplest approach is to use DDT, ZDMH,

>ZDMH SPEEDLDR.COM<cr> <-- Load SPEEDLDR at 100H

ZDMH VERS 1.2

NEXT PC

0500 0100

-ISPEED22 .PRL<cr> <-- Load SPEED22.PRL
-R400<cr> <-~ ..to 500H (100H+400H)

NEXT PC

0A80 0100

-G0<cr> <-- Return to CP/M, image still

in memory
>SAVE 10 SPEEDUP.COM<cr> <-- Save 100H to OAFFH to Disk

ZBUG or any similar debugger. The following interaction will occur
with ZDMH.

You now have an executable SPEEDUP.COM file in your current
directory. Operation is quite simple with a brief help message cover-
ing usage available which may be displayed by entering:

SPEEDUP //

I hope you found this article to be of some help in understanding
the finer points of PRL files, and will be able to use these tools.
Complete source code for the programs described here may be ob-
tained in LINKPRL.LBR and SPEEDUP.LBR from the Ladera Z-
Node operated by Al Hawley at (213) 670-9465 and from Jay Sage’s
Z-Node #3 at (617) 965-7259. 1 thank both Al and Jay for allowing
me to furnish these programs on their systems. Any comments/bugs
etc. for me may be addressed to:

Harold F. Bower
P.O. Box 313
Ft. Meade, MD 20755

Correction for issue #40
The LINKPRL article in issue #40 contained an error on page 18.
The fourth line from the bottom in the left hand column should read
"...the Code area is placed in the second and third bytes..."

31

SCOPY

Selective Duplication of MS-DOS Files

by Dr. Edwin Thall

The MS-DOS COPY command, with its wildcard capabilities,
is adept at duplicating file names with similar characters. Some-
times, however, it’s impossible to find a wildcard combination to
solely duplicate selected files. Suppose, for example, you have six
files with the same name (TEST) but different extensions (. TXT,
BAK, .DOC, .EXE, .ASC, .MSG) and you wish to copy the first
three files from drive A to drive B. All files are copied if you enter:

A>COPY TEST.* B:

To prevent duplication of the unwanted files, you need to type
three separate commands:

A>COPY TEST.TXT B:
A>COPY TEST.BAK B:
A>COPY TEST.DOC B:

Recently, I was asked about the feasibility of a utility that can
selectively copy files from one directory to another without neces-
sitating the typing of file names. After acknowledging that such a
program would not be difficult to write, the challenge was born.
Although the project turned out to be more time-consuming than
first anticipated, I did create SCOPY —for selective copy. But be-
fore introducing SCOPY, let’s examine how files are actually du-
plicated.

From Handles to Z-Strings

Files are readily created and accessed by means of the DOS
functions listed in Table 1. All of these functions, designated “H”
for handle and “A” for ASCIIZ string, have been incorporated
into SCOPY.

The ASCIIZ format consists of a series of conventional ASCII
characters terminated by a byte of zero (00H). For the ASCIIZ
string shown below:

‘A:\PATH\NAME .EXT', 0

The drive (A:), path \PATH), and file name \NAME.EXT) are
stored in memory as:

41 3A 5C 50 41 54 48 5C 4E 41 4D 45 2E 45 58 54 00

The null byte (00H) cannot be entered directly by way of the
keyboard since keystrokes such as zero or Alt<0> return 30H and
nothing, respectively. The backslash (\) serves as path separators.

Whenever you create or open a file (functions 3CH/3DH), the
name of the file is specified with an ASCIIZ string. DOS maintains
the file’s control information in its own area, and returns a number
in the AX register. This number, known as the file handle, must be
referred to for future access of the file.

DOS relies on file handles to keep track of files and input/

Dr. Edwin Thall, Professor of Chemistry at The University of
Afkron-Wayne College, teaches chemistry and computer program-
ming.

32

output devices. The number of files that DOS can open concur-
rently may be declared during the boot with CONFIG.SYS
(FILES = N). A maximum of 20 handles is permitted with the
default value set at 8.

File Duplication

Without benefit of the COPY command, let’s duplicate a single
file from the root directory to a target subdirectory. Initially, the
source file is read into a buffer area. Next, a new file with the same
name as the source is created in target directory . The buffer area
is then written to the new file in the target directory.

We begin by creating a source file (A\SOURCE) in the root
directory of drive A. The message “FILE DUPLICATION” will
be the only data stored in this file. From drive A, enter:

A>COPY CON A:\SOURCE
FILE DUPLICATION
ctrl Z

The execution of this file displays the message “FILE DUPLICA-
TION” on the screen:

A>SOURCE
FILE DUPLICATION

Before attempting to duplicate this file, invoke the DOS command
to create the subdirectory \TARGET:

A>MD\TARGET

The duplication of our source file as AN\TARGET\SOURCE is
accomplished with DUP.COM, assembly code listed in Figure 1.
DUP.COM is quite limited and serves only one purpose; it copies
SOURCE from the root directory to the newly formed subdirec-

Function Operation
3BH Create file (A)
3DH Open file (A)
3EH Close file (H)
3FH Read file or device (H)
40H Write to file or device (H)
42H Reset file pointer (H)
4EH Search first match (A)
4FH Search next match (A)

Table 1. Selected DOS Functions

(A=ASCIIZ string, H=handle)

Bytes Represents

0-20 Reserved by DOS

21 Attribute of matched file

22-23 Time

24-25 Date

26-29 Size

30-42 File name/extension (ASCIIZ)

