Programming - User Support

Applications

T

Issue Number 47 November / December 1990

Controlling Stepper Motors with the F68HC11
The Z-System Corner
Using 8031 Interrupts
T-1 Telecomunications Standard
Modula-2 Makes the Z-System Connection
Interfacing the 68HC705 to LCDs
Real Computing

The Computer Corner

ISSN # 0748-9331

$3.95

The Computer Journal

Editor/Publisher
Art Carison

Circulation
Donna Carlson

Contributing Editors
Bill Kibler
Tim McDonough
Bridger Mitchell
Clem Pepper
Richard Rodman
Jay Sage

The Computer Journal is pub-
lished six times a year by Technology
Resources, 190 Sullivan Crossroad,
Columbia Falls, MT 53912

(406) 257-9119

Entire contents copyright © 1990

by Technology Resources.

Subscription rates —$18 one year
(6 issues), or $32 two years (12 is-
sues) in the U.S., $24 one year sur-
face in other countries. Inquire for air
rates. All funds must be in U.S. dol-
lars on a U.S. bank.

Send subscription, renewals, ad-
dress changes, or advertising in-
quires to: The Computer Journal, 190
Sullivan Crossroad, Columbia Falls,
MT 59912, phone (406) 257-9119.

Registered Trademarks

It is easy to get in the habit of using company
trademarks as generic terms, but these trademarks are
the property of the respective companies. It is important
to ach ledge these trad rks as their property to
avoid their losing the rights and the term becoming
public property. The following frequently used trade-
marks are acknowledged, and we apologize for any we
have overlooked.

Apple Il, I+, lic, lle, Lisa, Macintosch, DOS 3.3,
ProDos; Apple Computer Company. CP/M, DDT, ASM,
STAT, PIP; Digital Research. DateStamper, BackGroun-
der ii, Dos Disk; Plu*Perfect Systems. Clipper, Nan-
tucket; Nantucket, Inc. dBase, dBASE |l, dBASE Il
dBASE Wl Plus, dBASE IV; Ashton-Tate, Inc. MBASIC,
MS-DOS, Windows, Word; MicroSoft. WordStar; Micro-
Pro International. IBM-PC, XT, and AT, PC-DOS; IBM
Corporation. 280, Z2280; Zilog Corporation. Turbo Pas-
cal, Turbo C, Paradox; Borland International. HD64180;
Hitachi America, Ltd. SB180; Micromint, Inc.

Where these and other terms are used in The Com-
puter Journal, they are acknowiedged to be the prop-
erty of the respective companies even if not specifically
acknowledged in each occurrence.

The COMPUTER
JOURNAL

Issue Number 47 November / December 1990

EdItOrialcoeeevereeiiinniireeeirseessssencessesesnesssnsseneessonsnennes 2

Controlling Stepper Motors with the 68HC11F 3
The first in a series on controlling steppers.

By Matthew Mercaldo.

The Z-System Corner eeesmrrsssssssensensesenss 6
The ZMATE Macro Command Language.

By Jay Sage.

Embedded Systems for the Tenderfoot 1
Using 8031 interrupts.

By Tim McDonough.

LI O TUTOITPRR | -

What it is and why you need to know.
By Richard Rodman.

ZCPR3 and Modula TOO ..ca.eeieeieeceeieeeiieeceeeeeeeeeees 18

Modula 2 makes the Z-System connection.
By David L. Clarke.

Tips on Using LCDScccovveemmmriiienicnniisinecnneccnceeens 22
Interfacing to the 68HC705.
By Karl Lunt.

Real Computingc.ccccccviiicineccccrrnrcrreseenrenncenenne 26
Debugging, NS32 Multitasking Trick, and

Distributed Operating Systems.

By Richard Rodman.

Long Distance Printer Drivercccceeveecrrercncnnen. 30
Corrected schematics from issue #46.

ROBO-SOG 90.......convereermiinrisseiaeiesnrcsnasenesenens 32

A report on the ROBO-SOG happenings.
By Michaei Thyng.

The Computer Corner.........coccccoieceerecccrccennecrerresnns 36
By Bill Kibler.

Editor’s Page

" Congratulations!!

Matthew Mercaldo, author of Mulli-
tasking in Forth in issue #44, and the step-
per motor series starting in this issue, was
the second runner for the software entry in
the Harris RTX contest. His entry was an
application note on the use of expert sys-
tems for stepper motor control.

We are fortunate in having people of
this caliber writing for TCJ, and are look-
ing forward to his next article in the step-
per motor series. Matthew, like so many
other of our authors, is very busy, but per-
haps he’ll also find time to tell us about
how the RTX can be applied to Al in the
real world.

Harris was swamped with entries, and
the competition was very stiff, so Matthew
deserves to be proud of his accomplish-
ment.

ZSDOS Programmer’s Manual

We covered ZSDOS, which is a CP/M
BDOS replacement written in the spirit of
the ZCPR command processor, in issues
#37 and #38. It is a good way to wring
more performance from the 8-bit systems,
and corrects many of CP/M’s shortcom-
ings. Some of its features are file dates-
tamping (built-in or modular), Public and
Path file access, automatic login of
changed diskettes, and fast relog of fixed
disks.

Now, Carson Wilson, coauthor of
ZSDOS, author of ZDE, and Sysop of
Antelope Freeway (modem: Antelope
Freeway RAS, 312/764-5126, Chicago)
has published the manual on program-
ming for ZSDOS. It is available for $10
from Carson, Plu*Perfect Systems, or
Sage Microsystems East. It is hard to find
books on eight-bit systems and many of
them are never reprinted, so I suggest that

you order yours now so that you won’t be
disappointed.

RAM, ROM, and R?M

We are all familiar with ROM which is
read only, RAM which we can read and
write, and EPROM (pius EEPROM)
which we can program and then read. But
there is another variation, which can cause
some strange debugging problems where it
is difficult to determine if the problem is
software or hardware.

I was talking to someone who had run
across a strange effect with static memory
devices. While working with embedded
Z80 controllers connected to peripheral
chips (I forgot whether it was the 8253
Programmable Intervat Timer or the 8255
Programmable Peripheral 1/0) the device
would not always come up correctly.

They finally discovered that, after hold-
ing a value for some time, the Z80 and
peripheral chip registers would often re-
tain their previous value after being pow-
ered down and restarted. This can be a
nebulous trap if you fail to initialize all reg-
isters on reset. If the registers always came
up with random garbage it would be easy
to find the problem. But when it some-
times comes up OK, it makes the solution
more difficult.

I don’t know how long the effect lasts,
what percentage of the chips react this
way, -or if some chips will reliably exhibit
this characteristic. But, if you lose power in
the midst of an operation, you may be abie
to recover some of the data by powering
up with out re-initializing and saving the
registers. I plan on setting up a small SBC
to evaluate this effect. Has anyone else no-
ticed this? Does it aiso hold true for any
dynamic RAM devices? I would appreci-
ate hearing from you.

WordStar Strikes Again

One of my long delayed projects is a
file printing utility which will output what I
want the way I want it. The WordStar 4.0
print command bit me again, so I rotated
the print utility back to the top of the
stack. My project stack (actually it’s a pile)
is definitely not FIFO (First In First Out)
or FILO First In Last Out). Sometime I
think it’s FINO (First In Never Out), and
when it avalanches to the floor it gets rear-
ranged in random order. There are some
interesting results when a spill results in
the contents of two project folders being
intermingled — perhaps that is serendipity
(an aptitude for making desirable discov-
eries by accident) at work.

While most printer drivers are concen-
trating on WYSIWYG (What You See Is
What You Get) for typographic and
graphic page preparation, I want YGWRT
(You Get What’s Really There). I'll use
PageMaker for graphic page preparation,
but I want a sterile print driver for pro-
gramming and text files.

The WordStar driver considers any line
which begins with a period as a comment
or command, and does not print the line.
Our authors frequently refer to file exten-
sions, such as COM or PRN, which should
properly have a preceding period. Word-
Star sets the text OK if the file extension is
within the line but will lose it if reformat-
ting puts the file extension at a beginning
of a line. It would be better if WordStar
only considered lines starting after a hard
return, but it also ignores lines which it re-
formats with soft returns. There is the
same problem with decimal numbers. My
current fix is to make sure that nothing
starts with a period by dropping the period

(Continued on page 33)

The Computer Journal / #47

Controlling Stepper Motors with the F68HC11

by Matthew Mercaldo

When I was a little boy, machinery fascinated me. I was obsessed
with the science of movement —as far as a little boy can be

- obsessed. I would develop the stuff of star drive and robot with my
~ tinker toy set and my imagination. On Christmas morning, through

hastily flung wrappings, these machines would come to life from
the building blocks that Santa ieft. After completing any one of my
machinations I'd tinker, ponder, then contemplate the what if:
“What if I could make it move on its own?”.

This and the following series of articles will teach the theory of
stepper motor control and demonstrate principles through appli-
cation. The motors will be spun with a NewMicros F68HC11
based processor and motor driver board. These articles will not
concern themselves with the physics of magnet and coil, but will
instead focus on the control of steppers. This control includes the
acceleration, deceleration, starting, stopping, and position tracking
issues along with error detection and correction which are associ-
ated with stepper motor control. This first article will delve into
stepper motor control theory. The second article will apply the
theory to one stepper motor. The third article will build on the first
two and explain how to control two motors simultaneously, as well
as examine all the issues associated with this motor asynchronisity.
Now for some theory.

If the acceleration, sustaining of constant velocity and decelera-
tion of a motor were viewed on a graph with coordinates of time
vs. velocity, a trapezoid is seen. Positive acceleration is the upward
sloping line, constant velocity is the plateau, and deceleration is the
downward sloping line. Figure 1 illustrates this trapezoid.

There are three guiding variables in the stepper motor control
model described herein: the accumulator, the rate

termines the motor’s minimum velocity. The acceleration constant
is a positive value which determines the motor’s acceleration. The
constant for deceleration is a negative value which determines the
motor’s deceleration. The regular interrupt period determines the
maximum motor velocity. This model is assumed to be driven by a
regular interrupt.

When a motor start is initiated, the accumulator is set to the
constant step count and the rate counter is set to the acceleration
constant’s value. Figure 2 shows an initial setup for the counters.

Upon interrupt, the rate counter is subtracted from the accu-
mulator. This happens until the accumulator reaches zero. When
the accumulator reaches zero, three things occur: first, the accu-
mulator is reset with the constant step count; second, an accelera-
tion constant is added to the rate counter via the acceleration
counter; third, a new step command is sent to the hardware. This
cycle continues until the rate counter either accumulates a value
equal to the step count or the rate counter decreases in value to
Zero.

On an acceleration cycle the rate counter is initialized to the
acceleration constant’s value. As cycles progress the rate counter’s
value increases. This accumulation of the rate counter progresses
until the rate counter’s value is equal to or greater than step
count; the motor is at its maximum speed. Figure 3 illustrates this
acceleration.

The speed attained by acceleration can be sustained by the
state which writes a new step to the stepper motor on each peri-
odic interrupt over a specified period of time. Figure 4 illustrates
the constant velocity plateau.

counter, and the acceleration counter. The accumula-
tor is a counter which is decremented by the rate
counter on every periodic interrupt. When the accu-
mulator’s value reaches zero, a new phase is sent to
the stepper motor windings. The rate counter deter-
mines the velocity of the stepper motor if kept con-
stant. On acceleration and deceleration, the rate
counter is updated by the acceleration counter. The
acceleration counter determines the acceleration or
deceleration of the stepper motor. Upon acceleration,
this counter is set with the acceleration constant, a

positive number. Upon deceleration, this counter is set Ve
with the deceleration constant, a negative number.

There are four critical constants in this stepper mo-
tor model: step count, acceleration count, deceleration
count, and regular interrupt period. Step count is a Initialize to
constant used to refresh the accumulator. This con- Acceleration

stant, in conjunction with the rate count counter, de-

state change

Motor Run Instance Trapeziod

Acceleration to
Constant Velocity
state change Constant Velocity to
Deceleration

state chapge

Constant Velocity
Acceleration

/’ Deceleration

[— Deceleration to
Time Stop
state change

Figure 1: Motor Run Instance Trapezoid.

The Computer Journal / #47

Initial Values of Constants:

Step Count = 10
Acceleration Count
Deceleration Count

2
-1

Initial Values of Variables:
Accumulator = 10
Rate Counter = 2

Acceleration Counter = 2

Figure 2.Initial Variable Settings for a Stepper Run.

After this time the deceleration of the motor is initiated. Upon
initiation of the deceleration cycle, the rate counter’s value is equal
to the value of step count. The deceleration constant is used, via
the acceleration counter, to update the rate counter in subsequent
deceleration cycles. In order to decelerate the motor, the rate
counter must be decreased. Since the deceleration constant is a
negative number, addition to the rate counter decreases the rate
counter’s value. This decreasing of the rate counter causes the
frequency of writes to the stepper motor windings to decrease.
The motor decelerates to a stop. Figure 5 illustrates motor decel-
eration.

From the above illustrations one can see the concept behind
the acceleration and deceleration of a stepper motor. Acceleration
and deceleration of a stepper is required to maximize stepper mo-
tor function and usage. Next we need to explore the concepts
behind tracking and controlling stepper motors.

destination!

One can guess that it never works that smoothly, and would be
correct. Assuming thus let’s cover two more concepts: settle time
and boost.

When a stepper motor steps, a certain amount of energy is
developed in the mechanical portion of the system. When the new
step is complete, inertia wants to continue the step’s movement.
The magnets in the motor want to stop the step. A kind of “rubber
banding” effect occurs in which the motor’s magnets and the sys-
tem’s inertia fight until they both tire out. The armature “wiggles”
about the new step. The time for this oscillation to stop is called
settle time. Let’s call the forward “wiggles” forward counts and the
back “wiggles” back counts. Depending on the encoder’s resolu-
tion, these forward and back counts can make the encoder count
one or two ticks in each direction. Since the “rubber banding”
happens more than once, erroneous counts are accumulated. Usu-
ally the back counts are symmetric with the forward counts. In this
case erroneous accumulation of counts can be accounted for in
software by subtracting the forward counter from the reverse
counter. The symmetric counts are eliminated thus giving an abso-
lute distance in encoder ticks.

Boost is a stepper driving technique which increases the step-
per motor’s initial torque. A higher voltage is applied to the motor
coils under software control. This “boost” is applied for only part
of the motor step cycle—only a limited amount of regular inter-
rupts as described in the acceleration model above. Boost is typi-
cally used in high torque applications where more power is re-
quired to initially “start the wheel moving.”

A stepper motor is usually found in a closed system.
This means that the start and stop points as well as individ-

ual steps are all monitored by switches and encoder de-
vices. When the motor reaches some “home” position a
switch is actuated. When the motor reaches some maxi-
mum limit another switch is actuated. The software looks
at these switches to see if they are open or closed depend-
ing on where it thinks the motor is in the system. Limit
switches work in conjunction with encoder devices in the
typical robotic scenario. An encoder is a counting device
that when turned in a specific direction generates clock
pulses. From these pulses the speed and direction as well as
distance traveled can be ascertained. When the motor spins
in one direction, counts are accumulated in the forward
counter; when the motor spins in the opposite direction,
counts are accumulated in the reverse counter. An encoder
has a higher resolution than the stepper motor’s step. This
means that there are many encoder “ticks” for each motor
step.

Let us assume a stepper motor system where each mo-
tor step is five encoder ticks. We send the software a com-
mand to step three steps. Several actions are taken to step
‘the stepper three steps. The steps are converted into en-
coder ticks (there are 15 ticks in 3 steps), and the current
encoder position is retained by the software. Fifteen is then
added to the retained encoder value (this new variable is
the Target). The motor is stepped three times, and the new
encoder count is compared with the Target count. With
these counts being equal, we know we have reached our

Interrupt Accumulator Rate Count Acceleration Count
Reset values 10 2 2 New Step

1 8 2 2

2 6 2 2

3 4 2 2

4 2 2 2

5 0 2 2 New Step
Reset values 10 4 2

6 6 4 2

7 2 4 2

8 -2 4 2 New Step
Reset values 10 6 2

9 4 6 2

10 -2 6 2 New Step
Reset values 10 8 2

11 2 8 2

12 -6 8 2 New Step
Reset valuees 10 10 2

13 0 10 2 New Step

Stepper Acceleration Complete

Figure 3.Counter Activity During the Acceleration of a Stepper.

Interrupt

Reset values
14

Reset values
15

Reset values
16

Constant Velocity Complete

Accumulator Rate Count Acceleration Count
10 10 2
0 10 2 New Step
10 10 2
0 10 2 New Step
10 10 2
0 10° 2 New Step

Figure 4.Counter Activity During Constant Velocity of Stepper Run.

The Computer Journal [#47

Figure 5.Counter Activity During Deceleration of a Stepper.
Interrupt Accumulator Rate Count Acceleration Count Reset values 10 2 -1
Reset values 10 10 -1 as 8 2 -1
17 0 10 -1 New Step 36 6 2 -1
Reset values 10 L] -1 37 4 2 -1
18 1 9 -1 38 2 2 -1
19 -8 9 -1 New Step 39 [} 2 -1 New Step
Reset values 10 8 -1 Reset values 10 1 -1
20 2 8 -1 40 9 1 -1
21 -6 8 -1 New Step 41 8 1 -1
Reset values 10 7 -1 42 7 1 -1
22 3 7 -1 43 € 1 -1
23 -4 7 -1 New Step 44 -1 1 -1
Reset values 10 6 -1 45 4 1 -1
24 4 [-1 46 3 1 -1
25 -2 € -1 New Step 47 2 1 -1
Reset values 10 L ~1 48 1 1 -1
26 5 5 -1 49 [1 -1 Hew Step
27 0 5 -1 New Step Reset values 10 1] -1
Reset values 10 4 -1 Deceleration Complete
28 [4 -1
29 i 1 4 -1
30 -3 4 -1 New Step
Reset values 10 3 -1
31 7 3 -1
32 4 3 -1
33 1 3 -1
34 -2 3 -1 New Step

In review, within the typical stepper system, a step accounts for down the step rate in the deceleration state.

a certain distance. The mechanical part of the system is adjusted The next article is this series will apply some of this theory to
accordingly. (One doesn’t want gizmo’s arm to move too far when spin a motor and track it using the NewMicros FGS8HC11 and the

told to pick up the block.) Steps are correlated to numbers of NewMicros Stepper Driver board. Until then, take care and have
encoder ticks. Encoder ticks, along with limit switches, let the soft- fyn with Forth. ®

ware track the motor’s position. The motor can start moving by
the combination of boost and a slow acceleration if more torque is
required, it can maintain velocity, and it can slow down by slowing

Join the

Forth Interest Group

The Forth Interest Group (FIG) continues to be the best Forth resource.

* Forth Publications, FIG carries the largest selection of Forth literature found anywhere.
* Disk Library, "Contributions from the Forth Community", includes tutorials and tools.
* Forth Dimensions, our bi-monthly magazine is devoted exclusively to Forth.
* Chapters provide an opportunity for local, face-to-face meetings with other Forth enthusiasts.
* GEnie™ Roundtable provides a central focus for technical discussions and includes an on-line library
of over 700 downloadable files.
* Annual FORML Conference, held at Asilomar Conference Center, on the beach in Pacific Grove,
California, during the Thanksgiving holiday weekend, provides an excellent opportunity to participate
in technical sessions and mingle with leading Forth experts in an informal setting.

FIG is a non-profit, membership organization of over 1700 members in 20 countries. Membership includes
a subscription to Forth Dimensions, discounts on purchases of Forth literature and more. Annual dues are
$30 for USA, $36 for Canada air mail and $42 for all other countries. To join or receive further information:

Forth Interest Group, P. O. Box 8231, San Jose, CA 95155
Phone: (408) 277-0668 or Fax: (408) 286-8988

*CEnie (General Electric Network for information Exchange) is a trademark of General Electric Company

The Computer Journal / #47 5

The Z-System Corner
by Jay Sage

Last time I presented an overview of the philosophy behind the
design of the ZMATE macro text editor and wordprocessor. In
- -particular, I described the approach that allows the user of the
~ program to implement his/her own text processing functions and
" to bind them to arbitrary sequences of keystrokes. In other words,
* you can design your own wordprocessor!

This time I am going to begin a description of the macro com-
mand language that ZMATE uses. For this column we will start
with relatively simple macros; in future columns we’ll begin to dis-
play some of the fancy things that ZMATE can do. Even if you
- don’t own or use ZMATE (yet), I hope you will find it interesting
to learn about this approach to the implementation of a text edi-
tor.

For those of you who remember my promises from two issues
back, 'm afraid that my computer has still not been restored to
fult operation since the hard disk drive gave me problems. I sent
the drive out to be repaired, and the technicians could not find
anything wrong with it. Since I did not want any data to be de-
stroyed, they did not try reformatting it, but they told me that they
had no trouble reading data from the tracks.

I just have not had the time to reinstall that drive. For the
moment I am still running on a replacement drive with only the
most basic software (and I mean basic — I don’t even have BGii
on it yet!). It may be that my house has been afflicted by malicious
. gremlins. My modem failed at about the same time as the hard
disk. I finally negotiated with the manufacturer the terms under
which I could return it for repair. Before doing so, however, 1
decided to give it one more try. It worked perfectly! Are there
problems that go away when an instrument is powered down for a
week or two that would not go away in one day?!

