Programming - User Support =

Applications— — =

Issue Number 46 September / October 1990

ISSN # 0748-9331

Build a Long Distance Printer Driver
Embedded Systems for the Tenderfoot
Foundational Modules in Modula 2
The Z-System Corner
Animation with Turbo C
Z80 Communications Gateway
Real Computing

The Computer Corner

$3.95

The Computer Journal

Editor/Publisher
Art Carlson

Circulation
Donna Carlson

Contributing Editors
Bill Kibler
Tim McDonough
Bridger Mitchell
Clem Pepper
Richard Rodman
Jay Sage
Dave Wenstein

The Computer Journal is pub-
lished six times a year by Technology
Resources, 190 Sullivan Crossroad,
Columbia Falls, MT 59912

(406) 2579119

Entire contents copyright © 1990

by Technology Resources.

Subscription rates —$18 one year
(6 issues), or $32 two years (12 is-
sues) in the U.S., $24 one year sur-
face in other countries. Inquire for air
rates. All funds must be in U.S. dol-
lars on a U.S. bank.

Send subscription, renewals, ad-
dress changes, or advertising in-
quires to: The Computer Journal, 190
Sullivan Crossroad, Columbia Falls,
MT 59912, phone (406) 257-9119.

Registered Trademarks

It is easy to get in the habit of using company
trademarks as generic terms, but these trademarks are
the property of the respective companies. It is important
to acknowledge these trademarks as their property to
avoid their losing the rights and the term becoming
public property. The following frequently used trade-
marks are acknowledged, and we apologize for any we

Apple Il, I+, iic, lie, Lisa, Macintosch, DOS 3.3,
ProDos; Apple Computer Company. CP/M, DDT, ASM,
STAT, PIP; Digital Research. DateStamper, BackGroun-
der i, Dos Disk; Plu*Perfect Systems. Clipper, Nan-
tucket; Nantucket, Inc. dBase, dBASE |, dBASE I,
dBASE Ill Plus, dBASE IV; Ashton-Tate, Inc. MBASIC,
MS-DOS, Windows, Word; MicroSoft. WordStar; Micro-
Pro Intemational. IBM-PC, XT, and AT, PC-DOS; I1BM
Corporation. 280, Z280; Zilog Corporation. Turbo Pas-
cal, Turbo C, Paradox; Borland International. HD64180;
Hitachi America, Ltd. SB180; Micromint, inc.

Where these and other terms are used in The Com-
puter Journal, they are acknowledged to be the prop-
erty of the respective companies even if not specifically
acknowledged in each ¢ 5

The COMPUTER
JOURNAL

Issue Number 46 September / October 1990

Editorial retesssansanansnrrannnnns tresesesmnssmrenenes asensenasnnsenas . 2

Build a Long Distance Printer Driver 3
When RS-232 is too slow, and the parallel pornt
won't handle the distance, build an RS-422

parallel port.
By Stuart R. Ball.

Embedded Systems for the Tenderfoot 8
Using the 8031's built-in UART for serial

communications.

By Tim McDonough.

Foundational Modules in Modula 2 13

Abstract data types and information hiding.
By David L. Clarke.

The Z-System Cornerccccvevvieeeennnnns cemeserraesnaee 21

Patching The Word Plus spell checker, and the
ZMATE macro text editor.

By Jay Sage.

Animation with Turbo C Ver. 2.0ccccccecccerrrenneee 25

Part 3: Text in the graphics mode.
By Clem Pepper.

Z80 Communications Gateway rersesssnanannnnnane 31

Part 2: Prototyping, Counter/Timers, and using the
Z80 CTC.
By Art Carison.

Real Computing S S ... 36
The NS32000.
By Richard Rodman.

The Computer Corner................ vemsrrnenses cesennrrenaannes . 40
By Bill Kibler.

Editor’s Page

The Regulators are Coming!!

The bureaucrats usual response to a
problem is to pass laws and regulations to
control and regulate the physical objects
involved. Their misguided efforts on gun
control haven’t decreased armed felonies
(and won’t), but that hasn’t stopped them
from trying the same approach with com-
puters.

Modern electronics has greatly simpli-
fied the counterfeiting of U.S. currency,
and The Secret Service and the Bureau of
Engraving and Printing have endorsed a
bill to toughen laws against counterfeiting.
Carl V. D’Alessandro, assistant director of
the bureau, told the committee that cur-
rency and other securities can be counter-
feited with remarkable accuracy using
widely available computers, printers, and
copiers.

“The potential counterfeiter no longer
requires any particular expertise in print-
ing, but only the inclination and the elec-
tronic devices,” he said.

The measure D’Allesandro and Wil-
liam J. Ebert (head of the Secret Service’s
counterfeit division), endorsed would
make it a crime to possess any laser-type
devices the Treasury Department con-
cludes would help a counterfeiter.

Kenneth A. Wasch, executive director
of the Software Publishers Association,
said that the bill is so broad that “many
heretofore legal activities may now be
made illegal.”

He said the prohibition on private pos-
session of certain optical devices could
“mean document scanners, desktop com-
puters, a number of software programs,
laser printers and other high-tech wonders
could be outlawed even though they are in
use everywhere.”

We used to laugh about the fact that
Russia tightly controlled the availability of
office copy machines. Only authorized
agencies were allowed to possess them,
every copy had to described and ac-
counted for, and government security

people checked the locked counters
against the logged use.

Apparently bureaucrats everywhere
have the same (limited) mentality. At the
very time when Russia is loosening up on
their rigid controls, our leaders are trying
to impose oppressive controls here.

While I doubt that such restrictive leg-
islation will be passed at this time, I fear
that some form of restrictions will be en-
abled--and that they will be further ex-
panded a little at a time. The point which
great;; oncerns me is that our bureau-
crats don’t have any better solution than to
limit the access of law-abiding citizens to
the high-tech equipment we need. For ex-
ample, I had heard the rumor that the
Treasury Department was trying to pre-
vent the sale of color copiers.

I encourage you to watch these devel-
opments very closely, and to let your rep-
resentatives in the Congress and the Sen-
ate know your view on the matter. Also
remember that once the Secret Service or
the Treasury Department is given the
power to “regulate” they can write and en-
force their own regulations without spe-
cific congressional approval. I would ap-
preciate any further information on devel-
opments on this subject.

Z Festival 1990

Lee Bradley, editor of Pieces Of 8 (The
Bimonthly Newsletter of the Connecticut
CP/M Users’ Group) advises that Z Festi-
val is tentatively scheduled for October 20,
with a probable location of the RPI cam-
pus in Hartford, CT. One disadvantage of
living out here in the mountains is that I
can’t attend these meetings which are so
helpful. You should attend if at all pos-
sible. Contact Lee at 24 East Cedar Street,
Newington, CT 06111 for the latest de-
tails.

Embedded Applications
I have been talking to a lot of people
about embedded applications, and find
that there is more activity than I antici-
pated. It is ironical that embedded control-

lers was the intended application when
microprocessors were invented. Micro-
computers didn’t even exist until after the
microprocessor was readily available; but
after the hardware hackers showed what
microcomputers could do, that’s where the
action was. Embedded applications didn’t
die, the controllers are used in machine
tools, printing presses, microwave ovens,
VCRs, automated cameras—in fact most
of our modern electronic marvels. Two of
the fastest growing embedded applications
are communications and automotive.

As the price of processors and TTL de-
vices came down, there was a flurry of ac-
tivity in hobbyist construction projects to
fill the needs for the new items which
could now be built. As people became
more involved with the microcomputers
(which took up all of their available time),
activity in the hardware construction proj-
ects dwindled. Industrial, commercial, and
military activity accelerated, but there
were few individuals working on hardware
projects for their own use. Now, when
microcomputers are powerful tools to
work with, but no longer any fun to work
on, people are again becoming interested
in hardware projects.

I have long been interested in using
processors to control mechanical devices,
but I was always stopped because I didn’t
know how to accomplish the hardware
portions. Some of the devices will be bat-
tery operated portable using CMOS chips,
while others will be machine tools which
will be interfaced to either desktop com-
puters or stand-alone embedded control-
lers. 1 finally decided that the years are
going by too fast, and that I had better
establish my goals and set my priorities.

Since the first of the year, I have ac-
quired a two channel scope, 8051 crossas-
sembler and simulator (PseudoCorp),
8031 prototyping board (Cottage Re-
sources), EPROM programmer

(Continued on page 38)

The Computer Journal / #46

Build a Long Distance Printer Driver

by Stuart R. Ball

I needed to move a printer into a closet so that my wife could
use the computer without waking the children. Unfortunately, the
closet is a fairly long distance from the computer, and the normal
output from a computer cannot reliably drive a cable that far. My
solution was the circuit described herein, which allows me to move
my printer hundreds of feet from the computer.

Why not just run a longer cable from your computer to your
printer? Here’s why: The printer output from an IBM PC, AT, or
clone is a parallel interface. The computer sends 8 bits of data and
several control signals to the printer. The printer returns several
status bits (such as paper empty) back to the computer. Both the
computer and the printer drive the interface cable with TTL
(Transistor-transistor logic) gates. The outputs are single- ended,
which means that each signal is referenced to the computer
ground. TTL is fine for short cable runs, less than ten or twenty
feet. The problem with TTL is that a logical zero level is only from
0 volts to about 1 volt, and a TTL output only drives down to
around .2 volts. This means that less than a volt of noise can cause
the receiving end to see a one where a zero was intended. The
longer a cable is, the more likely it is to pick up noise, so the possi-
bility of an error increases as the cable gets longer. The problem is
made worse if the computer and printer are plugged into different
wall outlets, as the grounds from the outlets may be at slightly
different potentials, which can increase the possibility of errors.
For this reason, TTL signal levels are normally used only for short
cable runs, less than ten or twenty feet. TTL can and is used over
longer distances, but reliable operation depends on the cable qual-
ity and the level of ambient electrical noise. To reliably drive my
printer, I had to change the signals from TTL levels to something
else. Of course, I wanted to do this external to the computer,
without changing the existing printer interface board.

I considered using RS-232. RS-232 signal levels are also single-
ended, but the voltage levels are greater. RS-
232 outputs swing between positive and

goes high, the other wire goes low. The receiver, at the other end
of the cable, does not look for one wire to change with respect to
ground, but instead looks for one of the wires to change with
respect to the other. The voltage difference between the two wires
in the pair determines the logic state, not the voltage with respect
to ground. Noise that is picked up on the cable or caused by a po-
tential difference in the grounds will be common mode noise. This
means that both signals in the pair will be affected the same way,
so the receiver will see no change in the difference voltage. For this
reason, RS-422 is very immune to noise, and is specified to work at
data rates up to 100k bits/sec at distances of up to 1000 meters
(that’s about 3000 feet).

How the Cable Driver Works

Conceptually, the cable driver is very simple. The driver con-
sists of two boxes, one at the computer, and one at the printer,
connected by a ribbon cable. The circuitry in the driver box, at the
computer end, takes the data and command signals that are out-
put from the computer, converts them to RS-422 levels, and drives
the connecting ribbon cable with them. All of the status lines,
which are inputs from the box at the printer end of the cable, are
converted from RS-422 to TTL and sent to the computer.

The receiver box, at the printer end, does the exact opposite;
signals that are outputs from the computer box are converted
from RS-422 to TTL and sent to the printer, and signals output
from the printer are converted to RS-422 and sent up the cable to
the computer box.

Both boxes are powered with a wall transformer/power supply
at the computer end; power is sent up the cable from the com-
puter box to the printer box. Note that even though the board at
the computer end is called the driver because it drives the data and
control lines, it also receives the status lines. Similarly, the board at
the printer end is called the receiver because it receives the data

negative voltages for greater noise immunity.
RS-232 is intended for serial communica-
tions, but there is no reason that it could not
be used for a parallel interface as well. RS-

232 has been used over very long distances, gg;sgg Rgg;?ng
but it is only specified for about fifty feet at

high baud rates. The signal timings for a par- SIGNAL PAIR

allel printer port correspond to a very high

serial data rate, so I chose not to use this HIF;UT —_—

approach. There are other schemes to re-
duce the noise sensitivity of single-ended sig-
nals, but I went a different route.

RS-422 (see Figure 1) is a different kind
of interface. RS-422 is a differential inter-
face. This means that each signal is not refer-
enced directly to ground, but to another sig-
nal. In an RS-422 interface, each signal is
sent on a pair of wires. As one wire of a pair

TTL
QUTPUT

Twisted Pair or Ribbon
Interconnect Cable

Figure 1. Typicai RS-422 connection.

The Computer Journal / #46

I 0l
< P €L < <> <
233333823 % $3 J2
ngép W IRRRRR 1 % R AeyEET] 2 an-so
"o |2 | b =t
gt — [==HF
D3 s 1 9 —> e 5 | +D1
D4 (8 —‘ ¥ l 6| -01
oS |7 18~ ;3 | 7 | +02
DE |8 EN EN t 8 | -D2
D? |8 14]12] s | +D3
ACK [1@ 1ej -D3
BUSY |11 11| +D4
SEL :TEN tz T TERs 12| -b4
3 MC34 2 13| +DS
-AF |14 L ——1 > L3 i 14| -08
—-ERROR |15
-INIT |18 4—> s 16|08
-SEL |17 1) 17/ +D7
oND |18 S—P> [18] -D7
g:g ég 15 14 I 19{-INIT
—{ E 3 20{+INIT
g:DD gé EN EN | 21{-AF
22| +aF
GND |23 —14_]12 — 23
GND (24 24|-5T8
GND | 25] U3 25(+5TB
- MC3487 | 2 126
= 1 [:Z 3 [ﬁ[27| -sEL
? > 8 | 28| +SEL
- — 29|+BUSY
g —E 19 36]|~BUSY
11 31| -ACK
15 14 32| +ACK
100 i I 33|-PE
EN EN 34|+PE
4 |12 35(-SEL RTN
1 36|+SEL RTN
us 220 R1 220 R2 37|-eRROR
2 U4 o 38[+ERROR
3 —<[: N 5 MC3486 1 2 — 33
5| _<]: % _<t c; ::T
4 < DlT? = <T z +— 42
P w1 L2 32 +av
i3 <E N o
o EN EN > 13 -¢ l; :::
{4 112 EN 47
4 iz 220 R3 220 R4 Jag
| 3
+—{se)
TO_POWER o +S 220 R4
JACK +
10) .
Ve L D |
- - - Figure 2 PRINTER DRIUER BOARD
and command lines, but it also drives the
status lines back to the driver board.
The interconnecting cable between the
two boxes is a fifty conductor ribbon cable. Jp——
I only needed a length of about fifty feet, — P
but the circuit has been used over a dis-
tance exceeding 100 feet, and will work u3 U4 Us
over much greater distances. Each RS-422
mgnal is terminated 'at the receiving end = s
with a 220 ohm resistor. This value was 47K SIPS
chosen to reduce the power requirements _ 220 OHM
for the circuit. If you are going to drive a
very long cable (500 feet or s0), you should —+1o02 ul 92 D U D U D
i QQ N
change the 220 ohm resistors to 100 ohms, 99
but you will need a bigger power supply. 29
. . . 70 J1 00 49 L 50
Circuit Construction DB25P 92
There is nothing particularly difficult 29
about circuit construction. The prototype —1 884
circuits, shown in Figures 2 and 4, were 2 O —
constructed on perfboard, with the 25 pin ELECTROLYTICS ——— = 5 {7805
connector at one end, and the 50 conduc-]
tor ribbon connector at the other end. The
component placement is shown in Figures R o 2 oE
3 and 5. On the printed circuit boards, to 1
simplify mounting, the 25 pin connector Figure 3: Driver board component placement.

4 The Computer Journal / #46

+5
FROM DRIVER 1 4.7K
In-50
— 3 2322 3 TO PRINTER
g = 220 220, - s FFFF 3 0B-255
2
3 3 1]
3 1 14 D l :
: 7] D>-F 3
10} 4
?
e o P s
E] 13 6
10 1 15}, > :
1L 220 EN ENZ 8
- 4 |1 9
12 220 l 10
13 LA
" 1 11
14 12
15 2 | MC3486 3 13
16 L 1] :D' 14
17 6 5 15
is 229 5 1€
2o AAA 9 D_ 11 17|
21 =7 14 1
22 } - 1 1), >3 zo
23— 229 I 2 220 EN_EN
24 —MW— oA YRR T 21
24)i W 22
25 23
gg Uz 24
’ l l 2 [WC3T56 | 2s
28
23 l I éq i
2 1 o P
32 11
3 9
2 Lzzs, o D
3s 15). >
26 220 EN_EN
puted A 4 12
37
38
39—
4114 U4
azf— 2 [HC3487
43| 3 Z:]— .
44 6
7 +5
st 5] < 1
48| 10 s us
P 1] <} 2 [FC3457] .

1 +| 10 d.14.1
pris 14 3] <} = i3
49 13] <} 8 3
43 q = ?
|sol 3 EN 5 ZF L

- 4 12 10] =
I u P
Ad] Lﬁ
13 KI}— +| 10
EN EN |
iz +
’ RECEIVER BOARD
Figure 4

does not mount directly
to the boards themselves. zgth:g\éi% NBTOQTDDE
Instead, a 26-pin ribbon ELECTROLYTICS O -

cable header mounts to O —
the boards, and the 25 —
pin connector is an as-

semb.ly consisting of the A — 1997
2§ pin connector, a 26 L7K SIP g0
pin ribbon header, and a U4 us 23
short interconnecting rib- 50— a9 99 10 92
bon cable. See Figure 6 99 DB255
“DB25 Cable Assem- 22
blies” for details. 250026 |

The driver circuit at .

RES u3

the computer end has a PAK

jack for a 9vdc, 1 amp
wall transformer. The re-
ceiver, at the printer end, - 0T
has no wall transformer, RES
but 9 volts is passed up PAK
the ribbon cable to the L
receiver. Both boards —
have a 7805 5 volt regu- -
lator to bring the 9v level Figure 5: Receiver board component placement.

Ut u2

The Computer Journal / #46 5

QUAN

NN

R e e U

NN e

QUAN

N W N

LI

-

2
2

PARTS LIST - DRIVER BOARD
DESCRIPTION

MC3487 RS-422 DRIVER ICs

MC3486 RS-422 RECEIVER ICs

10K SIP PULLUP RESISTOR PACKAGES

10 pins, 9 resistors per package.

220 OHM, 1/4 W RESISTORS

COAX POWER CONNECTOR (RADIO SHACK #274-1565)
7805 REGULATOR IC

DB25P IDC (ribbon) CONNECTOR

26 PIN HEADER 3M 3593 series or equivalent
26 CONDUCTOR RIBBON CABLE

50 PIN HEADER, 3M 3596 series or equivalent.
.1 UF CAPACITORS

10 uF, 25V ELECTROLYTIC CAPACITORS

9V 1A WALL TRANSFORMER POWER SUPPLY

PARTS LIST ~ RECEIVER BOARD

DESCRIPTION

MC3487 RS-422 DRIVER ICs

MC3486 RS-422 RECEIVER ICs

220 OHM DIP RESISTOR PACKAGES, 8 RESISTORS/PACKAGE
10k SIP PULLUP RESISOTR PACKAGE

10 pins, 9 resistors per package.

7805 REGULATOR IC

DB25S IDC (ribbon)} CONNECTOR

26 PIN HEADER, 3M 3593 series or equivalent

26 CONDUCTOR RIBBON CABLE

50 PIN HEADER, 3M 3596 series or equivalent.
.1 UF CAPACITORS
10 uwF, 25V ELECTROLYTIC CAPACITORS

MISC: Perfboard, hookup wire, 50 pin ribbon cable with
connectors, chassis boxes.

Note:

A pair of blank printed circuit boards is available from

the author, for a cost of $20 per board or $40 per pair.

SIGNAL

DO
D1
D2
D3
D4
D5
D6
D7

-INIT
—AF
-STB
-SEL OUT

BUSY
~ACK
-PE
-SEL IN
-ERROR

Table 1: INPUT AND OUTPUT CONNECTIONS

DRIVER = DRIVER BD,

/ RECEIVER = RECEIVER BD \ RIBBON
CABLE
INPUT CONNECTOR OUTPUT CONNECTOR CONNECTIONS
AND PIN NO. AND PIN NO. H L
DRIVER J1-2 RECEIVER J2-2 3 4
DRIVER J1-3 RECEIVER J2-3 5 6
DRIVER J1-4 RECEIVER J2-4 7 8
DRIVER J1-5 RECEIVER J2-5 9 10
DRIVER J1-6 RECEIVER J2-6 11 12
DRIVER J1-7 RECEIVER J2-7 13 14
DRIVER J1-8 RECEIVER J2-8 15 16
DRIVER J1-9 RECEIVER J2-9 17 18
DRIVER J1-16 RECEIVER J2-16 19 20
DRIVER J1-17 RECEIVER J2-17 21 22
DRIVER J1-1 RECEIVER J2-1 24 25
DRIVER J1-17 RECEIVER J2-17 27 28
RECEIVER J2-11 DRIVER J1-11 29 30
RECEIVER J2-10 DRIVER J1-10 31 32
RECEIVER J2-12 DRIVER J1-12 33 34
RECEIVER J2-13 DRIVER J1-13 35 36
RECEIVER J2-15 DRIVER J1-15 37 38

4 Why Not Serial?)

There are several products available that will allow
you to move your printer a long distance from the
computer. I did not use any of these for a couple of
reasons, but mainly because they all have one thing in
common: they convert the parallel information from
the computer into serial. This means sending informa-
tion 1 bit at a time instead of 8 bits at a time. If you
are printing text, that is probably fine. But if you are
printing graphics, a serial interface can be a real bottle-
neck. As an example, I have seen a laser printer con-
nected to a serial interface, printing a 300 dots per
inch graphics page, that required 15 minutes to send
the page to the printer. This same printer, printing the
same page, required about one minute when it was
connected to the parallel printer interface on the same
computer. Why does it take so long? Well, look at the
math. If your graphics page is to be printed on 8.5 x 11
inch paper, with one-half inch margins all around, then
the graphics printing area is 7.5 x 10 inches. 7.5 inches
x 300 dots/inch by 10 inches x 300 dots/inch is
6,670,000 bits of information. A serial interface always
has at least 20% overhead, because a serial byte con-
sists of 8 daia bits and at least one start bit and one
stop bit. So at 9600 baud, our 6.6 million pixel page
needs 14.6 minutes to to send. At 19.2k baud, it takes
\7 minutes, and at 38.4k baud it takes 3.6 minutes. /

down to 5v for the logic. The 7805s must be heatsinked to
a fairly large piece of metal. I recommend using an alumi-
num chassis for the boards, and mounting the regulator to
the chassis with a chunk of right angle aluminum. This
allows the chassis to provide the heat sink. If you don’t use
an aluminum chassis, make the heat sink from a strip of
aluminum about 1%z inches wide, 2 inches long, and about
1/16 inch thick.

The MC3487 ICs are the RS-422 drivers, and the
MC3486s are the RS-422 receivers. The 220 ohm termi-
nating resistors are in DIP packages, although discrete re-
sistors could be used. If you change the terminators to 100
ohms for long cable runs, you will need a bigger power
supply than the one specified, or you can put a supply at
each box. If you use two separate supplies, be sure not to
connect the cable pins that carry 9v, or you will short the
two supply outputs together. Be sure to install the 0.1 uf
decoupling capacitors on the board. Also use two electro-
lytic capacitors on the 7805 regulators to prevent oscilla-
tion. These capacitors should be 10 to 25 uf, 25v. One
should be connected from the input of the 7805 to ground,
and one from the output to ground.

Circuit Checkout

After the circuit boards are constructed, and before in-
stalling the ICs into their sockets, connect the power supply
to the driver board. Plug in the power supply, and check
the voitage from pin 8 to pin 16 of each IC socket with a
DVM or VOM. All of the ICs should have +5v on pin 16,
and ground on pin 8. If this checks out, unplug the wall
transformer and plug in the 50 conductor ribbon cable.
Connect the recciver box to the other end of the cable,
plug the transformer back in, and perform the same volt-
age check on the receiver that you did on the driver. If the

The Computer Journal / #46

6" OF 26
CONDUCTOR

/ RIBBON
DB25P IDC vz

3M 8225-6000
or equivalent

2526

AN

DRIVER CABLE

CLIP

6" OF 26

CONDUCTOR
RIBBON /

26 PIN IDC
3M 3399-6000
or equivaient

25 26 \ \\
AN

26 PIN IDC
3M 3399-6000
or equivaient

WIRE 26

DB25S IDC
3M 8325-6000
or equivalent

CLIP WIRE 26
RECEIVER CABLE

IDC-26 DB25 IDC IDC-26 DB25 IDC
PIN NO. PIN NO. PIN NO. PIN NO.

1 1 2 14

3 2 4 15

5 3 6 16

7 4 8 17

9 5 10 18

11 6 12 19
13 7 14 20
15 8 16 21

17 9 18 22
19 10 20 23
21 11 22 24
23 12 24 25
25 13 26 N.C.

DB25 cable assemblies.

The Computer Journal / #46

receiver voltage is correct, unplug the wall transformer
and install the ICs. Be sure not to plug any ICs in back-
wards or bend the IC legs under the IC body. With the
ICs installed, plug the transformer back in, and check
the power pins on one IC on each board to insure that
both boards still have +5v. If you construct the circuit
using the printed circuit boards, you should still check
the driver and receiver voltages before connecting to
the computer or printer. A solder bridge could connect
9v to one of the signal lines.