Table 2. Information returned in the DTA by functions

4EH/4FH

The Computer Journal / #41

7DUP.ASM converts to DUP.COM Figure 2: Assembler code for SCOPY.EXE
;Duplicates A:\SOURCE as A:\TARGET\SOURCE
CSEG SEGMENT
ASSUME CS:CSEG,DS:CSEG ;SCOPY.ASM converts to SCOPY.EXE
ORG 100H ;Selectively copies files from one directory to another
START: JMP SKIP ;Bkip data ;**i***itt****i'iii’*titt***iﬁﬁ*t*itI******itti*&*******ttt***
SOURCE DB ‘A:\SOURCE’,0 ;asciiz--source SSEG SEGMENT STACK
TARGET DB ‘A:\TARGET\SOURCE’,0 ;asciiz--target DB 20 DUP (‘STACK)
SHANDLE DW ? ;file handle--source SSEG ENDS
THANDLE Dw ? ;file handle--tax‘get ;**ﬁ‘i***************i*****tt****ii****ii***i********it*i**"*
. BUFFER DB 16 DUP (‘‘B’’) ;16 byte buffer DSEG SEGMENT
;open source file SOURCE DB 64,65 DUP (0) ;asciiz--source dir
SKIP: MOV AH,3DH ;open file SOURCE2 DB 65 DUP (0) ;asciiz~-source filename
MOV AL,O ;read operation SOURCE3 DB 65 DUP (0) ;asciiz--source current dir
MOV DX,OFFSET SOURCE ;source asciiz TARGET DB 64,65 DUP (0} ;asciiz--target dir
INT 21H TARGET3 DB 65 DUP (0) ;asciiz--target current dir
MOV SHANDLE, AX ;store source handle DTA DB 43 DUP (0) ;search function DTA
;jcreate target file SENTRY DW ? ;file entry into source2
MOV AH, 3CH jcreate file TENTRY DW ? ;file entry into target
MOV CX,0 ;normal file SETDIR DB 0,’:\’,65 DUP(0) ;store original dir
MOV DX,OFFSET TARGET ;target asciiz SHANDLE DW ? ;source handle
INT 21H THANDLE DW ? ;target handle
MOV THANDLE, AX ;store target handle REM bW 2 jremainder beyond 32K
;jread source file into buffer BSIZE DW ? ;bytes to read/write
MOV AH,42H ;reset file pointer POINTSH DW 0 ;source pointer high
MOV AL,0 ;from start of file POINTSL DW 0 P o low
MOV CX,0 ;set pointer high POINTTH DW 0 ;target pointer high
MOV DX,0 ;set pointer low POINTTL DW 0 ; ‘o low
MOV BX, SHANDLE ;get source handle DISKF DB 0
INT 21H MESS1 DB OAH, OAH, ODH, ‘ENTER SOURCE DIRECTORY:’,OAH, ODH
MOV AH, 3FH ;read file DB ‘(EXAMPLES: A:\, B:\PATH\, C:\PATH1\PATH2\) '
MOV CX,16 snumber of bytes DB ODH,OAH,O0AH,24H
MOV DX,OFFSET BUFFER ;point to buffer MESST DB OAH,OAH,ODH, 'ENTER TARGET DIRECTORY:’, OAH, ODH
INT 21H DB ‘ (EXAMPLES: A:\, B:\PATH\, C:\PATH1\PATH2\)"’
;swrite buffer to target file DB ODH,OAH,OAH, 24H
MOV AH,42H ;reset file pointer MESS2 DB ODH,OAH, 'COPY FILE? !
MOV AL,0O ;from start of file DB ‘<Y> YES <N> NO <Q> QUIT $’
MOV CX,0 ;file pointer high MESS3 DB ODH,0AH, 'FILE COPIED §'
MoV DX, 0 ;£ile pointer low MESS4 DB ODH, OAH, 'FILE COULD NOT BE COPIED §’
MOV BX, THANDLE ;get target handle MESS5 DB ODH, OAH, OAH, 'NO FILES LOCATED',ODH,O0AH,0AH, 24H
INT 21H MESS6 DB ODH, OAH, ‘DISK FULL’,ODH,0AH,0AH,24H
MOV AH,40H jwrite to file CRLF DB ODH,ORH,ORH, 24H
MOV CX, 16 ;number of bytes BUFFER DB 8000H DUP (‘‘B’’) ;32K buffer
MOV DX,OFFSET BUFFER :point to buffer DSEG ENDS
INT 21H ;ii******ii******fﬁ*"*i**********iiittt*ﬁ******ttt't*****‘*ii
;close files CSEG SEGMENT
MOV AH,3EH ;close file MAIN PROC FAR
MoV BX, SHANDLE ;get source handle ASSUME CS:CSEG,DS:DSEG,ES:DSEG, S5:SSEG
INT 21H START:
MOV AH, 3EH ;set return & DS/ES registers
MOV BX, THANDLE ;get target handle PUSH DS
INT 21H SUB AX,AX
INT 20H PUSH AX
CSEG ENDS MOV AX,DSEG
END START MOV DS,AX
MOV ES,AX
Figure 1. Assembler code for DUP.COM jcall subroutines
CALL SDIR ;save original dir
CALL CLEAR ;clear screen
. CALL STRINGS ;get dir & asciiz strings
tory. Here is how DUP.COM works: CALL SEARCH ;search dir & copy option
CALL RDIR ;restore original dir
1. The source file is opened (function 3DH) and its handle MAIN gﬁgp
saved in the area defined by SHANDLE. ; -
2. Anew file (A\TARGET\SOURCE) is created and its handle isave original directory
. . . SDIR PROC NEAR
saved in the location specified by THANDLE. MOV AH,19H ;get drive
3. The 16 bytes of data (FILE DUPLICATION) stored in INT 21H
A:\SOURCE are read into a buffer area (function 3FH). ADD AL, 41H ;declare drive as A,B,C,D
4. ‘The file pointer is reset (function 42H) to the beginning of O ap aIRsAL jsave drive
- po X (U 10n) c ginning O MOV AH,47H ;get dir path
the file. MOV DL,0 ;default drive
5. The data is written (function 40H) from the buffer area to ;‘g‘; gi}f"s“ SETDIR+3 jstore path
ANTARGET\SOURCE. RET
6. Both files are closed (function 3EH). SDIR ENDP
r
;restore original directory
i RDIR PROC NEAR
'Execute DUP.COM and then verify the existence of MOV AH,3BH ;set dir
ANTARGET\SOURCE: MOV DX,OFFSET SETDIR
INT 21H
RET
A>DUP
A>TYPE \TARGET\SOURCE RDIR ENDP
FILE DUPLICATION !
;clear screen
CLEAR PROC NEAR "
MOV CX,25
CLR: MOV DL, 0AH
MOV AH,2

The Computer Journal / #41 33

INT 21H
LOOP CIR
MOV RH,2
MOV BH,0
MOV DX, 0
INT 10H
RET

CLEAR ENDP

STRINGS PROC NEAR

;**source directory operations*¥
MOV AH,9
MOV DX,OFFSET MESS1
INT 21H
MOV AH, 0AH
MOV DX,OFFSET SOURCE
INT 21H

;set up asciiz as SOURCE2
MOV SI,0FFSET SOURCE+2
Mov DI,OFFSET SOURCE2
MOV BX,OFFSET SOURCE+1
MOV CL, [BX)

MOV CH,0
CLD
REP MOVSB

MoV SENTRY, DI

MOV SI,OFFSET SOURCE+2
MOV DI,OFFSET SOURCE3
MoV BX,OFFSET SOURCE+1
Mov CL, {BX]

