Applications

Programming -~ User Support =—-~=—

Issue Number 42 January / February 1990 $3.00

Dynamic Memory Allocation
Using BYE with NZCOM
C and the MS-DOS Screen
Lists and Object Oriented Forth
The Z-System Corner
68705 Embedded Controller Application
Advanced C/PM
The NS 32000

i
|
The Computer Corner

ISSN # 0748-9331




The Computer Journal

Editor/Publisher
Art Carlson

Art Director
Donna Carison

Circulation
Donna Carlson

Contributing Editors
Bill Kibler
Bridger Mitchell
Clem Pepper
Richard Rodman
Jay Sage
Dave Wenstein

The Computer Journal is pub-
lished six times a year by Technol-
ogy Resources, 190 Sullivan Cross-
road, Coulmbia Falls, MT 59912

(406) 257-9119

Entire contents copyright © 1990
by Technology Resources.

Subscription rates —-$16 one year
(6 issues), or $28 two years (12 is-
sues) in the U.S., $22 one year in
Canada and Mexico, and $24 (sur-
face) for one year in other countries.
All funds must be in U.S. dollars on a
U.S. bank.

Send subscription, renewals, ad-
dress changes, or advertising in-
quires to: The Computer Journal, 190
Sullivan Crossroad, Columbia Falls,
MT 59912, phone (406) 257-9119.

The COMPUTER
JOURNAL

Issue Number 42 January / February 1990

(e [ 0o ) o -1 R 3

Dynamic Memory Allocation............ccoocuerreerriciirennnnnn. 4
Techniques for allocating memory at run time with
examples in Forth. By Dreas Nielsen.

Using BYE with NZCOM .........cccocmrrrrerirceiiniicnnee 1
Getting BYE and NZCOM to peacefully coexist is
not easy —here’s how to do it. By Chris McEwen.

C and the MS-DOS Screen Character Attributes .. 15
How to talk to the screen with C. By Clem Pepper.

[S00) 1 d W o] (17111 o TR 21

Lists and object oriented Forth.
By Dave Weinstein.

The Z-System Corner ...................... cererrreeen——————— 24

Genie Roundtabie discussions, BDS Z, and a
review of some Z-System fundamentals.
By Jay Sage.

68705 Embedded Controller Application .............. 29

An example of a single-chip microcontroller
application. By Joe Bartel.

Advanced CP/M ......cccoomeimiinicime e nennenne 31
PluPerfect Writer and using BDS C with REL files.

By Bridger Mitchell.

Real Computing ......cccovvemeiinniecninnnnnnnesesscasenens . 34

The NS 32000. By Richard Rodman.

Computer Corner ...........ocoirrivvcmeriviimrerecssssneeeecs 40
By Bill Kibler.



Plu*Perfect Systems == World-Class Software

(222 1o (] o TTT T 1= g $75
Task-switching ZCPR34. Run 2 programs, cut/paste screen data. Use caiculator,
notepad, screendump, directory in background. CP/M 2.2 only. Upgrade licensed
version for $20.

A3V (= o TS $69.95

Auto-install Z-System (ZCPR v 3.4). Dynamicaily change memory use.
Order Z3PLUS for CP/M Plus, or NZ-COM for CP/M 2.2.

(o (0] a=T g (Y03 L (=) O $35

Powerful text and program editor with EMACS-style features. Edit files up to
200K. Use up to 8 files at one time, with split-screen view. Short, text-oriented
commands for fast touch-typing: move and delete by character, word, sentence,
paragraph, plus rapid insert/delete/copy and search. Built-in file directory, disk
change, space on disk. New release of our original upgrade to Perfect Writer
1.20, now for all Z80 computers. On-disk documentation only.

ZSDOS......eec s $75, for ZRDOS users just $60

Built-in file DateStamping. Fast hard-disk warmboots. Menu-guided installation.
Enhanced time and date utilities. CP/M 2.2 only.

[0 0 Y] 0.1 £ $30 - $45

Use MS-DOS disks without copying files. Subdirectories- too. Kaypro
w/TurboRom, Kaypro w/KayPLUS, MD3, MD11, Xerox 820-1 w/Plus 2, ON!, C128
w/1571 -- $30. SB180 w/XBIOS -- $35. Kit -- $45. Kit requires assembly language
expertise and BIOS source code.

MULTICPY ...occiminisisieesteessnntissennssmsssnnsninssansnasssmn s e nssasansnsssssssassnas $45

Fast format and copy 90+ 5.25" disk formats. Use disks in foreign formats.
Includes DosDisk. Requires Kaypro w/TurboRom.

JEtFINd....... it e s e nans $50

Fastest possible text search, even in LBR, squeezed, crunched files. Also output
to file or printer. Regular expressions.

To order: Specify product, operating Plu*Perfect Systems
system, computer, 5 1/4" disk format. 410 23rd St.
Enclose check, adding $3 shipping ($5 Santa Monica, CA 90402
foreign) + 6.5% tax in CA. Enclose invoice (213)-393-6105 (eves.)

if upgrading BGii or ZRDOS.

BackGrounder ii ©, DosDisk ©, Z3PLUS ©, PluPerfect Writer ©, JetFind ©
Copyright 1986-88 by Bridger Mitcheil.

The Computer Journal / #42



Editor’s Page

Production Changes

The production of a magazine involves
a lot of time—both calendar time and
people hours. We have been planning for
production (printing and binding) changes
which will enable us to get TCJ out on
schedule, with a shorter lead time, while
freeing up more of our time for develop-
ment.

Part of the change involved working
with a new vendor, and we sent the cam-
era ready copy out on schedule. Then we
waited. And we waited some more. Finally,
after the issue was scheduled to have been
shipped, we canceled and got the artwork
back.

Now, after losing about four weeks, we
are going back to the previous vendor.
They hadn’t left room in their schedule for
TCJ, so we’ll have to squeeze it in. What a
mess!

This issue will arrive very late, but we
are planning on following with #43 back
on the normal schedule.

Microcontrollers

There are many situations where a
dedicated microcontroller is a better
choice than a microcomputer--but there is
very little application level information
available. The design of microcontroller
applications is one of the long-delayed
projects I will be working on.

I divide controller applications into
three categories, but they are not all inclu-
sive and there is a lot of overlap. One cate-

gory is Independent, where the device has -

no connections to another device. An ex-
ample of this could be a hand-held unit
which measures and records air tempera-
ture and velocity (wind speed), then dis-
plays temperature, velocity, and the wind
chill factor. This could be used to deter-
mine the potential dangers of exposure for
outdoors workers and sportsmen. It could
even be carried by a downhill skier so that
a resort could evaluate the potential dan-

The Computer Journal / #42

gers for their guests. A further enhance-
ment could include thermosensors on the
skier’s skin (both front and back) to evalu-
ate ski apparel--perhaps the material
should be thicker and more wind resistant
on the front because that is the prevailing
direction of the air flow.

A second category is Wired-Remote,
where the device communicates with a
host system. Although I use the term
“Wired,” the communications can be car-
ried out by wire, radio, optical, or other
means. An example of this could be a unit
which monitors refrigeration systems, re-
cording time, temperature, door openings,
etc. It would retain this data for uploading
to the host system upon interrogation, but
would generate an alert signal for an out
of control situation. The host system
would not have to poll the cooling systems
to determine if they were within limits be-
cause the remote would alert it to any
problems.

A third category would be buss or
daughter board units where the device
communicates directly through the buss.
Devices in this category would be plat-
form-dependent. The busses considered
for now will be PC/AT, STD, S-100, and
custom busses. Depending on the configu-
ration, the host system could be a normal
microcomputer or another microcon-
troller.

I am interested in distributed and par-
allel processing using multiple controllers
for real-world measurement and control
applications. I am not comfortable with us-
ing one CPU (regardless of how fast or
powerful it is) for multitasking real time
control. Much of the initial work will in-
volve developing guidelines for selecting
between a microcomputer and a micro-
controller, and determining the most suit-
able processor. Application requirements,
size, environmental conditions, hardware
and software development costs (and

time), production costs, production quan-
tity, and market conditions will all be con-
sidered.

Evaluating and designing the applica-
tion will often involve at least as much
time and effort as the actual hardware and
software design. Since this publication is
about computers and not control engi-
neering, I am not sure how much of the
application design information should be
included. But, knowledge of the applica-
tion is vital to successful design, and the
best employment opportunities are for
people who understand both applications
and hardware/software. I need your feed-
back on how much (if any) of this you
want to hear about. I will also appreciate
information from those now working in
this field.

Schematic Drawing

The controller hardware articles will in-
volve a lot of schematics, and my hand
drawn schematics are terrible. I just
wouldn’t prepare hardware articles if I had
to hand ink the schematics--I needed a
schematic drawing program which would
would work with the LaserJet.

I first tried a graphics drawing pro-
gram, but that was completely unsuitable.
Next I tried a Computer Aided Drafting
program (Generic CADD) which was
good for machine shop type drawings, but
was poor for schematics. I am now work-
ing with SCHEMA II+ (Omation, Inc.,
801 Presidential Drive, Richardson, TX
75081, (214)231-5167).

My requirements are for a program
which will enable me to produce working
and camera ready schematic drawings. I
want something which is powerful enough
to save me time, but flexible enough to
stay out of my way and let me do things
my way. I do not at this time need printed

{Continued on page 30)




Dynamic Memory Allocation

by Dreas Nielsen

Many programs require the ability to manipulate data elements
of indeterminate size or number. Text strings are an example of
one such type of data: each string may be a different length, and it
is usually neither feasible nor economical to statically allocate (at
compile or assembly time) a buffer capable of holding the largest
possible string. Programs that manipulate arrays of numbers often
need to establish their memory requirements dynamically —that is,
at run time, without the use of a statically allocated buffer. Crea-
tion of linked lists, trees, and other more complex data structures
also typically cannot be carried out with statically allocated mem-
ory. The solution to this problem is to provide the program with a
means to dynamically allocate memory at run time. Dynamically
allocated memory is drawn from the pool of main memory re-
maining after a program has been loaded and the stack (and other
language-spercific data structures) have been established. Dynamic
memory allocation requires more complex run-time support than
static buffers (which require none), but provides greater flexibility.
If the available memory is to be re-used repeatedly for different
purposes, the special-purpose code needed to manipulate a stati-
cally allocated block may be equivalent in size and complexity to
that for general-purpose dynamic memory allocation.

Dynamic memory allocation is used by many common lan-
guages. In some of these, it is solely under the control of the
language itself (e.g., strings in BASIC and dBase, all objects in
Smalltalk and Lisp), in others partial or complete control is given
to the programmer (e.g., Pascal, C, and Modula-2). Explicit con-
trol of dynamic memory allocation is a powerful tool, and funda-
mental to effective implementation of many useful algorithms.

This article provides an introduction to the implementation of
dynamic memory allocation, covering a few of the principles and
providing examples for illustration. This is a topic that does not
seem to be well covered in the literature; indeed, Knuth (1973)
and Aho, Hopcroft, and Ullman (1983) seem to be the only com-
monly available references that treat it in depth. On the other
hand, why would you want to know anything more about the im-
plementation of such an arcane feature, particularly if you are not
writing a compiler or operating system? First of all, you may need
(or want) to use a language that does not intrinsically provide this
feature but does have the systems-programming capability to im-
plement it. Secondly, the memory allocation functions provided by
a language or standard library may not exactly suit your needs.
Curiosity, of course, may be sufficient reason in and of itself.

Despite the relative paucity of information, dynamic memory
allocation is not as complex as it may seem. Furthermore, an
understanding of the techniques and costs involved can help you
decide when a general-purpose routine is suitable, when a special-
ized routine may be better, and when to do without dynamic mem-
ory allocation. Source code for both a simple general-purpose rou-
tine and a more efficient specialized routine is provided for illus-
tration. The implementation of dynamic strings is used as an ex-
ample application of the general-purpose routine.

General Principles
A prerequisite for dynamic memory allocation is a poot of con-
tiguous available memory from which smaller blocks can be atlo-
cated. This free memory space is generally called the heap; dy-
namically allocated subsets of it commonly are referred to as
blocks. The physical location of the heap and the way in which it is

isolated from other features of the run-time environment are de-
pendent on the language in use and often, its implementation.
These details will not be considered here. (Dynamic allocation of
space for local variables, which typically uses the stack rather than
a heap, will also not be considered.) Other issues related to dy-
namic memory allocation, such as the identification of free blocks
within the heap, the application interface, and efficiency considera-
tions, are more general. The following discussion will address these
topics. Note that although the principles described may apply, for
instance, to BASIC’s dynamic string handling, they will not neces-
sarily allow you to add new dynamic memory functions to BASIC
or some other languages.

The Free List

The heart of any memory allocation routine is a data structure
that identifies the location of all free blocks of memory; this is
conventionally called the “free list.” Typically it takes the form of a
singly-linked list in which each node identifies the location of a
block of available memory, the size of the block, and the position
of the next node in the list. At first glance, allocation of storage
space for the free list itself would seem to be a problem. Initially,
all free memory would be in one biock, requiring only one node,
but after a series of allocations and de-allocations, the list may
contain any number of nodes. Where and how, then, is the free list
stored?

One answer is to store the pointers to free memory in the free
memory itself. This sounds a bit like a snake swallowing its own
tail, but is actually quite simple and straightforward to implement.
A small portion of each free block is used to store the block size
and pointer to the next node, as shown in Figure 1. The pointers to
the free blocks are therefore implicit —the address of each node is
itself the address of a free block. One consequence of this method
of storage is that free blocks cannot be smaller than a node of the
free list. In Figure 1 the nodes are shown sorted from low to high
addresses. This arrangement makes deallocation easier, as shown
below, but it is not the only scheme that can be used. Nodes may
be sorted by block size, for example, to make allocation simpier.

Other methods may also be used to store the free list. The
second example shown below uses a bit map, an approach made
possible by the fact that blocks are of a fixed size and the total
number of blocks is known.

Types of Dynamic Memory Allocation

There are several important distinctions among memory alloca-
tion systems. As mentioned previously, one of these is the issue of
implicit versus explicit control—whether language features alone
can make use of this resource or whether the programmer can use
it too. Although implicit and explicit control of memory allocation
are not generally found together, they are not mutually exclusive.
The dynamic string package presented here, for example, auto-
matically allocates and de-allocates memory to carry out its func-
tions, but can coexist with user programs making explicit use of the
same functions.

When a language has sole access to memory allocation func-
tions it can control all pointers to allocated space, and so need not
replace each deallocated block back into the free list as soon as the
application program releases it. This technique of delayed recla-
mation of de-allocated space (“‘garbage collection”) allows pro-
grams to run faster as long as there is sufficient free memory in the

The Computer Journal / #42



heap, at the expense of a relatively lengthy delay for
garbage collection whenever the heap becomes ex-
hausted. Lisp is an example of a language that man-
ages memory using garbage collection. The tech-
nique is particularly appropriate for programs that
require dynamically allocated memory but are ex-
pected to ordinarily require less than the total
amount of memory available. This article describes
only immediate reclamation of de-allocated mem-
ory; Knuth and Aho et al. should be consulted re-
garding strategies for garbage collection.

Another important distinction between memory
allocation schemes is related to the need for fixed or
variable sized memory blocks. An application that
creates and destroys only a single type of uniformly-
sized structure may use a different strategy than one
that manipuiates structures of many different sizes.
Implementations satisfying these different needs
may vary greatly in complexity and efficiency. Some
of these differences are illustrated by the examples
described below.

A third important factor is the sequence of allo-
cation and de-allocation requests that will be gener-
ated by an application. If de-allocation proceeds in
the inverse order of allocation (i.e., like a stack), spe-
cialized routines tailored for the purpose may be
made much more efficient than general-purpose
memory allocation functions. Other patterns of allo-
cation and de-allocation requests can lead to varying
fragmentation of the free list; memory allocation
routines can also be optimized to cope with a high or
low degree of fragmentation.

Application Interface

A simple example of dynamic memory use is a
program which sorts or counts values in an input file
by constructing a binary tree in memory as the file is
read. A new node of the tree would be allocated
every time a new item is found in the file. The sorted
output can then be written to another file during an
in-order traversal of the tree. A simple application
such as this needs only to be able to allocate addi-
tional memory as needed. Any application much
more complicated than this, however, will generally
need to de-allocate memory as well. If the program
described above is extended to read several files in
succession, the tree should be de-allocated before
the next file is read, to reduce the risk of running out
of memory. This application is still simple enough,
however, that performance can be improved by re-
claiming the entire heap at once rather than de-allo-
cating the tree node by node.

Application programs generally make use of dy-
namic memory allocation, therefore, via two rou-
tines: one to allocate memory and one to release it.
These routines are known to C programmers by the
names “malloc” and “free” and to Pascal program-
mers as “new” and “release.” Initialization of the
dynamic memory buffer and routines is performed
by the standard runtime code for these languages. If
you write your own memory allocation routines, you
will have to take care of this detail yourself, provid-
ing a third (initialization) interface to application
software. The initialization routine is responsible for
marking the entire contents of the heap as available;
it may carry out other tasks also, depending upon
the needs of the allocation and de-allocation rou-
tines.

The Computer Journal / #42

LISTING 1
Screen 1
0. ( Dynamic Memory Allocation -- Screen 1 )
1. ( Each block of free space begina with a 4-byte control block.
2. The first word contains the address of the next free block
3. [or 0 if none] and the second contains the number of bytes in
4. the current block [including the control block]. )
5.
6. ( Create pointer to beginning of free space, w/ size=0. )
7. 2VARIABLE FREELIST 0 0 FREELIST 2!
8.
9. ( Initialize memory pool. )
10. : DYNAMIC-MEM { etart _addr length -- )
11. OVER DUP FREELIST ! ( Save starting addr. )
12. . 0 SWAP ! ( Set null pointer. )
13. SWAP 2+ ! ( Save length in 1st control block. )
14. H
15.
Screen 2
0. ( Dynamic Memory Allocation, Screen 2: MALLOC )
1. ( Returns pointer to n free bytes, or 0 if there is no space.
2. Word before returned address holds size of block. No free
3. blocks of less than 4 bytes are allowed. )
4. : MALLOC ( n --n )
5. 2+ FREELIST DUP
6. BEGIN
7. WHILE DUP @ 2+ @ ( Size ) 2 PICK U<
8. IF @ @ DUP ( get new link )
9. ELSE DUP € 2+ @ ( size ) 2 PICK - 4 MAX DUP 4 =
10. IF DROP DUP & DUP @ ROT |
11. ELSE 2DUP SWAP @ 2+ ! SWAP @ +
12. THEN 2DUP ! 2+ 0 ( store size, bump pointer, )
13. THEN ( and set exit flag )
14. REPEAT SWAP DROP ( dump #bytes ) ;
15.
Screen 3
0. ( Dynamic Memory screen 3: FREE )
1. ( Deallocates memory. Pointer passed must be from MALLOC )
2. : FREE { ptr == )
3. 2- DUP @ SWAP 2DUP 2+ ! FREELIST DUP
4. BEGIN DUP 3 PICK U< AND
5. WHILE @ DUP @
6. REPEAT ( at exit: ( size block ptrl )
7. DUP @ DUP 3 PICK ! ?DUP ( sz blk ptrl 0 -or- ptr2 ptr2 )
8. IF DUP 3 PICK 5 PICK + = ( size blk ptrl ptr2 t/f )
9. IF DUP 2+ @ 4 PICK + 3 PICK 2+ | € 2 PICK |
10. ELSE DROP THEN ( sz blk ptrl )
11. THEN ( sz blk ptrl )
12. DUP 2+ @ OVER + 2 PICK = ( sz blk ptrl t/f )
13. IF OVER 2+ @ OVER 2+ DUP @ ROT + SWAP | SWAP @ SWAP !
14. ELSE |
15. THEN DROP ;

Efficiency

The efficiency of dynamic memory allocation is principally a function of the
time required to grab and release a chunk of memory. The amount of overhead
space (i.e., the number of extra bits required for each allocated block) is also an
efficiency consideration, but one that is likely to be less important than that of
time. Factors that can affect the time required to allocate or free a block of
memory are:

The amount of free space available.

The pattern of previous allocation and de-allocation requests; that is, the
degree of fragmentation of the free space.

The size of the block or blocks to be allocated.

The algorithms used.

Clearly, these all interact in ways that may differ from one application to
another and even from one data set to another. If you are concerned about
efficiency, your best approach is to evaluate the first three factors as best you can
and use them to select appropriate algorithms. Generally applicable anatyses of
these interactions are probably not possible, although the individual factors may
be examined (see Knuth, for example, for a discussion of the effect of memory
fragmentation).

Choice of an appropriate algorithm can greatly affect the efficiency of an
application. The two techniques presented here provide an illustrative contrast.
The general-purpose routine requires two bytes of overhead per block, and the
time required to allocate or de-allocate a block depends upon the pattern of




LISTING 2
Screen 1
0. ( ASCIIZ string manipulation routines )
1. : TEXT ( ¢ -- ) ( Parse text to matching char, put in PAD )
2. >IN € TIB € + C& OVER = IF DROP 0 PAD C! 1 >IN +! PAD
3. ELSE WORD THEN COUNT DUP PAD + 0 SWAP C! PAD SWAP CMOVE ;
4.
S. ¢ SCANO ( 8 -- z ) { Returns address of terminating null. )
6. BEGIN DUP C€ WHILE 1+ REPEAT ;
7.
8. ¢ STRLEN ( 8 -~ n } ( Return length of string in bytes )
9. DUP SCANO SWAP - H
10.
11. : CHARS ( n -- ) ( Define a string buffer of n chars. )
12. CREATE 0 C, ALLOT DOES> ;
13.
14. : STRCPY ( 8l s2 —— ) ( Copies from sl to s2 )
15. OVER STRLEN 2DUP + 0 SWAP C! CMOVE ;
Screen 2
0. ( ASCIIZ string extensions )
1.
2. ( Return the address of a string literal compiled into
3. the dictionary. )
4.
5. (') (--8)
6. R> DUP BEGIN DUP C@ WHILE 1+ REPEAT 1+ >R ;
7.
8. : ( --8) ( Example: ‘‘ This string.’’ State-smart. )
9. 34 TEXT PAD STATE & IF COMPILE (‘')
i0. DUP STRLEN 1+ HERE SWAP ALLOT STRCPY
11. THEN ; IMMEDIATE
12.
13. : PRINT ( 8 -- ) ( Print the ASCIIZ string at the addr. )
14. BEGIN DUP C€ DUP WHILE EMIT 1+ REPEAT 2DROP ;
15.
Screen 3
0. ( More char and ASCIIZ string extensions )
1. : UCASE ( ¢ -- ¢ ) ( Uppercases character. )
2. DUP 96 > OVER 123 < AND IF 223 AND THEN ;
3.
4. : CFROM ( al a2 -- al a2 ¢ ) ( Gets char from pointer under.)
5. OVER Cf ;
6. : CFROM+ ( Like CFROM, but increments pointer )
7. CFROM ROT 1+ -ROT ;
8. : CTO ( al a2 ¢ —-- al a2 ) ( Puts char at top pointer.)
9. OVER CI ;
10. : CTO+ ( Like CTO, but increments pointer. )
11. CTO 1+ ;
12. : CTRANS+ ( al a2 -- al+l a2+l ) ( Transfers a char. )
13. CFROM+ CTO+ ;
14.
15. : EOs? (al -- £ ce NOT ;
Screen 4
0. ( More character and ASCIIZ string extensions. |
1. : C8C= ( ¢ addr -- f )} ce = ;
2.
3. : STRPOS ( ¢ zstr --n ) ( Returns position of ¢ in zstr, )
4. 0 >R BEGIN 2DUP C@C= NOT ( O-based, or -1 if not found.
5. OVER EOS? NOT AND WHILE 1+ R> 1+ >R REPEAT
6. C@C= IF R> ELSE R> DROP -1 THEN ;
7.
8. : INSTR ( ¢ zstr -- £ ) ( T if ¢ in zstr, F otherwise )
9. STRPOS -1 = NOT ;
10.
11. : STRCAT ( zstrl zstr2 -~ ) ( appends zstrl to zstr2 )
12. SCANO STRCPY ;
13.
14. : TOUPPER ( zstr -- |} BEGIN DUP EOS? NOT WHILE
15. DUP C@ UCASE OVER C! 1+ REPEAT DROP ;

previous requests. The specialized routine for fixed-size blocks requires only one
bit of overhead per block (approximately), in many cases requires near-constant
(and minimum) time to altocate a block, and constant time to de-allocate a block.

General-Purpose Memory Allocation

The most important feature of a general-purpose memory allocation scheme
is the flexibility to satisfy an indeterminate number of requests for blocks of
varying sizes. The most appropriate structure for maintaining the free list under
these conditions is a linked list. Each node of the list identifies the position of a
free block, its size, and the location of the next block in the list. Generally, this
linked list is stored within the free space itself, as shown in Figure 1. The address
of each node therefore identifies the position of the associated free block, and

this information need not be explicitly stored.

For the sake of efficiency during de-allocation,
the free list is generally kept sorted in order of in-
creasing addresses. By using a doubly-linked list, it
is possible to make de-allocation slightly more effi-
cient yet (the typical de-allocation strategy is dis-
cussed below).

Because each allocated block may be of a differ-
ent size, and because de-allocation routines are
typically passed only the address of an allocated
block, the size of each block must be stored when it
is allocated. (Modula-2, however, requires the size
of the block to be passed to the standard dealloca-
tion routine.) It seems that the extra space needed
to store the size could be eliminated if the de-allo-
cation routine were passed the size as well as the
address, but, as discussed below, in some cases
more space is actually allocated than is requested,
unknown to the calling routine. For this reason, it is
important to store the amount of space actually al-
located rather than that requested.

Fitting Strategies

When searching for a free block to satisfy an
allocation request, the memory allocation routine
can select either:

® the first free block that is large enough (first
fityor

® the block that is closest in size to that needed
(best fit).

The first-fit strategy is generally regarded as su-
perior, as the number of small blocks tends to pro-
liferate when using the best-fit method. In addition,
because it usually must examine more (often all) of
the free list for each allocation request, the best-fit
method is slower.