During the time of these troubles, Murphy really had the upper
hand. Although there were some files on the hard disk that 1

Jay Sage has been an avid ZCPR proponent since the beginning
and is best known as the author of the current version of the ZCPR3
command processor and of the ARUNZ alias processor. He has
been running Z-Node #3 (617-965-7259, MABOS on PC-Pursuit,
pw=DDT) since 1983. Jay is also the Z-System sysop on GEnie,
where his mail address is JAY.SAGE. Stop by and chat live at the
Wednesday real-time conferences (10pm Eastern time), especially at
the first one each month, which Jay hosts.

In real life, Jay is a physicist at MIT, where he tries to invent
devices and circuits that use analog (!) computation to solve prob-
lems in signal and image processing. He can be reached via Internet
as SAGE@LL.LLMIT.EDU.

You can also write to him at the SME address or, if you prefer
voice contact, you are welcome to try 617-965-3552 (10:30-11:15 at
night is most likely to find him at home), but please don’t call Friday
evening or Saturday.

should have backed up but did not, there were some very impor-
tant files related to these TCJ columns that I had backed up to a
floppy. However, when the hard disk failed, the backup floppy
vanished. Now, even after a month, it has still not turned up. If I'm
lucky, the hard disk will work when I reinstall it, and the floppy will
then reappear, in plain sight on my desk where I know I kept it. If
all that happens in the next two months, I hope to have a further
installment on my efforts to patch up MEX-Plus to add some new
features and correct some bugs. Cross your fingers for me!

Recapitulation
I’d like to start the ZMATE discussion by reminding you of the
four ways in which macro commands can be used, as described in
my previous column.

The most common way to execute a macro is by pressing one
of the so-called instani-command editing keys, such as the keys
that move the cursor left, right, up, and down by various amounts.
These keys are bound to a set of ZMATE internal functions, most
of which are implemented in the macro language. In the original
PMATE editor, from which ZMATE was derived, these functions
could not be changed; in ZMATE the user can patch in new
macro functions for the internal commands. Source code is pro-
vided in the file INTMACRO.Z80, and it is a relatively simple
procedure to edit it and patch it into the distribution version of
ZMATE.COM.

An additional set of macro functions can be defined in the
“permanent macro area” or PMA. There, macro strings are asso-
ciated with single-character names. These macros can be invoked
by name using other commands in the macro language, and those
with a specific range of names can be bound to keystroke se-
quences.

Third, when the editor is in command mode, the user can enter
a temporary macro sequence directly on the command line at the
top of the screen. The user’s command line is stored in a special
text buffer called the command buffer.

Finally, the contents of any of the ten numbered editing buffers
can be interpreted as a macro sequence and executed. In other
words, any of the auxiliary editing buffers can function like the
command buffer.

ZMATE Macro Commands

Now let’s look at some of the macro commands that ZMATE
recognizes. We can’t cover all of them this time. We will start with
some of the simpler ones and then will cover a few of the more
sophisticated ones. We will then look at some of ZMATE’s built-
in functions so you can see how macros are used to implement
them.

The ZMATE language is very compact to save space, typing,
and time. Most of the commands use only a single letter; some are
two characters; a few are three-characters long. To the extent pos-
sible, the letters for the commands are chosen to be mnemonic in
some way. There is a bit of a learning curve, but it does not take

The Computer Journal / #47

too long to get the hang of them. I made a two-page crib sheet
that T occasionally consult to remind myself of some of the more
obscure ones.
Cursor Motion

The most basic commands are those that move the cursor
around within the text in an editing buffer.

There are four macros that move the cursor in units: ‘M’
moves by characters; ‘W’, by words; ‘P’, by paragraphs; and ‘L’, by

" lines. It is pretty clear what a character is. The one thing that might

not be obvious is that hard carriage returns are treated as a char-
acter in the text. The cursor can be positioned on one, and it can
be deleted to close up two lines. ZMATE does not generally use
linefeeds. Carriage returns in the editing buffer are converted to
carriage-return/linefeed pairs when the file is written out to disk or
printed.

Words are contiguous groups of letters and numbers. Special
characters — such as periods, quotes, asterisks, dollar signs,
etc. — and control characters — including spaces, tabs, and car-
riage returns — separate words. Paragraphs are terminated by
hard carriage returns. ZMATE supports a mode, called “format
mode,” in which lines wrap automatically at the right margin as
with wordprocessors. The apparent carriage returns at the ends of
the wrapped lines are called soft carriage returns. The “P” macro
ignores those carriage returns. When ZMATE is in format mode,
the hard returns are visible as ‘<’ characters in highlighted video.

Each of these move-by-unit macros can take a signed numeri-
cal prefix. Such a prefix is one of the two ways arguments are
passed to ZMATE commands. For the cursor-motion commands,
if there is no prefix, “1” is assumed; if the prefix is simply “-”, then
“-1” is assumed. .

Positive prefixes move the cursor forward (to the right and
down) in the text; negative prefixes move it back (left and up). For
example, “3W” moves the cursor to the beginning of the third
word after the one where the cursor is now, while “-2W” moves
the cursor to the beginning of the second word before the one in

. which the cursor is presently located.

A “0” prefix moves to the beginning of the current unit. For
this purpose, word separator characters are considered to be a
part of the word they follow. Suppose we have the text

ONE...TWO: ; THREE

with the cursor sitting on the ‘W’ in “TWQO’. “-W” will put the
cursor on the ‘O’ in ‘ONE’; “OW” will put it on the ‘T in “TWQO’;
and “W” will put it on the “T” in “‘THREE’. Where would the
cursor have ended up if it had started on either the colon or semi-
colon between “TWO’ and “THREE’? Answer: in the same places.
Those word-separator characters after “TWO’ are treated as if
they were a part of the word they follow.

What do you think “OM” does? Well, it does nothing to the
cursor. Nevertheless, it is not at all a useless command. You see,
the numerical prefix is not always given as a literal number. Some-
times it is a calculated quantity, as we will see later. If we compute
how far we should move, and the answer is zero, the macro should
work.

There are a few absolute (unit-less) cursor motion macro com-
mands. The command “A” moves the cursor to the first character
in the edit buffer, while “Z” moves it just past the last character,
namely to the place where the next character would be inserted.
ZMATE supports virtual memory in its main editing buffer, called
the “T” or text buffer. Files that are too big to fit in memory are
paged in and out, either manually or automatically, as desired. The

The Computer Journal / #47

macros “UA” and “UZ” go to the beginning and end of the entire
file (think of ‘U’ as ‘UNLIMITED?"). If required, the file will be
paged from disk.

The “QX” command is one of a whole family of “Q” com-
mands, a couple of which we will see this time. It takes a numerical
prefix and moves the cursor to that column in the current line. The
columns are numbered beginning with ‘0’. As is frequently the
case, an absent prefix is taken as “1”. Not surprisingly, the prefix
must be non-negative. What happens if you violate this restriction?
Does your file get trashed and your whole disk wiped out? No,
ZMATE tries to interpret the number as a positive number,
which, of course, is larger than the maximum column allowed
(typically 250). The result is a beep from the terminal and a
strange positioning of the cursor.

Perhaps this is a good time for a general comment about num-
bers in ZMATE. Numbers are stored as words (two bytes, or 16
bits). Such numbers can be interpreted either as positive numbers
ranging from 0 to 65535 or as signed numbers with a positive
range 0 to 32767 (7FFF hex) and a negative range from -1 (FFFF
hex) to -32768 (8000 hex). Numbers are also used to represent
Boolean logical values. False is represented by ‘0°; true, by -1’
When a function only accepts Boolean values, then any number
other than ‘0’ is taken as true.

The “Q-” macro determines whether ZMATE will display
numbers as signed or unsigned. Following the Boolean conven-
tion, “0Q-" turns off the display of negative numbers, while “-1Q-”
or just “Q-” turns them on. If you enter a number all by itself as
an interactive command line macro, its value in the current display
mode will be shown after the “arg=" status message on the top
line of ZMATE's screen. If you enter

0Q- -1$$
you will see “arg=65535" on the status line. If you enter
Q- -1s$

you will see “arg=-1".

Now lets see how some of ZMATE’s built-in functions are
defined. Look at Table 1. Functions 3 and 6 are especially interest-
ing. Macro commands can be combined by writing them in se-
quence with or without spaces or tabs between the individual com-
mands. The spaces in the two examples above were put there only
to make the commands easier for you to read; ZMATE can read
them just as well without any spaces.

Function 3 implements what an ordinary person would think of
as “move back one word.” If the cursor is currently somewhere
other than the beginning of a word, then the cursor is supposed to
move back to the beginning of the current word. If it is already at
the beginning, then it should move back to the beginning of the
previous word. As we noted earlier, “~-W” would move back too
far in the former case. Moving back one character and then to the
beginning of the current word does the trick. See if you can figure
out why —and why function 6 is implemented as it is.

Text Deletion and Insertion

There are only two deletion commands: “D” deletes charac-
ters; “K” deletes (kills) lines. They take a numerical prefix with the
usual default values. Deletions to the right — positive prefixes —
start with the character under the cursor. Deletions to the
left — negative prefixes — start with the character to the left of
the one under the cursor. Thus, the command “K” deletes all
characters on a line to the right of and including the cursor, while
“OK” deletes all characters on a line to the left of the cursor.

“OLK” deletes the entire current line. Line deletions to the right,
by the way, include the carriage return at the end of the line.

The basic insertion command is “I”. It can be used in two
forms. If it has a numerical prefix, then the character with that
ASCII value is inserted before the character under the cursor, and
the cursor remains on the character it was on before (i.e., after the
new character).

The prefix value is interpreted as a positive number modulo
256. This form of the insert command can be used to insert some
characters that cannot be inserted by typing (e.g., characters with
their high bit set) and some that cannot be inserted using the
second form of the insert command that we wiil look at shortly
(e.g., the escape character).

Some character values (e.g., 0 and some special values that
ZMATE uses for specially formatted text) cannot be used. Char-
acters with the high bit set can be put into a file and can be written
out to disk, but when such a file is read back in, the high bits will
be filtered out.

The second form of the “I” command illustrates the general

“syntax for string arguments in the macro language. These come

after the macro command and are terminated or delimited by es-
cape characters. The command

Istring of text$

will insert the string of characters following the ‘I’ and up to the
escape character, which is indicated here by the dollar sign. Some
commands, as we will see shortly, take more than one string argu-
ment.

Another type of insertion is replacement, which uses the “R”
command. It is much like the “I” command except that the new
characters replace those under the cursor and to the right. For
example, “65R” changes the character under the cursor to an ‘A’
(ASCII value 65), and the command “Rtest$” replaces the charac-
ter under the cursor with a ‘’, the next character with an ‘e’, and
so on. The cursor ends up on the character after the last one
replaced.

The “\” command converts its numerical prefix into the text
representation for the number and inserts it into the text before
the cursor. Leading zeros are not included.

It might be appropriate to mention at this point that ZMATE
in not limited to working in decimal radix. There are macro com-
‘mands to set a radix to values between 2 and 16. Decimal is stan-
dard and will be assumed in all our examples. However, the radix
in which input numbers, such as command prefixes, are inter-
preted and the radix in which output numbers are displayed can be
changed independently.

For example, “8QI” sets the input radix to octal. “QI” (no
prefix) will always set the radix back to decimal. This is awfully
handy when you don’t know what the current input radix is. After
all, “10QI” leaves the radix unchanged. Do you understand why?
“16QO” will set the output radix to hexadecimal, provided the
input radix was decimal when this command was processed. If it
was octal, the output radix would become 14, the octal value of
‘16'.

I recommend a trick for entering constants so that expressions
will not be misinterpreted if the radix is changed. We have been
careful to implement all built-in functions using radix-invariant ex-
pressions. The special ZMATE operator double-quote converts
the character following it to its ASCII numerical value. To set the
output radix to hexadecimal, for example, we could use the com-
mand

*"PQO

Here we use “"P’ to represent control-P. ZMATE allows control
characters to be entered by typing a caret followed by the letter.
The older PMATE editor also displayed control characters this
way, but ZMATE shows just the character in highlighted video.
The value of control-P is always 16, no matter what the input radix
is. If you cannot enter a single character with the desired value,
you can use arithmetic to get the value. We could have written the
above command as

("Q-"A)Qo0
or simply
“Q-*AQ0

since ‘Q’ is 16 characters higher than ‘A’.

Now back to insertion macros. There is one more. “QH” in-
serts a block of blank spaces (perhaps the ‘H’ stands for ‘hole’) in
the text before the cursor. As usual, it takes a numeric prefix. The
three commands below are alt equivalent.

10QH

I $

® I®" I* I* I* I* I* I I I" I
Besides being more compact, the “10QH” form will generally be
faster. It tells ZMATE in advance how much space to open up,
and the entire insertion, which may involve moving the text after
the cursor, can be done in a single operation.

Search and Search-and-Replace Macros

ZMATE’s string searching command illustrates a syntax in
which a command takes both a numerical prefix argument and a
string argument. The general form of the search command is
“nSstring$”. The numerical prefix can be positive or negative.
With a positive value, the search is performed in the forward direc-
tion; with a negative value, the search moves back toward the
beginning of the buffer.

The number tells ZMATE the maximum number of lines to
search through. The current line to the left of the cursor is line 0.
The current line to the right of the cursor is line 1. Thus “0Stest$”
will search for ‘test’ in the part of the current line to the left of the
cursor. ““-4Stest$” will search in the current line to the left of the
cursor plus the four lines before that. “1Stest$” will search the
remainder of the current line beginning at the cursor and working
to the right.

The default prefix values are different with the “S” command
from what we have seen before. If just a sign is given without a
number, then the entire remainder of the text buffer in the given
direction will be searched. Thus a plus sign — or no prefix at all —
defaults to the largest positive number (32767); a minus sign alone
defaults to the largest negative number (-32768).

A variant of the “S” command is “US” (unlimited search). Like
the commands “UA” and “UZ”, it will perform scrolling of a file
to and from disk in order to search the entire file. The “US”
command does not accept a numerical prefix; it would not make
sense, since it searches the entire file. It does accept a sign to
indicate the direction of the search.

The search-and-replace, or change, commands “C” and “UC”
are quite similar except that they take two string arguments. The
first is the search target; the second is the text to replace the search
target with. If I executed the command

The Computer Journal / #47

Table 1. Macros used to implement some ZMATE built-in
cursor motion functions. The table lists the function
number and describes what the function does. If the
function has a standard binding, it is shown. A caret

prefix indicates a control character.

fn # description key macro
1 to end of buffer 4
2 to previous char "G -M
3 to previous word o] ~MOW
4 to next character “H M
5 to next word P w
6 up one line Y ~MOL

~Ctest$examination$

at this point in the text, the instance of ‘test’ three paragraphs back
would be removed and replaced by ‘examination’.

Some special characters can be used in the search string in the
“S” and “C” commands. A control-E represents any character (‘E’
as in ‘EVERY"). Thus “Ste”Et$” would find either ‘test’ or ‘text’
(or lots of other things). A control-S (‘S’ as in ‘SPACE’) represents
any white-space character, namely space and tab. Control-W rep-
resents any word-separation character, so that “Sa”Wb$” would
find ‘a-b’ or ‘a b’ or ‘a/b’ (but not ‘axb’ or ‘a//b’, which has two
word-spacing characters between the ‘a’ and the ‘b’).

A control-N matches any character except the one that follows
it ("N’ as in ‘NOT"). “Ste”Nst$” will stop on ‘text’ and ‘tent’ but not
on ‘test’. Just in case you need to search for one of these special
characters, control-L (‘L’ as in ‘LITERAL’) causes the character
following it to be treated literally. Thus “S"L"N$” will search for a
control-N, and “S"L3$3$” will search for an escape character.

These special characters do not implement string searching as

"powerful as that in Unix GREP or in Bridger Mitchell’s Jetfind,

but they cover the most common situations. Other macro capabili-
ties in ZMATE would make it possibie to implement full GREP
search rules, but such a macro would not be very fast.

Variables

A little earlier we alluded to the fact that ZMATE has numeri-
cal variables. It can perform arithmetic operations, bitwise Boolean
operations, and logical comparisons with literal numbers and val-
ues of variables.

Listing all the variables would take up too much room here, so
I will describe just a few of them to give you some idea of the kind
of information available to a ZMATE macro.

Almost all ZMATE variables are represented by an ‘@’ sign
followed by a character that designates the variable name. None of
them take any arguments, except for two that take a string argu-
ment.

Some variables tell where the cursor is located. “@C” returns
the number of the character (its position in the text) counting from
the first character in the buffer. “@L” gives the absolute line num-
ber (i.e., counting from the beginning of the file, even if some of it
has been scrolled out to disk) of the line containing the cursor.
“@X?” reports the column number.

Some variables give information about the way the page is set
up. “@Y” and “@W?” give the left and right margins, respectively.
“@Z"” gives the column number of the next tab stop.

The Computer Journal / #47

One of the most important variable commands, if not the most
important, is “@T”. It returns the ASCII value of the character
under the cursor. This information is critical to intelligent text
processing.

There are also ten user variables numbered from 0 to 9. The
“V” macro is used to set values into them, and the values can be
retrieved by ‘@’ followed by the variable name. Full memory ac-
cess is provided by the variable “@@?”, which returns the contents
of memory at the address stored in user variable 9. The macro
“Q!” stores the value passed as a prefix into that address. Thus
“@@” is the PEEK function and “Q!” is the POKE function.
“@P” returns the absolute address where the character under the
cursor is presently stored in memory.

The macro command “Gprompt$” displays the prompt string
on the command line and waits for the user to enter a keystroke.
The macro “@K” (‘°K’ as in ‘KEYSTROKE’) then returns the
ASCII value of the user’s response. This provides the hook for
interactive operation.

As you can see, ZMATE gives you the basic tools for doing
just about anything. It may take some effort, but there isn’t much
that is impossible. There are a few variables I can think of that are
missing. For example, ZMATE can get a disk directory or ask if a
file exists, but it cannot find out how much space is left on a disk
(though it can find out how much memory is free). It also cannot
determine the drive or user number it is logged into or that is
associated with a file it is editing.

Flow Control

A programming language is pretty much uvscless if it has no
way of making decisions. That’s why the flow control package
(FCP) is so important in the Z-System. We have already shown
you the kind of information that is at ZMATE’s disposal. Now we
will show you how that information is used to make decisions.

In one way or another ZMATE implements all the major flow
control forms: repetition, if-then-else, do-until, and goto. Blocks of
macro code are formed by enclosing them in matching pairs of
either square or curly brackets. For most purposes, the two forms
of bracket are equivalent.

For the flow control formats, we will use ‘n’ and ‘m’ to repre-
sent macro expressions that return numerical values. A numerical
value of ‘0’ has a Boolean value of ‘false’, while a numerical value
of -1’ has a Boolean value of ‘true’. Three dots are used to indi-
cate an arbitrary sequence of macro commands, which may, them-
selves, include flow-control constructs (nesting of flow control is
allowed to 15 levels).

The general form of the repetition macro is

n{...m)

The value ‘n’ is the repeat count. In general, the macro com-
mands inside the brackets will be repeated ‘n’ times. If ‘n’ is ‘0" or
‘false’, they will be skipped. If ‘n’ has the special value ‘-1’, it will be
interpreted as a Boolean, and the block will be executed only once.
Other negative values will be interpreted as their corresponding
positive values. If the prefix ‘n’ is omitted, the block will be re-
peated indefinitely (well, actually some 65534 times, but who's
counting).

After each iteration of the block of macro commands and be-
fore going back to the beginning, the value of ‘m’ is checked. If its
Boolean value is 0 (false), iteration continues; if it is nonzero
(true), control passes over the ending bracket and continues with
any following commands. Thus ‘m’ constitutes the ‘until’ test for
the DO-UNTIL construct.

If the numerical/Boolean expression ‘m’ is omitted, then the
value of the special ZMATE error flag is used. This flag can also
be evaluated explicitly as “@E”. Certain commands set and clear
this flag. For example, a search command (*“S”) will set the error
flag if it could not find the designated search string. A cursor mo-
tion command that tries to take the cursor beyond the bounds of
the text will also set the flag.

There are cases where iteration loops seem to terminate pre-
maturely. This is usually because of the default use of the error
flag as the ‘until’ test. One way to get around the problem is to end
the block with the form ‘0]. This ensures a false ‘until’ test and
continued iteration.

The general form above includes basic condition processing.
Full if-then-else processing is implemented by the form

nle...][«.e1

If 'n’ is ‘false’ (i.e., has a value of zero), then the first block will be
skipped and the second block executed. If ‘n’ is ‘true’ (in this con-
text, nonzero), then the first block will be executed and the second
block skipped. This form is identified by the touching closing and
opening brackets. If you have two repeat blocks in a row, use ‘] [
with a space instead of ‘][* to prevent ZMATE from interpreting
the macro as an IF-THEN-ELSE test.

There are several special commands for terminating or moving
around within an iteration block. The ‘exit’ macro “n_” will imme-
diately exit the loop and continue after the next closing square
bracket. The ‘next” macro “n”” will immediately go back to the
closest preceding opening square bracket and start a new iteration.
This is the only case in which the kind of bracket makes a differ-
ence. Because of this difference, it is generally effective to use
curly brackets for if-then-else tests and square brackets for itera-
tion constructs.

One extra word of caution. ZMATE is not smart enough to
distinguish brackets in string expressions from those used in flow
control constructs. Be very careful whenever you have string ex-
pressions containing square or curly brackets; they may confuse
flow control macros.

ZMATE has a goto function. The syntax is “nJx”, where X’ is a
single-character label (any character can be used). If ‘n’ is true,
ZMATE will scan the macro from the beginning for a marker of
the form “x”.

Finally, if ‘n’ is true, the command “n%” will terminate execu-
tion of the entire macro and return control to any macro that
called this one as a subroutine or to the user.