MOV CH,0
cLD

REP MOVSB
DEC DI
MOV AL,0

MOV [DI},AL

MOV BX,OFFSET SOURCE+1
MOV AL, [BX]
MOV AH,0
ADD BX,AX
INC BX

MOV AL,"’'*'’
MOV [BX],AL
INC BX

MOV AL,’’.’’
MOV [BX],AL
INC BX

MOV AL, ' ‘’"*’’
MOV [BX],AL

I
;input directories and set up asciiz strings

;display message to input
;source directory

;input
;source dir

;move string from SOURCE+2
;to SOURCE2
;string length

;jmove string
;save entry into SOURCE2

;jset up asciiz as SOURCE3 for current directory

;jetore *.* and null byte at end of SOURCE

;point to SOURCE size
;get size

;point to end of SOURCE
;point to CR (ODH)

MOV CX,20H
MOV DX,OFFSET SOURCE+2
INT 21H
JNC MATCH
MOV AH,9
MOV DX,OFFSET MESS5
INT 21H
RET
NEXT: MOV AH,4FH
MOV CX,20H
MOV DX,OFFSET SOURCE+2
INT 21H
JNC MATCH
RET

;normal file
;point to source dir

;jump if match found
;dieplay message
;" 'NO FILES LOCATED'’

;jterminate program
;search nest match
;normal file

;jump if match found
;terminate program

;blank out previous entry in SOURCE2

MATCH: MOV BX,SENTRY
MOV CX,13
MOV AL,’’ ‘¢
BLANK: MOV [BX],AL
INC BX
LOOP BLANK

;entry into SOURCE2
;replace 13 bytes
;with blank

;blank next byte

;blank out previous entry in TARGET

MOV BX,TENTRY
MOV CX,13
MOV AL,'’ **
BLANK2: MOV [BX],AL
INC BX
LOOP BLANK2
;jmove file name to SOURCE2
MOV DI, SENTRY
MOV SI,OFFSET DTA+30
MOV CX,13
CLD
REP MOVSB
;move file name to TARGET
MOV DI,TENTRY
MOV SI,OFFSET DTA+30
MOV CX,13
CLD
REP MOVSB
MOV AH,9
MOV DX,OFFSET CRLF
INT 21H
;display file name
MOV BX,OFFSET DTA+30
SCREEN: MOV DL, [BX]
CMP DL,0
JE OPTION
MOV AH,2
INT 21H
INC BX
JMP SCREEN

jentry into TARGET

;entry into SOURCE2
;point to file name in DTA
;13 byte asciiz string

;move from DTA to SOURCE2

;entry into TARGET
;point to file name in DTA
;13 byte asciiz string

smove from DTA to TARGET
;skip line

;point to asciiz in DTA
;check asciiz string for
;null byte

;jump if end of asciiz
;display character

;next asciiz location

INC BX ;joption to copy file
MOV AL,0 OPTION: MOV AH,9 ;display option message
MOV [BX],AL ;store null byte MOV DX,OFFSET MESS2 ;' 'COPY FILE?’'
;**target directory operations** INT 21H
MOV AH,9 :display message to input MOV AH,1 ;input Y, N, or Q
MOV DX,OFFSET MESST ;input target directory INT 21H
INT 21H CMP AL’ 'Y’
MOV AH, OAH sinput JZ COPY ;if *Y'’, copy file
MOV DX,OFFSET TARGET ;target directory CMP AL,"’'y’’
INT 21H JZz COPY ;jif ‘'y’’, copy file
;set up asciiz as TARGET3 for current directory CMP AL, 'N"’
MOV SI,OFFSET TARGET+2 JZ NEXT ;if *N'’, next file
MOV DI,OFFSET TARGET3 CMP AL,’'’'n’’
MOV BX,OFFSET TARGET+1 Jz NEXT ;if ''n’’, next file
MoV CL, [BX] CMP AL,’'’'Q"'
MOV CH,O0 Jz QUIT ;if ''Q’’, quit program
CLD CMP AL,’’'q’’
REP MOVSB JZ QUIT ;if **q’’, quit program
DEC DI JMP OPTION ;repeat operation
MOV AL,0 COPY: CALL COPYF jcopy the file
} MoV [DI],AL CMP DISKF,0FFH ;check if disk full
;get entry point into TARGET JE QUIT ;if full, quit program
MOV BX,OFFSET TARGET+1 ;point to TARGET size JMP NEXT ;iprocess next file
i MOV AL, [BX] ;get size QUIT: RET ;terminate program
\ MOV AH, 0 SEARCH ENDP
| ADD BX,AX ;jpoint to end of TARGET H
} INC BX ;point to CR (ODH) ;copy file from source to target
| MOV TENTRY, BX ;save point into TARGET COPYF PROC NEAR
} RET CALL SSDIR ;get source dir
| STRINGS ENDP MOV AH, 3DH ;jopen source file
; MOV AL,0 ;read operation
;search dir for match & offer option to copy file MOV DX,OFFSET SOURCE2
SEARCH PROC NEAR INT 21H
MOV AH, 1AH ;set up DTA MOV SHANDLE , AX ;8ave source handle
MOV DX,OFFSET DTA CALL STDIR ;set target dir
INT 21H MOV AH, 3CH ;create file
MOV AH, 4EH ;search first match
34 The Computer Journal / #41