If allocation requests fall into a known pattern,
however, you may find that the best-fit method, or
some variant of it, is more memory-efficient. For
example, suppose that your application most often
requests blocks of 30, 50, or 70 bytes. After some
period of use, most of the free blocks are likely to
also be of these sizes. In such a case, your best
strategy may be to choose the first free block of
appropriate size, reducing the number of useless
20-byte (approximately) free blocks created.

Eliminating Small Blocks

Wasted space is created whenever a free block is
created that is smaller than the application is likely
to request. The existence of too-small free blocks
slows down the memory allocation routines, as their
nodes must be examined each time the free list is
traversed. Although it is not always possible to pre-
vent this wastage of space, it is possible to eliminate
its effect on performance. This is done by including
the “extra” space with the allocated block that
would otherwise have left the bytes behind. The ac-
tual size of the allocated block, including the “ex-
tra” bytes, must be recorded in its reference cell,
and the troublesome node can then be eliminated.

An Example of General-Purpose Memory
Allocation

An implementation of a general-purpose mem-
ory allocation scheme is shown in Listing 1. The
example is shown in Forth. Forth encourages the
construction of application-specific languages of ar-

The Computer Journal / #42




bitrarily high level, yet is unsurpassed for the direct
memory manipulation needed to implement system LISTING 3
routines. In keeping with the Forth philosophy of screen 1
providing simple tools to build custom applications, 0. ( Dynamic strings, screen 1. DYNAMEM package must be loaded.)
there are no standard Forth words for dynamic mem- 1. : STRVAR ( Create pointer to dynamic string. }
ory allocation. The examples in these listings are pre- 2. CREATE 0 , ;  ( & VARIABLE by another name )
sented in the same spirit: although they are fully func- 4. STRVAR _ SYSSTR ( Save ptr to created/modified strings. )
tional, they should be regarded as examples only. 5. i
You should modify, improve, or replace them as ap- §. tIEN (dstr-- ] @ STRLEN;
-propriate to the needs of your own applications. 8. : RELEASE ( dstr —- ) DUP @ ?DUP IF FREE THEN 0 SWAP | ;
Heed the dictum about not reinventing the wheel, 13- . STRSAVE ( zstr dstr —- | ( Amsigne str to dstr )
but be advised to trade in your standard steql-belted 11.  SWAP DUP STRLEN 1+ MALLOC ( dstr zgtr mem )
radials for racing slicks when the competition gets 12. SWAP OVER STRCPY SWAP DUP RELEASE v
hot. .. . ll.i. : S! ( dstrl dstr2 -- ) ( Stores 1 in 2, making a copy )
The two principal interface words, MALLOC and 15. SWAP @ SWAP STRSAVE ;
FREE, are shown in screens 2 and 3 of Listing 1.
These routines have the same calling conventions, as Screg" f Dynamic strings, screen 2 )
well as the same names, as their C counterparts, sO 1. !
even if you know nothing but C, you should be able 2. : LEFT ( dstrl n -- dstr2 ) ( Returns left n chars of dstrl)
to make some sense of the Forth code. (Some of the 3 ‘(’Vf’:ti‘*’:eﬁ"i“_’fn)‘ 13 MALLOC OB TR cveog & AR ROT
more avid proponents of other languages would say 5: __SYSSTR RELEASE R> _ SYSSTR | __SYSSTR ;
that if you know nothing but C, you know nothing at 5. i
all; that’s a rather harsh judgment, but I would agree ;: : “332,“{ L é Nd;’;g s Mgitrém’w(e“it“”s’;sééﬁh;ﬁsii}g" oéyg;;?;
that users of languages of the PL-1 family [C, Pascal, 9. - -
Modula-2, and Ada] could profitably broaden tk}eir ig : SUBsTl; b(tdétrl rflldni T :;ﬁn) ¢ char nl, of length n2 |
horizons by learning something different: Forth, Lisp, 12 Roé . T 1) OVER STRLEN MIN & SYSSTR STRSAVE g
Prolog, APL, and Smalitalk all embody unusual ap- 13. SYSSTR SWAP LEFT  ; -
proaches to computing.) This code is written for a 16- 14. -
bit Forth-83 standard system. ] 15.
The free list in this implementation is a singly- Screen 3 ‘ .
linked list in which each node occupies four bytes. 9. ( Dynamic strings, screen 3. §+ SAY UPPER )
Each node contains a link to the next, followed by the 2. : s+ ( dstrl dstr2 —- dstr3 } ( Appends 2 to 1 )
size of the block in bytes. No free blocks smaller than 3. OVER LEN OVER LEN + 14 MALLOC DUP >R ROT € OVER
four bytes are allowed. If satisfying a request from an i R @ SWAP STRCAT _ SYSSTR RELEASE R> _ SYSSIR |
available block would leave fewer than four bytes, the 5. — '
extra bytes are included in the block being allocated. 7. : SAY ( dstr -- )
Except for this limitation, there is no minimum size % @ PRINT ; .
imposed on either the allocated or free blocks. Free 10. : UPPER ( dstrl —- detr2 ) ( Makes an uppercased copy )
blocks are selected by the first-fit strategy. 11. __SYSSTR S! _ SYSSTR @ TOUPPER _ SYSSTR ;
The word DYNAMIC-MEM, in screen 1, is used ij
to initialize the heap. It should be passed the starting 14.
address and size of the heap in bytes. The heap itself 15.
may either be compiled directly into the Forth dic- screen 4
tionary or placed in free memory above the diction- 0. ( Dynamic strings, screen 4. st )
ary. (If you choose the latter course, take care to 1.
a\rf)(/)id( conflicts with PAD, TIB, block buffers, and the §; STRVAR __SYSSTR2
parameter and return stacks.) 4. : (8'7) { For pre-incrementing NEXTs )
DYNAMIC-MEM creates a single node or con- S iisomng ¢ LE Lt REPEAT 1v PR _ Susswa
trol block at the beginning of the heap space, setting 7. -
its size to be that of the entire heap. The address of 8. 38’ ( -- dstr) ( Accepts text fzom ir}puttsyream )
this first node is stored in the double variable 13: 34 TEXT PAD séﬁgt: ;;onygg:;ngn???)s Ting-
FREELIST, which has the same format as a node 11. DUP STRLEN 1+ HERE SWAP ALLOT STRCPY
but, having a fixed address, serves as the root, always 12. ELSE
PR : : . 13. SYSSTR2 STRSAVE SYSSTR2
pointing to the first real node in the free list. The size 1. THEN® IMMEDIATE
cell of FREELIST is always zero; it exists so that 15.
FREE does not have to treat the root node as a spe-
cial case. request cannot be satisfied. The first thing this word does is increase the re-

Each block of allocated memory is preceded by a  quested size by two bytes to allow for the size cell. A sequential search of the
cell containing the block’s size. This information is  free list is then performed, which is terminated when a block of sufficient size is
needed to de-allocate the block. Each allocated block found or the end of the free list is reached. Either of these conditions is signaled
is therefore actually two bytes larger than its nominal by a zero on the stack; the test for this value occurs at the beginning of line 7.
size. This overhead cost should be considered if you  During this search two values are kept on the stack: the number of bytes
wish to use the smallest possible heap, based upon needed and the address of the node that contains the address of the node
your knowledge of the number and size of blocks  currently being examined. The address of the node “one back” must be main-

needed. tained so that that node’s link address can be adjusted in case the current node
The word MALLOC is used to reserve a block; it is entirely allocated and must be dropped from the free list. b

address of an appropriately sized block, or zero if the  the request. Line 8 performs two fetches to get the link to the next block if the

The Computer Journal / #42 7

|
\
|
|
|
|
i
|
|
is passed the number of bytes desired and returns the Line 7 of Screen 2 fetches the size of the current block and tests it against




LISTING 4

Screen 1
0. ( Dynamic mem. alloc. for fixed node size, screen 1. )
1.
2. VARIABLE NODESIZE ( size of each node )
3. VARIABLE NODEMAP ( Pointer to bit map of nodes )
4. VARIABLE #NODES ( Number of nodes in heap )
5. VARIABLE NODEBUF ( Pointer to memory buffer )
6. VARIABLE SRCHPTR ( Node # at which to start search for free)
7.

8. : >MASK ( -1<n<8 -~ mask )
9. 14 DUP 2 > IF 1 SWAP 1- 0 DO 2* LOOP THEN ;
10.
11. : NODE {n--ma ) ( n=node #, m=mask, a=address )
12. 8 /MOD NODEMAP @ + SWAP >MASK SWAP ;
13.
14.
15.
Screen 2

0. ( Dynamic mem. alloc. for fixed size nodes, screen 2. )

1.

2. : >BYTES ( n -- n2 ) ( Converts bits to bytes. )

3. 8 /MOD SWAP 0= NOT ABS + ;

4 HEX

5. : CLEARNODES ( —— )

6. #NODES € >BYTES 0 DO FF NODEMAP & I + C! LOOP

7 0 SRCHPTR | ; DECIMAL

8.

9. : NODEBUFSIZ ( nl n2 n3 -- ) ( nl = address of buffer )
10. DUP NODESIZE ! ( n2 = size of buffer, b )
11. 14 / DUP #NODES ! ( n3 = size of node, b
12. >BYTES OVER + NODEBUF |
13. NODEMAP 1|
14. CLEARNODES ;

15.
Screen 3
0. ( Dynamic mem. alloc. for fixed size nodes, screen 3. )
HEX

2 : GETNODE ( —— a) ({ a =0 if no space available )

3 0 ( accumulator ) #NODES @ 0 DO I SRCHPTR @ +

4. #NODES € MOD DUP NODE C@ SWAP AND ( free? )

5. IF DUP 1+ #NODES @ MOD SRCHPTR !

6 DUP NODE DUP C€ ROT FF XOR AND SWAP C!

7 SWAP DROP NODESIZE @€ * NODEBUF @ + LEAVE

8. ELSE DROP

9. THEN LOOP ;

10.

11. : RELEASENODE (a--) (a as returned by GETNODE )
12. NODEBUF ¢ - NODESIZE @ /

13. DUP SRCHPTR !

14. NODE DUP C& ROT OR SWAP C! ;

15. DECIMAL

size is insufficient. Line 9 evaluates whether the entire block should be allocated;
if 50, the pointers are adjusted in line 10, otherwise the size of the current block is
reduced in line 11. In either case, the address of the block is left on the stack.
Line 12 stores the size for later use, increments the pointer past the size cell, and
sets a zero flag on the stack to terminate the loop.

Release of an allocated block may or may not result in the addition of another
node to the free list. Blocks above and below the one to be de-allocated may
themselves be either free or reserved. The four possibilities are shown in Figure
2. Only when the memory configuration is as shown in Figure 2a will a new node
be added to the free list. The situation shown in Figure 2b will result in the
creation of a new node within the newly de-allocated block, and the removal of
the node above, for no net change. The link address previously pointing to the
node to be removed must also be modified. When the situation is as shown in
Figure 2c, only the size of an existing node need be changed. If free memory
bounds the de-allocated block on both sides, as in Figure 2d, then the size of the
lower node must be changed and the upper one eliminated.

The need to examine the blocks on both sides of the one to be de-allocated is
why the free list is kept sorted by address. To find the address of the preceding
free node, a sequential search is performed for a node which has an address
lower than that of the one to be de-allocated, but a link address that is higher. It
the size and address of the lower node sum to the address of the one to be de-
allocated, then the situation in either Figure 2¢ or 2d applies. To find the address
of the following block (which will have a free-list node if empty), it is only neces-
sary to sum the size and address of the block to be de-allocated; if the resulting
address appears in the free list, then the situation in either Figure 2b or 2d
applies.

Evaluation of the memory configuration and
removal of the indicated node are performed by the
word FREE in Listing 1, Screen 3. This word begins
by fetching the size of the node and storing it in the
second cell, creating the size cell of a valid node
header. A sequential search of the free list is then
performed (lines 3-6), ending with the address of
the free node below the one to be de-allocated.
Note that this may be the root (FREELIST) which,
because of the extra cell allocated to it, may be
treated exactly like any other node header.

In line 9, the link address held by the next-lower
free node is stored in the block to be de-allocated,
completing the valid node header for this block.
Nothing yet points to this header, and it may even-
tually be abandoned. Construction of the header at
this step is more efficient, however, if the node is
not to be abandoned. Lines 8-10 evaluate whether
the node to be de-allocated is immediately followed
by a free node; if so, the size cell of the newly cre-
ated node header is increased by the size of the fol-
lowing free block and the link address is set to that
contained in the following header. Lines 12-14
evaluate whether the block to be de-allocated is pre-
ceded by a free block; if so, the link and size cells of
the preceding header are modified appropriately,
and if not, the link address of the preceding header
is set to that of the de-allocated block.

An Example Application

The use of these words is illustrated by a set of
routines for manipulation of dynamic strings. List-
ing 2 contains a set of static string-handling words,
and Listing 3 ties these together with the dynamic
memory words in Listing 1.

Strings are generally stored in memory in one of
two ways: with the string length in the first byte or
word, or with the end of the string marked with a
sentinel character, usually an ASCII zero. For sim-
plicity, I will refer to these alternatives as “counted
strings” and “zstrings”. Dynamic strings will be re-
ferred to henceforth as “dstrings”. Forth contains
several standard words for manipulating counted
strings (using a single byte for a count), but is not
limited to this form of storage. I prefer to use
zstrings, as they allow you to scan a string more eas-
ily; the remainder of the string can always be repre-
sented by a single stack element rather than by an
address-count pair, as is necessary with counted
strings. The words in Listing 2 are therefore de-
signed to create and manipulate zstrings rather than
the more usual (for Forth) counted strings.

Because this is an illustration and not central to
the point of this article, the words in Listing 2 will
not be described in detail. A few points are worth
noting, however. In particular, the words TEXT and
(" may be found in existing Forth systems with
slightly different actions. Typically these create and
return counted strings, whereas the versions shown
here are designed for zstrings. If possible, you
should rewrite SCANO in your native assembly lan-
guage, as it may amount to only a single instruction.
The words in Listing 2 do not form a complete set
of tools for handling static strings, but they include
all those used to illustrate dynamic string handling
in Listing 3 as well as a few others.

The words in Listing 3 integrate those in Listings
1 and 2. They allow strings of any length (within the
limits of the heap space) to be stored or modified

The Computer Journal / #42




without any concern on your part about overrunning a statically
allocated string buffer. These words mimic some of the string-
manipulation functions of dBase, in name and application.

Dynamic strings are represented by a pointer to a zstring; the
zstring itself is stored in the heap rather than in the Forth diction-
ary. A dstring can be converted to a zstring simply by a fetch ( @ )
operation. With that in mind, and an explanation of the role of
__SYSSTR, the words in Listing 3 should be easy to interpret.

Several of the dynamic string manipulation routines create new
-unnamed dstrings — that is, ones that do not directly replace one of
the dstrings passed as a parameter. The words LEFT, RIGHT,
and S+ are examples. This new, unnamed, dstring is left on the
stack, where you may save it (with S!), display it (with SAY), or
otherwise dispose of it. The pointer to the heap space allocated for
this string must not be lost, however, or the space will be unre-
coverable. __ SYSSTR is used to store this pointer. Note that the
pointer is stored only until the next operation that creates a new
unnamed dstring; at that point the space is de-allocated and the
pointer reassigned. In some situations, this limits the operations
that can be successively carried out on an unnamed dstring. Con-
sider the following sequence of commands:

STRVAR COMPOST

* Gardeners rarely grow cabbage."” COMPOST STRSAVE

COMPOST 3 LEFT
COMPOST 5 RIGHT

S+

The result of this would be garbage, but not the “Garbage.”
that you might expect. Both of the phrases COMPOST 3 LEFT
and COMPOST 5 RIGHT leave a pointer to an anonymous
zstring, but only one anonymous pointer (__SYSSTR) is allowed.
Thus, the two arguments passed to S+ will both be __SYSSTR,
and the result will always be to concatenate the rightmost five-
character substring of COMPOST with itself. The solution to this
problem is to use another dstring defined with STRVAR for inter-
mediate storage of the leftmost substring.

Any number of successive operations on a single unnamed
dstring may be carried out, however. For example:

COMPOST 6 LEFT UPPER SAY

These routines are written so that _ SYSSTR may be one of
their arguments, and space for the resulting string will be allocated
before __SYSSTR is de-allocated.

Another way of reducing conflicts between uses of _ SYSSTR
is to use a different system string for each routine. This approach
is taken with the word S” (the dstring counterpart to “), simply to
allow the convenience of entering a string while an unnamed
dstring resides on the stack. The drawback is that heap space may
remain allocated long after the unnamed dstring is no longer
needed by the application.

The technique of implementing dynamic strings shown in List-
ing 3 is only an example. Counted strings could be used instead of
zstrings. The count could also be kept in' the dstring header,
whether counted strings or zstrings are used. This last approach
may be most suitable when you want to use zstrings for most
purposes, but your application frequently needs to evaluate the
length of strings; the extra space devoted to storage of the string
size, although unnecessary, may save computation time. Tailor the
tools to the task.

Special-Purpose Memory Allocation
If there is anything systematic about the size of blocks that will
be needed, the number of allocation requests, or the pattern of
allocation and de-allocation, you may be able to improve perform-
ance and save memory by using a special-purpose memory alloca-
tion routine. Whereas most general-purpose memory allocation

The Computer Journat [ #42

routines will probably be based on a model somewhat like that
presented above, you are pretty much on your own when it comes
to designing a special-purpose routine. Knuth and Aho, Hopcroft,
and Uliman describe a technique known as the “buddy system,”
which is a sort of general-purpose special-purpose system, suitable
when only a limited number of sizes of blocks will be needed. Its
advantage is that it can be customized for different combinations
of sizes of blocks.

Considerations of fitting strategies and the problems of small
blocks do not pertain when all blocks are the same size. It is, in
fact, easier to design an appropriate solution for a single special-
purpose application than it is to design a good general-purpose
memory allocation routine.

The technique described here is one that is suitable only when
blocks of a single size will be needed. But for this limitation, it has
a number of advantages over the general-purpose routine de-
scribed above:

e The time required to allocate a node is likely to be much
less.

¢ The time required to de-allocate a node is constant.

e The overhead is only one bit per block rather than two
bytes.

These advantages are conferred by the representation of the
free list as a bit map rather than as an actual linked list. The bit
map consists of a series of bytes long enough so that their total
number of bits is at least as great as the number of nodes that can
be accommodated by the heap. The state of each bit (set or reset)
indicates the availability of a corresponding node. The code for
this implementation is shown in Listing 4. The words NODE-
BUFSIZ, GETNODE, and RELEASENODE are analogues to
DYNAMIC-MEM, MALLOC, and FREE in Listing 1.

A free block is indicated by a set (1) bit in the map. To allocate
a block, it is necessary to scan the map for such a bit and calculate
the address to which it corresponds. To increase efficiency when a
sequence of successive allocation requests may be performed,
each search of the map begins where the previous one left off. To
increase efficiency when an alternating sequence of allocation and
de-allocation requests is performed, a pointer is set whenever a
block is de-allocated so that the next search will begin with that
block and so will be satisfied immediately. In some cases only on¢
of these fine-tuning mechanisms may be appropriate; both are
shown here for illustration.

The housekeeping information is kept in the five variables
shown in Listing 4, Screen 1. The first three words (>MASK,
NODE, and >BYTES) manage the conversion between the bit
map and actual addresses. The word >MASK (“to-mask”) takes a
bit number and converts it into a mask that can be used to test or
set the bit with AND or OR. This is a good candidate for coding in
assembly language.

Initialization of the bit map and housekeeping information is
performed by the word NODEBUFSIZ. The beginning of the
memory buffer is set aside for the bit map; this routine calculates
the number of nodes that will fit and the size of the map needed.
The map always occupies an integral number of bytes. Depending
upon the buffer and node sizes, up to seven bits of the last byte of
the map may be unused. The overhead per block may therefore be
slightly more than one bit.

The word CLEARNODES has been factored out of NODE-
BUFSIZ so that it can be used to re-initialize the buffer without
the need to use RELEASENODE to de-allocate each block. This
word must be used with great care and subsequent reference to
dangling pointers should be avoided.

GETNODE (Listing 4, Screen 3) allocates space by looping
over the total number of nodes; the phrase




e +
Allocated memory
o>
14443 |
M| <+
\
\
+==>
\\ FEEREEN | <o+
Free o>
list (322240
links 1323223
FREREER | <ot
\
\
+o>
[ E822244
FEEEREN| <-eme-t
Fmmmmm +
Root
Pointer
Figure 1. Linked List in the Heap

I SRCHPTR @ + #NODES € MOD

transiates a relative node number into an actual node number
based upon a non-zero starting position. If a free block is found,
the starting point for the next search is set (line 5), that entry in the
map is marked as allocated (line 6), and the actual address of the
block calculated (line 7).

The word RELEASENODE de-allocates space by calculating
the node number (Screen 3, line 12) and clearing the appropriate
bit (line 14). In addition, it sets the starting point of the next search
to the node just de-allocated (line 13).

Because of the uniform block size, this approach lends itself to
compressed displays of the allocation map more easily than does
the first. A simple word to display this map may be defined as
follows:

: SHOWMAP
#NODES € 0 DO
I NODE C@ AND IF
.1
ELSE

THEN
LOOP ;

Summary
The examples shown in this article, although useful in their own
right, are intended principally to illustrate a point. That is: you can
improve the performance of your application programs by tailor-
ing memory allocation routines to their specific needs.

Several changes could be made in the general-purpose routine
that might improve its suitability for certain applications. For ex-
ample, each search could be started wherever the previous one
terminated, as is done with the specialized routine. Also, backward
links in each node header would eliminate the need for a sequen-
tial search when a block is to be de-allocated.

If the size of blocks is known at compile time (which is very
often the case), the special-purpose routine could be improved by
making NODESIZE a CONSTANT rather than a VARIABLE.
Depending upon the actual block size (e.g., for powers of two),
other changes may also increase performance. See the references.

Other special cases of memory allocation, such as a series of
LIFO requests, may be handled by techniques very different from
either of the examples shown here.

Although the standard libraries of most conventional languages
provide routines only for general-purpose memory allocation, you

10

i (1233334

(233344 1222323424

bbb+ S bbbt R asnnad
b+ bt bt bt
FEREREE (3235234

HiEiEs RN

a b c. d.
j__| Free block

|#%#| Allocated block

|++| Block to be deallocated

Figure 2. De-allocating a block; surrounding memory

can still take advantage of opportunities to create special-purpose
routines as needed. If you cannot supplant the standard routines,
they can at least be used to permanently allocate a heap large
enough for your own routines to use. For some applications you
may even wish to have two or more different memory allocation
techniques in use simultaneously, each with its own heap. Consider
the needs of your application carefully, use the techniques shown
here and in the references as guides, and you can design memory
allocation routines that provide optimum performance. @

REFERENCES

Aho, A.V., J.E. Hopcroft, and J.D. Ullman. 1983. Data Struc-
tures and Algorithms. Addison-Wesley, Reading, Mass. 427 pp.

Knuth, Donald E. 1973. The Art of Computer Programming.
Volume 1, Fundamental Algorithms. Second Edition. Addison-
Wesley, Reading, Mass. 634 pp.

The Computer Journal / #42



Using BYE with NZCOM
The New Taming of an Old Shrew

~ by Chris McEwen, Sysop Socrates Z-Node #32

. Socrates, my rcpm, went on line last
December. Evidently, this was more of an
event than it seemed at the time. Why? I
had just bought NZCOM the week be-
fore, without any previous Z System expe-
rience, and getting BYE to peacefully co-
exist with NZCOM was supposed to be
hard. To be fair, mine wasn’t the first rcpm
to run under NZCOM. Bob Dean con-
verted Drexel Hill to NZCOM sometime
the previous summer, and I am sure there
were others. But the difference, I'm told,
was that a total neophyte managed to
stumble in the right combinations to make
things work. This seemed to interest Jay
Sage, who surely is more accustomed to
dealing with people who can walk and
chew gum at the same time! He asked me
to tell you how I did it.

Before we start, I should mention one
thing. It is true that you can’t run
NZCOM under BYE. BYE is an RSX
and protects itself from being overwritten.
NZCOM is a very powerful loader that
can reconfigure the memory map. It looks
for such programs as BYE and refuses to
run when they exist. But we don’t need to
run NZCOM while BYE is running. We
run it before we run BYE, and we change
systems with ENV files rather than ZCM,
using JetLDR. Our only real restriction is
that we cannot change the memory map
while BYE is active.

In this article, we will set up a Xerox
16/8 DEM-II with a 10 meg hard drive,
which we have configured with three logi-
cal drives (A: through C:) for the hard
drive and one floppy as drive D:. Figure 1
lists the steps to take, which we will discuss
in turn.

 Get NZCOM Running First

Why NZCOM first? It is your operat-
ing system. Imagine trying to run a pro-
gram without having CP/M installed on
your computer. BYE is a nasty program in
that it hooks itself very deeply into the sys-
tem. Getting it running under the wrong
system is a waste of time.

We want to get the memory configura-
tion of NZCOM that you will use with the
BBS going. If you need a certain sized
TPA for your BBS, you have to make
room for it here since we can’t change the
memory map later while BYE is running.

The Computer Journal / #42

Get NZCOM running first.

Get BYE running next.

Z3BASE.LIB
+-+-+-> Tweak it.

+~~~< Make your aliases.
My usual ones.

| what stays on AO:

Fommme < Check the sys.em on line.
Watch for security.

RCP vs. Transient commands.
Become familiar with 2CM files and how to edit them.
Make your named directory files.

Patch WHL.COM and NZCOM.COM

Watch out! There are some traps here.

Use MKZCM, NZCOM.COM and JETLDR.

Current public DU:’s will reflect in the new .ZCM files.
+-< Check SHOW, PATH and PUBLIC, and the BYE.PRN file.
| Get your BBS software up and running.

Choose your transient commands carefully

What must be moved to AlS5:

Figure 1: Steps needed to run NZCOM and BYE.