At this point, it is a good idea to make sure that all
of the inputs and outputs work. If you are the daring
type, you can just skip over this part and hook the
boards to the computer and printer, and hope for the
best.

If you want to check each signal for proper opera-
tion, you will need a DVM, oscilloscope, or logic probe,
and a short jumper wire. Table 1 shows each signal,
which board and connector/pin is the input for the sig-
nal, and which board and connector/pin is the output.
Referring to Table 1, use a jumper wire to connect
each input pin shown to ground. Check the correspond-
ing output pin with the DVM, ‘scope or probe. With
the input pin grounded, the output pin should go low.
After checking for a low, remove the grounding jumper
(all inputs have 10k pullups to insure that they go high
when open). Now the corresponding output should go
high. If any input does not work correctly, you will need
to isolate it to one board or the other (remember, each
signal has a driver on one board and a corresponding
receiver on the other board). To do this, probe the 50
pin cable connections (also shown in Table 1) for the
correct high and low states. The pins labeled H should
go high when the input is high and low when the input
is low. The pins labeled L. are inverted; they go low
when the input goes high and high when the input goes
low. If any of the signal outputs don’t respond, and the
differential signals on the ribbon work as they should,
then the problem is in the board that has the receiver.
If the differential signals don’t work either, then the
problem is in the driver board or the ribbon cable itself.
(To check the ribbon, unplug it and check the differen-
tial signals again). Correct any wiring errors before con-
necting the boards to your computer and printer.

Circuit Operation and Use

To use the printer driver, use a short cable to con-
nect the 25 pin connector on the driver circuit to the
printer output of the computer. The cable that would
ordinarily hook the printer to the computer will now
connect the printer to the 25 pin connector on the re-
ceiver. Connect the driver box to the receiver box with
the 50 pin ribbon, plug the wall transformer output into
the driver power jack, and you are ready to print. No
special software is needed, just print as usual. @

Embedded Systems for the Tenderfoot

Communicating with the Real World

by Tim McDonough

In the last issue of TCJ, I presented a simple 8031 Single Board
Computer circuit that emulated an exclusive-OR gate. The focus
-of that article was to get you thinking about embedded systems
and provide an overview of the hardware and software required to
begin developing embedded systems of your own.

I hope that you've tried the brief example presented last month
and expanded on the idea, perhaps by mimicking the function of
other logic packages. You’ve probably been amazed at how much
you can accomplish after mastering only a few of the 8031’s in-
structions.

One of the more common projects that people like to consider
building is a gadget of some sort that communicates with their PC
via the serial communications port. The 8031 is a natural for this
type of gadget since it has a buiit in serial port that can be pro-
grammed to operate from 1200 to 19200 baud quite easily.

The subject for this issue is the minimal additional hardware
required for a serial port and the software needed to interpret
commands sent from the PC and carry them out. The particular
project presented allows you to send commands to the 8031 board
that will control two bits of an output port that might be used to
control a pair of relays. As with the last issue’s example, the impor-
tant thing is how you program the 8031 for it’s task, not what the
relays may actually do.

Figure 1 shows the basic 8031 computer presented last month
with an additional integrated circuit. The MAX232 converts the 0
and 5 volt logic signals supplied by the 8031’s UART to the +/-12
volt levels used in RS232 communications. Note that the serial
port 6n our 8031 computer is “RS232 Compatible.” What this
means in this case is that I've chosen to leave out all of the hand
shaking signals found in a “real” serial port and implement only
the transmit (Tx), receive (Rx), and ground (GND) connections.
For basic communications needs where either no hand shaking or
software hand shaking is used, these three lines are all that is re-
quired.

Listing 1 is somewhat longer than the XOR.ASM program pre-
sented in the last issue but if we look at it a little piece at a time,
there’s nothing to it.

RELAY.ASM contains several major sections of code. It also
uses three subroutines to make repetitive tasks easier. The pro-
gram as a whole allows you to energize or de-energize one of two

Tim McDonough is the President of Cottage Resources Corpora-
tion. The company manufactures and distributes several single
board computers based on the 8031 and is a dealer for PseudoCorp
brand 8031 cross-assemblers and cross-simulators. He may be con-
tacted at: Cottage Resources Corporation, Suite 3-672, 1405 Steven-
son Drive, Springfield, lllinois 62703, (217) 529-7679.

relays whose drivers are attached to bits 3 and 4 of Port 1.

The equate directive assigns some reader friendly names to the
values and I/O lines we’ll be using. The ASCII values for linefeed
(LF), carriage return (CR) and end of text (EOT) will all be used
when the program sends messages from the 8031 system to the
user’s terminal. The “relay1” and “relay2” equates identify the I/O
lines T used for my two relays.

Before I proceed, there is another important reason for using
the equate directive besides making your code easier to read. It
can also help make modifications simpler in the future. Suppose,
for example, that this program were hundreds of lines long and not
just a couple dozen. By using the equate to assign the name “re-
lay1” to Port 1, Bit 3, I need only edit the equate statement and
make appropriate hardware modifications if T want to attach the
relay to Port 1, bit 7. I won’t have to search my code for every
occurrence of “P1.3” and hope that I didn’t overlook any. Get into
the habit of using equates now and your life will be simpler as your
projects grow in compiexity. End of lecture.

The next few lines of code are the most cryptic of the lot. They
set up the serial port in the 8031 to operate at 1200 bps using an 8-
bit word, no parity and one stop bit. I chose these settings because
they are very commonly used when using a communications pro-
gram to talk with a modem and most of you will aliready have a PC
set up to use these parameters.

The serial port of the 8031 has several modes of operation.
Each could easily be the topic of one or more articles in itself. The
relay application uses what Intel calls Mode 1. All of the modes are
described in detail in the Intel Embedded Controller Handbook,
Volume L.

The 8031’s UART is controlled by the SCON (Serial CONtrol)
register. This register is used to set the mode, receiver enable flag,
transmit and receive bit 8 (not used in Mode 1), the transmit and
receive interrupt flags and another bit that is used in a special
mode for multi-processor communications. These registers are
shown in Figure 2 along with their desired initial values.

Editor’s Note: The bits are numbered 0 thru 7 for 8 bit code. Bit
8 is the 9th bit.

The difference between the TI and RI flags will be explained in
a moment. The value that we load into SCON using the MOV
instruction is 01010010 (binary), 52 (hexadecimal) or 82 (decimal).

The 8031 uses interrupts to communicate the status of the
transmitter and receiver. Initially the receiver interrupts are en-
abled so we will be able to receive characters that make up the
system commands. The transmit interrupt is disabled since we
have no characters to send.

The UART uses TIMER1 of the 8031 for baud rate genera-
tion. Setting bit 6 of the TCON (Timer CONtrol) register allows
TIMER1 to run. The mnemonic symbols TR1 and TCON.6 may

The Computer Journal / #46

ifa' Relay 1—21py .3 Figure 1
: 40
100uF vee -
= Relay 2—=—{p1.4 RsT Fw——
1ok = +5U
RXD 10 1p3 o Atz 125 2 a2 Vee |22
At 22 23 0ee a7 OLUF
ALl FoM .
TX0 1l4pg ate |22 2L nto
. ag 22 24 | ng =
a 21 25)
8 A8 14
8031 |10 |20 GND:}_
ap7 |32 18 GND Uec] g 3|, Uep 1
XTAL = 11.059 MHz Aps 33 3 2 7 A
34 17 16 5
ADS 74LS AaS
18 | 1ALz Apa 25 41 a3 5 51 a4
foa 38 14 15 71a3 EPROM
1 XTAL apz 22 13 12 8las 2764A
39pF 19 | xTALL apy |28 ? 6 9 | a1
apo |22 8 9 ie] o,
3%F T Lo |enD E OE
L i1 1
: 30
Fsen M- L
23 j 18
3| |3 1515
D| |D 1?
10uF 1605
10 T TXD i g;
o | Mexes2 L RS-232 ig o
1 3 4 5686 0 1215,
mg e
10uF 1@uF 47uF
- | 2|E
oE

be used interchangeably to access this bit although TR1 seems to
be the more common.

The next register to be programmed is TMOD (Timer/counter
MODe control). This register actually uses the four most signifi-
cant bits for TIMER1 and the four least significant bits for
TIMERO. Figure 3 shows this register and the conditions required
- by our application.

A bit in the PCON (Power CONtrol) register must also be set.
PCON.7 (also referred to as SMOD) determines whether or not
the overflow of TIMER1 will be divided by 2 or fed straight into
the UART. This bit is cleared for our program.

Editor’s Note: This bit was cleared upon reset.

The final step in setting up the serial port is to establish the
baud rate. This is done by loading the proper timer value into the
THI1 register. This is where the 11.059MHz crystal comes into
play. Using this crystal value, baud rates from 1200bps to 19.2bps
are easily programmed using values from the following table.

Baud Rate SMOD Value Reload Value
19,200 1 FD

9,600 0 ¥D

4,800 0 FA

2,400 0 P4

1,200 0 E8

Don’t worry if you have to read through the data sheets a few
times before the serial port starts to make sense. It’s probably one
of the tougher things to understand, but using it effectively is es-
sential to building embedded systems that will interface to almost
any sort of host computer imaginable.

Before discussing the main portion of the program, there are
three subroutines that are used in most of the applications I write

The Computer Journal / #46

when the serial port is used. The first one, “recv”, waits for a
character to arrive at the serial port. The compliment of “recv”--
”send” is used to transmit a byte out the serial port. Finally a
routine called “print” makes calls to the send routine to transmit
system messages to the host computer.

The pseudocode for the recv subroutine is simple:

“recv”
Wait for a character to be received
Clear the receive interrupt flag
Copy the byte into the accumulator
Return

The JNB instruction causes a jump to the label (recv) specified
if the bit (RI) is not set. This will cause the program to execute this
statement over and over until a byte is received. Next, the RI flag
is cleared so another byte can be processed by the UART. Finally,
the byte received is copied into the accumulator register and the
subroutine ends.

The “send” routine works in a similar fashion except that the
transmit interrupt (TI) flag is checked to determine when the
UART transmitter is ready to receive another character. When it
is ready, the next byte is copied from the accumulator to the
SBUF register. _

The last subroutine implements a “print” statement on the
8031. The technique I use to store canned -messages in the
EPROM is to use a label for each message followed by a series of
bytes whose ASCII values make up the message I'll want to trans-
mit. The “howdy” label near the end of Listing 1 is a good ex-
ample.

The “.db” assembler directive tells the PseudoSam assembler

to store the bytes that follow in the assembled code. PseudoSam
will translate text within double quotes into the proper values
for you. The CR and LF were previously defined using the
equate directive at the beginning of the program. The “print”
routine relies on each distinct message being terminated with
the End Of Text (EOT) character. This character could have
been anything. EOT was chosen because of it’s name and the
fact that it is a non-printing character and will never be needed
in a system message.

Keeping the message format in mind, the pseudocode for the
“print” routine is as follows:

“print”
Get the byte pointed to by DPTR
If the byte equals EOT then return
Transmit the byte
Increment the data pointer
Goto “print”

Before calling “print” the program loads the starting address
of the message into the DPTR (Data PoinTeR) register. Print
clears the accumulator to zero and then copies the value stored
at the location pointed to by DPTR plus the value in the accu-
mulator, into the accumulator. By always clearing the accumula-
tor first, we are essentially copying just the byte into the accu-
mulator.

Next, the value in the accumulator is compared to the EOT
character. If the two are equal, the message is done and the

Figure 2: SCON Serial Port Control Register

| sMO | sM1 | SM2 | REN | TB8 | RB8 | TI | RI |

+

Bit 7 Bit 0

+. +. +. +
+ + + +

SMO. = 0 Mode 1, 8-bit with variable baud rate operation
SM1 = 1

SM2 = 0 Always zero for Mode 1

REN = 1 Enable the receiver

TB8 = 0 Ignore the ninth data bits (parity) for both the
RB8 = 0 transmitter and receiver
TI =1 Indicate the transmitter buffer is empty

RI =0 Indicate the receiver buffer is empty

Figure 3: TMOD Timer/Counter Mode Control Register

| TIMER 1 | TIMER 0 |
+ + + + + + + + +
| GATE | ¢/*T | M1 | MO | GATE | c/*T | M1 | MO |
+ + + + + + + + +
Bit 7 Bit 0

Gate = 0 Timer 1 is free running.

C/T = 0 Selects timer mode, not counter mode.

M1 = 1 Use as an 8-bit auto reload timer. TH1 holde

MO = 0 a value that is reloaded into TL1 each time it

overflows.

The remaining 4 bits need only be set if your application
uses TIMERO for some purpose.

subroutine returns. If the two are not equal,
“send” is called to transmit the byte, the value
of DPTR is incremented so that it now points
to the next character and the SJMP (Short

Listing 1

quests. Trust me, it’s all down hill from here on
out.

port and a simple command parser.

This code is formatted for PseudoSam Level II Version 2.2

I
JuMP) takes us back to the beginning of the |’ s ﬁ?:;:i:ough
routine. : Cottage Resources Corporation
So far the serial port has been initialized | Suite 3-672, 1405 Stevenson Drive
and there are routines to handle sending mes- |’ fgf;’;gg:f?;;L 62703
sages and receiving bytes via the port. The only | ; rRevision: 1.1
thing left is the main program that will inter- | ; DATE: June 2, 1990
pret the commands and carry out your re- ; PURPOSE: This program demonstrates a method of using the 8031 serial
i
;
;
;

When I build a system that controls some-
thing in the real world, I usually don’t like sur-
prises. You should always include some sort of
communications protocol to help your system

Assemble the code to begin execution at memory location 0 and
establish some equates to make life easier on the programmeri

~e e

rccognize errors. If a command you send to a .org D’ 00 ;Assemble to run from location 0 (decimal)
device gets garbled by line noise, cosmic rays,
or whatever, ideally the computer should ig- -equ LF,D'10 #ASCII Linefeed
. . . .equ CR,D’13 sASCII Carriage Return
nore it. Without any precautions the best you .equ EOT,D'4 ;ASCII End of Text

can hope for is that nothing will happen be- .equ
cause the computer didn’t understand. If -equ
Murphy is with you, as he most always is, your
device may do something unexpected--like
pour hot tea in Aunt Martha’s lap instead of

relayl,P1.3
relay2,Pl.4

;Control line for relay 1
;Control line for relay 2

8031 serial port initialization
This device operates at 1200 baud, 8 bit, 1 stop bit, no parity
Data received at the serial port is NOT echoed back to the hoet.

~e we we e

passing her the sugar.
The scheme I use here is to prefix each valid mov scon, $H’52 ;Mode 1, 8 bit operation
‘ command with the “@” symbol. The software setb TR1 . ;St;rt Timer 11 o ¢
: : . nov TMOD, #H' 20 ;8-bit auto-reload, free running timer
| then requires two par'ncul.ar characters in se- nov TH1, $H/ES +1200 baud operation ‘
quence before any action is taken, thus avoid- !

ing unexpected results. The following com-
8 *pe 8 (Listing 1 continued on next page)

10 The Computer Journal / #46

(Listing 1 continued from previous page)

8031 l.lCOIltl'Ollel' H Display a brief message that lets the user know the serial port
; has been initialized and the system is ready to go.
Modules
nov dptr, thowdy ;Point to the welcome message
NE WIII acall print ;Display it to the terminal
C lR II ; Generic I/0 system Command Interpreter (CI)
ontrol- ;
start: acall recv ;Wait for a character to arrive
: cjne A,#'Q7,start ;Any valid d is pr ded by ‘‘@’’
\I Industry Standard 8-bit 8031 CPU acall recv ;Get another character
‘l 128 bytes RAM / 8 K of EPROM cmda: cijne A, #'A’ ,cndb ;If not A, check for the B command
v Socket for 8 Kbytes of Static RAM c;f relayl iLatch relay 1
< ajmp start
‘l 11'0592'MHZ Operauon cmdb: cine A,#'B’,cmdc ;If not B goto C command
v 14/16 bits of parallel /O plus setb relayl ;Unlatch relay 1
access to address, data and control o ajmp ;‘:fz ndd Lf not C doto D "
signals on standard headers. ° :i:e rolay2. et el 0 ©
y2 ;Latch relay 2
v MAX?232 Serial I/O (optional) ajmp start
\/ +5 volt single supply operation cmdd: cjne A,#'D’,cndh ;If not D goto h command
" " x setb relay2 ;Unlatch relay 2
v Compact 3.50" x 4.5" size ajmp start
v Assembled & Tested, not a kit emdh: cjne A 472, err ;If not ? goto start
nov dptr, $help ;Load the address of the help text
acall print 3’'Print’’ the message to the serial port
$64'95 eaCh ajmp start ;Go back to the start of the main loop
err: nov dptr, #error ;Load the address of the error message
ContrOI—R I acall print 3 'Print’’ it
ajmp start
\/Industry Standard 8-bit 8031 CPU ; Subroutine to wait for a byte to arrive at the serial port
v 128 bytes RAM / 8K EPROM ;
v 11.0592 MHz Operation recv: jnb RI,recv ;Wait for a character to arrive
V 14/16 bits of parallel I/O clr RI iClear the Receive Interrupt flag
\I MAX?232 Serial I/O (OpliOl’lZﬂ) ::: A, SBUF ;Move the character intoc the A register
 +5 volt single supply operation
‘I Compact 2.75" x 4.00" size ; Subroutine to transmit a single byte out the serial port
vV Assembled & Tested, not a kit ;
send: jnb TI,send ;Wait until the transmitter is ready
$39.95 each clr TI ;Clear the Transmit Interrupt flag
nov SBUF,A ;Move the character into the serial
. buff
Options: T et
*» MAX232 1.C. ($6.95¢a.)
* 6264 8K SRAM ($1000ea) E Subroutine to send a stream of characters out the serial port
;rintz clr a ;Clear the A register
Development Software,' move a,@a+dptr ;Get the next character
« PseudoSam 51 Software ($5000) cjne a, #EOT, pchar ;Print char?cte.r if not EOT
ret ;or return if it was ETX
Level It MSDOS cross—assembler. pchar: acall send ;Transmit the character
Assemble 8031 code with a PC. ine dptr ;Increment DPTR
simp print ;Do it again
* PseudoMax 51 Software ($10000) ; System Messages
MSDOS cross—simulator. Test and ;
howdy: .db CR,LF
debug 8031 code on your PC! ‘b ' 'RELAY -- Version 1.1’/ CR,LF
.db ‘‘Type ‘€2’ for help’’,CR,LF,CR,LF
.db EOT T '
Ordering Information: error: .db CR,LF,CR,LF
Check or Money Orders accepted. All .db 4+#« ERROR ** Unknown Command Received’’,CR,LF
orders add $3.00 S&H in Continental US help: .db CR,LF
or $6.00 for Alaska, Hawaii and Canada. -db *’'Valid Commande:’’,CR,LF,CR,LF
Hlinoi idents ¢ add 6.25% ta .db ‘*@? - Display this help message’’,CR,LF
inois residents mus! .25% tax. .db 17gA - Latch Relay #1°,CR,LF
.db **@B - Unlatch Relay #1’’,CR,LF
. .db ‘*@C -~ Latch Relay #2’’,CR,LP
Cottage Resources Corporation .db ‘6D - Unlatch Relay #2'’,CR,LF
Suite 3-672, 1405 Stevenson Drive -db EOT
Springfield, Illinois 62703 ond .

(217) 529-7679

The Computer Journal / #46 11

Cross-Assemblers o s ssow
Simulators as ow s s

goto “start”

source

(804) 873-1947

Cross-Disassemblers a owas si000
DeveIoPer Packages

as low as

200.00(a $50.00 Savings
A New Project

Our line of macro Cross-assemblers are easy to use and full featured,
including conditional assembly and unlimited include files.

Get It To Market—-FAST

Don't wait until the hardware is finished to debug your software. Our
Simulators can test your program logic before the harg

No Source!

Aminor glitch has shown up in the firmware, and you can't find the original
urce program. QOur line of disassemblers can help you re-create the
original assembly language source.

Set To Go

Buy our developer package and the next time your boss says "Get to work.",
you'll be ready for anything.

Quality Solutions

PseudoCorp has been providin uality solutions for microprocessor
problems sﬁme 1985 P 9 quality P

BROAD RANGE OF SUPPORT
e Currently we support the following microprocessor families (with
more in development):

Intel 8048 RCA 1802,05 Intel 8051 Intel 8096
Motorola 6800 Motorola 6801 Motorola 68HC11 Motorola 6805
Hitachi 6301 Motorola 6809 MOS Tech 6502 WDC 65C02
Rockwell 65C02 Intel 8080,85 Zilog Z80 NSC 800
Hitachi HD64180 Motorola 68000,8 Motorola 68010 Intel 80C196

o All products require an IBM PC or compatible.
So What Are You Waiting For? Call us:

PseudoCorp

Professional Develohpment Products Group

716 Thimble Shoals Bivd, Suite E
Newport News, VA 23606

FAX: (804)873-2154

ware is built.

“cmdd” if byte <> “D” then goto “cmdh”
deenergize relay #2
goto “start”

“cmdh” if byte <> “?” then goto “err”

print help message
goto “start”

“err” print error message
goto “start”

In operation the “recv” routine is called and the pro-
gram loops until the received byte is the “@” symbol
which precedes each valid command. Next the second
byte received is checked against all known commands.
When a match is found, the appropriate action is carried
out and the main loop starts again waiting for the next
command.

The SETB and CLR instructions should be familiar to
you from the previous article. The real hero of the main
loop is the CINE (Compare and Jump if Not Equal). In
the RELAY.ASM code, the instruction compares the
byte in the accumulator to the value of the byte that fol-
lows. If the two are not equal, the program jumps to the
label indicated where execution continues.

Using the serial port for communications makes a 4
chip 8031 single board computer a powerful extension to
your personal computer. Although the serial port uses
two of the available 1/O lines on Port 3 of the 8031 you’re
still left with 14 bit addressable lines that you can use for
input or output. In an upcoming issue, I'll present a proj-
ect that builds on the concepts of RELAY.ASM to pro-
vide a small data acquisition system that has digital inputs

mands are implemented in RELAY.ASM:

@A - Latches Relay #1
@B - Unlatches Relay #1
@C - Latches Relay #2
@D - Unlatches Relay #2
@? - Displays a help screen

The pseudocode for the main program is as follows:

“start”

ucmdb”

ucmdcn

12

call receive
if byte <> “@" then goto “start”
call receive
if byte <> “A” then goto “cmdb”
energize relay #1
goto “start”

if byte <> “B” then goto “cmdc”
deenergize relay #2
goto “start”

if byte <> “C” then goto “cmdd”
energize relay #2

and outputs, as well as an analog to digital converter that
will let you measure nearly anything that you can convert
to a DC voltage.

If you decide to experiment more with the 8031, the basic cir-
cuit described in this article can be used over and over for a variety
of projects. Some people will want to wire-wrap or point to point
wire their own board to make it exactly what they want. If you
don’t have the time to build or would rather spend the bulk of
your time coding, an assembled and tested version of this circuit
that includes the circuitry for an RS232 compatible serial port is
available from Cottage Resources Corporation. The Control-R 1
(pronounced “Controller One”) is available for $39.95 and the
PseudoSam 51 cross-assembler is available for $50.00 (ptus $3.00
Shipping per order) from Cottage Resources Corporaion, Suite 3-
672, 1405 Stevenson Drive, Springfield, IL 62703. The MAX232
IC that is required for serial port operation is optional and is avail-
able for $6.95. ®

References:
Embedded Controller Handbook, Volume I 8-bit, 1988, Intel
Corporation
Mastering Digital Device Control_by William Houghton, 1987,
SYBEX. (Editor’s Note: This book is out of print.)

The Computer Journal / #46

Foundational Modules in Module 2
Abstract Data Types and Information Hiding

by David L. Clarke

Introduction

I have been using Modula 2 for five years now as both a teach-
ing and a hobby language. I teach Computer Science part time at
the Hartford Graduate Center. My hobby programming is done
on a CP/M system with Z3PLUS. I would prefer to do the pro-
gramming for my full time job in Modula 2, but it’s not available
on that system. I find Modula 2 to be an excellent systems pro-
gramming language. It has the abstractions that one would expect
from a high level language, but it is also capable of some of the low
level operations that one usually writes in assembly language. On
top of that, it is an ideal vehicle for such Software Engineering
principles as ‘Abstract Data Types’ and concurrency. I hope this
article will help you begin to appreciate the language as much as I
do.

In Dave Moore’s inaugural Modula 2 article (TCJ # 35), he
presented many of the benefits of modules. These can be summa-
rized as follows:

1. A task can be divided into smaller sections (i.e. modules),
which can be written by different programmers in parallel.

2. Definition modules provide a means for each programmer to
specify exactly what his module can be expected to do. With-
out this, it would not be possible to write a higher module
until all the lower modules it calls are completed.

3. The module’s internals are ‘visible’ to the author alone. (This is
because they are kept in an ‘implementation module’ which
the author maintains.) If the code contains an error, the au-
thor is the one who should correct it. More important, no one
else should make any changes, in fact, no one else can so long
as the author maintains the module.

4. As long as he doesn’t change the module’s definition, the au-
thor may modify or improve his code without effecting any
other module.

