I

Programming - User Support

Applications

Issue Number 48 January / February 1991 $3.95

From The Desk
Fast Math Using Logarithms
Real Computing
Forth and Forth Assembler
Modula-2 and the TCAP
The Z-System Corner
Adding a Bernoulli Drive to a CP/M Computer
Z Best Software
Review of BDS “Z”
PMATE / ZMATE Macrds

\ The Computer Corner

ISSN # 0748-9331

The Computer Journal

Founder
An Carlson

Editor/Publisher
Chris McEwen

Technical Consultant
William P. Woodall

Contributing Editors
Bill Kibler
Tim McDonough
Bridger Mitchell
Clem Pepper
Richard Rodman
Jay Sage

The Computer Journal is pub-
lished six times a year by The Com-
puter Journal, P.O. Box 12, S. Plain-
field, NJ 07080. (908) 755-6186

Entire contents copyright © 1991
by The Computer Journal. All rights
reserved. Reproduction in any form
prohibited without express written
permission of the publisher.

Subscription rates+$18 one year
(6 issues), or $32 two years (12 is-
sues) in the U.S., $24 one year sur-
face in other countries. Inquire for air
| rates. All funds must be in U.S. dol-
lars on a U.S. bank.

Send subscription, renewals, ad-
dress changes, or advertising in-
quires to: The Computer Journal,
P.O. Box 12, S. Plainfield. NJ 07080,
phone (908) 755-6186.

Registered Trademarks

It is easy to get in the habit of using company
trademarks as generic terms, but these trademarks are
the property of the respective companies. It is important
to acknowledge these trademarks as their property to
avoid their losing the rights and the term becoming pub-
lic property. The following frequently used trademarks
are acknowledged, and we apologize for any we have
overiooked.

Apple I, ll+, lic, He, Lisa, Macintosch, DOS 3.3,
ProDos; Apple Computer Company. CP/M, DDT, ASM,
STAT, PIP; Digital Research. DateStamper, Back-
Grounder ii, Dos Disk; Plu*Perfect Systems. Clipper,
Narntucket; Nantucket, Inc. dBase, dBASE 11, dBASE iii,
dBASE Il Plus, dBASE IV; Ashton-Tate, inc. MBASIC,
MS-DOS, Windows, Word; MicroSoft. WordStar; Micro-
Pro international. IBM-PC, XT, and AT, PC-DOS; i1BM
Corporation. 280, Z280; Zilog Corporation. Turbo Pas-
cal, Turbo C, Paradox; Borland International. HD84180;
Hitachi America, Ltd. SB180; Micromint, inc.

Where these and other terms are used in The
Computer Journal, they are acknowledged to be the
property of the respective companies even if not spe-
cifically acknowledged in each occurrence.

The COMPUTER
JOURNAL

Issue Number 48 January / February 1991

Editorial ... 2
From the DeskKcccceveviiinennannenn. e w3
A Time for Change

By Art Carlson.

Fast Math Using Logarithmsccccccririnnnennn. 4
A Technique for Micro-Controllers

By C. V. Palm.

Real Computing.............. ceesnnnes e T {

Minix 1.5 and X-10 Modules
By Richard Rodman.

Forth and Forth Assemblercccoveiiieeicieniereneseennes 9
By Matthew Mercaldo.

Modula-2 and the TCAPceeeiieieeiencrrcererrecrneeens 11

Writing Terminal Specific Code
By David L. Clarke.

The Z-System Cornercccccevveecvrrrevecennn. vesesseenns 17

Patching MEX-Plus and The Word, Using ZEX
By Jay Sage.

Adding a Bernoulli Drive to a CP/M Computer 25
By Wayne Sung.

Z Best Softwarec.ccoevvvrevennneee. reermeraireesaeransennnans .30

A Look at New Z-System Programs
By Bill Tishey.

ReVIieW Of BDS “Z7 ... iieeeciireiereeieseccsieeesenecenenssanes 32

Bringing C and Z-System Together
By Carson Wilson.

PMATE / ZMATE Macros PP |
By Clif Kinne.
The Computer Cornerccocverrnvrcceeccrereeccennnnes 40
By Bill Kibler.

Editorial

By Chris McEwen

Some Things Never Change.

There [was, sitting fat, dumb and happy. The screen was
blinking, the drives were working and I hadn’t trashed a file
for hours. Things were going my way. The telephone rang. It
was Art Carlson.

This was a surprise. Mind you, I've spoken to Art on
many occasions, but only when he wasn’t expecting my call.
I find Art to be a true resource of good advice. He may not
tell me what I want, but has always says what I need to hear.
You can see my surprise: students call teachers, not the other
way around.

Art related a conversation he and Jay Sage had the previ-
ous night. He was looking for someone to take the reins of
The Computer Journal. Jay mentioned my name. Would [be
willing to be TCJs new publisher? By this time, | was no
longer sitting fat, dump and happy. I had gracefully fallen
off my chair!

What do you say to someone you truly admire, someone
you look to and think, “if I live to be a hundred, I’ll have
learned half that this man has already forgotten,” when he
asks if you will step in and take his place? “No! No, I can’t!”
This was just too much. Who can walk in Art’s shoes without
looking like a five year old mimicking his father? But Art
was serious; his health required that he take a break.

My mind was racing. Could I do it? No, truthfully, I can-
not. It was time for a telephone call of my own. Jay Sage is
another person who I look to for good advise. I told him of
Art’s call and my concerns.

If you’ve ever had a conversation with Jay, you know he
is a good listener. He heard me out and then calmly said,
“You won't do it alone. There is more to TCJ than one per-
son. It lives through the involvement of many: the authors,
the readers and the advertisers. Your question should be,
‘Can we do it?” And [say, ‘We can!””

This started two weeks of turmoil. Could we do it? | de-
termined that if we could not assure two things that I would
not accept Art’s offer:

1. We must maintain the content quality. Art and Jay con-
vinced me we would and offered editorial assistance. The
articles are the product of the readers. This is TCJs tradi-
tional strength.

2. We must maintain the quality of the journal itself. One
of our readers, Bill Woodall, lives nearby. Bill is a publisher
as well as software developer and jumped right in to help. In
fact, Bill has already earned a place on the masthead.
Frankly, this issue would have never seen light of day with-
out his help. Thank you, Bill!

I have been reminded of the difference between a maga-
zine and a journal. A magazine is put out by the large staff of
a large corporation, serving a large number of people who

are called customers. A journal is written by its readership,
assembled and produced by a few and sent out to people
who are called friends.

So there you have it, friends. Art will be staying with us as
adviser and author. I look forward to his commentary on the
future of computing. But in the end, TCJis not Art and Art is
not TCJ. We—all of us—are TCJ and always have been.

Some things will never change.

Is Our Slip Showing?

You know, | always had great respect for Art. His insight
is on target so often that one wonders where he keeps the
crystal ball. But | never guessed the sheer work involved in
getting this rag put to bed! Critical readers will surely note
errors in layout and typesetting. It seems every time I look at
a page that | have been over a dozen times, another problem
jumps out at me. Your patience is appreciated. As they say,
practice makes perfect. In my case, maybe not perfect, but
surely things will settle down.

In the meantime, a few things have changed due to the
different equipment Art and 1 have. The body type is
changed from Bitstream Dutch to Adobe Palatino. Type pref-
erence is a very personal thing. | find Palatino a little more
open. We may see some other changes. It would be nice to
have some photographs of the projects described. And
maybe a shot of the authors. Maybe. Maybe not. Carson
Wilson looks decent, Jay Sage is okay. But it would be no
service to run my photo! Anyway, you be the judge. Per-
sonal, outrageous opinions are solicited.

The Family That Writes Together...

Art talks about “a time for change” in his “From The
Desk” column. Something I hope never changes is the quality
of articles our readers submit. Look through your back is-
sues. None of the articles you see were written by profes-
sional writers. So where does the quality come from? Com-
mitment! Whether it be to an operating system, language or
hardware platform, we are a particularly enthusiastic group.
It shows in what we write. I sincerely seek your guidance in
the direction of future issues. And the best way for you to
influence that direction is in your submissions.

How does one submit an article for publication? We are
educated, literate people here, so you need not write to the
“lowest common denominator” as so many editors would
have you do. At the same time, be sufficiently clear in your
explanations. If vou remember that your audience comes
from several computer disciplines and some may need terms
defined, then you should do fine. Seek your own writing
style. Some are folksy. Some are straight and to the point. But

The Computer Journal / #48

From The Desk...

And Now, a Word from Our Founder

By Art Carlson

A Time for Change

" I started TCJ almost eight years ago because other publi-
cations did not provide the information I needed. Many
things have changed during the ensuing period, but one
thing has remained constant—other publications still don’t
provide the necessary information. I have enjoyed publishing
TCJ, and have especially appreciated the many fine people
that I have contacted through TCJ. But, the past few years
have been a struggle due to my personal health problems,
and TCJ deserves more effort and energy than I can pro-
vide—it is time to get help.

I spent a lot of time thinking about the type of person who
could continue TCJ from its present base, and expand it
without ruining what we all have worked so hard to achieve.
It had to be someone who was interested in our areas of com-
puting, but who was also aware of the business aspects of
marketing and production. After talking to Jay Sage and oth-
ers, | contacted Chris McEwen. Chris is a Z-NODE sysop, has
a good understanding of printing and promotion, and had
just purchased a ‘386 system and a laser printer with the
intention of getting into the desk top publishing business.
Little did he know just how fast he would be in business!

Chris isn't going to have to do it by himself. No one
.could. We're all going to have to help, because TCJs one
great strength is the wide and varied viewpoint from many
different people. 1 need to take a short break to catch my
breath, but intend to continue writing for TCJ. I'll also be
available to answer questions, but Chris will make the deci-
sions.

I have several lists of long delayed hardware and software
projects and 1 am looking forward to being able to spend
more time at the bench and on programming. I'll write about
what I am doing, and Chris might publish some of it if he
feels that it will interest the readers. Along this line, Chris
needs to hear from you in order to know what you want. |
believe that he will be including a survey in one of the next
issues, but don’t wait for that if you have something to say.

everyone writes from a knowledge base that cannot be dupli-
cated.

Submit articles on either disk or as an upload to Socrates
Z-Node. Aim for an article length between 10k and 25k in
length in ASCII format. We can also handle data files from
most of the major word processing systems. But, please, do
not try to format the file except when necessary. Writing style
is your job; page layout and publication style is mine.

Continued Page 24

The Computer Journal / #48

His BBS will make it very easy for you to contact him—use it!

Most of my work will be on small hardware and software
projects involving microcontrollers, logic chips, linear de-
vices (transistors, A/D, etc.), LCD displays, motors, monitor
and debugging software, etc. Let Chris know if any of this
interests you.

More on Hard Drive Problems

I mentioned that [had added a fan to a Seagate 225 drive
in an attempt to cure heat related problems. One of our read-
ers used another approach to solve his problems with a
Seagate 251.

The drive would work fine when it was first turned on,
but disk read errors would creep in after about a half hour.
Reformatting did not help. It obviously needed some
heatsinking.

On inspection he noticed one chip with lots of pins and a
heatsink. The engineers at Seagate cleverly use the ground
plane as a thermal path, but both it and the device face in
towards the drive! Not much help.

He carefully unsoldered the chip and bent the pins back-
wards, then mounted the device to the outside of the circuit
board, with a bona-fide aluminum heat sink. Of course this
causes the whole thing to protrude a bit, but there is plenty
of room in the cabinet. Since this change, he has had no
problems with the drive.