Some Final Examples

Table 2 shows some more examples of built-in functions. These
macros use some of ZMATE’s testing powers. Function 0 moves
the cursor to the first character in the buffer unless it is already
there, in which case it moves it to the bottom of the buffer. The
expression “@C=0" performs a logical comparison of the value of
‘@C’, the number of the character under the cursor, and 0. If the
cursor is on the first character in the buffer (remember, number-
ing starts at 0), then this expression will be Boolean ‘true’ (arith-
metic -1), and the first macro block, “Z”, will be performed. Oth-
erwise the second block, “A”, will be carried out.

In looking at that macro just now, I realized that it could be
shorted slightly to

€C{A}{2}

10

Table 2. Macros used to implement some additional and more
complex ZMATE built-in functions.

fn # description macro

] toggle top/bottom of buffer
24 character left geometric
38 toggle case of character

@Cc=0{Z}{A)}
eX>0{eX-10X}
QT>"@&(Q@T<"[) {@T+* R%}
eT>""&(@T<"{) {€T-" R%}
M

Here we treat “@C” as a Boolean value. If it is zero (we are at top
of buffer), it will be interpreted as ‘false’ and “Z” will be executed.
The version we used is easier to read but costs two extra charac-
ters.

Function 24 moves the cursor left one character geometrically.
The command “-M” moves the cursor back one character abso-
lute, and will back up to the previous line if the cursor is presently
at the beginning of a line. The geometric motion macros work on
the column number. Function 24 first checks to see what column
the cursor is in presently. If the column number is greater than 0
(“@X=>07), then the macro computes the column number one to
the left (“@X-17) and passes that value as a prefix argument to
the command “QX”.

Function 38 is still more complicated. It toggles the case of the
alphabetic character under the cursor. The macro has three inde-
pendent parts, the first two of which are conditionally executed.
The conditionals are complex expressions involving two parts com-
bined by a Boolean operator.

In the first one, eT>~e tests to see whether the character under
the cursor has an ASCII value greater than that of ‘@’, which is
one less than ‘A’ If ZMATE had a greater-than-or-equal-to test,
we could have written something like eT>==a, but this is not al-
fowed. The second part, eT<~{, tests to see if the character is ‘Z’ or
less. These two tests are combined by the Boolean ‘and’ operator
‘&’. The result will be true if the character is an upper case letter.

If the result is true, the value of the space character (32 deci-
mal, but radix-invariant when expressed this way) is added to the
current value to make the corresponding lower case character.
This value then replaces the existing character. Finally, “%” is
executed to terminate the macro.

If the first conditional is false, the macro continues with the
second one. It tests to see if the character is in the range ‘a’ to ‘z’.
If it is, 32 is subtracted from the present value to make the corre-
sponding upper case character, which then replaces the existing
character. Again, the macro is terminated with “%”.

If the character is not alphabetic at all, the macro continues
with the final line. This simply moves the cursor to the next charac-
ter without making any change.

Next time we will continue the discussion of ZMATE’s com-
mand language, and, with any luck, I wilt have recovered my MEX
patches and will be able to present them as well. @

The Computer Journal / #47

Embedded Systems for theTenderfoot

Using 8031 Interrupts
- by Tim McDonough

The topic for this month’s Embedded Systems for the Tender-
foot series is the use of interrupts with the 8031. You know what
an interrupt is right? It’s when you’re working on your latest proj-
ect and your spouse stops you to cut the grass or haul the kids to a
ball game. You stop whatever your doing, jot down a quick note or
two so you don’t forget what you were about to do next; run the
kids to their ball game, return home and pick up where you left
off.

Don’t laugh. If you were an 8031 your spouse’s yell would have
been an external interrupt. Jotting down your notes would have
been saving the return address on the stack. When you ran to the
car took the kids to their game, and watched them win (hopefully),
you were executing the interrupt service routine whose last act was
to return you home and plop you in front of your project to con-
tinue working. See, I told you knew what an interrupt was!

Now of course as with most things in life, 8031 interrupts aren’t
always as simple as running the kids to the ball game. For one
thing there are several different types of interrupts—external
interrupt, timer interrupts, serial port interrupts, etc. This time, I'll
look at a simple timer interrupt. In future installments I'll present
projects that use the 8031’s external interrupt lines and another
that uses interrupt driven serial communications.

There are a few basic things you need to know about interrupts
before you can make use of them. First, the 8031 must be told to
look out for the interrupt you intend to use. This is done by ena-
bling the specific one you’re interested in using in your system.

Next, you need to be aware of what the 8031 will do when the
interrupt occurs. It turns out that for each particular type of inter-
rupt, the 8031 has a special memory location that it will jump to
when the interrupt occurs. This location is often called the inter-
rupt vector address. In the 8031, and most other microcontrollers,
all of the interrupt vectors are located near one another in mem-
ory. It is common practice, since little address space exists between
each vector, to place a JMP instruction at this address that will
jump to the actual code you want to execute; hence you will often
see the group of interrupt vectors referred to as the “jump table™.

The code that the jump table points to is usually called the
“interrupt service routine.” This, as it name implies, services or
responds to the interrupt. Depending on your own application this
routine may cause a counter to be incremented that is part of a
clock, perform an analog to digital conversion, update a display,
flash a indicator light, count an external event, read a keyboard,
etc. Interrupts are extremely powerful and their use is nearly es-
sential in a “real time” control system.

The Computer Journal / #47

When timer interrupts are enabled, the 8031 will generate an
interrupt whenever a timer/counter overflows from FFFF(Hex) to
0000(Hex). By making a calculation based on the clock speed used
for the 8031 and using the resulting number as the timer reload
value, it is possible to generate an interrupt at precise time inter-
vals. If your application then counts the interrupts, you can use the
timer as a system clock so you can perform certain actions every so
often, regardless of what else the computer may be doing.

Figure 1 shows a minimal 8031 circuit with a transistor driver
and LED added to demonstrate timer interrupts. This is the same
circuit T used in the first article in the series when I presented the
XOR.ASM program. (See the sidebar for a description of this
interface.)

Listing 1 is the source code for FLASH.ASM. It demonstrates
the use of a timer interrupt to perform a task at regular intervals.
In this example an LED flashes. Other uses might be checking the
status of a switch regularly, taking an analog to digital converter
sample, etc.

FLLASH.ASM uses equate statements to establish the location
of the 1/O pin used to drive the LED interface (See the interfacing
sidebar) and sets the number of interrupts that must occur before
the state of the LED is toggled. Next the program execution skips
over the jump table for the interrupt vectors.

The example uses Timer 0 of the 8031 to generate the inter-
rupts. Code must be located at location OB (Hexadecimal) to
handle the interrupt. Although it is not the case here, the interrupt
service routine might be fairly long. It is fairly common then to
place a jump at location 0B (Hexadecimal) to the address of the
routine that will service the interrupt.

The setup portion of the program is slightly different than the
previous programs I've presented. Timer 0 is set up to be a free
running timer' and turned on and the delay value is loaded into
register RO which will be used as a counter. The last two lines of
code may be unfamiliar. The Timer O interrupt must be enabled
before it will have any effect and the 8031 must also be told to pay
attention to all the possible interrupts.

The main program of FLASH.ASM is an endless loop. The
8031’s NOP instruction does nothing except waste some time.
Your own application might perform some serial communications
or whatever. The idea is that no matter what the main program is
doing, a Timer 0 interrupt will suspend that action and service the
interrupt before continuing.

The BLINK subroutine is where the work gets done. Each time
the 8031’s Timer 0 rolis over from FFFF (Hexadecimal) to 0000

11

Interfacing Microcontrollers

Whatever the microprocessor, the “computer” of an embedded
system can range from exciting to ho-hum, depending on your
point of view. But let's face it, in most embedded systems interfac-
ing the “‘computer’ to the real world is where the rubber meets the
road, so to speak.

Several articles, indeed entire books, could be devoted (and
have been) to interfacing microprocessors. I’'m not going to attempt
to cover the topic in depth but a few general bits and pieces of
circuitry may help get your project off the ground a bit sooner.
Some of these interfaces have been mentioned, but not described,
in previous columns. A few others are presented due to popular
request by those of you who are venturing forth into the world of
embedded systems.

The following descriptions are of general purpose interfaces.
No one circuit design is optimal for every solution and depending
on the nature of your system and its interface to the real world, a
poor design can lead to injury or even death to the user. That
doesn't mean you shouldn't build embedded systems. It does
mean you should work within your own limitations and abilities.
Stick with applications that you understand. | doubt that anyone’s
first project was a missile guidance system or a heart pacemaker.

Push Button Switch

Figure A shows the electrical interface for a pushbutton switch.
The switch might actually be a button that the user presses or it
might be a cabinet interlock switch, burglar alarm contact closure,
etc.

S1 is a momentary contact, normally open switch. The 10K ohm
resistor, R1, is called a “pull up” resistor. When the switch is open,
R1 pulis up the voltage on the microprocessors input pin to +5
volts indicating a value of *“1” when that bit is read. When S1 is
pressed, the input pin is held at ground potential and a value of
“0" is represented when the bit is read. R1 keeps the 5 volt power
supply from being shorted to ground when the switch is closed.

“Programming” Jumpers

In many microprocessor circuits, options that are infrequently
changed are selected via programming jumpers or DIP switches.
You've probably encountered these when setting up a new printer
or modem. Electrically they can be the same as the pushbutton
switch except that S1 is replaced with a small removable jumper or
a small switch on the printed circuit board. During the initialization
portion of the system software, the switch settings are read and the
users preferences loaded into the processor.

There are endiess uses for programming jumpers. Some often
seen examples are baud rate selection for serial ports, whether or
not a device should send a carriage return or a carriage return/line
feed combination, etc.

Relay Output

Several readers have inquired about my “to relay #1” descrip-
tion in the Communicating With The Real World column. | apolo-
gize to anyone who's been chomping at the bit to try their hand at
parsing commands using the system | described.

Driving a small relay is quite similar to the LED indicator except
that | normally seem to end up with relays that require 12 volts DC
to operate and the logic components can only provide 5 volts at a
very low current.

The transistor circuit shown in Figure B will do nicely for a relay
to control small wattage AC circuits. The interface circuit between
the relay and the microprocessor is required because the amount
of current that the 8031 and most other microprocessors can
source or sink. The typical 8031 part can sink or source 4 LS series
TTL loads (about 500 micro Amps.)

The PNP type transistor shown in Figure B acts as an electronic
switch. When Q1's base is negative with respect to its emitter, the
transistor is turned on and a path is provided for current to flow

through the coil of relay K1. Note that in this particular case 12
volts is being supplied to the relay.

The type of transistor chosen for the interface (PNP or NPN)
may be influenced by the design of your project. After reset all port
latches of the 8031 have 1s written to them. In the case of Figure B
this means that K1 will be de-energized after a reset since Q1 will
be in the off condition. When you toggle the output bit to a 0" the
relay energizes; change it back to a 1" and the relay is turned off.

Figure C shows an interface circuit using an NPN type transis-
tor. This circuit, because an NPN transistor is turned on when the
base is positive with respect to the emitter, will energize the relay
as soon as the system is reset. Similarly, it would be turned off by
writing a “0” to the output pin.

The choice of driver circuitry may be very important depending
on your application. if the relay is controlling a piece of machinery,
it may make a big difference whether or not it is powered up after
the microprocessor is reset. You probably wouldn't want your mi-
croprocessor controlled table saw to start spinning without your
software specifically teiling it to do so now would you?

LED Interface (transistor driven)

Many embedded systems feature LEDs to indicate the status of
the system. An LED is driven much the same as a small relay as
shown in Figure D. In this circuit the resistor R1 limits the current
through the LED to about 15 milliamperes. The value of R1 is
chosen based on the recommended operating current for the LED.

R1 1oK

TO 8031

PNP TRANSISTOR

+12V

TO 8031

+5U

+5U

"HIGH" = ON

4
"LOW" = ON
5y

PNP UVERSION NPN UVERSION

_ J

12 The Computer Journal / #47

Listing 1

FLASH.ASM
September, 1990

~

Tim McDonough

Cottage Resources Corporation
Suite 3-672, 1405 Stevenson Drive
Springfield, Illinois 62703

(217) 529-7679

~e e wa e we

This program demonstrates a method of using the 8031 timer interrupt
force an event to occur at regular intervals. It was developed as a
part of the "Embedded Systems for the Tenderfoot® series published by
The Computer Journal.

~ % we we

'DELAY' ie the number of timer interrupts that must occur before
the state of the output LED is toggled. The LED driver circuit
is attached to Port 1, bit 0 of the 8031 microcontroller.

. N e

.EQU DELAY,H'05 ;1 of interrupts before LED toggles
+EQU LED,P1.3 ;LED is at Port 1, Bit 0

The code is assembled to be located starting at location 0. Then
execution jumps past the interrupt jump table.

~ we

-.ORG H'0000
AJMP SETUP

Any time a Timer 0 interupt occurs, the program jumps to
location 0B (Hex). This location contains a jump to the interrupt
service routine that toggles the state of the output pin.

~ v e

+ORG H'000B ;Timer 0 interrupt vector
AJMP BLINK

The system is initialized by clearing any pending interrupts
and loading Register 0 with the delay value declared elsewhere
with an equate statement. Timer 0 high and low bytes are
initialized to a known state and Timer 0 is set to free run.
The timer and it's interupts are enabled.

Ne % N0 we we

SETUP: CLR EA ;Clear all interrupts
MoV RO, $DELAY ;Initialize Register 0
MOV TLO, #00 ;Initialize the low and high bytes of the
MOV THO, #00 ; counter/timer
MoV TMOD, #H'21 ;Timer 0 mode 1, Timer 1 mode 2
SETB TRO sTurn on Timer 0
SETB ETO ;Enable timer 0 interrupt
SETB EA ;Enable all interrupts

“MAIN PROGRAM"

The main program in this example does nothing. Except for those times
when an interrupt is being serviced, the program executes a very
boring loop.

~ e we e

LOOP: NOP ;Do something here if you like...
NOP ;
NOP ;
NOP H
SJIMP LOOP ;Spin forever

*“BLINK" -> INTERRUPT SERVICE ROUTINE - TIMER 0

Timer 0 runs continuously and generates an interrupt each time it
rolls over from 0 to all 1's. This routine servicees that interrupt
by decrementing a counter (register 0) and complementing the output
line that drives the LED each time the counter reaches 0. If the
value of DELAY equals 5, then the output state will change once every
5th Timer 0 interrupt.

~e we %o we we we we

BLINK: DJNZ RO, NEXT ;Jump to NEXT if RO <> 0

CPL LED ;Toggle the LED

MoV RO, #DELAY ;Reload the delay value into RO
NEXT: RETI ;Return from the ISR

<END

8031 pController
Modules

NEWIII
Control-R II

v Industry Standard 8-bit 8031 CPU

v 128 bytes RAM / 8 K of EPROM

vV Socket for 8 Kbytes of Static RAM

v 11.0592 MHz Operation

v 14/16 bits of parallel I/O plus
access to address, data and control
signals on standard headers.

v MAX232 Serial /O (optional)

V 45 volt single supply operation

V Compact 3.50" x 4.5" size

V Assembled & Tested, not a kit

$64.95 each

Control-R I

v Industry Standard 8-bit 8031 CPU
v 128 bytes RAM / 8K EPROM

v 11.0592 MHz Operation

v 14/16 bits of parallel I/O

v MAX232 Serial I/O (optional)

vV +5 volt single supply operation

v Compact 2.75" x 4.00" size

V Assembled & Tested, not a kit

$39.95 each

Options:
* MAX232 I.C. ($6.95¢ea.)
* 6264 8K SRAM ($10.00ea.)

Development Software:

* PseudoSam 51 Software ($50.00)
Level Il MSDOS cross—assembler.
Assemble 8031 code with a PC.

« PseudoMax 51 Software ($100.00)
MSDOS cross-simulator. Test and
debug 8031 code on your PC!

Ordering Information:

Check or Money Orders accepted. All
orders add $3.00 S&H in Continental US
or $6.00 for Alaska, Hawaii and Canada.
Illinois residents must add 6.25% tax.

Cottage Resources Corporation
Suite 3-672, 1405 Stevenson Drive
Springfield, Illinois 62703
(217) 529-7679

The Computer Journal / #47

13

s cul Figure 1
ILOOUFJ_——/ Llipy.e vee 22 47uF
= SwW2
= _L—_/ 2 P11 reT FElam——
il 1ok = +5U
’ +5V
25 2 28
470 Alz Alz2 Ucc
at 3ip1.2 a1y |22 231 a1l o |27 -QLuF
23 21
Ale Alo
22 24 L
LED AS A9 :
P 21 25
7 Ag Ag 14
= 8031 |10 [GNDQ_
32 18 [GND Vec|ig 3 Ver L
AD? Av -
33 3 2 4
ADB AB
34 17 74LS 16 5
18 DS '35 4 5 5%
XTAL2 AD4 373 A4
38 14 15 N4 EPROM
AD3 A3
1 XTAL apz 32 13 12 8|2 2764A
39pF 19 | XTALL D1 (22 7 5 S a1
39 8 3 10
39pF ADo e O ho
20 | GND = Ji
: 30
XTAL = 11.059 MHz pegn MLE 1
29 19 5
18
06
17
DS
15
D4
15
D3
13
D2
12
1101
De
2|
OE

(Hexadecimal) an interrupt is generated causing the AJMP in-
" struction at location 0B (Hexadecimal) to jump to the BLINK
subroutine.

The DINZ instruction tells the 8031 to decrement the value
contained in the referenced location and jump to the memory
address given if the value is not zero. Since RO has been loaded
with our delay value, 5 Timer O interrupts must occur before the
status of the LED is altered.

Once the value in RO equals 0, the complement instruction
(CPL) changes the state of the output line to the opposite of its
current value. A low output will be driven high and a high output
will be driven low.

Finally the subroutine ends. Notice that the Return from Inter-
rupt (RETI) instruction is used instead of the normal Return
(RET). This instruction causes program execution to be resumed
after the point at which the interrupt occurred and restores the
interrupt logic to accept additional interrupts.

I've intentionally cut this month’s installment short so a sidebar
on interfacing simple devices like relays, switches and LEDs could
be presented as well. There is a lot more to 8031 interrupts than
I've presented and you’ll be hearing more about them in the fu-
ture.

14

Several readers have requested a useful beginner’s project that
demonstrates an actual application of the 8031. I've had a “not
quite finished” data acquisition system on the back burner for a
couple of months now. It’s been dusted off and I intend to present
it as the first real project in the next issue. The system provides 8
analog to digital converter channels in a 8031 based system that
communicates with a host computer via the serial port. The serial
interface allows it to be used with nearly any computer so no mat-
ter whether your machine is a PC, Macintosh, CP/M box or what-
ever, you can add an A/D interface and collect some real world
information. @

The Computer Journal / #47

T-1

What it is and Why You Need to Know

by Richard Rodman

The little boy closely examined the
metal box the old man wanted to sell. He
wiped the dust from its plastic front, re-
vealing a row of dark circles. “What is it?”,
the little boy said.

The old man winked. “In the old days,”
he said, “you used to communicate over
the telephone system with an analog mo-
dem. This one was considered quite fast.”
He leaned forward. “This one ran ninety-
six hundred baud.”

The little boy’s face wrinkled up. “Nine
point six k-baud?” Then, after a pause:
“Does it have any good parts in it?”

This scenario is actually not too far off.
By now, most of you have probably heard
of T-1. This article will attempt to explain
what T-1 is, and why it’s so important.

High-Speed Digital Networks

When I first started working in the tele-
phone business, 1 was astonished to learn
that the United States already has a coast-
to-coast network with high-speed, fully
digital connections running at what were
to me incredible speeds— 1.5 to 45 million
bits per second.

Back in the seventies, AT&T was using
microwave and fiber optics to carry tele-
phone conversations. These were usually
sent in multiplexed analog form. However,
to reduce distortion and to allow greater
mulitiplexing, Bell Labs began developing a
digital transmission standard. Higher and
higher speeds were attained, leading to the
release of the 1.544 megabit-per-second

4)

The terms “baud” and “bits per
second” are not synonymous. To
avoid confusion, the term “bits per
second” (b/s) is used universally in
telecommunications. Also, in tele-
communications, and in this text,
“kilo” means one thousand (not
1,024), and “mega” means one mil-

lion.
- J

Bits and Baud

rate in 1981. This standard has become
known as T-1. Today, there is a T-1 Stan-
dards Committee, made up of telecommu-
nications industry experts, which monitor
the standard and have guided it into new
technologies.

Today, T-1 and T-1-like circuits span
the globe with relatively error-free multi-
megabit-per-second voice and data com-
munication over fiber-optic, microwave,
satellite, and copper links.

Digital Services

T-1 is actually the second level of a
four-level hierarchy of Digital Services.
The first, basic level is called a DS-0, which
corresponds to a single voice channel digit-
ized at 8000 8-bit samples per second, or
64 kb/s. T-1, also called DS-1, is 24 DS-0’s
placed end-to-end. The package of 24 8-
bit samples is preceded by a framing bit
(similar to a start bit), for a total of 193
bits making up what is called a “frame.”
Since there are 8000 frames every second,
the data rate is 1.544 mb/s.