5. The Module 2 linker makes sure that all modules refer to the
latest module definitions, that is, implementation modules re-
fer to their latest definition module, and the latest definitions
of all imported modules was referenced during compilation.
This enforces strong typing across modules which in turn re-
duces program €errors.

6. Standard Libraries and user built libraries serve as a founda-

David Clarke was originally an Electrical Engineer at Prait &
Whitney Aircraft until he discovered that it was more fun to program
the data acquisition systems:that he developed. He therefore became
a systems programmer.

Dave is also an Adjunct Assistant Professor at the Hartford
Graduate Center in Hartford CT., where he has taught courses in
Systems Programming, Software Engineering, and Real Time Pro-
gramming. Dave can be reached at the Graduate Center where his
electronic mail address (Internet) is davec@mstr.hgc.edu. His
home address for regular mail is P.O. Box 328, Tolland, CT. 06084.

The Computer Journal / #46

tion for new programs and prevent us from having to reinvent
the wheel over and over again.

One of the major concerns of programming a decade ago was
‘type’ compatibility. This was one of the major themes behind the
Pascal language. The thought was that the compiler should be
responsible for preventing the type of problems that happen when
a REAL value is passed to a procedure that expects an INTE-
GER. This concern has continued in Modula 2, but the new com-
piler is also expected to furnish additional protection to the pro-
grammer. The new emphasis is called ‘information hiding’ by soft-
ware engineers. Many of the benefits mentioned in the list above
are related to information hiding. The thought here is to furnish
the programmer with a measure of protection for his code. You
may wonder why this protection is necessary. The following anal-
ogy may help supply an answer.

Programming twenty years ago was similar in many ways to a
school locker room. Students are assigned lockers in a large ‘com-
mon’ area. They may use padlocks to protect their belongings, but
these are not able to prevent a strong athlete from pulling the
handles off whatever locker he wishes to use. In this traditional
locker room, the necessary apparatus to receive the material is
present, but the means of controlling its use is sadly lacking.

About ten years later, the idea was advanced of assigning spe-
cific subroutines to handle operations related to a given data type.
This situation is like a locker room that has attendants hired to
take charge of the equipment. Students indicate to the attendants
where their lockers are. The attendant will then get the equipment
from the locker and place the student’s clothes in it for safe keep-
ing. The fact that the attendants exist, does not prevent some of
the unruly athletes from helping themselves to whatever they
might find in someone else’s locker. All they have to do is wait till
the attendants are looking the other way. In this locker room,
there is a well organized way to handle the lockers, but it lacks the
security necessary to protect the contents. (Listing 1 shows a
Turbo Pascal program that represents this situation. The hypo-
thetical person who wrote the buffer handling routines may have
done a great job, but he was unable to protect his data buffer from
the mischievous writer of the main program code. The problem is
that the definition of the ‘LockerRoom’ is completely visible to the
second programmer. This is what Modula 2 attempts to prevent.)

The principle behind Modula 2 is more like a locker room that
has a wall separating the locker area from the dressing area. There
is a window in this wall through which the students request the
attendants to get their equipment from their lockers. The wall
prevents the hooligans from attacking the lockers without reducing
the efficiency of the facility. In fact, it is possible to improve the
system (such as replacing the lockers with easier to handle wire
baskets) without effecting the students. Since the storage area is
on the far side of the wall, the students never need to see how their
equipment is being kept. (It may be interesting to compare the
‘LockerRoom’ above with the ‘Sequence’ which will be found in
the SeqBuffer module below.)

13

Listing 1
PROGRAM LockerRoomModel;

{ D. L. Clarke (revised) 11 June 1990
This is a demonstration of the problems involved by using
global data as a ‘private' data structure. This program is
written in Turbo Pascal for two reasons:
1. because Turbo adds the String extension to Pascal
(this simplifies the storage of items)
2. to show the deficiencies of Pascal in hiding infor-
mation

e o T

CONST
{ define the lockers in the locker room
NumberOfLockers = 3; { this is a VERY small locker room
NullLocker = 0; { used to identify an illegal locker

{ define how much eguipment fits in a locker
NumberOfItems = 24; { BIG lockers in a small locker room
TYPE
{ define the items in a locker

Item = String(72); {
ItemNumber = 1 .. NumberOfItems;

rather strange item!!

{ define lockers and token values

Locker = ARRAY [ItemNumber] OF Item; { lockers hold items
LockerNumber = 1 .. NumberOfLockers; { i.e. legal lockers
TokenValue = NullLocker .. NumberOfLockers;

VAR
{ These variables define the locker room and the tokens.
{ They should not be abused by the athletes.
LockerRoom: ARRAY [LockerNumber)] OF Locker; { the lockers
TokenCount: TokenValue; { used to assign lockers

{ These procedures are performed by the locker room attendants.
{ They define the ‘'legal' ways of accessing the locker items.

FUNCTION Access:
BEGIN
IF TokenCount = NumberOfLockers THEN
Access := NullLocker
ELSE BEGIN

TokenValue; { get initial locker assignment

ount := Tok

3= TokenCount

ount + 1;

Access
END
END;

PROCEDURE PutSeek (equipment: Item; { put specific item in locker
specificItem: ItemNumber;
Locker: TokenValue);
BEGIN
LockerRoom[Locker, SpecificItem]
END;

1= equipment

PROCEDURE GetSeek (VAR equipment: Item;
SpecificItem: ItemNumber;
Locker: TokenValue);
BEGIN
equipment := LockerRoom|Locker, SpecificItem]
END;

{ The main program code simulates the athletes using the lockers

VAR Token: TokenValue; { this is the athlete‘'s locker tocken,
{ it is placed here to separate it from the 'private’
{ data above.
stuff: Item; { this (may) be the correct contents
BEGIN
{ 'clean up the lockers' and get ready for a new semestex
TokenCount := 0;

{ get locker assignment (token) at beginning of semester
Token := Access;

{ this is an athlete putting an item in the locker legally
PutSeek (‘This is a legal insertion', 1, Token);

{ this is how an item can be stowed away illegally
LockerRoom[1l, 1] := *‘This is an illegal insertion‘;

{ this is what the locker's owner gets when he tries to get his
{ belongings out of the locker.

GetSeek(stuff, 1, Token);

WriteLn(stuff)

e

Lo

}

{ get specific item in locker }

N

14

Having said my piece on information hiding, I will now intro-
duce several Modula 2 modules that can serve as a foundation for
many useful programs. I will not attempt to ‘hide’ my code, but
will share it with the readers of this article. In this way I will be able
to discuss some of the features of the language (as well as describe
a few special techniques that can be used in Modula 2 programs).
At the end of this article, I shall include a main program that
demonstrates the utility of these foundational modules.

Many of the most useful modules describe an object. These
modules consist of a data structure (that represents the object)
and a series of procedures that control the operations that can be
done on the object/data structure. Quite often the actual data
structure will be defined in name alone (in the definition module),
that is, it is what is known as ‘opaque’ to the user of the module.

I should mention at this time that the Module 2 compiler that I
use at home is the FTL Modula 2 compiler from Workman &
Associates. Each compiler supplies its own variation of ‘standard’
library modules. If you use a different compiler, you may need to
make some modifications to reflect these differences.

SeqBuffer

The first module that T will present is a buffer that consists of a
sequence of items. I call it a SeqBuffer. The SeqBuffer is a fairly
generic module that besides being useful in itself, is also a good
foundation for several other modules. Listing 2 shows the mod-
ule’s definition. In Modula 2, this is called the DEFINITION
MODULE. From the module user’s viewpoint, this is the main
definition of the object and its operations. (The TYPEs and PRO-
CEDURE: defined in the DEFINITION MODULE correspond
to the window in the wall of the final locker room model. They are
the only access that the user has to the data structure.) It is worth-
while to examine the SeqBuffer definition now.

The basic object of this module is the ‘Sequence.’ It is only
defined as a TYPE at this point —that is, it’s opaque. A more com-
plete definition will appear later in the IMPLEMENTATION
MODULE.

Quite often the writer of code that uses modules like
SeqBuffer will want to use more than one Sequence. To satisfy
this need, a procedure such as ‘Access’ is provided. The user then
must define a variable of the desired type by a statement like:

VAR Seql: Seguence;

He would then assign the variable to a valid Sequence with an
assignment statement that references the Access procedure:

Seql := Access("First Sequence");

Once a variable (e.g. Seql) refers to a valid Sequence, it can be
used in all of the other procedures defined in the module. (The
‘Inaccessible’ procedure may be used to determine if a variable has
been assigned to a valid Sequence.)

Once a Sequence (buffer) has been accessed, its owner or user
may place items in it, examine items that have been already placed
within, or remove items from the buffer. When an item is placed
into a Sequence, the user indicates where the item is to be placed
in it. This is done by supplying an entry number or index value.
Since a user may have access to several Sequences, the specific
Sequence variable is passed as a parameter. Of course, the item
itself must be one of the parameters. Since the item may be just
about anything, the method of passing this parameter must be
very flexible. This is one of the major strengths of Modula 2. Ac-
cording to the specification of Modula 2, the ‘WORD’ TYPE is
compatible with any equally sized TYPE. Many compilers have
extended the specification to make the ‘BYTE’ TYPE compatible
with anything that takes up one byte of memory. In addition, any
larger sized type is compatible with an equally sized array of bytes.
The Modula 2 speciﬁwtion also allows procedure parameters to
be defined as an ‘open array.” An open array does not contain a
range specifier that tells how many elements are in the array.
When we put it all together, we assign the item a TYPE of ‘AR-

The Computer Journal / #46

Listing 2

DEFINITION MODULE SeqBuffer;

(* D. L.

FROM SYSTEM IMPORT BYTE;
TYPE Sequence;

PROCEDURE Access
(name: ARRAY OF CHAR)
: Sequence;

PROCEDURE Inaccessible
{ seq: Segquence)
: BOOLEAN;

PROCEDURE Include
{ B8: ARRAY OF BYTE;

i: INTEGER;
VAR seq: Sequence)
¢ BOOLEAN;

PROCEDURE GetSeg
(VAR 8: ARRAY OF BYTE;
i: INTEGER;
seq: Seguence)
: BOOLEAN;

PROCEDURE PutsSeq
(8: ARRAY OF BYTE;

i: INTEGER;
VAR seq: Sequence)
: BOOLEAN;

PROCEDURE Delete
(i: INTEGER;
VAR seq: Sequence)
: BOOLEAN;

PROCEDURE Lowest
(seq: Seguence)
: INTEGER;

PROCEDURE Highest
{ seq: Seguence)
: INTEGER;

PROCEDURE Deaccess
(VAR Bseq: Segquence);

END SegBuffer.

Clarke

(*

(*

(revised) 11 June 1990
used to 'match' any type
the seguence or table data type

access a Sequence for later use
seguence name -- usually ignored
the requested abstract data type

see if Sequence is invalid
the Sequence to check
TRUE if not valid

put a new entry into a sequence

the entry to put in the sequence
cannot overwrite existing entry
the entry number or index

the sequence to place entry into
FALSE if 'i' exceeds table size

or was already in the seguence

get an entry from a seguence
the returned entry

the entry number (i.e. index}
the sequence to be searched
TRUE if 'i' is in the sequence

put an entry into a sequence

the entry to put in the sequence
may overwrite pre-existing entry
the entry number or index

the sequence to place entry into
FALSE if 'i' exceeds table size

delete an entry from a sequence
the entry number (i.e. index)
the sequence to be searched
TRUE if 'i' was in the sequence

lowest index yet in a sequence
the sequence to be examined
the lowest index used so far
= 4+ MAXINT for empty sequence

highest index yet in a sequence
the sequence to be examined
the highest index used so far
= - MAXINT for empty sequence

deaccess Sequence when finished
the sequence to be eliminated

RAY OF BYTE". This allows an item to be compatible with any

TYPE.

The major procedure for putting items into a Sequence is ‘Put-
Seq.” To place the string “This is an item” into the first entry (i..
index # 1) of the Seql Sequence previously accessed, we would
use the following call:

okay := PutSeq("This is an item", 1, Seql);

Notice that most of these procedures return BOOLEAN val-
ues that indicate whether an error was detected while executing
the procedure. For instance, if for some reason PutSeq was not
able to put the item into the Sequence, it would return a value of
FALSE. When PutSeq is requested to place an item in a particu-
lar entry of a Sequence, it will always place it there (if the entry
exists). It will overwrite any data previously placed in that entry. At
times we may prefer to not overwrite this older data. At those
times the procedure to use is ‘Include.’ Include will only place
items into previously empty entries. If the requested entry already
contains data, then Include will return a value of FALSE to indi-
cate an error condition.

The ‘GetSeq’ procedure is used to fetch information back out
of a Sequence. The procedure returns a value of TRUE if any-
thing exists at the desired entry in the Sequence, otherwise it re-
turns FALSE to indicate an error condition.

The Computer Journal / #46

The ‘Delete’ procedure will remove data from a specific entry
in a Sequence. Once an entry is deleted, it is as if the entry had
never been filled. GetSeq cannot retrieve anything from the entry,
but Include can place another item into the entry space.

The ‘Highest’ and ‘Lowest’ procedures return the numbers of
the highest and lowest entries presently containing data.

Finally, the ‘Deaccess’ procedure is used to retire a Sequence
when we are finished with it.

An IMPLEMENTATION MODULE corresponds to the area
on the far side of the wall in the final locker room model. This is
where the data structure is kept safely out of the user’s reach.
Listing 3 shows my IMPLEMENTATION MODULE for the
SeqBuffer. I used a linked list to hold the necessary data. Each
entry in the Sequence is a ‘Record’ that contains several pieces of
information. The item itself will eventually be an array of bytes. It
will be pointed to by the ‘data’ entry of the Record. Since data of
various sizes may be placed into the Sequence, the ‘size’ of each
item is saved in the Record. Items may be placed into the Se-
quence in any order, there will probably be gaps in the entry indi-
ces. In order to keep everything in order, the ‘entry’ number of
each item is also kept in the Record. The next item in the linked
list is pointed to by ‘next.’

In the DEFINITION MODULE, Sequence was opaque. Here,
in the IMPLEMENTATION MODULE, we see that the com-
plete definition is given as a ‘POINTER TO Record’. A variable,
SeqHead, is a special internally used Sequence that hoids all of the
valid Sequences that have been accessed by the users. As Users
call ‘Access’, an entry is made in the SeqHead Sequence that cor-
responds to the pointer returned by the Access procedure. The
‘Inaccessible’ procedure searches through the SeqHead Sequence.
If the Sequence parameter passed to Inaccessible cannot be found
in SeqHead The procedure returns a value of TRUE meaning that
the requested Sequence is truly inaccessible.

The module starts off with three procedures that are internal,
that is they are only used within this module. The first one, Search-
ForEntry, will search through a linked list looking for a specific
entry number. If the desired entry exists, the ‘p’ parameter will end
up pointing to it; if it doesn’t exist, then it must be placed in the
gap between where ‘q’ and ‘p’ end up pointing. In the latter case,
the new entry can be placed in the Sequence by calling ‘Mak-
eNewEntry’. This procedure creates the new Record, places it into
the linked list, and saves the ‘entry’ index value. Finally, the actual
item is placed into the Record (pointed to by ‘p’) by calling
‘Stor¢Entry’. This procedure uses a Modula 2 built-in function,
HIGH, to tell how big the ‘item’ is. HIGH assumes that an open
array has a range like [0 .. n], that is the low end of the range is
normalized to 0 and the upper end of the range becomes ‘n.” This
latter value is returned by HIGH. The actual number of bytes in
an item (e.g. ‘s’) is therefore HIGH(s) + 1. StoreEntry acquires
enough dynamic memory to hold the item by calling ALLOCATE.
The bytes in the item are then moved into this memory area one
byte at a time.

The IMPLEMENTATION MODULE continues with the ex-
ecutable code for all of the procedures defined in the DEFINI-
TION MODULE. It can be seen that ‘Access’ acquires enough
memory for a Record by calling NEW. This Record is placed in
the SeqHead Sequence and a pointer to it is returned to the caller
of this procedure. In addition, Access will initialize the highest and
lowest entry values to unique values that indicate an empty Se-
quence. (You’ll have to admit that setting the lowest value to the
largest possible integer value is rather unique.) As items are en-
tered into- the Sequence, StoreEntry will check to see if the re-
quested entry index is smaller that the current lowest value; if it is,
then it replaces the current value. (Note - this will always happen
when the first entry is placed into the Sequence.) A similar check is
made on the highest value.

As mentioned above, ‘Inaccessible’ checks to see if the indi-
cated Sequence is missing from the SeqHead list.

15

IMPLEMENTATION MODULE SeqBuffer;

David L. Clarke {(revised) 11 June 1990

(*

FROM Storage IMPORT ALLOCATE, DEALLOCATE;

TYPE Sequence = POINTER TO Record;
Record = RECORD
entry: INTEGER;
size: INTEGER;
data: POINTER TO ARRAY [0..256] OF BYTE;
next: Seguence
END;
VAR SeqHead: Seqguence;

PROCEDURE SearchForEntry(i: INTEGER; VAR seq, p, q: Seguence);
BEGIN
P := seq”.next; q := NIL;
WHILE (p <> NIL) AND (p~.entry < i) DO
q = p;
P := p .next
END
END SearchForEntry;

PROCEDURE MakeNewEntry(i: INTEGER; VAR seqg, p, q: Sequence};
BEGIN
NEW(P);
p-.entry := i;
IF g = NIL THEN
p°.next := seq”.next;
seq”.next := p
ELSE
p~.next
q" .next
END
END MakeNewEntry;

:= q".next;
= p

PROCEDURE StoreEntry(s: ARRAY OF BYTE; i:
p: Sequence);
j: CARDINAL;

INTEGER; VAR seq,

VAR
BEGIN

P .size := HIGH(s) + 1;

ALLOCATE({p".data, p~.size);

FOR j t= 0 TO HIGH(s) DO

p~.data”[j] := s[]]
END;
IF i > seq”.entry THEN

seq .entry := i {* update highest *)

(* update lowest *)

END;
IF i < seq-.size THEN
seq .size = i
END
END StoreEntry;

PROCEDURE
’ VAR

Access(name: ARRAY OF CHAR): Sequence;
seq, p: Sequence;
je CARDINAL;
BEGIN
NEW(seq);
seq”.entry := - MAX({INTEGER);
seq”.size := 4+ MAX(INTEGER);
seq”.next := NIL;
BEW(p);
P .next := SegHead; SeqHead := p;
P -entry := INTEGER(CARDINAL(seq));
ALLOCATE(p".data, HIGH(name)+1);
FOR j := 0 TO HIGH(name) DO
p~.data“[j] := BYTE(name[j])
END;
p .size := HIGH(name) + 1;
RETURN seq
END Access;

PROCEDURE, I
VAR
BEGIN
P := SegHead;
LOOP
IF p = NIL THEN EXIT END;
IF p".entry = INTEGER(CARDINAL(seg)) THEN EXIT END;
P := p“.next
END;
RETURN p = NIL
END Inaccessible;

ible(seq:
p: Sequence;

PROCEDURE GetSeq(VAR B: ARRAY OF BYTE; i: INTEGER; seq: Sequence):

BOOLEAN;
VAR P, Q: Sequence;
j: CARDINAL;
BEGIN

IF Inaccessible(seq) THEN RETURN FALSE END;
SearchForEntry(i, seq, p, q);
IF (p = NIL) OR (p".entry > i) THEN RETURN FALSE END;

Listing 3
FOR j := 0 TO HIGH(s) DO
8[j] := p~.data”[j]
END;
RETURN TRUE
END GetSeq;

*)

PROCEDURE PutSeq(s: ARRAY OF BYTE; i: INTEGER; VAR seq: Sequence):
BOOLEAN;
VAR Sequence;
BEGIN
IF Inaccessible(seq) THEN RETURN FALSE END;
SearchForEntry(i, seq, p, q);
IF (p = NIL) OR (p~“.entry <> i) THEN
MakeNewEntry(i, seq, p, q)
ELSE
DEALLOCATE({p" .data, p~.size)
END;
StoreEntry(s, i, seq, p);
RETURN TRUE
END PutSeq;

Pr q:

PROCEDURE Include(s: ARRAY OF BYTE; i:
BOOLEAN;

VAR Sequence;

BEGIN

IF Inaccessible(seq) THEN RETURN FALSE END;

SearchForEntry(i, seq, p, q);

IF (p # NIL) AND (p .entry = i) THEN
RETURN FALSE

ELSE
MakeNewEntry(i, seq, p, q);
StoreEntry(s, i, seq, p)
RETURN TRUE

END;

Include;

P, 4Q:

END

PROCEDURE Delete(i: INTEGER; VAR seq: Sequence): BOOLEAN;
VAR P, 9: Seguence;
j: CARDINAL;
BEGIN
IF Inaccessible(seq) THEN RETURN FALSE END;
SearchForEntry(i, seq, p, q);
IF (p = NIL) OR (p~.entry > i) THEN
RETURN FALSE
END;
IF q = NIL THEN
seq”.next := p~.next
ELSE
q".next := p~.next
END;
IF seq .entry = i THEN
1F g = NIL THEN
seq”.entry := - MAX(INTEGER)
ELSE
seq”.entry := g~ .entry
END
END;
IF seq”.size = i THEN
IF p".next = NIL THEN
seq”.size := + MAX(INTEGER)
ELSE
seq”.size := p“.next".entry

END;
DEALLOCATE(p~.data, p“.size);
DISPOSKE(P);
RETURN TRUE
END Delete;

PROCEDURE Highest(seq: Sequence): INTEGER;

BEGIN
IF Inaccessible(seg) THEN RETURN -~ MAX(INTEGER) END;
RETURN seq”.entry

END Highest;

PROCEDURE Lowest(seq: Sequence):
BEGIN
IF Inaccessible(seq) THEN RETURN + MAX(INTEGER) END;
RETURN seq”.size
END Lowest;

INTEGER;

PROCEDURE Deaccees (VAR seq: Sequence);

VAR Ps 4: Seqguence;
BEGIN

P := SegHead; q = NIL;

LOOP

IF p = NIL THEN EXIT END;
IF p".entry = INTEGER(CARDINAL(seg)) THEN EXIT END;
q ™ p; P := p~.next
END;
IF p # NIL THENW
IF q = NIL THEN
SeqgHead := p~.next

INTEGER; VAR seq: Sequence):

IF p“.size # HIGH(s) + 1 THEN RETURN FALSE END; (L|st|ng 3 continued on next page)

The Computer Journal / #46

16

(Listing 3 continued from previous page)

ELSE
q".next := p“.next

END;

DEALLOCATE(p~.data, p~.size);

p := seq”.next;

WHILE p ¢ NIL DO
q = p;
P := g~ .next;
DEALLOCATE(q".data, q".size);
DISPOSE(q)

END;

DISPOSE(seq)

END

END Deaccess;

BEGIN
SeqHead := NIL
END SeqBuffer.

- ‘GetSeq’ checks to see if the desired entry is in the Sequence,
and is the same size as the ‘item’ parameter being passed to it. If it
passes all these tests, the bytes are copied to the indicated ‘item’
one byte at a time.

‘PutSeq’ also checks to see if the indicated entry is already in
the Sequence. If it is, its data is removed by calling DEALLO-
CATE, otherwise a new Record is created. In either case, the item
is stored in the resulting free Record by calling StoreEntry.

‘Include’ also checks to see if the entry is already in the Se-
quence, however if it is, the procedure returns an error indication
(i.e. FALSE).

It may seem that deleting an item should be simple, but a
glance at ‘Delete’ shows that this is not so. The major problem
here is t0 make sure that the current highest and lowest values for
the Sequence are maintained properly. For instance, if the item
with the highest entry number is deleted, the current highest value
must be updated to equal the next highest entry in use.

The ‘Highest’ and ‘Lowest’ procedures merely return the cor-
responding value currently maintained for the Sequence. The ex-
ception is an Inaccessible Sequence. In this case, the unique values
used for an empty Sequence are returned. Supposedly an invalid
Sequence is empty.

The purpose of the ‘Deaccess’ procedure is to re-
claim all of the dynamic memory that was acquired for

also returns Boolean values to report error conditions such as pop-
ping data off an empty stack (or pushing it onto a full stack).

There is also a procedure defined that allows you to check to
see if a stack is ‘Empty.’

The IMPLEMENTATION MODULE for the stackADT is
given in Listing 5. You will notice that it’s all done with Sequences.
Define calls Access to obtain a Sequence which masquerades as a
stack. The Highest procedure imported from the SeqBuffer is
used to control the push and pop operations. Items are pushed
into entry Highest(stk)+1 using the PutSeq procedure. Likewise,
items are popped off the stack by calling GetSeq to extract the
Highest entry and then calling Delete to remove the entry from
the Sequence/stack. The unique values assigned to Highest and
Lowest for an empty Sequence are used to determine when a
stack is empty. The MakeEmpty procedure clears a stack by re-
peatedly deleting the Lowest entry until the stack is empty. The
stack is destroyed by first clearing itself using MakeEmpty and
then calling the Deaccess procedure from SeqBuffer.

Convert

The FTL Modula 2 compiler offers a module named Conver-
sions which converts numeric information in a computer into
strings of digits (such as “1234”). These strings can then be output
to the terminal so that we humans can read the numbers. I found
that this module did not go far enough for my needs. For one
thing, I wanted to also be able to convert strings of digits into
numeric vatues. Therefore I developed the ‘Convert’ module.