This is a good example of problem solving and hardware
hacking.

Harris RTX Dies

Harris has just completed an expensive promotional cam-
paign and contest for their RTX Forth chip. Now, they have
celebrated the contest by dropping the product line. It would
be very interesting to hear the inside information on their
reasons.

Embedded Controllers

We have a number of interesting articles in progress. Tim
McDonough is hard at work on an 8051 project incorporating
A/D conversion using the ADC0808, which he expects to
have ready for the next issue. Matthew Mercaldo (one of the
Harris RTX contest winners) is working on his stepper motor
series, and will be using the New Micros F68HC11 Forth
chip. It is likely that we will have an article on using power
MOSFETs as high-current drivers, and | will have something
as soon as | get things sorted out—after all, one of the pri-
mary reasons for this change is so that I can spend more time
on the bench and writing.

Contact Chris if you have any ideas about articles. *

Fast Math Using Logarithms

A Technique for Micro-Controllers

By C. V. Paim

Years ago, before the pocket calculator, fast multiplication and
division was performed by hand, using log tables. Slide rules also
use log scales to perform these and other functions very quickly,
albeit with some limitation to accuracy. If a simple slide rule can
do it, why not a micro controller?

The basic principle is that when the log of a value is added to
the log of another value, the antilog of the sum reflects the product
of the two values. If subtracted instead of added, we have the
quotient of the values. In other words the antilog of
LOG(a)+LOG(b) equals a*b, antilog of LOG(a)-LOG(b) equals a/
b, and -LOG(a) reflects 1/a. Exponents and roots can also be found
a LOG(a)*n becomes a®, and LOG(a)/n becomes *Va.

So, to perform a division for example we simply have to do
three conversions and one subtraction. The speed of this division
will then mainly depend on the time taken to do a conversion.

But first, what is a log? Simply put it is the power to which the
number base has to be raised to obtain the value. Thus in base 10
(decimal), LOG, 100=2 as 10 = 100. Logs, as other math func-
tions, can be in any number base. Computer languages such as
BASIC use natural logs or LOG,_ meaning LOG to base e. Pub-
lished log tables normally use base 10 or LOG, . To calculate logs
in a micro controller we shall use base 2 (binary)or LOG, as the
controller is much more at home there.

To convert a log from any base to any other base i.e. LOG base
b of the value X to LOG base a of the same value, use the formula
LOG (X)=LOG(X) / LOG,(a). For example, your computer will
give you the natural log or LOG, for the value x from the expres-
sion LOG(X). To find the LOG(X), use the expression LOG(X)/
LOG(2).

Armed with this information we can find the binary logs for
any value. The problem is that the type of processors we will use
do not have and built in log functions, and in most cases there is
not enough space to provide full log tables. To actually calculate
the logs with the available instructions, we have to examine the
binary logs more closely. Some simple examples are: LOG(4)=2,
LOG(8)=3 and LOG (16)=4. As expected these are powers of two
since 2%=4, 2°=8, 24=16.

A log consists of two parts: an integer characteristic and a frac-
tional mantissa. The precision of a result depends on how many
digits there are in the mantissa. In the above examples the charac-
teristics are 4, 8 and 16 respectively. When the log is taken from
an integer power of the base, the mantissa is always zero, so the
results expressed to 4 digits precision are 4.0000, 8.0000 and
16.0000. LOG(1) equals 0.0000 and logs between 0 and 1 are
negative i.e. the binary log of 0.1, (0.5,) equals -1.0000. LOG(O0) is
illegal, like trying to divide by 0.

Matters become more complex when we want a log that is not a
power of 2. Let’s try LOG,7 which is 2.8074 in decimal. The

fractions to four digit precision equals 0.8074. Now, decimal frac-
tions are frowned upon by our processor, so 8074/10000 equal
52914/65536 or CEB2/10000 in hex. Thus LOG,7 expressed in hex
becomes 2.CEB2h, 5h3 characteristic is 02h and the mantissa 0.CE-
BA,. I will use hex representation rather than binary (easier to
type). The result was obtained from the BASIC’s LOG function in
my computer, but we shall now try to calculate binary logs without
any such aid.

The characteristic is easy. The following table shows binary
representation for logs 4, 7, 8, 16.

Number 4 7 8 16
Binary value 00000100 00000111 00001000 00010000
Characteristic 2 2 3 4

As you can see, the characteristic is equal to the position of the
most significant bit that is set in the argument. This means that an
8-bit characteristic can actually represent a 255-bit value which is
rather astronomical! To calculate the characteristic in software,
first initialize it to the number of bits used in the argument, then
decrement it while shifting the argument left until a 1 is shifted
out. Let’s see what happens when we try for LOG,7. As we are
using an 8-bit argument we initialize the characteristic to 8.

char=char~1 (7) shift 00000111
char=char-1 (6) shift 00001110
char=char-1 (5) shift 00011100
char=char-1 (4) shift 00111000
char=char-1 (3) shift 01110000
char=char-1 (2) shift 11100000

00001110 cy=0
00011100 cy=0
00111000 cy=0
01110000 cy=0
11100000 cy=0
11000000 cy=1

LU I A I

When carry is set, char contains the characteristic 02. In 8048
code this can be performed as follows. CHAR and ARGUMENT
are registers.

BITS EQU 8
MOV CHAR,#BITS
MOV A,ARGUMENT

jfor an 8-bit argument

Jz ERROR ;Can’t do LOG(0)

CIR C iclear cy to shift in a 0
Loop

DEC CHAR

RIC A ;CY <~ Accumulator <- 0

JNC LoOP ;0n exit CHAR=characteristic

Don’t discard the shifted ARGUMENT (now 11000000, or
0.C0,, we’ll use that to calculate the mantissa. It is already a rough
approximate if we put a hexadecimal point in front as 0.CO,. What
we have is a linear approximation of the logarithmic curve. The
real mantissa is 0.CEB2, so it’s accurate to 4 bits. This might be
enough for some applications, but we can improve on it.

The error in this case was 0.0EB2,. It will be zero when the
mantissa, as calculated above, becomes zero or infinitely large. A

The Computer Journal / #48

mantissa calculated to 0.FF, is actually 0.FF47,, an error of only
0.0047,. Try to calculate LOG,IFF, in 16 bits. It will result in
8.FF00,, but the real value in 8.FF47,. The worst case error will
occur with a mantissa of around 0.71, with an error of over 0.16,.

The good news is that this error is consistent, regardless of
what the characteristic comes to. Thus any calculated mantissa will
have a specific error that can be added to the result, improving the
accuracy. This error can be depicted as a curve, as shown in Figure
1.

peak->, 1 <-center

.50 .10 .20 .30 .40 .50 .60 .70 .80 .90 _AC .BO .CO .00 .EO .FO .FF
Approximate Mant)ssa

The way out of this problem is to use a correction table. The
number of entries, and the number of bits in each entry will decide
the accuracy of the result. A 16 entry 8-bit table with each entry
corresponding to the 4 MS bits of the calculated mantissa will
decrease the error several times, costing only 16 bytes of space.
" With a 128 entry 8-bit table, the error is reduce to a small fraction
of a percent.

Let’s try the value B9, as this will produce a worst case error in
the mantissa. Binary reproduction of B9, is 10111001,. Performing
the shifts in an 8-bit environment, the first shift will produce a
carry, leaving CHAR as 7 and ARGUMENT as 01110010, or 72,
ie. a calculated mantissa of 0.72, making LOG,B9, 7.72,.
LOG B9, is actually 7.8808,, an error of 0.1608,. A 16 entry error
table could read:

Entry mant err Entry mant err Entry mant err Entry mant err

MSB + # MSB + # MsSB + # MSB +

] .08 .03 1 .18 .09 2 .28 .0E 3 .38 .11
4 .48 .14 5 .58 .15 6 .68 .16 7 .78 .16
8 .88 .15 9 .98 .14 A .A8 .12 B .B8 .10
C .c8 .0D D .D8 .0A E .ED .06 F .F8 .02

We arrived at a mantissa of 0.72,. By ignoring the point and the
four LS bits we get 7. This will be our entry #. Add in error value
from entry #7 (0.16,) to obtain a corrected mantissa of 0.88,.
LOG,B9, is now 7.88,, not too bad. For LOG,7 we had 2.C0,. Add
in error entry #C of 0.0D, and we get 2.CD, for an actual value of
2.CEB2,. As 0.CO, is halfway between two entries the error is
worse. Maximum error is 0.03, for mantissa of 0.0F.

The routine in 8048 code:

The Computer Journal / #48

ORG 300h ;put table at start of page
TABLE:

DB 03h,09h,0Eh,11h,14h,15h,16h,16h

DB 15h,14h,12h,10h,0Dh,0Ah,06h,02h
CORRECT:

MOV A,MANTISSA

SWAP A ;Swap upper and lower nibble

ANL A,#0Fh ;A=entry number

MOVP A, QA ;Get contents of entry into A

ADD A,MANTISSA ;A=corrected mantissa
;Test for mantissa overflow, or set the last entry to 00
;to prevent this.

JNC NO_OVERFLOW

MOV A,#0FFh

;Mantissa should be close to 0ffh

There are several methods that can be used to obtain better
accuracy. We could simulate a 32 entry table by averaging two
adjoining entries where the mantissa falls in between. For a man-
tissa of CO,, entries #B for B8, (0.10,) and #C for C8, (0.0D)
could be added and then shifted right once to obtain an error of
OE,. LOG,7 has now come to 2.CE,. We are getting closer. The
table entry points may be modified to facilitate this. With #C set to
error for 0.CO, and #D for 0.DO, instead, we only have to examine
bit 3 in the calculated mantissa, and perform the averaging with
the next higher entry when set.

My preference where space permits is to use a 128 entry table.
The mantissa is shifted right once to obtain the entry. If a carry
occurs I can also add in the succeeding entry to the error and right
shift the result to perform averaging.

To make up the tables I use ordinary BASIC, first to calculate
accurate logs, and then to perform the binary calculations and
subtract the results to form an error table. This is then written out
as a text file that can be loaded directly into an assembler. In
BASIC: ER=65536*LOG(MANT+256/LOG(2)-8-MANT/256).
ER return a 16-bit error fraction for mantissa MANT and should
be converted to hex. If MANT=50, (32,), ER will be 4068 or OFE4
when converted to 4-digit hex. The error for 0.32, is 0.0FE4. This
could then become 0.10, after 7/8 rounding to 2 digits.

Manlipulating the LOGS

Now that we know how to calculate binary logs, we can per-
form simple operations on these logs to achieve the desired func-
tions. Do the mantissas first, then the characteristics including any
carry/borrow from the mantissas. Where only 8-bit mantissas are
used and the processor supports 16-bit operations, this can be
achieved by a single instruction.

The only rule is that the mantissas of both arguments have the
same number of bits. If required one mantissa may be padded with
zeroes. Perform the operation in signed integer. Subtracting a
smaller log from a larger will produce a negative result. This is
acceptable. Just keep the characteristic to 8 bits and ignore any
carry i.e. 5.65 - 8.BC, = FC.A9,. This would be referred to as
LOG,-3.57, but here we’ll use two’s complement because it’s eas-
ier to work with.

We found LOG_B9, to be 7.88 ; and LOG,7 2.CE,. To divide
B9, by 7 we would subtract the two logs as 7.88,-2.CE, with a
result of 4.BA,.