Place MKZCM, SHOW, PATH, PUB-
LIC and your favorite editor on A0:. Run
MKZCM to create your ‘on line system’.
We will be making several versions of the
system, but they must all have the same
memory map.

We will be setting up three systems.
The first is the one we will let the callers
use. It will have significant restrictions set
on it. Then we will set up a system for the
sysop which will allow you to do anything
you like on your computer, but will lock
out the floppy disk drive. Why do that?
What if you call in remotely and enter a
command such as ‘FF° that accesses the
floppy, but you forgot to leave a disk in the
drive? Youd hang the system. Finally,
we’ll make one last system the same as the
sysop’s, but it will let you at the fioppy. I
found it easier to set up the restricted sys-
tem first and then after that is running
properly, go back and set up the sysop sys-

- tems.

I installed an NZCOM system without
any RCP. As I implied in the lead para-
graph, my assembly programming experi-
ence is less than minimal. As a result, I
trust transient commands much more than
I do anything permanent in the operating
system itself. If a command doesn’t behave
as I expected, I replace it, or get it out of
harm’s way. The book says that IOP’s are
a topic for advanced users. Well, that did
that! T dumped them as well. I then in-
creased the number of named directories
allowed. And with that, I saved my new
system. Use the name ‘USER’ to save this
configuration.

MKZCM will save two files, each of
which describes the configuration you’ve
just done. USER.ZCM is of particular
interest to us as it describes the target sys-
tem in a text file which you can easily edit.
Let’s do that now. Pay particular attention
to MAXDRV, MAXUSR, QUIET,
Z3WHL, DRVEC, PUBDRYV, and

About the author and his system:

Chris McEwen is a management analyst living in central New Jersey. He has been run-
ning public bulletin boards since 1985 but only established a CP/M-based system at the
beginning of 1989. Within three months, Socrates had gained Z-Node status. Chris dedi-
cated Socrates to learning, whether it be the Z-System or high level languages. There is a
message base devoted to the new ‘C’ programmer. In addition, Socrates is the central site for

QBBS development.

Socrates can be called at (201) 754-9067, at up to 2400 bps. It runs on an Ampro Litlle
Board with a 64 meg drive. Chris runs on Coke and potato chips.

1




PUBUSR. Load up your editor and bring
up USER.ZCM in non-document mode
(see Figure 2).

This almost describes a Xerox 16/8
DEM-II computer, but it is wrong about
the drives we have. Notice that
MAXDRUV is 0010, and DRVEC is FFFF.
These two values say that we have 16 con-
tiguous drives on the computer. This is not
the case. This system has four drives, but
we are building a system for public use,
and we won’t be letting the callers at our
floppy drive. We need to change
MAXDRY to 0003.

That’s easy enough. But what of this
DRVEC? It is a bit map of the valid
drives, which lets NZCOM skip over any
drive that is not present. You can use the
following chart to determine the value to
give DRVEC. Put a one over any drive
that you have on the system. Add up the
values for each line, and write them down
in hexadecimal to the right.

Weight Factor:
8 4 2

0 0 0 0 = [ J—
P o] N M

o o0 o0 0 =  -0--
L K J I

c ¢ o 0 = --0-
i 6 F E

o 1 1 1 = -7
D Cc B A

0007

Change DRVEC to 0007.

We also want to limit the highest user
area we will let the callers have access to.
All the sensitive commands such as ERA
will be up high. I have mine set at 7.
Change MAXUSR to 0007.

The QUIET flag tells the system if it
should report what it is doing to the user.
We want this for ourselves, but not for our
callers. Part of our security is that we will
be using aliases to load in modules which
will be given secret names. If the quiet flag
is off, the names will be reported as they
load. So set QUIET to 0001.

Take note of the value you have for
Z3WHL. You will want this later on when
we get to BYE. Save this file.

But didn’t we forget PUBDRV and
PUBUSR? These refer to the public drive
and user areas that ZRDOS will recog-
nize, and are a bit of a bear. On my sys-

12

tem, I have A8: set as a public DU: where
I put WordStar. Obviously we don’t want
callers using that! But every time I edited
the USER.ZCM file to say there were no
public DU’s, the next time I loaded the
system, they’d be back! The trick here is to
use the PUBLIC utility to cancel any pub-
lic DU’s before you load your new system.
Do that now.

Now enter ‘NZCOM AO0:USER.ZCM’
to load this system. Be sure you include
the prefix AO:. Run SHOW to see if we
have the values we want for the drives and
user areas. You’'ll see this on screen 3.
Everything OK? If not, then go back to
your editor and change USER.ZCM as
needed.

Run PATH to see if the QUIET flag is
correct. It won’t tell you anything if the
QUIET flag is on. If it tells you what your
path is, then the QUIET flag is off. That’s
not good. Again, load your editor, and fix
QUIET.

If you've changed anything, reload with
NZCOM and check everything again with
SHOW and PATH. Keep editing, reload-
ing, and checking until you have it the way
you want it.

Now check for PUBLIC DU’s. You
should have none. If you do have any,
clear them now.

Run MKZCM one more time. Don’t
change anything, just save it under the
same name. Why do that? Remember that
MKZCM creates two files? The one we’ve
been working with has the extension of
‘ZCM’. If you noticed, the other file
MKZCM saved had the extension of
‘ENV’. This is what we've been after all
this time because JetLDR can handle this
file just fine.

Check and recheck that the system is
set as you’d want for open use. When you
are happy with the users’ system, we will
£0 on to make the sysop system. Bring up
MKZCM again, but this time save the re-
sult under a name that only you will know.
For our discussion, we will call it SYSOP.
Let’s go back with your editor and give
you some access on your own computer!

Change MAXUSR to the maximum
user area you have. This is usually 15. Pull
that DRVEC chart out again. Check off
all the drives you need access to, except
for floppy disks. Then set QUIET to 0000.
But watch out! Don’t do anything that

changes the size of the system. Save the
EAO6 CBIOS 0080 ENVTYP E8F4 EXPATH 0005 EXPATHS 0000 RCP
0000 RCPS 0000 IOP 0000 IOPS E200 FCP 0005 FCPS results.
E480 Z3NDIR 0023 Z3NDIRS [ES00 Z3CL 00CB Z3CLS E780 Z3ENV Enter ‘NZCOM AO0:SYSOP.ZCM’ to
0002 Z3ENVS E700 SHSTK 0004 SHSTKS 0020 SHSIZE E880 Z3MSG ; PO
ES8DO EXTFCB ESD0 EXTSTK ->0000 QUIET ->ESFF Z3WHL 0004 SPEED load this system. Again, it is important to
->0010 MAXDRV ->001F MAXUSR 0001 DUOK 0000 CRT 0000 PRT enter the A0:. Run SHOW and PATH. Is
0050 COLS 0018 ROWS 0016 LINS ->FFFF DRVEC 0000 SPARI1 it set as you want? If not, edit again and
0050 PCOL 0042 PROW 003A PLIN 0001 FORM 0000 SPAR2 reload
0000 SPAR3 0000 SPAR4 0000 SPARS CB0O CCP 0010 CCPS :
D300 DOS 001C DOSS E100 BIO ->0001 PUBDRV ->0080 PUBUSR Now set any public DU’s you want. Af-
3, 3 .
Pigure 21 USER.ZCH ter you’ve thoroughly verified the settings,
run MKZCM to create an ENV of this

system. Finally, create one more system,
but this time include the floppies. Give this
another secret name.

What have we done? We've created
three environment files that we can use
on-line to change a caller’s access. We
don’t need the ZCM files any longer, so
you can erase them. Use STAT or DFA to
set all the ENV files to $SYS so that users
will not be able to see them with the DIR
command.

The last thing to do before we move on
is to create the named directory files. I use
the same names as the environment files.
The big point here is that even if a DU: is
out of range of the environment, if it has a
name and no password, a caller can move
there. You can give passwords to directo-
ries, but it is simpler just to not declare
them in the first place if you don’t want
people going there.

[Note by Jay Sage: I take a different
approach and make extensive use of
named directories with passwords. In fact,
the named directories on my system are
the same for users and sysops. All I do to
make the sysop systems is turn on the
wheel byte, since when this is on, pass-
words are ignored, and one has free access
to all the sysop directories.}

Patch WHL.COM and NZCOM.COM

Before we go too much further, you
need to make two patches. Make backup
copies of NZCOM.COM. If you dumped
the RCP as I did, you need a transient
called WHL32.COM to manipulate your
wheel byte, and we will patch this as well.
If you are using the RCP, your system
password is in there. Big point here is to
do this after you’ve made back-up copies
of whatever you are going to patch. Can
you say ‘00ps’?

Use DU (disk utility), ZPATCH, or
whatever you are comfortable with and
call in NZCOM.COM. Search for
NZCPM. This will be in the FCB section
of the program. Change it to something
else. Your restrictions are that you must
make this eight characters or less, that you
must pad it out to exactly eight characters
with spaces, and that you must use capital
letters. What you put here must be a se-
cret.

Now, why did we do this? NZCOM will
make a file calied NZCPM.COM on the
disk if there isn’t already one. The purpose
of this file is to allow you to dump the

The Computer Journal / #42



NZCOM system and go into straight CP/
M. If a user does this on line, he will effec-
tively turn your BBS off. He can’t hurt
anything, as BYE won’t be able to talk to
the system any longer, but it won’t reset
when he finally drops carrier, either. You’ll
be crashed until you reboot.

So we gave NZCPM a secret name.
Drop out of NZCOM and reload it. The
" system will write NZCPM.COM under the
name you just gave it. Erase
NZCPM.COM, and use STAT to make its
replacement a $SYS file so that no one
but you knows its name.

[Note by Jay Sage: Again, I can suggest
an alternative and simpler approach.
Leave NZCOM.COM as it is. Run it to
create the file NZCPM.COM, and then
copy that file to a secure area. Then use
SALIAS to create an alias called NZCPM
that has the script command: “IF
WH;DIR:NZCPM;FI”, where DIR is the
directory where you put the real
NZCPM.COM. The presence of this alias
will inhibit NZCOM from creating a new
NZCPM file, and the alias will do some-
thing only in sysop mode (when the wheel
byte is on). If the wheel byte is off, the
command will do nothing. If the wheel is
on, then the real NZCPM command will
be invoked.]

The other patch we have to make is the
wheel password. If you dumped the RCP
as I suggested, then you will be using
WHL32.COM. Patch that. Otherwise you
patch NZRCP.ZRL in NZCOM.LBR.
Look for either SYSTEM or PASS-
WORD. I forget what it says in the distri-
bution copy. Change it to something else.
-Again, your restrictions are eight charac-
ters, padded with spaces, in capital letters.
[Note added by Jay Sage: This patch you
absolutely must do; you must not leave a
wheel-setting command on the system
with an unsecure password. The wheel
password is not determined by the system
but is set for each WHEEL program (e.g.,
WHL32 or the RCP WHL command).
You should be able to find the password
using a patching utility and change it to
something secret. Be sure to test it before
putting your system on the air.}

Get BYE Running Next

Now comes some real fun. Getting
BYE running for the first time is almost
guaranteed to take five years off your life
and is more that we can tackle in one ar-
ticle. I suggest you work closely with a Z-
Node sysop for assistance as you go. But
here is the plan: get BYE running any way
you can at first, and then go back to tweak
it. I would suggest you rename DIR to the
name of the BBS you plan to run so that it
will be the program run when you test
BYE. This eliminates any problems you
may have with your BBS system as you
debug BYE itself.

BYE is a necessary evil. It hasn’t been

The Computer Journal / #42

given a full rewrite in about five years, and
its age is showing. The biggest problem is
that it tries to be all things for all systems.
All T want from BYE is modem redirec-
tion, a few extra BDOS calls to handle
situations that would only happen under a
remote system (such as time on line and
carrier test), and maybe a few neat func-
tion keys like “Who’s on line?”. What 1
don’t want it doing is messing with the en-
vironment. We have an operating system
to do that for us. Unfortunately, BYE in-
sists, and it usually messes things up. One
of these days we will have a BYE made for
today’s systems. Until then, we have to
work with this monster. [Note added by
Jay Sage: See my column in TCJ #40 for a
discussion of what BYE does. I second
Chris' comments about BYE and the need
for a replacement that is appropriate for
Z-Systems.]

I use QBYE, as it is the simplest to set
up. QBYE is based on NUBYE 1.01 by
Tom Brady. Tom and Irv Hoff had
worked together for most of the develop-
ment of BYE but parted conipany just as
the last generation came out. I would ex-
pect whatever findings I have with QBYE
you will have with BYE 5.10.

I noticed some very odd happenings at
the OS level and suspected a conflict be-
tween BYE and NZCOM. There were
two symptoms: the utilities that check the
DRVEC seemed to be pretty solid, but
those that checked MAXDRYV were flaky.
For example, FF (Find File) would not re-
port any files found on the highest drive. If
I set the system to sysop access while a
user was on line, it acted strangely once I
would reset back to normal access. The
only solution was to allow the caller to
have wheel privileges for the duration of
the call.

Finally, I pulled SHOW down while a
caller was on line to see what was going on.
It seems that BYE was resetting the
MAXDRYV and MAXUSR bytes errone-
ously. On cold boot, it was giving
MAXDRYV one less drive than allowed,
and MAXUSR one more. More impor-
tantly, once any new environments were
loaded, it put invalid data into these bytes.

Though I had told BYE not to monitor
the maximum DU: settings, it insisted on
doing just that. Worse, it wasn’t doing it
right! See Figure 3 for the CCP settings in
the BYE configuration file as used on So-
crates. Be aware that ALL system security
with these settings is now the purview of
NZCOM. BYE will not monitor anything
for you. Carefully test your various envi-
ronment settings remotely before leaving
the system for public calls. You should
look through the PRN file to make sure
the proper addresses are being assigned,
since the addresses will differ from system
to system.

You will notice reference to an include

file named Z3BASE.LIB. You will have to
generate such a file with definitions for the
module addresses referenced in BYE. Fig-
ure 4 shows the Z3BASE.LIB that I use.
You have to edit this with your memory
configuration before you assemble BYE.
Notes in the file will explain.

So now you have BYE running. Go on-
line and use SHOW to make sure the sys-
tem has stayed the way you want it to. Use
JetLDR to load the various environments
we made up before and use SHOW to
verify that MAXDRYV, MAXUSR, and
DRVEC have stayed correct. Then, turn
your WHL on and off while you try wheel-
dependent commands such as ERA. The
system should respond correctly. If you
have problems, you need to edit either
your Z3BASE or BYE again and reas-
semble.

Once you have gotten this far, you are
ready to install your BBS software. I use
QBBS for a couple of reasons. It holds
messages from different areas completely
apart, and it is distributed with full source
code. It doesn’t hurt that QBBS is almost
a snap to install. What is taken as a nega-
tive by many, that it is written in compiled
BASIC, is a plus in my mind. What does a
BBS program do? Basically, it is a text file
reader that has to be capable of finding
messages quickly. Other than that, and the
message editor, a BBS program really isn’t
that involved. I will put QBBS up against
PBBS and HBBS, both written in 100%
machine code, in a speed test any day of
the week. Also, modifying high level lan-
guage programs is usually easier. But what
you chose is up to you.

Make up Your Aliases

As T said earlier, part of your system
security is that the names you give your
environment files must be a secret. The
only way to invoke them with a calier on
line is to blank out the modem output with
BYE'’s ESC-B, or to load them through an
alias. I use the alias method. If you haven’t
picked up on it by now, I don’t trust BYE
farther than I can throw it....

Here are a couple of example aliases 1
have. By the way, don’t put these into your
ALIAS.CMD file. I've seen various ver-
sions of TYPE that let users type out a
$SYS file, and that would blow the secret!

This is the alias to load the normal (se-
cure) system. It is named NZUSER:

A0 :NZUSER

1ldr a0:user.env

1ldr a0:user.ndr

whl <wheel password> /s
path a0 $$$$ a0

whl r

echo system load done

Now the alias to load the sysop system:
AQ:NZSYSOP

if “wh

whl /s

£i

13




if wh

1dr a0:sysop.ndr

1dr a0:sysop.env

path a0 $$$$ al5 A0

echo sysop system loaded
else

echo access denied

fi

This alias gives the user a chance to set the
wheel in case it is off, but will abort if he can’t
get it set.

Two questions. First, why do we load the
SYSOP.NDR before we load the
SYSOP.ENV? Remember the QUIET flag? If
we reversed the order, the system would report
the name of our NDR file to the user. Second,
why do we load the extended path after we
load the environment? Because if we didn’t,
A1S5: would be an invalid DU:, and the system
would refuse to allow a path to it.

The alias to load the floppy system is the
same as the sysop alias, except it loads the
floppy environment.

The last of what I feel are the essential ali-
ases is called BYE. Why would I do that?
Again, I don’t trust the real BYE to handle
system security properly, so I have this alias re-
set the environment through the NZUSER be-
fore calling the real BYE. Of course, rename
your real BYE to something ¢lse, and make it a
3SYS file:

A0 :BYE

echo one moment please.
nzuser

echo thank you for calling.
echo please call again.
realbye $*

Choose Your Transients

You are very close to going on line. Move
MKZCM, SHOW, STAT, your editor, and
anything else that allows someone to fool with
the system up to a safe, high user area. Most of
us use A15: for this. Set all the ENV and NDR
files to $SYS status, as well as all NZCOM files
and libraries and the aliases we made up. Not
only does this keep people from trying things
they shouldn’t, it also keeps them from down-
loading them. What good does it do to go
through all this to have someone download
your NZCOM.LBR with its patched wheel
password?

Time to choose your transient commands.
You will need something for file transfers. I
use ZMD150 and RZMP16. Something to
type out text files? I use ZLT12. Something to
lock into LBR and ARC files? I have
LUX77B, LUSH, and ZLUX26, none of
which I am really happy with. Gotta work with
ARC files, like it or not, so that means you
need UNARCI16. Don’t forget LDIR, and in
today’s world, ZIPDIR. Does that about do it?

Let’s Go See the World

If you've gotten this far, you're ready to
start taking calls. I suggest you start by calling it
yourself! Thrash it, bash it, try to break it. If
you can’t, then it is time to tell a few friends.
Give them the same assignment. Have them do
anything they can to crash the system. If some-
one can do it, eventually they will, and it might

14

++ CCP Options ++

~

BY we

CPR2  EQU no ; Yes, if running ZCPR/ZCMD/NZCPR (1 or 2)

NOTE: Requires MAC.COM to assemble if ZCPR3 is set YES.

~o 87 ne we e

CPR3  EQU yes ; Yes, if running ZCPR3
IF ZCPR3
MACLIB Z3BASE ; Requires MAC to assemble
ENDIF

NZCPR/ZCMD/ZCPR all use bytes (at 3DH/3EH/3FH) to store the maximum
drive, wheel status, and maximum user area. QBBS pokes these values
in QBYE which in turn maintains them in low memory bytes.

e ne we e e

USEZCPR EQU yes (QBBS = NO, except w/NZCOM. Then, YES)

r

CHERDU EQU no Yes, if QBYE will monitor MAXDRIV/USER.
If using ZCPR/ZCMD/NZCPR, set this NO,
since they already do it (saves a lot of
code, too). In either case, QBYE will
have the correct values in MAXDRIV/USER.

~e we e we s N N

;Set this equate to your system’s ENV address:
NZENV EQU OE780h ; Required for use with NZCOM
; this value will vary on each computer.
; use SHOW to see where your ENV is.
WHEEL  EQU NZENV+17Fh ; Location of ZCPR’s wheel flag
MAXDRIV EQU NZENV+02Ch ; ZCPR location of MAXDRIV byte
MAXUSER EQU NZENV+02Dh ; 2CPR location of MAXUSR byte

i

MAXDRV EQU 'J’ Highest drive supported

NZCOM: Put this to highest + 1 on system
; and let the 0S control access.

MAXUSR EQU 15 ; Highest user area
; NZCOM: Put this to highest on system and
; let the 0S control access.

LRI

In all cases, set SYSDRV/USR, since the "B function gives you these
d/u areas when used to toggle off the user temporarily.

~o we ne we

;N2COM: Set SYSDRV to one more than you really want.

-]
SYSDRV EQU ‘g’ ;#Highest local drive supported
SYSUSR EQU 15 ;#Highest local user area (0-15)

H
Figure 3. This is a section of the BYE configuration file showing thelproper
settings to use on an NZCOM system.

:Z3BASE.LIB

H

;Last edited: 10 July 89, Lee McEwen

Currently configured for use with:

i

;

; Ampro LB, 64 MB / NZICOM

; Maximum memory size for use on bbs under bye

;

false equ 0

true equ not false
off equ 0

on equ not off
base equ Q

;The following values are taken from screen 1 of SHOW:

23cl EQU 0DDOOH ;mel, multiple command line
23cls EQU 203 ; length of mcl in bytes
expath EQU ODCF4H ;path

expaths EQU 5 ; number of path elements
shstk EQU 0DBOOH ;shl, shell

shstks EQU 4 ; number of shell entries
shsize EQU 32 ; size of each shell entry
z3env EQU 0DB80H ;env, z-system environment
z3envs EQU 2 ; size of env in records
z3meg EQU ODC80H ;ms8g, system message buffer
z3megs EQU 80 ; size of msg in records
z3whl EQU ODCFFH ;whl, location of wheel byte
z3whls EQU 1 ; size of whl in bytes

Figure 4. The part of the file Z3BASE.LIB needed for the assembly of BYE.

as well be now, done by a friend who as it should after this time, go public. We
will tell you how it happened. Leave will all welcome a new RCP/M.

the system private amongst yourselves Welcome to the club, sysop! @
for a couple of weeks. If it still works

The Computer Journal / #42



C and the MS-DOS Screen

Character Attributes
by Clem Pepper

When I bought a MS DOS computer as an addition to my CP/
M system, I began digging through the manuals in a search for
screen “escapes” similar to those I was accustomed to with my H-
89. Surprise. This is one area where MS DOS appeared to have
real shortcomings in my view. Through experience I have learned
that there is more functionality available than might appear. This
is available to us in a variety of ways. Making use of it requires
more than a little homework, however.

Three possible approaches exist for controlling the video dis-
play with IBM PC family and compatibles. Each has its advantages
and shortcomings.

The highest level approach is via the standard MS DOS service
calls using interrupt 21H (INT 21H). With version 1 of MS DOS
these were severely limited. With version 2.0 and higher an op-
tional console driver, ANSL.SYS was added. The functions avail-
able are limited and relatively slow in execution, but provide the
advantage of portability to any MS DOS machine.

The next level of access is by making calls directly to the ROM
BIOS accessed via interrupt 10H. A wide assortment of functions
are available, and execution is faster. Programs making calls to the
BIOS will execute properly on all true compatibles but may cause
problems with other MS DOS systems. My Zenith 161, described
as 99 per cent compatible, operates correctly with all the INT 10H
functions I am aware of.

The fastest level of access is by direct instruction to the hard-
ware. While these provide the best performance there is also the
greatest risk with portability.

The ANSI Functions
MS DOS provides cursor positioning and keyboard assign-
ments using the ANSI escapes. The cursor functions are limited--
the cursor cannot be turned off or its size changed, for example.
Use of the ANSI functions requires a device driver for terminal
emulation, ANSLSYS. For this we must add the statement

Note: These control functions are available only
with MS DOS 2.0 or greater. The statement DEVICE-ANSI.SYS
must be included in your CONFIG.SYS file.

Definitions:
* n - a decimal number specified with ANSI characters.
* g8 - A decimal number used to select a subfunction.
* ESC - the ASCII code value 0Ox1BH.

Cursor Functions

CUP - Cursor Position ESC[n;nE - Moves the cursor to the row
and column specified in the two parameters.

CUU - Cursor Up ESC[nA - Moves the cursor up n rows with no
change in columns.

CUD - Cursor Down ESC[nB - Moves the cursor down n rows with
no change in columns.

CUF - Cursor Forward ESC[nC - Moves the cursor forward n
columns with no change in rows.

CUB - Cursor Backward ESC[nD - Moves the cursor backward n
columns with no change in rows.

HVP - Horizontal and Vertical Position ESC[n;nf - Moves the
cursor to the position specified by the parameters.
Where none are given the cursor is moved to the HOME
position. (Same ae CUP.)

DSR ~ Device Status Report ESC[{6n - The console driver
outputs a CPR sequence on receipt of a DSR.

CPR - Cursor Position Report ESC[n;nR - Reports the current
cursor position via the standard input in row and
column sequence.

SCP - Save Cursor Position ESC[s - Saves the current
position.
It is restored with the RCP sequence.

RCP - Restore Cursor Position ESC[u - Restores the cursor
position to the value it had on receiving the SCP
request.

Erasing

ED - Erase Display ESC[2J - Erases the entire screen and
homes the cursor.

EL - Erase Line ESC[K - Erases everything between the cursor
and the end of the line.

Modes of Operation

SGR - ESC[B;...;8m ~ Invokes the graphic rendition specified

Table 1: The ANS! screen and mode sequences.

by the parameter(s).
PARAMETER PARAMETER FUNCTION NOTES

0 All attributes OFF normal white on black

1 Bold ON high intensity

4 Underscore ON monochrome displays only
5 Blink ON

7 Reverse Video ON

8

Cancelled ON invisible
30 Black Foregound
31 Red Foregound
32 Green Foregound
33 Yellow Foregound
34 Blue Foregound
35 Magneta Foregound
36 Cyan Foregound
37 white Foregound
40 Black Background
41 Red Background
42 Green Background
43 Yellow Background
44 Blue Background
45 Magneta Background
46 Cyan Background
47 White Background

SM - Set Mode ESC{=sh or ESC[=h or ESC[=0h or ESC[?7h
SM invokes the screen width or type specified by the
parameter.