The DEFINTTION MODULE for Convert is shown in Listing
6. With this module it is possible to represent numeric information
as a number in any radix from 2 (binary) to 16 (hexadecimal). This
is primarily done by the procedure ‘NumToStr.” Decimal numbers
are more easily done by ‘IntToStr” and ‘CardToStr.’ (In Modula 2,
integers are signed, while cardinals are positive only.) This module
also has procedures to convert from strings of digits in any radix
into numeric data.

Listing 7 is the IMPLEMENTATION MODULE for Convert.
To simplify the conversion to strings, two procedures are imported
from the original Conversions module. Why reinvent the wheel? I
did find it necessary to left justify the output from the Conversions

the Sequence. This includes All of the ‘item’ arrays, the
entry Records in the Sequence, and the main Se- Listing 4
quence in SeqHead itself. o
. .. DEFINITION MODULE stac T;
Modula 2 allows each module to contain some ini- !
tialization code. The initializing code is included at the - David L. Clarke (revised) 11 June 1990 *
end of the module. In thls case 1t IS' a Sll.lgle Statemer}t FROM SeqBuffer IMPORT Sequence; (* inherit type from sequence *)
that makes SeqHead point to nothing (i.e. NIL). This FROM SYSTEM IMPORT BYTE; (* used to 'match' any type *)
means that its linked list is empty. The Modula 2 linker TYPE stack = sequence; (* the ‘stack data type itself "
will create code that executes all of the initializing code
H H H PROCEDURE Define (* define or initialise a stack *)
before it starts executing the main program. (VAR q: stack) (+ the stack variable being defined *)
StackADT : BOOLEAN; (* FALSE if no stack is availiable)
: . * Mak ty should be called next «
We've just examined the most complex module. (7 Hekemmety '
SeqBuffer can be used to build several other abstract PROCEDURE ";:;mvtv tack - r:mzctlli.-lem:vt; from stack)
. . : stac. 1@
data types (ADT’s) such as stacks and queues. Listing ¢ 9 pooLEan; e FALOE if stack is imvalid o
4 shows the DEFINITION MODULE for the stack-
151)]~ PROCEDURE Push (* push element onto top of stack *)
* {VAR q: stack; (* stack that receives the data ")
A TYPE definition is given for the ‘stack.’ Instead elem: 'x“ oF BYTE) (+ ::;s;l‘_";“: t: be :n;;m'd]
of being opaque you will notice that it is visibly defined : ! (e mtack s e !
as a Sequence. This is how we build upon earlier mod- PROCEDURE Pop (* pop element from top of stack *)
ules (VAR q: stack; (* stack that supplies the data *)
* VAR elem: ARRAY OF BYTE) (* where the element gets stored *)
Just as there was a need to access and deaccess a : BOOLEAN; (* FALSE if stack is empty *)
Sequence, the stackADT has procedures to ‘Define’ PROCEDURE Empty (* test the status of a stack .
and ‘Destroy’ a stack. A stack can be cleared at any (q: stack) (* stack to be tested *)
time by calling ‘MakeEmpty’. It is highly recommended 3 BOOLEAN; (* TRUE if the stack is empty i
that stacks be cleared initially after being defining. PROCEDURE Destroy (* send stack to Never-never Land *)
. (VAR q: stack) (* the unfortunate victim *)
The stackADT defines the normal stack operations : BOOLEAN; (* FALSE if stack is invalid o
of ‘Push’ and ‘Pop’. You will notice that this module
END stackADT.
The Computer Journal / #46 17

procedures. This required the creation of the internal LeftJust
procedure. Likewise I had to write the routines that translate from
strings to numeric data. These are loosely based on code that was

Listing 5
IMPLEMENTATION MODULE stackADT;

- David L. Clarke (revised) 11 June 1990 *) used in the InOut module supplied with the FTL compiler. A

FROM SeqBuffer IMPORT Access, Inaccessible, Deaccess, string sc?arch was added to ggsist in conve_rting indivi(.iual digit char-

GetSeq, PutSeq, Delete, Lowest, Highest; acters (including the Hex digits of A - F) into numeric values.

VAR i: INTEGER; Calc—An RPN Calculator

done: BOOLEAN; I wi s ; : :
will close this article with a practical example that makes use

PROCEDURE Define(VAR stk: stack): BOOLEAN; of the modules developed in the earlier material. The goal is to

BEGIN . create a Reverse Polish Notation (RPN) calculator. One of the
stk := Access("stackhead”); . . .

RETURN NOT Inaccessible(stk) basic components of an RPN calculator is a stack. This we already

END Define; have. We also need a way to convert strings of digits to numbers

PROCEDURE MakeEmpty (VAR stk: stack): BOOLEAN; and numbers to strings of digits. This we have also.

BEGIN ' ; ; :)
dome 1= NOT Inaccessible(stk); Besides nu‘n’1bers, we also have to input operations such as ‘+
WHILE done AND NOT Empty(stk) DO for addition, ‘-’ for subtraction, and the like. We will also input
m.dme = Delete(Lowest(stk), stk) certain letters to provide the calculator with specific commands
RETURN done such as ‘C’ for clear. Since this calculator will be used in a pro-

END MakeEmpty; gramming environment, it seems reasonable to allow it to operate

PROCEDURE Push(VAR stk: stack; elem: ARRAY OF BYTE): BOOLEAN; n .deClmal’ hex’ OCtal’ and even blnary' WC need an easy Way _to

BEGIN) switch between modes and to show what our current mode is.
i := Highest(stk); These commands are summarized as follows:

IF i < 0 THEN i := 0 END;
RETURN PutSeg(elem, i+l, stk)
END Push;
+,-,* /,% Addition, subtraction, multiplication, division, and
PROCEDURE Pop(VAR stk: stack; VAR elem: ARRAY OF BYTE): BOOLEAN;

BEGIN ‘mod’ respectively.
o dons e) “oen) B,D,H, O Enter binary, decimal, hex, or octal modes
END Pop; respectively.
PROCEDURE Empty(stk: stack): BOOLEAN; C Clear the display.
BEGI:ETURN Highest(stk) < Lowest(stk) E Exit the program.

END Empty;

PROCEDURE Destroy (VAR stk: stack): BOOLEAN; Two of the commands (‘B’ and ‘D’) are also hex digits. In order
9“1: im MakeEmotv(atk): to avoid confusion, all numeric data, even hex numbers, must be-
Deaccess(stk); Yes gin with a digit between 0 and 9. Ifa ‘B’ or ‘D’ command is placed
RETURN done after a number it must be separated from the number by a space.
Destroy; L
P Pestxey The program listing given in Listing 8 shows that the calculator
END stackADT. operates quite simply. It reads in a line from the terminal key-

board. It then parses the line for strings of digits and
operators. Normally they are separated by spaces (or
carriage returns) but in some cases the space is not re-

Listing 6 quired, depending on whether the result is ambiguous
DEFINITION MODULE Convert; , or not. (Refer to the discussion on ‘B’ and ‘D’ above.)
(* David L. Clarke (revised) 11 June 1990) As strings of digits are encountered, they are converted

into numbers and pushed onto the stack. As arithmetic

(* convert INTEGERs, CARDINALs, or numbers in some base radix to strings *) operators are detected, the lOp two numbers are

PROCEDURE IntToStr (int : INTEGER; (* INTEGER to convert *) popped off the stack, the operation is performed on
VAR str : ARRAY OF CHAR; (* destination string *) :
width : CARDINAL; (* (min) characters = *) them, and the result is pushed back onto the stack.
VAR success : BOOLEAN); (* TRUE if converted) Some of the other operators will modify the radix
mode. This controls the way strings are converted to
PROCEDURE CardToStr(card : CARDINAL; {* CARDINAL to convert *) . PP .
VAR str : ARRAY OF CHAR; (* destination string *) and from numbers. Another operator (i.e. ‘C’) will clear
width : CARDINAL; (* (min) characters *) the stack by calling MakeEmpty. The final operator, ‘E;’
VAR success : BOOLEAN); {* TRUE if converted *) - .
will cause an exit from the program.
PROCEDURE HumToStr (num i CARDINAL; (pumber to convert =) As each numeric string or operator is handled, the
VAR str : ARRAY OF CHAR; (* destination string *) B .
base : CARDINAL; (* base/radix [2..16] *) current value at the top of the stack is displayed. The
width : CARDINAL; (* (min) .:hanctetsd *) number is converted into a string representing the num-
: ; * UE * . . N .
VAR success : BOOLEMT) (* TROE If converted ™) ber in the current radix or mode. The string is then
(* convert etrings to INTEGERs, CARDINALs, or numbers in some base radix +) written to the terminal followed by a space and a single
character that indicates the current radix mode.
PROCEDURE StrTolnt (?tz : ARRAY OF CHAR; (* string to convert *) Reverse Polish Nota[ion isa method of expressing
VAR int : INTEGER; (* target INTEGER *) . . R . .
VAR success : BOOLEAN); (* TRUE if converted *) mathematical equations in an unambiguous way with-
out parentheses.
PROCEDURE StrToCard(str : ARRAY OF CHAR; (* string to convert *) p
VAR card : CARDINAL; (* target CARDINAL *) BaSlca]ly, everythlng IS expre&sed as trlplets consist-
VAR success : BOOLEAN); (* TRUE if converted *) ing of two operands and one operation. Now it gets a
PROCEDURE StrToNum (str : ARRAY OF CHAR; {* string to convert *) blt cor'lqulng’ Elthef opera.nd may In turn be expre&sed
VAR num : CARDINAL; (* target CARDINAL ") as a triplet. A simple equation like
base : CARDINAL; (* base/radix [2..16] =)
VAR success : BOOLEAN); (* TRUE if converted *)

(a + b) * (a - Db)
END Convert.

18 The Computer Journal / #46

Listing 7

IMPLEMENTATIOR MODULE Convert;
(* David L. Clarke (xrevised)

FROM Conversions IMPORT CardToString, IntToString;

VAR
digit: ARRAY[0..15] OF CHAR;

PROCEDURE max(Xx, y: CARDINAL): CARDINAL;

BEGIN
IF x > y THEN RETURN x ELSE RETURN y END
END max;
PROCEDURE LeftJust(used: CARDINAL; VAR str: ARRAY OF CHAR;

width: CARDINAL; VAR success: BOOLEAN);
VAR i, j: CARDINAL;
BEGIN
j := max(width, used);
IF j > BIGH(str)+l THEN
succesa := FALSE
ELSE
FOR i := HIGH(str)+l - j TO HIGH(str) DO
str{i + j - (HIGH(str)+l)] := str[i]
END;
IF j <= BIGH(str) THEN str[j] := Oc END;
success := TRUE
END
END LeftJust;

PROCEDURE IntToStxr(dint: INTEGER; VAR str: ARRAY OF CHAR;
width: CARDINAL; VAR success: BOOLEAN);
VAR used: INTEGER;
BEGIN
IntToString(int, 10, str, used);
LeftJust(used, str, width, success)
END IntTostr;

PROCEDURE CardToStr(card: CARDINAL; VAR str: ARRAY OF CHAR;
width: CARDINAL; VAR success: BOOLEAN);
VAR used: INTEGER;
BEGIN
CardToString(card, 10, str, used);
LeftJust(used, str, width, success)
END CarxdToStr;

PROCEDURE NumToStr(num: CARDINAL; VAR str: ARRAY OF CHAR;
base: CARDINAL;
width: CARDINAL; VAR success: BOOLEAN);
VAR used: INTEGER;
BEGIN
IF (base < 2) OR (base > 16) THEN
success := FALSE
ELSE
CardToString(num, base, str, used);
LeftJust(used, str, width, success)

11 June 1990 *)

END
END NumToStr;

PROCEDURE StrToInt{ str: ARRAY OF CHAR; VAR int: INTEGER;
VAR success: BOOLEAN);
VAR i, j: CARDINAL;
neg: BOOLEAN;

BEGIN
i:= 0; int := 0; success := FALSE; neqg :=
FALSE;
WHILE (i < BIGH(str)) AND (str(i] <= ' ') DO INC(i) END;
IF str[(i] = °~* THEN neg := TRUE END;
IF (str[(i} = *+°) OR (str[i) = °*-') THEN INC(i) END;
success := TRUE;
LOOP
IF (i > HIGH(str)) OR (str[i] <= ' ') THEN EXIT END;
IF (str(i) < '0') OR (str[i] > '9') THEN
success := FALSE; EXIT
END;
int := int * 10 + ORD{etr[i]) - ORD('0‘);
INC(di)
END;

IF neg THEN int := - int END
END StrTolnt;

PROCEDURE StrToCard(str: ARRAY OF CHAR; VAR card: CARDINAL;
VAR success: BOOLEAN);
BEGIN
strToNum(str, card, 10, success);
END StrToCard;

PROCEDURE StrToNum{ str: ARRAY OF CHAR; VAR num: CARDINAL;
base: CARDINAL; VAR success: BOOLEAN);
VAR i, j: CARDINAL;

BEGIN
i = 0; num := 0; success := FALSE;
WHILE (i < HIGH(str)) AND (str[i] <= * ') DO INC(i) END;
success := TRUE;
LOOP
IF (i > HIGH(str)) OR (str[i] <= ' *) THEN EXIT END;
j o= 0;
LOOP
IF CAP(str(i]}) = digit{j] THEN EXIT END;
INC(]);
IF (j = base) OR (j = 16) THEN EXIT END
END;
IF (j = base) OR (j = 16) THEN
success := FALSE; EXIT
END;
num := pum * base + j;
INC(i)
END

END StrToNum;

BEGIN
digit 3= =0123456789ABCDEF";
END Convert.

is expressed in RPN as

ab+ab-«*

where “a b +” is one triplet corresponding to “(a + b)”. Likewise
“ab-" is a triplet that corresponds to “(a - b)”. These two triplets
are the operands for the third triplet whose operation is “*”. To
solve this equation for a=10 and b=5, and then display the result
in hex, octal and binary (in addition to the default decimal), one
would type in the following line to ‘calc’.

105+105~-*HOB

The calculator would list several lines for the partial calculations
and then end with the following:

75 d

4B h

113 o
1001011 b

The terminal letters on each line indicate that the displays are in
decimal, hex, octal, and binary respectively.
Conclusion
In this article I have presented several Modula 2 modules that

The Computer Journal / #46

should be useful in future programs. I have also demonstrated
their utility in the creation of a calculator program. Hopefully this
may have whetted your appetite for more information on the lan-
guage. In my next article I intend to make the ZCPR connection.
A special module will be introduced that allows a Modula 2 pro-
grammer access to the Z3 environment. Tune in, it should be
interesting. ®

19

MODULE calo;

(* David L. Clarke (revised) 11 June 1990

{(* This is an RPN calculator that works in decimal, hexadecimal,
(* octal, or binary mode. Use D, H, O, and B commands to switch
(* to the desired mode respectively. Use C to clear the calcu-

(* lator. Use E to exit from the calculator. The arithmetic

{* operations of add, subtract, multiply and divide are selected
(* by the +, -, *, and / keys respectively. In addition the mod
‘(* operation may is selected by using the % key (this symbol was
(* borrowed from the C language).

FROM Convert IMPORT StrToNum, NumToStr, IntToStr;
FROM InOut IMPORT Done, WriteString, Writeln, WritelInt, Write,
AlwaysBuffer, ReadInt, Read;
FROM SegBuffer IMPORT Highest, GetsSeq;
FROM stackADT IMPORT stack, Define, MakeEmpty, Push, Pop, Empty,
. Destroy;

TYPE
Symbol = (null, oper, number);

VAR
stk: stack;
argl, arg2: INTEGER;
value: CARDINAL;
base: INTEGER;
op: CHAR;
ok: BOOLEAN;
read_buff: CHAR;
token: ARRAY [0..20) OF CHAR;
sym: Symbol;

PROCEDURE ReadCh(VAR ch: CHAR);
BEGIN
1IF read_buff # Oc THEN
ch := read_buff;
read_buff := oc
ELSE
Read{ch)
END
END ReadCh;

PROCEDURE ReadAgain{ch: CHAR);
BEGIN

read buff := ch
END ReadAgain;

PROCEDURE read_token(VAR token: ARRAY OF CHAR;
VAR sym: Symbol) ;
VAR
ch: CHAR;
i: CARDINAL;
BEGIN
REPEAT
REPEAT ReadCh(ch) UNTIL ch > *' °; ch := CAP(ch);
CASE ch OF
Tt e, 0 e
*B', 'C', ‘D', 'E', 'H', 'O':
token[0) := ch; token[1l] := Oc;
sym := oper
] oror .. rer:
iz:=0;
REPEAT
IF i <= BIGH({token) THEN
token[i] := ch;
INC(i)
END;
ReadCh(ch); ch := CAP(ch)
UNTIL NOT ((ch >= *0') AND (ch <= '9')
OR (ch >= *A’') AND (ch <= 'F')});
ReadAgain(ch);
IF i <= HIGH(token) THEN token[i] := Oc END;
sym := pumber
ELSE
Writestring(~Bad entry");
sym := null
END (* case *)

WriteLn;

Listing 8

*)
*)

*)
*)

*)
*)
*)
*)

(* even hex must start with 0..9 *)

UNTIL sym # null
END read token;

PROCEDURE pop_args (VAR argl, arg2: INTEGER): BOOLEAN;
BEGIN
IF Pop(stk, arg2) AND Pop(stk, argl) THEN
RETURN TRUE
ELSE
Writestring(“stack underflow®); WriteLn;
RETURN FALSE
END
END pop_args;

BEGIN
Tead_buff := Oc; AlwaysBuffer := TRUE; base := 10;
IF NOT (Define(stk) AND MakeEmpty(stk)) THEN
WriteString(“Cannot define stack®); WriteLn
ELSE
LOOP
read token(token, sym);
IF sym = number THEN
SstrToNum(token, value, base, ok);
IF NOT ok THEN
WriteString("Bad number”);
END;
ok := Push(stk, value);
IF NOT ok THEN
WriteString(“Stack overflow"); WriteLn
END
ELSE
CASE token[0] OF
‘+': IF pop_args(argl, arg2) THEN
argl := argl + arg2;
ok := Push{stk, argl)
END
‘-': IF pop_args(argl, arg2) THEN
argl := argl - arg2;
ok := Push(stk, argl)
ERD
‘*': IF pop_args(argl, arg2) THEN
argl := argl * arg2;
ok := Push(stk, argl)
END
| */': IF pop_args(argl, arg2) THEN
argl := arqgl DIV arg2;
ok := Push(stk, argl)
END
| ‘$': IF pop_args{argl, arg2) THEN
argl := argl MOD arg2;
ok := Push(stk, argl)
END

WriteLn

| ‘B': base := 2
| 'C': ok := MakeEmpty(stk)
| 'D': base := 10
| ‘E': EXIT (* from loop *)
| ‘H': base i= 16
| '0': base = 8
END
END;

IF NOT Empty(stk) THEN
ok := GetSeq(argl, Highest(stk), stk);
IF base = 10 THEN

IntToStr({argl, token, 6, ok)
ELSE

NumToStr(argl, token, base, 6, ok)
END;
Writestring(token)

ELSE Writeln;
NumToStr (0, token, base, 6, ok);
writestring(token)

END; Write(' ');

CASE base OF
2: Write('b') | 8: Write('o')

| 10: write('d") | 16: write('h*;

END; WriteLn

END (* loop *)
END;
IF NOT Destroy(sestk) THEN
wWritestring(~Cannot destroy stack"); WriteLn
END
END calc.

WriteLn;

The Computer Journal / #46

The Z-System Corner
by Jay Sage

Although I have not yet finished the treatment of MEX, I am
going to start a new subject this time: the ZMATE macro text
editor. During the past two months I have been working on a
number of code patches to MEX-Plus to fix some problems and to

-add some new features that I wanted or needed. That work is not
complete, so I have decided to hold off on a MEX update until
next time. As usual, I do have a few miscellaneous items to bring
to your attention.

Pieces of Eight
First, I would like to put in a plug for the “Pieces of Eight”
magazine (POE) from the Connecticut CP/M Users’ Group
(CCP/M). CCP/M recently decided to begin addressing a national
audience and not just their local members. Even if you cannot
attend their meetings, the subscription to POE that your $15 an-
nual dues brings you is alone worth the price.

POE is a very nice complement to TCJ. T don’t think I will
offend CCP/M by saying that their magazine is far less serious than
this one. There is some solid technical content, but the emphasis is
definitely on the human side of computing. It is really fun to read,
and not just by us computer nuts but by our entire families as well.

The July, 1990, issue has a feature article on the Trenton Com-
puter Festival held in April. On the cover is a picture taken there
showing me, Bridger Mitchell, Al Hawley, and Cam Cotrill. (In
case you might be questioning my motives, their flattering me by
putting my picture on the cover provided only a fraction of the
inspiration for this plug!)

Inside are more pictures: Rob Friefeld (LSH, SALIAS), Car-
son Wilson (ZDE, ZSDOS), Hal Bower (ZSDOS), Bruce Morgen
(MEX+2Z and lots of program patches), Howard Goldstein (our
alpha tester and bug catcher and fixer extraordinaire), and quite a

Jay Sage has been an avid ZCPR proponent since the very first
version appeared. He is best known as the author of the latest ver-
sions 3.3 and 3.4 of the ZCPR3 command processor and for his
ARUNZ alias processor and ZFILER point-and-shoot shell.

When Echelon announced its plan to set up a network of remote
access computer systems to support ZCPR3, Jay volunteered imme-
diately. He has been running Z-Node #3 for more than five years
and can be reached there electronically at 617-965-7259 (MABOS
on PC-Pursuit, pw=DDT). He can also be reached by voice at 617-
965-3552 (between 11pm and midnight is a good time 1o find him at
home) or by mail at 1435 Centre St., Newton, MA 02159. Jay is now
also the Z-System sysop for the GEnie CP/M Roundtable and can
be contacted as JAY.SAGE via GEnie mail or chatted with live at
the Wednesday real-time conferences (10pm Eastern time).

In real life, Jay is a physicist at MIT, where he tries to invent
devices and circuits that use analog computation to solve problems
in signal, image, and information processing. His recent interests
include artificial neural networks and superconducting electronics.
He can be reached at work via Internet as
SAGE@LL.LLMIT.EDU.

The Computer Journal / #46

few others. As you can see, Trenton drew Z-Team members and
enthusiasts from all over the country! If you want to learn more
about the festival, sign up for POE. Send dues to Tom Veile, 26
Slater Ave., Norwich, CT 06360.

A Patch for The Word Plus

Some time ago I published here a set of ARUNZ aliases for
automating the use of The Word Plus spell checker. Well, Richard
Swift liked them just fine, but it then annoyed him that he still had
to hit a carriage return to get past TW’s prompt about whether the
configuration was correct. He wanted TW to get right to work.

At first I didn’t really see why he was making such a fuss about
such a little thing. Then it began to eat at me, too. This one little
thing was standing in the way of complete automation.

Well, it took a good bit of poking around in the TW.COM
code, but in the end it was quite easy to patch around this annoy-
ing prompt. First I located where the code that put up the prompt
began, and then I found where things picked up again after it. A
simple jump instruction at the beginning to skip over it should do
the trick, I thought.

Unfortunately, it was not quite that simple. As Bruce Morgen
had described earlier in an issu¢ of his NAOG newsletter, the
programs in The Word Plus suite perform some simple internal
checking to make sure the file is not corrupted and has loaded
successfully. Nice of those folks, but after I put in my patch, the
code looked corrupted. 1 could have figured out the new check-
sum value and stuck it into the testing code, but it was easier just
to bypass the checking entirely.

At first I put the changes into a patch file that would be over-
laid onto the original code. Then, however, I decided that there
was no real need to make the change permanently. When running
TW manually, one would probably want the prompt to appear so
that one would have the option of changing the setup. So, my
solution was the old GET/POKE/GO technique introduced by
Bruce Morgen (boy does that name keep coming up!).

My original ARUNZ alias had a command of the form
twitw <file> <dictionary>
I just replaced that by
/TWPAT <file> <dictionary>
and wrote the new alias TWPAT with the command lines
load TW.COM
patch to jump over code test

patch to jump over prompt
run the patched code

get 100 tw:tw.com
poke 103 c3 3b 01
poke 395 c3 2a 04
go $*

Now I could invoke the patched TW whenever I wanted by
using the command TWPAT instead.

The ZMATE Text Editor
Now for the main topic of this column, the first in a series of
articles on ZMATE. This one will be just an introduction and will
cover only its design philosophy and mode of operation. Next time
I will start to describe its language in detail.

21

Interpreters and Compilers

A casual user would classify ZMATE as an application pro-
gram, and more precisely as a text editor or wordprocessor. In its
soul, however, it is really a high-level programming language. In
some ways it is similar to the familiar BASIC interpreter.

Like aimost all the programming languages most people work
with, BASIC is oriented toward numerical computation. For ex-
ample, at the system prompt one can enter a command such as

print (nl 4+ n2) * n3

BASIC will then retrieve the values associated with the variables
N1, N2, and N3, substitute them into the mathematical expres-
sion, evaluate the expression, and print the result to the screen.

BASIC also allows one to write programs comprising a series of
numbered statements such as:

100 n1 = 10
110 n2 = §
120 n3 = 3
130 print (nl + n2) * n3

‘When the immediate command “RUN?” is entered, the entire se-
quence of commands is carried out, and the number 45 appears
on the screen.