In Z80 code for division:

D=characteristic, E=mantissa for divisor
H=characteristic, L=mantissa for dividend

OR A
SBC HL,DE

;clear carry
;subtract divisor from dividend

H=characteristic, L=mantissa for quotient

The 8048 code is a bit more complex as it does not support 16-

bit ops nor subtraction.
DIVIDE: ;ARGl=divisor, ARG2=dividend
MOV A, ,MANTISSA ARGl

CPL A

ADD A,#1

MOV MANTISSA_ARG1,A

MOV A,CHARACTERISTIC_ ARGl

CPL A

ADDC A,#0

;ARG1=MLTIPLICAND, ARG2=multiplier
MOV A ,MANTISSA_ ARG2 sadd arguments
ADD A,MANTISSA ARGl

MOV MANTISSA RESULT,A

MOV A,CHARACTERISTIC_ARG2
ADDC A,CHARACTERISTIC_ARG1
MOV CHARACTERISTIC_RESULT,A

;8tore result

This way the same routine can be used for both functions.

Antilogs

" All that remains now is to obtain an antilog of the resulting log
(or the exponent). First, we shall reintroduce the error, then reverse
the shift routine. In other words, the entire procedure to find a log
will now be reversed.

If space permits, we should have a separate error table for the
antilog function. Then simply read off the error value from the
table entry corresponding to the calculated mantissa and subtract
it. However, we can make use of our original table by on of the
following methods.

First obtain the error for the mantissa and, without destroying
the mantissa, then subtract the error from it. Next obtain the error
for the difference and subtract that from the original mantissa.
This may be repeated, but normally two passes will give sufficient
accuracy.

Again in 8048 code:

MOV A,MANTISSA

SWAP A jswap upper and lower nibbles
ANL A,#0Fh ;sA=entry number

MOVP A,€1 ;jget contents of entry into A
CPL

INC A ;negate error to subtract it
ADD A,MANTISSA ; from mantissa

If a separate antilog error table was used, ‘A’ would now con-
tain the mantissa with the error reintroduced (after an underflow
test if necessary). Otherwise A is a temporary value and a second
pass is needed. Continue as shown:

SWAP A juse the temporary mantissa
ANL A,#0FH

MOVP A,QA ;get the final error into A
CPL A

INC A ;negate it

ADD A,MANTISSA jand add to original mantissa

sA=mantissa - error
Using our previous result of 4.BA,: Entry #B is 0.10,. Subtract
that from 0.BA, and we get 0.AA,. Now use entry #A (0.12, and
subtract that from 0.BA, instead. The difference is 0.A8 which is
then right shifted to produce the final result. A third pass would
make no difference as we would use entry #A again.

There is a sneaking way to save a few MC’s where a single
error table is used. When we reintroduce the error, the mantissa
will be somewhat smaller than the result of just subtracting the
error value hence the second pass. The error curve is not symmet-
ric and if we negate the mantissa, obtain and add the error and
finally negate the result, it also ought to be somewhat smaller. In
fact, we have a close representation of the desired value. Try the
following:

MOV A ,MANTISSA

CPL A

INC A ;negate mantissa
MOV MANTISSA,A ; and save

SWAP A ;8wap upper and lower nibbles
ANL A, #OFh jA=entry # for negated mantissa
MOVP A,¢A ;move error into A

ADD A, MANTISSA ;add to negated mantissa

CPL

INC A ;A=mantissa - error

Again using 4.BA,, negate BA, to 46,. Error for 0.46, as per
entry #4 is 0.14,. Add this to 0.46, and we get 0.54,. Finally negate
0.5A, to 0.A6,. Compare that with our previous result of 0.A8, and
the actual value which is 0.A79,.

Once the error has been reintroduced, we perform a reverse bit
shift that will give the final result. When we originally obtained
the characteristic, we shifted out one bit that went to the carry.
This bit must now be reinserted. Shift one to the right with with
the carry set, followed by a further number of shifts with carry
reset. Increment the characteristic at each shift until equal to the
number of bits in the argument. Function complete.

Shift is shown here for 4.A8,, the result of our subtraction.

shift 1 -> 10101000=11010100 -> 0
shift 0 -> 11010100=01101010 ~> 00
shift 0 -> 01101010=00110101 -> 000
shift 0 -> 00110101=00011010 -> 1000

char=char+l (5)
char=char+l (6)
char=char+l (7)
char=char+l (8)

When char=8 (the number of bits we used), the final shift came
to 1A,. An interesting point is that if we save the bits shifted out
we get a binary fraction of the result i.e. 0.1000, or 0.8,, thus the
actual result obtained in 1A.8,. Compare that with our initial val-
ues of BY, and 07,. When divided, the quotient equals 1A.6E, to
two hexadecimal points. Carry will also reflect the last bit shifted
out, thus if the bits are discarded there is still an indication that can
be used to perform 7/8 rounding of the result.

8048 code for final shift, not saving any fraction shifted out.

;negate characteristic
ADD A,#BITS ; plus number of bits
; as number of shifts

Loop

CLR C
DJNZ COUNTER, LOOP

;jclear carry for next shift
;A equals 8-bit final result

For negative logs the result will be between 0 and 1 ie. a
binary fraction. We could proceed exactly as for a positive value,
but as we will do more shifts than there are bits, the right shifted
mantissa will always return 00. We can therefore skip the last
eight shifts by halting when the incremented characteristic over-
flows from FF, to 00.

Take the inverse for the previous example. Negate 04.BA, to
FB.46,. Reintroduce the error for 0.46, to 0.35,, then perform the
shift on FB.35,.

shift 1 -> 00110101=10011010 -> 1 char=char+l (FC)

shift 0 -> 10011010=01001101 -> 01 char=char+l (FD)

shift 0 -> 01001101=00100110 -> 101 char=char+l (FE)

shift 0 -> 00100110=00010011 -> 0101 char=char+l (FF)
0

shift -> 00010011=00001001 -> 10101 char=char+l (00)

Continued page 37

The Computer Journal / #48

~MINIX Version 1.5 for the:

REAL COMPUTING

Minix 1.5 and X-10 Modules

By Richard Rodman

Minix 1.5
Minix 1.5 is now available for PCs, Atari ST, Amiga, and
Macintosh. It comes with full source code. This is a major

_update over previous versions of Minix. It comes with four

new editors: emacs and vi subset clones, ex and ed. It even
includes a spelling checker. It comes with a new manual.

Minix now uses protected mode on the 286 and 386 and
makes use of “extended” memory. Terminals can be added
on serial ports for additional users; kermit and zmodem are
included. The Macintosh version is said to run “under Multi-
finder”; the Atari version requires a 720K drive; the Amiga
version doesn’t support hard disks, since there is apparently
no standard Amiga hard disk.

A great many new utilities are included, and the C library
has been greatly expanded, now including termcap support
and curses. Since the system calls are compatible with Unix
version 7, about any Unix program could be made to run (as
long as it’s not too large).

The package can be ordered from Prentice-Hall, or you
may find it in your local bookstore. Bookstores may not have
all five versions, however. It costs more than it did before,
but a lot more comes with it. All versions listed below cost
$169. Here are the item numbers to order by phone:

Order Number:
(0-13-585076-2)
(0-13-585068-1)

IBM: (5 1/4")
IBM: (3 1/2")

Amiga (0-13-585043-6)
Atari (0-13-585035-5)
Macintosh ({0-13-585050-9)

If you have an older version of Minix, you can send the
boot disk from it to them and they’ll give you a $60 discount.

I hope to have this up and running shortly and can give
you my impressions of it. | have run Minix 1.2, and been
pretty impressed with it. Very soon, 1 also expect to be run-
ning Minix on my PC-532.

For those of you designing your own computers or build-
ing up Designer’s Kit boards or Multibus or VME systems,
Minix may be a quick way to get a pretty nice operating
system running. All you need is a C cross-compiler, assem-
bler and linker for the processor of your choice on another
machine, and you should be able to bring it up. -

Bare Metal status report

Work on Bare Metal is still proceeding, albeit slowly. A
new command interpreter is almost finished, which is pretty
much compatible with MS-DOS’. There have been some big
improvements in the C runtime library. Also, 1 figured out

The Computer Journal / #48

how to use relocatable executables, so forget all of the TPA
stuff. Most of the tools have been converted to 0OS/2 “family
applications”, which means they’ll run either under OS/2 or
DOs.

X-10 modules

X-10 has been around a while. You know, the little mod-
ules that you plug things into and then you can turn them on
and off remotely, by means of 40kHz signals carried through
the power lines of your house. Mention X-10 to an electronics
fanatic, and you get the sort of reaction that “there must be
something wrong with it.” There were stories of modules
burning out and so on.

Well, X-10 is still around and improving. There are now a
variety of modules which allow lamps or appliances to be
turned on when motion is detected or when doors or win-
dows are opened. These devices usually send X-10 codes
when they detect changes. There is also a chime which rings
when send a code.

Of course, the usual printed matter refers to these devices
in connection with the terms “burglar alarm” and “security”,
and these terms are red flags to us computer-literate folks:
they cause an immediate “stone-age technology” response.
But certainly we can find more creative uses for this stuff,
since it’s so cheap. For example, for $70 from Heathkit you
get an outdoor floodlight with motion detector, a lamp mod-
ule and the sensor chime.

But the most essential thing is called the X-10 Powerhouse
computer interface. It was widely advertised a few years ago,
and sells for about $60. This is a little box with a serial port
and eight buttons. It can be used as a regular controller. It's
connected to your computer by means of a 600 baud serial
link. Your computer can turn devices on or off or dim lights,
and set up to 256 timers for timed commands.

But there are two neat aspects to this box. First, you can
program it, then unplug it and take it somewhere else! It has
a little battery in it that backs it up during power failure.
Once programming is complete, it can be disconnected;
there’s no absolute need to tie up your serial port except
while programming.

The other, neater, aspect to it is that any X-10 commands
which come across the line are converted to status messages
that the computer can see. Thus, the computer can “listen in”
to commands issued by manual controllers, wireless control-
lers, or even the motion detector or the door/window sensor.
This gives the computer remote “eyes” as well as “hands.”

Just think about the possibilities. How about a “door an-
swering machine”? When someone walks up to your door
when you're not home, a recording begins: “We're sorry, but

we can’t come to the door right now. After the beep, please
put whatever you have in the bin which will open...” How
about having your computer turn on your (quiet) printer in
the middle of the night to print listings, and turn it back off
when they’re finished? How about having the computer turn
off the power to the monitor when no one is in the room with
it? How about sending in your great ideas to TCJ, attn. Rube
Goldberg Dept. [Ed: Rube has asked me to forward his mail to
Richard. We will have a mail truck standing by].

There is an X-10 interest group on Genie. But the box has a
relatively simple programming interface, which is well-docu-
mented. | wrote a simple C program for controlling the X-10
Powerhouse, which is on the BBS or available from TCJ. The
program has the following commands; of course you can use
subroutines from it in your great programs:

Turning a lamp on, off, or dim:
turn <lamp-number> on
off
dim <0 to 15>

Setting a timer:
timer <event-number> <day> <hr>:<min> <lamp-number> on
off
dim
is one of: today, tomorrow, everyday, sun, mon, tues, etc.

Clearing a timer:
timer <event-number> clear

Miscellaneous:
set - Sets time of box to computer’s time
show - Shows time of box
quit -~ exit program

For very large numbers of devices, X-10 is impractical, so
for large-scale industrial automation, it probably isn’t the
best solution. Also, X-10 is too slow for real-time process
control. But there is a broad spectrum of automation applica-
tions that X-10 should be excellent for.

A proposal

The X-10 device above is one example of an application
for “background processing” on a computer. I can think of
lots of others. What 1'd really like is a board which could
accumulate and/or process data even while the computer
was turned off, allowing me to access the data later.