MOV CL,DTA+21 sattribute MOV AL,O ;from start of file
MoV CH,O0 A MOV CX,POINTSH ;point source high
MOV DX,OFFSET TARGET+2 MOV DX,POINTSL ;point source low
INT 21H MoV BX, SHANDLE ;get source handle
MOV THANDLE, AX ;save target handle INT 21H
;initialize file pointers MOV AH,3FH sread file
MOV POINTSL,0 ;source low MOV BX,SHANDLE
MOV POINTSH, O ;source high MOV CX,BSIZE ;No. of bytes
MOV POINTTL,0 ;target low MOV DX,OFFSET BUFFER ;point to buffer
MOV POINTTH, O ;target high INT 21H
jdivide file size by 32K RET
MOV DL,DTA+28 ;high order file size READ ENDP
MOV DH,DTA+29 ik ;
MOV AL,DTA+26 ilow order file size ;jwrite to target file
MOV AH,DTA+27 Lee WRITE PROC NEAR
MOV CX,8000H ;BZK divisor CALL STDIR ;set target dir
DIV cxX MOV AH,42H ;reset file pointer
MoV REM, DX ;8ave remainder MOV AL, O ;from start of file
Mov cx,ix ;count for 32K units MOV cx:POINTTH ;point target high
CMP REM,0 ;if rem = 0, do not MOV DX,POINTTL ;point target low
Jz AGAIN ;increment counter MoV BX, THANDLE ;get target handle
INC CX ;add 1 for rem INT 21H
AGAIN: PUSH CX ;save count MOV RAH, 40H ;write to file
cMP CX,1 ;rem? MOV BX,THANDLE
JINZ K32 ;process 32K MoV CX,BSIZE ;No. of bytes
MOV DX,REM ;read/write rem MOV DX,OFFSET BUFFER ;point to buffer
MoV BSIZE,DX ;store current buffer size INT 21H
JMP SREAD ;jread source RET
K32: MOV DX,8000H ;read/write 32K WRITE ENDP
MOV BSIZE,DX ;store current buffer size H
SREAD: CALL READ ;read source to buffer CSEG ENDS
Jc CFAIL ;jump if read failed FEETRRNRN KA AR A A RN AR R R AR H AT F AR AR AN RN RN H TN H kb
ADD POINTSL,8000H ;adjust source pointer END START
JNC NC1 i
ADD POINTSH,1 ;e
Nel: o CALL YRITE jyrite o Larget file introducing SCOPY
’ ;i is ull,
JZ FULL iquit program . The assembly code for SCOPY.EXE, the utility capable of se-
I S L 8000H f;éj“:i:t:a:;iegéigzzz lectively copying files from one directory to another, is provided in
JNC NC2 ! e Figure 2. When requested, SCOPY reads individual files from a
ADD POINTTH,1 it source directory into a buffer area and then writes the file, with the
NC2: poP cxX ;restore count : - . .
LOOP AGAIN i same name, to a designated target directory. SCOPY is organized
MOV AH,9 ;jdisplay message to:
MOV DX,OFFSET MESS3 ;' 'FILE COPIED’’
INT 21H
JMP CLOSE 1. Save the original directory.
CFAIL: ﬁg‘l; i; 5 ig%“'l‘ Bt:;k 2. Clear the screen and position cursor in the upper left corner.
1418 a ssage
MOV DX OFFSET MESS S PTLE NOT COBIED’ 3. Wait for input of source and target directories.
. INT 21H 4. Set up the required ASCIIZ strings.
CLOSE: }c{g;l. i}s}nggﬂ 75?‘: source dl; 0 5. Search the source directory and display first match.
;Close source 1lle . :
MOV Bx:smnmz 6. Offer the option to copy the file to target directory gmd search
INT 21H next match <Y>, search next match <N>, or quit the pro-
CALL STDIR ;set target dir gram <Q>.
MOV AH, 3EH ;jclose target file 7 R ioinal di
MOV BX, THANDLE . estore original directory.
INT 21H
ruiL: vep cx sclean stack The search functions (4EH/4FH) assume you have previously
MOV AH,9 ;display message invoked function 1AH to declare a 43 byte disk transfer area
‘I’:‘; ';’I‘;IOFFSET MESS6 i’ 'DISK FULL®' (DTA). Whenever a match is found, the DTA is filled with infor-
MOV DISKF,OFFH .disk full indicator mation regarding the file’s name, date, time, size, and attribute
r I .
RET (see Table 2). The last 13 locations of the DTA (bytes 30-42) store
COPYF ENDP the file’s name/extension in the form of an ASCIIZ string. It is this
; . L
iset source as current directory portion of the DTA that is displayed after every match. An unsuc-

cessful search terminates the program.

MOV DX.OFFSET SOURCE3 Th(? mgximum number of bytes permitted for any read/write
INT 21H operation is 64K. If a file exceeds this limit, it must be duplicated
RET in sections. The question is how many bytes to declare for the

SSDIR _ ENDP read/write buffer? Although the entire ES segment (64K) could be

allocated for this purpose, most files are less than 64K and there is

no need to waste so much memory. After experimenting with dif-
MOV DX,OFFSET TARGET3 ferent buffer sizes, I selected 32K as the best compromise between
INT 21H speed and compactness. For the duplication of an 80K file, three
RET read/write passes of 32K, 32K, and 16K are required.

STDIR ENDP . . .

; To selectively copy files from the root directory of drive A to

ANTARGET, enter the parameters shown:

;read source file
READ PROC NEAR

\ CALL SSDIR
| MOV AH,42H

| ENTER SOURCE DIRECTORY:

SSDIR PROC NEAR

MOV AH,3BH ;set current dir

’
;set target as current directory
STDIR PROC NEAR

MOV AH, 3BH

:set current dir

. | L
;set source dlf A>SCOPY
;jreset file pointer

The Computer Journal / #41 35

(EXAMPLES: A:\, B:\PATH\, C:\PATH1\PATH2\)
A\

ENTER TARGET DIRECTORY :
(EXAMPLES: A:\, B:\PATH\, C:\PATH1\PATH2\)

A:\TARGET\

SOURCE
COPY FILE? <Y> YES <N> NO <Q> QUIT

If you select the option to copy file <Y >, one of four messages
are displayed:

FILE COPIED

FILE COULD NOT BE COPIED
NO FILES LOCATED

DISK FULL

SCOPY is an excellent utility for duplicating isolated files. Not
only is it quick, it eliminates tedious typing. So put SCOPY to
work and discover how simple it can be to selectively copy files
from one directory to another. ®

Registered Trademarks

It is easy to get in the habit of using company trademarks
as generic terms, but these trademarks are the property of the
respective companies. It is important to acknowledge these
trademarks as their property to avoid their losing the rights
and the term becoming public property. The following fre-
quently used trademarks are acknowledged, and we apologize
for any we have overlooked.

Apple 11, 11+, Ic, Ile, Lisa, Macintosch, DOS 3.3, ProDos;
Apple Computer Company. CP/M, DDT, ASM, STAT, PIP;
Digital Research. DateStamper, BackGrounder ii, Dos Disk;
Plu*Perfect Systems. Clipper, Nantucket; Nantucket, Inc.
dBase, dBASE 11, dBASE III, dBASE III Plus, dBASE 1V;
Ashton-Tate, Inc. MBASIC, MS-DOS, Windows, Word; Mi-
croSoft. WordStar; MicroPro International. IBM-PC, XT,
and AT, PC-DOS; IBM Corporation. Z80, Z280; Zilog Cor-
poration. Turbo Pascal, Turbo C, Paradox; Borland Interna-
tional. HD64180; Hitachi America, Ltd. SB180; Micromint,
Inc.

Where these and other terms are used in The Computer
Journal, they are acknowledged to be the property of the re-
spective companies even if not specifically acknowledged in

voVIiNG,

Make certain that TCJ follows you
to your new address. Send both old and
new address along with your
expiration number that appears on
your mailing label to:

THE COMPUTER JOURNAL
190 Sullivan Crossroad
Columbia Falls, MT 59912

If you move and don’t notify us, TCJ
is not responsible for copies you miss.
Please allow six weeks notice. Thanks.