One could write a program to do the same thing using assem-
bly language, the native language of a computer. However, a high-
level language like BASIC makes it far easier to generate the re-
quired instructions. This is especially true when we are dealing
with floating point numbers, or when we are using array variables
or advanced mathematical (trig and log) functions.

When the BASIC interpreter we described above is told to
“RUN?”, it processes the program statements one at a time. First it
analyzes a statement to determine the procedures required to per-
form the specified function. Then it calls routines that execute
those procedures. This means that when a BASIC statement ap-
pears in a loop, the analysis has to be repeated each time the
statement is executed.

A compiler provides an alternative approach. The compiler can
be thought of as an automatic assembly language program writer.
You write your program using the commands of the high-level
language, and then the compiler converts them into an assembly
language program for you.

Some compilers generate actual assembly language source
code that you then have to assemble. The PASCAL Z compiler,
for example, worked this way. This approach makes program de-
velopment slower but allows you to fine-tune the code if you so
desire. Other compilers, such as Turbo Pascal, generate only the
machine code (COM) files. Some compilers, such as BDS C, fol-
low a two-step process, but the intermediate code is not standard
assembly code.

A compiler, as you might guess, has the advantage of execution
speed, since the high-level language statements have to be ana-
lyzed and converted into machine code only once, even when they
are executed repeatedly in a loop. Also, more complex programs
that need more working memory can be accommodated, since the
code that figures out how to process the high-level language state-
ments does not have to be in memory when the final program is
run.

On the other hand, an interpreter offers many advantages that
may make it well worth giving up some speed. Programs are much
easier to develop with an interpreter for several reasons. First, you
can execute them immediately, without having to go through the
extra step of compilation (and possibly assembly and linkage) be-
fore execution. Second, the programs can be run line by line, and
you can watch what is happening and catch errors more easily.

There are also some things that an interpreter can do that a
compiler generally cannot. For example, suppose you are working
with an array variable (a variable that hoids a coilection of values,
not just a single value). With a compiler, you would have to specify

2

the size —or at least a maximum size —of the array at the time the
program is compiled so that the compiler can allocate enough
memory for it. With an interpreter, this is not necessary. It does
not have to allocate the memory until the variable is first refer-
enced. As a result, it is quite acceptable for its size to be deter-
mined by computations performed earlier in the program.

ZMATE as Interpreter

ZMATE is, in a way, like the BASIC interpreter, except that its
intrinsic high-level language functions (we will call these ‘primi-
tives’) are aimed at text processing rather than number processing.
Just as BASIC has some text-processing primitives (€.g., string
variables and functions), so0 ZMATE has some numerical func-
tions, but it is the text-manipulation primitives that are empha-
sized and richly developed.

If your past experience has been confined to the usual pro-
gramming languages — BASIC, FORTRAN, PASCAL, C, etc.—
you probably have trouble picturing what a text-processing lan-
guage would look like. Here are some examples to help convey the
concept.

While most variables in BASIC contain either single numbers
or arrays of numbers, ZMATE has ‘variables’ called buffers that
contain pieces of text. Primitives allow reading disk files into these
buffers or writing text from the buffers out to files.

Each buffer has two pointers. One is called the cursor. It is
where most ZMATE primitives perform their operation. The
other pointer is called a tag, and together with the cursor it defines
a block of text for some block-operation primitives.

A whole set of ZMATE primitives deals with cursor motion.
The cursor can be moved forward and backward in the buffer by
units of characters, words, paragraphs, or the whole buffer. For
example, you can tell the cursor to back up by three words or go
forward two paragraphs.

This highlights the difference between a number-processing
and a text processing language. BASIC supports string variables
that can contain a line of text, but it does not know about words
and paragraphs. The user would have to write complex code to
deal with these text concepts. As a text-processing language,
ZMATE provides the code for this as part of the language primi-
tives.

Other ZMATE primitives search for strings and compare
strings or characters. Text can be inserted and deleted. Blocks of
text can be moved between buffers for cutting and pasting opera-
tions. All the usual control primitives are provided to allow testing,
conditional operations, and looping.

There are also special facilities for handling text formatting and
text input from the keyboard. Soft carriage returns can be placed
into text automatically, and various kinds of indentation and mar-
gin control are provided. These functions make it easy to write a
wordprocessor in the ZMATE language.

How the ZMATE Language is Used

In our examples above, we saw that a BASIC statement can be
entered for immediate execution. ZMATE, too, allows this. We
also saw that BASIC programs containing a sequence of state-
ments can be prepared for later execution. The same is true of
ZMATE. In fact, ZMATE can have a number of programs loaded
and ready for execution at the same time, and one program can
call another as a subroutine.

ZMATE allows its language to be used in one other very spe-
cial way. Programs that are permanently stored in the ZMATE
COM file can be bound to a key or sequence of keys. Then when
that key sequence is typed at the keyboard, the program is auto-
matically executed. ZMATE commands executed this way are
called “instant commands.”

As an example, suppose we write this littie ZMATE program:

The Computer Journal / #46

100 put the tag where the cursor is now
110 move the cursor forward one word
120 delete the block (tag-to-cursor)
130 stop

[I am using a BASIC-like pseudo-language for this example. The
actual ZMATE language, which we will get into next time, is not at
all like this.] If we now bind this program to the ‘T’ (control-T)
key, we will have implemented the WordStar delete-word func-
tion.

This should give you a sense now of how ZMATE can be used

"to implement a text editor or wordprocessor. Although ZMATE

comes with some standard programs and key bindings, you can
change the standard programs, can attach your own new pro-
grams, and can change the key bindings. Thus you have extensive
control over the way ZMATE works and can add any functions
you like to it.

The ZMATE Screen

The normal appearance of the screen while ZMATE is running
is shown in Figure 1. In fact, I captured this screen using the BGii
‘screen’ command while writing this article. I have made a few
changes to adapt it to the TCJ format. The real screen is the full
width of the terminal, usually 80 characters, and the full length,
usually 24 lines. I have reduced both of these sizes.

All but the top three lines are used for the display of text. In the
original PMATE, only one buffer could be viewed. With ZMATE,
Bridger Mitchell made it possible to look at two buffers or at two
sections of one buffer at the same time. By the way, the ‘<’ char-
acters at the ends of some lines in Figure 1 indicate hard carriage
returns. The other lines end with soft returns. If one changes the
margins, the text instantly readjusts.

At the left of the top line, ZMATE shows the currently logged
directory, the file that is open for input, and the file that is open for
output. In this case, the output file is a temporary file,
TCJ: TCJ46.$$$. When one closes the edit file, the input file will be
given a file type of BAK, while the temporary output file name will
be changed to the original input file name.

In the center of the top line, two status variables are displayed.
The first tells us which buffer is currently being edited (there are
12 of them); the second is a numerical value returned by the last
ZMATE command that was performed. That value can convey
information to the user or can be used for testing in a program.

At the right edge of the screen, three other status variables are
displayed. The position of the cursor is given as a column and line
number. The third value tells how much free memory is available
for additional text.

The second line in Figure 1 shows the mode status “INSERT
MODE”. ZMATE can run in three modes: insert, overtype, and
command. In command mode, the second line is where the user
enters ZMATE program statements for immediate execution. Af-
ter a command is entered, it is executed by pressing the escape key
(ESC).

The most recently entered command remains on the command
line and can be executed again by pressing ESC again. Other in-
stant command functions can be executed in between. This gives
ZMATE wonderful power. It is one of the things that the author
of Vedit—which began, I believe, as a PMATE clone —never un-
derstood and is one of the reasons why I have always found Vedit
unacceptable as an editor.

Here is an example of how this facility can be used. Suppose we
want to change a number of words to upper case. Assuming this is
not already defined as a built-in editor function, we write a com-
mand line with code that changes all letters of the word containing
the cursor to upper case. Then we press ESC, and the current
word is converted. Suppose the next word we want to convert is
down two lines and over three words from where we are now.
Assuming WordStar-like bindings, we could press
“*X"X"F"F"F”. Then we can press ESC again to convert that
word. In a sense, ZMATE commands typed on the command line
become bound temporarily as an instant command on the ESC
key.

In insert mode, we are effectively running a ZMATE program
that asks the user to press keys, which are then inserted into the

TCJ: TCI:TCJ46.WS,TCI:TCI46.$$$
INSERT MODE

130 stop<
<

all like this.]

<

<

The ZMATE Screen<

<

shown in Fig. 1.

buf=T arg=0 col = 18
line= 204
———————————————————— free= 13454

100 put the tag where the cursor is now<
110 move the cursor to the next word<
120 delete the block (tag-to-cursor)<

[I am using a BASIC-like pseudo-language for this example. The
actual ZMATE language, which we will get to next time, is not at
If we now bind this program to the "T key, we
will have implemented the WordStar delete-word function.<

The normal appearance of the screen while ZMATE is running is
In fact, I captured this screen using the BGii
‘screen' command while writing this article.
changes to adapt it to the TCJ format.

I have made a few
The real screen is the

Figure 1. This is a snapshot of the ZMATE screen approximately as it appeared while | was writing this column.

The Computer Journal / #46

text. Overtype mode is the same except that the new characters
replace the ones previously under the cursor. In both insert and
overtype mode, instant commands operate just as in command
mode. That is, key sequence binding are still fully in effect.

Key Bindings

This is a good time to make the role of key bindings more
explicit. With ZMATE, one should think of no keys as producing
direct input to the editor. All keys have to be bound to some
function if they are to have any effect at all.

ZMATE has three sources for the functions that are bound to
the keys. One of these comprises functions that produce ASCII
characters. Most people would take it for granted that pressing the
‘A’ key would produce an ‘A’, but this is not necessarily so in
ZMATE. This makes it quite easy to implement a non-standard
keyboard layout, such as the Dvorak layout.

. The bindings, moreover, are not one-to-one. You can have a
number of different key sequences bound to the same function.
So, if you want to have two ESC keys, you can bind a second
keyboard key to the “produce-an-ESC~character” function as well.
And I want to emphasize that these bindings are of sequences of
one or more keys (up to some configurable maximum number) to
any single function.

The key bindings are defined in a table with the following struc-
ture. Each entry, except the last, comprises a byte with a function
number followed by the sequence of ASCII key codes bound to
that function. The sequences are all exactly the maximum length
specified in the configuration. If the defined sequence is shorter
than this, null bytes (value 0) are used as filler. The end of the
table is indicated by a value of FF hex in the function-number
position.

The character-producing functions have numbers from from 1
to 127 inclusive. I am not sure about function 0. Putting a null into
text is generally not allowed, as null is used to separate the buffers.
If no explicit binding is specified for a single ASCII character in the
range 1to 127, it is by default bound to the function that produces
that character. Thus the key sequence ‘A’ (a single press of the ‘A’
key) is bound to the “produce-an-A” function if it does not appear
in the key binding table.

This direct mapping of ASCII characters is not, as I said above,
required. For example, I use the tilde and back-apostrophe as
lead-in keys to other sequences (some people would call these keys
‘meta’ keys). In order to be able to enter these two characters
easily into text, I bind the sequence “~~” (two tildes in a row) to
the “produce-a-tilde” function and “~*” to the “produce-a-back-
apostrophe” function.

The second set of functions, numbered from 128 to 191, is
implemented in ZMATE’s internal code. However, all but a few
of them are in fact performed by macro statements in the standard
ZMATE language. In PMATE there was no way to modify these;
in ZMATE, they have been placed at the end of the code and
referenced in a way that allows the overlay configuration patch to
redefine these functions freely.

By my count, of the 64 functions of this type, all but 12 are
defined by macro program statements. In some cases it is obvious
why some are not. For example, there is a function for setting a
repeat count that applies to the next command entered. There is
also a function that aborts the execution of any macro. These
functions would not make sense in the macro language itself.

For some functions it is not so clear why they are not imple-
mented as macros. For example, there is a function to pop from
the “garbage stack” the most recently deleted block of text. This is
something that cannot presently be done in the command lan-
guage, but I don’t see why it couldn’t or shouldn’t be.

Then there are several functions for which there exist macro
commands that perform the function. Switching to insert, over-
type, or command mode are examples. I don’t know why they are
implemented directly in code rather than in the macro language.

24

The final set of functions is numbered from 192 to 254. A
hexadecimal FF (255 decimal) is used to mark the end of the
binding table, so this function number is not allowed. These func-
tions are associated with what is called the “permanent macro
area” or PMA in ZMATE.

The PMA is a text block that is permanently stored along with
the ZMATE code and can be moved to and from editing buffers.
It contains a series of macro definitions, each one introduced by a
control-X character followed by the one-character name for the
macro and then the program. Functions 192 to 254 correspond to
macros whose one-character name is 160 less than the function
number, i.e., from space (32) to caret (94). Because the PMA can
be edited from within ZMATE, these instant-command functions
can be modified quite easily. It might even be possible for one of
these macros to be modified by another macro!

Permanent macros are not limited to the names that can be
bound to key sequences. The maximum number of permanent
macros would be 256 (0 to 255). However, (1) the value 0 is not
allowed, (2) upper-case and lower-case letters are equivalent, and
(3) not all characters with the high bit set are distinct from the
same character without the high bit set (though.some are differ-
ent). In all, by my count there are 160 possible permanent macro
names, of which 63, as mentioned earlier, can be bound to keys.
The others can be invoked from the command line or from other
macros.

Well, this compietes the discussion of ZMATE for this time.
Next time I will present its command language in detail. ®

SAGE MICROSYSTEMS EAST

Selling & Supporting the Best in 8-Bit Software

¢ Automatic, Dynamic, Universal Z-Systems

— Z3PLUS: Z-System for CP/M-Plus computers ($70)

— NZCOM: Z-System for CP/M-2.2 computers ($70)

~ ZCPR34 Source Code: if you need to customize {$50)
e Plu*Perfect Systems

— Backgrounder ii: CP/M-2.2 multitasker ($75)
— ZDOS: date-stamping DOS (375, $60 for ZRDOS owners)
~ DosDisk: MS-DOS disk-format emulator, supports subdirecto-
ries and date stamps ($30 - $45 depending on version)
e BDS C — Including Special Z-System Version ($90)
e Turbo Pascal — with New Loose-Leaf Manual ($60)
e SLR Systemns (The Ultimate Assembly Language Tools)

~ 280 Assemblers using Zilog (Z80OASM), Hitachi (SLR180), or
Intel (SLRMAC) Mnemonics

— Linker: SLRNK

~ TPA-Based (350 each) or Virtual-Memory (Special: $160 each)

o ZMAC — Al Hawley’s Z-System Macro Assembler with Linker (§50)
o NightOwl (Advanced Telecommunications)

— MEX-Plus: automated modem operation with scripts ($60)

~ MEX-Pack: remote operation, terminal emulation ($100)

Next-day shipping of most products with modem download and support
available. Order by phone, mail, or modem. Shipping and handling $3 per
order (USA). Check, VISA, or MasterCard. Specify exact disk format.

Sage Microsystems East
1435 Centre St., Newton Centre, MA 02159-2469
Voice: 617-965-3552 (9:00am - 11:30pm)
Modem: 617-965-7259 (pw=DDT) (MABOS on PC-Pursuit)

The Computer Journal / #46

Animation with Turbo C Ver. 2.0
Part 3: Text in the Graphics Mode

by Clem Pepper

There are many ways in which text contributes to our screen
“action programs. The first coming to mind is almost certain to be
- scoring. In part 2 we wrote a simple game, TANK_WAR. Now we
will learn how to keep track of the game action with a performance
display. For this we need to know how text is provided and printed
in the graphics mode.

The graphics library includes a default 8 x 8 bit-mapped font. In
addition several stroked fonts are provided. Bit-mapped font char-
acters are defined in a matrix. Stroked fonts are defined by instruc-
tion vectors directing the graphics system in their construction.
This enables us to magnify the stroked characters while retaining
good quality and resolution in their appearance. This will stimulate
our creativity in game title and instruction screen designs.

The text mode printing functions, printf(), puts(), etc., do not
behave as we would like when in the graphics mode. To our good
fortune there is a way to get around much of the limitation.

We begin with an overview of the text functions available from
the graphics library. We continue with applications of the text
functions in scoring our games. We will then

smudge as the new material writes across the original.

We can see this for ourselves by running GRAFTXT1.C (List-
ing 1). In this program we first print the string “Hi Y’all!”, insert a
briefdelay, then overwrite it with another: “How Y’do’in?” The
second string simply merges with the first creating an unreadable
mush.

A solution is to include the text in a viewport. The viewport is
cleared whenever new text is to be written at the same location.
Note the necessity of setting the clipping variable to zero if text is
to be displayed elsewhere on the screen.

Note the use of textwidth() and getmaxx() for text centering.
Vertical and horizontal text positioning is available with the func-
tion settextjustify(). This could have been used for the centering.
Table 2 summarizes the options provided for our text.

Formatting is possible, but in a roundabout way. It requires the
use of sprintf() with a character buffer. sprintf() is similar to
printf() in its features. The syntax for sprintf() is:

int sprintf(char *p_string, const char *format string,...);

learn how to use printf(), puts(), and other text
mode printing functions in our graphics pro-

grams. mode.
Next we will see how to display and make use |outtext
outtextxy

" of the library fonts in the design of unique infor-
mation and title screens for the games we write.

Using outtext() and outtextxy() With Our
Graphics

settextstyle

Table 1. A summary of the graphic library functions for text output in the graphics

.«ss sends a string to the screen at the current position

.... sends a string to the screen at the specified position
settextjustify
+es. sets the current text font, style, and character

setusercharsize ...

sets text justification values used by outtext and
outtextxy

magnification factor
sets width and height ratios for stroked fonts

Table 1 summarizes the text functions avail- |textheight returns the height of a string in pixels

able to us in the graphics library. As we see, there textwidth returns the width of a string in pixels
. gettextsettings ... returns current text font, direction, size, and

are not too many, with only two that output te)’(t justification
to the screen, OUtteXt() and outtextxy(). We'll |registerbgifont ... registers a linked-in or user loaded font
gain experience with these in the example pro-
grams to follow. Table 2. Text justification constants for use with settextjustify().

These two functions are severely limited in
their caPabnlltnes _when com_pared to }he eXt | rection Constant pescription
mode printf() family. The primary lack is of any
formatting provision within the functions. For- [orizontal LEFT TEXT The text left edge is flush with respect to a
matting i poss' way of spri : vertical line drawn through the current position

g 1S lbleby y f pr_mtf() however {vertical reference line).

On the other hand the variety of text fonts, CENTER_TEXT The midpoint of the string is aligned with the
horizontal or vertical printing, and other support- ;:rtical reference line.
: . . . RIGHT TEXT e text right edge is flush with respect to the
ing functions offer fea_turm not available in the vertical reference line.
text mode. So we gain in some respects while los-
ing in another. ertical BOTTOM TEXT The bottom of the lowest character is flush with

a horizontal line drawn through the current

It turns out there is a unique requirement for
the viewport should there be a need to revise our
text. This because we cannot make a revision to
existing text printed with either version of outtext
by simply writing over it. We end up with a blurry

CENTER_TEXT The horizontal reference line passes through the

TOP_TEXT

position (horizontal reference line).

center of the characters in the string.
The top of the highest character is flush with
the horizontal reference line.

The Computer Journal / #46

Listing 1. fllustrating graphics text in a viewport.
1: /* GRAFTIT1.C
2: +* Illustrating viewport text display with outtextxy().
3: */
4: $include <stdio.h>
S: #include <graphics.h>
6: #include “grap_enb.h"

8: int score = 0, score_flg = 1;

10: /+* == Begin program == */
11: main()

{
13: int palette = 2;
14: int tx, twx, i = 10;
15: char score buf[80];
16: enable_graph(palette);

18: /* ** writing over an existing outtextxy() line ++ +/
19: twx = textwidth("Hi Y'all!™);
20: tx = getmaxx()/2-twx/2;
21: outtextxy(tx,20,"Hi Y'alli");
. 22: delay(1000);
232 outtextxy(tx,20,"How Y'do*inz");
24:
253 /¢ %+ define viewport % */
26t while(i--) {
27: if (score_flg == 1) /* flag is set if score updated */
28: setviewport(0,40,319,50,0); /* restore port */
29: clearviewport(); /* clear for score update */
30: sprintf(score_buf,“You have td points.®,score);
31: outtextxy(10,0,score_buf); /+ display updated score */
32: score_flg = 0; score_up(}; /* update the score */
33: delay(50);
34)
35: moveto(10,30); setcolor(2);
36: outtext("Press any key to exit.”*);

37: /% #*+ this message will not print with a 1 for the «+ */
38: /* ** clip 0 in setviewport(0,40,319,50,0). Try it! = */

40: /* ** exit the program ** */
41: getch(); closegraph(); exit(0);
42:)

44: /+ == update score == */

45: score_up()

46: {

47: score += 100; score_flg = 1;
48:)

This function accepts a variable number of arguments, con-
verts their integer values to characters, and stores the characters
in a buffer pointed to by *p_string. The primary difference be-
tween printf() and sprintf() is that sprintf() sends its output to a

buffer. One other distinction is that sprintf() does not respond to
the newline character, “\n,” when in the graphics mode.

Coding for a typical formatted string is found in the while()
loop of Listing 1. In this example we are simply incrementing a
mythical score a few times. Note the clearing and re-printing of
the entire text with each update.

We will find many applications for outtext() and outtextxy() in
our programs. Through their use we can display text vertically as
well as horizontally. We can take advantage of the several avail-
able fonts and those of our own making. But for scoring our
games it is hard to do better than printf(). We will see why that is
next.

Using the Text Mode Print Functions With Our Graphics

Ordinarily we cannot use the text mode string functions
printf(), puts(), scanf() and others when in the graphics mode.
The DOS_UTIL.H, (Listing 2 from “C and the MS-DOS Screen,
issue 42), function pos_cur(col,row) makes its use possible. The
call to this function places a 2 in register AX (set cursor position).
It also enters the column and row values in registers DH and DL.
Selecting coordinate values that are a multiple of eight wili place
the cursor at its text mode location.

Through experiment we find that printf(), puts(), and scanf()
perform as in the text mode. There are limitations—only the de-
fault font can be used and the text color cannot be set. The high-
est color in the palette in use becomes the text color. For scoring

purposes printf() is the ideal function to use. The default font is
compact and readable and the color is a lesser concern.

Program GRAFTXT2.C (Listing 2) illustrates uses of printf(),
puts(), and scanf(). puts() duplicates the GRAFTXT]1 experiment
with outtextxy() in which the second string was simply laid over the
first. Observe that no such problem appears with puts(). The pro-
gram also includes keyboard input with scanf(). There is no
equivalent keyboard input function in the graphics library.

It is essential to call cur_pos() before any call to puts() and the
other functions. If printf() includes a newline character, (\n), the
line will move down. Also the line moves down following a call to
puts() as this function always terminates with a newline.

As with GRAFTXT]1 the scoring is incremented in a while()
loop, lines 32 - 41. Note that a new call is made for restoring the
cursor position on each pass through. To see the necessity for this
try commenting it out. Also to verify that our computer is truly
operating on a row and column basis we request a cursor position
report, lines 44 - 46. The position report is followed with a request
for keyboard input using scanf(), lines 49 - 52.

Adding Scoring To the TANK_WAR Game

Scoring is best added to a game’s source code as a final step.
This turns out to be a really easy task when compared to writing
the game logic. We will see this from the ease by which scoring is
added to TANK_WAR.C. The majority of revisions are made in
this module, which we will now address. It will be helpful to have
the game listings from the previous article (Part 2 of this series) on
your screen as you read through the revisions.

As a first step add #include “dos_util.h” to the #include list. In
lieu of this add the pos_cur(col,row) function to the program. With
this addition we can take advantage of printf() for game perform-
ance display. If you add the utility file to the #include list the
function rd_nonasky() should be deleted.

The next step consists of additions to the list of global declara-
tions. Of these, two are flags, shi_fir_flg and tnk_hit_flg. The first
flag is set when a shell is fired. The second when a hit on the tank is
made. The purpose of the flags is to save program time. There is
no point in updating the displayed scores if no change has oc-
curred. So we use a flag only when there is a change to enable
access to the updating statements.

The full list of the additions follows:

/* ** gcoring additions w¥ ¥/

extern int shl fir flg;

extern int shl_bal;

extern int tnk_hit;

extern int tnk hit flg;

extern int score;

extern int pla hit;

extern char *rank;

In this game we begin with the rank of PRIVATE and work up
to GENERAL as our hit score accumulates.

Lines 38 and 39 are deleted since we are going to use printf().
These are:

/* ** get viewport for scoring ** ¥/
/* This will be added later */

The line number for scoring insertion is changed to a more
favorable location. The code block for maintaining the game per-
formance is inserted following existing line 55, drop_bombs(). This
code is as follows:

/* ** maintain play scoring *+ */
if(tnk_hit_flg == 1 || shl_fir flg == 1) {

The Computer Journal / #46

Listing 2. llustrating use of text mode print functions in the graphics
mode.

1z /% GRAFTXT2.C

2: ** A test program for using DOS_UTIL.H text mode functions
3: *+ with the graphics mode.