Let's design the board. First, it should have batteries
which trickle-charge when the computer is turned on, but
operate the board when the computer is turned off. A clever
interface allows the computer to communicate with the
board. The board has a CMOS processor, such as a 80C31,
with a 27C256 PROM and a 32-kbyte CMOS RAM. There is a
clever low-power RS-232 driver and/or parallel port; ideally,
interfaces would be added on on piggy-boards which would
go between the processor and the connector.

One application would be recording a series of tempera-
ture readings. Temperature sensors would be located re-
motely with clocked serial A/D converters. Another applica-
tion would be a mini-bulletin board to collect mail messages
from a modem. Yet another, to monitor the AC line voltage.
There are thousands of possibilities, all really opened up be-

cause the operation of the board is completely independent
of the computer, even of its power cyclings, yet with the
economy and fast communication of an add-in board prod-
uct.

How will you program it? One possibility is using the
80C52 with its ROM BASIC interpreter. Few of the applica-
tions mentioned are really time-critical. However, assembly
language should be supported for those hard-core fanatics
(myself included) who think that using anything but assem-
bler on a microcontroller is slothful and insipid.

As the Eliza program is wont to say, “Oh, 1?”

The Obvious, Inc.

Every once in a while, I think that a new consulting com-
pany is needed. Call it “The Obvious, Inc.” Every time a
company comes out with something new or a new multi-
million dollar advertising campaign, they could call in a con-
sultant from The Obvious, Inc,, to tell them the obvious, and
thus prevent them from making really stupid moves.

For example, when Inmos advertises that the Transputer
will become ubiquitous in waffle irons and microwave ov-
ens: “It costs too much.”

When the first NeXT [sic] came out with optical disks and
a monochrome monitor: “The disks cost too much, the
monochrome screen looks dull, and it’s all black and photo-
graphs awful.” The new version has a hard disk and a color
screen, but it’s still all black. Maybe it’ll sell well in the fu-
neral parlor market.

As for the IBM PS/1: “It's too expensive, and hard to
expand.” IBM, however, is wisely cautious; people are not
junking their 286’s and rushing to buy new 386 machines in
spite of all of Intel’s and Microsoft’s pronouncements.

The reason that The Obvious, Inc. has to be a consulting
company is that in-house people either don’t, won't or can’t
see the obvious, or if they do, they aren’t believed. As they
say, “an Expert is someone from out of town.”

Next time

Next time [hope to have some preliminary results from
my PC-532. And, as always, no custom coffee mugs or T-
shirts.*

Where to write or call

Minix:
Prentice-Hall 1-800-624-0023 or 1-201-767-5969
Microservice Customer Service
Simon & Schuster
200 Old Tappan Road
Old Tappan, NJ 07675

X-10:
Heathkit 1-800-253-0570
Heath Company
P.O. Box 8589
Benton Harbor, MI 49022
BBS: 1-703-330-9049

The Computer Journal / #48

Forth and Forth Assembler in Embedded Systems

By Matthew Mercaldo

Why Forth?
The embedded systems field is the most dynamic of the
. engineering disciplines. Not only is chip technology advanc-
ing at a mind boggling rate, but firmware design methodol-
" ogy is following in close pursuit. The processors coming out
now are accelerating; the applications are requiring more
complex paradigms to complete the job. The engineer is re-
quired to keep up. Within the embedded systems world
Forth, with an assembler extension, provides a superior ap-
proach to firmware design as well as instructional methodol-
ogy. Forth allows the expression required to keep in touch
with hybrid hardware technologies. Forth provides a frame-
work to express extremely complex software models in a concise
form.

Simplify the Development Cycle.

The firmware engineer can quickly verify microprocessor
peripheral hardware in a Forth environment. In a traditional
environment emulators are used to look at memory for vital
clues as to the behavior of the hardware. Usually when the
hardware’s behavior is ambiguous, new code must be writ-
ten, assembled, and burned into PROM, assembler listing
generated with all the correct addresses and offsets, break-
points set, etc.. This approach is costly. Forth affords the en-

gineer a more complete view into his or her hybrid hard-
" ware, in any way he or she wishes to devise. Since words and
assembler definitions can be compiled into into the Forth
system interactively, extending the system, the engineer can
look into his or her system under controlled varying condi-
tions. Assembler words can be written, then referenced from
hardware interrupt vectors, all of which can be done interac-
tively. The engineer feels closer to the “metal” in Forth. Forth
gives the engineer the ability te verify custom hardware and deter-
mine it’s actual behavior from the predicted behavior more quickly
than the more traditional approach.

Break Big Problems into Little Ones

In any software environment one is taught that the key to
reliable software is the breaking down of the complex prob-
lem into simpler problems. This is the concept of factoring.
The breaking down of problems becomes critical in a multi-
tasking or multiple interrupt embedded system. In these sys-
tems there is a lot of asynchronisity. If the behavior of one of
the components is not understood well enough, side effects
become difficult to trace. In the traditional approach, a prom
is burned or an intel hex image is downloaded, and away the
program runs interrupts and all. Again, a costly emulator is
required. In any scenario it can be difficult to evaluate inter-
rupt driver code, especially if there are any algorithmic-time

The Computer Journal / #48

dependent portions. In these instances, Forth assembler al-
lows the engineer to write interrupt drivers interactively. In
certain instances this allows a more focused test of algo-
rithmic dependency. Pieces of the driver can be removed, or
added, or the driver can be simplified to verify hardware and
processor time constraints. In other instances, non time-de-
pendent portions of code can be tested directly from the
Forth interpreter. Data analysis or preparatory algorithms
may be tested from the interpreter first. When proven, these
pieces can be introduced into some more time critical seg-
ments of the system for further analysis. Forth gives the engi-
neer a platform from which to factor complex problems and verify
custom subsystems, then tune these systems algorithmically and
or parametrically more quickly than the traditional approach.

Give the Student a Clear Example.

Forth assembler, once integrated into a teaching method-
ology, reveals a powerful approach to education. Forth as-
semblers make no pretense of complexity. When writing as-
sembler in a Forth environment, the student sees all that
makes up an assembler instruction, clearly factored into its
base components. An example is given below:

Forth assembler (68HC11): 0 ,X A IDA
traditional assembler (68HC11): LDAA 0,X

Both lay down the same machine code of $A600, but the
components are much more visible in the Forth style assem-
bler. The student is forced to make a distinction. With each
assembler instruction the concepts are asserted once again of
addressing modes and operation, not a hazing of the two.
Upon the completion of an assembler course using the Forth
style of assembler, a student has obtained a thorough under-
standing of assembler concepts. These concepts are quickly
extended to other CPU types of varying architecture. Forth
assembler also has an extremely powerful macro capability;
the assembler is extensible. This extensiblilty typically mani-
fests itself in the structuring of the branching opcodes within

an instruction set.

Once again an example is fitting:

. TSTA
BGE $1
LDAA 0,X
BRA §2
$1 LDAA 2,X
$2

Is an assembler fragment representing the more tradi-
tional way.

A TST GE IF

2 ,X A IDA
ELSE

0 ,X A IDA
THEN

Is an assembler fragment representing the Forth approach.
Both lay down the same instructions, but the Forth approach
is clearer. We have been taught that the structured approach
is the most maintainable; Forth allows this, even at the as-
sembler level.

Forth assembler also allows looping structures as illus-
trated below:

BEGIN
B DEC NE WHILE
ABX O ,X A IDA
NE UNTIL

A piece of code that represents the above fragment in tra-
ditional assembler is illustrated below:

$1 DECB
BEQ $2
ABX
ILDAA 0,X
BEQ $1
$2 cen

The Forth assembler code reads the same as a similar loop
in high level Forth but lays down code identical to that of the
traditional assembler loop. This loop is explained in the fol-
lowing example:

BEGIN
B DEC NE WHILE

Begin the loop
Decrement B .. While Register B
is not zero,
ABX 0 ,X A LDA Add B to X, Load what is pointed
to by X into A
NE UNTIL Until A is not equal to Zero.

The mechanics of control structure definition can be easily
understood. They each take less than one line of Forth code
to define, within the assembler’s innerworkings, when all the

pieces are in place . Forth itself is a tremendously powerful
teaching tool. Forth allows the explanation of complex soft-
ware concepts, simply, without the extra baggage associated
with the more traditional systems. When these concepts are
understood, the haziness of the environments interwoven
with traditional systems clear away; the concepts which the
student now owns can clearly be identified and correctly
acted upon. A student who has learned software concepts
using Forth has an easier time adapting to the dynamic
world of engineering. The student who has learned software
concepts with Forth owns those concepts. These give the stu-
dent an ability to work in any software environment, using
any of the typical engineering tools (soft or hard) with the
highest degree of confidence. It is often said that a Forth
trained programmer makes a better C programmer than a C
trained programmer. This is not because of the language, but
because of the intimate understanding of the fundamental
concepts. Forth and Forth assembler give the student an op-
portunity to learn assembler concepts and fundamental soft-
ware concepts more clearly; understanding the components
which create things that the traditional approach typically
hazes in cluttered environmental “baggage”.

in conclusion.

As we have seen, Forth, with an assembler, affords the
engineer an opportunity to understand the behavior of his or
her hardware and software more intimately in a very cost
effective environment. The student reaps the benefits of
learning fundamental concepts that he or she can apply to
any traditional environment and has a better understanding
of the capabilities of that environment. This deeper under-
standing of problem solving gives any engineer or student an
edge in a very challenging field.«

Matthew advises us that the F8HC11 Max-Forth as-
sembler may be purchased for $50. Download it to a
NewMicos board and you have a powerful Infix assembler.
He may be contacted through The Computer Journal.

Join the
Forth Interest Group

The Forth Interest Group (FIG) continues to be the best Forth resource.

*Forth Publications, FIG carries the largest selection of Forth literature found anywhere.
* Disk Library, “Contributions from the Forth Community”, includes tutorials and tools.
* Forth Dimensions, our bi-monthly magazine is devoted exclusively to Forth.
+ Chapters provide an opprotunity for local, face—to-face meetings with other Forth enthusiasts.
* GEnie™ Roundtable provides a central focus for technical discussions and
includes an on-line library of over 700 downloadable files.
» Annual FORML Conference, held at Asilomar Conference Center, on the beach in
Pacific Grove, California, during the Thanksgiving holiday weekend, provides an excellent opprotunity to
participate in technical sessions and mingle with leading Forth experts in an informal setting.

FIG is a non—profit, membership organization of over 1700 members in 20 countries. Membership includes a subscription to Forth Dimensions,
discounts on purchases of Forth literature and more. Annual dues are $30 for USA, $36 for Canada air mail and $42 for all other countries. To
join or receive further information, write or call Forth Interest Group, P.O. Box 8231, San Jose, CA 95155, Telephone: (408) 277-0668 or Fax:

(408) 286-8988. * GEnie (General Electric Network for Information Exchange) is a trademark of General Electric Company

10 The Computer Journal / #48

Modula 2 and the TCAP

Writing Terminal Specific Code in Modula 2

By David L. Clarke

Introduction

~ In this article I will discuss how to write what I call cursor
control code in Modula 2. This particular type of code will be

- slightly different for each terminal (I'll explain why). The
most general solution is to use a mapping table to define the
basic terminal operations. I will show how this is done with
the Z-System TCAP. I will use this ‘screens’ module to
graphically diagram the Z3 environment. For those who are
not lucky enough to have a mapping table like the TCAP, |
will show how a less general solution can be developed.