-

C vvvTechnoIng”Rgs‘ogrféés_ |

K-OS ONE —Single user generic 68000 operating sys-
tem for your 68000 hardware. it uses the MS-DOS disk
format, and includes the operating system with source
code (written in HTPL), an editor, assembler, and HTPL
compiler. A sample BIOS code and a boot loader are
included. This is not ready-to-run—you have to install the
BIOS on your system, but the source code and language
compiler are includedccccoovviinninconin $50

HT-Forth—A full featured, interactive Forth that works
with the K-OS ONE operating system. It uses a full 32 bit
stack and 32 bit arithmetic to take full advantage of the
68000. Programs are position independent and are lim-
ited in size only by the memory available. Source code
compiles to inline macros, JSR, or BSR so there is no
inner interpreter overhead. Standard ASCI files are used.
Includes full screen editor and a Forth style 68000 as-
SEMDBIET ..o $100

68000Cross Assembler—Written entirely in 8086 as-
sembly language, it is small and fast. All input and output
is done with standard MS-DOS calls so it will run on any
MS-DOS system, even those which are not totally PC
compatible. All 68000 and 68010 instructions are sup-
ported. It has conditional assembly, the symbol table is in
alphabetical order, and cross referencing is included. In-
clude files are supported so it is easy to assemble big
programs, but edit them in small pieces. An equate file
can be produced for PROM based programming $50

ORDER FROM

The Computer Journal
190 Sullivan Crossroad
Columbia Falls, MT 59912
Phone (406) 257-9119

Visa and Mastercard accepted
Prices postpaid in the U.S. and Canada

The Computer Journal / #41

Issue Number 1:

* RS-232 Interface Part One

* Telecomputing with the Apple Il

* Beginner's Column: Getting Started
¢ Build an “"Epram”

issue Number 2:

Issue Number 18:

» Parallet Interface for Apple Il Game Port
* The Hacker's MAC: A Letter from Lee
Felsenstein

¢ $-100 Graphics Screen Dump

e The LS-100 Disk Simulator Kit

¢ BASE: Part Six

e Intertacing Tips & Troubles: Com-
municating with Telephone Tone Control,
Part 1

Issue Number 19:

* Fite Transfer Programs for CP/IM

* RS-232 Interface Part Two

* Build Hardware Print Spooler: Part 1

¢ Review of Floppy Disk Formats

¢ Sending Morse Code with an Apple If

* Beginner's Column: Basic Concepts and
Formulas

issue Number 3:

+ o Add an 8087 Math Chip to Your Dual

Processor Board

* Build an A/D Converter for Apple I

¢ Modems for Micros

« The CP/M Operating System

* Build Hardware Print Spooler; Part 2

issue Number 4:

* Optronics, Part 1: Detecting,
Generating, and Using Light in Electronics
* Multi-User: An Introduction

* Making the CP/M User Function More
Usetul

* Build Hardware Print Spooler: Part 3

* Beginner's Column: Power Supply
Design

Issue Number 6:

¢ Build High Resolution S-100 Graphics
Board: Part 1

¢ System Integration, Part 1: Selecting
System Components

¢ Optronics, Part 3: Fiber Optics

* Controlling DC Motors

¢ Muiti-User: Local Area Networks

¢ DC Motor Applications

issue Number 16:

* Debugging 8087 Code

* Using the Appie Game Port

* BASE: Part Four

® Using the S-100 Bus and the 68008 CPU

¢ Interfacing Tips & Troubles: Build a
*"Jellybean” Logic-to-RS232 Converter

The Computer Journal

s Using The Extensibility of Forth

* Extended CBIOS

» A $500 Superbrain Computer

« BASE: Part Seven

o Interfacing Tips & Troubles: Com-
municating with Telephone Tone Control,
Part 2

« Multitasking and Windows with CP/M: A
Review of MTBASIC

Issue Number 20:

* Designing an 8035 SBC

* Using Apple Graphics from CP/M: Turbo
Pascal Controis Apple Graphics

* Soldering and Other Strange Tales

e Build a S-100 Floppy Disk Controller:
WD2797 Controlier for CP/M 68K

Issue Number 21:

« Extending Turbo Pascal: Customize with
Procedures and Functions

¢ Unsoldering: The Arcane Art

* Analog Data Acquisition and Control:
Connecting Your Computer to the Real
World

* Programming the 8035 SBC

Issue Number 22:

¢ NEW-DOS: Write Your Own Operating
System

* Variability in the BDS C Standard Library
e The SCS| Interface: Introductory
Column

* Using Turbo Pascal ISAM Files

¢ The AMPRO Little Board Coiumn

Issue Number 23:

* C Column: Flow Control & Program
Structure

e The Z Column: Getting Started with
Directories & User Areas

¢ The SCSl Interface: introduction to SCSI
* NEW-DOS: The Console Command
Processor

* Editing The CP/M Operating System

e INDEXER: Turbo Pascal Program to
Create Index

¢ The AMPRO Little Board Column

THE COMPUTER JOURNAL

Back Issues

Issue Number 24:

« Selecting and Building a System

s The SCSI interface: SCSI Command
Protocol

« Introduction to Assembly Code for CP/M
* The C Column: Software Text Filters

o AMPRO 186 Column: Installing MS-DOS
Software

* The Z Column

« NEW-DOS: The CCP Internal Commands
¢ ZTIME-1. A Realtime Clock for the AM-
PRO Z-80 Littie Board

Issue Number 25:

« Repairing & Modifying Printed Circuits
Z-Com vs Hacker Version of Z-System
Exploring Single Linked Listsin C

* Adding Serial Port to Ampro L.B.
Building a SCSI Adapter

New-Dos: CCP Internal Commands
Ampro '186 Networking with SuperDUO
ZSIG Column

Issue Number 26:

* Bus Systems: Selecting a System Bus

* Using the SB180 Real Time Clock

e The SCSI Interface: Software for the
SCSI Adapter

* Inside AMPRO Computers

e NEW-DOS: The CCP Commands Con-
tinued

¢ ZSIG Corner

* Affordable C Compilers

e Concurrent Multitasking: A Review of
DoubleDOS

tssue Number 27:

* 68000 TinyGiant: Hawthorne's Low Cost
16-bit SBC and Operating System

¢ The Art of Source Code Generation:
Disassembling Z-80 Software

e Feedback Control System Analysis:
Using Root Locus Analysis and Feedback
Loop Compensation

* The C Column: A Graphics Primitive
Package

e The Hitachi HD64180: New Life for 8-bit
Systems

* ZSIG Corner: Command Line Generators
and Aliases

* A Tutor Program for Forth: Writing a For-
th Tutor in Forth

* Disk Parameters: Modifying The CP/M
Disk Parameter Block for Foreign Disk
Formats

Issue Number 28:

* Starting your Own BBS

s Build an A/D Converter for the Ampro
L.B.» HD64180: Setting the wait states &
RAM refresh, using PRT & DMA

¢ Using SCS! for Real Time Control

¢ Open Letter to STD-Bus Manufacturers
¢ Patching Turbo Pascal

¢ Choosing a Language for Machine Con-
trol

Issue Number 29:

» Better Software Filter Design

* MDISK: Adding a 1 Meg RAM disk to
Ampro L.B., part one.