4: */

5: #include <stdio.h>

6: #include <graphics.h>

7: #include “grap_emb.h"

8: #include "dos_util.h"

9:

10: #define BYE "Press any key to exit."
11: extern int page, row no, col no;

12: int score_up(void);

13: unsigned score = 1000;

14: int score_flg = 1;

15:

16: /*» == Pegin program == */

17: main{)

18: {

19: int flg trk = 0, i = 10, palette = 2;
20: char name[25];

21: enable_graph(palette);

22:

23: /* *% writing over an existing text using puts() *+ +/

24: col = 10, row = 0; /* page = 0; in doe_util.h +/

25; pos_cur{col,row,page);

26: puts(~Hi Y'Alli=);

27: delay(1000);

28: pos_cur(col,row,page);

29: puts(“How Y' do'in?");

30:

31: /* ** repeat the score exercise using printf() ** */
32: . while(i--) {

33: if(score_flg == 1) {

34: pos_cur(0,3,0); /* OK to omit col, row, page */
3S: printf("You have %u points.",score);

36:)

37: pos_cur({0,4,0);

38: printf(~flg_trk = td.",flg_trk++);

39: score_flg = 0; wscore_up();

40: delay(50);

41:

42: /* ** read and display the current cursor position #% w/
43: /* ** in column and row coordinates. e %/
44: rd_cur_pos(0);

45: pos_cur(5,4,0);

46: printf("\nrow number = %d, column number is td.\n\n*,\
xow_no,col_no);

47:

48: /* ** display scanf() input ability with name query »« +/
49: printf(“Please tell us your first name: *);

50: scanf("ts”,iname);

51: printf(*what a great name! %s, I envy you.\n\n",name);
52: puts(BYE);

53:

54: /* ** exit the program ** */

55: getch(); closegraph(); exit(0);

56:)

57:

58: /* == uypdate the score == */
59: score_up()

60: {

61: score += 100; score_flg = 1;
62:)

63:

pos_cur(0,0);
printf(‘‘TANKS left 8d: SHELLS left %d: BITS 8d ‘‘,\
tnk_hit,shl bal,pla hit);

pos_cur(2,1,0);
printf(’‘'Your SCORE is 8d, %8’’,score,rank);
tnk_hit_flg = 0; shl fir flg = 0; }

if(tnk _hit == 0 || shl bal == 0) { i = 0; break; }

The two spaces following HI'TS %d are needed to accommo-
date for changing line length as scores build up. Without the
spaces strange numbers make appearance. Note when all the
tanks have been bombed or all the shells fired the game is over. At
this time we need to return to the text mode, but not to exit the
game yet. The code for a performance summary is inserted be-
tween the closegraph() of line 79 and the exit(0) following.

/% ** glosing messages ** ¢/
printf(’’\n\n\n\n\n\n\n\n’*);
if (tnk_bhit == 0)

printf(’’ That was your last tank, $s\a‘’’,rank);
else

printf(’’ That was your last shell, Ss\n’’,rank};

if(tok_bit t= 0)

printf(’’ Congratulations on saving %d of your\

The Computer Journal / #46

25 tanks.\n’'’,tnk_hit);

printf(’’ You fired %d shells for %d plane hits.\n’’,\
100 - shl_bal,pla_hit);
printf(’’ Your percentage of hits is 3d.’’,\

(pla_hit*100)/(100-shl _bal));

This completes the revisions to the TANK_WAR.C module.
The next changes are made to the BOMBS.C module. The global
declarations of lines 13 and 14 were included initially in anticipa-
tion of scoring. Three global additions are now required, actually
transfers from local to global. The three static declarations of lines
19, 21, and 22 are globals foliowing lines 13 and 14. The new
configuration follows:

int tnk_hit = 25;

int tnk_hit flg = 0;

int drpl_flg = 0, drp2_flg = 0, drp3_flg = 0;
int xbmbl, xbmb2, xbmb3;

int ybmbl = 65, ybmb2 = 69, ybmb3 = 73;

/* == begin program == %/
drop_bombs()
{

static int xa = 0, ya = 0;
static int boml_flg = 1, bom2_flg = 1, bom3_flg = 1;

This is all that is needed with this module, as lines 86 and 87
were initially included in anticipation.

The remaining affected module is SHELL.C. The first addition
follows line 17 as:

extern char *rank;

recalling that char *rank was declared in TANK_WAR.C.
One extern is also added for scoring:

extern int firl flg, fir2 flg, fir3 flg;

Lines 21 - 25 were included initially as anticipation. These had
to be global as they are used in other modules as well. Existing
lines 74, 86, and 98 are:

return; 3}

Insert a function call, rank_tst(); ahead of return; in each of
these lines. Then attach the following function code to the pro-
gram’s end.

/* a= test for rank promotion, make award *+* */

rank_tst()
{
if(score < 500) rank = ‘‘PRIVATE [
else if(score < 1000) rank = ‘’‘CORPORAL ‘‘;
else if(score < 2000) rank = ‘‘SERGEANT ‘‘;
else if(score < 3000) rank = ‘’‘LIRUTENANT'’;
else if(score < 4000) rank = ‘‘/CAPTAIN e
else if(score < 5000) rank = ‘’MAJOR (R
else if(score < 6000) rank = ‘’COLONEL]
else if(score < 7000) rank = ‘’GENERAL e

}

Applying the Graphics Library Character Fonts

A dictionary definition of font is “A complete set of type of one
size and face.” The word is derived from the old French fondre,
meaning to melt or cast. Luckily for us we can side-step the melt-
ing and casting.

The graphics library provides a bit-mapped default font plus
four stroked fonts. We just experienced the default through the
scoring of TANK_WAR. The four stroked fonts are named Tri-
piex, Small, SansSerif, and Gothic. Their file names are
TRIP.CHR, LITT.CHR, SANS.CHR, and GOTH.CHR. Each of
the fonts, including the default, ‘can be magnified over a range of

7

Listing 3. Comparing the five library fonts.

1: /* FONTS.C
2: *+ A program illustrating the Turbo C fonts.
3: v/
4: #include <stdio.h>
5: #include <alloc.h>
6: #include <graphics.h>

: #include “grap enb.h"

9: /* == Begin program == ¥/

10: main()

11: {

12: int tx, ty = 10, twx, palette = 2;

13: /v ** register the fonts *» ¥/

14: if(registerbgifont(triplex font) < 0) exit{l);
15: if(registerbgifont(small font) < 0) exit(1);
16: if(registerbgifont(sansserif font) < 0) exit(l);
17: if(registerbgifont(gothic_font) < 0) exit(1l);
18: /* ** get the graphics mode ** ¥/

19: enable _graph{palette);
20: setcolor(2); /* the font color */
21: /* *+* define the font, direction and size ** */
22: settextstyle(TRIPLEX FONT,6HORIZ_DIR,2};
23: /* *»* dimension the text ** w/

24: twx = textwidth("Hi Y' Alll");

25z tx = getmaxx()/2-twx/2;

26: outtextxy(tx,ty,"Hi Y' Alll");

27:

28: settextstyle(SMALL_FONT,HORIZ_DIR,B);
29: twx = textwidth("Hi Y' Alli");

30: tx = getmaxx()/2-twx/2;

31: ty += 30;

32; outtextxy(tx,ty, Hi Y*' Alll");

33:

34: settextstyle(SANS_SERIF_FONT,HORIZ_DIR,2);
35: twx = textwidth(*Hi Y' Alli");

36: tx = getmaxx()/2-twx/2;

37: ty += 30;

38: outtextxy(tx,ty, Hi Y' Alll");

39:

40: settextatyle(GOTHIC_FONT,HORIZ_DIR,4);
41: twx = textwidth(“Hi Y' Alli");

42: tx = getmaxx()/2-twx/2;

43: ty += 30;

44: outtextxy(tx,ty,"Hi Y' Alll");

45:

46: settextstyle (DEFAULT_ FONT,HORIZ_DIR,3);
47: twx = textwidth("Hi Y' Alll");

48: tx = getmaxx()/2-twx/2;

49: ty += 50;

50 outtextxy(tx,ty,"Hi Y*' Alli");

51: /* ** return to the text mode and exit ** */
52: getch(); closegraph(); exit(0);

53: }

54:

Listing 4. A display of an entire font character set.
: /* FONTDISP.C
** A program for displaying the Turbo C fontse in sequence.
*/
$include <stdio.h>
$include <alloc.h>
:+ #include <graphics.h>
: #include "grap enb.h*

AR

O N A WN

9: #define TRIP "1
10: #define SMAL “2
11: #define GOTH "3
12: #define SANS “4

triplex font*®
small font*
gothic font*®
sansserif font™

14: /* == Begin program == */

15: main()

16:

17: int tx, ty, i = 65, last = 123, palette = 2;
18: char entry, alpha, al buf(4];

20: /* ** display font selection query ** */

21: puts {TRIP); puts(SMAL); puts(GOTH); puts(SANS);

22: printf(“Enter the number for the font to be displayed: ");
23: scanf("%c”, sentry);

24: clrscr();

25:

26: /* *+ register the four stroked fonts *+ +/

27: if(registerbgifont(triplex_font) < 0} exit(1l);
28: if(registerbgifont(small_font) < 0) exit(1l);
29: if(registerbgifont(gothic_font) < 0) exit(l);
30: if(registerbgifont(sansserif font) < 0) exit(1l);
31:

32: /* *+ get the graphics mode #** */

33: enable_graph(palette);

34: setcolor(2); /* the font coloxr ¥/

36: /* ** define the font, direction and size *+* =*/

37: if(entry == '1'})

38: settextstyle (TRIPLEX_FONT,HORIZ_DIR,1);
39: else if(entry == '2°)

40: settextstyle (SMALL FONT,HORIZ DIR,4):;

41: else if(entry == '3')

42: settextstyle (GOTHIC_FONT,HORIZ_DIR,1);
43: else if(entry == ‘4°)

44: settextstyle (SANS_SERIF_FONT,HORIZ_DIR,1);
45:

46: /* ** display the character set ** #/

47: tx = 10; ty = 1;

48; while(i <= last) {

49: alpha = (char *)i;

50: sprintf(al_buf,"%c",alpha);

51: outtextxy(tx,ty,al_buf);

52;: X += 23; i++;

53: if(i == 91) i = 97;

54: else if(i == 123) (i = 48; last = 64; }
55: else if(i == 65) {(i = 33; last = 47; }
56: else if(i == 48) {(i = 91; last = 96;)
57: else if(i == 97) (i = 123; last = 126;)
58: if(tx >= 300) { tx = 10; ty += 25; }

59:

60: /* *» return to text mode and exit ** */

61: getch(); closegraph(); exit(0);

62:)

one to ten. These are summarized in Table 3.

While the .CHR files can be used directly it is advantageous to
convert them to object (.OBJ) files. This is readily accomplished
using the BGIOBYJ utility.

Suppose we take a look at the stroked fonts to best learn how
to enter them into our programs.

The Stroked Fonts
These differ from the bit-mapped in their construction as lines
rather than set bits. The line segments are called “strokes.” In

Table 3. Turbo C fonts currently available for use with settextstyle().

general the stroked fonts provide higher quality text. The program
FONTS.C (Listing 3) shows us how to make use the fonts. It aiso
gives us a means of comparing the fonts through a sampling of
each on our screen. The font characters conform to the ASCII
numbering code; i.e., A = 65, etc. We'll see this when we look at
the program code later.

Each font, including the default, is magnifiable over a range of
one to ten. The smallest of the fonts, appropriately named
SMALL, is barely readable in its minimum size. The fanciest,
GOTHIC, is virtually unreadable in any size. The stroked fonts
retain a better resolution and appearance than the bit-mapped
with magnification. The program FONTDISP.C(Listing 4) dis-

plays the entire character set on screen for a requested font.

The magnification is an indication of relative size: note SMALL

with a factor of eight is about equal to SANSSERIF which is

only doubled.

Value Description

Using the Fonts In Our Programs

DEFAULT_FONT 0 8x8 bit-mappped (default) — --------- The fonts as provided in the library have the file extension

TRIPLEX FONT 1 Stroked triplex font TRIP.CHR

SMALL FONT 2 stroked small font LITT.CHR .CHR. Anoption available to us is to use them with this exten- X
SANS_SERIF_FONT 3 Sansserif font SANS.CHR sion. Another is to do a file conversion to object form. The con-
GOTHIC_FONT 4 Gothic font GOTH.CHR

verted file, now having the extension .OBJ, may be linked into

28 The Computer Journal / #46

Listing 5. An information screen for the TANK_WAR action game.

1:

~

25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
3s:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:

/* TANKPLAY.C

: ** Demo program for a TANK WAR game play information screen.
: w/
: $include <stdio.h>

#include <graphics.h>

: f#include "grap_enb.h*

: /* == Begin program == */
: main()

s+ int palette = 2;
: int bx = 30, by = 64, i = 4;

/* *xe¢ firing key data #+* +/
int key box[] = { 0,0, 24,0, 24,24, 0,24);

: int key_box_pts = sizeof (key_box)/(2*sizeof (int));
: int tx, ty = 10, twx;

/* %% direction key data ** x/

: int left arrow[] = { 4,11, 8,7, 8,11, 19,11, 8,11, 8,15 };
: int left_arrow_pts = sizeof (left_arrow)/(2*sizeof(int));

: int up_arrow(] = { 8,8, 12,4, 16,8, 12,8, 12,20, 12,8 };

: int up_arrow_pts = sizeof(up_arrow)/(2*sizeof(int));

: int right_arrow[] = { 4,11, 15,11, 15,7, 19,11, 15,15,

15,11);

: int right_arrow pts = sizeof(right arrow)/(2*sizeof(int});

enable_graph(palette);

/* ** register the font #* =/
if (registerbgifont(small_font) < 0) exit(1);
if (registerbgifont(sansserif font) < 0) exit(1);

/* *+ display screen title line ** */
settextstyle(SMALL_FONT,HORIZ DIR,5);
setcolor(2);
twx = textwidth({"HERE'S HOW TO PLAY THE TANK WAR GAME");
tx = getmaxx()/2-twx/2;
outtextxy(tx,ty,"HERE'S HOW TO PLAY THE TANK WAR GAME");

/* ** print firing key instructions ** */
setcolor(l);
settextstyle (DEFAULT_FONT,HORIZ_DIR,1);
ocuttextxy(15,110,"Use these keys *);
outtextxy(15,120, for shell firing.");
outtextxy(15,130,"Each key fires at *);
outtextxy(15,140," a different angle.");

/* ** print arrow key instructions ** #*/
outtextxy(185,110,"Use these keys *);
outtextxy(185,120," to re-direct *);
outtextxy(185,130," the tank. ");
outtextxy(185,140," UP is hold. *);

/* ** print closing message ** */
outtextxy(30,160,"Have fun now, y' hearz");
outtextxy(35,170,%Press any key to continue.®);

/* ** draw key outlines ** */
lott.xtntylo(SANS_SERIF_FONT,HORIZ_DIR,2);
setcolor(3);
setfillstyle(1l,1);
while(i--) {
setviewport (bx,by,bx+24,by+24,1);
fillpoly(key box_pts, key box);
bx += 32;
if(i == 3) outtextxy(7,1,"A");
else if(i == 2) outtextxy(7,1,"5");
else if(i == 1) outtextxy(7,1,"D");
else if(i == 0) outtextxy(7,1,"F");
bx = 200; i = 3;
while(i--) {
setviewport(bx,by, bx+24,by+24,1};
setfilletyle(1,1);
£illpoly(key_box_pts, key box);
setfillstyle(l,3);
if(i == 2) {
fillpoly(left arrow_pts,left_arrow);
bx = 232; by = 36;
)
else if(i == 1) (
fillpoly(up_arrow pts,up_arrow);
bx = 264; by = 64;
}
olse if(i == 0) {
£illpoly(right_arrow_pts,right_arrow);
}

}
/* %+ return to text mode and exit ** #/
getch(); closegraph(); exit(0);
}

The Computer Journal / #46

our program. It may also be added to a library, such as
GRAPHICS.LIB, using the utility TLIB.EXE.

To use the file with its original CHR extension we simply copy
it to our working disk. This because in this mode the file is loaded
at run time on the call to settextstyle().

As an alternative we can convert the files to object code using
the utility BGIOBJ.EXE. To make the conversion simply enter:

BGIOBJ.EXE

on the command line. Redirection may be employed if the object
file is to be on a different drive. Do not include the .CHR exten-
sion; doing so yields an error message.

The object file can then be linked in with the program using
TLINK. Or, as mentioned, simply add it to a library file. The addi-
tion to GRAPHICS.LIB is a simple procedure easily carried out.
Once done there need be no further concern in this regard. To
perform the addition enter

TLIB GRAPHICS +TRIP +LITT +SMAL +GOTH

The original GRAPHICS.LIB is retained with the extension
.BAK. One consequence is an increase in file size from 29K to
51K

In either of these, linking or library addition, the font or fonts
to be used, other than the default, must be registered in the using
program prior to calling setextstyle(). The registering function is:

registerbgifont(void(*font) (void));
or, when required by insufficient memory
registerfarbgifont(void(*font)(veid));.

Lines 13 - 16 of program FONTS.C (Listing 3) illustrate the
procedure. Note it is not necessary to register the default. The
registration incorporates a test for its success.

Before using a specific font it is called by settextstyle(int font,
int direction, int charsize);. Note that the call for sansserif includes
an underscore between sans and serif. Without the underscore the
compiler reports an error. This is NOT shown in the Reference
Guide, by the way. 1 learned it the hard way.

Although the same string, “Hi Y’all!” is repeated for each font
a new width and starting column must be calculated. This because
the text is centered on the screen for each font.

It would be a great if we could look at the full character set for
any font we might have in mind to use. The program
FONTDISP.C (Listing 4) does just that for us. When run the
program displays the entire set of font characters. The
SMALL_FONT charsize is expanded to four for best visibility, the
remainder are size one.

The program begins in the text mode with a display of the four
font options and a query as to which is to be viewed. On entering a
selection number and pressing return the program transitions to
the graphic mode and draws the display.

It is our good fortune the fonts all make use of the standard
ASCII designations. The entire display is performed with a single
while() loop. Because of the way the assignments are made the
loop will appear confusing. Upper case alpha chars have the deci-
mal range of 65 for ‘A’ through 90 for ‘Z.’ There is a jump then to
97 for the beginning of the lower case letters. These extend to 122
for 'z’ The upper and lower case letters are displayed in this
sequence with 13 letters on each line.

The third line begins with the ten numerals 0 - 9. These have

29

the decimal assignment range 48 - 57. Punctuation is distributed
over the four ranges of 33 - 47, 58 - 64, 91 - 96, and 123 - 126. An
integer variable, last, simplifies the loop. Range limits are detected
by if() statements. In these last is assigned the final variable of the
new range.

The loop code, abstracted from FONTDISP.C, is:

/* ** display the character set ** */
tx = 10; ty = 10;
while(i <= last) {
alpha = (char *)i;
sprintf(al_buf,’’sc’’,alpha);
outtextxy(tx,ty,al buf);
tx += 23; i++4;
if(i == 91) i = 97;
else if(i == 123) { i = 48; last = 64;)
else if(i == 65) { i = 33; last = 47;)}
else if(i == 48) { i = 91; last = 96;)
else if(i == 97) { i = 123; last = 126; }
if(tx >= 300) { tx = 10; ty += 25;)
}

Now suppose we apply our new knowledge of fonts and how to
use them to the creation of an information screen for
TANK _WAR, TANKPLAY.C (Listing 5). The screen displays the

EPROM PROGRAMMERS

$750.00

8 ZIF Sockets for Fast Gang Completely stand-alone or PC driven

“ o rammmg ELER=EYN < Programs E(E)PROMs
S plitting 1 Megabit of DRAM

Stand-Alone Gang Programmer

User upgradable to 32 Megabit

.3/.6” ZIF socket, R§-232,
Parallel In and Out

» 32K internal Flash EEPROM for easy
firmware upgrades

Quick Pulse Algorithm (27256
in 5 sec, 1 Megabit in 17 sec.)
2 year warranty

Made in U.S.A.

» Technical support by phone

» Complete manual and schematic
Single Sacket Programmer also
available. $550.00

Spiit and Shuffle 16 & 32 bit

100 User Definable Macros, 10 User
Definable Configurations

« Inteiligent identifier

+ Binary, Intel Hex, and Motorola S

20 Key Tactile Keypad (not membrane)

20 x 4 Line LCD Display

Internal Programmer for PC $139.95

New Intelligent A ing Algorithm. Prog 64Ain10sec.,256in1 min., 1Meg(27010,011)in2min.45sec.,
2 Meg (27C2001) in 5 min. internal card with external 40 pin ZiF. 2#. Cable 40 pin 2IF

« Reads, verifies, and programs 2716, 32, 32A, 64,
64A, 128, 128A, 256, 512, 513, 010, 011, 301,
27C2001, MCM 68764, 2532

* Automalically sets programiming voltage

Load and save buffer to disk

Binary, Intel Hex, and Motorola S formats

Upgradable to 32 Meg EPROMs

No personality modules required

1 year warranty 10 day money back guarantee

Adapters available for 8748, 49, 51, 751, 52, 55,

TMS 7742, 27210, 571024, and memary cards

* Madein USA.

Call for more information

(916) 924-8037
cop. &8 E FAX (916) 972-9960

NEEDHAM'S ELECTRONICS

4539 Orange Grove Ave. » Sacramento, CA 95841
Mon. - Fri. 8am - 5pm PST

two sets of keys, A - F and the three cursor arrow keys for tank
direction, used by the player with instructions for their use. A diffi-
culty we have to live with when using the CGA adapter is the forty
column screen. This forces us into use of the default font in many
situations where we would prefer another but run out of column
width in the effort.

Summary
We have learned much of both the capabilities -and limitations
of the text options available to us in the graphics mode. It is our
good fortune to be able to take advantage of the text mode puts(),
printf(), and scanf() functions through direct register communica-
tion.

Five text character fonts are available through the compiler
graphics library. One, the bit-mapped default, is always available
for our use. The four stroked style must be registered and defined
prior to their use. All the fonts may be magnified over a 1 to 10
range. Though the number of fonts currently available through the
compiler are limited we can make significant use of them in game
information and title screens. ®

1S-D0S ELGIERNTE DECODER

For PC, PC/XT or PC/AT compatible computers, the
FlexScan'| high performance wand speed decoder
provides unmatched speed, security, flexibility, and
affordability when compared to wedges. Decoded
data is instantly available to your applications
without change -- unlike wedges which must send
data one character at a time. Developers can use
the Application Programming Interface (API) to
deliver more powerful and flexible applications.
Software drivers support Code 39, Code 128, UPC,
Interleaved 2 of 5, and Codabar. Others available
upon request.

COMPETITIVE PRICING
OEM/VAR DISCOUNT STRUCTURE

TVLYAIVISE TECHNOLOGIES |
"Prodctivity Enharicement Systems' Sy
- 1651 S. Juniper, Ste, 118 o
. Escondido, CA92025 i
(619) 746-0468 FAX 746 1868 o

1l i

PC/XT, and PC/AT are Trademarks of iIBM
MS-DOS is a Trademark of Microsoft Corporation
FlexScan is a Trademark of Adaptive Technologies

The Computer Journal / #46

Z80 Communications Gateway

Part 2: The Z80 CTC
by Art Carlson

We covered the RS-232 basics in the previous issue, and will
continue in this issue with using a CTC to establish the baud rate.

‘The Z80 CPU provides address and data output lines, but it lacks

the internal timers and I/O lines which are found in control ori-
ented processors such as the 8051. For the Z80 CPU these func-
tions are provided by the Z80 CTC (Counter/Timer Circuit) and
the Z80 SIO (Serial Input/Output).

Prototyping

I have been prototyping small projects on a solderless bread-
board. This has been satisfactory for simple tests such as to check
the currents in a transistor driven LED, but when I assembled a
Z80 communications prototype on the breadboard it was so flakey
that I decided to go back to square one. I've ordered perfboard
and wire wrap sockets to rebuild the communications gateway, and
will use either wire wrap or point-to-point wiring in the future for
similar projects.

Prototyping is sometimes a time consuming nuisance, but it’s
absolutely necessary—it’s the only way that you learn. As long as
you limit yourself to the 5 or 12 volts in the logic circuits you won’t
electrocute yourself, and logic chips are cheap enough so that it
won’t hurt too much if you smoke a few. In their book, Interfacing

.Microcomputers to the Real World, Sargent and Shoemaker said,

“Experience is directly proportional to the amount of equipment
ruined.” With TTL logic circuits a lot of failures do not actually
ruin anything, so Il restate that as “Experience is directly propor-
tional to the number of experiments which fail.” Their book is a
goldmine of information, but unfortunately it is out of print.

Counter/Timers

Most assembly language books demonstrate the use of soft-
ware loops to obtain time delays. For example, with the Z80 run-
ning at 4 MHz you can obtain a one second delay using the routine
shown in Listing 1 which produces a ‘beep’ every second. In order
to write this you have to look up the number of “T states” for each
command, determine how many times to go through the loop, etc.
For example, LD takes 7 T states, DEC takes 4 , and JR NZ takes
12 if true or 7 if not true. It gets rather time consuming and
confusing—I'm not sure if I remembered to include the time for
the BEEP routine. Many high level language implementations in-
clude a “sleep” or “wait” function which relieves you from the
drudgery of counting the clock cycles.