Terminal Specific Programming

dard” was eventually defined known as the ANSI standard
(i.e. X3.64-1979), but the modern terminal maker is concerned
with graphic capabilities that weren’t even dreamt of when
the ANSI standard was written. As such, the ‘standard’ is
rather dated.

Now comes the practical part. I ask the class to imagine a
computer facility that consists of a network of Sun worksta-
tions (like we have at the school). There are also several types
of Perkin-Elmer terminals connected to the system (left over
from an earlier computer). In addition to this there is a dial-

—the Problem Listing 1.
As you may have noticed from my DEFINITION MODULE ZScreens;
r . U . .
bio’, I work part time teaching Com- (D. L. Clarke for TC & octaber 1990 o
puter Science courses. One of my fa-
vorite classes discusses terminal pro- (* Screen operation procedures using the Z-environment TCAP *)

gramming. [cover a bit of history by

showing how early terminals moved col: CARDINAL; (* the column (x position) *)

the cursor by control characters bor- row: CARDINAL); (* the row or line (y position) *)

rowed from the earlier TEIetypeS’ spe- PROCEDURE HomeCursor; (* move cursor to row 0, column 0 *)

cifically, backspace = left, (horizontal)

tab = right, linefeed = down, and ver- PROCEDURE ClearScreen; (* Home cursor and clear screen *)

tical tab = up. It soon became desir- ,

PROCEDURE ClearToEOL; (* Clear from cursor to end of line *)

- able to move the cursor by more than

one position at a time. Therefore, each PROCEDURE ClearToEOS; (* Clear from cursor to end of screen *)

manufacturer came up with a series] '

of characters that had special mean- PROCEDURE Highlight; (* Enter highlight mode *)

ing, “move the cursor by more than PROCEDURE Normal; (* Exit Highlight mode)

one position.” Later character se-

quences were developed to perform PROCEDURE InitScreen; (* Perform screen initial. seguence *)

editing operations such as “delete rest PROCEDURE ExitScreen; (* Perform screen de-initial. sequence *)

of line” or “insert new stuff here.”

Since most manufactures decided to END ZScreens.

PROCEDURE GOTOXY (

(* move cursor to specific row and column *)

start these character sequences with
the ‘escape’ character, they are often
called “escape sequences.” Unfortunately, the terminal
manufacturers didn't work together too well at first. Each
terminal had its own unique set of escape sequences. A “stan-

in system where modem users (students) are able to call in
and use the system. Some of these students may be using
DEC computers with VT100 terminals, others may be using a
Tektronix terminal, still others may be

David Clarke was originally an Electrical Engineer at Pratt & Whitney Aircraft
until he discovered that it was more fun to program the data acquisition systems

that he developed. He therefore became a systems programmer.

Dave is also an Adjunct Assistant Professor at the Hartford Graduate Center in
Hartford CT., where he has taught courses in Systems Programming, Software
Engineering, and Real Time Programming. Dave can be reached at the Graduate
Center where his electronic mail address (Internet) is davec@mstr.hgc.edu. His home

address for regular mail is P.O. Box 328, Tolland, CT. 06084.

The Computer Journal [#48

using a Commodore 128 or an Apple
I1. Each of these has its own set of es-
cape sequences. “How,” 1 ask, “would
you write a full screen editor for this
system that was able to handle all of
these terminals and be expandable for
future terminals as they are intro-
duced?”

Some students feel that the solution

11

is to require all terminals to conform to
the ANSI standard. Those of us still us-
ing older terminals (or computers that
are only able to emulate the older ter-
minals) will realize that this solution is
hard to enforce. Other students recom-
mend a ‘definition module’ that de-
fines the basic cursor motions. They
would then create a different implem-
entation module for each terminal
type. The problem here is that, as a
new terminal type logs in, either the
editor program must be re-compiled
with the right implementation module
and linked, or else a separate execut-

. able must be kept for each terminal
type.

A better solution is suggested by
taking a closer look at the school’s sys-
tem. After all, it was the model for the
question. The school system runs un-
der the UNIX operating system. UNIX
maintains a table that contains entries
for hundreds of terminal types. Each
table entry maps codes for the basic
cursor motions into specific escape se-
quences. As a student logs in, the ap-
propriate terminal entry is extracted
from the table and becomes part of the
user’s local environment. The editor
program need only examine the local
codes to determine how to perform the
desired operations. UNIX calls this
table the TERMCAP which stands for
TERminal CAPabilities.

The Z-System TCAP

. The ZCPR3 environment contains a
similar structure called the TCAP. The Z-
System user is able to select a specific ter-
minal definition from a library of defini-
tions. This definition is first loaded into
the Z environment. Programs are then
able to examine the environment to deter-
mine how to perform the basic cursor
movements.

At this time we should take a quick
look at the Z3 TCAP. A Modula 2 ‘REC-
ORD’ for the TCAP was at the beginning
of the Z34M2 definition module in my
last article. However, most of the impor-
tant part of it is hidden in a single AR-
RAY OF CHAR. This is because most of
these ‘hidden’ sequences are variable
length strings terminated by a zero byte.
We will eventually look at these strings
individually.

The first TCAP field consists of a 15
character terminal name. The next byte
contains bits that describe such terminal
modes as whether highlighting is avail-
able as well as line wrapping and scroll-
ing characteristics. The next four bytes

12

Listing 2.
IMPLEMENTATION MODULE ZScreens;

(* D. L. Clarke

for TCJ

8 October 1990 *)

FROM Terminal IMPORT Write, WriteString, WritelLn;

FROM SYSTEM IMPORT ADDRESS, ADR;

FROM z34m2 IMPORT TCAP, Z3PTR, GetEnv;

TYPE String = ARRAY (0 .. 14] OF CHAR;
string = POINTER TO String;
PTCAP = POINTER TO TCAP;

VAR i: CARDINAL;
env: Z3PTR;
tcap: PTCAP; aTCAP: ADDRESS;
al: string; AL: ADDRESS; (* add line *)
cd: string; CD: ADDRESS; (* clear to EOS *)
ce: string; CE: ADDRESS; (* clear to EOL *)
cls: string; : ADDRESS; (* clear screen *)
cms string; CM: ADDRESS; (* cursor motion *)
dl: string; DL: ADDRESS; (* delete line *)
se: string; SE: ADDRESS; (* end standout *)
so: string; S0: ADDRESS ; (* start standout *)
te: string; TE: ADDRESS; (* terminal de-init *)
ti: string; TI: ADDRESS; (* terminal init »)

PROCEDURE GoOToXY(col, row: CARDINAL);

VAR i, val:
first:

ch:

CARDINAL;
BOOLEAN;
CHAR;
BEGIN
i = 0;
LooP
IF (i > 15) OR (em“[i] =
IF cm*[i} = ‘8’ THEN

first := TRUE;

Oc) THEN EXIT END;

IF first THEN val := row; first := FALSE
ELSE val := col
END;
INC(i);
CASE CAP(cm"[i]) OF
‘I INC(row); INC(col});
first := TRUE
| ‘R’ row := col; col := val;
first := TRUE
| g INC(i);
ch := CHR(ORD(cm"[i]) + val);
Write(ch)
| ‘D*, ‘27, “3': ch := CHR(val DIV 100 + ORD(‘0’));
IF ((CAP(cm"[i]) = ‘D’) AND (ch # ‘07))
OR (cm"[i] = ’3') THEN
Write(ch)
END;
ch := CHR(val MOD 100 DIV 10 + ORD(‘0'));
IF (em*[i] = ’2’') OR (cm™[i] = ‘3’)
OR ((CAP(cm“[i]) = ‘D‘) AND (ch # ‘0'))
OR (val >= 100) THEN
Write(ch)
END;
ch := CHR(val MOD 10 + ORD(‘0'));
Write(ch)
ELSE Write(cm*[1])
END (* case *)
ELSE
Write(cm”™[1}])
END;
INC(i)
END (* loop *)

END GoToXY;

PROCEDURE HomeCursor;

BEGIN GOToXY (0, 0) END
PROCEDURE ClearScreen;
BEGIN WriteString(cl”) END
PROCEDURE ClearToEOL;
BEGIN WriteString(ce”) END

HomeCursor;

ClearScreen;

ClearToEOL;

The Computer Journal / #48

contain the codes that are generated by the cursor arrow keys
if they exist, otherwise you get to select your own codes.
Usually these bytes are ASCII control characters.

Some of the older terminals required quite a lot of time to
perform some functions. The next three bytes in the TCAP
contain the delay times for clearing the screen, moving the
cursor, and clearing to the end of the current line.

The remaining codes usually take more than a single byte.
They are the escape sequences used by the terminal to ac-
complish the desired functions. Each escape sequence is ter-
minated by a byte containing a value of zero (i.e., the NUL
character). Some terminals may use a single control character
to perform a given function, but the string will take up two
bytes because of the NUL. If a terminal cannot perform a

particular function, the corresponding string will consist of a
single NUL byte. The strings in the TCAP define the follow-
- ing functions in the order listed:

Clear the entire screen

Move the cursor to a particular row and column

Clear to the end of the current line

Begin Highlight mode (e.g. brighter or reverse video)
End highlight mode

Initialize terminal (if required)

De-initialize terminal (return to original state)
Delete line (next line moves up to take its place)
Insert (blank) line before the current line

Clear to the end of the screen

The latest version of the TCAP definition also contains a
series of graphics definitions that will not be discussed here.

The code to move the cursor to a particular row and col-
umn is quite interesting. It is this string that shows us how
much was borrowed from the UNIX TERMCAP. The string
uses the percent character, ‘%’, to indicate several things.
Usually ‘%’ indicates where the value for the row or column
should be substituted into the string. (Normally the row is
the first ‘%’ indicated.) It also indicates how the value is to be
inserted into the string. For instance, if the character follow-
ing the ‘%’ is a ‘d’, a string of decimal digits is to be inserted.
If instead of the ‘d’, there is a ‘2" or ‘3, then the string of
digits must be exactly 2 or 3 digits long respectively and use
preceding zeros if necessary. A string in the form ‘% +c” indi-
cates that the ascii value of the character, ‘c’, is to be added to
the coordinate value. The result is the ASCIl value of the
character that gets inserted into the string for this coordinate.
The ‘%’ character is also used for two other purposes. Nor-
mally the upper left corner of the screen is considered to be
row 0 and column 0, i.e. (0, 0). A “%i’ code says to increment
the values passed to it before encoding them and inserting
them into the string. Thus the upper left corner encodes as (1,
1). A ‘%r’ code says to reverse the row/column order. Thus
column becomes the first value to be encoded. For example
row 10, column 20 becomes:

<esc> [21;11H with a code of
1Bh, ' {8isrtd;8dH’

—-Or=

Listing 2. Continued
PROCEDURE ClearToEOS;
BEGIN WriteString(cd”) END ClearToEOS;

PROCEDURE Highlight;
BEGIN WriteString(so™) END Highlight;

PROCEDURE Normal;
BEGIN WriteString(se”) END Normal;

PROCEDURE InitScreen;
BEGIN WriteString(ti®) END InitScreen;

PROCEDURE ExitScreen;
BEGIN WriteString(te”) END ExitScreen;

BEGIN (* Initialisation *)

env := GetEnv();

IF CARDINAL(env) # O THEN
aTCAP := ADDRESS(env);
cl := ADR(tcap”.Ctlstr);
i := 0; WHILE cl”[i] # Oc DO INC(i) END;
CM := ADR(cl"{i]); INC(CM, 1); cm =
i :=0; WHILE cm”{i] # Oc DO INC(i) END;
CE := ADR(em*[i]); INC(CE, 1);

INC(aTCAP, 128); tcap

ce =

i = 0; WHILE ce”[i] # Oc DO INC(i) END;
SO := ADR(ce"[i]); INC(SO, 1); 80 =
1 := 0; WHILE so”[i] # Oc DO INC(i) END;
SE := ADR(so"[i]); INC(SE, 1); se :=

i:=0; WHILE se”[i] # Oc DO INC(i) END;
TI := ADR(se"[i]); INC(TI, 1); ti =
i:=0; WHILE ti*[i] # Oc DO INC(i) END;
TE := ADR(ti"[i}); INC(TE, 1); te :=
i = 0; WHILE te“{i] # Oc DO INC(i) END;
DL := ADR(te"[i]); INC(DL, 1); dl :=
i = 0; WHILE dl*[i] # Oc DO INC(i) END;
AL := ADR(d1"{i]); INC(AL, 1); al :=
i :=0; WHILE al”[i] # Oc DO INC(i) END;
CD := ADR(al”[1i]); INC(CD, 1); cd :=
ELSE
WriteString(“No ZCPR3.3+ environment”); WriteLn
END

END ZScreens.