Digital Services

DS-0: 64 kb/s

DS-1: 1.544 mb/s (24 DS-0s)
DS-2: 6.312 mb/s (4 DS-1s)
DS-3: 44.736 mb/s (28 DS-1s)

The next levels are DS-2, which carries
four multiplexed DS-1s, and DS-3, which
carries 28 multiplexed DS-1s. DS-3s are
typically carried over long-hautl fiber op-
tics. Because the DS-1s are muitiplexed
rather loosely into the DS-3, the individual
DS-0 channels cannot be broken out of
the DS-3 directly. Instead, the DS-1s have
to be demultiplexed by a M13 multiplexer.
Then, the DS-1 (T-1) can be sent to a
channel bank or T-1 multiplexer to con-
nect to analog phone lines or digital equip-
ment.

There is a movement afoot to convert
the DS-3s to a synchronous form called
SONET, which will allow direct conversion
between DS-0 and DS-3. However, this
will not be universal for some time.

Signal Levels and Clocking

Because the T-1 signal must be trans-
mitted over long distances, it has to meet
two criteria: (1) it should have little or no
DC-component, to minimize power con-
sumption, and (2) it has to be seif-clock-
ing. To satisfy these requirements, a bipo-
lar signal (see Figure 1) was designed. The
presence, in a given bit-time-cell, of a
pulse indicates a “1”; the absence of a
pulse indicates a “0”. These pulses alter-
nate in polarity. The timing of the pulses
allows the data clock to be regenerated
from the data stream.

Since a constant stream of zeros would
mean that no pulses would be transmitted,

|<- 325

\
_ l
I
|

] ->

3 volts p-p +_ 1.5 v

<

Figure 1. T-1 signal format

ns pulse

/
__/

- 650 ns bit cell

The Computer Journal / #47

15

and the clock would get out of sync or “slip,” there is a “ones-
density” requirement. This is actually a two-fold requirement.
First, there may be no more than 15 zeros in a row; second, there
must be at least 3 pulses in any 24 time slots. This means that
transmitting plain digital data through a T-1 is not directly pos-
sible.

Also, the pulses are supposed to always alternate in polarity. If
they don’t, then you have what is called a “bipolar violation”
(BPV). While these are usually errors, they are sometimes deliber-
ately caused to indicate special conditions.

Why is it so important that there be no DC component? Sup-
pose RS-232 were used. RS-232 lines tend to stay in the idle or
“space” state, which is represented as a -12 voli level. Zero bits are

- transmitted by transitions into the “mark” state, which is at a +12
volt level. Since there is always some finite resistance to ground,
some current must flow to maintain the voltage level. Now con-
sider a 10-mile-long wire, which has considerable resistance itself.
Just keeping that wire in the idle state will require tremendous
electrical power —to transmit no information at all. Today, fiber
optic cables are used for the really long hauls, but fiber equipment
is expensive, so short runs are still mostly copper. And “short,” in
telecommunications, is still many, many miles.

The clock is extracted by a careful and very involved procedure.
The extracted clock is used only for the receive signal, of course.
How can an accurate transmit signal be assured? Within a given
facility, there is usually a standardized “composite clock” which is
generated from one or more trusted T-1 circuits. The most accu-
rate signals are those synchronized to a cesium frequency standard
buried beneath a mountain in Colorado. Generally, you can syn-
chronize to a T-1 that’s synchronized to a T-1 that’s synchronized
to. . . Well, you get the picture.

Framing

I mentioned earlier that the first bit, the framing bit, was analo-
gous to the start bit of an asynchronous data byte transmission. In
normal async transmission, the start bit is always a zero. In normal
synchronous transmission, there are no start bits, but sync bytes
are transmitted periodically to establish synchronization. T-1 trans-
mission is a little like both of these. The framing bit is not always 0
or 1, but goes through a sequence which allows the receiver to
synchronize not only the frame itself (the one set of 192 bits) but
also the frame within a sequence of twelve frames, which is called
a “super-frame.” Why is this necessary?

Well, a phone line carries more than just voice. It also carrics
indications of whether the handsct is picked up (“off hook™) or
laying in the cradle (“on hook™), or whether the phone is ringing.
This data is called “signaling.” This data changes far less often
than 8000 times a second, so what is done is that the least signifi-
cant bit of the data is “robbed” in the sixth and twelfth frames of

Frame Framing bit Signaling bit

1 1 -
2 0 -
3 0 -
4 0 -
5 1 -
6 1 A-bit
7 0 -
8 1 -
9 1 -

10 1 -

11 0 -

12 0 B-bit

Figure 2. Standard superframe framing bit and signaling

16

the superframe to carry two bits of signaling per superframe. Since
the T-1 signals are going in both directions, the signaling does too.
Figure 2 shows the framing bit sequence for what is called “stan-
dard superframe.”

The specific meaning of the A and B bits depends on the par-
ticular interface at the end of the circuit. On long-distance tele-
phone trunks, the B bit is always 0; the A bit is 0 for “idle” (on-
hook) and 1 for “seized” (off-hook).

Actually, I didn’t intend to go this far into telephony terminol-
ogy, but as long as I've done so, a few more words may justify
definition. Telephony is a hundred-year-old industry with a rich
tradition. “Trunks” are long-distance telephone lines that run be-
tween switches, whereas “lines” are telephone lines that go from
switches to “subscribers” (customers). Today, of course, trunks
are usually T-1s carried within DS3s.

There is an enhanced version of standard framing available in
some equipment these days which uses 24 frames to make up a
superframe. This is called “extended superframe.” It also offers a
6-bit CRC per superframe and a “hidden” 4kb/s data channel.

Signaling bits are not usually used for data transmissions. How-
ever, there is a switched 56 kb/s digital data service (DDS) avail-
able (more on this later). In order to guarantee the minimum
ones-density as described earlier, usually, data services will force
the least-significant data bit to a one and only use 7 data bits per
DSO0. This is what gives you the data rate of 56 kby/s.

Alarms

If a device receiving a T-1 bit stream should go out of sync, it
will then collect frame after frame looking for a bit which follows
the framing sequence, until synchronization is reestablished. This
condition is known as “yellow alarm” —there is data, but it isn’t
locked in. Frames lost as it attempts to resynchronize are called
“slips.”

If the data signal is interrupted completely, and no data stream
is being received at all, this condition is called a “red alarm.” There
is also a “blue alarm” —this is when all-ones are transmitted due to
some equipment problem.

Remember, the T-1 signal is bidirectional. You always have
data going in both directions. In the copper environment, two co-
axial cables are used. So, when a piece of equipment is in an alarm
condition, it may still be able to communicate with the other end
and tell him something is wrong.

CEPT (European E-1)

T-1, as described in this article, is used in North and South
America and most of Asia. However, the Europeans have done
their usual thing and come up with Something Better. In this case,
they have a 2.048 mby/s digital standard called CEPT (aka E-1).

CEPTs signal format is identical to T-1. However, the framing
is different. There is no framing bit. Instead, there are 32 time-
slots, and the first one (channel zero) is used to synchronize the
frame, to carry all signaling (no “robbed bits") and to carry speciat
flags for zero substitution. The other 31 channels are used for
voice or data. Whenever any channel wants to send an all-zero
byte, a different pattern is substituted and a flag is set in channel
zero. This allows all-zero bytes to be transmitted easily in CEPT,
which is called “clear channel capability.”

Another difference in CEPT is that voice data is not com-
panded with “mu-law” encoding, which is used in T-1, but with
“A-law” encoding. (I didn’t mention this earlier, but the 8-bit dig-
itization of voice over digital services is not linear but logarithmic.)

Conversion between CEPT and T-1 is necessary for carriers

The Computer Journal / #47

which move traffic (that is, voice and data) between Europe and
the rest of the world. This conversion is performed by “gateway”
devices which re-channelize the data, move the signaling bits
around, and use lookup tables to convert between mu-law and A-
law — for voice channels only, of course.

Clear-Channel Capability on T-1

The lack of clear 64 kb/s capability on T-1 has bothered some
people. So, they’'ve come up with some strange kludges to allow
-all-zero bytes to be transmitted. Usually, these schemes involve
cither stealing a bit from some other timeslot or frame, or causing
deliberate BPVs, or other messy stuff. Some popular schemes are
AMI, B8ZS and ZBTSI. None of these are universally accepted,

and frankly, it isn’t worth the trouble.

End-User Interfaces
. There are two basic types of T-1 equipment which is used at an
end-user site. These are channel banks and multiplexers. Both of
these have basically the same function of creating an outgoing T-1
signal out of up to 24 data sources, and breaking the incoming T-1
signal into 24 data outputs.

The channel bank has, for each T-1, 24 channel cards. Each
channel card is one of many different types. It might be an analog
telephone interface, such as an FXS, FXO, SF, E&M, and so
forth; it could be a synchronous data interface, such as a DSO/DP;
or it could be an asynchronous data interface.

The DSO/DP card uses a synchronous data interface called
DSOA. The DSOA signal is generally converted to V.35 or RS-449
using another box called a DSU. V.35 is more widely used in tele-
communications than RS-449; it’s synchronous and balanced, and
uses a very bulky, expensive connector, but can drive very long
cables.

The T-1 multiplexer usually offers more flexibility than a chan-
nel bank, but at higher cost. Some have modules which offer
higher data rates than 56 kb/s, using muitiple DSOs to carry the
data.

A popular use of T-1 circuits in large companies is as a long-
distance extension to an Ethernet network. Usually, an Ethernet
bridge is used to convert Ethernet packets for the other location
into a high-speed synchronous bit stream, which then is fed into a
T-1 multiplexer. Another use of T-1 is for video teleconferencing.

Putting asynchronous data on a T-1 stream usually involves
what’s called “subrate” muitiplexing. Almost always, a whole DSO
is used to carry as little as 1200 b/s of data, by sending each byte of
data over and over. Some multiplexers are smarter and can fit as
many as five 9600 b/s channels into a single DSO0.

But What About Smaller End-Users?

Indirectly, all of us have benefited from the digital network
interconnecting our cities. It is this noise- and loss-free network
which has made possible our present-day high-speed modems.
However, it secems a little strange to use an analog modem in a
digital network. When you use a 2400 baud modem, your digital
data at 2400 b/s is converted into analog sounds, which are then
digitized at 64 kb/s, transmitted across the country, converted back
to analog sounds, sent to the distant modem, which then converts
the analog sounds back into a 2400 b/s digital data stream.

While the network is digital, though, your local telephone line is
still analog. A real jump in speed requires getting away from ana-
log circuits completely.

If you live near or in a big city, it may be economical to obtain
56 kb/s switched service (Digital Data Service, or DDS). This is a
box which functions much like a really fast modem, but requires a

The Computer Journal / #47

digital connection such as V.35 or DSOA to the local telephone
company office. For connections between two distant offices which
are not needed around the clock, this service may be just the thing.
This service is getting more affordable every day.

ISDN and Fiber to the Home

In the near future, ISDN will be available in most major cities.
This is certain to happen, even though nobody is screaming for it
(yet), but because the telecommunications industry has designed it
as a universal interface for voice and data, and once everyone can
have it, they’ll realize they want it. After that, it will gradually make
it out to the rurals.

ISDN actually consists of two types of interfaces. One is called
the Primary Rate Interface, which consists of 23 “basic” channels
carrying customer voice and data and a “data” channel carrying
signaling, including dialing digits. These 24 channels (23B+D) are
carried in a standard T-1. The PRI connection is for PBXs and
other larger systems.

The main end-user ISDN interface is called the Basic Rate
Interface (BRI). This consists of two B channels at 64 kb/s and a
D channel at 16 kb/s. Typically, it is thought that this interface
could carry, in a little bundle, a voice channel and a data channel.
The data channel could carry limited-motion video in highly com-
pressed form. This BRI is what may be coming soon to a tele-
phone pole near you.

Meanwhile, in some parts of the country, housing develop-
ments have been “wired” completely with fiber optics. This means
a digital 64 kb/s signal delivered right to your doorstep. If this
catches on, it could mean wide acceptance of 56 kb/s switched type
services. ISDN could follow shortly thereafter. _

Yes, the signs are good that the days of pokey modems, and
characters creeping oh-so-painfully slow across the screen, are
coming to a merciful end.

You can be there to see it. Better yet, you can have a part in it.
The telecommunications industry is always looking for people who
can bridge the gap between the telephone and the computer.
Maybe you'll find it to be your . . . calling!

References

There’s only been time in this article to barely scratch the sur-
face of the topic. However, neophytes in the telecommunications
world run a serious risk of being buried under literal tons of tech-
nical specifications and jargon. I recommend the following, in de-
scending order of readability: ®

Understanding Telephone Electronics, by J. Fike and G. Friend,
1983, a Sams publication. Available at Radio Shack for the incred-
ible bargain price of $3!

“An IXC’s look at global ISDN”, T. Kero, Telephony, April 23,
1990, p. 18. For that matter, most recent issues of Telephony
magazine have good articles on ISDN.

Telephony’s Dictionary, by G. Langley.

AT&T publication no. 41451, 1.544 mb/s Service Channel In-
terface Specifications, Feb. 1974. Most AT&T and Belicore publi-
cations tend to be readable, once you have sufficient “critical
mass” to satisfy cross-references. Avoid CCITT books.

17

ZCPR3 and Modula Too
Modula 2 Makes the Z-System Connection

by David L. Clarke

. Listing 1
IntrOducuon IMPLEMENTATION MO 34M2 °
. . . : DULE 234M2;
It’s becoming quite popular lately. First we learned that one C

compiler has been specially designed for the Z-System (Jay Sage’s i(* D. L. Clarke for TCJ (rev} 5 August 1590)
Z-System Corner, TCI # 38, May/Junc 1989). Then in TCJ issue ;(* This module gets the address of the ZCPR3.3+ or *)
o 3 ;(* 23PLUS environment descriptor from the command *)
45, Joe Wrnght showed how a clever alias f:ould patch Turbo T+ processor and stores it away. A procedare is also #)
Pascal so that it can access the Z-System environment which he ;(* supplied to retrieve the pointer later for use by *)
. N ; 1 i . *
defined as a set of Pascal records. Again, if you search around the i(* programs written in FIL Modula 2 !
Z-Nodes, you might find that someone else has found a way for 5: :;i;tinte(r:f:ce is based <_>:hai:ik1,:z’;:d; written :;

. - . . H eve ochen oY use wu X ula - n
Microsoft BASIC to access the Z3 environment. With all of this, ;(* addition, improved verification of having found *)
it’s only natural to expect Modula 2 to also make the Z-connec- 7(* the 233 or 234 enviromment is based on code by)

R , R ;(* Bridger Mitchell as found in The Computer Journal =)
tion. Here’s the surprise, Modula 2 may well have been the first. :(*+ # 36, Jan/Feb 89. *)

There is a large archive of public domain files available for Zimat: db Z33ENV ; used to find this code
electronic download (i.e. FTP) from SIMTEL20 on the Internet. i with patching utility
Some time ago I discovered a file there named Z33-TM2.LBR. ;(* These next instructions are the area that the *)

8 ill immediately j to (tch it *)

H H M ;{* program wi immediately jump to (once we patch 1
This library documents hO\y to interface Turbo Modula 2 and T+ to do mo). we save the emviromment pointer which)
ZCPR3.3. The documentation was dated June 8, 1987. It scems ;(* is provided in HL, and then jump to the procedure *)

(% th h initiall t to first, bef *
that Steve Cohen used the fact that ZCPR3.3 passes the address e atomen garom Anitislly went to fire ot
of the Z3 environment in the HL register when loading and run-))

. patch: 14 (z34adr) HL ;save environment pointer
ning a program. He used a small amount of assembler code to jp 0 ;replace '0’ by original
save this address for later usage by the high level code. Once the jprogram destination
program was compiled and linked, it required a small amount of z34adr: dw o ;pointer to Z34ENV
patching before it was ready to be run under ZCPR. 1Label sentry to GetEnv procedure

< Although I have used Turbo Modula 2, I prefer using FTL GetEnv: iPROCEDURE GetEnv(): Z34PTR;
. pop he 4 ;BEGIN (* save ret addr r)
Modula 2 from Workman & Associates. I therefore proceeded to 14 HL, (234adr) ;
adjust the program to my requirements. During the adjustment ‘i’g:h iy :
process, I expanded on several areas of the original approach. This inc HL ;
article shows the final result. . Az ;
u 1d z3mat+l) ,A ; IF z34adr”.z3str = “Z3ENV"
The ‘iImplementation’ Module 1d ,(;,5 :

Modula 2 is linked so that all modules that require initialization 4, DEzimerdl ;

- . . ’
will be executed before the main program code. The result of this pop DE ; AND
: : : : ; 1d A, '3 ;
linkage is that tr.1e first instruction executed (gt locanoq 100 hex) 19 (+3mat+1) A :
will always be a jump to the first module needing to be initialized. T NZ,notz3 i

. . . 1d HL,1Bh ; z34adr”.z3env = z34adr
The trick is to make the jump go first to the code that saves the add AL.DE ;
environment address and then jump to the original destination. 1d A qur —
P PO . . < H
Listing 1 shows how this is done. Instead of an implementation bt Nz ,notz3 ;
. . " . PP - ine HL ;
module written in Modula 2’s high level language, this implemen 1 A (HL) S RETURN z34adr
cp D ;
jr Z,return ; ELSE
notz3: 1d HL, 0 ;

David Clarke was originally an Electrical Engineer at Pratt & it end i RETURN NIL

. - . - . return: 1d HL, (z34adr) H
Whitney Aircraft until he discovered that it was more fun to program end: ex (5P ,HL ; mop

1CrT push 1Y H (* restore ret addr *)
the data acquisition systems that he developed. He therefore became pus A
a systems programmer.

. . . tch: 1d A, (DE) ; PROCEDURE match(B);
Dave is also an Adjunct Assistant Professor at the Hartford nere cp (HL) BEGIN
1] i inc HL ; FOR i := 0 TO B-1 DO

Graduate Center m' Hartford CT, wftere fte has taught c?urses in e o : TFHL-(i] o DE-(1) THEN
Systems Programming, Software Engineering, and Real Time Pro- ; RETURN FALSE END
gramming. Dave can be reached ai the Graduate Center where his iz mateh S RETORN TRUE
electronic mail address (Internet) is davec@mstr.hgc.edu. His ret JEND match; 3
home address for regular mail is P.O. Box 328, Tolland, CT. 06084. ™D ;234m2

18 The Computer Journal / #47

tation is written in assembler language. The instruction at location
‘patch’ moves the address supplied by HL into location ‘z34adr’.
The next instruction is shown as ‘jp 0°, however, the zero will
eventually be replaced by the ‘original destination’ mentioned
above.

FTL Modula 2 comes with its own assembler. This assembler
uses the pseudo-op ‘label’ to relate procedure names between the
definition module and the assembier code. In this case, when the
definition module is eventually written, it will define a procedure
named ‘GetEnv’. In this implementation module written in assem-
bler language, the code for the procedure foliows the ‘label’ state-
ment in the listing.

. There is the possibility that what was passed in the HL register
was not the environment address (for instance, when the program
is running under bare CP/M). To avoid the possibility of returning
an invalid address value, I make two checks on the value. First,
offset 3 into the (assumed) environment must contain the string
“Z3ENV” and second, hex offset 1B into the environment must
be the address of the environment itself. If either test fails, a zero
value is returned by GetEnv. The code used for these tests is
based on Bridger Mitchell’s article in TCJ issue # 36.

The Definition Module

Steve Cohen’s original definition module merely defined the
procedure that returns the environment address. I realized that
the ZCPR environment could easily be expressed using Modula 2
record structures. (As mentioned above, this same approach was
recently used to define the environment for Turbo Pascal) My
Modula 2 definition module is given in Listing 2. The records are
set up so that either the ZCPR3.3 version (crtl, prtl, etc.) or the
newer ZCPR3.4 version (DrvVec, sparl-2, ccp, etc.) may be used.
All of the separate structures in the environment are defined as
individual records. The ZCPR environment itself is listed as
“Z3ENV’. (Modula 2 is case sensitive, thus “Z3WHL’ and ‘z3whl’
are not the same type; one is a byte and the other is a pointer to
the byte.)

The ‘GetEnv’ procedure is also defined. It is actually a function
that returns a pointer to the environment (Z3ENV).