The primary objection to using software loops for timing is that
it keeps the processor occupied full time, and there is no time for it
to do other work. The solution to the problem is to use a hardware
C/T (Counter/Timer). The IBM PC uses an 8253, which on my
286, provides System Timer, Refresh Request, Speaker Tone,
and Mode Control. The Ampro Z80 Little Board uses two chan-

The Computer Journal / #46

nels of a Z80 CTC for generating the serial port baud rates, and
the other two channels are available for user programming.

The IBM PC System Timer generates an interrupt 18.206482
times a second (approximately every 55 milliseconds). Your soft-
ware can count these interrupts, and be doing other tasks except
during the brief interrupt service routine. The high level language
routines may or may not tic up the processor depending on
whether there is a source of interrupts and if they use it.

Embedded controllers almost always include some sort of a
hardware Counter/Timer, in fact most controller processors in-
clude several Counter/Timers. When the processor does not pro-
vide a C/T, or when you need even more channels, you can use
peripheral chips such as the Z80 CTC or the 8253. For our Z80
communications system we’ll use the Z80 CTC because it is de-
signed to work with the Z80 CPU and the Z80 SIO.

The Z80 CTC

The Z80 CTC contains four Counter/Timer channels. When
used as a counter, they count pulses on the appropriate CLK/
TRG pin. When used as a timer, they count cycles on the system
clock after the clock has been divided by either a 16 or 256 pres-
caler. The four channels can be programmed independently, and
three channels have ZC/TO outputs capable of driving Darlington
transistors. The counters decrement the count until it reaches
zero, and reloaded automatically. Since the counters are ¢ight bit,

"Experience is directly proportional
to the number of experiments which
fail"

the maximum time constant value is 256 (which is prescaled by 16
or 256 in the timer mode), but more than one counter can be
cascaded for counts greater than 256.

Generating a beep every second as we did in Listing 1 would be
an example of using a CTC in a Z80 controller. Using a 4 MHz
clock and the 256 prescaler would give a prescaler output of
15.625 kHz. A time constant value of 256 (for the longest time)
would give 61.035 per second. The longest time is less than one
second, so we’ll have to either count pulses in software or take the
output and feed it into another channel set up as a counter. Since
the longest time is too short, we might as well use a nice round
decimal value, such as 0.010 second which also provides greater
timing resolution if needed for other purposes. Dividing 15.625
kHz by 100 give a a time constant value (commonly referred to as

31

. AABOL
Z80CTC

n
o

D? CK/TR3
D6
DS CK/TRZ
D4 2C/TOY
D3

D2 CK/TRY
D1 ZC/TOl
Do

PR ol |

ck/ TRt E3
cst zcsTog -

CSe

0}

AT
[TORG
RD
RESET

CLK

IEI
IEO

b fie i b b e i [0 Jie [NI
il (R (3] al «lmlsl;lmlwlw lU‘lIO’)\JW"NU-&

Figure 1: The Z80 CTC pin functions.

Listing 1: 280 timing loop.
; A program to test Z80 timing loop--desired time 1 second.
; VERSION 1.0 RAC 8/3/90 ~ Written for SLR ZBOASM
; Clock freguency 4 MHz
ORG 0100H
START CALL BEEP

CALL DLYA

Jp START
DLYA 1D A4
DLYB 1D B,0
DLYC 1D c,0
LOOP DEC c
JR NZ,1OOP
DEC B
JR NZ,DLYC
DEC A
JR NZ,DLYB
RET

BEEP 1D c,2
1D E,7
CALL)
RET
END 0100H

the reload value) of 156.25. There is a probiem here because the 8
bit reload register only accepts integer whole numbers, so we can’t
hit exactly 100 counts per second using a 4 MHz clock. With a
3.6864 MHz clock the reload value is a nice integer 144 —now you
know why people sometimes use such odd clock frequencies.

Assuming that the 100.16 counts per second is close enough for
our purposes, we can set channel 0 as a timer with a prescaler of
256 and a reload value of 144, and feed the output pulse from
TOO into channel 1 set up as a counter (remember no prescaler
when used as a counter) with a reload value of 100. Then the
output pulse from ZC1 can be used with a Darlington to pulse a
piezo beeper. Once the Z80 CPU transmits the few bytes required
to configure the CTC, the CTC will keep generating one second
beeps with absolute no further action from the CPU

32

So, there are three different ways to generate time delays with
the Z80. 1) Use software loops which prevent the CPU from
doing anything else. 2) Use a CTC to generate interrupts and
count the interrupts in software, which only ties up the CPU for a
small portion of the time. 3) Configure a CTC and let it do the
whole job.

We’re going to use the third method because the Z80 CPU is
busy enough when preforming high speed communications with-
out the added burden of generating the baud rates.

Generating Baud Rates for the Z80 SIO

The Z80 SIO requires RXC (Receiver Clock) and TXC
(Transmitter Clock) signals of 1, 16, 32, or 64 times the data rate.
These could be provided by a fixed clock, but I am using the CTC
in order to provide a programmable baud rate. The baud rates in
common use today are 300, 1200, 2400, 4800, 9600, and 19,200,
but you may find rates as low as 50 in older industrial TTY instal-
lations. These accepted standard values are convenient for com-
munications between off-the-shelf hardware, but any in between
values can be used if you can custom program both ends. If your
routines choke on 19.2K baud, but can run faster than 9600, you
might find that some non-standard value, perhaps something odd
such as 13,800, will provide the highest speed data transfer. But
remember, non-standard baud rates only work where you control
both the receiver and the transmitter--such as intra-processor
communications in multiprocessor embedded systems.

The Z80 CTC is programmed by writing 8-bit words to the
Channel Control Word and the Time Constant Word registers. If
we were to use the CTC generated interrupts, we would also have
to write to the Interrupt Vector Word register. The four channels
each have their own channel control and time constant registers
which are addressed during programming by the CS0O and CS1
control lines as follows:

Channel [of
0

1 Ccso

S s
0 0
1 0 1
2 1 0
3 1 1

The Channel Control Word, shown in Figure 2, configures the
channel. To generate 9600 baud for our exampie we will load it
with 17H (00010111 binary) as follows:

Bit Value Action
7 0 Disable interrupts.
6 Select timer mode.
5

S

Trigger on rising edge.
Automatic trigger when time constant
is loaded.

0
0 Prescaler value of 16.
1
0

w

2 1 Time constant follows.
1 1 Software reset.
0 1 Control word.

The Time constant word is calculated from the clock fre-
quency, the CTC prescaler value, the SIO clock mode, and the
baud rate. For 9600 baud with a 4 MHz system clock, a CTC
prescaler of 16, and an SIO clock mode of 1, the time constant is
26. The actual baud rate is 9615 instead of the desired 9600, but it
is close enough to work. The 3.6864 MHz clock with a time con-
stant of 24 would provide the desired 9600. The time constant is
calculated as follows:

The Computer Journal / #46

BIT ACTION
7 INTERRUPT
0 Disables interrupt
1 Enables interrupt
6 MODE
0 Selects timer mode
1 Selects counter mode
5 PRESCALER VALUE (Timer mode only)
0 Value of 16
1 Value of 256
4 CLK/TRG EDGE SELECTION
0 Selects falling edge
1 selects rising edge
3 TIMER TRIGGER (Timer mode only)
0 Automatic trigger when time constant
is loaded
1 CLK/TRG pulse starts timer
2 TIME CONSTANT
0 No time constant follows
1 Time constant follows
1 RESET
0 Continued operation
1 Software reset
0 CONTROL OR VECTOR
0 Vector
1 Control Word

Figrue 2: Z80 CTC Control Word.

Clock frequency X SIO clock mode
Time constant

Baud X Prescaler
4 MHz(1)
9600(16)

= 26.04

The CTC prescaler, SIO clock mode, CTC Clock/Timer mode,
and the clock frequency may all have to be changed in order to
cover the full baud range. The Ampro Little board uses a 16 MHz
€lock which is divided to 4 MHz for the Z80 CPU system clock,
and divided to 2 MHz for the Z80 CTC CLK/TRG input for the
110 to 9600 baud range. A 615.385 kHz clock (16 MHz divided by
26) is used for the 9600 to 38.4k baud high range on channel A
only. The high frequency clock is applied directly to the SIO with-
out going through the CTC.

Addressing the CTC

The Z80 CPU has separate memory and I/O ports (but you
can still use memory mapped I/O if you desire). The instruction
LD A,(40H) which moves the contents of memory location 40H to
the accumulator, and the instruction IN A,(40H) which moves the
contents of input port 40H to the accumulator do not address the
same 40H location. The memory and port locations are different
even though they have the same Hex address. The Z80 CPU uses
the MREQ?* line to signify that it is addressing a memory location
or the IORQ?* line to signify that it is addressing an I/O port.

As an example of addressing, the Ampro Little Board uses
address line 4 and 5 to select CSO and CS1 (see chart above) for
channel addressing, and address line 6 to select the CTC. Address
lines 6, and 7 go to one half of a 7418139 dual 2 to 4 decoder
(demuitiplexer). If bit 7 is 0 and bit 6 is 1, the CTC is selected by
pulling the CTC CE* line low. The chart in Figure 3 shows the
Little Board addressing.

The Computer Journal / #46

ADDRESS BITS CTC CHANNEL SELECT CHANNEL
7 6 5 4 cso csl
40H 01 0 o0 0 0 0
S0H 01 0 1 1 0 1
60H 01 1 0 0 1 2
70H 01 1 1 1 1 3

Figure 3: Ampro Little Board CTC addressing.

Editor's Note: Since we can not typeset an overbar, we use an
asterisk to indicate active low i.e., we set CE as CE*

Configuring the CTC

Once the Channel Control and Time Constant words have
been determined, and the CTC addresses have been established,
the CTC can be configured. Using the word values for 9600 baud
above, the code is as follows:

LD A,26 ;Load the channel control word
OUT (40E),A ;Send it to the CTC
LD A,17H ;Load time constant
OUT (40H),A ;Send it to the CTC

You will find many uses for Counter/Timers, and should spend
some time becoming familiar with the Z80 CTC, the 8253, 8254,
and the C/Ts in the various controller processors.

Next Time

I am never sure how much detail to include with a project. I
used more space for the CTC than I intended, but I felt that it was
important to describe how the CTC works rather than just to say,
“Configure the CTC for 9600 baud.” Our readers have a wide
range of experience and background, and we can’t write at exactly
the right level for every individual, but I do need your feedback.
Tell me if you want lots of details on how and why things work, or
just a minimum of information. Should we include tutorial infor-
mation with our projects, and even some simple starter hardware
projects? Do you want more information on addressing, multiplex-
ing and demultiplexing, logic chips, linear devices, etc?

Next time we’ll cover the SIO--and it will involve even more
than the CTC. I should have my prototype running by that time so
that I can include actual communications routines. Send your
questions, suggestions, corrections, and articles so that they can be
included. ®

Issue Number 1:

s RS-232 interface Part One

* Telecomputing with the Apple i

¢ Beginner's Column: Getting Started
e Buildan*”Epram"”

Issue Number 2:

File Transfer Programs for CP/M

RS-232 Interface Part Two

Build Hardware Print Spooler: Part 1
Review of Floppy Disk Formats

¢ Sending Morse Code with an Apple [l

* Beginner's Column: Basic Concepts and
Formulas

Issue Number 3:

* Add an 8087 Math Chip to Your Dual
Processor Board

¢ Build an A/D Converter for Apple ll

* Modems for Micros

» The CP/M Operating System

* Build Hardware Print Spooler: Part 2

{ssue Number 4:

* Optronics, Part 1 Detecting,
Generating, and Using Light in Electronics
* Multi-User: An Introduction

* Making the CP/M User Function More
Useful

¢ Build Hardware Print Spooler: Part 3

s Beginner's Column: Power Supply
Design

Issue Number 8:

e Build VIC-20 EPROM Programmer.

o Muiti-User: CP/Net.

o Build High Resolution S-100 Graphics
Board: Part 3.

o System Integration, Part 3: CP/M 3.0.

o Linear Optimization with Micros.

issue Number 16:

* Debugging 8087 Code

* Using the Apple Game Port

s BASE: Part Four

« Using the S-100 Bus and the 88008 CPU

¢ |nterfacing Tips & Troubles: Bulld a
“"Jellybean" Logic-to-RS232 Converter

34

THE COMPUTER JOURNAL

issue Number 18:

¢ Parallel Interface for Apple [l Game Port
* The Hacker's MAC: A Letter from Lee
Felsenstein

* S-100 Graphics Screen Dump

* The LS-100 Disk Simulator Kit

¢ BASE: Part Six

* Interfacing Tips & Troubles: Com-
municating with Telephone Tone Control,
Part t

issue Number 19:

¢ Using The Extensibility of Forth

* Extended CBIOS

* A $500 Superbrain Computer

« BASE: Part Seven

¢ Interfacing Tips & Troubles: Com-
municating with Telephone Tone Control,
Part 2

¢ Multitasking and Windows with CP/M: A
Review of MTBASIC

Issue Numnber 20:

* Designing an 8035 SBC

¢ Using Apple Graphics from CP/M: Turbo
Pascal Controls Apple Graphics

* Soldering and Other Strange Tales

* Build a S-100 Fioppy Disk Controller:
WD2797 Controller for CP/M 68K

issue Number 21:

¢ Extending Turbo Pascal: Customize with
Procedures and Functions

« Unsoldering: The Arcane Art

* Analog Data Acquisition and Controk:
Connecting Your Computer to the Real
Worid

* Programming the 8035 SBC

Issue Number 22:

Issue Number 24:

« Selecting and Buiiding a System

s The SCS! iInterface: SCSI Command
Protocol

« Introduction to Assembly Code for CP/M
e The C Column: Software Text Filters

« AMPRO 186 Column: Installing MS-DOS
Software

e The Z Column

¢« NEW-DOS: The CCP Internal Commands
¢ ZTIME-1: A Realtime Clock for the AM-
PRO Z-80 Little Board

Issue Number 25:

Repairing & Moditying Printed Circuits
Z-Com vs Hacker Version of Z-System
Exploring Single Linked Lists in C
Adding Serial Port to Ampro L.B.
Building a SCS1 Adapter

New-Dos: CCP Internal Commands
Ampro *186 Networking with SuperDUO
ZSIG Column

issue Number 26:

* Bus Systems: Selecting a System Bus

* Using the SB180 Real Time Clock

e The SCSI Interface: Software for the
SCSi Adapter

« |nside AMPRO Computers

o NEW-DOS: The CCP Commands Con-
tinued

* ZSIG Corner

« Affordable C Compilers

e Concurrent Multitasking: A Review of
DoubleDOS

Issue Number 27:

* 68000 TinyGiant: Hawthorne's Low Cost
16-bit SBC and Operating System

* The Art of Source Code Generation:
Disassembling Z-80 Software

e Feedback Control System Analysis:
Using Root Locus Analysis and Feedback
Loop Compensation

e The C Column: A Graphics Primitive
Pack ge

* NEW-DOS: Write Your Own Operating
System

» Variabitity in the BDS C Standard Library
e The SCSI |Interface: Introductory
Column

¢ Using Turbo Pascal ISAM Files

s The AMPRO Little Board Column

Issue Number 23:

¢ C Column: Flow Control & Program
Structure

e The Z Column: Getting Started with
Directories & User Areas

* The SCSI interface: Introduction to SCSI
o NEW-DOS: The Console Command
Processor

¢ Edliting The CP/M Operating System

¢ INDEXER: Turbo Pascal Program to
Create Index

s The AMPRO Little Board Column

» The Hitachi HD64180: New Life for 8-bit
Systems

e 2SIG Corner: Command Line Generators
and Allases

¢ A Tutor Program for Forth: Writing a For-
th Tutor in Forth .

« Disk Parameters: Modifying The CP/M
Disk Parameter Block for Foreign Disk
Formats

Issue Number 28;

* Starting your Own BBS

* Build an A/D Converter for the Ampro
L.B.» HDB4180: Setting the wait states &
RAM refresh, using PRT & DMA

» Using SCSI for Real Time Control

e Open Letter to STD-Bus Manufacturers
* Patching Turbo Pascal

* Choosing a Language for Machine Con-
trol

Back Issues

Issue Number 20:

* Better Software Filter Design

¢ MDISK: Adding a 1 Meg RAM disk to
Ampro L.B., part one.

¢ Using the Hitachi HD64180: Embedded
processor design.

* 68000: Why use a new OS and the 680007
+ Detecting the 8087 Math Chip

» Floppy Disk Track Structure

¢ The ZCPR3 Corner

Issue Number 30:

« Double Density Floppy Controlier

*» ZCPR3IOP for the Ampro L.B.

¢ 3200 Hacker’s Language

o MDISK: 1 Meg RAM disk for Ampro LB,
part 2

* Non-Preemptive Multitasking

* Software Timers for the 68000

o Liliiput Z-Node

s The ZCPR3 Corner

* The CP/M Corner

issue Number 31:

* Using SCSI for Generalized /O

« Communicating with Floppy Disks: Disk
parameters and their variations.

* XBIOS: A replacement BIOS for the
$8180.

s K-OS ONE and the SAGE: Demystifing
Operating Systems.

*« Remote: Designing a remote system
program.

* The ZCPR3 Corner: ARUNZ documen-
tation.

Issue Number 32:

* Language Development: Automatic
generation of parsers for interactive
systems.

« Designing Operating Systems: A ROM
based O.S. for the Z81.

« Advanced CP/M: Boosting Performance.
* Systematic Elimination of MS-DOS
Files: Part 1, Deleting root directories & an
in-depth look at the FCB.

e WordStar 4.0 on Generic MS-DOS
Systerns: Patching for ASCIl terminal
based systems.

¢ K-OS ONE and the SAGE: Part 2, System
layout and hardware configuration.

¢ The ZCPR3 Corner: NZCOM and ZC-
PR34.

Issue Number 33:

« Data File Conversion: Writing a filter to
convert foreign file formats.

« Advanced CP/M: ZCPR3PLUS, and how
to write self relocating Z80 code.

* DataBase: The first in a series on data
bases and information processing.

* SCSI for the S-100 Bus: Another example
of SCSI's versatility.

* A Mouse on any Hardware: Implemen-
ting the mouse on a Z80 system.

s Systematic Elimination of MS-DOS
Flles: Part 2—Subdirectories and extnded
DOS services.

o ZCPR3 Corner: ARUNZ, Shells, and pat-
ching WordStar 4.0

Issue Number 34:

o Developing a File Encryption System.

o Database: A continuation of the data base
primer series.

e A Simple Multitasking Executive: Design-
ing an embedded controller multitasking ex-
ecutive.

e ZCPR3: Relocatable code, PRL files,
ZCPR34, and Type 4 programs.

o New Microcontrollers Have Smarts: Chips
with BASIC or Forth in ROM are easy to pro-
gram.

e Advanced CP/M: Operating system exten-

- sions to BDOS and BIOS, RSXs for CP/M 2.2,

e Macintosh Data File Conversion in Turbo
Pascal.
e The Computer Corner

Issue Number 35:

o Al This & Modula-2: A Pascal-like alterna-
tive with scope and parameter passing.

‘e A Short Course in Source Code Genera-
tion: Disassembling 8088 software to pro-

- duce modifiable assem. source code.

*® Real Computing: The NS32032.

¢ S-100: EPROM Bumer project for 5-100
hardware hackers.

e Advanced CP/M: An up-to-date DOS, plus
details on file structure and formats.

o REL-Style Assembly Language for CP/M
and Z-System. Part 1: Selecting your assem-
bier, linker and debugger.

e The Computer Corner

Issue Number 36:

o |nformation Engineering: Introduction.

® Modula-2: A list of reference books.

* Temperature Measurement & Control: Ag-
ricultural computer application.

e ZCPR3 Corner: Z-Nodes, Z-Plan, Am-
strand computer, and ZFILE.

o Real Computing: NS32032 hardware for
experimenter, CPUs in series, software op-
tions.

& SPRINT: A review.

o REL-Style Assembly Language for CP/M
& ZSystems, part 2.

e Advanced CP/M: Environmental program-
ming.

o The Computer Corner.

Issue Number 37:

o C Pointers, Arrays & Structures Made Eas-
ier: Part 1, Pointers.

e ZCPR3 Comer: Z-Nodes, patching for
NZCOM, ZFILER.

o [nformation Engineering: Basic Concepts:
fields, field definition, client worksheets.

¢ Shells: Using ZCPR3 named sheil vari-
ables to store date variables.

e Resident Programs: A detailed look at
TSRs & how they can lead to chaos.

o Advanced CP/M: Raw and cooked con-
sole I/O.

o Real Computing: The NS 32000.

e ZSDOS: Anatomy of an Operating System:
Part 1.

¢ The Computer Comer.

Issue Number 38:
¢ C Math: Handling Dollars and Cents With

C.

o Advanced CP/M: Batch Processing and a
New ZEX.

o C Pointers, Arrays & Structures Made Eas-
ler: Part 2, Arrays.

¢ The Z-System Corner: Shells and ZEX,
new Z-Node Central, system security under
Z-Systems.

¢ Information Engineering: The portable In-
formation Age.

e Computer Aided Publishing: Introduction
to publishing and Desk Top Publishing.

® Shells: ZEX and hard disk backups.

e Real Computing: The National Semicon-
ductor NS320XX.

& ZSDOS: Anatomy of an Operating System,
Part 2.

issue Number 40:

® Programming the LaserJet: Using the es-
cape codes.

e Beginning Forth Column: Introduction.

e Advanced Forth Column: Variant Records
and Modules.

o LINKPRL: Generating the bit maps for PRL
files from a REL file.

o WordTech's dBXL: Writing your own cus-

tom designed business program.

e Advanced CP/M: ZEX 5.0—The machine
and the language.

® Prog ing for Perf ce: A bly
language techniques.

® Programming Input/Output With C: Key-
board and screen functions.

o The Z-System Comer: Remote access sys-
tems and BDS C.

® Real Computing: The NS320XX

o The Computer Corner.

lssue Number 41:

o Forth Column: ADTs, Object Oriented
Concepts.

* Improving the Ampro LB: Overcoming the
88Mb hard drive limit.

o How to add Data Structures in Forth

o Advanced CP/M: CP/M is hacker's haven,
and Z-System Cc d Scheduler.

o The Z-System Comer: Extended Multiple
C d Line, and ali

o Programming disk and printer functions
with C.

o LINKPRL: Making RSXes easy.

¢ SCOPY: Copying a series of unrelated
files.

¢ The Computer Corner.

Issue Number 38: Issue Number 42:
o Programming for Perfor T A bly e Dy ic Memory Aliocation: Allocating
Language techniques. memory at runtime with exampies in Forth.

o Computer Aided Publishing: The Hewlett
Packard LaserJet.

o Using BYE with NZCOM.
¢ C and the MS-DOS Screen Character At-

e The Z-Sy Comer: Sy h tribute:

ments with NZCOM., e Forth Column: Lists and object oriented
o Generating LaserJet Fonts: A review of Forth.

Digi-Fonts. o The Z-System Corner: Genie, BDS Z and
o Advanced CP/M: Making old programs Z- Z-System Fundamentals.

System aware. e 68705 Embedded C lier Appli :
e C Pointers, Arrays & Structures Made Eas- An example of a singile-chip microcontrolier
ier: Part 3: Structures. application.

e Shells: Using ARUNZ alias with ZCAL.
e Real Computing: The National Semicon-

ductor NS320XX.
o The Computer Corner.

o Advanced CP/M: PiuPerfect Writer and
using BDS C with REL files.

o Real Computing: The NS 32000.

o The Computer Comer

Issue Number 43:

o Standardize Your Floppy Disk Drives.

o A New History Shell for ZSystem.

¢ Heath's HDOS, Then and Now.

e The ZSystem Comer: Software update
service, and customizing NZCOM.

e Graphics Programming With C: Graphics
routines for the IBM PC, and the Turbo C
graphics library.

e Lazy Evaluation: End the evaluation as
soon as the result is known.

® S-100: There's stitl life in the old bus.

e Advanced CP/M: Passing parameters,
and complex error recovery.

e Real Computing: The NS32000.

¢ The Computer Corner.

lssue Number 44:

o Animation with Turbo C Part 1: The Basic
Tools.

o Multitasking in Forth: New Micros
F68FC11 and Max Forth.

e Mysteries of PC Floppy Disks Revealed:
FM, MFM, and the twisted cable.

o DosDisk: MS-DOS disk format emulator
for CP/M.

e Advanced CP/M: ZMATE and using
lookup and dispatch for passing parame-
ters.

¢ Real Computing: The NS32000.

e Forth Column: Handling Strings.

e 2-System Corner: MEX and telecommuni-
cations.

e The Computer Comer

lssue Number 45:

e Embedded Systems for the Tenderfoot:
Getting started with the 8031.

® The Z-System Corner: Using scripts with
MEX.

¢ The Z-System and Turbo Pascal: Patching
TURBO.COM to access the Z-System.

o Embedded Applications: Designing a 280
RS-232 communications gateway, part 1.

e Advanced CP/M: String searches and tun-
ing Jetfind.

¢ Animation with Turbo C: Part 2, screen
interactions.

o Real Computing: The NS32000.

o The Computer Corner.

\.

Subscriptions

1year (6 issues)
2 years (12 issues)
Air Mail rates on request.

Back Issues
16 thru #43
6 or more
#44 and up
6 or more

Issue #s ordered

u.s. Foreign Total

(Surface)
$18.00 $24.00
$32.00 $46.00

$3.50 ea. $4.50 ea.
$3.00 ea. $4.00 ea.
$4.50 ea. $5.50 ea.
$4.00 ea. $5.00 ea.