3= pTCAP(aTCAP);

string(CM);
string(CE);
string(sb);
string(SE);
string(TI);
string(TE);
string(DL);
string(AL);

string(CD);

=*4 with a code of
1Bh, =%+ %+ '

Where <esc> and 1Bh are the escape
character.

The ZScreens Module

I developed the ZScreens module to
allow Modula 2 to access the TCAP en-
vironment. Listing 1 shows the defini-
tion module for ZScreens. It contains
most of the normal cursor motion and
editing functions. Procedure ‘GoToXY’
will position the cursor anywhere on
the screen. ‘HomeCursor’ moves the
cursor into the upper left-hand corner
of the screen (i.e. the ‘home’ position).
‘ClearScreen ‘ will clear the complete
screen and leave the cursor in the home
position. (Or does it home the cursor
and then clear to the end of the
screen?) ‘ClearToEOL’ clears from the
cursor to the end of the current line.
‘ClearToEOS’ clears from the cursor to
the end of the screen. ‘Highlight’ will
put the terminal in highlight mode,
which could be brighter or dimmer
than the normal mode, or it might be
reverse video—it all depends on how
it’s defined in the TCAP. The ‘Normal’
procedure returns the terminal to the
normal (un-highlighted) mode. The
‘InitScreen’ procedure will output the
terminal initialization character se-
quence. Likewise, ‘ExitScreen’ will out-
put the terminal de-initialization char-

The Computer Journal / #48

i3

acter sequence.

Listing 2 shows the ZScreens im-
plementation module. Most of the
work of the module is done in the ini-
tialization section. This means that it is
actually done before the main code of
the program begins to run. With the
exception of GoToXY, all of the proce-
dures in the module simply write a
string directly from the TCAP. GoToXY
is more complex because it must inter-
pret the ‘%’ codes in the string.

The implementation begins by get-
ting the address of the Z3 énvironment.
The TCAP is always located 128 bytes
above this address. This module is not

. concerned with the first few fields of
the TCAP RECORD (as defined in my
previous article). Instead we start at the
‘CtlISt’ ARRAY OF CHAR. The first
sequence in this array is the ‘clear the
entire screen’ string which is often re-
ferred to by the mnemonic ‘cl’. In this
module, ‘cl’ is set to point to the begin-
ning of CtlStr. Then a search is made
down the string for the NUL character.
The next higher location is the address
of the beginning of the ‘move the cur-
sor’ string. The ‘cm’ variable is made to
point to this location. Again, a search is
made for the next NUL character. The
following location begins the ‘clear to
EOL’ string. In like manner, all of the
control sequences are found and have a
variable assigned to them that contains
the address of their string in the TCAP.
Thus, when it comes to implementing

-one of the procedures such as ‘Clear-
Screert, all the procedure has to do is
write the string pointed to by the ap-
propriate variable (in this case, ‘cl’). Of
course, it helps that Modula 2 also uses
the NUL character to indicate the end
of a string.

The ‘move cursor’ string is pointed
to by the variable ‘em’. The GoToXY
procedure cannot write the string di-
rectly. Instead, it writes the string out
one character at a time until a ‘%’ is
detected. The ‘%’ itself is not output,
however the next character is used to
determine how to encode the row and
column values. The encoding is per-
formed according to the rules given
earlier. In this manner, the correct char-
acter sequence is generated on the fly.

Mapping the Environment

In my last article, | showed how
some of the information in the Z-Sys-
tem environment could be listed by a
modula 2 program. Now 1 shall show
how the actual environment can be

14

mapped graphically using the Screens
module. The Z3 environment contains

pointers to its component parts. A
glance at the Z3ENV record from the

Listing 3.
MODULE MapEnv;

(*

D. L. Clarke for TCJ 8 October 1990 *)

FROM SmallIO IMPORT WriteHex;

FROM SYSTEM

IMPORT ADDRESS;

FROM Terminal IMPORT Write, WriteString, WriteLn;

FROM 234m2

IMPORT Z3ENV, 2Z3PTR, GetEnv;

FROM ZScreens IMPORT Highlight, Normal, ClearScreen, GoToXY;

VAR

PROCEDURE FindXY(location: CARDINAL);

location, page: INTEGER;

line: CARDINAL;
X, y, addr: CARDINAL;
env: Z23PTR;

(* find map location of structure *)

BEGIN

Y := 65 - location DIV 1024;
X := location MOD 1024 DIV 32 + 10

END FindXY;

PROCEDURE PlaceName (locat: ADDRESS;

(* place name on map and in list *)
name: ARRAY OF CHAR;
size: CARDINAL);

BEGIN

addr := CARDINAL(locat);
IF (addr >= Ob00OH) AND (size >= 128) THEN (* place name on diagram *)
FindXY(addr); GoToXY(x, y);

Highlight; WriteString(name); Normal
END;
INC(line); GoToXY (48, line); (* list beside diagram *)
Highlight; WriteString(name); Normal;

GoToXY (55, line);
GoToXY(62, line);

WriteHex(addr, 4);
WriteHex(size, 4)

END PlaceName;

BEGIN

env := GetEnv();
IF CARDINAL(env) # 0 THEN

ClearScreen;
GoToXY(18, 0); Highlight;
WriteString(“> > > 2CPR Environment Map < < <7);

’

Normal; WriteLn;

WriteString(” +");

FOR page := 0 TO 3 DO (* draw the top part of the diagram *)
WriteString(“”—");
Highlight; WriteHex(page*100H, 3); Normal;

WriteString(“—+")
END; WriteLn;

FOR location := -1024 TO -20480 BY -1024 DO (* draw the diagram *)

WriteString(” “); WriteHex(location, 4); Writestring(” |”);
FOR page := 0 TO 3 DO WriteString(” |”) END;
WriteLn

END;

line := 4;

GoToXY(48, line); Writestring("Name___Addr__~Size");

PlaceName(env”.bios, “BIOS”, OffffH - CARDINAL(env”.bios) + 1);
PlaceName(env”.ccp, “CCP”, ORD(env”.ccps) * 128);

PlaceName (env”.dos, “DOS”, ORD(env”.doss) * 128);
PlaceName(env".z3env, “ENV”, ORD(env”.z3envs) * 128);
PlaceName(env”.fcp, “FCP"”, ORD(env”.fcps) * 128);
PlaceName(env”.iop, “IOP”, ORD(env”.iops) * 128);
PlaceName(env”.z3cl, “MCL"”, ORD(env”.z3cls));
PlaceName(env".z3msg, ©“MSG”, 80);

PlaceName(env”.z3ndir, “NDR", ORD(env”.z3ndirs) * 18 + 1);
PlaceName(env".expath, “PATH”, ORD(env”.expaths) * 2 + 1);
PlaceName (env”.rcp, “RCP”, ORD(env”.rcps) * 128);
PlaceName(env".shstk, “SHL”, ORD(env”.shstks) * ORD(env”.shsize));
PlaceName(env”.extstk, “STK”, 48);

PlaceName(env".2z3whl, “WHL", 1);

PlaceName(env”.extfch, “XFCB”, 36);

GoToXY (72, 22)

END

END

MapEnv.

The Computer Journal / #48

Listing 4.

>>> ZCPR Environment Map <<<

000 100 200 300

FC0O0

F800

F400 Name__ Addr____Size
F000 BIOS BIOS FOO00 1000
EC00 ccP D200 OA00
ES00 SHL DOS Dos EAQO 0600
E400 FCP ENV ENV E780 0100
EQ00 FCP E500 0280
DCOO NDR RCP IoP 0000 0000
D800 MCL D101 OOFA
D400 MSG ES00 0050
D000 MCL ccp NDR DCOO0 00FD
CCo00 PATH £980 000B
Cc800 RCP DDOO 0800
Cc400 SHL E880 0080
€000 STK E9AS 0030
BCOO WHL E98B 0001
B800 XFCB E950 0024
B400

B00O

234m2 definition modulelisted in my last article will show
that addresses are given for the RCP, IOP, etc., as well as the
CCP, DOS, and the BIOS. The trick is to paint it on the termi-
nal screen.

I chose to map only the portion of memory above hex
location B00O. Each line of the screen will represent 400 hex
bytes (or 1024 decimal bytes). | then chose to let each charac-
ter-space equal 32 bytes. Thus, 32 characters would be suffi-
cient to represent the 1024 bytes assigned to the line. A verti-
cal line, ‘|’, every eight spaces will partition the line into
areas of 100 hex bytes each. This is the matrix into which the
environment shall be mapped.

Listing 3 shows the MapEnv program. It first gets the ad-
dress of the environment. The address is valid if the address
_is non-zero. If it’s valid we proceed with the mapping. The

next fifteen or so lines are the code that draws the matrix.
After this is a series of calls to ‘PlaceName’ for all of the in-
teresting environmental elements.

Procedure ‘PlaceName’ only lists elements on the matrix
that are at least 128 bytes long (i.e. four characters—the
length of most names). If it's big enough, a call is made to
‘FindXY’ which calculates where the name belongs in the
matrix. Then the Screens procedure ‘GoToXY’ is called to po-
sition the cursor there and the element’s name is printed. In
addition, the names and sizes of all of the elements is listed
beside the matrix. The final result will look something like
Listing 4.

The VTScreens Module

Sometimes a general solution (such as using the TCAP) is
not possible. In a situation where there is only one terminal
type to consider, a more specific approach may be taken.
This might be the case with any system that has only one
terminal type, such as an IBM PC. I will now show an ex-
ample of this sort. I have chosen to implement a screens
module for the VT100. This is the terminal most people asso-
ciate with the ANS! standard, although there are others. In
addition, it is possible to instruct the IBM PC to emulate a
subset of the ANSI standard. Therefore this module should
be usable in many situations.

The Computer Journal / #48

To simplify things, and to retain some commonality, we
shall use the same definition module as before, just change
all references from “ZScreens” to “VTScreens.” Next we geta
copy of the ANSI standard and translate it into an implemen-
tation module. Listing 5 shows the final result. If you are
using a VT100, you're ready, just link this module into any
other programs and use it like ZScreens was used. If you are
using an IBM PC, you will have to insert the following line
into your CONFIG.SYS file:

device = [d:][path)ansi.sys

where ‘d:’ and ‘path’ may be optional. This will increase
the size of DOS in memory, but you will be (almost) ANSI
compatible.