PARAMETER PARAMETER FUNCTION

40 x 25 monochrome
40 x 25 color
80 x 25 monochrome
80 x 25 color

320 x 200 color

320 x 200 monochorme

640 x 200 monochrome

wrap at end of line (wordwrap)

SN e W= O

The Computer Journal / #42

15



/* ANSISCRN.C
** A program illustrating the ANSI screen functions.
AL must be set equal to None */

a value shown in Table 2b.
starting acan line

CH bits 0 - 4

AH OPERATION OTHER INPUT REGISTERS RETURN REGISTERS

0 Set Screen Mode

1 Set Cursor Type tinclude <stdio.h>

CH bits 5§ - 7 = 0 $define CLRSCRN £4\033[23 " /* clear screen, home cursor */

ending scan line None #define UP “*\033[5A"" /* move cursor up five rows */

CL bits 0 - 4 #define DOWN 47\033[6B" " /* move cursor down six rows */

CL bits 5 - 7 = 0 #define RIGHT 4+\033[10C"* /* move cursor right 10 cols */

Note: It is standard to use scan line numbers 0 - 7. #define LEFT **\033[8D" " /* move cursor left 8 cols */
2 Set Cursor DH,DL = row, column None §define SAVE 14\033([8"" /* save the cursor position =*/
Position (0,0 = home} §define RESTORE +4\033[u’’ /* cursor return to save pos */

BH = page number #define POSITION 11\033[10;5f’’ /* cursor to row 10, col 5 =*/

(0 for graphics mode) idef%ne CUR_POS_REQ ‘/\033[én’’ /* request cursor position */

3 Read Cursor BH = page number DH,DL = row, column #define CUR_POS_RPT ‘’'\033[n;nR’’' /* report cursor position */

Position (0 for graphics mode) CH,Cl = current cursor mode

main()

puts {CLRSCRN) ;
printf(‘‘Press any key to continue until return to DOS.\n'‘};

5 Select Active
Display Page

AL = new page value None
(0-7 for medes 0 and 1)

(Text mode) (0-3 for modes 2 and 3) getch(); .
(0 for graphic modes) printf{’‘Position cursor at row 10, col 20'');
6 Scroll Active AL = numbexr of lines to None puts(POSITION);
Page Up scroll selected window. getch();
AL = 0 erases the entire printf(!‘Move the cursor up by five rows.’'’);
window. puts(UP);
CH,CL = row, column of getch();
upper left-hand corner puts(SAVE); .
of the scroll. printf(’‘'Now move the cursor down by six rows.’’);
DH,DL = row, column of puts (DOWN) ;
lower right-hand corner getch();

printf(’'Move the cursor to the right 10 cols’’);
puts(RIGHT);
getch();

of the scroll.
BH = attribute byte for
the erased line.

7 Scroll Active AL,CH,CL,DH,DL,BRE have None printf(‘‘Move the cursor to the left 8 cols’’};
Page Up same functions of AH = § AL = character read puts (LEFT);

8 Read Character BH = display page AH = attribute of AL getch();
and Attribute (for text modes) A A
at Current Cursor printf(’‘Position cursor at row 20, col 1’7);
Position getch();

puts(’'\033[20;1f’’);

9 Write character BH = display page None )
/* ** The report prints on the screen and exits the program #+* =/

and Attribute at (for text modes)

Current Cursor BL = attribute of char printf(’’Request and display the cursor’s present position.’’);
Position (Text) or color of getch();
char (graphics). puts(CUR_POS_REQ);
CX = count of chars to }
write. .
AL = char to write. LIStIng 1.
10 Write character BH = display page None
Only at the (for text modes)
Cursor Position CX = count of chars to . . . . .
write. tioning along a line. Which, among other reasons, explains why I
AL = character to write. wrote the procedures found in the header file, DOS_UTIL.H
14 write Character AL = character to write. (IAstlng 2).

to Screen,
Advance Cursor

BL = foreground color
BH = display page (Text) Using INT 10H With The 8088/80x86 Registers
Although T do make occasional use of an ANSI function I
have found the use of the BIOS interrupt functions to be consid-
erably better. With these we can achieve most of what we need to

do quickly and expeditiously. But first we will have to do our

. Table 2a The interrupt 10H functions. Only those functions relevant to
screen activities are included.

MODE TEXT/ RESOLUTION UTILIZES ! " " g
GRAPHICS homework. In this article we will learn how to use the video I/O

o Text 40 x 25 display/monochrome Color card fgnctlons of interrupt }OH (INT 10H). INT lOH provides 16

! Text 40 x 25 display/oolor golor Caxd video screen I/O functions based on a value assigned to CPU
T [of [} . .

3 Toxt 80 x 25 displan/eolon Color card register AHL. Table 2 defines 10 character related functions.

4 Graphics 320 x 200 pixel graphics/color Color Card : ; . H :

5 Graphics 320 x 200 pixel graphics/monochrome Color Card . ACCCSS to the.AX_ re.gISter l_s prO_VIded tl?rough.hbrar_y fuﬂC[lOﬂ

§ Graphics 640 x 200 pixel graphics/monochrome Color Card int86. This function is in the libraries provided with Mix’s Power

7 Text 80 x 25 display/monochrome Monochrome Card

C, Borland’s Turbo C, and the Microsoft compilers. These are
compilers I know of_there are certain to be others. With this
function our program must #include <dos.h> for the function
declaration and definition.

Some knowledge of the 8088/80x86 registers is needed as reg-
isters other than AX are required for the functions. Figure 1

Table 2b. Video modes available with the interrupt 10H functions.

DEVICE=ANSI.SYS

| to our CONFIG.SYS file. Note, however, that we must be using

MS DOS 2.0 or greater.

In addition to cursor functions we can use the ANSI functions
for screen clearing, invoking graphics renditions, setting the screen
mode, and reassigning the keyboard. Table 1 is a listing of the
cursor, screen, and graphics functions. While the functions operate
slowly and do not address all of our concerns they do have the
advantage of portability.

Also, ANSI provides a means of bypassing DOS’s inherent prac-
tice of writing white characters on a black background regardless of
the screen color settings from the BIOS. More on that later.

Program ANSISCRN.C (Listing 1) employs escape sequences
for clearing the screen and positioning the cursor. Don’t be sur-
prised if no response is obtained from some. My own computer
responds to the cursor UP and DOWN escapes but ignores posi-

16

diagrams the four general purpose registers: AX, BX, CX, and
DX. These are not the only registers, of course, there are others.
But these four are appropriate to the video screen functions.
Each register is 16 bits wide, as shown. However each can also
be addressed as an 8-bit register by use of H and L to designate
the High or Low half respectively.
There are a few conventions with respect to register usage.
* The content of AH determines the call type. The INT10H video
function numbers are placed in AH.
* The character or pixel value is placed in AL.
* The content of the BX, CX, and DX registers are preserved
across the calls.
* For graphic functions the column number is passed in CX; the

The Computer Journal / #42



Listing 2
union REGS regs; /* doe.h union */
/* DOS_UTIL.H regs.h.ah = 3; /* get cursor position */
** Cursor and screen utility functions for use with regs.h.bh = page; /* typically zero */
*+* video screen programs. int86 (VIDEO, &regs, &regs);
*/ /* transfer register values to memory */
row no = regs.h.dh; /* row number */
#include <stdio.h> col_no = regs.h.dl; /* col number */
#include <conio.h> }
tinclude <dos.h>
/* == set the video mode == %/
/* uncomment only if needed with your compiler */ void set mode(mode)
tdefine VIDEO 0x10 /* interrupt 10H - screen functions */ { -
#define SFKEY 0x16 /* interrupt 16H - keyboard I/0 */ union REGS regs; /* dos.h union */
regs.h.ah = 0; /* set mode */
/* #define OUTPORT1 0x3B4 uncomment for MDA adapter */ regs.h.al = mode;
/* #define OUTPORT2 0x3B5 uncomment for MDA adapter */ int86 (VIDEO, &regs, &regs);
#define OUTPORT1 0x3D4 /* comment for MDA adapter */ }
#define OUTPORT2 0x3DS /* comment for MDA adapter */
/* == get the attribute and display char == */
/* === Utility function global declarations === */ void set atr(chr)
int col; /* column variable, general screen */ { -
int colul; /* column variable, upper left cor */ union REGS regs; /* dos.h union */
int collr; /* column variable, lower right cor */ regs.h.ah = 9; /* set attr function no. */
int row; /* row variable, general screen w/ regs.h.ch = 0;
int start_row; /* beginning row definition */ regs.h.cl = 1; /* display char 1 time */
int rowul; /* row variable, upper left cor */ regs.h.al = chr; /* char to be displayed */
int rowlr; /* row variable, lower right cor */ regs.h.bh = 0;
int lines; /* lines to be cleared */ regs.h.bl = chr attr; /* desired attribute */
int chr_attr; /* assign attribute */ int86 (VIDEO, &regs, &regs);
int asc; /* ASCII code value */ }
int scn; /* SCAN code value */
int cur no; /* sets number of cursor lines */ /* == screen clear == */
int mode; /* set to available mode */ void clr scrn all(int chr attr)
int page = 0; /% typical value. can be changed in */ { - - -

/* program when required. */ union REGS regs; /* dos.h union */
int set bk = 0; /* value for background set */ regs.h.ah = 6; /* scroll up 25 lines */
int set pal; /* ID of color palette, 1 or 2 */ regs.h.al = 0; /* when al is = 0. */
int bk _gnd; /* set background color */ regs.h.ch = 0; /* top row */
int fr gnd; /* set foreground color */ regs.h.cl = 0; /* upper left screen col */
int row no; /* row position number */ rege.h.dh = 24; /* row to scroll up from */
int col_no; /* column position number */ regs.h.dl = 79; /* col to scroll from */
int sav_col = 0; regs.h.bh = chr_attr; /* attribute byte */
int sav_row = 0; int86 (VIDEO, &regs, &regs);
int kbd £ = 0; /* keyboard display status; 1 = on */ }
int b flg = 0; /* when set, beep is silenced */

/* == screen partial clear, scroll up == */
char chr; /* char to be displayed with attr */ void clr up(lines,rowul,rowlr,colul,collr)
{
/* == turn off the cursor == */ union REGS regs; /* dos.h union */
curoff() regs.h.ah = 6; /* secroll up */
regs.h.al = lines; /* these lines */
outport (OUTPCRT1, Ox0A) ; regs.h.ch = rowul; /* upper left row */
outport (OUTPORT2, 0x20); regs.h.cl = colul; /* upper left col */
} regs.h.dh = rowlr; /* lower right row */
regs.h.dl = collr; /* lower right col ¥/
/* == turn on the cursor == */ regs.h.bh = chr_attr; /* attribute byte */
curon( ) int86 (VIDEO, &regs, &regs);
{
outport (OUTPORT1,0x04) ; y
outport (OUTPORT2, 0x06) ; /* == screen partial clear, scroll down == %/
} void clr down(lines,rowul,rowlr,colul,collr)
{
/* == set the cursor size == */ union REGS regs; /* dos.h union */
cur_size() regs.h.ah = 7; /* scroll down */
regs.h.al = lines; /* these lines */
outport (OUTPORT1, 0x0A) ; regs.h.ch = rowul; /* upper left row */
outport (OUTPORT2, cur_no); regs.h.cl = colul; /* upper left col */
} regs.h.dh = rowlr; /* lower right row */
| regs.h.dl = collr; /* lower right col */
/* == position cursor at row and col values == */ regs.h.bh = chr_attr; /* attribute byte */
‘ void pos_cur(col,row) int86(VIDEO, &regs, &regs);
{ }
| union REGS regs; /* dos.h union */
| regs.h.ah = 2; /* set cursor position */ /* == read function or other non-ASCII key == */
| regs.h.dh = row; int rd nonasky()
‘ regs.h.dl = col; {
i regs.h.bh = page; /* video page no. */ union REGS regs; /* dos.h union */
int86(VIDEO, &regs, &regs); regs.h.ah = 0; /* ASCII code will be here */
} regs.h.al = 0; /* SCAN code will be here */
int86 (SFKEY, &regs, &regs);
/* == read cursor row and column values == */ /* transfer register values to memory */
int rd cur_ pos() asc = regs.h.ah; /* ASCII code */
{ scn = regs.h.al; /* SCAN code */
}

The Computer Journal / #42 17




/* VID_ID.C
** A program to test for video adapter in use, then
*+* Jogically select the correct address for cursor
** ON/OFF and shape control.
*

/

#include <stdio.h>
#include <dos.h>
tinclude ‘‘dos_util.h’’

#define UCGA
#define UMDA
$define UNKN

‘*This system has a CGA adapter.’’
**This system has a MDA adapter.’’
‘*This system has an unrecognized adapter.’’

/* =2= —aee global declarations ——-- === */

/¥ == MDA adapter cursor off == */
mda_curoff()
{

outport(0x3B4,0x0A); /* port out to 6845 addr reg */
outport(0x3B5,0x20); /* cursor off to 6845 data reg */

}

/% == CGA adapter cursor off == %/

cga_curoff()

{
outport(0x3D4,0x0A); /* port out to 6845 addr reg */
outport(0x3D5,0x20); /* cursor off to 6845 data reg */

}

/* == MDA adapter cursor on == */

mda_curon()

outport(0x3B4,0x0A); /* port out to 6845 addr reg */
outport(0x3B5,0x06); /* cursor on to 6845 data reg */
}

/* == CGA adapter cursor on == %/
cga_curon()

outport(0x3D4,0x0A); /* port out to 6845 addr reg */
outport(0x3D5,0x06); /* cursor on to 6845 data reg */
}

/* ** ==

main()

Begin program == *k %/

{
int cga_flg

= 0, mda_flg = 0;
unsigned vdap =

0, vmod;

/* ** clear screen and home cursor *% */
clr_scrn_all(0x7);
pos_cur(col,row);

/* ** peek useage: int peek(int segment,unsigned
offset);** */

vdap = (peekb(0x40,0x10));

printf(‘‘video memory value is %d.\n’’,vdap);

/* ** mask off all bits except 5 and 4 ** */
vimod = 48&vdap;
printf(’‘masked integer value is %d.\n’’,vmcd);

/* ** inform user of video adapter in use ** */
/* ** and select MDA or CGA cursor *x x/
if(vmod == 32) {
puts(UCGA) ;
cga_flg = 1;
}
else if(vmod == 48) {
puts(UMDA) ;
mda flg = 1;

else puts(UNKN};
if(cga_flg == 1) cga curoff();
else

if(mda_flg == 1) mda_curoff();

printf(‘‘Press any key to continue.\n’'’);
getch();

if(cga flg == 1) cga_curon();
else
if(mda_flg == 1) mda_curon();

exit(0);

Listing 3.

/* PRN TEXT.C

** A program for setting the CGA background color,
** positioning the cursor, displaying text in

** a foreground color.

*/

#include ‘‘dos_util.h’’

/* ARSI function to bypass DOS’e white on black screen */
#define SCREEN ‘‘\033[37;44m’’

extern int chr attr;
extern int row;
extern int col;
extern char chr;

/* == Begin program == */
main()

int i = 0;
char chr{} = { ‘‘Hi Y’alll\0" };

/* ** clear screen and set background to blue with ** */

/* ** white foreground *k x/
chr_attr = 0x1F;

clr scrn_all(chr_attr);
puts (SCREEN) ; /* DOS white on blue also */

/* ** positionthe cursor ** */

col = 10; row = 5;

pos_cur(col,row);

/* ** display text on screen with green background ** */

/* ** and one blinking character %/
while(chr[i] t= ‘\0’) {
if(chr[i] == ‘Y’) chr_attr = OxAF;

else chr_attr = 0x2F;
set_atr(chr[i]); i += 1;

col += 1; pos_cur(col,row); }
exit(0);
}
Listing 4.

/* MONO_ATT.C

** A program for setting mono attributes,
*% positioning the cursor, and changing the
** cursor size.

*/
#include ‘‘dos_util.h’’

extern int chr attr;
extern int row;
extern int col;
extern char chr;

main()

int 1 = 0;
char chr[] = { ‘‘How’s it goin’, Palz\0" };

/* ** clear screen and position the cursor ** ¥/
chr attr = 0x7; /* white foreground */
clr_scrn_all({chr_attr);
col = 10; row = 5;
pos_cur({col,row);

/* ** display text on screen with reverse video, wx w/
/* *% intensified chars, and a blinking character ¥* */

while(chr[i] t= ‘\0") {

if(chr[i] == ‘?’) chr attr = 0x87; /* blinking */
else if(chr{i] == ‘H']| chr(i) == ‘P’)

chr_attr = OxOF; /* intensified */
else if(chr(i] == ‘i’ && chr[i+l] == ‘t’)

/* reversed video */
/* white on black */

chr_attr = 0x70;
else chr_attr = 0x7;
set_atr(chr(i]); i += 1;

col += 1; pos_cur(col,row); }
exit(0);
}
Listing 5.

18

The Computer Journal / #42




/*
** CUR_VAR.C

** A program for scanning through eight cursor variations.

*/
#include ‘‘dos util.h’’
extern int cur_ no;

main()
{
int n, k flg = 1;
char ans, cin;
clr_scrn_all(0x7);
cur_scan();

do {
printf(’‘Is there a specific cursor you would like
to see again? <Y/N>\n'‘);
cin = toupper(getch{})};
if(cin 1= 'Y’) k_flg = 0;
else {
keyinp(); cur_size(};
1ng deelay(); 1lng deelay();

}
} while(k flg) ;

/* ** restore normal two bar cursor ** %/
cur_no = 0x06; cur_size();
exit(0);

cur_scan( )

cur_no = 8;
/* ** gtarting with a single line, expand cursor
to full block ** ¥/
printf(’‘Watch the cursor grow .... \n’’};
while(cur_no--) {
printf(‘‘Sending %d to the 6845 data reg.\n’’,cur_no);
cur_size(};
deelay(); }
}
deelay()
{ unsigned i = 60000;
while(i--); return;
}
int keyinp()

char chrr = 0;
which(); chrr = (getch());
printf(‘‘Cursor size is %c\n’‘,chrr);
switch(chrr) {

case ‘0’: { cur_no = 0; sho_cur(); break; }
case ‘l’: { cur_no = 1; sho_cur(); break; }
case ‘2’': { cur no = 2; sho cur(); break; }
case ‘3': { cur:no = 3; sho:cur(); break; }
case ‘4’': { cur no = 4; sho_cur(); break; }
case ‘5’: { cur no = 5; sho_cur(); break; }
case ‘6’: { cur:no = 6; sho cur(); break; }
case ‘7’: { cur_no = 7; sho cur(); break; }
default: break;
}
}
which()

printf(‘’Enter a number 1 - 7 for desired cursor\n’’);
return;

}

1Ing_deelay()
{deelay(); deelay(); deelay(); deelay(); return; }

sho_cur()
printf(’’Sending %d to the 6845 data reg.\n’’,cur_noj;
cur_size();
1ng_deelay(); return;

}
Listing 6.

The Computer Journal / #42

/* MUNCH.C

** A gimple animation program illustrating cursor control.
** Updated from the TOOLWORKS C original.

*/

tinclude ‘‘dos_util.h’’

#define MUNCHT “‘* /O \\ ‘’
#define MUNCHB1 ‘‘ \\O / *‘
#define MUNCHB2 ‘‘ \\O \\‘’

extern int row = 9; /* row variable ./
extern int col = 5; /* col variable */

/* ** begin program ** */
main()

int flqg = 0, i = 1000, j = 70;
clr_scrn_all(0x7); /* clear the screen */

/* *% turn off the cursor ** */
curoff();

while(j--) {
if(flg == 0)
{

pos_cur(col,row); puts(MUNCHT) ;
pos_cur(col,row+l); puts(MUNCEB1);
deelay(i); col +=1; flg = 1;
}

else
{
pos_cur(col,row); puts(MUNCHT) ;
pos_cur(col,row+l); puts(MUNCHB2);
deelay(i); col +=1; flg = 0;
}

/* ** turn the cursor back on ** */
curon();
exit(0);

}

deelay(n)
int n;

while(n--);

}
Listing 7.

row number in DX.
* For character (text) functions the column number is passed in
DL; the row number in DH.

Several programs for this article utilize these registers in some
capacity. Rather than include the required functions in each pro-
gram individually I have lumped them in the utility file of Listing 2.
Each program beginning with Listing 3 makes a call to this utility,
#include “dos_util.h”. The reason for the quotes is that I keep this
file on my work disk. If you add it to your compiler’s include file
replace the leading and trailing ““s with < and >.

Your compiler library no doubt contains functions duplicating
many of those in DOS_UTIL.H. That is good, and you should use
them in your programs. But a study of the utility will provide in-
sights in how to utilize the CPU registers for your own program
designs.

The 6845 Video Controller

I interrupt the discussion on INT 10H because there is a need
to touch on the 6845 here. This because of the way video memory
is structured in the MS DOS system.

My earliest efforts in turning the cursor off and on consisted of
reverse engineering an assembly language program that wrote in-
structions to the 6845’s data register. At first nothing happened.
Then, in a search for further information I found a different ad-
dress for the data register in my Zenith “MS DOS Programmer’s
Utility Pack.” Changing the address in my program made it work.
‘Why remained a mystery for some time.

The reason, as I eventually discovered, is found in the way IBM
deals with color versus monochrome video. Monochrome video
occupies 4K bytes of memory beginning at location BOOOOH.

19




~=== 16 bits ----
15 ]
AX
AH AL
BX
BH BL
I
cx
CH cL
[
DX |
DH DL |

Figure 1. The 8088/80x86 general purpose registers.

** The attribute byte **

f7lelsleal3]ajr]o]

7 - the blink bit
6,5,4 - background color
3 - high intensity
2,1,0 - foreground color

** Color table listing **

COLOR BACKGROUND FOREGROUND
6 5 4 2 1 0
Black 0 0 0 0 0 O
Blue o 0 1 o 0 1
Green 01 0 0 1 0
Cyan o 1 1 0 1 1
Red 1 0 0 1 0 0
Magneta 1 0 1 1 0 1
Brown 1 1 0 1 1 0
Lt Gray 1 1 1 1 1 1

Note: Intensified brown is yellow.
Intensified light gray is white.
Intensified black is dark gray.
Interchange foreground and background bits to
obtain reverse video.

Table 3. The attribute byte with color definitions.

CODE FOREGROUND CODE BACKGROUND

30 black 40 black
31 red 41 red

32 green 42 green
33 yellow 43 yellow
34 blue 44 blue

35 magneta 45 magneta
36 cyan 46 cyan

37 white 47 white

ANSI useage - ESC[f;bm where
£ foreground code
b = background code
m = specifier (required)

Table 4. INT21H codes for setting screen character colors.
(Source: Robert Jourdain, “Programmer’s Problem Solver For the
IBM PC, XT & AT,” A Brady Book, Prentice-Hall Press, 1986, p154)

Memory for the CGA color adapter begins at BS000H; that for
EGA at AO00OH. The program I dissected was intended for a
monochrome adapter (MDA). MDA and CGA 6845 register ad-
dresses are not the same. I have CGA and that is the address given
in the Zenith manual.

Before running the example programs beginning with Listing 4
you must know which adapter you have. The cursor functions in
DOS_UTIL.H using “outport” have 6845 register addresses for
CGA . Program VID_ID.C (Listing 3) performs a test identifying
the adapter in your system. If the program reports MDA you
should change the addresses in DOS_UTIL.H as given for MDA
in VID_ID.C. The EGA, which uses a video controller similar to
the 6845 though not identical, uses either address depending on
what card it is connected to. (If someone can enlighten me on a

20

BIOS approach to cursor on/off control I will pass it on in a future
article.)

Character Attributes
Inducing our program’s characters to appear in color or to
blink or intensify or flip into reverse requires a bit of doing. This
because of the way MS DOS deals with video memory.

A screen having 25 rows of 80 columns each requires 2000
bytes of memory. Each byte contains the character for its associ-
ated screen position. For each character byte there exists an adja-
cent attribute byte. The content of this byte defines the properties
of the displayed character. Table 3 describes the bit pattern of the
attribute byte. (If you are a bit weak on binary to hexadecimal
conversions here is the time to bone up.)

The default attribute is simply a white (actually light gray) char-
acter (foreground) on a black background. The default byte in
hexadecimal is 0x7 (0000 0111). To intensify the character the byte
is changed to OxF. To display a blinking white (intensified light
gray) character on a blue background the byte becomes Ox9F.
These attributes for a CGA(or EGA) are demonstrated in pro-
gram PRN_TEXT.C (Listing 4).

The line #define SCREEN “\033[37;44m” requires some €x-
plaining. The assignment chr_attr = 0x17; followed by the
INT10H call to clear the screen (mandatory to convert the entire
screen to blue) provides a blue background with a white fore-
ground. Until MS DOS writes on it, that is. Then it is back to white
on black. The statement puts(SCREEN); provides the same white
foreground and blue background for the MS DOS characters.
(They can be different colors, by the way. Whatever turns you on.}

PRN_TEXT should not be run with a monochrome adapter.
(Keep in mind, however, that not all monochrome monitors are

‘running with a MDA adapter. The built-in monitor in my Zenith is

monochrome, but it responds to PRN_SET because the adapter is
CGA. VID_ID will show you which adapter you have.)

The program MONO_ATT (Listing 5) is designed for the
MDA adapter, provided you have modified DOS_UTIL’s cursor
routines. This program illustrates character blinking, reverse video
and intensification. Note that the printing of the string is per-
formed in a loop with selection logic for changing the attribute of a
given character.

The next program, CUR_VAR (Listing 6), changes the cursor
scan lines over the range of one to eight. It also provides for view-
ing any specific cursor size you select. This program will run with
any adapter. A useful exercise would be re-writing this program to
use INT10H function 1 (Set Cursor Type).

The last program, MUNCH (Listing 7), is a simple animation
just for fun. Again, this will run with any adapter.

Summary

We have learned much of how our MS DOS computer goes
about its business in writing to the video monitor. We have seen
there are three levels of access to the video functions. The first,
with the highest portability is by use of the ANSLSYS functions.
These require DEVICE=ANSILSYS in your configuration file. If
your version of MS DOS is 2.0 or higher ANSLSYS should be on
your distribution disk. The second level is by use of INT10H,
which operates through routines in the ROM BIOS. For some MS
DOS machines these may not be totally portable. The fastest, as
well as the least portable, level is by sending instructions directly to
the hardware. ® '

The following are excellent sources of related information.