* Using the Hitachi HD64180: Embedded
processor design.

* 68000: Why use a new OS and the 680007
* Detecting the 8087 Math Chip

* Floppy Disk Track Structure

* The ZCPR3 Corner

Issue Number 30:

* Double Density Floppy Controller

e ZCPR310OP for the Ampro L.B.

* 3200 Hacker's Language

¢ MDISK: 1 Meg RAM disk for Ampro LB,
part2

* Non-Preemptive Multitasking

s Software Timers for the 68000

e Lilliput Z-Node

¢ The ZCPR3 Corner

¢ The CP/M Corner

Issue Number 31:

* Using SCSI for Generalized I/O

¢ Communicating with Floppy Disks: Disk
parameters and their variations.

* XBIOS: A replacement BIOS for the
SB180.

* K-OS ONE and the SAGE: Demystifing
Operating Systems.

¢ Remote: Designing a remote system
program.

* The ZCPR3 Corner: ARUNZ documen-
tation.

issue Number 32:

* Language Development: Automatic
generation of parsers for interactive
systems.

¢ Designing Operating Systems: A ROM
based O.S. for the Z81.

« Advanced CP/M: Boosting Performance.
* Systematic Elimination of MS-DOS
Files: Part 1, Deleting root directories & an
in-depth look at the FCB.

e WordStar 4.0 on Generic MS-DOS
Systems: Patching for ASCIl terminal
based systems.

e K-OS ONE and the SAGE: Part 2, System
layout and hardware configuration.

* The ZCPR3 Corner: NZCOM and ZC-
PR34.

Issue Number 33:

* Data File Conversion: Writing a filter to
convert foreign file formats.

* Advanced CP/M: ZCPR3PLUS, and how
to write self relocating Z80 code.

* DataBase: The first in a series on data
bases and information processing.

* SCSI for the S-100 Bus: Another example
of SCSI's versatility.

* A Mouse on any Hardware: Implemen-
ting the mouse on a ZB0 system.

* Systematic Elimination of MS-DOS
Files: Part 2—Subdirectories and extnded
DOS services.

s ZCPR3 Corner: ARUNZ, Shells, and pat-
ching WordStar 4.0

issue Number 34:

* Developing a File Encryption System:
Scramble data with your customized en-
cryption/password system.

o DataBase: A continuation of the
database primer series.

» A Simple Muititasking Executive:
Designing an embedded controller

multitasking system.

e ZCPR3: Relocatable code, PRL files,
2CPR34, and Type 4 programs.

¢ New Microcontrollers Have Smarts:
Chips with BASIC or Forth in ROM are easy
to program.

» Advanced CP/M: Operating system ex-
tensions to BDOS and BIOS, RSXs for
CPIM2.2.

* Macintosh Data File Conversion in Tur-
bo Pascal.

issue Number 35:

* All This & Modula-2: A Pascal-tike alter-
native with scope and parameter passing.

e A Short Course in Source Code
Generation: Disassembling 8086 software
to produce modifiabie assem. souce code.

¢ Real Computing: The National
Semiconductor NS32032 is an attractive
alternative to the Intel and Motorola CPUs.
¢ S-100 Eprom Burner: a project for S-100
hardware hackers.

e Advanced CP/M: An up-to-date DOS,
plus details on file structure and formats.

¢ REL-Style Assembly Language for CP/M
and Z-System: Part 1-selecting your
assembler, linker, and debugger.

e ZCPR3 Corner: How shells work,
cracking code, and remaking WordStar 4.0.

issue Number 36:

Issue Number 38:

issue Number 40:

* |nformation Engineering: Introduction

* Modula-2: A list of reference books

* Temperature Measurement & Control:
Agricultural computer application

* ZCPR3 Corner: Z-Nodes, Z-Plan, Am-
strand computer, and ZFILE!
* Real Computing: NS32032 hardware for
experimenter, CPU’'s in series, software
options

* SPRINT: A review

* ZCPR3's Named Shell Variables

* REL-Style Assembly Language for CP/M
& Z-Systems, part 2

¢ Advanced CP/M:
programming

Environmental

Issue Number 37:

* C Pointers, Arrays & Structures Made
Easier: Part 1, Pointers

* ZCPR3 Corner: Z-Nodes, patching for
NZCOM, ZFILER

¢ Information Engineering: Basic Concep-

ts; fields, field definition, client
worksheets
e Shells: Using ZCPR3 named shell

variables to store date variables

* Resident Programs: A detailed look at
TSRs & how they can lead to chaos

¢ Advanced CP/M: Raw and cooked con-
sole /O

* Real Computing: NS320XX floating
point, memory management, coprocessor
boards, & the free operating system

* 28DOS-Anatomy of an Operating
System: Part 1

¢ C Math: Handling Dollars and Cents
With C.

e Advanced CP/M: Batch Processing
and a New ZEX.

o C Pointers, Arrays & Structures Made
Easier: Part 2, Arrays.

® The Z2-System Corner: Shells and ZEX,
new Z-Node Central, system security un-
der Z-Systems.

e Information Engineering: The portable
Information Age.

® Computer Aided Publishing: Introduc-
tion to publishing and Desk Top Publish-
ing.

e Shells: ZEX and hard disk backups.

* Real Computing: The National Semi-
conductor NS320XX.

o ZSDOS--Anatomy of an Operating Sys-
tem, Part 2.

Issue Number 38:

e Programming for Performance: Assem-
bly Language technigues.

® Computer Aided Publishing: The Hewl-
eft Packard LaserJet.

e The Z-System Corner: System en-
hancements with NZCOM.

e Generating LaserJet Fonts: A review of
Digi-Fonts.

e Advanced CP/M: Making old programs
Z-System aware.

o C Pointers, Arrays & Structures Made
Easier: Part 3: Structures.