Subscription Total
Back Issues Total

Total Enclosed

All funds must be in U.S. dollars on a U.S. bank

Name

Address

O Check O VISA

Card #

00 MasterCard Exp. Date

Signature

The Computer Journal
190 Sullivan Crossroad, Columbia Falls, MT 59912

Phone (406) 257-9119 Mountain Time Zone

J

The Computer Journal / #46

35

Real Computing

The National Semiconductor NS320XX

by Richard Rodman

The New Fax and Laser Processors

National Semiconductor has introduced three new versions of
its processors which address the fax machine and laser printer
markets. These are the 32FX16, the 32CG160 and the 32GX320.

The 32FX16 is a 32CG16 (graphics processor) with an added
vector multiplier (muitiplier-accumulator) device added on-chip.
This device has a 384-byte scratchpad static RAM, and is intended
to perform DSP tasks required by a Group III fax modem. It’s not
supposed to replace DSP devices in predominantly signal-process-
ing applications, however. Because the multiplier-accumulator in-
structions are built into the instruction set, it will be possible to
build fax machines around the 32FX16 with a very small number
of external components. The chip is pin-compatible with the
32CG16 and sells in the $40 range.

Interestingly, other DSP tone-decoding applications, such as
DTMF detectors, may be possible using the multiplier-accumula-
tor. If you get a chance to check this out, let me know.

The 32CG160 is a 32CG16 with a fast 16x16 muitiplier, a 2-
channel DMA controller, an interrupt controller and a bit-blit con-
troller added. This multiplier has faster performance than the
original one, but is built into the same instruction opcode. It is
-intended to increase the performance of Postscript interpreters.
The part is intended for laser printers and other graphics devices.

The 32GX320 (formerly the “Barracuda) is similar to the
32CG160, but with a high-performance 32GX32 core instead of a
32CG16 one. Remember that the 32GX32 is basically a 32532
with the MMU and cache coherency logic stripped out. The
32GX320 CPU adds a 32-bit hardware multiplier. The bit instruc-
tions (set, clear, and test bit) and Index instructions, which were
seldom used because they were slower than regular instructions,
have all been improved. Further, four new complex arithmetic in-
structions were added, again, primarily for the purpose of provid-
ing enough DSP capability to make a 9600 baud fax modem in
software possible. There is also the 2-channel DMA controller,
interrupt controller, and 3 counter-timers. Alas, no blitter.

Personally, I don’t find fax all that interesting, except as a pos-
sible gateway into a future of standardized, but feature-rich, elec-
tronic mail which encompasses device-independent graphics. The
possibilities of the built-in DSP capabilities are intriguing, of
course--and I'm a big fan of making laser printers more powerful
and inexpensive.

Basically, National is making a strong push for dominance in
what is becoming a high-volume market for low-cost, high-resolu-
tion graphics devices. We have also seen Motorola’s new 68302,
which is a 68000 with a number of serial ports on chip and a very
bizarre RISC CPU which controls the serial ports.

36

My personal opinion is that the fad for specialized parts is good
only to a point. When a special processor instruction set is needed
for a part, or when a part is not available without complicated
functional blocks that are not usable because they are too highly
specialized, things have gone too far. Remember the video game
chips of yore? Fortunately, both National and Motorola seem to
be taking care not to get too specialized.

Rumor Mill
National’s announcements also added fuel to another rumor
that National is working on a package similar to TI's TIGA, but
built around the 32CG16. This will be a high-resolution graphics
standard which will support X Window primitives directly. It will
avoid TT’s astronomical fees, and be cheaper and better.

Presently, X terminals are mostly built around Motorola CPUs,
some with 34010s as well. It appears that a bandwagon is building
to make Ethernet and TCP/IP the “next RS-232”, but costs are
still too high to get the Big Mo.

Futurebus: Is it Going Places, or Taking People for a Ride?
Futurebus was a poorly chosen name: once it’s here, will we
change it to Presentbus? The original standard has now evolved
into what is called Futurebus+ (Futurebus Plus), and several ma-
jor vendors have announced chip sets, backplanes, and card cages
meeting the interim specification. Industry consensus is beginning
to gel that Futurebus+ is indeed better than present-day busses.

However, the VME and Multibus-II camps each have existing
inventory and development costs to amortize, and thus are trying
to direct their adherents into an “evolutionary” pathway which will
ultimately lead to Futurebus+. It’s a shame that this wasn’t done
in the past. For example, suppose that S-100 boards had been
available with a PC-bus connector on the other side, so that you
could connect PC-bus boards into an S-100 system. Then users
could have gradually “evolved” into the PC bus without junking
any S-100 hardware, right?

ECHH!

Well, while the VME people appear to have real plans to put
Futurebus signals on the P2 connector, the Multibus-II people
have taken a more SAA-like stance (i.e. posturing without any real
activity). They have made statements along the line of Futurebus
being “strategic for the future”.

Let’s face it, all of these old boards are going to be junked
eventually anyway. If you're going to make a transition to a new
bus, do so cleanly — cold turkey.

So, just what are the advantages of Futurebus+? First and
foremost, it’s fast. BTL (Backplane Transceiver Logic) drives the
backplane at only a 3-volt swing to allow higher slew rates (dV/dt--

The Computer Journal / #46

reduce dV, and you can reduce dt). The chips being developed
have propagation delays of 2 to 3 nanoseconds. There’s a packet
mode in which boards can exchange data at 100 megabytes per
second.

Now remember that it takes electricity about 8 nanoseconds to
go a foot through copper, so a 2 nanosecond delay is about 3
inches of PC board trace. This means that traces not only have to
be short, but all data signals must travel through traces that are
" equal in length. Care must be taken when going around corners.
The boards are the same size as VME bus boards, but the data
bus can be 32, 64, 128, or even 256 bits wide. At 256 bits wide,
speeds of up to 1 gigabyte per second are possible. But with so
little room for logic, and with such high speeds necessitating short
traces, surface-mount technology will be needed. Traces will have
to be modeled as transmission lines. Power consumption will be
high--bus drivers have to be capable of driving 100 milliamps. The
dense boards will generate lots of heat.

Yes, Futurebus+ boards will be real works of art--and priced
like them. There is a high-end board market which is not cost-
sensitive, but this market is only a tiny fraction of the overall board
market which extends down to the low-cost STD and G64 bus
cards. And the high end is the hunting ground of proprictary buses
such as XMI. For this reason, it’s hard at this time to foresce a
bright Futurebus+.

The CD Conspiracy Continued

It was pointed out to me that the Notch copy-protection
scheme used in CDs, to prevent them being copied by DATS, can
be easily bypassed by injecting a smaill amount of energy at pre-
cisely 15 kHz. It’s a shame that the distortion to the original signal
can’t be corrected so easily. Once again, everyone suffers but the
pirate. There is no copy-protection scheme which does not have
this characteristic. When will people learn?

Minix Miscellany

Recent news on the Minix front: the software package is avail-
able in bookstores now, version 1.3 for PCs. From Prentice-Hall, a
version is available for the Atari ST. Versions for the Macintosh
and Amiga will be available shortly. The next big distribution, sup-
posedly this fall, will be version 1.5. Version 1.5 is in the hands of a
lot of people now, because it has been distributed in the form of
“cdiffs” (context diffs) from version 1.3.

The important point to note is that while you get source code
and can port it to any machine you like, Minix is not public do-
main. While they have fumbled around a lot on their way into the
software distribution business, Prentice-Hall seems to be getting
their act together lately, and Andy Tanenbaum (the author of
Minix) is struggling to make the various 68000 Minixes binary- and
media-compatible. Think of it! The three mass-market 68000 PCs
actually able to run the same code! It boggles the mind. ®

~)
For Sale
Ampro Z80 Little Board Plus® System
Ampro Bookshelf system containing the Little Board Plus, power supply, floppy
drive, and a 10 Meg hard drive. Featuring the 4 MHz Z80A, two serial ports, one parallel
port, SCSI port, and a port for additional floppy drives. The system will handie up to four
floppy drives, including double sideed and quad density. It can read/write 5%" IBM PC
and most common 5%4" CP/M disks.
This unit is up and running, and includes CP/M. ZCPR3, many utilities, and all the
manuals. It is ideal for a BBS, Z80 system development, numeric control, etc.
Price $500 plus shipping
VISA & M d A ted
S asterCard Accepte The Computer Journal
190 Sullivan
Columbia Falls, MT 59912
(406) 257-9119
\. J/
The Computer Journal / #46

37

Computer Corner
(Continued from page 39)
it can perform parallel instruction opera-

tions. The only flaw in the design was set-
ting one bit aside for return flag. This
makes the 16 bit device actually 15 bit ad-
dressing or 32K memory pages, with a max
of 512K possible (16 pages of 32K each).
In Forth it is important to point out that
" very little memory is needed for complex
programs. I have a NOVIX CAD pro-
gram that runs very well in 32K of memory
(including the operating system).
By having the ability to perform more
than one operation per clock cycle, it
.means a 8 MHZ cpu could reach 16MIPS
(million instructions per second) speed. I
believe the 20 MHZ 386 is around 4 or 5
MIPS at best condition. Some work has
been done with the NOVIX which showed
that sustained throughput is possible near
twice the clock speed. How fast above the
clock speed is based on compiler optimiza-
tion. I need to point out that the NOVIX
had only 40,000 transistors, while a 386 is
pushing a million transistors. The RTX
and NOVIX are simple designs with bet-
ter reliability and ease of programming.
Chip design bugs would be easy to find in
the RTX, where as the 386 could have de-
sign problems that may take years to ap-
pear because of the complexity.

Lastly is the getting information for my
test project. I want to drive some LEDs
and can’t seem to find out just what the
current ability of the device is. In reviewing

the books, I find little if anything about
hardware connections. This appears to be
a big mistake on Harris’ part, as a large
part of the project will be interfacing to the
real world. There is nothing in the book
about how you are suppose to connect the
ASIC bus to devices. I want to know does
it work like the Noivx which could load up
to 30MA, be latched high or low and kept
that way till toggled off. The Novix could
be used as an I/O device, but the book
really doesn’t explain if the RTX can.
Guess I will be calling Harris on this one.

Till Later

Welt I think I have said enough about
the hardware and design of the RTX, what
is needed next is some code comparisons. I
have done a few small things lately on
other devices and will find the old code
next. I did an industrial product and may
try porting it to the RTX to just see the
difference. Since I am getting ready to
move again, the term ‘finding’ has devel-
oped a new meaning. In any case, for next
time, programming the RTX.

Editor
(Continued from page 2)

(Needham Electronics), EPROM eraser
(Ultra Violet Products), and a bar code
reader (Adaptive Technologies). I've also
stocked up on processor chips, logic chips,
EPROMs, SRAMs, LEDs, transistors,
motors, shaft encoders, plus resistors,
caps, sockets and all the other necessary
odds and ends.

I originally intended to build my first
projects around the Z80, but as I became
more familiar with the 8051 family I
switched. Working on hardware projects
with the Z80 took too long and required
too many chips. With the 8051 tools listed
above 1 can go downstairs after supper,
write a small test program, assembie it,
run it on the simulator, burn an EPROM,
and run it on the development board.

Burning, testing, and erasing EPROMs
is a bit of a nuisance, but it is not quite as
bad as it first appeared. It takes about 15
minutes to erase an EPROM, but 2764s
only cost about $4.00 and I have enough
of them so that I don’t have to wait until
the first one is erased before 1 program
the next one. I am planning a RAM/ROM,
but it will have to wait till I get to it.

So far, the programs have been short
samples to get used to the 8051 command
set and to gain experience with interfacing
to logic chips, buffers, transistors, etc. I
have an overabundance of projects waiting
for development. One of the projects is us-
ing sonic and ultrasonic transmissions
from a piezo transducer to control pests
and varmints. One application will be to
keep the birds out of a fruit tree so that
they don’t harvest the crop before I do.
Another application will be to keep certain
insects out of the garden. Mole and go-
pher repellers have been done before, but
I also want to be abie to control them.
Each of these uses involves a different fre-
quency spectrum, and researching the
sound pattern to use for the different spe-
cies requires much more time and effort
than the programming and software de-
sign. .

I am very interested in controlling mo-
tion with motors. Designing and building
maze running robots is a popular applica-
tion, but I am more interested in numeric
machining and model train control. Not
everyone has a machine tool to control,
but many of you have (or can more readily
obtain) a small model train layout. I'd like
to hear from any of you who are interested
in the area of hobby type robotics.

Some of the other projects in the

queue are mouse drivers to control motor
driven devices from a small embedded
controller (NOT involving a desktop com-
puter), and using a laser diode interfer-
ometer to measure small distances for
numeric machining and robot control.
Again, I'd like to hear your ideas and sug-
gestions.

Controlier Market Activity

The controller market is much differ-
ent than the consumer desktop computer
market. The desktop market changes
quite rapidly, and the results are quite vis-
ible. It is apparent that the two important
chip families are the 80X86 and the
680X0. The 8088 (PCs and XTs) is fading
very rapidly, and the 286 (AT’s) has
peaked. The ‘386 and ‘386SX are hot right
now, and there is tremendous interest in
the ‘486. I don’t follow the 68000 very
closely, but the activity is moving from the
68020 to the ‘030 and ‘040. Everything is
speeding up in the desktop arena and it
appears that a CPU will be hot for about
2-3 years before it will be obsoleted. This
makes for a lot of upgrade activity, and
doesn’t allow software people time to be-
come proficient with the current version
before it is replaced with the newer ver-
sion. The user is faced with the financial
and training problems of constant hard-
ware, operating system, and software revi-
sions. This constant churning is one of the
reasons that I don’t participate in this field.

The controller market is driven by
price, and pennies are important. If you
are going to produce 100,000 microwave
ovens, and a 4-bit processor is sufficient,
you use the 4-bitter instead of the latest
16-bit wonders. On the other hand, if your
product is a real time control system, only
the fastest 16-bit (or even 32-bit) proces-
sor may suffice--I have talked to several
people who are using the 680X0 for em-
bedded applications.

Designs favor multitasking on fast pow-
erful processors where cost and board size
are critical, but I tend to favor distributed
processing on smaller multiprocessor sys-
tems when ever possible. Making the
single/multi processor design is one of the
subjects that we will cover.

As always, your feedback is important.
Take the time to let us know what you are
doing—even better write an article to
share your ideas. @

The Computer Journal / #46

Computer Corner

(Continued from page 40)
give up a really marketable product. I
know I would not.

The problem that got me was time.
When it arrived I discovered the deadline
was June 8, or 45 days later. Having since
changed jobs, and other projects taking

. priority, my spare time has become quite
sparse. What made it more of a problem
was the hardware itself. I would need to
add more memory to the development
board for my big project and they didn’t
lay out the circuit for it. I think it was a
little short sighted on their part to not in-
-clude the needed printed circuit work for
the extra memory. Their book explains
how and provides a schematic, but you
only get a bread board area. So to meet
my deadline I would also have to hand
wire in two high speed memory chips. At
that point I gave up trying to develop my
product for the contest.

The Hardware

If you were an early winner you re-
ceived the development board and a very
good manual. The shipping invoice stated
it had a market price of $100 (75 for the
board, 25 for the book). Many Forth users
are now trying to get Harris to sell them
the board at that price (I will let you know
if they succeed). I found the book to be
very good if you know Forth, and they give
you other sources to seek out if you are a
novice at Forth. It consists of a USERS
GUIDE, HARDWARE REFERENCE

"MANUAL, CONTEST PROGRAM-
MERS REFERENCE MANUAL, and
EBFORTH SOFTWARE USER’S
MANUAL. In all the manual has about
400 pages including, sample code, sche-
matics, and several glossaries.

I had to make an adapter from the 9
pin PC type serial plug supplied to a regu-
lar DB2S5 so I could use my modem pro-
gram to talk to it. The power supply is a 4
‘AA’ battery holder and plug. You are
suppose to get 3 or more hours of use on
the battery pack. They supply an extra two
pin plug so you can connect to a regular 5
volt supply. They say the supply should be
capable of 150MA (not very much of a
current draw). Once the power and serial
line is connect to your computer it is ready
to run. I often forget to hit the ‘B’ key,
which checks for baud rate, and end up
with nothing or very unreadable output.
Just push the onboard reset button and hit
‘B’ once and the sign on message should
appear.

The board is 4 by 6.3 inches in size.
Half the board is 0.1 inch holes for bread

The Computer Journal / #46

boarding. The other half contains the
RTX2001AX chip, the MAP chip, an
RS232 interface chip, an 74AC00, a
16MHZ crystal oscillator, and numerous
caps and sip resistors. All components ex-
cept the MAP are surface mounted, MAP
is in a socket. The prototype area is not
solder through holes, but holes with a thin
cross hatch trace running on both sides of
the board. The grid or cross hatch pro-
vides power on the top and ground on the
bottom. Personally I am a bit skeptical of
the grid, as it looks too easy to get both the
top and bottom soldered together, other-
wise know as shorting out the power. A
very fine touch with the soldering iron will
be needed here. .

Harris does produce a more expensive
proto-type and development board for the
RTX series. This contest board was de-
signed to be cheap and allow for some mi-
nor development work. It does give you a
chance to test and experiment with some
simple operations. Next issue 1 will give
you a sample simple program to test it out,
but this time 1 want to review mostly the
hardware, especially the MAP chip.

The main chip is of course the RTX
processor, but it would not be usable with-
out the EBFORTH in ROM and some ex-
tra RAM. All that is supplied in a special
chip called the MAP. The MAP168-55 is
made by Waferscale Integration, Inc. and
consists of 16K EPROM and 4K RAM.
The MAP name comes from the PAD or
programmable address decoder, which al-
lows the user to program the location of
the memory (map to a location of your
choice). Gated buffers are included mak-
ing for a two chip computer (CPU and
MAP). The RTX is a 16 bit wide device
and thus the MAP is set up for 16 bit data
transfers (one of its options). That means
2K of words storage and after EBFORTH
sets up its own tables, about 1.6K of words
for dictionary is left (actually 3228 bytes).

It appears that the Forth is also special
and not their full development program.
This is where another problem exists, the
book is just full of information. So much
information is provided you quickly get
confused and overloaded. The program-
mers reference manual starts you out with
block diagrams of the RTX core and then
drops off the deep end with internal regis-
ter usage followed by detailed instruction
definitions and samples. I am sure if you
really start using the chip, you will be very
glad of the information provided, but for a
quick project just too much information is
provided. A number of smaller chapters
do provide some “how to” information

and samples, but just not enough for my
tastes. I feel most users will need a little
more hand holding to get started than the
manual provides.

RTX2001AX

The RTX is an outgrowth of the NO-
VIX chip. As the Harris people are happy
to say “a NOVIX with things done right!”
Harris has also added to the NOVIX core
with some of their own ASIC devices.
What they did was use the NOVIX with
minor changes, added timers, interrupt
controller, stack controller and stack
RAM, ASIC bus interface (a Harris stan-
dard interface), optional multiplier, mem-
ory control devices, and other needed glue
chips. All this and more can be had in an
RTX product. The idea is to provide as
many optional ‘STANDARD’ products as
possible. That allows the customer to pick
and choose functions as needed. All devel-
oped by using their regular products dur-
ing the development stage and only mak-
ing one chip when the idea is proven to
work.

The RTX2000 series of chips has been
delayed as I understand, because Harris
had such a large special order from one
company, they had little time (or incen-
tive) to produce some standard products.
For low quantity use standard products
are needed and thus the RTX2000. As it
stands now, I believe there are only the
two products available, a RTX2000 and
RTX2001. The 2001 is cheaper with no
multiplier (math processor), less stack
memory on board (64 bytes not 256) and a
couple of internal registers being different.
I seem to remember reading (although I
can not find it now) some references to
minor other difference between the stan-
dard RTX2001A and the evaluation
RTX2001AX used in the contest board.

The hard part is describing the internal
operation of the RTX. The core is com-
posed of some 24 (23 in RTX2000) regis-
ters, arranged to provide the functional
equivalent operation in hardware of what
has been a software architecture. The
Forth architecture is based on a two stack
system (a data stack, and a return stack).
These two stacks allow for separate opera-
tions on the data or program direction. In
the case of the RTX it allows for single
cycle return instructions.

A very large number of the high level
Forth words are directly convertible to the
RTX machine instructions. In some cases
just setting a bit of the instruction word
will cause the Forth operation. This means

(Continued on page 38)

39

The Computer Corner

by Bill Kibler

I have two topics to cover, one strictly
software, the other is a start on the Harris
RTX system.

"By this time everyone should have re-
ceived their copy of the new WINDOW 3
package. We were able to get one at work
before they ran out. Seems Microsoft was
getting over 6000 calls a day. It will be
interesting to see how fast selling tapers
off. There are plenty of reviews elsewhere
so I will only touch on a few things that
interested me.

1 like the new screen display, it is much
better than their WINDOW 2, but still not
as good as 68000 based window programs.
The use of memory seems to be getting
better, but unless you have a 386 with
about 4 megabytes total memory most of
the features are not usable. Our biggest
problem is the absence of programmer
support. Microsoft’s SDK (software devel-
opers kit) is not supposed to be out until a
month after WINDOW 3 release. We got
the product to see if our resident pro-
grams can co-exist with the product.

* Our products use special key opera-
tions to switch between our products and
the PC. It has been interesting to see just
how many programs go in and steal key-
strokes. The IBM LAN manager takes key
strokes before the handler, which is exactly
what all their documentation says you are
not to do. It seems most of our problems
stem from Microsoft and IBM not follow-
ing their own rules. Windows now requires
a special program as they steal all the key-
strokes and don’t give you any way of get-
ting them. To write a special program you
need the SDK and of course no SDK
package is available yet.

My personal position on WINDOWSs is
that it is a nice product to try, but most
users will remove the program from their
hard disk (all 4.5 megabytes) after trying it
a few times. At a local computer club
meeting, several had already tested it, and
found it running slower than WINDOW 2.
They said about 50% speed on a 286,
while it runs at 75% of the speed with a
386 and 3 megs of extended memory. My
test show it runs far too slow no matter

40

what machine you use. Personally, the fea-
tures it provides are useless to me and as
such I have no use for it at all. It may at
some point be needed however, as many
companies are planning on using it as a
graphical interface to their next version.
The new GUI (graphic user interface) will
make interfacing programs to it easier
(once they release the SDK). With that
ability I expect more companies to use it.
My concern is how much memory and
hardware these new programs will need.

A Post Script Driver

A friend of mine just got himself a new
24 pin Epson printer, and it came with a
discount offer on a postscript driver pack-
age. He didn’t have 3 inch 1.44 meg drives
so he ask me to move it to 780K 3 inch
drives. In doing that I tried the program
on my printer, an non-epson compatible
device. Well neediess to say I didn’t get a
usable output. The point of interest was
how the package was set up.

Let’s start from the top of the prob-
lems list. First off it came only on 1.44 meg
disks. If you are going to offer a package
on 3 inch disk, 780K is the standard for-
mat right now. It was zipped with ZOO as
two files. I used PKZIP and put it on
three, 780K disks. With the cost of disks
these days, three 780K are about the same
price as two 1.44 meggers. No saving on
that, just user problems.

Let’s talk programs next. I must give
them credit for seeing the need for several
different programs. The smallest running
program however does require at least
400K of extended memory. If you want to
run the program with other programs (LE.
a word processor) you will need 1 to 2
megs of extended memory. A math
coprocessor also would help. I know that
post script is a math intensive program,
but when I ran their one line post script
sample it took from 5 to 10 minutes be-
fore being ready to output to a printer.
The variations were due to which printer
version I installed it for.

The point I am making about both
WINDOWSs and the post script driver is
their need for specific hardware. The sup-

posed selling point of the PC was it’s hard-
ware independence. Programs were sup-
posed to work regardiess of your hardware
configuration. First we had graphic pro-
grams that started writing directly to cer-
tain video ram, but not all. We had always
been free of disk format problems, every-
body just used 360K disks. Now with pro-
grams requiring 4 to 8 megs of hard disk,
disk formats are becoming an issue. It is
starting to be necessary as well, that you
have a 20/25 MHZ 386 with 4 to 8 megs of
memory to run most programs.

What I question is which are they sell-
ing, software or hardware? It seems more
lately hardware. For my money 68000
based machines are looking better and
better all the time. They do everything the
new programs can do with less hardware.
Personally, it is starting to make me feel
like letting others try all the new programs,
while I stick with my smaller and faster
programs running on cheap hardware.

Harris RTX

Speaking of faster and cheaper solu-
tions, I have promised a review on the
RTX2001. Harris and Embedded System
Magazine, sponsored a contest on using
the RTX as an embedded controller. I
sent in my request very early, but didn’t
get a board until early MAY. You see the
idea was to have you submit an idea and
flow chart of your project. I wanted to do
an AX.25 (amateur radio X.25 packet sys-
tem) on a single card. They would select
winners, well good ideas versus bad ideas,
and send the winners a card with an
RTX2001A on board. It was suppose to
be a development system, and would allow
you to develop your product(contest prod-
uct that is).

I can see from the letters that arrived
after my board that a number of problems
developed. The big problem was a reluc-
tance to develop anything marketable, as
Harris retained all right to code. They of
course want to have plenty of application
notes to help sell the chips. I think it is a
good way of doing it, it is just most will not

(Continued on page 39)

The Computer Journal / #46