Listing the Environment
Once we have the address on the Z-environment, the first thing
we might do is display its present state. Next time I shall diagram
how the environmental components are laid out in memory, but
for now I shall just list some of their contents. Listing 3 is the
program module for the code that lists the environment. I chose to
list the “Z3ENV” string itself, the state of the wheel byte, indicate

Listing 2
END;
DEFINITION MODULE z34m2; filename = ARRAY [0..10] OF CHAR;
.. ;
* D. L. Clarke for TCJ 5 August 1550 *) (* definition of the Z3 environment itself *)
Z3PTR = POINTER TO Z3ENV;
FROM SYSTEM IMPORT ADDRESS, BYTE; Z3ENV = RECORD
TYPE wrmboot: ARRAY [0..2] OF BYTE;
sees z3str: ARRAY [O..4] OF CHAR;
TCAP = RECORD (* TCAP definition *) EnvType: BYTE; L ! ‘
: ;
:Cuax: gm‘: [0..14} OF CHRR; expath: POINTER TO path; expaths: BYTE;
Ui x:o\:' . cmt xcp: ADDRESS ; Icps: BYTE;
Dw c ' iop: ADDRESS ; iops: BYTE;
R“"‘°“: c“““: fep: ADDRESS ; fcps: BYTE;
L;:§Z°“: CHAR: z3ndir: POINTER TO NDR; z3ndirs: BYTE;
s o1 D;°Y- c“‘“: z3cl: POINTER TO MCL; z3cle: BYTE;
Cu:mY: cm: z3env: Z3PTR; z3envs: BYTE;
EOSDlzz o 4 shsatk: POINTER TO Shstk; shstks: BYTE;
) . shsize: BYTE;
ctlstr: ARRAY [0..104] OF CHAR Z3msg: POINTER TO MSG;
END; extfcb: ADDRESS; extstk: ADDRESS;
. quietflg: BYTE;
DU = ARRAY [1..2] OF BYTE; (* disc, user *) z3whl: POINTER TO Z3WHL;
H ;
Pias speed: BYTE;
path = RECORD (* external path definition *) ml:;dw, BYTE: maxusr: BYTE;
du: ARRAY [1..5] OF DU; DUOK: BYTE:) !
EOP: BYTE (* terminating null *) ert: BYTE: prt: BYTE;
H ; : ;
END; crto: zert;
. i CASE H zZ3
NDRrec = RECORD {* named directory definition *) 233: crtls zc::r or |
du: bu; z34: DrvVec: BITSET;
Name: ARRAY [0..7] OF CHAR; sparl: BYTE |
Pass: ARRAY [0..7] OF CHAR END
;
END; ptxo: zptr;
NDR = RECORD CASE : Z3ver OF
rec: ARRAY {1..14] Ob.' ND}.!rec; 233: ptri: zptr; ptr2: 2ptr;
EOR: BYTE (* terminating null *) ptr3: zptr; l
: ;
END; z34: spar2: ARRAY [2..5] OF BYTE;
. H DRESS ; H ;
CL = ARRAY [0..249] OF CHAR; (* command line def *) :zs, 3])“55: :zs:. :‘Y,::'
MCL = RECORD fon ! : '
nxt: POINTER TO CL; END bios: AbpRESS |
max, len: BYTE; ! shvar: filename;
. : H
m;t_"r' cL filel: filename;
4 file2: filename;
. c i . file3: filename;
(* various other definitions of environmental records *) filed: £ilename
shStk = ARRAY [1..4) OF ARRAY [0..31] OF CHAR; END :)
MSG = ARRAY [0..79] OF CHAR; !
WHL, = . .
Z3WHL - BYTE; . (* procedure to return the environment's addrees to a *)
z3ver = (233, z34); (* high level program. Note, '0' = no 23 environment *)
zert = RECORD
cols: BYTE; rows: BYTE; . .
line: BYTE PROCEDURE GetEnv(): Z3PTR;
END;
2ptr = ORD END z34m2.
pcol: BYTE; prow: BYTE;
plin: BYTE; form: BYTE

The Computer Journal / #47

19

Listing 3
MODULE tz34m2;

(* D. L. Clarke for TCJ

*)

(revised) 8 August 1990

(* Test ZCPR34-Modula 2 interface mechanism by listing some
contents)

FROM InOut IMPORT Write, WriteString, WriteCard, WriteHex, WriteLn;
FROM z34m2 IMPORT Z3PTR, Z3ENV, GetEnv;
FROM SYSTEM IMPORT ADDRESS, ADR, BYTE;

VAR
it CARDINAL;
env: Z3PTR;
BEGIN
env := GetEnv({);
IF CARDINAL(env) = 0 THEN
Writestring(“"No Z-System environment");
ELSE
WriteString(env~.z3str);
WriteString(“Wheel byte is *);
IF ORD{(env”.z3whl") = 0 THEN
WriteString(*OFF*)
ELSE
Writestring({“ON")
END; Writeln;
WriteString({“DU usage is ");
IF ORD{env”.DUOK) = 0 THEN WriteString(*NOT ") END;
wWritestring(“okay"); WriteLn;
Writestring(“"Max drive is ");
Write(CHR(ORD('€') + ORD(env”.maxdrv})}};
WriteString(“Max user area is ");
WriteCard(ORD(env".maxusr), 1);
Writestring("The command line is:*);
WriteString(™ "y
wWritestring({env'.z3cl".str);
Writestring(”The named directories *);
IF ORD(env"-.z3whl") # 0 THEN
Writestring(*(and their passwords) *)
END;
Writestring(“are:");
iz=1;
LOOP
IF ORD(env”.z3ndir".rec[i].du[l]) = O THEN EXIT END;
Write (CHR(ORD('€') + ORD(env”.z3ndir".rec[i].du[l])));
Write (CHR(ORD('0') + ORD(env”.z3ndir".rec[i].du[2])));
WriteString(™ *); Writestring(env~.z3ndir .rec[i].Name);
IF ORD(env".z3whl") # O THEN
WriteString(* *); WriteString(env”.z3ndir".rec[i].Pass);
END; Writeln;
INC(i); 1IF i > ORD(env".z3ndirs) THEN EXIT END
END
END
s END tz34m2.

Writeln

Writeln;

Writeln;

Writeln;
WriteLn;

Writeln;

WriteLn;

if the DU form is allowed for directory names and show the max
user and drive values, the command line, and the named directo-
ries. Note that the wheel byte is consulted before displaying the
directory passwords. Running the tz34m2 program will produce a
listing something like the following:

Z3ENV

Wheel byte is ON

DU usage is okay
Max drive is P

Max user area is 15
The command line is:
TZ34M2

The named directories (and their passwords) are:
A0 COMMAND

B0 WORK

MO0 ROOT

Patching the Program
Actually if we ran the program immediately after linking, the
output of the program would be the message “No Z-System envi-
ronment”. After the program has been linked, it must be patched
before it is ready. This may be done with your favorite patching
program (I used ZPATCH). The process is as follows:

1. Make a note of the address in the two bytes at hex locations
101 and 102. Write them down.

20

2. Search for the string “Z33ENV” which was placed in
7Z34M2.ASM for this purpose.

3. Replace the bytes 10 and 11 locations after the beginning of
the string with the two bytes recorded in the first step above. Be
sure to keep them in the original order.

4. Go back and replace the values in hex locations 101 and 102
with the address of the string plus six. Remember that the low byte
goes first.

For example, when I patched TZ34M2.COM, I found hex val-
ues of 41 and 34 at locations 101 and 012. The string was found at
hex location 0497. Ten locations higher is 04A1, therefore I placed
41 in 04A1 and 34 in 04A2. Six locations above the string is loca-
tion 049D. Therefore 9D goes in location 101 and 04 goes in
location 102.

An Easier Way to Make the Patch

Although the patching exercise is not too difficult, after doing it
a few times, it becomes quite tedious. The solution is to write a
Modula 2 program that does the patching automatically. Listing 4
is my program that does this. M2instal may either be passed a file
name from the command line or it will prompt for one. The file is
read (and written) in blocks of binary data. I used a variation of
the Boyer-Moore algorithm for the string search. This algorithm
was described by Bridger Mitchell in TCJ issue # 45. Instead of
comparing each file byte, one at a time, to the characters in the
string to be matched, this procedure is capable of skipping over
several bytes at a time —sometimes approaching twice the length
of the string being matched. The number of bytes to be skipped
depends on two functions, ‘deltal’ and ‘delta2’. The first deter-
mines the places to skip if the byte being compared matches one of
the pattern characters. The second determines the places to skip
depending on the current location in the pattern that is being
matched. The number of places skipped is the larger of the two
delta values. This really speeds up the search. Once the string is
found in the file, it is an easy job to make the substitutions. It is
also helpful that the Modula 2 ‘ReadBlock’ procedure is able to
access the file blocks in a non-sequential manner. Once we have
made the patch where the string is found, we have to go back to
the first block of the file and patch the initial jump location.

Conclusion

In this article I have shown how Modula 2 can gain access to
the Z - System environment. A simple program was used to print
out some information from that environment. The process of
patching the resulting program file has been simplified by yet an-
other Modula 2 program. Now that the environment is accessible,
there are many things that can be done. Next time I will show how
to diagram the way in which the components of the environment
are arranged in memory. We will also be making use of the TCAP
definition. @

Listing 4 is on the following page.

The Computer Journal / #47

MODULE M2instal;

Listing 4

(& D. L. Clarke for TCJ (revised) 6 August 1990 *)
{* Patches Modula 2 programs that include the 2z34m2 module to *)
(* allow access to the Z-System envircnment. *)
(* The filename of the program to be patched may be included *)
(* on the command line as follows: *)
(* A> m2instal tz34m2.com *)
(* or the program will prompt for the filename. Only one *)
(* program may be installed at a time. Also, the '.COM* *)
(* extension must be included in the filename. *)
(* No, Hortense, you do not want to 'm2instal' the M2INSTAL.COM *)
(* program itself. *)

FROM Files IMPORT FileName, FILE, Lookup, ReadBlock, WriteBlock,

Close;

FROM InOut IMPORT ReadString, WriteString, WriteInt, Writeln;

FROM Command IMPORT Parameter, GetParams;
FROM SYSTEM IMPORT ADR, ADDRESS, TSIZE;

CONST
plength = 6;
blk_length = 128;
blk_count = 4;
buf_size = blk_count * blk_length;

TYPE
block = ARRAY [0 .. blk_length-1}] OF CHAR;
buff = ARRAY [0 .. blk _count-1) OF block;
bufr = ARRAY [0 .. TSIZE(buff)-1] OF CHAR;
addr = ARRAY [0 .. TSIZE(ADDRESS)-1} OF CHAR;

VAR

name: FileName;

file: FILE;

buffer: bufr;

addr_value: addr;

pat: ARRAY [0 .. plength] OF CHAR;
Param: ARRAY {0 .. 10] OF Parameter;
reply: INTEGER;

initial_blk: INTEGER;
blk_offset: INTEGER;
fnd_locat: INTEGER;
old_strt: INTEGER;
new_strt: INTEGER;
buf_ length: INTEGER;

PROCEDURE max{x, y: INTEGER): INTEGER;
BEGIN

IF x > y THEN RETURN x ELSE RETURN y END
END max;

PROCEDURE deltal (ch: CHAR): INTEGER;

BEGIN
CASE ch OF
*Z': RETURN plength - 1
| *3': RETURN plength - 3
| ‘E': RETURN plength - 4
| 'N': RETURN plength - 5
| 'V': RETURN plength - 6
ELSE RETURN plength - 0
END
END deltal;

PROCEDURE delta2 (n: INTEGER): INTEGER;

BEGIN

IF n = plength THEN RETURN 1 ELSE RETURN 2 * plength - n END
END delta2;
(* Boyer-Moore string searching algorithm *)
(* returns buflen + 1 if string is not found, otherwise *)
(* returns offset (into ‘bufr‘') to beginning of string *)
PROCEDURE bmsearch(i, j: INTEGER; buflen: INTEGER): INTEGER;
BEGIN

LOOP

IF (i > buflen) OR (j = 0) THEN RETURN i END;
IF buffer[i-1) = pat[j-1] THEN

DEC(i); DEC(j)
ELSE
i := i + max(deltal(buffer{i)), delta2(j));
j := plength
END
END
END bmsearch;
(* search for string a block at a time *)
(* returns -1 if string is not found, otherwise *)
{* returns offset (into file) to beginning of string *)
PROCEDURE blksearch(): INTEGER;
VAR
i, 3¢ INRTEGER;
BEGIN

initial blk := - blk_count;
buf_length := 0;
i := plength; j := plength;
LOOP
IF i < buf_length THEN
(* complete match -- return file offset #)

blk_offset := i;
RETURN initial blk * blk_length + i
ELSIF i >= buf_ length + plength THEN
(* no match -- read 'blk_count' more 'block's *)
i := i - buf length;
initial blk := initial blk + blk count;
ReadBlock(file, ADR(buffer), initial blk, buf_size,

buf_length}
IF initial blk = 0 THEN
addr_value[0] := buffer[l]; addr_value(l} :=
buffer([2};
old_strt := INTEGER(addr_ value)
END
ELSE
{* partial match at end of block -- move last

‘block’ to *)
(* beginning of 'bufr’' and read 'blk_count'-1 more
‘block's *})
i := i - buf_length + blk_length;
initial blk := initial blk + blk_count - 1;
ReadBlock(file, ADR(buffer), initial blk, buf_size,
buf length})
END;
IF buf_ length > 0 THEN
i := bmsearch(i, j, buf_length)
ELSE
(* End-Of-File -- string not found *)
RETURN -1
END
END
END blksearch;

BEGIN
(* get name of file to patch and open the file *)
GetParams(Param, reply);
IF reply < 1 THEN
writeString(“"Enter name of file > *); ReadsString(name);
buf_length := 0;

LOOP
IF buf_length > HIGH(name) THEN EXIT END;
IF name[buf_ length] <= * * THEN
name ([buf_length] := Oc;
EXIT
END;
INC(buf_ length)
END
ELSE

buf_length := 0;
WHILE (buf_length <= HIGH(name)) AND
(buf_length <= HIGH(Param[0]".Chars)) AND
(Param[0)".Chars(buf_length] # 0c) DO
name[buf length] := Param([0]".Chars[buf_length]);
INC(buf_length)
END;
IF buf_ length <= HIGH(name) THEN name(buf_length] := 0c END;
IF reply > 1 THEN
Writestring("All files except "); WriteString(name);
writeString(" will be ignoredti=); WriteLn
END
END;
Lookup(file, name, reply);

(* search for the string "233ENV" which identifies patch area *)
IF reply >= 0 THEN
pat := “Z33ENV™;
fnd_locat := blksearch() + 400B; (* 400B = 100 hex *)
IF fnd_locat > 400B THEN
new strt := fnd locat + §;
IF blk_offset + 10 >= blk_length THEN
INC(initial blk);
blk_offset := blk_offset - blk length;
ReadBlock(file, ADR(buffer), initial blk, buf size,
buf_length)
END;

(* patch and close the file *)

addr_value := addr(old_strt);

buffer[blk_offset+10] := addr_value[0];

buffer[blk_offset+ll] := addr_value(l}];

WriteBlock(file, ADR(buffer), initial blk, buf_ size,
buf_length);

ReadBlock(file, ADR(buffer), 0, buf size, buf_length);

addr_value := addr(new_strt);

bufferx[l] := addr value{O0]; buffer{2] :=
addr_value[l];

WriteBlock(file, ADR(buffer), 0, buf_size, buf_length);

ELSE
Writestring(~Z34M2 not imported~); WriteLn
END;
Close(file)
ELSE
Writestring("Not able to open file *); WriteString(name);
WriteString("“, error code *}; WriteInt(reply, 1);
Writeln

END
END M2instal.

The Computer Journal / #47

21

Tips on Using LCDs
Interfacing to the 68HC705
by Karl Lunt

Liquid crystal displays (LCDs) offer a cheap, simple way to add

. alphanumeric output to your microcontroller projects. The follow-

ing discussion shows how easily such a display can be added to the
Motorola 68HC705 MCU.

The LCD

The surplus markets carry a large variety of LCDs which have
appeared at very reasonable prices lately. I purchased a couple of
40 x 2 displays from Timeline for about $25 a few months ago.
Shop around and check the ads; you will probably find similar
deals. Available formats include 16 characters by one line, 16 x 2,
20 x 1 —up to a full 80 x 24. You can use this interface technique
with nearly any LCD of up to 80 characters.

The ICs used on the LCD board itself determine if it will work
in this design. You need to find an LCD that uses a Hitachi
HD44780 display control chip. This will be a surface-mount device
on the backside of the LCD board. You will probably also find one
or more Hitachi HD44100 support chips as well. This display con-
trol chip turns up in LCDs from many different manufacturers;
firms such as Hitachi and Optrex offer suitable displays.

LCDs using the Hitachi HD44780 chip-set connect to a com-

* puter via a simple parallel data bus. The controlling machine must
provide the following signals:

An enable line (E) that, when low, enables the LCD. This line,
like all other LCD signal lines, uses TTL-level signals.

A register select line (RS) that selects either data or command
mode of operation. If the line is low when the LCD is enabled, the
data bus will carry an LCD command; if the line is high, the data
bus holds a character for display.

A read/write line (RW*) that can simply be tied low. This indi-
cates that the controlling computer will only write to the display.
Incidentally, the Hitachi literature describes how to read the con-
tents of each LCD character position. You could use this feature
to capture the display’s contents, send a high-priority message,
then restore the display.

An eight-bit bidirectional data bus that will normally send data
and commands to the LCD. You can shrink this bus to only four
bits, saving four I/O lines and permitting the controlling computer
to service an LCD with only a single eight-bit output port. That is
the basis of the technique used here.

Vee (+5 volts), GND (ground), and Vo (display brightness)
provide power and control the display brightness. Generally, Vo
can be connected to ground with acceptable results.

Since the HD44780 chip-set consists of CMOS parts, the dis-

22

play draws very little current and interfaces directly to CMOS
MCUs such as the Motorola 68HC705.

Communication Basics and the Power-up Ritual

Software in the host computer must perform two major func-
tions in interfacing with the LCD; power-on/reset initialization and
display updating. Both functions consist of writing the proper com-
mands and data to the LCD.

When writing commands or data to the LCD, you must pay
close attention to the sequencing of the RS*, E, and data bus lines
(I am assuming that R/W is wired low). The following lines must
change state in this order (initially, RS*, E, and R/W are low):

First, set the state of RS* as needed; low indicates that you will
write a command to the LCD, while high means you will write a
character to the display.

Second, place the upper four bits of the 8-bit command (or
character) on the upper four data lines of the LCD. (Remember,
we are using a four-bit interface here.)

Third, bring line E high, wait about 3 usec, then bring line E
low again. 1 say “about” because the Hitachi documentation
doesn’t make the minimum time requirement very clear; I have
used a 3 usec delay with good results.

Fourth, place the lower four bits of the 8-bit command (or
character) on the upper four data lines of the LCD.

Fifth, bring line E high, wait about 3 usec, then bring line E low
again. This completes the transmission of an 8-bit byte to the
LCD.

The initialization ritual consists of a set sequence of commands
that place the LCD in a known state, ready to process further

68HC705 LCD
11 | Pa® D4 |11
10 [PAL ps |12
9 [PA2 DB |13
8 | PA3 D? |14
7 | Pa4 RS | 4
g | PAS E &
+5V Uce 2
RW | &
Vo 3
GND | 1
Typical connections betwee a 68HC705 and a Hitachi-style LCD

The Computer Journal / #47

* % % % % % B % % % £ £ % % % % % % A * * %® % % % % ¥ & * # ¥

LCD library

These routines control a Hitachi-type LCD, connected with a 4-bit
interface to a single 8-bit port on the 68HC705. The main routine
must contain equates defining this connection:

LCDPORT must contain the address of the '705 port.
LCD.E must contain the bit connected to the display's E line.
LCD.RS must contain the bit connected to the display's RS line.

These routines assume that the low nybble of the LCDPORT is connected
to the highest four data lines of the LCD.

The main routine must also allocate RAM storage for these modules:

LCDTMP RMB 1
LCDTMP1 RMB 1
LCDOUTA RMB 1

The main routine must also use the RAM variable WAIT$ to indicate
when it is safe to write to the display. These routines will not
write to the display unless WAITS$ holds a 0; they will loop endlessly
until WAIT$ is cleared.

The logic in LCDCMD and LCDCHAR, that writes directly to the display,
automatically selects the appropiate delay value for use with WAITS.
These values presume that WAIT$ decrements once each 200 usec. If
you use a different time constant for decrementing WAITS, adjust
these routines accordingly.

*
* LCDINIT -- Initialize the LCD
w
* This routine configures the LCD for 4-bit interface, cleared display,
* two lines, 5x10 character font. Upon exit, the LCD RS line is low
* (command register selected).
*
* The initialization sequence given here was taken from the Hitachi
* manual. That manual recommends specific time delays between the
* first three commands that differ from the delays normally associated
* with those commands. Since LCDOUT is used to send these commands,
* this routine explicitly sets WAIT$ to the recommended values following
* each call to LCDOUT. The values used assume a 200 usec delay for
* each decrement of WAITS.
*
LCDINIT:

LDA 10 DATA = XXXX, RS = 0, E = 0

STA LCDPORT SEND TO LCD

LDA %75 GET A 15 MS DELAY

STA WAITS

LDA $#503 8-BIT INTERFACE

JSR LCDOUT SEND TO DISPLAY

LDA #22 GET A 4.2 MS DELAY

STA WAITS

LDA #503 SEND 8-BIT COMMAND AGAIN

JSR LCDOUT

LDA [21 GET A 120 US DELAY

STA WAITS

LDA #503 SEND 8-BIT COMMAND ONE LAST TIME

JSR LCDOUT

LDA #25 GET A 5 MS DELAY

STA WAITS

LDA #502 SET UP 4-BIT INTERFACE

JSR ILCbout

LDA 25 GET A 5 MS DELAY

STA WAITS

LDA #300101100 2 LINES, 5X10 FONT, 4-BIT INTERFACE

JSR LCDCMD

The Computer Journal / #47

commands. Since the LCD powers up in an unpre-
dictable state, you must follow Hitachi’s recom-
mended startup sequence carefully if you want the
display to behave properly.

NOTE: The four steps of the power-up ritual
involve sending ONLY the upper four bits of an 8-
bit command byte. For the power-up ritual, DO
NOT send the low four bits of a command byte to
the LCD.

Step 1: Wait at least 15 msec after power-up,
then write the command byte 001 1xax to the LCD.

Step 2: Wait at least 4.2 msec, then write the
same command byte (001 1xxxx) to the LCD.

Step 3: Wait at least 120 usec, then write the
same command byte (001 Ixxxx) to the LCD.

Step 4: Wait at least 5 msec, then write the com-
mand byte 0010xxx to the LCD.

You have now initialized the LCD and config-
ured it for a four-bit interface. All subsequent ex-
changes between the host computer and the LCD
must consist of two four-bit transfers, as described
previously.

Setting the Display Parameters

Once you have completed the start-up ritual,
you can set the LCD into a number of different
configurations. I usually send the following se-
quence of commands:

00101100 to set the LCD for two lines (assum-
ing, of course, your display can handle two lines)
and 5x10 pixel characters.