® Shells: Using ARUNZ alias with ZCAL.
® Real Computing:: The National Semi-
conductor NS320XX.

® The Computer Corner.

e Programming the LaserJet: Using the
escape codes.

® Beginning Forth Column: introduction.
® Advanced Forth Column: Variant Rec-
ords and Modules.

o LINKPRL: Generating the bit maps for
PRL files from a REL file.

¢ WordTech's dBXL: Writing your own
custom designed business program.

& Advanced CP/M: ZEX 5.0—The ma-
chine and the language.

e Programming for Performance: Assem-
bly language techniques.

& Programming Input/Output With C:
Keyboard and screen functions.

e The Z-System Corner: Remote access
systems and BDS C.

¢ Real Computing: The NS320XX

o The Computer Corner.

TCJ ORDER FORM

Subscriptions U.S. Canada Surface Total
Foreign
6 issues per year
(0 New O Renewal lyear $16.00 $22.00 $24.00
2years $28.00 $42.00

Back Issues ———————————— ————— $3.50ea. $3.50ea. $4.75ea.

Sixor more-———-————"——(————————— $3.00 ea. $3.00ea $4.25ea.

#'s

Expiration date

Name

All funds must be in U.S. dollars on a U.S. bank.
O Checkenclosed O VISA O MasterCard Card#

Signature

Total Enclosed

Address

City

#41

State_______ ZIP

THE COMPUTER JOURNAL

190 Sullivan Crossroad, Columbia Falls, MT 59912 Phone (406) 257-9119

assembly or “C”. That is the big question I
always get. Our clients asked the other day
if I was doing this project in “C”. After 1
stopped laughing, I explained it was all
done in assembly (after all T only have 4K
of ROM to use).

Talking of programming, we have had
many changes, and all at the last minute.

- We finished the proto-type and shipped to
the client. They started testing and chang-
ing their mind. 1 had chosen the variables
and procedures based on a reverse engi-
neering of a previous product. The new
product was to do the same thing, but they
now want it to do it differently. Our mis-
take was not producing a software specifi-
cation of the product. By that I mean, put-
ting in writing just what the software will
and will not do. That way when they
change their minds (as they have several
times) you can charge them for it.

As I ook back at the code, I nozticed it
turned out much as if it were written in
Forth. I feel that is why I like Forth, it is
much the same way I normally program.
The most efficient way to write code is in
modules. I wrote all the I/O units first.
Then wrote master modules that just
called all the needed smaller units. What 1
call the main section just calls the master
modules in proper order. The original pro-
gram was straight line, in that one event
happened after another was completed.
That was my first version of the main sec-
tion.

Our client started demanding the
status indicators be active at any time
(multitasking). They want the ready light
to be on or off depending on levels of
pressure. This means it must be checked
continuously no mater what is happening.
That of course is not possible in straight
line, except through complex interrupt
routines. 1 have chosen not to have the
timer be interrupt driven and so changed
my main line code into loops. My main
now consists of calling subroutines that
check pressure, flags, I/0, and time. Based
on status checks each of the subs may call
other subroutines to do something (indi-
cate Ready) if needed. The thing that was
important was being able to rewrite two
pages of code in one day to change from
straight line to a multitasking like opera-
tion. That would not have been possible if
I had not modularized the code when I
started. I also put all variables or triggering
values in the beginning equates. So as our
client changed his mind, I only changed
one equate and it was done.

As one can most likely guess our
budget is running over. We had agreed to
design and build 20 units. Looking back I
can see now that the designing and proto-
typing is actually what our boss bid on.
The manufacturing of the 20 units has
taken considerable time, so much in fact
that I feel it should have been a separate

The Computer Journal / #41

bid and contract structure. Proto-typing a
product is mostly a time based operation.
Buying products for a prototype can come
from anywhere, even used or junk boxes.
When it comes to making them on a regu-
lar bases, you have to deal with suppiiers,
changing prices, mis-shipped items, incor-
rect design information, variations in prod-
uct runs, and enough other problems to
keep one or two people working full time.
We are spending at least 8 hours (if we are
lucky) a week (every week) on coordinat-
ing items for the soon to be built 20 units.
I am still concerned about some other
items like shipping boxes, pre-shipment
testing, burn in space, and storage.

We are a small group of design consult-
ants and are using a 100 square foot room
for storage and laboratory facilities. When
we really start testing the 20 units our
hundred feet is going to be too small many
times over. We are going to find our needs
will be 10 times our current space and no
budget to make any changes. I have been
down the startup road before with other
companies, and it is interesting to see how
little it takes to run into the same old prob-
lems.

ATs

I decided my home system needed to
be at least an AT class machine. I have
plenty of systems, but do so much work at
home using programs like Orcad that
work better with AT style machines. My
XT was doing find, but just too slow for
CAD and mouse based programs. I pur-
chased an AT clone board from a discount
warehouse. It worked fine for the first
week or two and then I started getting er-
rors and crashes. My freeze mist said it
was a 82C101 chip. The AT clones are
mostly custom chip sets and one of them
was running very hot (besides the 80286
being VERY hot). I tried more cooling
but this was definitely a failed item. I
shipped it back and got a new chip in-
stalled by them. It works now, but I plan
on a few changes.

In one of our newsletters from a local
club, the author explained how his system
had become flaky. He spent $200+ for a
vertical case and more cooling and his
problems went away. I started checking
the cooling in my XT case, now with an
AT board. My question is what cooling.
The fan on the power supply only cools the
power supply. If you put anything other
than a slow running XT in the box, extra
cooling is a must. The extra heat from a
80286 which runs very hot normally, a
PAL which also runs hot normally, and
hard disk, must go some place — preferably
outside the unit.

What 1 am going to try is mounting a
fan under the hard drive for cooling it’s
chips. A portion of the air will travel along
under the drives mounting bracket and
over the PAL and 80286. I have some

cooling fins for the bigger chips, but the
80286 is smaller than the those custom
blocks. That means sawing one of the heat
sinks down to size and sticking it in place. I
plan on just using heat sink compound and
not the thermal epoxies. Another option is
heat sink compound and two small dabs of
silicon hi-temp sealant to hold the sink in
place. That would make it possible to re-
move them later. If this doesn’t work at
keeping things cool, I may have to use
more than one fan. These are 12 Volt fans
and I can just stick them on one of the
unused (or in parallel) disk drive power
lines.

Now What?

I think I have about said it all for now. I
have to start preparing for teaching a Jun-
ior College class (Introduction to Elec-
tronics). I have been trying to find an
opening to do a little part-time teaching
and one finally came my way. This is look-
ing like a fun class, as all we do is get
people into understanding the terms and
concepts.