Ray Duncan, "Advanced MS DOS”, Microsoft Press, 1986

Robert Jourdain, “Programmer’s Problem Solver for the IBM, XT &
AT", A Brady Book, Published by Prentice-Hall, 1986

Paul Somerson, Editor, “PC Magazine DOS Power Tools - Tech-
niques, Tricks and Utilities”, A Bantam Book, June 1988

Nabajyoti Barkakati, “The Waite Group’s Turbo C Bible”, Howard
W. Sams & Co., 1989

The Computer Journal / #42




Forth Column
Lists and Object Oriented Forth
by Dave Weinstein

Last column I started talking about object oriented extensions
to Forth. One of the drawing points of object oriented code is that
the late binding scheme (used in the sample object oriented sys-
tem) makes it possible to create object libraries which can be used
and reused with little (if any) code modification. There is however,
another way to get this kind of reusability, generic functions. As
the name implies, generic functions are capable of acting on many
different data types without modification. It is fairly simple to
make Forth words generic (the wonders of a weakly typed lan-
guage), the care must be taken when writing the generic routines
's0 that all of the implicit information which the routine uses (i.e.
the types are really pointers and are therefore one cell long) must
be documented (these things are guaranteed to come back and
bite you right before a do-or-die deadline if you aren’t careful),
and that any other information which the function needs is passed
to it (i.e. the width of the cell and the size and number of dimen-
sions for a generic array).

Probably the best way to show the differences is to write a
reusable Forth module of some sort using first the generic model

(many Forth words are in fact generic...they just don’t call them-
selves that) since that is probably more familiar to most people,
and then using the object oriented model. Since I've already stolen
concepts from Modula-2, Pascal, C, and Smalltalk in the course of
various columns, I’'m going to continue this tradition and steal the
heterogeneous list concept from LISP. Most of you are probably
familiar with homogenous lists, the linked list in its varying forms
(singly linked, doubly linked, circular, ESC) is one of the most
common data structures used (I would put it second only to the
array). But unlike a homogenous list, the items in a heterogeneous
are not necessarily the same thing, they can be anything from
numbers to strings to functions to other lists. Unlike LISP, how-
ever, we are going to only add two items together at a single time.
If we are using generics, it makes sense to make the end-of-list
pointer be the nil pointer (zero). In the case of generics, rather
than having the special case logic embedded in a special sub-class
(the empty-list being a subclass of the list), we put it in the words
CONS, HEAD, and TAIL. A generic list also consists of the head
and the tail, but the head is any one cell sized data structure

Heterogeneous List Package
Object-Oriented Vers.

Return the lead item of the list
Return the tail of the list (itself
a list)

OLIST.SEQ

: Return a new list

: Return whether or not the list is

message head
message tail

<list-object>
<list-object>
message empty? ( <list-object>

class list
var my-head

this object is an empty list
the end of a list

Object Code

message as message

class as class
end-class as end-class
method: as method:
end-method as end-method

var as var
subclass-of as subclass-of
this-class as this-clase
self as self

\

\

\

\ Messages:

\

\ <list-object> head :

\ <list-object> tail :

\

\  <item-object> <list-object> cons

\ <list-object> empty?

\ empty

\

\ Special Case:

\

\ nil-list : The empty list,

\ and marks

\

\ Import

from object-extensions import
import
import
import
import

immediate
import
import
import
import

end-imports

\ Create

Messages

-- <object> }
~-- <list-object> )

(
(

message cons ( <object> <list-object> -- <list-object> )
(

- £ | t)

var my-tail

method: head
my-head @
end-method

method: tail
my-tail @
end-method

method: cone

here this-class , swap ( <item-object> ) ,
self ,

end-method

method: empty?
false
end-method

end-class list

class empty-list
subclass-of list

method: head
self
end-method

method: tail
self
end-method
method: empty?
true
end-method
end-class empty-list

empty~-list nil-list

The Computer Journal / #42

21




(which can hold a pointer to a larger structure if need be), and a
one cell pointer to the next node in the list (or nil if it is the end).
The object-oriented implementation, on the other hand, has the
empty-list being a restricted sub-class of the list, and the logic is in
the data structure (the object), not in the message which is sent.
Functionally, the generic and object-oriented versions are the
same (although in this case as with many small examples [the only
kind which can easily be done in articles], there is inefficiency asso-
ciated with the object-oriented version because of the overhead
which the package requires).
Some brief notation

Before going into any more detail about lists, we need a com-
mon syntax to describe what we mean by lists. If, for example, we
want to represent a list with two elements, A and B, we can repre-
sent them as:

(AB)

If we were to represent this in “box and pointer” notation,
showing the pointers and the values, it would look like this:

| & |-|-=>} B

The box-and-pointer notation more clearly expresses the rela-
tionships involved (for example, it shows the nil-list as the final
element in the list), but it is too bulky for any more than the
simplest explanations. If we want to explicitly show the nil-list at
the end, we will adopt a slightly modified form of the first format,
in which:

{ ABnil )
is equivalent to:

(AB)
The Generic Version: Details

The generic version is fairly straightforward. Each node in the
list is made up of two parts, the item and the pointer to the next
node. This node will be nil if this is the last item in the list. The
" logic in the first two words (HEAD and TAIL) is equally straight-
forward; if the pointer to the list is nil, then that pointer is itself
returned (the head of a nil-list is nil, and the tail of a nil-list is also
nil), otherwise the head or tail of the node is returned. The word
CONS in this example needs to create a block of memory, fill it
with the information required to make it the new list. In a real
situation, it would almost certainly use some sort of a memory
management system, in this case we will use the standard Forth
heap for ease of programming. So CONS saves the HERE pointer
(this gives us the address of the new list, which CONS must re-
turn), and then “commas” the item and the pointer into the dic-

tionary, creating the new list.

The Object Oriented Version: Details

This version is a bit more of a jump for most people than the
previous example. Rather than putting the logic in the word
HEAD or TAIL, we will put the logic inside of the data structure;
the words HEAD, TAIL, and CONS only tell the data structure to
act upon itself (they are messages, which tell the object to employ
whatever methods it knows to perform the required action).

The creation of a new list is different in this case; rather than
using a special case constant (e.g. nil), we use a special sub-class of
list, the empty-list. As seen above, the head of an empty-list is also
an empty-list, as is the tail, so the empty-list has its own methods
for handling the methods TAIL and HEAD. But because an
empty-list is simply a more specialized version of a list, it does not
need to define the steps needed to create a list (it inherits this
knowledge from its ancestral class).

GLIST.SEQ

Generic Heterogeneous List Package
The Computer Journal: #42

Using the generics:

<list> head Returns the <item> at the front of the
list
Returns the pointer to the rest of the
list (or nil)
<item> <list> cons Returns the pointer to the newly

created list

Returns whether or not the list is empty

<list> tail

<list> empty?:
End-of-list pointer:

nil-list

P il P P g g i

Import the required Forth extensions
from records import record as record
import element as element
import end-record as end-record
end-imports
\ Define the structure of each node in the list
record list-node
cell element item
cell element tail”
end-record
\ Define the end-of-list pointer
0 constant nil-list

\ And now the handling code

t head ( “list -- item )
dup nil-list < if

item @
endif
;
¢ tail ( "list -- item )
dup nil-list <> if
tail” €
endif
H
: cons ( item "list -- “new-list }
here -rot swap ( item ) , ( “list ) ,

r
: empty? ( "list —— £ | t )
nil-list =

H

An example use of heterogeneous lists
or

What can we do with this anyway?

One of the most common programming constructs is the sym-
bol, or look-up table. One of the uses is in binding a value to a
function; we can do the same thing with a list of associated pairs
(more jargon to confuse the unwary). Essentially, an associated
pair is a list consisting of a value, and the object it is bound to. For
our purposes, an associated list will be a character, and a function
to which it is to be bound. So to search our “table” (in this case a
very surreal table), we will need a list of associated pairs, a list of
lists. An example of this notationally might look something like
this:

((ADo-A ) ( BDo-B ) { CDO-C ) ... )

Where A is a character and Do-A is the CFA of a Forth word.

We will keep a pointer to our control-character list in a vari-
able, called CONTROL-CHAR". Since originally there are no
control characters in our list, we set the pointer to point to the
empty-list:

The Computer Journal / #42




EXAMPLE.SEQ

\ Example TypeWriter Program
\ Dave Weinstein - _The Computer Journal
\

variable control-char” nil-list control-char” 1

¢ make-aBsocC { char “func -- “assoc-list )
( “func ) nil-list cons
( “char ) ( list ) cons
;

“assoc-list ) control-char” € cons

¢ add-assoc ( "assoc-list -- )
(
( "“new-list )} control-char” !
i

: is-bound-to ( <function> | char -- )
( char ) ’ ( <function> ) make-assoc
( "asBoc-list ) add-assoc

H

: is-done ( "list -- “list £ | t )
dup empty? if
drop true
else
false
endif
H
: the-char ( charl "list -- char "list charl char2 )
over over head head ;

: the-func ( “list -- “func }
head tail head ;

: do-character ( “func char “list -- )

begin
ig-done if
swap ( “func ) execute ( Do default )
true ( Exit loop )
else
the-char = if
the-func execute
( “func ) drop ( Drop default )
true ( Exit loop )
else
{ "list ) tail ( Next assoc-list )
false ( Continue loop )
endif
endif
until
H
: typewriter ( --)
begin
[‘] emit { The default function )
key ( Get the character )

control-char” & ( The control list )
do-character ( And do what needs to be done )
again

’

variable control-char” nil-list control-char™ |

Now we need to be able to turn a character and a function into

-an associated list, and then bind that on to our control list. First

let’s write a set of subsidiary words; MAKE-ASSOC which makes
an associated list, and ADD-ASSOC which adds it to the control
list.

: make-assoc ( char “func -- "assoc-list )
( "func ) nil-list cons
( “char ) ( list ) cons
i

+ add-assoc ( “assoc-list -- )
( “assoc-list ) control-char™ @ cons
{ "new-1list ) control-char” |
i

With these words we can now define a word IS-BOUND-TO,
which binds a character to a function:

The Computer Journal / #42

: is~bound-to ( <function> | char -- )
{ char } ‘' ( <function> ) make-assoc
( "assoc-list ) add-assoc

7

Now what we need to do is to be able to search our list, to find
a match if one exists; if it exists we execute the associated function,
if it does not we execute a default function, which is passed in.
Before we do this we will need a few supporting words. One IS-
DONE, is used to determine if we have exhausted all of the possi-
bilities in the list.

It uses a word EMPTY? which is defined in both the generic
and the object-oriented packages... By importing the empty-list
check from the implementation of the list, we create a utility which
uses heterogeneous lists, but does not require any knowledge of
the implementation.

s is-done ( "list -- “list £ | t )
dup empty? if
drop true
else
false

The next words we need are used to pluck the character and
the function from the control list. The associated list is the head of
the control list, and the character is the head of the associated list.
But since the tail of a list is always a list, the function is the head of
the tail of the associated list (this is the part that often confuses
beginning LISP programmers). So we can define THE-CHAR
and THE-FUNC as follows:

s the-char ( charl "list -~ charl “list charl char2 )
over over head head ;

: the-func ( "list -- func )
head tail head ;

With this information, we can now write our search-and-exe-
cute word, DO-CHARACTER. This word loops through the con-
trol structure until it finds a match, and if so, it executes it. If it
gets to the end of the structure without finding a match, it exe-
cutes the default function it was passed.

: do-character ( “func char “list -- )
begin
is-done if
swap ( “func ) execute ( Do default )
true ( Exit loop )
else

the-char = if
the-func execute
( “func ) drop ( Drop default )

true { Exit loop )
else
( "list ) tail ( Next assoc-list )
false ( Continue loop )
endif
endif

until

’

And now, with all of the underlying code written, we can write a
simple typewriter. The control codes for this typewriter would be
user defined and entered ahead of time by adding them to the
control list. Since this is a typewriter, the default action will be to
print ( using EMIT ) the character. So our typewriter looks like
this:

: typewriter ( --)
begin
¢ emit { The default function }
key ( Get the character )
control-char” @ ( The control list )
do-character ( And do what needs to be done )
again

»
’

(Continued on page 35)



The Z-System Corner

by Jay Sage

A number of newer TCJ readers have
commented that with this column they feel
that they are coming into the middle of a
very involved discussion that is hard to

~ catch on to. Of course, one answer to that
problem is for new TCJ readers to pur-
chase back issues. I have been writing this
column regularly since issue #25, and 1
am quite sure that all those back issues are
still available. That solution notwithstand-
ing, it is probably not a bad idea to stand
back every so often and try to comprehend
a larger picture. That is one of the tasks I
will undertake this time.

Detailed technical content will not be
forsaken entirely, however, since I regard
that as the primary purpose of my column.
At this point, I suspect that I am too much
of a Z-System expert to talk about very
many topics at a level that is appropriate
for beginners. To serve their needs, I have
been very actively soliciting articles from
other authors. In this issue, for example,
we have the first of the columns I prom-
ised a couple of issues back on how to set
up a remote access system (aka bulletin
board system) under the NZCOM auto-

. install version of Z-System. Lee McEwen
(aka Chris McEwen) has done a lovely job
with that assignment.

The technical discussion this time will
focus on some issues that arose in trying to
install ZSDOS or ZDDOS on an SB180
computer with the XBIOS enhanced oper-
ating system. Before you say “But I don’t
have an SB180,” let me assure you that
the techniques have more generat applica-
bility. The specific XBIOS problem is one
that has come up often and has been the
source of considerable frustration to
XBIOS users. [They are in good company,
by the way. Just as I was finishing this ar-

ticle, I got a call from Bridger Mitchell
about this very subject!] I am only sorry
that it took me so long to get around to
working on it. Gene Pizzetta, a fellow Bos-
tonian, was the squeaky wheel that finally
got my attention, and he has contributed a
number of his own ideas to the solution.

Announcements

Before we get down to business, I have,
as usual, a few announcements to make.
First 1 would like to remind readers once
again about Bill Tishey’s superb collection
of help files for the hundreds of Z-System
programs now available. Bill can now gen-
erate diskettes in many formats besides
Apple (using his son’s Commodore 128),
and he is willing to fill your diskettes with
the files for only $10. My column in issue
#36 gave the following procedure to fol-
low: (1) send enough formatted diskettes
(plainly labeled with the format) to hold at
least 1000K bytes (up from 800K back
then); (2) use a reusable disk mailer or en-
close a mailer suitable for returning the
diskettes to you; and (3) enclose a return
address label, return postage, and the $10
copying fee. Bill's address is 8335 Dubbs
Drive, Severn, MD 21144. If you prefer
(or if you need 96-tpi, 8" SSSD, or North-
Star hard-sector formats), you can send
the diskettes to me as well.

Second, I would like to make a special
point of calling your attention to the GE-
nie RoundTable discussions that take
place every Wednesday at 10pm Eastern
time. The first such session of each month
is devoted to Z-System, and I am the mod-
erator, so this is your chance for a real-
time dialogue with me. Go to page
“685;2” on GEnie and enter “Room 2”.

There are several changes to report in
the roster of Z-Nodes. Regrettably, Bob

Jay Sage has been an avid ZCPR proponent since the very first version appeared. He is
best known as the author of the latest versions 3.3 and 3.4 of the ZCPR3 command proces-
sor and for his ARUNZ alias processor and ZFILER file maintenance shell.

When Echelon announced its plan to set up a network of remote access compulter systems
to support ZCPR3, Jay volunteered immediately. He has been running Z-Node #3 for more
than five years and can be reached there electronically at 617-965-7259 (on PC-Pursuit).
He can also be reached by voice at 617-965-3552 (between 11pm and midnight is a good
time to find him at home) or by mail at 1435 Centre St., Newton, MA 02159. Finally, Jay
recently became the Z-System sysop for the GEnie CP/[M Roundtable and can be contacted

as JAY.SAGE via GEnie mail.

In real life, Jay is a physicist at MIT, where he tries to invent devices and circuits that use
analog computation to solve problems in signal, image, and information processing.

24

Paddock’s node #38 in Franklin, PA, has
gone off the air. To offset that loss, how-
ever, node #73 in the St. Louis, MO, area
has come back to life after being down for
several years. Sysop George Allen and co-
sysop Walt Stumper would be happy to
hear from you at 314-821-1078 (PC-Pur-
suit MOSLO/24). The equipment is cur-
rently a Xerox 820-1I with a 10 Meg drive,
but the sysops hope to expand soon to a
30+ Meg Ampro.

On the Z-Node front, I am also sorry
to report that Z-Node Central (Lillipute)
was downed by hardware failures on both
computers! They have been off the air for
a couple of months already as I write this,
and sysop Richard Jacobson has just faced
the truth: that it will not be coming back.
Ladera Z-Node (#2) in Los Angeles will
take over as Z-Node Central. Chicago
area callers looking for Z support should
check out the Antelope Freeway system
run by ZDOS-coauthor Carson Wilson for
CFOG (Chicago area FOG). This is one
of a small number of remote access sys-
tems running under the Z3PLUS flavor of
Z-System. The phone number is 312-764-
5152 (PC-Pursuit ILCHI/24). We expect
that its ‘System One’ will soon be a Z-
Node (‘System Two’ supports MS-DOS).

Finally, there have been some very sig-
nificant developments with BDS C. Leor
Zolman completed some major additions
to the Z version (BDS Z), and the final
release has just gone out as I write this
column in mid October. Programs gener-
ated by BDS Z now have a full Z-System
header and can be linked as type-3 pro-
grams to load and run at an arbitrary ad-
dress. ZDOS coauthor Cam Cotrill has al-
ready released a substantial amount of
BDS Z code for performing the functions
in the SYSLIB, VLIB, and Z3LIB assem-
bly-language libraries that are not already
built into BDS Z.

Leor has now turned over all of the
marketing and some of the development
responsibility for BDS C to me. Recogniz-
ing that the $90 price tag of the full pack-
age, however reasonable for what one
gets, is an impediment to new users who
want to experiment with C, we have pre-
pared a low cost introductory package that
(1) includes only one version of the code
(either standard CP/M or Z-System), (2)
contains only the essential files, and (3)

The Cdmputer Journal / #42




comes with an abridged version of the
manual (and without the fancy BD Soft-
ware binder). This package will be offered
for only $60. Other parts of the full pack-
age can be added later: $25 for the second
version of the compiler, $25 for the sup-
port materials (RED editor, CDB debug-
ger, and the parts of the manual covering
them), or $40 for both at once. If the
- whole package is ordered at once, it comes
complete with an attractive binder (also
available with the introductory package for
$5 extra).

It should be noted that BDS Z gener-
ates programs that run perfectly well un-
‘der standard CP/M. Naturally, they will

_not recognize Z-System features like
named directories, but they will accept the
now standard DU: extended drive/user
syntax instead of the older U/D: format of
standard BDS C. The only disadvantage of
using BDS Z rather than BDS C on a
standard CP/M system is that the pro-
grams carry Z-System overhead (about
800 bytes) that don’t provide them with
any functionality.

What is a Microcomputer Operating
System For?

The basic function of an operating sys-
tem is to make one’s life —one’s comput-
ing life, that is—simpler. When microcom-
puters first came out, the biggest burden
was dealing with the hardware. It was no
fun for the computer user and program-
mer (largely synonymous in those days) to
have to deal over and over with the intrica-
cies of the physical operation of the hard-
ware, such as getting characters to and
from the terminal or paper tape reader/

,punch, not to mention the dauntingly
more complex task of managing data on a
magnetic tape or floppy diskette drive.

Gary Kildal’'s CP/M operating system
provided a solution—and a very good one
(by and large) in my opinion—to those
problems. It did so by implementing a
standardized and modular interface that
handled the basic device communication
tasks. CP/M, which stood (I believe) for
“Control Program for Microcomputers,”
was the master program that one got run-
ning on the computer right after power up.
It would then allow one to load and run
other programs, with control always re-
turning to the CP/M master program after
each user program finished.

Besides accepting and interpreting
commands issued by the computer opera-
tor, an operating system like CP/M also
provides resident code (always ready in
memory) for performing certain functions
that application programs will often want
to use. The simpler functions are things
like sending a character to the terminal
screen; the more complex ones include
fetching from or writing to a floppy disk-
ette the information associated with a logi-
cal entity known as a file.

The Computer Journal / #42

With these functions implemented in
the operating system code, application
programs are easier to write and do not
have to include the same code over and
over. More importantly, they can run on a
variety of hardware platforms, since the
details of the physical hardware are
handled by the operating system code, and
the program can deal with things at a logi-
cal level.

Logical vs. Physical

Perhaps this is a good time for a brief
aside on this matter of logical versus physi-
cal. We use the adjective “physical” when
we are talking about things that are actu-
ally in the hardware. In the case of a floppy
disk, for example, the physical items are
the bits of data stored as magnetization
patterns. These bits are grouped into sec-
tors, and the sectors into tracks. In the
case of a terminal screen, the physical
items are the patterns of illuminated dots
that we recognize as letters, numbers, and
other symbols.

On the other hand, we use the adjec-
tive “logical” to describe those things
which are essentially the creation of our
minds (and programs). For example, there
is no such physical thing as a “file.” No
matter how you examine a diskette, you
will never find a file on it (as such), you
will find only sectors and tracks. It is our
choice to organize the data on the disk in a
way that associates groups of such sectors
with a file names and to store the file
names in a particular group of sectors on
the disk.

Modularity

CP/M is modular in the sense that it
divides up the functions of the operating
system into separate packages. One part is
called the BIOS (basic input/output sys-
tem). This part, which lives at the very top
of the memory address space, deals di-
rectly with the hardware. It reads and
writes physical sectors from and to a disk-
ette; it determines whether or not a key
has been pressed on the keyboard and, if
so, which key; and it sends characters to
the screen. The BIOS is the only part of
CP/M that is different for each hardware
implementation of a CP/M computer.

The second CP/M module is called the
BDOS (basic disk operating system). It
deals with logical constructs. We have al-
ready spoken of files. When a file is re-
ferred to, the BDOS figures out which
physical tracks and sectors contain the
data for that file. Another logical construct
is lines of text. The BDOS has a function
to send a complete line of text to the
screen (as opposed to the BIOS, which can
send only a single character), and it has
another function to get a complete line of
text from the user, allowing a limited
amount of editing. These functions make
it much easier for the application pro-
grammer to write his or her program.

The last CP/M module is called the
CCP (console command processor). It
gets a command typed by the user at the
console and takes the appropriate action
to carry out that command. Some com-
mands, such as DIR or ERA, are imple-
mented directly in the CCP code. Others
require that a COM file be loaded from
diskette and executed.

Command Processing Under CP/M

For the most part, CP/M accomplishes
the functions it was designed to perform in
admirable fashion. However, it was so con-
cerned with solving the hardware interface
problem (the programmer interface) that
it devoted relatively little attention to the
user interface. To be fair, it was born in
the days when 16K of memory cost about
$500 (in 1970s dollars, no less) and occu-
pied an entire S-100 card (bigger by far
than a whole SB180FX computer with
512K). Today we might not think that 64K
is very much (some say that OS/2 feels
dreadfully cramped in less than 3 Megs!),
but it makes a lot of things possible that
48K (or even less) would not allow.

CP/M’s command processor did little
more than the minimum it was required to
do, namely to run a few resident com-
mands and to load external commands
from disk. It did not provide many services
to make the operator’s life easier. You had
to specify rather exactly the command you
wanted performed; no leeway was allowed.
And if you made a mistake, CP/M did not
try to help; it just shrugged its shoulders
and emitted a question mark.

The Niceties of Z-System

The Z-System has evolved over a pe-
riod of nearly a decade now, but its goal
from the very beginning has always been
to make it easier and more convenient to
operate the computer. My ideal is to have
the computer do everything that it possibly
can do for the user and leave to the user
only those tasks that no computer could
possibly figure out on its own. The com-
mand processor improvements I have in-
troduced and the utilities I have written
have all been directed toward that goal. I
will now run through a short summary of
Z-System features and try to indicate how
they make the operator’s life easier. This
list is adapted from my book, The ZCPR33
User’s Guide.”

User Area Access

CP/M introduced the concept of disk
“user” areas, which allowed the operating
system to group files into separate logical
directories (physically the files are all
stored in the same directory, but they are
tagged to indicate the user area). Unfortu-
nately, CP/M provided no practical way to
access files across user areas, which made
them aimost useless.

Back in the days when disks held only
about 100K, there wasn’t much need for
this kind of organization, but today floppy

25




diskettes commonly have a capacity be-
tween 350K and 1.3 Meg. Hard disks with
many tens of megabytes are also inexpen-
sive and common. Under these circum-
stances, a single logical drive can hold hun-
dreds or even thousands of files, and some
way to organize them becomes essential.

Z-System makes it very easy and con-
venient to organize your files based on
. user numbers. Where CP/M allowed only

a drive prefix to a file name
(D:NAME.TYP), Z-System allows drive
and/or user number prefixes
(DU:NAME.TYP) so that files in other
user areas as well as other drives can be
referenced directly. In addition, Z-System
allows meaningful names (similar to DOS
- subdirectory names) to be assigned to
drive/user areas. This provides an interface
that is far more suitable to the way people
think and remember. With the DU: form,
the operator has to think about the hard-
ware (something he or she should not
have to do, remember?); with named di-
rectories, the operator thinks in terms of
function (TEXT: for text files, BDSC: for
the C compiler, DBASE: for database
files, and so on).

Terminal Independence and the
Environment

While some would argue that the DOS
hardware and softwarc standards estab-
lished by IBM’s market dominance have
resulted in an enforced mediocrity, there is
no doubt that having a single environment
in which to operate makes life much easier
for applications programmers. Programs
for DOS generally work right out of the
box on any IBM compatible computer.
Configuration is required only for fine-
" tuning.

CP/M, on the other hand, was designed
to allow programs to run on an extremely
wide variety of hardware. In those days,
“personal” computer took on a different
meaning—each person designed and built
his own hardware. CP/M could be made to
work with all of them, but elaborate con-
figuration procedures were generally re-
quired, especially to match programs to
the particular terminal used. To this day,
we still have to deal with this hardware di-
versity.