00001000 to shut the display and the cursor off
and to disable cursor blink.

00000001 to clear the display and bring the cur-
sor to address 0 (upper left corner).

00000110 to cause the LCD to automatically in-
crement the cursor position after each new charac-
ter and to prevent the LCD from rotating the dis-
play underneath the cursor as each new character
arrives.

00001111 to activate the display, the cursor, and
cursor blinking.

Now you can begin sending characters to the
LCD and see them appear on the display.

The above set of configuration commands are
just a typical sequence and do not do justice to the
versatility of the Hitachi chip-set. For a more com-
plete description of the command set, along with an
excellent discussion on the inner workings of the
LCD, check out Ed Nisely’s article, The True Secrets
of Working with LCDs, in the April/May 1989 issue
of Circuit Cellar INK.

You can also try reading the Hitachi technical
literature, but I find their disjointed English text too
distracting to be helpful.

23

On to the Software
LDA #%00001000 DISPLAY OFF, NO CURSOR, NO BLINK The LCD library routines shown here assume that
JSR LCDCMD . .
all lines for controlling the LCD are connected to a
LDA #800000001 CLEAR DISPLAY, CURSOR TO ADDR 0 single ‘705 parallel port, calied LCDPORT. For ex-
JSR LCDCMD
ample, you might dedicate PORTC to driving your
LDA $300000110 INCREMENT CURSOR, NO DISPLAY SHIFT LCD; in this case, you would simply equate
JSR LCDCHD LCDPORT to PORTC in your assembly language
Yy y languag
LDA #800001111 DISPIAY ACTIVE, CURSOR ACTIVE & BLINKS source.
ISR LCDCHD Of the lines associated with LCDPORT, the lower
RTS four (bits 0 through 3) must be tied to the upper four
data bits on the LCD (bits 4 through 7). While this
might seem wrong based on the instructions given
> above, a quick look at the code (routine LCDOUT)
¥ 1LEDOUT -- Send a nybble to the LCD shows that the software adjusts for the “twist” in the
* This routine sends the data in AR to the display. The ICD's RS wiring.
* line must already be at the proper value. Upon exit, the AR is i .
+ clobbered and the LCD's E line is low. One of the remaining four bits of LCDPORT
* must be selected as the E line. Whichever line you
LCDOUT: choose, wire it to the E pin on the LCD and equate
TST WAITS WAIT UNTIL OK TO PROCEED the label LCD.E to the appropriate bit number. For
BNE LcpouT example, if you select bit 7 to be your E line, you
BCLR LCD.E, LCDPORT DROP THE E LINE would equate LCD.E to 7.
:’;i :j:ggun 33:81?“ Low NYBBLE You must also choose an RS line. Wire the se-
LDA LCDPORT GET CURRENT DORT VALUE lected line to the LCD’s RS* pin and equate the label
AND $SFO LEAVE TOP NYBBLE AS IS LCD.RS to that bit number.
ORA LCDOUTA OR IN THE LOW NYBBELE . .
STA LCDPORT WRITE DATA TO PORT The main body of your code must also provide
BSET LCD.E, LCDPORT RAISE THE E LINE some space for variables used by the LCD library.
:gg WAIT JUST A BIT You do this by reserving one memory byte (RMB)
BCLR 1CD.E, LCDPORT DROP THE E LINE AGAIN each for the labels LCDTMP, LCDTMP1, and
RTS LCDOUTA.
Finally, you must provide some means of timing
w .
+ LCDCHAR -- send a character to the display the delays needed betweeq accesses to the LCD. This
* can best be done by setting up an OCMP (output
+ Send the character, in AR upon entry, to the display. This compare) server that generates then services. an in-
* routine sets the 1CD's RS line high and leaves it that way ? i
+ upon exit. The AR is preserved. terrupt every 200 usec.
* The supplied code relies on the OCMP server
LCDCHAR: properly processing a global variable called WAITS.
TST WAITS WAIT UNTIL OK TO PROCEED Each time the OCMP server wakes up, it must check
BNE LCDCHAR the value in WAITS. If that value is zero, the server
BSET LCD.RS, LCDPORT SET RS = 1 simply reloads the OCMP timer and returns from the
STA LCDTMP SAVE THE CHAR interrupt
LDA #1 GET A 120 US DELAY :
LCDCHAR1: If, however, WAITS is not zero, the OCMP server
STA ILCDTMP1 SAVE THE WAIT VALUE :
DA LeDTME RELOAD THE CHARACTER n'aust decrgmem WAITS t?efore re.armmg the OCMP
RORA SHIFT TO HIGH NYBBLE timer. This allows a routine to simply load a delay
RORA value into WAITS, then wait around until WAITS
RORA P . .
RORA goes to zero, indicating that the required amount of
JSR LCDOUT SEND TO DISPLAY time has elapsed.
LDA LCDTMP RELOAD THE CHARACTER . .
ISR 1LCDOUT SEND LOW NYBBLE TO DISPLAY Of course, if you don’t want to bother wrltlng the
LDA LCDTMPL NOW GET THE DELAY COUNT OCMP server, you can simply build a small time-
STA WAITS AND SET UP WAITS . h del b
DA LCDTMP RESTORE THE AR wasting loop that generates a delay, based on an argu-
RTS ment passed to it upon entry. Call it WAIT (for ex-
ample) and do a JSR to it, with the delay value prop-
* erly set, each time you need to wait a little while.
? LCDCMD —- send a display command to the LCD Routine LCDSTRING shows how easy it is to add
* This routine sends a display command, in AR upon entry, to the a string output function to the LCD library. This
* LCD. Upon exit, the RS line is low and the AR is preserved. module uses a subroutine built up in RAM (some-
*
L . . time during program initialization) to provide a miss-
(Listing continued on following page)
24 The Computer Journal / #47

* This routine jumps into the LCDCHAR routine to use common code.
* Note that when the jump is made, the AR holds the proper delay value
* to be stored in WAIT$ and the original value in the AR has been
* saved in LCDTMP.
*
LCDCMD:
TST WAITS WAIT UNTIL OK TO PROCEED
BNE LCDCMD
BCLR LCD.RS, LCDPORT SET RS = 0
STA LCDTMP SAVE THE COMMAND FOR NOW
CMP #503 SEE WHAT KIND OF DELAY WE NEED
BHI LCDCMD1 BRANCH IF NEED SHORT DELAY
LDA $25 GET A 5 MS DELAY
BRA LCDCMD2
LCDCMD1:
i LDA #1 GET A 120 US DELAY
LCDCMD2:
‘ BRA LCDCHAR1 GO USE COMMON CODE
*
* LCDSTRING -- write a string to the display
*
* This routine writes a null-terminated string to the display. Upon
* entry, the main routine must have set up the LDAIND subroutine in
* low RAM:
*
* LDAIND:
* FCB $D6 LDA (IX2)
* RMB 1 MSB OF STRING ADDR
* RMB 1 LSB OF STRING ADDR
* FCB $81 RTS
*
* The calling routine must have positioned the cursor as desired.
*
* Upon exit, the AR and XR are destroyed. Note that no check is made
* as to string length, CR, LF or tabs.
*
LCDSTRING :
CLRX START AT BEGINNING
LCDSTR1:
JSR LDAIND GET A CHAR
BEQ LCDSTRX BRANCH IF DONE
JSR LCDCHAR SEND TO DISPLAY
INCX POINT TO NEXT CHAR
BRA LCDSTR1 LOOP UNTIL DONE
LCDSTRX:
RTS

ing but vital addressing mode. The RAM-based routine LDAIND consists of
the byte $D6 at location LDAIND and the byte $81 at location LDAIND +3.

To output a string to the LCD, a calling routine must first store the address
of the null-terminated string into locations LDAIND+1 (msb) and
LDAIND+2 (Isb). Next, the calling routine executes a JSR to LCDSTRING to
output the string.

LCDSTRING first clears the XR, then repeatedly calls LDAIND, bumping
the XR each time. Control finally exits LCDSTRING when LDAIND returns
the terminating null byte in the string. Note that as written, LCDSTRING only
works with null-terminated strings of 255 characters or less.

In Summary
Though these routines are quite short, they provide considerable control
over the LCD and should serve as a good foundation for any project using an
LCD with the 68HC705 MCU. At the very least, they will save you from having
to reinvent the wheel just to get your display working. ®

The Computer Journal / #47

(Proto-705)

The ideal prototyping board for the
Motorola 68HC705

This 3" x 4" silk-screened circuit board
comes already etched for the most commonly
used elements of a 68HC705 design. You sim-
ply add a 40-pin DIP socket and the compo-
nents needed for your application . . .

you have a finished prototype, ready for
testing!

The Ptoto-705 contains etched traces sup-
porting these features:

e 1/O and control signals brought to five 10-

pin IDC-style headers.

® On-board RS-232 level-shifting (using the

MAX-232 chip).

® On-board power-supply circuitry accepts

either DC (9-14 volts) or AC (6-12 volts).

e Ample prototyping area of plated-through
holes on 0.1 inch grid.

® On-board jumper permits easy control of

the Slave Select (SS) signal.

The Proto-705 documentation includes ap-
plication notes and a schematic with compo-
nent values for a typical 68HC70S design.

Since you buy the board blank, you add
only the components your project requires.
You skip the expensive board layout and fab-
rication phase, going directly to prototype de-
velopment and testing. From minimum to
fully-loaded systems, the Proto-70S board will
fill most of your 68HC705 prototyping needs.

Proto-705 blank prototyping circuit board —$47.50

(Call or write for information on quantity
discounts)

RBR Design
P.O. Box 1608
Vashon, WA 98070
(206) 463-2833

25

Real Computing

Debugging, NS32 Multitasking Trick, and Distributed

Operating Systems
by Richard Rodman

Debugging Real-Time Systems

Programmers tend to be vain. Most of them like to write pro-
grams that have visible beauty, like Mandelbrot fractals. But then
there’s the real-time nuts, like me, that insist on writing programs
that you can’t see working at all. You know you’re a real-time
programmer when, after hours or days of mind-racking effort, you
finally get “hello, world” to appear on the screen, or maybe an
LED to turn on, as proof of the functionality of some highly com-
plex but invisible system. Your spouse and/or colleagues shrug and
say “that’s nice.” These people don’t understand! Oh, they’d be
amazed, wouldn’t they, if you did some cheap, flashy graphics
trick, or played back a recorded voice or music! What short-
sighted dabblers! What superficial dilettantes!

(Ahem) Anyway, debugging techniques on embedded proces-
sors and other real-time systems range from the marginally effec-
tive to the inscrutable. What’s more, the price has little to do with
the usefulness of the tool. In the right hands, the cheapest tool can
be surprisingly effective.

The most expensive tool is the in-circuit emulator. These tend

.10 cost several thousand dollars and up. Most emulators today use

" a PC as a user interface. Hewlett-Packard has an emulator for the
NS32532, and National has an emulator for the NS32CG16. 1
haven’t had opportunity to use either of these, but I have used a
variety of other emulators on a variety of processors. An emulator
allows you to stop the program at any time, even upon an external
trigger, and examine the state of everything. For particularly tricky
timing relationships, throw in a logic analyzer, too. Emulators in-
fluence the operation of the target system very little—in fact, if
you don’t stop the program, they don’t influence it at all.

In my experience, emulators are not very useful on larger proc-
essors. Because they’re so machine-oriented, unless you’re using
assembly language, it’s difficult to make sense of things. The ICE-
51is a terrific product, extremely useful for 8051 deveiopment. Of
course, only a very silly person would program an 8051 in a higher-
level language. Rule of thumb: If you need external RAM, forget
the 8051 and use a Z-80.

The next level below this is what’s called a “hardware-assisted
debugger.” An example of this is National’s SPLICE board. This is
a device which plugs into a CPU socket, has a CPU on it, and gives
you some of the capabilities of an emulator. Generally, you can set
breakpoints, single-step or trace code, examine registers, query
memory locations and ports, but you can’t stop the processor on
an external condition or at random. These devices may have some
influence on the target system’s operation; system timing could be
significantly altered. They can be very effective once you gain skill
in their operation, but they can be frustrating.

26

The next level below that is a software debugger, such as a
monitor with breakpoint capability like TDS. Some software de-
buggers allow “source-level” debugging, where single-stepping of
C statements, examining variables, and so on, are possible. In the
Intel world, I'm fond of Soft-Scope — CodeView is too flashy-look-
ing. The VAX has a nice debugger, too. I hope to find or write
something like Soft-Scope for the NS32 processor. Anyhow, the
drawbacks of software debuggers are that they’re bulky to incor-
porate in a target system, and then they influence the behavior of
the machine very heavily.

Finally, the bottom level is what I call the “application-inte-
grated debugger”. In simpler terms, a quick print statement, or a
character “poked” on the display, or an LED turning on. With
care, these can be integrated in such a way as to cause virtually no
interference to the target system. An advantage is that this extra
output can be obtained without stopping the program--unlike even
the very expensive emulator approach. Experienced practitioners
can debug almost anything with this method.

But there’s one tool that is essential for debugging that can’t be
bought, and that’s intuition. Intuition is a tricky thing; sometimes it
has blind spots, mental blocks. Debugging is an art, not a science.
As such, it can’t really be taught. Some good programmers are
poor debuggers, and vice versa. So if it turns out you’re a better
programmer than a debugger, just don’t put the bugs in in the first
place!

One last thought: Because debugging often gets called into play
in “post-mortem” situations, I like to call it “forensic program-
ming.”

NS32 Trace Trap Trick

The multitasking executive presented several issues ago in T7CJ
was a non-preemptive multitasker. This means that tasks must
voluntarily give up the CPU to other tasks. I have been working on
a preemptive version which will ultimately be incorporated into
Metal.

Generally, preemptive multitaskers set up a timer interrupt
which causes a task switch. The tricky problem here is how to
acknowledge the timer interrupt without returning control to the
user program that was exccuting. The method usually used by
kernels is to go through a very messy routine which creates a
dummy stack image to be processed by the RETI instruction, then
falls into the kernel task switch logic.

After studying the NS32 databook, however, a much cleaner
(hence simpler and faster) mechanism occurred to me. It’s pos-
sible to set the trace (T) bit in the PSR image which will be re-
stored by the RETT instruction. Then, after RETI completes, the
CPU will perform a trace trap. This unhooks the tick interrupt

The Computer Journal / #47

logic completely from the kernel task switch logic.

Now, if the trace trap is used for a kernel task switch, this will
also provide a foundation for a future single-stepping debugger.

Floppy Disks, Continued
Radio Shack is selling a Personal Word Processor that uses a
proprietary 2.8 inch “flippy” —it has two sides, but uses only one
side at a time.
The 2.8 megabyte “ED” (presumably, Extended Density)
"drives are becoming available and are about to be included by
IBM on a new PS/2. IBM has lead consumers on a succession of
steps, from 360, to 1.2 megabyte, to 1.44, and now to 2.8 —another
incremental upgrade in capacity, instead of a revolutionary one
like the 20 megabyte Floptical drive. Each of these small steps has
meant enormous costs in new drives and diskettes, not to mention
‘manual labor in transferring data. Will consumers follow like
sheep on yet another incremental, yet expensive upgrade? Of
course they will.

PC-532 Update

The PC-532 was designed by the team of Dave Rand and
George Scolaro, who I neglected to mention last time. There are
several of these out there at this time, and Minix has been released
for the machine. However, since the machine’s only I/O is serial
and SCSI, how do you get the operating system into the machine?

There is a board made by OMTI, model 5200, which is a SCSI
floppy controller. This board will control up to four floppy drives,
which may be any combination of 360, 1.2 or 1.44 types. The
board is available from ??WHO?? <--< < for around $150. The
PC-532 ROM monitor includes logic to control this board.

The Rumor Mill Grindeth Away
Apparently, Berkeley 4.4 BSD is about to be released. How-
ever, it has not been expunged of all AT&T code. As usual in
academia, the wheels turn exceedingly slow. Carnegie-Mellon con-
tinues to work on Mach with the same goal in mind.
Meanwhile, Andy Tanenbaum has been working on a distrib-
,uted operating system called Amoeba. At the same time, Concur-
rent Computer has announced a distributed OS called Alpha, and
AT&T Bell Labs has recently shown a few folks a distributed OS
called Plan 9 (named for the memorable sci-fi classic).

What'’s a Distributed Operating System?

The basic idea of a distributed OS is that you log in somewhere,
and your programs run somewhere, but it doesn’t really matter
where. The computer system acts as a network of nodes, each of
which does a little of the total job. For example, there might be file
servers, compute servers, gateways, and so on. The idea of a user
being “logged into a particular node” is done away with. Instead,
he has a “display server” (like an X terminal), and whatever re-
sources he wishes to use, he does.

The distributed OS is actually an outgrowth of simple network
concepts and the client/server model. Most distributed OSs tend to
be protocol-based; hence, the underlying nodes may be dissimilar
and run a wide variety of different operating systems internaily.
However, it is advantageous for the underlying nodes to run very
simple, fast, low-overhead software.

Next Time
Next time I plan to have an updated report on Minix as well as
on Bare Metal. I'd also like to discuss some of the interesting
developments in the area of home automation, such as the new X-
10 devices that are coming out. Meantime, why not drop us a line
care of TCJ with that neat tidbit? I don’t have any custom coffee
mugs or T-shirts, but who needs them, anyway. @

The Computer Journal / #47

EPROM PROGRAMMERS

$750.00

Completely stand-alone or PC driven

Programs E(E)PROMs

1 Megabit of DRAM

User upgradable to 32 Megabit

.3/.6" ZIF socket, RS-232,

Parailel In and Out

¢ 32K internat Flash EEPROM for easy

firmware upgrades

Quick Pulse Algorithm (27256

in § sec, 1 Megabit in 17 sec.)

+ 2 year warranty

* Madein USA.

Technical support by phone

« Complete manuai and schematic

Single Socket Programmer also

available. $550.00

« Split and Shuffle 16 & 32 bit

* 100 User Definabie Macros, 10 User
Definable Configurations

« Intelligent Identifier

« Binary, Intel Hex, and Motorola S

20 Key Tactile Keypad (not membrane} 20 x 4 Line LCD Display
Internal Programmer for PC $139.95
New Intelligent Averaging Algorithm. Programs 64Ain 10 sec., 256 in 1 min., 1 Meg (27010,011)in2 min. 45 sec.,
2 Meg (27C2001) in 5 min. Internat card with external 40 pin ZIF. .
40 pin ZIF
\

Stand-Alone Gang Programmer

. 8 ZIF Sockets for Fast Gang
2 o ramming and Easy
- Oplitting

. .

2 ft. Cable

« Reads, verifies, and programs 2716, 32, 324, 64,
64A, 128, 1284, 256, 512, 513, 010, 011, 301,
2702001, MCM 68764, 2532

. i sets prog ing voltage

+ Load and save buffer to disk

« Binary, Intel Hex, and Motorola S formats

Upgradable to 32 Meg EPROMs

No personality modules required

1 year warranty » 10 day money back guarantee

Adapters available for 8748, 49, 51, 751, 52, 55,

TMS 7742, 27210, 57C1024, and memory cards

« Made in U.SA.

NEEDHAM'S ELECTRONICS

4539 Orange Grove Ave. -Sacramemo CA 95841
COD. m visa |

1S-DOS XTI DECODER

For PC, PC/XT or PC/AT compatible computers, the
FlexScan | high performance wand speed decoder
provides unmatched speed, security, flexibility, and
affordability when compared to wedges. Decoded
data is instantly available to your applications
without change -- unlike wedges which must send
data one character at a time. Developers can use
the Application Programming Interface (API) to
deliver more powerful and flexible applications.
Software drivers support Code 39, Code 128, UPC,
Interleaved 2 of 5, and Codabar. Others available
upon request.

Call for more information

(916) 924-8037
FAX (916) 972-9960

IYYa3i7H TECHNOLOGIES|

"Productivity Enhancement Systems”
1651 S. Juniper, Ste. 118
Escondido, CA 92025

(619) 746-0468 FAX 746-1868

1>

PC/XT, and PC/AT are Trademarks of IBM
MS-DOS is a Trademark of Microsoft Corporation
FlexScan is a Trademark of Adaptive Technologies

27

Issue Number 1:

¢ RS-232 Interface Part One

* Telecomputing with the Apple il

¢ Beginner's Column: Getting Started
+ Build an “”’Epram”

issue Number 2:

File Transfer Programs for CP/IM

RS-232 Interface Part Two

Build Hardware Print Spooler: Part 1
Review of Floppy Disk Formats

Sending Morse Code with an Apple Il
Beginner's Column: Basic Concepts and
Formulas

Issue Number 3:

¢ Add an 8087 Math Chip to Your Dual
Processor Board

e Build an A/D Converter for Apple It

« Modems for Micros

* The CP/M Operating System

* Build Hardware Print Spooler: Part 2

issue Number 4:

* Optronics, Part 1: Detecting,
Generating, and Using Light in Electronics
* Multi-User: An Introduction

* Making the CP/M User Function More
Useful

* Build Hardware Print Spooler: Part 3

s Beginner's Column: Power Supply
Design

issue Number 8:

e Build VIC-20 EPROM Programmer.

o Multi-User: CP/Net.

e Build High Resolution S-100 Graphics
Board: Part 3.

e System Integration, Part 3: CP/M 3.0.

Linear Optimization with Micros.