Conclusion

Two Screens modules were developed in this article. A
handy program was included that used the ZScreens module
to map the Z3 environment. This is only the beginning of
what can be done with these modules. For instance, the cal-
culator from my first article would seem a lot ‘cleaner’ if it
positioned all answers into a single window on the screen
instead of letting all of the answers scroll up and off the
screen.

I hope that people are beginning to appreciate what can be
done with Modula 2. I find that | can usually do things with
it that previously I had to write in assembler language. Next
time | hope to do some more work with the Z-System envi-
ronment.*

EPROM PROGRAMMERS

$750.00

Completely stand-alone or PC driven
Programs E(E)PROMs

1 Megabit of DRAM

User upgradable lo 32 Megabit
.3/.6" ZIF socket, RS-232,

Parallel In and OQut

32K internal Fiash EEPROM for easy
firmware upgrades

Quick Pulse Algorithm (27256

in 5 sec, 1 Magabit in 17 sec.)

2 year warranty

Made in US.A.

Technical support by phone
Complete manual and schematic
Single Socket Programmer also
available. $550.00

« Split and Shuffle 16 & 32 bit

100 User Definable Macros, 10 User
Definable Configurations

Intelligent Identifier

Binary, Intel Hex, and Motorola §

Stand-Alone Gang Programmer

8 ZIF Sockets for Fast Gang

““" ogramming and Easy
2 Splitting

PR EEY

20 Key Tactile Keypad (not membrane)

20 x 4 Line LCD Display

$139.95

Internal Programmer for PC

New Intelligent Averaging Algorithm. Programs 64Ain 10 sec., 256 in 1 min., 1 Meg (27010,011)in2min. 45sec.,
2 Meg (27C2001) in 5 min. Internal card with externat 40 pin ZIF. 2 1. Cable 40 pin ZIF

« Reads, verifies, and programs 2716, 32, 32A, 64,
64A, 128, 128A, 256, 512, 513, 010, 011, 301,
27C2001, MCM 68764, 2532

Automatically sets programming voltage

Load and save buffer to disk

Binary, Intel Hex, and Motorola S formats
Upgradable to 32 Meg EPROMSs

No personality modules required

1 year warranty « 10 day money back guarantee
Adapters available for 8748, 49, 51, 751, 52, 55,
TMS 7742, 27210, 5701024, and memory cards
Made in U.S.A.

NEEDHAM'S ELECTRONICS

4539 Orange Grove Ave. « Sacramento, CA 95841 P —
Mon. - Fri. 8am - 5pm PST c.0D () ———

Calil for more information

(916) 924-8037
FAX (916) 972-9960

15

Listing 5.
IMPLEMENTATION MODULE VTScreens;

(* D. L. Clarke for TCJ 10 Octocber 1990 *)
(* This module is written specifically for the VI-100. It is hoped *)
(* that this will also work with the Sun terminal and the IBM PC in *)
(* ANSI mode (however, refer to ClearToEOS). *)

FROM Terminal IMPORT Write, WriteString;
FROM SmallIO IMPORT WriteCard;

CONST esc = 033c;

PROCEDURE HomeCursor;
BEGIN

GoToXY(0, 0)
END HomeCursor;

PROCEDURE ClearScreen;
BEGIN

Write(esc);
END ClearScreen;

WriteString(#[2J3")

PROCEDURE ClearToEOL;
BEGIN

Write(esc);
END ClearToEOL;

WriteString(“”[K")

PROCEDURE ClearToEOS;
BEGIN

(¥ Note — this may not work with IBM PC *)

Write(esc);
END ClearToEOS;

WriteString(“{J”)

PROCEDURE Highlight;
BEGIN

Write(esc);
END Highlight;

WriteString(‘[1m‘); (* enter BOLD mode *)

PROCEDURE Normal;
BEGIN

Write(esc);
END Normal;

WriteString(’'[Om’); (* exit BOLD mode *)

PROCEDURE InitScreen;
BEGIN

Write(esc);
END InitScreen;

Write(‘c’) (* reset to initial state *)

PROCEDURE ExitScreen;
BEGIN

Write(esc);
END ExitScreen;

Write(‘c’) (* reset to initial state ¥)

PROCEDURE GOTOXY(x, y: CARDINAL);

BEGIN
Write(esc); Write(’[’);
WriteCard(y+l, 1); Write(‘;’);
WriteCard(x+1l, 1); Write(‘H’)
END GoToXY;

END VIScreens.

8031 puController
Modules

NEW!I!
Control-R 11

V Industry Standard 8-bit 8031 CPU

vV 128 bytes RAM / 8 K of EPROM

v Socket for 8 Kbytes of Static RAM

v 11.0592 MHz Operation

v 14/16 bits of parallel I/O plus
access to address, data and control
signals on standard headers.

vV MAX232 Serial I/O (optional)

v +5 volt single supply operation

v Compact 3.50" x 4.5" size

v Assembled & Tested, not a kit

$64.95 each

Control-R 1

vV Industry Standard 8-bit 8031 CPU
vV 128 bytes RAM / 8K EPROM

v 11.0592 MHz Operation

v 14/16 bits of parallel /O

v MAX232 Serial /O (optional)

vV +5 volt single supply operation

) Compact 2.75" x 4.00" size

vV Assembled & Tested, not a kit

$39.95 each

f - 3
Call for Articles

The Computer Journal relies on its readership for submission of articles. Interest has been
expressed for articles relating to real-world interfacing and programming of embedded con-
trollers and robotics, tnternal structure and modification of MS-DOS and Z80 assembly pro-
gramming for the high level language programmer as it relates to Z-System. Articles should
be submitted in ASCII format and be between 10k and 30k in length. Graphlcs are accepted
in TIFF and EPS formats. Please send submissions to:

The Computer Journal
PO Box 12
South Plainfield, NJ 07080-0012
United States

Options:
* MAX232 1.C. ($6.95¢a.)
* 6264 8K SRAM ($10.00¢ca.)

Development Software:

* PseudoSam 51 Software ($50.00)
Level I MSDOS cross—assembler.
Assemble 8031 code with a PC.

* PseudoMax 51 Software ($100.00)
MSDOS cross—simulator. Test and
debug 8031 code on your PC!

Ordering Information:

Check or Money Orders accepted. All
orders add $3.00 S&H in Continental US
or $6.00 for Alaska, Hawaii and Canada.
Illinois residents must add 6.25% tax.

_ or by modem to Socrates Z-Node 32, (908) 754-9067 J)

16

Cottage Resources Corporation
Suite 3-672, 1405 Stevenson Drive
Springfield, Illinois 62703
(217) 529-7679

The Computer Journal / #48

The Z-System Corner

P»atching MEX-Plus and The Word - Using ZEX

By Jay Sage

For this issue | have a large number of small subjects to
cover. 1 will begin with the long-promised patches to MEX-
‘Plus, the ones I lost when my hard disk crashed and then
recovered when the hard disk miraculously resurrected itself.
I haven’t had time to incorporate all the corrections and addi-
tions that have been on my list, but this will be a good start
on an on-going project.

While on the subject of patching, 1 will enlarge on the
discussion of the patch to The Word Plus that | presented in
issue #45. It turns out that at least two different versions of
TW.COM are currently in circulation, and the original patch
works only with one.

A couple of readers have requested help with ZEX. They
are aware that Bridger Mitchell provided full documentation
in his column in issue #38, but they pointed out that the
subject is rather complex and would be clarified considerably
by a few examples. Given the power of command alias
scripts, I rarely have any need for ZEX, but | will present the
two ZEX scripts that I do use regularly. Perhaps some read-
ers will help out by sending me copies of some interesting
scripts that they have developed that use the advanced fea-
tures of ZEX5.

Finally, I will continue my discussion of ZMATE. Rather

* than listing the remaining commands that I did not cover last
time, 1 will describe my special autoexec macro that allows
me to pass macro commands to ZMATE from the operating
system command line. This provides a very powerful inter-
face between ZMATE and Z-System command alias scripts.

This is not the only information about ZMATE in this
issue. I am happy to announce that we are inaugurating a
new column by Clif Kinne on MATE macros.

One other quick announcement. The Z-System Software
Update Service, produced by Bill Tishey and Chris McEwen, is
expanding its services. ZSUS will now make up custom disks
containing the full LBR releases of any files you request.
There will also soon be special software collections. I believe
the first will contain material of interest to assembly lan-
guage programmers. | invite you to write to me for a new
flyer or to look for announcements on BBSs.

Fixing Up MEX-Plus

As wonderful as I find MEX-Plus, there are quite a few
bugs that need to be fixed and quite a few additional features
that I would like to see added. | have just gotten started on
this project and will describe my progress to date.

MEX Improvement List

Besides the items that my current patch deals with, the
following items are on my list of needed improvements.

The CLONE command, which creates a new copy of MEX
(i.e., a new COM file) with the current settings as the default,
has the following minor bug: when it is entered without
specifying a file name, it will make a file with extent “COM”
and a file name of all spaces! In this case, it would be much
more sensible if it either (1) defaulted to a name of
MEX.COM or (2) refused to do anything.

There is a very annoying error in the way numerical vari-
ables are processed. When the variables have particular val-
ues, MEX reports a syntax error. So far | have not been able
to determine the precise conditions under which the problem
arises, but I hope that with careful study of the code I will
figure out what is wrong. My guess is that some CPU flag is
being mis-set or misinterpreted.

Jay Sage has been an avid ZCPR proponent since the very first version appeared.
He is best known as the author of the latest versions 3.3 and 3.4 of the ZCPR com-
mand processor, his ARUNZ alias processor and ZFILER, a “point-and-shoot” shell.

When Echelon announced its plan to set up a network of remote access computer
systems to support ZCPR3, Jay volunteered immediately. He has been running Z-
Node #3 for more than five years and can be reached there electronically at 617-965-
7259 (MABOS on PC Pursuit, 8796 on Starlink, pw=DDT). He can also be reached
by voice at 617-965-3552 (between 11 p.m. and midnight is a good time to find him
at home) or by mail at 1435 Centre Street, Newton Centre, MA 02159. Jay is now
the Z-System sysop for the GEnie CP/M Roundtable and can be contacted as
JAY.SAGE via GEnie mail, or chatted with live at the Wednesday real-time confer-

ences (10 p.m. Eastern time).

In real life, Jay is a physicist at MIT, where is tries to invent devices and circuits
that use analog computation to solve problems in signal, image and information
processing. His recent interests include artificial neural networks and supercon-
ducting electronics. He can be reached at work via Internet as

SAGE@LL.LLMIT.EDU.

The Computer Journal / #48

There is a minor bug in the DATE
command. As things are now, TIME
and DATE are identical functions, and
both return the time in the VALUE
variable. Obviously, DATE should re-
tumn the current date.

In case you have tried to use the
MENU.MOD module and have found
that the HELP function does not work,
don’t worry. You are not doing any-
thing wrong or missing any piece of
the code. This function was imple-
mented improperly or not imple-
mented at all in the CP/M version of
MEX-Plus. We probably will not be
able to do much about this until we
have figured out MEX’s interface to the
external modules.

17

I would like to mention something that caused me grief
recently with one of my macros: WAIT STRING strings are
limited to 16 characters! 1 don’t think I would change this,
but one must bear this limitation in mind.

One of the most important additions would be more
string variables beyond the six (A..F) currently implemented.
Even two more would benefit some of my scripts
enormously.

Finally, I would like to replace the file name parser, which
already recognizes the DU: prefix, with one that handles full
Z-System file specifications.

My MEX Patch
My MEX patch is shown in Listing 1. It is heavily com-
- mented, and I will not repeat the details in the text. The patch
makes three changes.