What CP/M could have but failed to
provide was a means for conveying to ap-
plication programs information about the
operating environment. Z-System has sev-
eral modules that afford such communica-
tion. An area called the environment de-
scriptor (ENV) contains information
about the system configuration. Another
system area called the message buffer
(MSG) stores information that one pro-
gram can leave for another program that
runs later to read.

Part of the ENV is a section called the
TCAP or Terminal-CAPability descriptor.
The TCAP allows a program running

26

under Z-System to determine the type of
terminal in use and to adapt to the control
codes it uses for special video operations.
The ENV has information about the size
of the screen and the printer’s page. It also
contains such information as the CPU
clock speed and which disk drives are
available (why allow attempts to log into
drive C: if there is no drive C:—it often
just hangs the computer). The Z-System
supports many optional operating system
features contained in optional modules,
and the ENV contains information about
these modules also.

The ENV and TCAP not only relieve
the user of the nuisance of installing pro-
grams; they also make it very easy to
change the installation. Suppose, for ex-
ample, you want to print some files in 132-
column mode instead of the usual 80-col-
umn mode. Under CP/M you might very
likely have to get out a configuration pro-
gram to redefine the printer setup. With a
Z-System print utility, you would simply
change the mode on your printer, run
CPSET (console/printer set) to select the
132-column printer definition, and run the
same print program as before.

Command Processing Enhancements

Under CP/M, you have to specify
where the COM file to be run is located
(otherwise the current drive is assumed).
This is a perfect example of something
that a computer can easily be smart
enough to do for you, and Z-System does.
As with modern versions of DOS (which
took many years to catch on to this Z-Sys-
tem feature), you specify a list of directory
areas that the operating system will scan
for a requested COM file. If you wish (as
you might when you know that your COM
file is not on the search path), you can
specify a directory using either the DU:
prefix or the named directory DIR: prefix,
and you are thus not limited to the current
user area or the path.

With Z-System one is also no longer
limited to issuing commands one at a time
(DOS has been even slower to catch on to
this). A single line of command input can
contain a whole sequence of commands.
As a result, you do not have to interrupt
your thinking to wait for one command to
finish before you can specify the second
and subsequent steps in a process. You
can work out a strategy for what you want
to accomplish and issue all the commands
at once, before you forget or get confused.

Many oft-repeated computational tasks
involve sequences of commands (e.g., edit-
ing, assembling, linking, running; or edit-
ing, spell checking, printing). In such cases,
the Z-System alias facility (similar in some
ways to SUBMIT but far more flexibie)
can be used to define a new command
name, which, when invoked, performs the
entire sequence. This saves the user a lot
of typing but more importantly eliminates

the need to remember exactly what the
sequence is. Basically, you solve the prob-
lem once and put the solution into an alias
script. From then on, the computer is
smart enough to take care of the complex
details for you. I have given many ex-
amples of this in past columns.

Conditional Command Execution

There is only so much one can accom-
plish on a computer (or in life) without
making decisions. Have you ever seen a
programming language with no ability to
perform tests and act in different ways de-
pending on the results? Flow control (IF/
ELSE/ENDIF) is unique to the Z-System
command processor. Other operating sys-
tems that offer flow control at all limit it to
operation inside a batch or script lan-
guage.

A special set of Z-System commands
can test a wide range of conditions, and
the command processor will use the re-
sults of the tests to decide which subse-
quent commands will be performed and
which will be skipped. This allows the Z-
System to respond in a remarkably flexible
and intelligent way. The solution to a com-
plex computing task, one that requires on-
the-spot decision-making, can be worked
out once and embedded in an alias com-
mand. Then you won’t have to tax your
brain the next time you need to perform
this task, and novice users will be able to
do things on your computer that would
have been beyond their own ability to fig-
ure out.

Command Processor Shells

If you do not want to deal with the op-
erating system at the command level or if
you want to have a command processor
with different features, the Z-System shell
facility allows you to install substitute user
interfaces of your own choice at will. They
can even be nested within each other.

Shells come in two common varieties:
menu shells and history shells. The menu
interfaces allow the user to pick tasks with
single keystrokes and have the shell pro-
gram generate the complex sequences of
commands required to perform those
tasks. The menu system shields the user
from complexity, saves typing, and greatly
reduces the chance of error.

History shells are enhanced command
processors that remember your com-
mands and allow you to recall and edit
previous command lines. I wish the Apollo
Domain minicomputer system I use at
work (not to mention my DOS computer)
had a history shell one quarter as nice as
Z-System’s LSH or EASE. They work like
powerful wordprocessors on your com-
mand history, allowing searching and ex-
tensive editing.

What Iif You Make a Mistake
This is one of the other areas in which

. most operating systems behave in an

The Computer Journal / #42




abominably primitive manner. When you
issue a command that cannot be per-
formed, they just issue an error message
and then dump you back to square one.
Often you are not even told what sort of
error occurred (consider DOS’s wonder-
fully helpful “bad command” message).

The Z-System behaves in a civilized
manner under these circumstances. When

.an error occurs, the command processor

turns the bad command line over to a
user-specified error handler. The most so-
phisticated error handlers allow the opera-
tor to edit the command and thus recover
easily from typing mistakes. In a multiple
command sequence, if subsequent com-
mands were allowed to run after an earlier
command failed, there could be disastrous
repercussions, and an error handler is in-
dispensable.

The system environment e€ven contains
an error type, which the error handler can
use to give you more specific information
about what went wrong. It may be the fa-
miliar error of a COM file that could not
be found, but there are many other pos-
sible causes for the difficulty. A file that
you specified as an argument might not
have been found (e.g., “TYPE FILE-
NAM” when you meant “TYPE FILE-
NAME”), or you may have specified an
ambiguous file name to a program that
cannot accept one (e.g., “TYPE *.DOC”).

System Security

Like minicomputer and mainframe op-
erating systems, the Z-System is a secure
operating system. This means that it has
mechanisms for limiting what any particu-
lar user can do or get access to. Dangerous
commands (such as erasing, copying, or
renaming files) can be disabled when ordi-
nary users are operating the system but
enabled when a privileged user is at work.
Areas of your disk can be restricted from
access for storage of confidential or other
sensitive information. These security fea-
tures come in very handy in the implemen-
tation of a remote access system or bulle-
tin board (see Lee McEwen’s article in this
issue). There is no need for additional se-
curity to be provided by the remote inter-
face program (BYE). The Z-System al-
ready includes a full suite of programs for
regulating and controlling system security.

Summary

To sum it up, the goal of the Z-System
is to provide an operating system that can
be tailored extensively to user preferences
and that can be made to handle on its own
and automatically as many computational
details as it can, leaving the user free to
concentrate solely on those aspects of
computer operation that require human
intelligence.

Faking Out The System
For the technical part of this column, I
would like to talk briefly about some tech-
niques for adding extensions to a Z-Sys-

The Computer Journal / #42

Copyright (c) 1988 Bridger Mitchell
Syntax:

or

ENV - environment

IOP - input/output
NDR -~ named directories

Notes:
An ENV file must be the first loaded.

CFG file.

JetLDR for Z-Systems (ZCPR3), Version 1.00

JetLDR [du:]{library][.lbr] memberl.typ member2.typ
JetLDR [du:]filel.typ (du:]file2.typ
FCP -~ flow commands

RCP - resident commands

23T - terminal capabilities

ZRL or REL - module in SLR or MS-relocatable (REL) format
with member name: RCP, FCP, IOP, CCP, CP3, DOS, DO3, BIO, CFG or BSX

If first file is a library, extract remaining files from it.

Precede special modules (DOS, RSX, BSX, ...} with appropriate

Use Path: YES Root Only: NO Scan Current: YES Explicit Directory: A0:

[du:)file3.typ ...

“+JETLDR //'"'.

Figure 1. This ie the internal help screen displayed by the command
It shows how flexible a package loader JetLDR is.

tem that it was not designed to accept. The
need for this trick arose in connection with
the installation of ZSDOS and ZDDOS
(and their clock drivers) on an SB180
computer with the XBIOS enhanced
BIOS, but it can be useful in other situ-
ations as well.

XBIOS is a very nice and flexible sys-
tem. One of its main features is that it
keeps much of the BIOS in an alternate
memory bank, leaving a much larger TPA
(transient program area) for application
programs than did the standard BIOS
from MicroMint. The configuration and
loading process, however, is somewhat un-
conventional (a forerunner in some ways
to the NZCOM and Z3PLUS tech-
niques).

The XBIOS system is loaded not from
system tracks on the disk but from a file.
This file is generated by a special utility
program called SYSBLD (SYStem
BuiLD) that aliows one to define in a
rather flexible way the configuration of
one’s personal Z-System, including the
names of the CCP and DOS files to be
used. Those component files, however,
must be available in REL format, and the
new Z-System DOS components are sup-
plied in ZRL format only (because they
have hooks to other parts of the system
that can be resolved only by that format).

Changing Systems Using JetLDR
JetLDR is a lovely little utility written
by Bridger Mitchell that knows how to
load almost any module in a Z operating
system. It is much faster and more careful
than its predecessors, LDR and LLDR,
and it is not limited to the non-code Z
modules—such as the NDR (named direc-
tory register)—or to code modules preas-
sembled for a fixed system—such as an
RCP (resident command package) mod-
ule FIXED.RCP. It can load code mod-
ules assembled in ZRL format to what-
ever address that module occupies in the

current system and with all the hooks to
other Z-System modules generated at load
time. Thus MYRCP.ZRL, assembled
once, can be used in any system configura-
tion that allocates enough room for an
RCP of that size.

Most remarkably, JetLDR can load
even main operating system modules:
CCP, DOS, or BIOS. Special adjunct con-
figuration files (CFG) are used to help it in
some of these specialized tasks (a little
more about that later). JetLDR’s internal
help screen is reproduced in Figure 1 so
you can see the whole list of modules it
can handle. It is available from the usual Z
suppliers for $20.

So, the obvious solution to the problem
of getting ZSDOS or ZDDOS running
under XBIOS is first to generate and boot
a standard ZRDOS system
(ZRDOS.REL comes with the SB180)
and then to replace ZRDOS with, say,
ZDDOS using the JetLDR command:

JETLDR ZDDOS.ZRL

ZSDOS can be loaded just as easily. On
my system 1 have ARUNZ aliases that
swap DOSs in a jiffy this way in case I want
to perform some experiments.
There’s The Rub

Now comes the problem. It’s very nice
that we now have ZDDOS or ZSDOS
loaded and running, but if we want to take
advantage of its wonderful time and date
features, we must find a way to load its
clock and (for ZSDOS) stamping module,
too. The ZDOS utility SETUPZST makes
it very easy to create the required loader,
LDTIM.COM; the problem is: where can
LDTIM put the driver code? [Aside: For
those who own it, I am told that the
DateStamper BSX module will work with
ZSDOS, but I have not tried this myself. It
requires no memory to load.}

In an NZCOM system, the MKZCM

27



system definition utility allows one to spec-
ify a “user buffer” area in memory, and
this is just perfect for the clock/stamp
module. ZDOS even has special facilities
for taking advantage of this buffer.
LDTIM can automatically determine the
location of that buffer and install the driv-
ers there, and a special patch to NZCOM
(included with the ZDOS package) gives

. NZCOM the ability to reconnect the driv-
ers automatically after a new DOS is
loaded.

XBIOS’s SYSBLD utility, unfortu-
nately, does not support such a user buffer
(this is true even in the 1.2 version that is
able to load ZRL files). There is a way to

_trick the system into making some room
for extra memory modules. This is to as-
sign the extra memory space needed to
one of the standard modules, such as the
RCP. For example, if you use an RCP of
the usual 2K (16 record) size and need
one page (two records) of memory for a
ZDDOS clock driver, you simply specify
an 18-record RCP space. Then, when
SETUPZST asks you for the address to
which the clock driver should be loaded,
you give it the starting address of the last
page of this RCP space.

Once these steps have been followed,
ZDDOS should be running with date
stamping. ZSDOS could be installed simi-
larly except that even more extra space
would have to be allocated to the RCP.
Although what I have described so far will
get the system running, there is some dan-
ger that an oversize RCP could be loaded
by accident and overwrite the clock driver.
To prevent this, the ENV module should

_ be patched to indicate that only the actual
16 records (10H) are available.

For those who do not face the problem
of installing ZDOS on an XBIOS-
equipped SB180, there are other uses of
this kind of trick. For people who do not
have the necessary tools (e.g., MOVCPM)
to move the BIOS down to make room for
special drivers (such as RAM disk drivers
and special 1/O boards), this same trick
can be applied to open up protected-mem-
ory space for them. Other people may find
it useful for quick experiments with special
drivers before going to the trouble of mov-
ing the operating system around.

There is one final refinement I would
like to mention. It is something I learned
from Gene Pizzetta, who took my general
recommendations above and worked out
the details (see his file, ZD-XB11.LBR,
available on many Z-Nodes). I have usu-
ally used either the IOP or RCP modules
for this trick, but Gene recommended us-
ing the NDR instead. The reason for this
is that the IOP, RCP, and FCP get allo-
cated in 128-byte chunks, while the NDR
gets allocated in much smaller 18-byte
chunks, the space required for one name.
If your clock driver takes, for example, 270
bytes (10EH), you would have to allocate

28

three extra records, because the driver is a
tiny bit over two records. If you steal space
from an NDR, you can add just two rec-
ords, but reduce the number of names in
the NDR by 1.

Changing Command Processors

Generating a new CCP using JetLDR
is a little trickier than changing the DOS.
JetlLDR could, as it does with a DOS or
BIOS module, load the new CCP into its
operating position in memory, but this
would be of questionable value, since the
CCP would survive only until the next
warmboot. So, instead, when processing a
CCP ZRL module, JetLDR normally
writes the resulting absolute-code CCP to
a file ZCCP.CCP (in the root directory, I
believe).

This is where CFG files come into play.

They are special code modules that
JetLDR uses to perform special process-
ing (see the file JLTOOLS.LBR on Z-
Nodes for more detailed information). For
example, CCPCFG.ZRL is one that tells
JetLDR how to deposit the absolute CCP
code that it generates directly into the
XBIOS ram image of the CCP in banked
memory (from which it is loaded on each
warm boot). A similar CFG file could be
written to tell JetLDR how to install the
new CCP onto the system tracks of the
current drive-A disk, but so far no one has
done this. I would be happy to provide the
CCPCFG module to XBIOS owners who
would like it or to others who would like to
use it as a model for writing other CFG
files (send me a formatted disk with your
copy of JetLDR, return mailer, etc.). @

SAGE MICROSYSTEMS EAST

Selling & Supporting the Best in 8-Bit Software

e New Automatic, Dynamic, Universal Z-Systems

— Z3PLUS: Z-System for CP/M-Plus computers ($69.95)
— NZ-COM: Z-System for CP/M-2.2 computers ($69.95)
~ ZCPR34 Source Code: if you need to customize ($49.95)

e Plu*Perfect Systems

— Backgrounder II: switch between two or three running tasks un-

der CP/M-2.2 (875)

— ZDOS: state-of-the-art DOS with date stamping and much more
(375, $60 for ZRDOS owners)

— DosDisk: Use DOS-format disks in CP/M machines, supports
subdirectories, maintains date stamps ($30 — $45 depending on

version)

e BDS C — Special Z-System Version ($90)
e SLR Systems (The Ultimate Assembly Language Tools)
— Assembler Mnemonics: Zilog (Z80ASM, Z80ASM+), Hitachi
(SLR180, SLR180+), Intel (SLRMAC, SLRMAC+)
— Linkers: SLRNK, SLRNK+
— TPA-Based: $49.95; Virtual-Memory: $195.00

o NightOwl Software MEX-Plus ($60)

Same-day shipping of most products with modem download and support
available. Order by phone, mail, or modem. Shipping and handling $4 per
order (USA). Check, VISA, or MasterCard. Specify exact disk format.

Sage Microsystems East
1435 Centre St., Newton Centre, MA 02159-2469
Voice: 617-965-3552 (9:00am — 11:30pm)
Modem: 617-965-7259 (password = DDT)(MABOS on PC-Pursuit)

The Computer Journal / #42




Embedded Controllers
A 68705 Application
by Joe Bartel, Hawthorne Technology

We don’t always work with super mi-
.cros at Hawthorne Technology. In fact
some of our projects use processors at the
opposite end of the scale. In January we
built a very small controller based on a
Motorola 68705. This is a good example of
the kinds of small control projects that can
be built with the new single chip micros.

A local company needed a device to
controt a random access video disk player
for a show exhibit. The device would play a
predetermined selection from the video
disk for a fixed time when the observer
pushed a button. The house lights had to
dimmed while the video player was active.
The actual control of the video player
could be an extra cost RS-232 option or a
port for a wired remote control port using
a special pulse width modulated control
sequence.

There were three main alternative de-

~'signs for this project: 1) Use a PC, 2) De-
sign it with PALs and TTL, or 3) Use a
single chip micro. A normai PC could have
been used and connected with an RS-232
interface, but this was rejected from con-
sideration early because it was far too big
and much too expensive. The hardware
solution was rejected because of the effort
needed for the design and the time re-
quired to debug it. Also this would have
produced a very complex design with many
chips. In many cases a special purpose chip
can be purchased to do a particular func-
tion. When that is the case the hardware
approach is very attractive. The other con-
sideration was that there would have to be
at least two different versions of the device
built. This would double the effort of the
hardware version. The last choice, a single
chip micro was chosen.

A single chip micro computer has all
the needed parts to form a complete sys-
tem on a single chip. There is a processor,
some RAM, some EPROM, and a few pe-
ripheral devices. Different companies offer
different families of single chip computers

The Computer Journal / #42

with a great deal of variety in what is of-
fered. Some are larger and faster, others
are smaller and slower. All of them offer a
cost effective solution to a wide variety of
problems. Almost every keyboard has one
and many appliances like microwave ovens
and televisions have one in control.

There were several other reasons why
the 68705P3 was chosen. First, only a very
simple program was needed. Second, the
I/O that was present on the chip was ade-
quate for the task. Third it involved a
simple form of timing. The chips were
available at a low cost and were very small.
The chip used is only 28 pins like an
EPROM, and they cost $15.00 at a local
distributor. The final factor was that we
had the capability to develop for the 6805
where we didn’t have all the tools needed
to use a different single chip family.

This was the company’s first micropro-
cessor based project. For a first project
they wanted something that was very

simple and safe so they could learn about
the use of micros in general for controller
applications. Three factors helped make
this a very short and successful project.
The task that had to be performed was
simple and very well defined. There were
no time constraints involved. All the infor-
mation needed was available at the start.

The 68705 chip has several features
which made it a good choice for this appli-
cation.

e It has only 28 pins.

® An on board clock that only needs a
crystal to operate.

® An on board power on reset circuit that
only needs a timing capacitor to func-
tion.

e 20 pins that can be programmed as in-
put or output. Of these pins 8 can
drive LEDs or other higher current
loads directly without a buffer.

¢ An 8 bit timer with a prescaler that can
be used to provide a programmable

€8705P3

PC3
PC2
PCL

PCo
PB?
PBS
PBS

+5 4, 7K 2 NT

PB3
P82

PB@
PA7
I PAE
= PAS
' PA4
PA3

PAl
PAG

DIMMER

CONTROL

KFERRERREE

Il

ACTIVE

|

FERBRBBRRE

START
__r_

+S

1 3
1: Uss| 4. uCC

* This schematic was prepared with SCHEMA i+

ABORT

—T=

A




periodic interrupt. To time more
intervals software timers can be used.

¢ 112 bytes of RAM memory and 1804
bytes of EPROM memory.

The instruction set is very well suited
for control applications, and programming
for the 6805 family is very simple. In most

" cases it is not practical to do very much

math with the chip. In comparison with the
Intel 8748 or 8751 families the Motorola
chip has a less complex set of instructions
and will probably be easier for most pro-
grammers to work with.

Besides the usual load, store, add, and
call instructions, there are four bit instruc-
tions that make control programming very
easy. These are: BSET, BCLR, BRSET,
and BRCLR. The first two set or clear a
bit in a byte. The last two test a bit in a
byte and branch if it is cleared or set.
These are very useful in testing bits for
switch inputs and turning bits on and off.

All the timing was done with software
timers operating from a master interrupt
tic as explained in an earlier article on soft-
ware timers (see TCJ #30). The onboard
timer and prescaler were set for a time tic
of 512 usec.

The process for creating a pro-
grammed device follows several steps.
First the program is written on an IBM PC
using a text editor to create a source code
file. Next the program is assembled with a
cross assembler. Then the program is
burned into a common 2732 EPROM.
The contents of the EPROM is then trans-
ferred into the 68705 with a special pro-
grammer. The schematics for the 68705
programmer are published in many of the
books on the 68705. If the program
doesn’t work (like most programs), then
the micro can be erased like an EPROM
and reused.

One feature that was added to the de-
sign was an LED that blinked once each

second. This helped to trouble shoot the
project in two ways. First if the LED was
blinking we knew that the processor was
running, the program had not crashed,
and memory was not corrupted. Second
we could tell by the blink rate whether or
not our calculations for timing were OK.
Many times a small indicator that the proj-
ect is alive will pay off in much reduced
trouble shooting time.

For many small projects a single chip
micro like the 68705 can be a small and
cost effective solution. They are small and
cheap. Compared to all hardware designs
they use fewer components. Also they can
be reused if the device is no longer
needed. Because they are so simple many
projects can be designed in an afternoon.
The simplicity also means that they can be
hand wired and expected to work. If re-
quirements, change then the program can
be quickly changed. o

Editor
(Continued from page 3)

circuit board layout capabilities (and I
probably will never need them).

I feel very comfortable with SCHEMA,
although I am not yet completely familiar

. with all of its capabilities. It includes exten-

sive libraries, plus the user can create
modified or original libraries. Placing com-
ponents, wires, and labels is quick and con-
venient. It produces a bill of materials and
a wire list (great for wirewrapping), and
does a design rule check. SPICE output is
provided for circuit simulation, as are net/
pin conversion programs for interfacing to
popular CAE board layout programs.

I recommend SCHEMA if you need to
prepare schematics. Contact them for
their demo disk and literature.

CP/M Status

There is not much CP/M hardware
available, and Chris McEwen’s ad on page
38 may be about the last chance to pick up
a bargain in distress priced new equip-
ment. It’s well worth the price even if you
never use the 8086 portion. And NO, it is
not IBM graphics compatible and will not
run Lotus 1-2-3. But it does include a Z80
and a 10 Meg hard drive.

At one time AMPRO was very active,

but I have not heard much about them
lately. Does anyone have any feedback on
what they doing? I have a number of their
systems, in fact more than I can use. I
would be interested in selling or trading an
AMPRO Z80 Little Board in their book-
shelf case with power supply, 5.25" floppy
and 10 Meg hard drives, SCSI, up and
running ZCPR3. I need a good two chan-
nel triggered scope. This is a good system
for running Z-System and/or a BBS--I just
have too many of them.

Laser Toner Cartridges

The daisy wheel and dot matrix printers
sec very little use since I got the Hewlett
Packard LaserJet II. The quality and
speed of the laser make everything else
seem obsolete except for continuous feed
labels. The only problem is that the per
copy cost of the toner cartridge makes the
output rather expensive. The cartridge is
rated at 4,000 copies of a normal letter.
Buying cartridges at the single piece street
price of about $90 (including shipping) re-
sults in an estimated toner cost of $0.0225.
The first cartridge gave out after only
2,800 copies of TCJ copy with bold titles
and closely set type. This would be $0.0032
per page for toner. The cost of the laser
and the paper are in addition to this. This

is too high.

Various sources advertise a cartridge
rebuilding service for under $50 which
helps reduce the cost, but I wanted to find
out what is actually involved. I contacted
Chenesko Products (62 No. Coleman
Road, Centerreach, NY 11720 (800)221-
3516) for their literature. They offer a
first-time recharge kit for $26.30 with re-
fills for $19.75 (the price drops to $13.40
in quantity). At $19.75 for 2800 copies the
cost is a much more attractive $0.0070.

I had heard horror stories of problems
with recharged cartridges, but for a cost of
less that 1 cent per copy I was willing to
take a close look at it. I ordered a kit from
Chenesko, recharged the cartridge, and
am well satisfied with the results. The
drum and other parts in the cartridge also
wear out, so the cartridges cannot be re-
charged indefinitely.

Some caution is required because the
printer can be permanently damaged if a
poorly sealed cartridge dumps toner pow-
der inside of the printer. Is it worth it? It
all depends on the application. I feel that it
is right for me, but what are your experi-
ences? A more extensive article is planned,
and your feedback is needed. ®

The Computer Journal / #42



Advanced CP/M

PluPerfect Writer

and
BDS C with REL Files
by Bridger Mitchell

. PluPerfect Writer Updated

Full-screen text editors are perhaps the most widely used type
of software on personal computers. In the CP/M world the step up
from primitive line editors (remember ED?) began with Word-
Master. That editor evolved into successive versions of WordStar
and set a standard for on-screen formatting and printer control of
edited text, using an 8-bit file format.

Another line of development flowed from the university com-
puter science departments, where programmers were improving
editing tools, initially for their own use. At MIT Richard Stallman
conceived the EMACS editor. (At Harvard, Michael Aronson de-
veloped the MATE editor, which became the commercial product
PMATE and is Jay Sage’s favorite editor under both Z-System
and DOS.) EMACS emphasized ASCII (plain-text) editing with
the ability to work conveniently on multiple files and to automate
complex changes in text. Formatting was left to other, stand-alone
tools such as SCRIBE that provided extensive control over docu-
ment organization and appearance.