Issue Number 16:

« Debugging 8087 Code

* Using the Apple Game Port

* BASE: Part Four

* Using the S-100 Bus and the 68008 CPU

s Interfacing Tips & Troubles: Build a
“Jellybean” Logic-to-RS232 Converter

28

THE COMPUTER JOURNAL

Issue Number 18:

* Paraliel Interface for Apple Il Game Port
* The Hacker's MAC: A Letter from Lee
Felsenstein

¢ S-100 Graphics Screen Dump

¢ The LS-100 Disk Simulator Kit

¢ BASE: Part Six

* Interfacing Tips & Troubles: Com-
municating with Telephone Tone Control,
Part 1

Issue Number 19:

* Using The Extensibility of Forth

* Extended CBIOS

* A $500 Superbrain Computer

¢ BASE: Part Seven

« Interfacing Tips & Troubles: Com-
municating with Telephone Tone Control,
Part 2

* Multitasking and Windows with CP/M: A
Review of MTBASIC

Issue Number 20:

* Designing an 8035 SBC

* Using Apple Graphics from CP/M: Turbo
Pascal Controls Apple Graphics

¢ Soldering and Other Strange Tales

* Buitld a S-100 Floppy Disk Controller:
WD2797 Controller for CP/M 68K

issue Number 21:

¢ Extending Turbo Pascal: Customize with
Procedures and Functions

= Unsoldering: The Arcane Art

s Analog Data Acquisition and Control:
Connecting Your Computer to the Real
World

* Programming the 8035 SBC

Issue Number 22:

e NEW-DOS: Write Your Own Operating
System

* Variability in the BDS C Standard Library
¢ The §SCSI Interface: Introductory
Column

¢ Using Turbo Pascal ISAM Files

e The AMPRO Littie Board Column

issue Number 23:

¢ C Column: Fiow Control & Program
Structure

e The Z Column: Getting Started with
Directories & User Areas

* The SCSl Interface: Introduction to SCSi
* NEW-DOS: The Console Command
Processor

* Editing The CP/M Operating System

* INDEXER: Turbo Pascal Program to
Create Index

¢ The AMPRO Little Board Column

issue Number 24:

« Selecting and Building a System

e The SCSI Interface: SCSI Command
Protocol

* Introduction to Assembly Code for CP/M
e The C Column: Software Text Filters

« AMPRO 186 Column: Installing MS-DOS
Software

¢ The ZColumn

* NEW-DOS: The CCP Internal Commands

o ZTIME-1: A Reaitime Clock for the AM-

PRO 2-80 Little Board
Issue Number 25:

* Repairing & Modifying Printed Circuits
Z-Com vs Hacker Version of Z-System
Exploring Single Linked Lists in C
Adding Serial Port to Ampro L.B.
Building a SCS! Adapter

New-Dos: CCP Internal Commands
Ampro '186 Networking with SuperDUO
ZS1G Column

. o o

Issue Number 26:

* Bus Systems: Selecting a System Bus

« Using the SB180 Real Time Clock

e The SCSI Interface: Software for the
SCSI Adapter

* |Inside AMPRO Computers

o NEW-DOS: The CCP Commands Con-
tinued

e ZSIG Corner

* Affordable C Compiters

» Concurrent Muititasking: A Review of
DoubleDOS

issue Number 27:

* 68000 TinyGiant: Hawthorne’s Low Cost
16-bit SBC and Operating System

e The Art of Source Code Generation:
Disassembling Z-80 Software

» Feedback Control System Analysis:
Using Root Locus Analysis and Feedback
Loop Compensation

e The C Column: A Graphics Primitive
Package

o The Hitachi HD64180: New Life for 8-bit
Systems

« ZSIG Corner: Command Line Generators
and Aliases

« A Tutor Program for Forth: Writing a For-
th Tutor in Forth

e Disk Parameters: Modifying The CP/M
Disk Parameter Block for Foreign Disk
Formats

Issue Number 28:

» Starting your Own BBS

« Build an A/D Converter for the Ampro
L.B.» HD64180: Setting the wait states &
RAM refresh, using PRT & DMA

» Using SCSI for Real Time Control

s Open Letter to STD-Bus Manufacturers
« Patching Turbo Pascal

* Choosing a Language for Machine Con-
trol

* o o oD

Back Issues

Issue Number 29:

« Better Software Filter Design

*» MDISK: Adding a 1 Meg RAM disk to
Ampro L.B., part one.

» Using the Hitachi HD64180: Embedded
processor design.

* 68000: Why use a new OS and the 680007
* Detecting the 8087 Math Chip

* Floppy Disk Track Structure

¢ The ZCPR3 Corner

Issue Number 30:

* Double Density Floppy Controtler
¢ ZCPR310OP for the Ampro L.B.
* 3200 Hacker's Language
« MDISK: 1 Meg RAM disk for Ampro LB,
art 2

Non-Preemptive Multitasking

Software Timers for the 68000

Lilliput Z-Node

The ZCPR3 Corner
* The CP/M Corner

Issue Number 31:

"« Using SCSI for Generalized /O

* Communicating with Floppy Disks: Disk
parameters and their variations.

* XBIOS: A replacement BIOS for the
S$8180.

* K-OS ONE and the SAGE: Demystifing
Operating Systems.

* Remote: Designing a remote system
program.

* The ZCPR3 Corner: ARUNZ documen-
tation.

Issue Number 32:

« Language Development: Automatic
generation of parsers for interactive
systems.

* Designing Operating Systems: A ROM
based O.S. for the Z81.

« Advanced CP/M: Boosting Performance.
e Systematic Elimination of MS-DOS
Files: Part 1, Deleting root directories & an
in-depth look at the FCB.

* WordStar 4.0 on Generic MS-DOS
Systems: Patching for ASCIH terminal
based systems.

« K-OS ONE and the SAGE: Part 2, System
layout and hardware configuration.

e The ZCPR3 Corner: NZCOM and ZC-
PR34.

Issue Number 33:

+ Data File Conversion: Writing a filter to
convert foreign file formats.

s Advanced CP/M: ZCPR3PLUS, and how
to write self relocating Z80 code.

* DataBase: The first in a series on data
bases and information processing.

e SCSI for the S-100 Bus: Another example
of SCSI's versatility.

e A Mouse on any Hardware: Implemen-
ting the mouse on a 280 system.

* Systematic Elimination of MS-DOS
Files: Part 2—Subdirectories and extnded
DOS services.

e ZCPR3 Corner: ARUNZ, Shel!s, and pat-
ching WordStar 4.0

The Computer Journal / #46

Issue Number 34:

Developing a File Encryption System.

¢ Database: A continuation of the data base
primer series.

e A Simple Multitasking Executive: Design-
ing an embedded controller multitasking ex-
ecutive.

e ZCPR3: Relocatable code, PRL files,
ZCPR34, and Type 4 programs.

o New Microcontrollers Have Smarts: Chips
with BASIC or Forth in ROM are easy to pro-
gram.

e Advanced CP/M: Operating system exten-

" sions to BDOS and BIOS, RSXs for CP/M 2.2,

e Macintosh Data File Conversion in Turbo
Pascal.
o The Computer Corner

Issue Number 35:

o All This & Modula-2: A Pascal-like alterna-
tive with scope and parameter passing.

@ A Short Course in Source Code Genera-
tion: Disassembling 8088 software to pro-

‘duce modifiable assem. source code.

o Real Computing: The NS32032.

® S-100: EPROM Burner project for S-100
hardware hackers.

e Advanced CP/M: An up-to-date DOS, plus
details on file structure and formats.

o REL-Style Assembly Language for CP/M
and 2-System. Part 1: Selecting your assem-
bler, linker and debugger.

o The Computer Corner

Issue Number 36:

o Information Engineering: Introduction.

o Modula-2: A list of reference books.

¢ Temperature Measurement & Control: Ag-
ricultural computer application.

¢ ZCPR3 Comer: Z-Nodes, Z-Plan, Am-
strand computer, and ZFILE.

e Real Computing: NS32032 hardware for
experimenter, CPUs in series, software op-
tions.

o SPRINT: A review.

& REL-Style Assembly Language for CP/M
& ZSystems, part 2.

e Advanced CP/M: Environmental program-
ming.

o The Computer Corner.

Issue Number 37:

¢ C Pointers, Arrays & Structures Made Eas-
ier: Part 1, Pointers.

e ZCPR3 Comer: Z-Nodes, patching for
NZCOM, ZFILER.

¢ Information Engineering: Basic Concepts:
fields, field definition, client worksheets.

® Shells: Using ZCPR3 named shell vari-
ables to store date variables.

® Resident Programs: A detailed look at
TSRs & how they can lead to chaos.

e Advanced CP/M: Raw and cooked con-
sole /0.

¢ Real Computing: The NS 32000.

e ZSDOS: Anatomy of an Operating System:
Part 1.

® The Computer Corner.

Issue Number 38:

e C Math: Handling Dollars and Cents With
C.

e Advanced CP/M: Batch Processing and a
New ZEX.

e C Pointers, Arrays & Structures Made Eas-
ier: Part 2, Arrays.

e The Z-System Corner: Shells and ZEX,
new Z-Node Central, system security under
Z-Systems.

¢ Information Engineering: The portable In-
formation Age.

Issue Number 40:

¢ Programming the LaserJet: Using the es-
cape codes.

® Beginning Forth Column: Introduction.

e Advanced Forth Column: Variant Records
and Modules.

o LINKPRL: Generating the bit maps for PRL
files from a REL file.

® WordTech's dBXL: Writing your own cus-
tom designed business program.

e Advanced CP/M: ZEX 5.0—-The machine
and the language.

@ Programming for Performance: Assembly
language techniques.

o Programming Input/Output With C: Key-
board and screen functions.

¢ The Z-System Corner: Remote access sys-
tems and BDS C.

¢ Real Computing: The NS320XX

o The Computer Corner.

Issue Number 41:

e Forth Column: ADTs,
Concepts.

e Improving the Ampro LB: Overcoming the
88Mb hard drive limit.

e How to add Data Structures in Forth

o Advanced CP/M: CP/M is hacker's haven,
and Z-System Command Scheduler.

® The Z-System Cormner: Extended Multiple

Object Oriented

o Computer Aided Publishing: Introduction

[d Line, and ali

to publishing and Desk Top Publishing.

e Shells: ZEX and hard disk backups.

® Real Computing: The National Semicon-
ductor NS320XX.

* ZSDOS: Anatomy of an Operating System,
Part 2.

Issue Number 38:

® Programming for Performance: Assembly
Language techniques.

e Computer Aided Publishing: The Hewlett
Packard LaserJet.

® The Z-System Corner: System enhance-
ments with NZCOM.

e Generating LaserJet Fonts: A review of
Digi-Fonts.

¢ Advanced CP/M: Making old programs Z-
System aware.

e C Pointers, Arrays & Structures Made Eas-
ier: Part 3: Structures.

e Shells: Using ARUNZ alias with ZCAL.

e Real Computing: The National Semicon-
ductor NS320XX.

o The Computer Corner.

¢ Programming disk and printer functions
with C.

o LINKPRL: Making RSXes easy.

® SCOPY: Copying a series of unrelated
files.

e The Computer Corner.

Issue Number 42:

o Dynamic Memory Allocation: Afiocating
memory at runtime with examples in Forth.

* Using BYE with NZCOM.

o C and the MS-DOS Screen Character At-
tributes.

e Forth Column: Lists and object oriented
Forth.

e The Z-System Corner: Genie, BDS Z and
Z-System Fundamentals.

¢ 68705 Embedded Controller Application:
An example of a single-chip microcontrolier
application.

e Advanced CP/M: PluPerfect Writer and
using BDS C with REL files.

Real Computing: The NS 32000.

o The Computer Corner

Issue Number 43:

e Standardize Your Floppy Disk Drives.

® A New History Shell for ZSystem.

e Heath's HDOS, Then and Now.

e The ZSystem Comer: Software update
service, and customizing NZCOM.

e Graphics Programming With C: Graphics
routines for the IBM PC, and the Turbo C
graphics library.

o lazy Evaluation: End the evaluation as
soon as the result is known.

¢ S-100: There's still life in the old bus.

e Advanced CP/M: Passing parameters,
and complex error recovery.

¢ Real Computing: The NS32000.

e The Computer Corner.

Issue Number 44:

® Animation with Turbo C Part 1: The Basic
Tools.

¢ Multitasking in Forth:
F68FC11 and Max Forth.

e Mysteries of PC Floppy Disks Revealed:
FM, MFM, and the twisted cable.

e DosDisk: MS-DOS disk format emulator
for CP/M.

¢ Advanced CP/M: ZMATE and using
lookup and dispatch for passing parame-
ters.

* Real Computing: The NS32000.

¢ Forth Column: Handling Strings.

e Z-System Corner: MEX and telecommuni-
cations.

o The Computer Corner

New Micros

Issue Number 45:

¢ Embedded Systems for the Tenderfoot:
Getting started with the 8031.

¢ The Z-System Corner: Using scripts with
MEX. i

® The Z-System and Turbo Pascal: Patching
TURBO.COM to access the Z-System.

¢ Embedded Applications: Designing a Z80
RS-232 communications gateway, part 1.

e Advanced CP/M: String searches and tun-
ing Jetfind.

e Animation with Turbo C: Part 2, screen
interactions.

¢ Real Computing: The NS32000.

¢ The Computer Corner.

Jssue Number 46:

* Build a Long Distance Printer Driver.

e Using the 8031's built-in UART for serial
communications.

e Foundational Modules in Modula 2.

® The Z-System Corner: Patching The Word
Plus spell checker, and the ZMATE macro
text editor.

e Animation with Turbo C: Text in the graph-
ics mode.

¢ 780 Communications Gateway: Prototyp-
ing, Counter/Timers, and using the 280 CTC.

e

\.

Subscriptions

tyear (6 issues)
2 years (12 issues)
Air Mail rates on request.

Back Issues
16 thru #43
6 or more
#44 and up
6 or more

Issue #s ordered

u.s. Foreign Total
(Surface)

$18.00 $24.00

$32.00 $46.00

$3.50 ea. $4.50 ea.
$3.00 ea. $4.00 ea.
$4.50 ea. $5.50 ea.
$4.00 ea. $5.00 ea.

Subscription Total
Back Issues Total

Total Enclosed

All funds must be in U.S. dollars on a U.S. bank

Name

~

Address

Check VISA

Card #

MasterCard Exp.

Date

Signature

The Computer Journal
190 Sullivan Crossroad, Columbia Falls, MT 59912
Phone (406) 257-9119 Mountain Time Zone

The Computer Journal / #46

Long Distance Printer Driver

Corrections

The article Build a Long Distance Printer Driver by Stuart Ball
(TCJ #46) is something that many of us have needed for applica-
tions where serial communications is too slow, but the standard
parallel interface won’t handle the distance. I had been advised to
use SCSI for a similar task, but that involved more hardware and
software hassle than it was worth to me. The best solution is the
simplest one which does the job, and his implementation demon-
strates what smart thinking can accomplish.

Unfortunately, I lost part of the schematics in the transfer
process. Rather than trying to publish the missing parts with a lot

of explanation, I'm including the entire schematics here.

Stuart had included his Schema III files, and since I had
Schema II+, I decided to import the drawings into PageMaker
3.0. It took a lot of experimenting plus a call to Omation (the
Schema vendor) in order to produce a TIF file which PageMaker
would import. Everything looked good, but my libraries did not
include the LM7805 voltage regulator. As a result, there was a
blank spot in each schematic which I did not notice.

It is usually difficult (or impossible) to transfer files between

' 4.7
2 pstsssimmign!
2338382 33 8383 J2
k! 33355 b - gy n-se
DB25P 1 MC3487 | 2 -
578 [1 r 2 I -
pe |2 s {2
7
o1 |3 —=" s | 3| +02
p2 |4 1 s 18 4| -pe
03 s —{=[u 3
b4 |6 ls—ﬂz 14 | 6 | -D1
os |7 3 7 | +D2
oe |s EN_EN 1 I 8 ‘gg
o7 |9 b I
ACK |16 2] 10| -03
BusY [11 11} +04
-PE 12 V3 12| -D4
SEL RTN[13 eyl e 13) +0S
-aF (14 l 14| -DS
-ERROR |15 15] +08
~INIT |16 X —E}: 95—] 16f -06
-SEL (17 g le Lo| o7
GND |18 —=[u e
GND |19 s 14 18[-1NIT
onD |20 >3 ‘ 20[+INIT
GND |24 EN _EN 21|-aF
GND |22 4 12 22) +aF
GND |23 1 }—{23
GND |24 z4|-sTB
GND |25 w3 ____] 2s|+sTB
= 1 MC3487 | 2 r—26
3 r 1[27| -seL
5 I 28| +SEL
v _EZ 5 23{+BUSY
9 1e 30|-BUsyY
—> [t 31| -ack
1 s 32| +AcK
_EZ 3 33{-PE
EN_EN 34{+PE
4 12 35]-SEL RTN
| I 36| +SEL RTN
us 220 R1 220 R2 37|-ERROR
MC3486 |2 y4 38| +ERROR
3 1 [FC3456] —3s
pe 2T 21 b—140
5 =N 0
S < b s < 5 13
11 Fg P —
AT e 0 T 43| Lqy
13 HLd T |2 i
e 14 45
EN_EN L3 < 5 48
4 |12 EN EN 147
[+ 1 + iz 220 R3 220 R4 a8
1 —149
URL | —{so|
LM7805 4
1 2
TO_POWER n N ouT| ’ ' +5 220 R4
JACK — L ‘o o 11
LI T e -
. - z - PRINTER DRIVER BOARD

30

The Computer Journal / #47

programs, but it is often necessary--especially in the publication
business where I receive files from many different authors. I am
" currently using Schema II+ for schematics, and AutoCAD with
AutoPCB for printed circuit board routing, but there are also
ORCAD and EEDesigner files around.

AutoCAD can output DXF (Date Exchange Format), CDF
(Comma Delimited Format), or SDF (System Data Format) files.
It can also input DXF files from other sources. I've output DXF
files from AutoCAD, converted them to Gerber photoplotter files
for the board vendor, converted the Gerber files back to DXF for-
mat, and then read the DXF file back into AutoCAD so that I
could pen plot something comparable to what the photoplotter
will produce. Occasionally we received boards with a missing trace,
which was there in the AutoCAD file, but missing in the Gerber
files because of a bug in the conversion utility. Checking the plots
after converting the Gerber files back to AutoCAD enabled us to
pinpoint the problem and to obtain a corrected Gerber conversion

utility from the vendor.

I’ll be taking a good look at schematic capture and PC board
routing programs, including their data input/output capabilities.
I'd appreciate feedback on your experiences, especially with re-
gards to file conversions and software techniques for DXF and
Gerber files. ®

FROM DRIVER
3M-50
—
—d

>,
>
>
S

<
<
<

waqmm;um»]

-
m:o“'@_)"‘m G

{4

220

4
0)
("
py
<
[

-
Z

TO PRINTER
DB-25S

VWA
AMA
Vel
AAA
\A4
AAA
WA
AN,
V

A

wm«;mm;wr\n—[

22

AAA

m
- Z
N

-

WA

AR

{
o]

= [
rs

t—

229

2290

M
Z

3
O
(A}
e
@l
o

11

13

m
z

0 qu i | -y

el
by
e

f

|
0
Gl
3
|
o

w

11

13

AR

m
Zz

N
-
N

-

Ac
Ly
2]

o]
-~

LR

ks

4

™y
N

L]

{hd

Fole T

RECEIVER BOARD

The Computer Journal / #47

31

ROBO-SOG 90

by Michael Thyng

Okay. So what DID happen at ROBO-
SOG 90?7 And what is it anyway? The
ROBO stands for the robotics event
theme. SOG stands for Semi Official
Gathering. The 90 is coincident with this
year. SOGs have been annual events for
the last 8 years. Mostly, they have been
held in Bend, Oregon. But, for the last 2
years they have been regionalized and
have varied in location from Denton,
Texas and Gunnison, Colorado to up as
far as Port Alberni, British Columbia.
Others have been held east of the Missis-
sippi, but I can’t remember where.

ROBO-SOG 90 was an informal, edu-
cational event with a robotics theme. We
met at the Applied Technology Training
Center (ATTC) in Everett, Washington.
This is a college-like facility used by manu-
facturing firms to train and upgrade em-
ployee skills in intensive, generally short
term, training sessions.

We began our first day with an infor-
mal Junque de Jour tour in Seattle. We
visited three local personal robotics suppli-
ers (here read ‘surplus stores’) and natives
showed newcomers places for the best bar-
gains. At the end of the day, we had a bar-
becue “out back” and listened to John
play the guitar. I don’t know if the music
was better before or after we started sing-
ing with him, but I have a theory.

Friday morning (the second day) we
began with the only formal portion of the
event. Jim Wright, the guy who helped us
land the ATTC for ROBO-SOG 90 gave
the opening speech and welcomed the at-
tendees. Then began a succession of one
hour seminars, both morning and after-
noon.

Our first speaker demonstrated an in-
dustrial robot. Yes, right there in the
ATTC! Then an Intel representative
talked about embedded controllers.
Suzanne Weghorst of the University of
‘Washington told us what’s what about Vir-
tual Reality. Thomas Anderson, who

32

wrote the TASM cross assembler, de-
scribed how it came about and the prob-
able future of his work. Ward Siiver de-
scribed the trials of being a successful con-
sultant. That fit beautifully with Bo Ray’s
descriptions of how he helped build up his
company, Rapid Systems, into the success
it is today. It just worked. Dr. Sandy Spel-
man explained in an hour about his work
with cochlear implants. This is an on-going
study to help the profoundly hard of hear-
ing to hear with surgically implanted elec-
tronic devices. We slimmed ourselves by
limiting him to only one hour. The day
concluded with Gary Godecke’s “show
and tell” of computer aided manufactur-
ing and the small business.