It occurred to me today that I have not
mentioned a magazine 1 get. When we
started looking for items for our project a
friend suggested Sensors Magazine. 1 have
received several issues and find it very use-
ful. It is not thick, but it does cover a few
ideas and concepts about using sensors
every other month. The list of manufac-
turers that advertise could be invaluable.
They also have a special book that lists all
the sensors and their manufacturers. We
haven’t bought it but suspect it would be
worth the money if you are buying lots of
different types of sensors. The magazine is
a freebee if your business uses sensors.

I still need to hear about having a con-
test using little CPUs and or articles about
the same. I have since found a Forth pro-
grammer who is also doing a 68705 proj-
ect. He also gave me a copy of a Forth for
the 6805 series. What 1 need now is free
time to modify the code for the type of
Forth I want for my projects. In fact that is
all I need now—TIME L

SENSORS
174 Concord St.
POB 874
Peterborough, NH 03458-0874
(603)924-9631

39

The Computer Corner

by Bill Kibler

Busy, busy, busy...it seems never to

stop! Got lots to talk about and little time.

- Been so busy lately, I have to turn this out

in one day. Let’s see if I can cover every-
thing.

CADS

Got the version II of OrcadPCB. They
have fixed some of the problems. It is now
possible to move and place text without
the system locking up on you. I was touch-
ing up the boards from the project, getting
them ready for final production, and had
to rearrange the silk screen text. My boss
wants the text perfect and all of equal size,
so almost all of it had to be changed (or-
cadPCBI text and pads are a mess). Half
way through one editing period (between
saves) it locked up and went away (version
I that is).

I had real concerns about changing ver-
sions before the boards had been com-
pleted, but I didn’t have any choice. What
I needed to do the most was text and pad
size changes, just what version one was
blowing up on. So out came version two
and their convert utility. The BAT file was
set up for their special directory arrange-
ment (I restored from floppy) so I had to
do it manually. Even doing things differ-
ently it all was up and running in 10 min-
utes. I guess my fears were not founded in
reality (this time). Version two has a few
bugs, but for the most part works OK.

My biggest complaint was being unable
to use a printer with the program. No way
to proof your work is not acceptable for
me. They have changed this, although
when I ran the printer program it printed
the drill locations OK, but produced a
blank silk screen board. I need to check
this out more (may not have a correct
switch set in their software). I still think I
will use FPLOT for the board layouts as it
is about five times faster than the printer
routines. The Orcad printer routines in
both SDT and PCB are very slow, al-
though not as slow as a plotter.

We outputted the files to a 10 inch per
second plotter and it took a half hour to
plot one side of the board. When you are
proofing the board what you want is speed
and usable detail. That is why I still think
FPLOT is best by far. The text handling is
much better than it was, however you still
can not edit the actual text. What you can
do, and it does work, is delete the text and

40

then write the new or corrected text back.
I do not really find this acceptable, but
maybe the next upgrade will finally get it
(and other problems) right. I still like their
support as we received their update with-
out having to do anything (as long as you
are still in warranty—1 year from date of
purchase).

My writing about CAD problems
prompted one group to send me their
CAD program. I talked to one of the
people on the phone and he indicated it
was a pretty good program with lots of fea-
tures that Orcad didn’t have. When I
asked him about how easy it was to use, he
indicated that most people had to talk to
him to get started. Well, I received their
package and was ready to send it back af-
ter looking at the documents. Not feeling
like that was much of a review I will load it
on the hard disk and give it a try. The rea-
son I wanted to send it back was it is very
similar to ACAD. Personally I dislike
ACAD a real big bunch. To me ACAD is
a perfect example of how not to produce a
user interface. It is true that these prod-
ucts are older designs and a Iot of knowl-
edge has developed over user interfaces
since they came out.

Without having used the program, this
other CAD product is scoring a perfect
zero. I see lots of programs and I must say
that a large percentage of them would get
this mark. Why? I score documentation as
being almost as important as the actual
program. Large slick or good looking
books is not what I am after. They must be
well organized, reflect the design philoso-
phy of the software, have plenty of in-
dexes, a tutorial section (step by step in-
struction with sample screens), and have
many levels of user ability supported. Most
older styles of manuals have a section in
which all the commands are listed alpha-
betically. I find that almost useless. When
help is needed, it is usually based on some
command activity in which we have no
idea what the command is, just the func-
tion we want.

Let me say that some of the biggest
software companies still don’t have it right
either. I prefer Wordstar over Wordper-
fect because WS has the menus broken
down into understandable groups (file,
screen, misc.), whereas WP just has an al-
phabetized list of commands. Another ¢x-

ample is when Turbo Pascal first came out
in the CP/M days, they had two manuals.
The first manual was the programmers
guide which dryly explained commands.
The other was a tutorial approach to using
TP. I know of few peopie who used the
programmers guide, but most used the tu-
torial as it provided better and less techni-
cal advice on using commands. The ex-
amples in the tutorial also helped clarify
many unsaid (or unwritten) concepts.

Simply put I feel Orcad is doing well
because it is a current product using the
more recent concepts in software engi-
neering. Those are: a good menu driven
system (5 or 6 main menus), easy switch-
ing between mouse and keyboard input,
tutorial and topic based documentation, a
low level of technical-ese used in the docu-
mentation, and a common sense use of
commands. The way to test for this is by
seeing how much studying it takes before
you can use the program. I was using Or-
cad SDT after 20 minutes of minor in-
struction by my boss (no manuals needed
to start). As I continued to use it, I was
able to increase my skills and abilities with-
out extra or special courses on the pro-
gram (just browsing the book). Both
Wordperfect and ACAD fail those tests.

68705

Well it is great to see other magazines
reading my columns, or maybe that Mo-
torola’s learning package is turning people
on to their devices. MicroCorucopia has
several articles on the education package
(seemed like edited down version of Mo-
torola’s work to me) plus several short ar-
ticles on using the I/O. I am glad to see
this, as a lot of projects now done on big-
ger CPUs are actually better situated for
the little guys. It seems like so much more
fun too!

I have gotten a few comments on a
contest, and in fact one entry. Using a
1802 to blink lights by Lee Hart. Seems he
had manufactured an 1802 based system
and had built this some time back to show
how their system worked. He also ex-
plained to me his two good features of the
1802 —low current needs and a Forth
ROM operating system. He wrote the
Forth ROM system and I have asked him
to write us an article about it. What I want
him to cover is how and why Forth made
programming in real situations better than

The Computer Journal / #41