Granddaddy EMACS has several descendants in the personal
computer world. Only a few of them retain its highest-powered
capability of dynamically modifying the editor itself —macros that
can reprogram the program! But most provide at least these key
features:

. virtual memory —edit files larger than physical memory

multiple buffers —work on several files at one time

multiple windows —simultaneously view different files, or
sections of the same file

short commands — designed for fast touch-typists

text-oriented commands — allowing movement and deletions by
character, word, sentence, paragraph

file aids —directory, disk change, space on disk

text-manipulation commands — rapid insert/delete/copy and
search

Plu*Perfect Systems got its start —and its name —shortly after
Kaypro began bundling Perfect Writer (PW) with its portable
CP/M computers. Perfect Software, the publisher of PW, had de-
veloped the editor from MINCE —the first EMACS-like CP/M
editor, which was published by Mark of the Unicorn, located just

Bridger Mitchell is a co-founder of Plu*Perfect Systems. He’s the
author of the widely used DateStamper (an automatic, portable file
time stamping system for CPIM 2.2); Backgrounder (for Kaypros);
BackGrounder ii, a windowing task-switching system for Z80 CP/M
2.2 systems; JetFind, a high-speed string-search utility; DosDisk, an
MS-DOS disk emulator that lets CP/M systems use pc disks without
file copying; and most recently Z3PLUS, the ZCPR version 3.4 sys-
tem for CP/M Plus computers.

Bridger can be reached at Plu*Perfect Systems, 410 23rd St,
Santa Monica CA 90402, or at (213)-393-6105 (evenings).

The Computer Journal / #42

around the corner from MIT. Unfortunately, PW had been re-
leased with a few serious bugs. So, at the prodding of a number of
users we found ways to correct them and then to add several new
commands. Plu*Perfect Systems first published PluPerfect Writer
(PPW) for the Kaypro version in 1983.

The Perfect Software company went on to develop an MS-
DOS version of PW. Shortly thereafter it was acquired by Thorn
EMI and discontinued all CP/M support. Also, Kaypro has now
stopped supporting its former CP/M products.

PluPerfect Writer, however, has enjoyed a longer life, and con-
tinues to serve many users. In response to a number of requests
we have finally updated PPW and are again able to supply it, this
time in a generic version for alil CP/M Z80 computers. It is best
thou_ht of as an upgrade to the original Perfect Writer version
1.20—-PPW comes with limited documentation files on disk only,
and users will benefit from consulting the Perfect Software user
guide.

“We are all like ducklings,” said a Dr. Dobbs’ Journal article,
“imprinted forever with our first experience in using a full-screen
editor.” For many, learning a different editor is unrewarding, even
aggravating! Perhaps this is because a really good editor becomes
so completely an extension of the writer that one is unaware of the
individual keystrokes and commands. I imagine I'm no different in
this regard; I just happen to have started CP/M life with MINCE,
and grumbile a lot if confronted with an editor that requires me to
use function keys and work on just one view of a single one file.

Some of you may nevertheless be interested in trying PPW. Its
keys can be “rebound” to more closely follow the editor you are
accustomed to. It provides exceptionally useful two-window, mul-
tiple-file capability for working on programs. And with Back-
Grounder ii or other RSX’s that provide keystroke macros it al-
lows complex editing tasks to be programmed on the fly.

The Low-Down on HLL Support

I expect Jay Sage’s column to cover news of an upgraded, Z-
System-compatible version of the excellent C language compiler
from BDS Software. When 1 first learned that Jay and author
Leor Zolman were at work on this project I began thinking about
the ways in which a high-level language (HLL) can relate to the Z-
System.

Clearly, the language should make it convenient for the pro-
grammer to access the Z-System external environment. He should
be able to write terminal-independent screen displays. File access
should incorporate both the DU: and named-directory features,
and should provide password control when used on remote or
other secure systems. Leor and Jay have added all of this in the
new 2.0Z version, making it the first HLL to directly support the
Z-System.

It’s also desirable to have the HLL be able to re-use the code in
the existing SYSLIB, Z3LIB, VLIB and DSLIB
libraries—routines that have been optimized and tested in many
Z-System applications. And for a good number of applications,
there are key sections of code that require assembler-level coding
for speed. If the HLL provides a general-purpose interface to as-

31



sembly-language routines, the user can have the best of each
language —the HLL for rapid code development and management
of complex data structures, and assembiler for finely honed, com-
pact and speedy subroutines.

Compiler Design Choices

But the marriage of HLL and assembier is not so quickly con-
summated. In designing a compiler, the programmer faces some
very basic choices:

He can design the compiler to compile the source code into
assembler statements, use a standard assembler to generate relo-
catable code, and then run a standard linker to produce the object
code. This is the strategy Ron Cain followed with his famous
Small-C, which Walt Bilofsky reworked into the solid C/80 com-
piler.

Or, he can compile directly into a standard relocatable format,
and then use a standard linker. This is what Digital Research used

" in its PL/I compiler.

Or, he can compile into a custom relocatable format, and de-
velop a custom linker to generate object code. This was Leor Zol-
man’s choice for BDS C. ’

Think back to the very early days of CP/M. With your Digital
Research package you got an incomprehensible manual, a few
utilities like STAT and DUMP, and ASM —a small, fast, one-pass
8080 assembiler that generated output in Intel hex format. Work-
ing in this primitive environment, Leor wrote the first versions of
BDS C and polished them into a sleek, high-speed HLL compiler
and linker.

At that time relocating assemblers and linkers for CP/M were
just arriving. They were slow, quirky, and very expensive. So Leor
took up the challenge and wrote his own linker and a pre-proces-
sor for the existing ASM assembler.

This design choice got an excellent, low-cost C compiler into
users hands and promoted a wide range of major applications pro-
gramming (including the MINCE and PW editors). But it stuck
users with a kludgy method of mixing ASM and C routines. The
ASM functions are coded in the normal way, but with macros to
generate the function directory and entry addresses, as well as the
external names used by each function, in the CRL format. There is

- an alternative —the ACRL assembler, written in BDS C and avail-

able from the C Users’ Group. It generates CRL output from
8080 assembler statements with no macros.

“Why Mix C and ASM?”

High level languages have many, varied uses. They are excel-
lent for quick coding of one-of-a-kind tasks and for prototyping
algorithms, user interfaces, and major applications. I have fre-
quently used them to develop configuration utilities that need to
accompany the main application. But many times, in the CP/M
world, the 64K memory limit and CPU speeds demand that key
portions of a program be tightly coded in assembler.

I have used BDS C and the ACRL tools to write DATSWEEP
and several other DateStamper applications, including the con-
figuration utilities for PluPerfect Writer. Yes, you can beat your
ASM code into the shape that is required to produce the right
CRL format, but it’s always messy. By contrast, by using the CP/M
PL/ compiler my colleague Derek McKay produced applications
such as MULTICOPY that nicely balanced HLL program organi-
zation and control-structure with exquisitely-timed disk formatting
loops.

Each time I used BDS C with cobbled-together assembler files
I thought, Wouldn’t it be nice if BDS C could be used with regular
REL files, much as PL/I can? Finally, with the arrival of version
2.0Z, I decided to investigate what would be required. As a first
effort, it seemed that I should be able to write a format translation
tool that would take a CRL file and turn it into a REL file. This
would add one intermediate step to the BDS C production proc-
ess, but it would make existing REL files usable and allow new

32

assembler code to be written and assembled with standard assem-
blers. The REL files would then be linked together into a final
COM file.

The BDS Dialect of C

BDS C is not a “full K&R” implementation of the C language.
(Kernighan and Ritchie literally wrote “the book”—The C
Language —which until the recent adoption of an ANSI standard
was the definitive description of the language). It omits floating
point and multiple-precision integer arithmetic (but library rou-
tines included with BDS C provide this capability, aibeit in a non-
standard way). Thus, it has just three data types: char (an 8-bit
byte), int (a signed 16-bit word) and unsigned (16-bit word).

In K&R C external variables are declared “extern” and then
referred to by name in the files that use them. They correspond
most closely to public labels for variables in an ASM data segment.
Probably because it is more complicated to link such files, the BDS
C designer took an important shortcut in allocating memory for
external variables.

There is no “extern” keyword as such; all externals are stored
in a common data pool, either immediately following the code, or
at a fixed address specified by the programmer. This means that if
externals are used in more than one source file, they must appear
in every file, in identical order. The recommended way to ensure
this is to put all externals in a “.h” header file, and “#include” it at
the top of every source file. This organization of variables most
closely corresponds to a “blank common” data segment —a sepa-
rate area of memory that is actually referenced by offsets from its
base address, rather than by variable name.

A complete BDS C program consists of three compo-
nents— (1) a runtime library that performs initialization and con-
tains widely-needed low-level routines such as 16-bit multiply and
divide, (2) the code segment containing the user’s functions plus
any standard library functions that it references, and (3) the exter-
nal data segment (Fig. 1).

BDS C function names are upper-case 8-character. Thus it is
essential that the relocatable code format support 8-character
names. The good news is that the SLR Systems format does sup-
port 8-character externals, and, because it is a “byte-aligned” for-
mat, it’s also relatively easy to debug and test.

The bad news is that the older Microsoft REL format appears
to be limited to 7 bytes (for externals). So, the CRL2ZREL
technique requires use of the SLR linker. However, I understand
from discussing this with Al Hawley that, because Microsoft uses a
three-bit field to define the length of a symbol, it is possible to
instruct savvy assemblers and linkers to consider a “0-byte symbol”
to be an 8-byte symbol. With further investigation it may be pos-
sible to extend CRL2REL to the Microsoft format also.

As some consolation, the SLR linker understands two dialects,
and can accept Microsoft REL input files also. You can use files
assembled with an assembler that produces MS REL output and
mix them in the linkage step with SLR format. The MS REL
routines will be limited to accessing other routines that have at
most 7 character names.

The CRL2REL Translator

With this background and a detailed analysis of the formats of
CRL and REL files, I was able to create CRL2REL, a short trans-
lator (written in BDS C, of course) that reads one or more CRL
files and translates each into the corresponding REL file. For
once, I'll omit the inner workings of this tool and turn directly to
how to use it.

CRL2REL is run once, on the default BDS C libraries
(DEFF.CRL, DEFF2.CRL)

CRL2REL deff deff2

to produce default DEFF.REL and DEFF2.REL files.
Also, the BDS C runtime library is (re)assembled once, to pro-

The Computer Journal / #42




Figure 1. BDS C Memory Model

runtime library
initialization
memory parameters
file control blocks ...
code segment
main function
other functions
‘‘blank common’’ segment
external data area
free memory

Figure 2. integrated Memory Model

runtime library

initialization

memory parameters

file control blocks ...
code segment

main function

other functions

assembler routines
data segment

assembler routines’ data
‘‘blank common’’ segment

C routines’ external data area
free memory

duce a REL output files (rather than the absolute C.CCC image
file). For my own use I set the SLR assembler option to generate
global labels, so that my ASM routines could refer by name to
data and routines in the runtime library.

SLRMAC ccc.280/x

These preliminary, once-only steps provide us with re-usable
REL files of the runtime library (CCC.REL) and the default li-
brary routines (DEFF.REL, DEFF2.REL).

Next, compile each C source file in your application (with the
CC compiler) into a CRL file,

CC myprog ~e EEEE
. CC mysubs ~e EEEE

where EEEE is a suitable hex address for the external C data, and
then translate it with CRL2REL into REL

CRL2REL myprog mysubs
Now link the REL files together to produce one object file

SLRNK+ myprog/n/p:100/m:4,ccc,myprog,mysubs,deff/s,
deff2/s,...,/e
Editor's note: The above line was folded to fit in the column

width.

In this command line we name the output file
MYPROG.COM (using the “/n” flag), with a starting address of
100h, request a symbol table file (“/m:4”), and take care to load
the runtime library (CCC) as the first REL file, followed by the
program and subroutine files. We also instruct the linker to search
(“/s”) the two default libraries. If you have other libraries to be
searched include them here (e.g. “Z3LIB/s”). The final parameter
(“/e”) instructs the linker to exit by writing out the COM file.

One last step remains to make MYPROG.COM executable.
The runtime library, linked from CCC.REL, needs the addresses
of the external data area, the end of the program, and initialization
for its stack pointer. This initialization is ordinarily done by the
BDS C linkers (CLINK or L2). I wrote FIXCCC to perform the
same functions:

FIXCCC myprog myprog

will read in its first argument as a REL file, and extract the address

The Computer Journal / #42

of the external data area from it. Then it reads the second argu-
ment as a COM file, installs the appropriate values, and writes out
the modified file.

One behind-the-scenes “trick” that is used here is to have
CRL2REL encode the EEEE value in the REL file, so that it can
be passed on to FIXCCC and ultimately inserted into the com-
plete object file.

To summarize, the standard BDS C procedure is:

CC progname -e EEEE
CLINK progname

The new procedure is:

CC progname -e EEEE
CRL2REL progname

SLRNK+ ....

FIXCCC progname progname

Postscript

When I embarked on the translator project I had in mind mak-
ing it the testbed for a project that would directly upgrade the
BDS C compiler itself. In principle, the compiler could directly
produce REL output. The resulting file would have a code seg-
ment and a blank common segment for externals, and external
references to each C or ASM function.

Further investigation, however, suggests this can’t be accom-
plished easily, primarily because the BDS C code generator con-
verts the external variables to absolute addresses at an early stage
in the process.

The principal impact of this limitation is that BDS C cannot
generate a relocatable, self-contained object file—a program that
can be relocated to run at any reasonable address —because its ex-
ternal data area has been fixed at compile time. There are at least
three good applications for a run-time relocation capability—a
Type-4 Z-System program that the command processor relocates
to run in highest user memory, a symbolic debugger such as the
Kirkland debugger supplied with BDS C, and other resident sys-
tem extensions. :

However, Jay Sage has just recompiled and reassembled a
version of all of the BDS C components to support Type-3 Z-
System programs at a fixed runtime address of 0x8000. This
should be a satisfactory substitute for Type-4s in many applica-
tions.

Turbo Pascal and ASM?

I’d hoped to close this column with thoughts about how assem-
bly-language routines could be uses effectively with other high-
level languages, and the obvious candidate is Borland’s popular
Turbo Pascal. Unfortunately, unlike the several C compilers avail-
able for CP/M, Turbo Pascal has no provision for linking together
Pascal functions and procedures with separately assembled ASM
routines. At least I have not been able to discover one, although I
am not a regular Pascal programmer. Perhaps a reader more fa-
miliar with that compiler can invent a method of using ASM rou-
tines with Turbo Pascal. If so, do write!

Turbo Pascal does have a primitive capability to include ma-
chine-code bytes in the source file and have them executed as
instructions. This may help in a few cases. If you can write a posi-
tion-independent routine, or somehow determine where your
bytes will be located in the object file, you can use a standard
assembler to generate a machine-code listing and then type those
codes into your Pascal source file. But in-line machine bytes are
hardly a general ASM interface! @




Real Computing
The National Semiconductor NS32032

by Richard Rodman

"By the time you read this, the Datac-
rime, AKA Columbus Day virus, will ei-
ther have caused the destruction of West-
ern civilization, or gone the way of Comet
Kohoutek. Either way, it proves the sad
truth that people who should know better,
just plain don’t.

The NS32 Trap Mechanism

Interrupts and traps which come into
an NS32 are vectored through an inter-
rupt table in almost the same manner as
the CXP instruction. The PSR (flags), the
MOD register (pointer to current module
table entry), and the PC (program
counter) are pushed on the stack. Then,
the appropriate entry in the Interrupt
Table is invoked. Each entry in the Inter-
rupt Table is a descriptor, that is, a 16-bit
module table entry pointer and a 16-bit
code offset from the code base of the
module indicated.

Every module in an NS32 system
should have a module table entry some-
where in the first 64K bytes of stack. Each
module table entry is 4 doublewords long:
the first doubleword contains the static
(data) base address, the second the link
table address, and the third contains the
code base.

The interrupt table can be located any-
where in memory. In a memory-mapped
system, it must be located in the supervi-
sor space. The first 10 entries are for spe-
cific purposes, in the following order: Non-
vectored interrupt, non-maskable inter-
rupt, abort trap (page fault from MMU),
floating-point unit trap (a floating-point
instruction executed with no FPU, or
some illegal condition detected by an
FPU), illegal operation trap (privileged in-
struction in user mode), supervisor call
trap (system call), divide by zero trap, flag
trap, breakpoint trap, trace trap, and un-
defined instruction trap. Following these
predefined entries would be vectored
interrupts.

The trap code can use the stack con-
tents to analyze the cause of the error. In
the case of the supervisor call trap, this is a
system call into the operating system. Note
that the program counter is mot incre-
mented, and still points to the instruction

34

where the error occurred. If the RETT
(return from trap) instruction is executed
at the end of the routine without incre-
menting to the next instruction, the in-
struction will be re-executed. Sometimes
this is what you-want, and sometimes it
isn’t, but at least it’s consistent.

When the abort trap is executed, the
MMU is telling you that the page refer-
enced by the instruction is not valid. Per-
haps it needs to be brought back from
disk, if you’re implementing virtual
memory—or perhaps the program is at-
tempting some memory access it shouldn’t
make. It isn’t necessary to examine the in-
struction in this case; the MMU keeps
track of page faults in its registers.

Virtual memory is a funny subject. If
done in a simple, straightforward manner,
virtual memory guarantees glacial per-
formance. That’s one reason that Unix
boxes with ocelot-like benchmarks become
dairy cows in multitasking environments.
More man-years have been spent on the
virtual memory portions of VMS alone
than on all of Unix—and even then, sys-
tem parameters have to be carefully tuned
to give optimum results.

A new use of the MMU is ‘“virtual
files”, where open files are mapped into
regions of memory space. Then, there is
no need for special system calls such as
read, write, seek, etc.; you just access the
desired part of the file with a pointer.

The fact that the interrupt table is lo-
cated at the address contained in a register
makes it possible to change these vectors
easily even in a system with ROM at loca-
tion zero, unlike some other processors.

An amusing anecdote comes to mind.
Many people think that the IBM PC was a
masterpiece of Big Blue strategy, when in
fact it was a quick-and-dirty product. Ini-
tially, the designers put in the 8259 PIC
chip with an interrupt base of zero. Then,
they realized that Intel had hard-wired
some of these interrupts from 0 to 7 for
various features such as divide by zero, so
they added an offset of 8 to it. But they
never changed the documentation, so
years later, documents still talk about the
serial port interrupts being 3 and 4 when
they’re really 11 and 12. Not only that, but

newer Intel processors have a BOUND in-
struction for checking array indices. If the
index is out of bounds, the computer tells
you--by printing out your screen!

But I digress. Some NS32 systems
make little use of the module table except
for the interrupt processing, where it is
necessary. However, as I described in issue
#38, the real value of the module table is
to facilitate dynamic binding. An NS32 sys-
tem can modify and replace modules,
while the system is running, without touch-
ing other modules that reference them.
Unix has little need for such capability, but
high-performance real-time systems could
greatly benefit from it.

Built-in Single Stepping

By setting a bit in the PSR called the
Trace (T) bit, the CPU will execute a trace
trap before each instruction. The bit is
automatically turned off during interrupts
or other traps, so that each instruction
only comes in one time. So, writing a
single-step routine would be a piece of
cake.

Another interesting trap is the Flag
trap. If you have a condition that comes
about only very seldom, but you want to
cause a trap only then, you can insert a
FLAG instruction. If the F bit in the PSR
is set when that instruction is executed, a
trap will occur. Now the F bit is a regular
PSR bit and is set by lots of instructions,
such as the TBIT (test bit) instruction. So,
if you want to trap on bit 4 being set on an
T/O device status port, you could execute:

TBITB 4,@IOSTATUS
FLAG

For normal breakpoints, you would re-
place a single byte of your code with the
BPT instruction (F2 hex). This always
causes a breakpoint trap. In either the flag
or breakpoint traps, the values on the
stack point to the respective instruction
that caused them.

In these heady times, you don’t just buy
a compiler, you buy an “environment”.
The NS32’s built-in support for software
debugging should lead to the debugger it-
self being built, not into the editor or the

The Computer Journal / #42




compiler, but into the operating system itself.

The NS32202 Interrupt Control Unit

The Interrupt Control Unit (ICU) is somewhat like the 8259
programmable interrupt controller. You don’t need it to build a
system, but it provides some very nice capabilities. Unlike the
8259, the ICU can be useful even in very small embedded control
systems.

The basic function of the ICU is to prioritize up to 16 interrupt

" sources. ICUs can be cascaded to provide up to 256 interrupt
sources. The chip has 16 1/O pins, which can be used as interrupt
inputs, or 8 of them can be used for general purpose 1/O, or 8 can
be used to provide a 16-bit data path to the processor.

It also contains two 16-bit counters, which can be concatenated

. to provide a 32-bit counter if desired. Outputs from these counters
can be sent to any of the general purpose 1/0 pins, or can generate

* interrupts.

National provided a great deal of flexibility in the ICU, and that
flexibility translates into a lot of apparent complexity. However,
the ICU really is a nice chip, and most NS32 systems have one.
Sitting idle.

If present, a “master” ICU is required to reside at address
FFFEO0 hex; the vector for a vectored interrupt is read from regis-
ter zero, which will appear at that location. But beyond that, other
registers might appear at locations +1, +2, +4 and so on, or at
locations +2, +4, +8 and so on, depending on how the address
lines are connected. The designers of the PD32 board, for reasons
known only to themselves, wired it in such a way that the registers
are at locations +4, +8, +12 and so on. This makes writing port-
able software somewhat difficult.

The ICU also has a clever “auto-rotate” mode that rotates the
priorities every interrupt so that the last interrupt serviced auto-
matically becomes lowest priority, thus guaranteeing service to all
interrupts.

Smart Laser Printers

Any time the NS32 processor is mentioned, it seems, someone

says, “Oh, it works great in laser printers.” Canon has been adver-

. tising the fact that their printer uses a NS32CG16, and Talaris’
high-end printer uses a NS32CG16 and a TMS34010 together.

Meanwhile, Don Lancaster does all of his programming in
Postscript on an Apple Laserwriter, and some laser printers even
have hard disks inside! Next thing, they’ll add a “preview
screen” —maybe a high-resolution LCD —and a mouse or a track-
ball for “cleanup”. Gasp! Could it be that the computer of the
1990s is (shudder) a printer?

Then AT&T is rumored to be negotiating with Nintendo to use
video games as terminals. I can see it now--they’ll all be logged into
a central laser printer. They’ll fly a space ship to a Star-Data Base
and beam-up the information they need. Then, they’ll pop open a
window, click and drag on some icons, and pow! Out goes the data
over you-know-who’s Long Distance to an important client’s fax
machine, where it comes out with the pixel-perfect shimmer of
living videotext.

Maybe I'm old-fashioned, but I think printers should just print.
Computers should compute. Machines should work. People

should think.

Next Time

Next time I’ll check into some new low-cost ways of getting into
NS32 computing. Don’t plunk down your ten kilobucks on that
Sparcstation yet! @

The Computer Journal / #42

Forth Column
(Continued from page 25)

A final wrap up

Things are moving along in the Forth community these days;
the standardization process is moving towards completion; even as
I write this a definition of LOCAL variables is now part of the
working BASIS (for those who know when the LOCAL variables
made it in... you also know just how late I ran on this article). By
the time you read this it should be just about time for the 1990
SIGForth conference (not something you should miss... the Forth
conferences are the single best way to learn more about the lan-
guage), and I hope to see some (all?) of you there.

One thing I would like is feedback. With a few notable excep-
tions (who I cannot thank enough), I haven’t really heard from
people what they would like to see in this column (so I'll just keep
stealing from other languages until someone speaks up or I run
out of languages). Do you want more articles like this (theory
followed by application), or hardware level articles (“How to make
your xxxxxx do yyyyy in Forth™), all theory articles (like last issue),
or just whatever comes along?

Please feel free to write or call (although I must warn you that
the odds are that phone calls will be answered by a busy signal, an
answering machine, a nosy cat, or on a rare occasion, by me). I can
be reached as follows:

Dave Weinstein
9036 N. Lamar #274
Austin, TX 78753
(512) 339-4407

internet Mail: olorin@walt.cc.utexas.edu
GEnie: OLORIN

Registered Trademarks

It is easy to get in the habit of using company trademarks as
generic terms, but these trademarks are the property of the re-
spective companies. It is important to acknowledge these trade-
marks as their property to avoid their losing the rights and the
term becoming public property. The following frequently used
trademarks are acknowledged, and we apologize for any we have
overlooked.

Apple II, 11+, Ilc, Ile, Lisa, Macintosch, DOS 3.3, ProDos;
Apple Computer Company. CP/M, DDT, ASM, STAT, PIP; Digi-
tal Research. DateStamper, BackGrounder ii, Dos Disk;
Plu*Perfect Systems. Clipper, Nantucket; Nantucket, Inc. dBase,
dBASE II, dBASE 111, dBASE III Plus, dBASE IV; Ashton-Tate,
Inc. MBASIC, MS-DOS, Windows, Word; MicroSoft. WordStar;
MicroPro International. IBM-PC, XT, and AT, PC-DOS; IBM
Corporation. Z80, Z280; Zilog Corporation. Turbo Pascal, Turbo
C, Paradox; Borland International. HD64180; Hitachi America,
Ltd. SB180; Micromint, Inc.

Where these and other terms are used in The Computer Jour-
nal, they are acknowledged to be the property of the respective
companies even if not specifically acknowledged in each occur-
rence.