What did other members of the family
do when one of the members was so heav-
ily involved in this electronic tatk? We had
three totally non-electronic events, quilt-
ing, origami and simulated robot building.

After sessions, we scattered to a variety
of places for dinner, then reconvened for
Jolt Sigs. A Jolt Sig is a chance to visit with
the speakers, and other attendees into the
wee hours of the night. Sig stands for Spe-
cial Interest Group. Jolt is the name cho-
sen to honor the heavily caffinated soft
drink consumed to help keep us awake af-
ter the coffee pot is turned off.

Saturday morning, tech sessions began
at 9:00. Attendance was sparse until part
way through the 10:00 session. Uh-huh.
We stay up late talking, then don’t manage
to get up quite when we need to. We
should probably apologize to out early
morning speakers for the light attendance,
but one of them was among the missing at
start time.

Randy Young talked about his vision
systems applications in a sawmill. By in-
specting the logs by camera and analyzing
the images with a computer, they can
choose the best way to run the log through
the saw. Art Horne described some new
electronic boards he has produced which

take advantage of Forth. Fred Martin,
from the MIT Media Labs, talked about
how he has combined the LOGO lan-
guage with LEGO building blocks and
made little robots. Al Ross showed his spe-
cially designed wheelchair with a computer
built into it, which allows quadriplegics to
communicate even with minimum ap-
pendage control.

After Saturday lunch, the tech sessions
closed with a robotics panel discussion.
There were about 10 home made robots,
and their inventors were proud to have a
chance to tell all about them. The speaker
shark (someone who lets the speakers
know it’s time to stop talking) limited their
dissertations to about 10 minutes each or
we might still be there. That was as lively a
session as any held during the rest of
ROBO-SOG 90, and a fitting way to make
the transition from lecture sessions to
practical application. We had set up the
Seattle Robotics Society Maze, you know,
“out back” and organized a get-it-through-
the-maze contest. Murphy, the truly brain-
less robot, finished third. Karl’s camera
equipped robot finished second, and
Fred’s LEGGO chassis robot finished first.
My robot didn’t embarrass me with a truly
poor performance, but it came close.

One thing I learned was how much eas-
ier it is to build a robot when you use
LEGGOs. They are light, so the massive
battery needs go away, and you can carry a
completed robot around in a fairly small
box. If I told you how many weeks I spent
trying to make my aluminum robot work,
and trying to provide power to those big
motors, including the painful drilling inci-
dent, you would only laugh.

We closed with a banquet dinner of
salmon, chicken, rice, some orange and
green stuff, and a mint ice cream with
chocolate dessert. We handed out awards,
patted each other on the back and went
our separate ways. And, you know what?
Only one speaker didn’t show. For an

The Computer Journal / #47

event with this many speakers, that was
pretty darn good.

But there are two other things I'd like
to mention.

1) Micro Cornucopia magazine went
out of business early this year. I'm sorry.
Among other things, I may have lost the

-only contact with SOGs held around the
country. [But if you’re reading this, that’s
obviously not true.] If you went to a SOG
this year, would you make contact with ei-
ther me or The Computer Journal and tell
about it? I'm sure others would like to find
.out what happened too.

2) There will be another robotic event
in July, 1992. To say it will be big is a gross
understatement. If you want information,
Tam:

Michael Thyng
11036 40th N.E.
Seattle, WA 98125
(206) 362-5373 (voice)
(206) 362-5267 (modem 24hr)

"The Computer Journal / #47

Editor
(Continued from page 2)

before file extensions and placing a zero
before decimal fractions. Some file filter/
conversion programs may also exhibit this
problem.

My printer driver will be similar to the
UNIX-like MKS PR command where all
commands will be in the command line or
a config file. I need to be able to select
header details (print date, file creation
date, etc.), lines per page, single or double
spacing, compressed or regular type, page
width, etc. without altering a programming
source file. While I prefer assembly lan-
guage, this looks like a good application
for C, because the speed will be limited by
the printer I/O and it only need a small
disk data buffer. Does anyone else have
strong feelings about printer drivers?

Borland Bargains??

Borland started by selling Turbo Pascal
direct at a very low price. It seems to me
that it was something like $49.95. In recent
years Borland’s prices have escalated and
they announced to dealers that there was
enough profit margin for the dealers to
handle Borland products and that Borland
would refrain from direct sales so that they
would not compete with their dealers.

But I've been getting many special of-
fers from Borland (as many as five in one
day), such as Quattro Pro 2.0 for $99.95
instead of $495 and the ProShow Power-
Pack for $39.95 instead of $300. Then
there’s Turbo C++ Professional for
$149.95 instead of $299.95, and a similar
bargain for Paradox. This makes me won-
der about the success of their dealer sales
program.

It would be very interesting to see a di-
rect vs. dealer sales ratio study for the past
four years. Borland has also dropped BA-
SIC, PROLOG, MODULA-2 (yes, there
was a CP/M version), and I believe
SPRINT. All this makes me wonder how
Borland is doing and where they are
headed —any Borland watchers out there
who can fill us in on this?

Jameco

I remember Jameco as an inexpensive
source for surplus and odd-lot component
bargains. Last year their catalog increased

the emphasis on computers and their mini-
mum order was $25, but I still used them
for most of my purchases. Their current
catalog has full page four color ads for
computers, with a few pages of compo-
nents which have been shoved way to the
back. Their minimum order is now $50
which is too steep if you need a few chips
for a project.

I'm looking for a new source. Digi-Key
(1-800-344-4539) looks good for most
components. They have a great selection
of connectors, resistors, capacitors, transis-
tors, SCRs, etc., but they don’t carry Mo-
torola or Intel microcontroller and periph-
eral chips. They have a toll-free order line,
no minimum order with a $3 service
charge for orders under $25, and your or-
der is entered on-line so that you know if
the items are in stock. I'll be using them
for most of my orders (except, unfortu-
nately Motorola and Intel) — get their cata-
log (Digi-Key, PO Box 677, Thief River
Falls, MN 56701-0677), you’ll be surprised
how helpful and friendly people in small
towns are.

Floppy Disks

Richard Rodman explained floppies in
his article Mysteries of PC Floppy Disks Re-
vealed in issue #44, and somewhere I be-
lieve that he mentioned the interchangea-
bility problems of 360K and 1.2M disks. It
appears that there are problems when you
format and write to a disk in a 360K drive,
then reformat the disk (as 360K) in a 1.2M
drive. Many 360 drives will not reliably
read the disk. Apparently the 360K drives
write a wider path than the 1.2M drives
and when reformatted as 360K in a 1.2M
drive some of the old data remains at the
edges of the track. A 360K drive may read
both the 360K and 1.2M data, which re-
sults in garbage.

Lee Hart, in The Staunch 8/89’er says,
“Don’t reformat a disk with a different
format or number of tracks unless you
bulk erase it first. Use a bulk tape eraser,
or rub (the disk, still in its sleeve) with a
permanent magnet if nothing else is avail-
able.” @

Computer Corner
" (Continued from page 36)

sheet. One of my complaints has been the
need to go back and forth between several
different manuals to find facts. GA port 0
is address 18 hex and ONLY stated as
such in the specification sheet, nowhere
else! The entire 2 inches of programmer
manual only gives you an example of how
to interface more memory to the board.
There is no help anywhere in the book or
specification sheet on interfacing to pe-
ripherals. If you intend to use this to drive
- anything, you must build an interface with-
_out their help. I was told that several re-
prints on how to talk to peripherals is in
the works and may be mailed by the time
you read this. As a contestant, if you didn’t
have the schematic of their development
board like I did, my guess is that you
would have either given up or had some
problems. I say that only because the sche-
matic indicates that some timing problems
on the read cycle required delay devices.

Doing I/O

What my intentions are, is showing how
doing a simple task in RTX FORTH com-
pares with doing the same task using a
6805 device. For the sake of this column I
have kept it real simple. Figure 1 shows

the interface I built for the RTX contest
board and lists the header pins to get the
signals from. It is not necessary to build all
the board, as I only wanted 8 bits to do
testing on and only installed devices U1, 3
and 5. This also explains why I made the
‘138 address decoder split out the read
and write operations. This is pretty much a
minimum arrangement and has not been
tested fully to see if some timing problems
might appear. What testing I have done
says it should work reliably for most things.
Also note that using more than one or two
273s will require splitting the data bus into
two buses with 244s used as bus driver
(see the X comment and indication in the
figure).

What it shows us doing is reading a
switch and turning an LED on or off de-
pending on the switches status. For real
world type of work this is probably the
most common operation performed. If
your system can’t do this, I would not con-
sider it as being a controller, especially an
industrial controller. To do the same thing
with an 6805 would not require the devices
shown in Figure 1. The 6805 port A could
acts as the input port, while the B port has
the ability to drive LEDs directly (I would
watch the size of the resistor used so as to
limit current to less than 10 MA).

Our listing shows the difference be-
tween the two codes needed to read the
switch and turn the LED on. What is not
listed is any initialization code. The 6805
would need the port set up for being either
input or output operation. Also not shown
would be the master loop used to call
these routines. They could be tied to inter-
rupts or sampled on a timer tick, but that
sort of decision remains in the imagination
of the programmer.

I checked the RTX generated code and
a 16 bit word is created for each word
used, plus the header name. That means
the LED_ON word used about 14 bytes (7
words) of the 3200 bytes of available dic-
tionary space. Our same operation in the
6805 used only three bytes. To further the
comparison we need look at how the code
would be used. In the 6805 you have to
assemble the code and try it. Should it fail,
you will need to reassemble your guesses
and burn a new chip to try again. I do
know of a FORTH based 6805 develop-
ment product, but for now you must as-
semble, test, and reassemble. The RTX
however allows you to test the operation in
interpretive mode first, and then only
when the desired results is achieved do
you compile it into the dictionary. 1 did

RTX G BUS ADDRESSES OUTPUT DEVICES
uy : Uz
1 5 /WEL8 (—— 3 ouT L
(27352 78 W ZHE19 31B% oz ouT 2
> 3 JHSLIA ouT 3 vee
[CRU—JZ=30 T € v2 pi3 i 2 D3 Q3 0T 3
Y3 b1 /Rs18 r Da a4 SuT 5
6 yap 7R$19 o 23 6UT & R1
2]8L. YSPs YRS1A 7 oUT 7 4700HMS
GI0 J3-29 ad éza ve p2—RE1E oz ez ot Z
[daz J3-232 G2B Y7 4 D8 a8
7aF136 11 heiw
RTX_BOARD 1Sk D1
HEADER ADDRESS DECODERS LED
CONNECTIONS TAFTTE S
u2 ua
. S
4s vobls—uis 2 o1 o 2472,
518 MY VWS1E D bz @2 oUT 11
¢ Yz WSIF b &3 ouT 12
y3 /RS1C Da @4 ouT 13
6 i /R$10 [~ ps as oUT 14
4181, YSPS——URsiE L 706 <€ oUT 15
59828 Y6 P Rs1F 507 Q7 ouT 16
G28 Y? pt— o8 a8
1 7138 11 leik
= OPTIONAL idsR
TAFE73
RS _J3=33 X——--’:—X Us IN 1
1v1 1A
& pare-e iy 1% i 3
[els] = 1a
() =2 — 3 iva 1a3 In g
2 = X INDICATES WHERE Lys i8¢
(o BELH To INSTALL ’244s IF D 2% 243 IN 6
3 = 2 MORE THAN TWO ’273 D 2yz 292 IN 7
<L = ARE USED AS OUTPUT 2v: 253 IN 8
<D = DRIVER DEVICES — THE vee
S J3— Do RTX CAN ONLY SUPPORT 16
v 4 MA LOADS — ABOUT 2 38 BT
<5 — DE DEVICES WITHOUT BUFFERS R2
<R =2 THIS WILL CREATE A 74FZa4 a7k
02 = SEPARATE OUTPUT AND Ue
REES INPUT DATA BUS. D RTRETY! IN 9
(1] = USE *244s WITH PINS K_ Ve 1R INT10
SO 1 & 19 GROUNDED. D10 4 IN 11
(c]0) = 1Y3 1A32 N
GD J3— = £ 1v4 1A4 IN 13 Su1l
D = D 2vs 24l IN 14 SPST
Zi2yz 2a2 In i3
ki i o N e 1’
A
+5v NOT SHOWN ARE
[rec J3-25 > BYPASS CAPs .0iufd. INPUT DEVICES 16 bk L
N TTIT> GND ACROSS POWER AND GROUND [EYg e =
—j OF EACH DEVICE USED.
= aFZad
COMPUTER CORNER
fitie A
RTX2001A CONTEST BOARD 1.0
ize Pocument Number EV
A RTX10)
Pate August 3, 1990Kheet of 1

The Computer Journal / #47

RTX EBFORTH 6805
HEX (NEEDED TO USE HEX VALUES)

¢ READ PORT (- N) READ PORT EQU ¥

18 G@ 100 AND ; LDA PORTA DATA TO A
(MARE HI IF SWITCH OPEN) COMA COMPLEMENT
AND #$0 BIT 0
RTS
: LED_ON (=) LED_ON EQU *
FEFF 18 G! ; BCLR 0,PORTB 0=LED
(NEED LOW TO TURN ON LED) RTS
: LED_OFF (-) LED_OFF EQU *
FFFF 18 G! ; BSET 0,PORTB HI=OFF
(TURN ALL OFF/HI) RTS
: GW=LED (-) SW=LED EQU *
READ_PORT BSR READ_PORT
IF (>0 = OFF) TSTA
LED_OFF BEQ SW=LED1
ELSE BSR LED_ON
(0 =0N) RTS
LED_ON SW=LED1 EQU *
THEN - ; BSR LED OFF
RTS -
(a faster SW routine is
BRCLR 0,PORTA, SW1
BSR LED_OFF
RTS

SW1 EQU *
BSR LED_ON
RTS
read_port not needed!)

just that for the code shown, discovering that EBFORTH’s
NOT is actually a 1’s compliment and does not change 0’s to
one’s as is the case in some Forths. I can’t stress the impor-
tance of being able to pretest your modules before putting
them in your program. The pretesting for me is worth any
other inconvenience it might (but doesn’t) produce.

Review

In summing up this column I would say I have found the
RTX manual to be excessive and not that helpful. The ap-
pendixes are probably what you will use the most. The RTX
contest board is a nice toy and with an added interface board
could do considerable work at a reasonable price. Should
enough interest be shown, I can make I/O boards available
for a small cost (a project yet to be started). In comparing
the 6805 to an RTX, I would say the 6805 has the RTX beat
in generating compact code and easy interfacing to the out-
side world. The RTX is probably a better development plat-
form for more complex projects, and if HARRIS produces
an RTX with built in I/O like the 6805, I might chose it over
the 6805.

1 guess the bottom line then goes this way, 6805 for small
projects with simple 1/O and limited parts count. The RTX
for more complex or difficult projects. Projects requiring
field changes or options would definitely go to the RTX.

Next Time
I have run out time again, so next time more on the

CrOS$-ASSGmb|erS as low as $50.00
SII'I_'IUlatOI"S as low as $100.00
Cross-Disassemblers s iowassion
Developer Packages

as low as $200.00(a $50.00 Savings
A New Project

Our line of macro Cross-assemblers are easy to use and full featured,
including conditional assembly and unlimited include files.
Get It To Market—FAST

Don't wait until the hardware is finished to debug your software. Our
-Simulators can test your program logic before the hardware is built.

No Source!
A minor glitch has shown up in the firmware, and you can't find the original
source program. Our line of disassemblers can help you re-create the
original assembly language source.

Set To Go
Buy our developer package and the next time your boss says "Get to work.",
you'll be ready for anything.

Quality Solutions

PseudoCorp has been providing quality solutions for microprocessor
problems since 1985.

BROAD RANGE OF SUPPORT
e Currently we support the following microprocessor families (with
more in development):

Intel 8048 RCA 1802,05 Intel 8051 Intel 8096
Motorola 6800 Motorola 6801 Motorola 68HC11 Motorola 6805
Hitachi 6301 Motorola 6809 MOS Tech 6502 WDC 65C02
Rockwell 65C02 Intel 8080,85

Zilog Z80 NSC 800
Hitachi HD64180 Motorola 68000,8 Motgrola 68010 Intel 80C196
e Al products require an IBM PC or compatible.

So What Are You Waiting For? Call us:
PseudoCorp

Professional Develog)ment Products Group
716 Thimble Shoals Bivd, Suite E
ewport News, VA 23606

Ni
(804) 873-1947 FAX: (804)873-2154

MINIX operating system. Till then, happy programming
and hacking. @
For RTX information contact:
HARRIS at 1(800)-4-HARRIS, ext 1301

For information on MINIX contact:
Prentice Hall publishing
1(800)-624-0023

The Computer Journal / #47

The Computer Corner

by Bill Kibler

It is a busy time again with plenty to
talk about. Lots of little things have been
happening and I will complete the second
part of our RTX review. Let’s start by re-
viewing a UNIX clone.

MINIX

For those interested in learning UNIX
operations, there are plenty of DOS pack-
ages that will teach you how to use the
utilities that come with the standard
UNIX. However if you are like me and
want to learn how to write drivers and pro-
grams to work under UNIX something
else is needed. You see 1 have applied for
several jobs over the past few years and
my limited work with UNIX has been a
problem. So finally I had some extra
money and decided to break down and
buy MINIX.

Why MINIX? MINIX is an UNIX
substitution program developed by Tanen-
baum (a teacher of operating system de-
sign) that can be run on PC type comput-
ers and the Atari ST. There are a few
other advantages that come with the pack-
age, mainly the entire source code. Not
only do you get a book explaining most of
the why and wherefore of the operating
system, but you get all the source to every-
thing (and I mean all 100 utilities as well).
The features really don’t stop there, unlike
UNIX it will run without hard disk,
doesn’t need megabytes of memory, and
could be used by normal programmers.

You might have noticed I said “NOR-
MAL PROGRAMMERS” as my only
problems so far has been lack of informa-
tion for the real novice user. I have had
considerable troubles with the AT version
and will let you know later about solving
those problems. The Atari ST version
however came with a small book (no how
it works book with it—you buy it sepa-
rately) that is set up for a more experi-
enced novice user. You will also find that
some of the cheaper (as outdated) books
on version 7 UNIX will explain how the
utilities work. I find the entire supply of
documentation set up for the operating
system student who has already been using
a real UNIX system. For those who are a

36

little rusty with UNIX commands and op-
eration (like me) or a novice user I think
some other package would be more use-
ful.

The PC versions have a DOC file that
contains most of the information con-
tained in the Atari book, but I had consid-
erable trouble getting it printed from
MINIX. I had to finally use DOSWRITE
to move it to a PC disk and print from
regular DOS. MINIX has a UNIX style
disk format so you can not move files with-
out using the special programs. At first
that really turned me off, but as I have
learned more about how things work, I
can understand and accept the reasoning
invoived.

Since 1 have only gotten started on
MINX 1 wiil leave a more complete review
for later. My objective is to learn the inner
operations and driver interfacing needed
for UNIX like operations. I am also look-
ing at using the system on several different
platforms (PC and 68K) in hopes of being
able to have ONE operating system for all
my different types of hardware. Failing to
like MINIX for that purpose it will leave
me with FORTH as the only way to have
one system for many hardware platforms.

RTX

The FORTH on the RTX is not in the
running for use on all my hardware plat-
forms. I did find EBFORTH adequate for
the evaluation board. In last month’s cor-
ner, I covered the board you received in
the contest unit and how it wsa basically
setup. The manual is rather large and at
the time I thought more than adequate.
My experience in trying to build a hard-
ware interface to the board proved that
the manual has many short comings.

The manual is primarily setup to give
you programming information, too much
programming information in fact. As I
started using the manual for real, I discov-
ered major problems with finding the facts
I needed. My current feeling is that the
entire book could be cut down to about
half the size with several new sections
needed. Those new sections have to do
with hardware. The main problem with the

board is NO interfaces to the outside
world are provided except the serial link. If
you want to learn about the RTX by run-
ning it as a slave serial port on your PC
you will be just fine. If however you are
like me and want to have your unit talk to
something as simple as LEDs you got
problems.

Our local FORTH interest group had a
visitor many months ago, who supplied us
with copies of the RTX development in-
formation package. In that package were
schematics of the unit. By looking at those
I was able to design and build a paraliel
port interface for testing (see Figure 1). At
first I felt Harris had not even provided
current output abilities of the RTX. After
calling their technical support people I
found out the printed specs of 4 MA maxi-
mum per output was correct. That means
you can only put a few (as in one or two)
logic devices off of the ASIC bus. To be
able to talk to anything, you must first
build an address decoder and bus drivers
for the ASIC bus. The other problem
which slipped by me at first was the ASIC
bus itself.

In the NOVIX (which I have and use)
there are the B and X ports. These ports
can handle 30 MA (easily drive LEDs) and
can be latched up much like any parallel
port. I had correctly understood that the B
and X became the ASIC bus on the RTX.
The point 1 missed was that ali the new
and some old registers are now directly
tied to this bus at all times. The B and X
ports are now a FULL TIME BUS that
talks to everything inside and outside the
chip. You have a simple FORTH com-
mand to use the bus (G! and G@ to get
and put data to it) but you must be care-
ful. There are 32 addresses on the bus and
the lower hex 17 are all internal and can
crash the system when improperly used. I
know as I wrote to them by mistake sev-
eral times.

The information on which addresses do
what is contained in the manual and the
RTX2001A manufacturing specification

{Continued on page 34)

The Computer Journal / #47