Issue Number 18:

« Parallel Interface for Apple |l Game Port
o The Hacker's MAC: A Letter from Lee
Felsenstein

* S.100 Graphics Screen Dump

Issue Number 1: « The LS-100 Disk Simulator Kit

* RS-232 Interface Part One * BASE: Part Six

« Telecomputing with the Apple It ¢ Interfacing Tips & Troubles: Com-
* Beginner's Column: Getting Started municating with Telephone Tone Control,
* Build an “”’Epram” Part 1

Issue Number 2: Issue Number 19:

+ File Transfer Programs for CP/M * Using The Extensibility of Forth

e RS-232 Interface Part Two » Extended CBIOS

« Build Hardware Print Spooler: Part 1 * A $500 Superbrain Computer

* Review of Floppy Disk Formats * BASE: Part Seven

* Sending Morse Code with an Apple Il s Interfacing Tips & Troubles: Com-
. municating with Telephone Tone Control,

Beginner's Column: Basic Concepts and
Formulas

Issue Number 3:

e Add an 8087 Math Chip to Your Dual

Processor Board

* Build an A/D Converter for Apple Il

* Modems for Micros

*_The CP/M Operating System

¢ Bulld Hardware Print Spooler: Part 2

issue Number 4:

* Optronics, Part 1: Detecting,
Generating, and Using Light in Electronics
* Multi-User: An Introduction

o Making the CP/M User Function More
Useful

o Build Hardware Print Spooler: Part 3

e Beginner's Column: Power Supply
Design

Issue Number 6:

e Build High Resolution S-100 Graphics
Board: Part 1

* System Integration, Part 1: Selecting
System Components

+ Optronics, Part 3: Fiber Optics

* Controlling DC Motors

o Multi-User: Local Area Networks

« DC Motor Applications

Issue Number 16:

Part 2
« Multitasking and Windows with CP/M: A
Review of MTBASIC

issue Number 20:

* Designing an 8035 SBC

¢ Using Apple Graphics from CP/M: Turbo
Pascal Controls Apple Graphics

» Soldering and Other Strange Tales

« Build a S-100 Floppy Disk Controller:
WD2797 Controlier for GP/M 68K

Issue Number 21:

¢ Extending Turbo Pascal: Customize with
Procedures and Functions

* Unsoldering: The Arcane Art

e Analog Data Acquisition and Controk:
Connecting Your Computer to the Real
World

¢ Programming the 8035 SBC

Issue Number 22:

» NEW-DOS: Write Your Own Operating
System

* Varlability in the BDS C Standard Library
* The SCS! Interface: Introductory
Column

o Using Turbo Pascal ISAM Files

« The AMPRO Little Board Column

Issue Number 23:

+ Debugging 8087 Code

* Using the Apple Game Port

* BASE: Part Four

¢ Using the 5-100 Bus and the 68008 CPU

o Interfacing Tips & Troubles: Build a
“Jellybean” Logic-to-RS232 Converter

e C Column: Flow Control & Program
Structure

e The Z Column: Getting Started with
Directories & User Areas

» The SCSI Interface: introduction to SCSI
» NEW-DOS: The Console Command
Processor

« Editing The CP/M Operating System

e INDEXER: Turbo Pascal Program to
Create Index

s The AMPRO Little Board Column

THE COMPUTER JOURNAL

Back Issues

issue Number 24:

« Selecting and Building a System

e The SCSI Interface: SCSI Command
Protocol

* Introduction to Assembly Code for CP/M
« The C Column: Software Text Filters

« AMPRO 186 Column: Installing MS-DOS
Software

¢ TheZ Column

o NEW-DOS: The CCP Internal Commands
s ZTIME-1: A Realtime Clock for the AM-
PRO Z-80 Little Board

issue Number 25:

Repairing & Modifying Printed Circuits
Z-Com vs Hacker Version of Z-System
Exploring Single Linked Lists in C
Adding Serial Port to Ampro L.B.
Building a SCSI Adapter

New-Dos: CCP Internal Commands
Ampro '186 Networking with SuperDUO
281G Column

Issue Number 26:

¢ Bus Systems: Selecting a System Bus

s Using the $B180 Real Time Clock

e The SCSI Interface: Software for the
SCSI| Adapter

* Inside AMPRO Computers

¢ NEW-DOS: The CCP Commands Con-
tinued

s ZSIG Corner

* Affordable C Compilers

« Concurrent Multitasking: A Review of
DoubleDOS

Issue Number 27:

« 68000 TinyGiant: Hawthorne's Low Cost
16-bit SBC and Operating System

e The Art of Source Code Generation:
Disassembling Z-80 Software

s Feedback Control System Analysis:
Using Root Locus Analysis and Feedback
Loop Compensatlon

e The C Column: A Graphics Primitive
Package

« The Hitachi HD64180: New Lite for 8-bit
Systems

« ZSIG Corner: Command Line Generators
and Aliases

« A Tutor Program for Forth: Writing a For-
th Tutor in Forth .

* Disk Parameters: Modifying The CP/M
Disk Parameter Block for Foreign Disk
Formats

Issue Number 28:

« Starting your Own BBS

« Build an A/D Converter for the Ampro
L.B. HDB4180: Setting the wait states &
RAM refresh, using PRT & DMA

s Using SCS! for Real Time Control

« Open Letter to STD-Bus Manutacturers
« Patching Turbo Pascal

s Choosing a Language for Machine Con-
trol

Issue Number 29:

« Better Software Filter Design

e MDISK: Adding a 1 Meg RAM disk to
Ampro L.B., part one.

* Using the Hitachi HD64180: Embedded
processor design.

* £8000: Why use a new OS and the 680007
» Detecting the 8087 Math Chip

* Floppy Disk Track Structure

s The ZCPR3 Corner

Issue Number 30:

* Double Density Fioppy Controller

« ZCPR3 IOP for the Ampro L.B.

* 3200 Hacker’s Language

* MDISK: 1 Meg RAM disk for Ampro LB,
part 2

* Non-Preemptive Multitasking

* Software Timers for the 68000

¢ Lilliput Z-Node

* The ZCPR3 Corner

* The CP/M Corner

issue Number 31:

¢ Using SCSI for Generalized I/O

* Communicating with Floppy Disks: Disk
parameters and their variations.

« XBIOS: A replacement BIOS for the
SB180.

* K-OS ONE and the SAGE: Demystifing
Operating Systems.

* Remote: Designing a remote system
program.

* The ZCPR3 Corner: ARUNZ documen-
tation.

Issue Number 32:

e Language Development: Automatic
generation of parsers for interactive
systems.

* Designing Operating Systems: A ROM
based O.S. for the Z81.

= Advanced CP/M: Boosting Performance.
e Systematic Elimination of MS-DOS
Files: Part 1, Deleting root directories & an
in-depth look at the FCB.

s WordStar 4.0 on Generic MS-DOS
Systems: Patching for ASCIl terminal
based systems.

e K-OS ONE and the SAGE: Part 2, System
layout and hardware configuration.

e The ZCPR3 Corner: NZCOM and ZC-
PR34.

Issus Number 33:

» Data File Conversion: Writing a filter to
convert foreign file formats.

* Advanced CP/M: ZCPR3PLUS, and how
to write self relocating 280 code.

o DataBase: The first in a series on data
bases and information processing.

* SCSI for the S-100 Bus: Another example
of SCSi’s versatility.

* A Mouse on any Hardware: Implemen-
ting the mouse on a 280 system.

¢ Systematic Elimination of MS-DOS
Flles: Part 2—Subdirectories and extnded
DOS services.

¢ ZCPR3 Corner: ARUNZ, Shells, and pat-
ching WordStar 4.0




Issue Number 34:

» Developing a File Encryption System:
Scramble data with your customized en-
cryption/password system.

o DataBase: A continuation of the
database primer series.
¢ A Simple Multitasking Executive:

Designing an embedded controller
muititasking system.

e ZCPR3: Relocatable code, PRL files,

, ZCPR34, and Type 4 programs.

s New Microcontroliers Have Smarts:
Chips with BASIC or Forth in ROM are easy
to program.

e Advanced CP/M: Operating system ex-
tensions to BDOS and BIOS, RSXs for
CPIM 2.2,

* Macintosh Data File Conversion in Tur-

‘bo Pascal.

, issue Number 35:

s All This & Modula-2: A Pascal-like alter-
natlve with scope and parameter passing.

e A Short Course in Source Code
G tion: Di bling 8086 software
to produce modifiable assem. souce code.

* Real Computing: The National
Semiconductor NS32032 is an attractive
alternative to the Inte! and Motorola CPUs.
e $-100 Eprom Burner: a project for S-100
hardware hackers.

s Advanced CP/M: An up-to-date DOS,
plus details on file structure and formats.

¢ REL-Style Assembly Language for CP/M
and Z-System: Part 1-selecting your
assembler, linker, and debugger.

e ZCPR3 Corner: How sheils work,
cracking code, and remaking WordStar 4.0.

Issue Number 36:

issue Number 38:

* Information Engineering: Introduction

* Modula-2: A list of reference books

e Temperature Measurement & Control:
Agricultural computer application

¢ ZCPR3 Corner: Z-Nodes, Z-Plan, Am-
strand computer, and ZFILEI
¢ Real Computing: NS32032 hardware for
experimenter, CPU’s in series, software
options

* SPRINT: A review

¢ ZCPR3's Named Shell Variables

* REL-Style Assembly Language for CP/M
& Z-Systems, part 2

* Advanced CPIM:
programming

Environmental

issue Number 37:

¢ C Polinters, Arrays & Structures Made
Easier: Part 1, Pointers

* ZCPR3 Corner: Z-Nodes, patching for
NZCOM, ZFILER

¢ Information Engineering: Basic Concep-

ts; fields, field definition, client
worksheets
* Shells: Using 2ZCPR3 named shell

variables to store date variables

* Resident Programs: A detailed look at
TSRs & how they can lead to chaos

¢ Advanced CP/M: Raw and cooked con-
sole /IO

* Real Computing: NS320XX floating
point, memory management, coprocessor
boards, & the free operating system

* ZSDOS-Anatomy of an Operating
System: Part 1

e C Math: Handling Dollars and Cents
With C.

e Advanced CP/M: Batch Processing
and a New ZEX.

¢ C Pointers, Arrays & Structures Made
Easier: Part 2, Arrays.

e The Z-System Corner: Shells and ZEX,
new Z-Node Central, system security un-
der Z-Systems.

e Information Engineering: The portable
Information Age.

s Computer Aided Publishing: Introduc-
tion to publishing and Desk Top Publish-
ing.

@ Shells: ZEX and hard disk backups.

o Real Computing: The National Semi-
conductor NS320XX.

& ZSDOS--Anatomy of an Operating Sys-
tem, Part 2.

Issue Number 38:

e Programming for Performance: Assem-
bly Language techniques.

o Computer Aided Publishing: The Hewl-
ett Packard LaserJet.

o The Z-System Corner: System en-
hancements with NZCOM.

e Generating LaserJet Fonts: A review of
Digi-Fonts,

e Advanced CP/M: Making old programs
Z-System aware.

o C Pointers, Arrays & Structures Made
Easier: Part 3: Structures.

e Shells: Using ARUNZ alias with ZCAL.
e feal Computing: The National Semi-
conductor NS320XX.

¢ The Computer Corner.

Issue Number 40:

e Programming the LaserJet: Using the
escape codes.

*® Beginning Forth Column: Introduction.
e Advanced Forth Column: Variant Rec-
ords and Moduies.

e LINKPRL: Generating the bit maps for
PRL files from a REL file.

e WordTech's dBXL: Writing your own
custom designed busi prog

e Advanced CP/M: ZEX 5.0—The ma-
chine and the language.

e Prog ing for Perf: ce: A

bly language techniques.

e Programming Input/Output With C:
Keyboard and screen functions.

¢ The Z-System Corner: Remote access
systems and BOS C.

o Real Computing: The NS320XX

o The Computer Corner.

Issue Number 41:

e Forth Column: ADTs, Object Oriented
Concepts.

e Improving the Ampro LB: Overcoming
the 88Mb hard drive limit.

¢ How to add Data Structures in Forth

e Advanced CP/M: CP/M is hacker's ha-
ven, and Z-System Command Scheduler.

o The Z-System Corner: Extended Mul-
tiple C d Line, and ali

e Programming disk and printer func-
tions with C.

o LINKPRL: Making RSXes easy.

& SCOPY: Copying a series of unrelated
files.

e The Computer Corner.

TCJ ORDER FORM

#42

Subscriptions U.S. Canada  Surface Total
Foreign
6 issues per year
O New O Renewal lyear $16.00 $22.00 $24.00
2years $28.00 $42.00

Back Issues —_ —————— $3.50ea. $3.50ea. $4.75ea.
Six or more ————— _ - ——$3.00 ea. $3.00ea $4.25 ea.
#'s

All funds must be in U.S. dollars on a U.S. bank. Total Enclosed

00 Checkenclosed [0 VISA [0 MasterCard Card#

Expiration date Signature

Name

Address

City State ZIP

THE COMPUTER JOURNAL

190 Sullivan Crossroad, Columbia Falls, MT 59912 Phone (406) 267-9119




Technology Resources

K-OS ONE —Single user generic 68000 operating system
for your 68000 hardware. It uses the MS-DOS disk format,
and includes the operating system with source code (written
in HTPL), an editor, assembler, and HTPL compiler. A
sample BIOS code and a boot loader are included. This is
not ready-to-run—you have to install the BIOS on your sys-
tem, but the source code and language compiler are in-

68000Cross Assembler—Written entirely in 8086 assem-
bly language, it is small and fast. All input and output is done
with standard MS-DOS calls so it will run on any MS-DOS
system, even those which are not totally PC compatible. All
68000 and 68010 instructions are supported. It has condi-
tional assembly, the symbol table is in alphabetical order,
and cross referencing is included. Include files are sup-

ClUdBd ... $50 ported so it is easy to assemble big programs, but edit them
in small pieces. An equate file can be produced for PROM
based Programming............cccceverrrrreeeinnie s, $50

HT-Forth—A full featured, interactive Forth that works

with the K-OS ONE operating system. It uses a full 32 bit

stack and 32 bit arithmetic to take full advantage of the
ORDER FROM

68000. Programs are position independent and are limited in
size only by the memory available. Source code compiles to
inline macros, JSR, or BSR so there is no inner interpreter
overhead. Standard ASCII files are used. Includes full screen
editor and a Forth style 68000 assembler .................. $100

Technology Resources
190 Sullivan Crossroad
Columbia Falls, MT 59912
Phone (406) 257-9119

Visa and Mastercard accepted
Prices postpaid in the U.S. and Canada

New dual system computers with the Disk Expansion Module. These systems include the following:

e 730A 4 MHz CPU with 64 K of RAM

e 8086 4.77 MHz CPU with 128 K RAM

® 2 Serial ports
e 1 Parallel port

® 10 Meg 5.25" hard drive (NOT 8")
e 322 K DSDD floppy drive
® Low-profile programmable keyboard

® Monitor

CP/M-80 2.2, CP/M-86, and “Select” word processor are included. MS-DOS 2.01 is available as an
option for an additional $35.

Cost is $329 plus $50 shipping in the US. This also includes a one year subscription to The Com-
puter Journal (current subscribers should include a photocopy of their label so that their subscription
can be extended). Registered owners of NZCOM receive a discount of $15. If you order NZCOM at
the time of the order, deduct the $15. Order by personal check, bank cashier's check or money order.
Personal checks held ten days. Allow 4 to 6 weeks for delivery.

Chris McEwen — Socrates Z Node 32

PO Box 12, S. Plainfield, NJ 07080 '
\_ (201) 754-9067 3/12/24 bps )

38 The Computer Journal / #42




Computer Corner
(Continued from page 40)

In a normal composite TV system
these sync pulses are negative with respect
to the video or information component. A
voltage representing zero signal ( approxi-
mately .5V ) is called the base linc. The
sync pulses go from the base line nega-
_tively to zero. The video information goes
from the base line to 2 volts or 100%
modulation. That is Television and some
computer monitors. In fact TV sets also
use interlaced displays. Interlacing is
where every other horizontal scan is filled
in on one pass, catch the missed scan on
the second pass. It takes two complete ver-
tical scans to make one complete picture
on a TV set (as well as some modes of
display).

For computer monitors, we display the
information by breaking it into dots or pix-
els. It takes a number of pixels to make a
display have meaning. What is important is
each pixel is a” ON” pulse with a corre-
sponding “OFF” cycle. We can treat this
much the same as a modulating frequency.
For good quality monitors it must repro-
duce this pulse as close to the original as
possible. We call this ability the bandwidth
of the system. A 20 MHz. system will pass
pulses up to 20 MHz. without noticeable
degradation. On amonitor the degradation
will appear as smearing on the display.
Sharpness is another way of describing
bandwidth, low bandwidth is fuzzy, higher
will be sharper and clearer.

In color monitors you need to watch
the color matrix size as well as bandwidth
problems. This becomes noticeable when
you try and do text processing on a color
monitor. The unit may have adequate
bandwidth but the choice of the character
font and layout of the three colors do not
work together. When I first saw an IBM
color monitor work, the most important
thing I noticed was how their choice of
font design worked to aid the layout of
characters. Each white dot is actually
equal amounts of light from three colors in
a triangular matrix. The IBM font used
those three dots in such a way that little
blurring of the character occurs. To see
this you would have to get very close with
a magnifying glass to see each of the three
colors.

The important point here is that text
and graphics are two separate uses of the
monitor and different standards can be
applied. I have some smearing right now
on my monitor because of the non-coax
line I use. The cable is currently 10 feet
long and without using coax cable the sig-
nal bandwidth will be degraded over that
distance. This degradation is visible as
smearing but I do not use the monitor for
text work (although text is displayed on the
schematic, I can accept the smearing in
this case). For true text I can turn off two

The Computer Journal / #42

of my colors or just go to a monochrome
monitor (which is what I do).

Can Two be Better Than One?

To display text, I still find a Hercules
graphic card the best. You can use both
cards in a system as I do. My VGA will
boot up first, but my autoexec.bat file
changes to mono mode using the “MODE
MONO” command. I do not even turn on
the color monitor unless I am going to do
color work. At that point I do a “MODE
CO80” command and then type my com-
mand. Most programs have an install op-
eration that loads a driver for the desired
screen resolution and allows the use of dif-
ferent screen sizes. The MODE command
is needed to change between the video
cards and not screen resolution.

The DOS has a memory location
(0:0410) that has two bits (4&35) to tell the
system which monitor is active. DOS
checks this bit before writing to video. If
you load the color driver but have not
changed the bits, your screen will go blank
and nothing will appear on the color moni-
tor. The video card also needs to know
what resolution you are in. There are over
60Hex resolutions possible. Not all cards
will do all resolutions, so you need to
check your manual first.

For my color monitor, it is a fixed fre-
quency unit and therefore only works in
the 640x480 16 color resolution. To set
this resolution I do a DOS interrupt 10
call. The code is as follows:

MOV AH, 0
MOV AL, 12
INT 10
INT 20

You can enter this using DEBUG and if
you have turned your color card on it will
now be in 640x480 resolution. The 12Hex
is what sets the resolution and hopefully

your manual will have a list of possible

resolutions supported by its own video
BIOS. DOS only knows a few resolutions,
but most VGA cards have their own set of
options with which they will respond. I
have six expanded options on my VGA
with resolution as high as 800x600 pos-
sible.

You may not like using the MODE
command and want to add this code into
your program:

MOV DS, AX
MOV AL, [0410]
AND AL,CF

OR AL,20
MOV{0410],AL
MOV AL, 12
MOV AH, 00
INT 10

INT 20

This will change the needed bits from
mono mode to color mode and go to reso-
lution 12 or 640x480. To change back to
mono mode “OR” with 30Hex. The bits

are 01 for 40 column mono, 10 for 80 col-
umn color, and 11 for 80 column mono-
chrome. As you can see there is not much
choice possible. If you have two cards, one
must be mono the other color and that is
all DOS will accept.

To Sync Or Not

My fixed frequency monitor needs a
separate sync signal. Some monitors also
will work if the sync is part of the green
video signal. My VGA card has the new
VGA 15 pin connector and so I had to
make an adapter to nine pin. I also needed
to have my sync signals combined. I know
lots of books that indicate both Horizontal
and Vertical sync on pin 8 but they are not
there generally. What I did was just solder
wires to the backside of my board. One
each for horz. sync, vert. sync, green, red,
blue, and ground. I tied the two sync lines
together and feed them to the monitors
sync input. I have done this with two sepa-
rate cards and it has worked. You do so at
your own risk as there is no way of know-
ing what actual devices(sync driver IC’s)
you are tying together. Some may work
this way, some may burn up.

My card uses the Paradise plus chip set
and does allow some options. The prob-
lem is my monitor will work only on one
set of sync signals, but VGA sync can
change. Therefore you must install all pro-
grams for the single mode and hope the
internal software allows you to do that. I
have found that most programs “play”
with video modes and do not allow you
any choices. This does not work in my
case. I need to set my video mode and
resolution outside the program and not
have it changed. To do this would require
standardization of how programs deal with
video output, and as I said
earlier..”WHAT STANDARDS?”

Enough is Enough

Well as you can see, this whole project
got rather large, just to be able to use an
existing high quality monitor. All I wanted
was 16 colors of display and instead I spent
several weeks researching and finding out
what was going on. I haven’t found all the
problems yet, as I think there is a way to
lock my VGA card into a mode no matter
what the program does. When I find that I
will let you know how it works.

If one of our readers has made a living
out of adapting monitors and video cards,
you might consider filling in the gaps I am
sure exist in this quick video travel log. I
found Turbo C’s BGIDEMO an excellent
program for testing out my VGA system,
much better than downloading GIF files.
Some articles on GIF, switching modes,
register usage, would all be helpful. Till my
next report, lets keep hacking into those
hidden secrets of computing. @




The Computer Corner

by Bill Kibler

Busy again this month, but this time I
have something to say about where all that
time went. I spent most of the time on
video changes and so a special Computer

-Corner on video.

Video Standards?

As most of my regular readers know 1
use Orcad for PCB and schematic work. 1
had been using it at the job site, but that is
finished for now, so I have set up a system
at home for the same kind of work. The
work system-was a 286 clone and a EGA
video card. In order to use a PCB (printed
circuit board) layout program you must
have a color system. It is possible to use
them with a mono system but I have tried
it and find my efficiency dropping close to
Z€e10.

My own system consists of a 286 clone
and a VGA card for video output. I tried
using Orcad with a CGA card and found
the four colors and small viewing area less
than ideal. The VGA card normally would
use a multi-frequency monitor, but I had a
used high resolution monitor I wanted to
try instead. The monitor is intended for

'RGB and Sync input and so starts the fun.

When IBM produced the first PC sys-
tem everyone said the industry would now
have a standard system to use. As far as
video output goes I have not seen any
signs of that being the case. My VGA
adapter card had the manual with it
(bought it used at a swap meet, $125) and
it contained a little chart showing ail the

different modes possible.

These different modes range from low
resolution monochrome to high resolution
256 colors possible at 800 pixels by 600
lines. My VGA card can not do all the pos-
sible modes as the VGA memory is limited
to 256K, and you need 512K for 256 col-
ors. This then starts the “it is possible if”
story on video.

The Big If....

It is now time to reproduce my version
of the charts I found in several manuals.
The chart in Figure 1 shows the HARD-
WARE constraints for using some of the
many possible modes of video on PC sys-
tems, and lists the Sync Signals for differ-
ent modes. I have added some modes to
indicate some more so called standards.

As you noticed, I put a few “*”’s next to
the hardware nightmare conditions. This
flipping of polarity on the sync pulses
drives my monitors crazy. This is also why
I say “What standard?” If there were
some actual standards all sync pulses
would be negative, period! It appears that
IBM and others were again trying to sell
whatever system they felt would not be
easy to manufacture. Unfortunately the
industry has been crafty at making items
that will work no matter what is thrown at
them, as proof of the multi-frequency type
monitors. It appears that not only can they
handle different speeds but different po-
larity as well.

Some explanation
about the table is also

Vertical Horizontal Sync
Resolution Frequency

100 lines 15.75KHz. NEG.
200 lines 15.75KHz. NEG.
200 lines 15.75KHz. NEG.
350 lines 18.5 KHz. NEG.
350 lines 31.5 KHz. POS, **ww
400 lines 31.5 KHz. NEG.
480 lines 31.5 KHz. NEG.
600 lines 35.2 KHz. NEG.

Vertical Vertical Sync
Resolution Frequency

Polarity Mode (colors)

Polarity B/W (resolution)

Figure 1: PC Video modes.

100 lines 60 Hz. NEG.
200 lines 60 Hz. NEG.
200 lines 60 Hz. NEG.
350 lines 50 Hz. NEG.
350 lines 70.1 Hz. NEG. 40 MHz
400 lines 70.1 Hz. POS. ww¥w 50 MHz
480 lines 59.9 Hz. NEG. 40 MHz
600 lines 56.2 Hz. NEG. 56 MHz

in order. The Band-
width (B/W) of the
monitor is calculated

coa s in this case by using
CGA 2 the horizontal resoltu-
MONO tion (number of pix-
EGA 16 H

EGA /mono els possible) and
VGA 16 multiplying it times
VGA+ 16 the horizontal fre-
MONITOR quency and then dou-

bling it. This is an ap-
proximation as it

5 MHz. (160)

10 MHz.(320) :001(1 assume 50%

20 MHz.(640) uty cycles. That

26 MHz.(720) means for each pixel
. f _‘Iz‘g; time there is an equal
S(640) amount of time spent
.(800) not displaying a pixel.

Many people have

other ways of figuring B/W, but most re-
quire an accurate knowledge of actual tim-
ing of the sweep as well how much time is
actually spent on moving the trace back to
the starting position. I have not been able
to find out all the facts and so used the
approximation method.

Another point about this area is the
lack of discussion on the topic in most
publications. I have several books on the
inside and hardware aspect of PC’s. None
of them addressed the actual hardware
range of changes needed to use different
monitors. It would appear that users are
no longer suppose to be able to find out
actually what hardware devices or modes
are being used.

Our local users group had a discussion
after viewing the new NEXT system and
its video output. The problem was over
the vertical and horizontal frequencies.
The NEXT used a 60 hertz vertical fre-
quency and 62.5KHz. horizontal rate. As
people got talking they soon lost track of
which did what and why. So let’s see if we
can talk a few technical terms.

Video Terms

In a monitor we have sync pulses.
These pulses control when the scan trace
(electron beam that lights the phosphorus
on the face of the tube--three in the case
of a color monitor) changes direction. The
scan starts in the upper left hand corner
and crosses to the right side, a horizontal
scan. Typically the trace goes until a Hori-
zontal Sync pulse stops the scan and forces
a return to the left side. At this point a
new scan starts and continues this mode
until it reaches the bottom of the screen.

The vertical sync pulse controls the rate
and point at which the horizontal scanning
will stop at the bottom of the screen and
move back to the top to restart the scan-
ning. In commercial TV systems there are
several horizontal scans not visible or
blanked out as the trace crosses from right
to left as well as bottom to top. If you start
counting scans and changing that to fre-
quency, these extra lines must be counted.
It also explains why you can have similar
scan rates but different resolutions (some
lines are just not displayed).

(Continued on page 39)

The Computer Journal / #42