MEX has a STAT command that turns on or off a function
that converts the backspace key into a rubout/ delete charac-
ter (which we will call DEL from now on). | have always
assumed that this was included from olden times, when
microcomputers sometimes had no DEL key and mainframe
computers—which MEX was used to communicate with—
required that key for some critical functions.

Today, the situation is generally quite different. First, al-
most all computers and terminals now have a DEL key. Sec-
ond, with the Z-System, one often uses DEL interchangeably
with backspace, and I have gotten quite used to that. When 1
call non-Z remote access systems, | find it a real nuisance
when DEL does ‘not work. That is why I decided to reverse
the function of this STAT command.

Making the change itself was quite simple; the hard part
was finding the right places in the code. Three changes are
required, as shown at the end of Listing 1. One byte contains
the keycode of the key to be intercepted, while another byte
contains the keycode with which it is to be replaced. The
third change is not needed for proper operation, but it is nice
to have the STAT RUB message reflect the new function.

The next change is to the STAT BUF command. MEX very
often has its commands return in the VALUE variable some
information developed by that function. For example, the
DIR function returns the number of matching files that were
found. Unfortunately, the STAT BUF command displays in-
formation about the status of the capture and key macro
buffers but does not return any information in VALUE.

I had written a script for calling up GEnie and capturing
my email letters. When I relied on XON/XOFF flow control
to pause GEnie’s output while MEX was flushing its buffer, I
found that some text was sometimes lost. To get around this,
I manually closed and reopened the capture buffer. Rather
than wasting the time to do this after each letter, | wanted to
check the amount of space remaining in the capture buffer. If
this space dropped below some value (I think I used 3K),
then I would close and reopen the buffer.

Implementing this function required adding some new in-
structions to the code for the STAT BUF command. This
raised two problems: how to tap into the original code and
where to put the new instructions.

Let us start with the second problem. With some pro-
grams, new code can be added at the end of the original
code. If the program places its run-time data at the end of its
code, however, this can obviously present some difficulties.
If one is patching in some new initialization code that is
performed and can be discarded before the program starts to

18

Listing 1.

; Program: MEXPAT.280

; Author: Jay Sage

; Created: June 10, 1990
r

Last Modified: October 8, 1990

This file contains a collection of patches made to Mex-
Plus, version 1.65.

~e ~e

The following patches are included:

~

1. Change the function of the backspace-to-rubout
conversion function to do the reverse — make
pressing the rubout/delete key generate a backspace
character. This patch could be used to perform the
conversion of any single character into any other
single character. This function is invoked by the
STAT RUB [ON|OFF) coammand.

2. Augment the STAT BUFFER command so that the amount
of free space in the capture buffer is returned in
the VALUE variable. MEX scripts can then check on
the remaining space and decide to flush the buffer
manually at convenient times and to avoid overflow
problems that can occur when relying on XON/XOFF
control.

3. Augment the BELL cammand so that pressing any key
will terminate it. The standard MEX BELL command
can be cancelled only by control-C, but this
terminates the entire script. Now the bell can
sound until the operator presses a non-abort key, at
which point the script will proceed.

WO MO NG WE e NE Me Me We Ne WA WP W e e N Ne wE S W N w6 e

; Addresses in standard code

ilprint equ 0724fth In~line print
hlsubde2 equ 0417ah Subtraction of DE from HL
capstats equ O6eafh CAPSTATS function

scrollconin equ 049d43h
getconstat equ 049c5h

Console input
Console status

e we we we e we

bell2 equ 046c2h BELL2 entry point

val equ 00d64h ; VALUE variable

logo equ 02662h ; LOGO entry point

endlogo equ 027b%h ; First byte past LOGO code

saycap equ O6eath ; Point to patch in
; «-..SAYCAPSTATS

bellins equ 046aeh + 10 ; Point to patch in BELL

{1

oldkey equ 5351h ; Place where key typed by
; ...user is detected

newkey equ 535dh ; Place where new character
; +..is substituted

idstr equ 62a6h ; Place where STAT command
i ...message is defined

bs equ 8 ; Backspace character

1f equ 10 ; Linefeed

cr equ 13 ; Carriage return

rubout equ 127 ; Rubout character

~

Standard MEX-Plus has a very elaborate signon screen that
affords a perfect place to put the code we need for our
patches. The first thing we do is to replace the LOGO
routine with a minimal message.

~e w0 e we

org logo

call ilprint

db cr,lf

db ‘MEX v 1.652, 06/10/90'
db cr,1f,1£€,0

ret

; Make the STAT BUFFER command put the amount of free
; capture buffer space into the VALUE variable. We do this

The Computer Journal / #48

use its data space, then one can get away with this. When |
add this kind of patch, I try to have it include code that
patches out the patch and restores the original code. Other-
wise, the program cannot safely be rerun using the GO com-
mand, since the patch code may have been overwritten by
program data. Attempting to execute data has a way of
wreaking havoc with the system!
In our present case, we are adding code that must be
available at any time, and MEX certainly writes data into the
free memory after its own code. Consequently, we have to
" find some space within the bounds of the original program.
The technique I have used here is to steal nonessential inter-
nal data space.

MEX normally signs on with a very elaborate screen dis-
play that takes 343 bytes—enough room for a lot of patch
‘code! We cannot delete all of it, but we can replace it with a

. much simpler signon message. The new one in the patch uses

Listing 2.
{
MAP.ZEX

This ZEX5 script runs the XBIOS MAP utility that sets
a drive to a designated virtual disk format. Since
MAP itself does not allow command-line parameters, ZEX
is used to pass a parameter. We use foreign formats
only on the 48-tpi drive G: and hence always supply the
input “G”. The argument to the script is the number of
the desired format.

}

b0 :map
<G$1

Listing 1. Continued

; by patching some extra code into the SAYCAPSTATS routine.
cappat:

call capstats ; Cet status info on capture
; ...buffer

push hl

1d h,b ; Free space (BC) into HL

1d 1l,c

1d (val),hl ; Put it into VALUE

pop hl

jp capcont

; This is a new routine that checks to see if ANY key has
; been pressed, not just control-c. It will be used in the
; patched BELL routine.

chkchar:
call getconstat ; See if key pressed
ret z ; Return now if not
flush:
call scrollconin ; Read in the character
or a ; Set flag to nonzero
ret

H
; Code for cutting into the original code in CAPSTATS

org saycap

ip cappat
capcont:

i

; Code for patching the original code in BELL

org bellins
call chkchar ; See if key pressed
jp nz,bell2 ; If so, cancel BELL command

; Patch to backspace-to-rubout conversion function

org oldkey
db rubout
org newkey
db bs
org idstr
; ‘bs~to-rub conversn’ ; String in standard MEX
db ‘rub-to-bs conversn’ ; You must fill same space
end

The Computer Journal / #48

only 31 bytes (if I counted correctly). It lets us know that we
are running the special version of MEX and tells us the date
of the patch.

To tap into the original code, we choose a convenient
point and put in a jump instruction to the patch area. The
instruction that we replaced by that jump is the first instruc-
tion in the patch area. Then we add the additional code to
save the capture buffer free space value into the VALUE vari-
able. Finally, we return to the original code just past the jump
we inserted.

The third change implemented in the patch concerns the
BELL command. This command is convenient to alert the
user to some event. It would be nice to have the bell ring
repeatedly until the user signals that he is ready to go on.
Unfortunately, the command “BELL 100” will insist on ring-
ing the bell one hundred times. “BELL 0” will insist on ring-
ing it 65,000 times! The only way one can interrupt the bell is
to press control-c, but this aborts the entire script. The patch
allows any keypress to abort the BELL command without
aborting the entire script.

This patch works using a slightly different technique. The
BELL code aiready contains a call to a routine that checks for
control-c. We just replace it with a call to a new routine in the
patch area that checks for any keypress. After this call, the
original code performed a conditional jump to exit from the
routine, but for reasons | don’t remember, this path was
never taken. For our new routine, the conditional has to be
switched from a zero check to a nonzero check.

Patching TW.COM

Since we are already on the subject of patching, this seems
like a good place for a follow-up discussion of my patch in
issue #45 to make TW.COM, the master program of The
Word Plus spell checking program, not stop and ask the user
if the current configuration is acceptable. When we are run-
ning from an alias script, we just want to get on with the job.

Several people tried implementing my patch script and
complained that it did not work properly. This was strange,
because | have been using it constantly. Hal Vogel finally
figured out what was going wrong. It seems that there are
two versions of TW in current distribution. Mine, which
came with WordStar Release 4, is version 1.21. Other people
have a later version, 1.22. Both display a 1981 copyright, and
it seems odd that the new version of WordStar would come
with an older version of TW. It makes me wonder which
version is better.

In any case, version 1.22 has three bytes more code before
my second patch point, and so both the address of the poke
and the address poked in have to be incremented by three.
Here is the original TWPAT alias for version 1.21:

19

get 100 tw:tw.com
poke 103 c3 3b 01
poke 395 c3 2a 04
go $*

For version 1.22, only the second poke has to be changed:

poke 398 c3 2d 04.

In my original discussion, I did not describe how I figured
out how to patch around the prompt. Hal Vogel asked about
my method, so I will say a little about it here. It's the least |
can do to thank him for solving the mystery.

I knew that the offending prompt began with “These are
the current settings.” So, I searched with a debugger for that
- text, and I found it starting at address 07FFH. Since it was
part of a collection of such messages, all ending with a dollar
sign, [knew that they were not part of in-line calls. There-
fore, where the message was actually displayed there would
almost certainly be an instruction loading the address of the
message into one of the double registers.

I used the DSD debugger’s search function to locate occur-
rences of the byte pair FF,07. The first one was part of the
code sequence

041lc 1d de,07f£f
041f call 17bd
0422 call 17cb
0425 cp ‘o
0427 jp z,02a4
042a

It was pretty clear that 17bd was the routine for display-
ing a string whose address was in register pair DE and that
17cb was the routine to get an input character from the user.

TW takes a space character to indicate that the user wants to

make a change, which must be handled by the code at 02a4.

Any other character would accept the default setup and con-

tinue at address 042a. Therefore, changing the code at 0423 to
0423 jp 042a

would by-pass the user’s response and go right into the
spell checking.

However, that change would still send the display of the
prompt to the screen. Backing up and putting my replace-
ment jump instruction at address 041d would suppress even
the display of the prompt.

As 1 looked at still earlier code, I found instructions that
displayed the current settings. Since we really did not need to
have them sent to the screen, [continued to work back until |
came to the beginning of that block of code at address 0395,
where the message “Summary, Checking file...” was put up.
By placing my jump instruction there, all of this extraneous
code was by-passed.

You might be wondering how I found the place where the
other patch was required. With the main patch installed, TW
terminated with an error message about a corrupted file.
Guessing that a check of that type would be near the begin-
ning of the code, I just executed TW.COM under the debug-

20

Listing 3.
{
FORMAT. ZEX

This 2EXS script invokes the XBIOS format program FVCD
and feeds it input to perform the desired diskette
formatting operation. The following arguments are

recognized:
<none> manual operation of FVCD
F or F: SB180 DSQD format in drive F
G or G: SB180 DSDD format in drive G
KP2 or KP2: Kaypro SSDD format in drive G

}
;; SB180 DSQD Formatting

if eq :f: :§$1 ;; Test for “Fs:*
or eq :f :§1 ;; Test for "“F"
|if true}

b0:fved

<OSXTFF2|cr|

|say|

Formatting in SB180 DSQD format complete.
|end say|

|abort|

|endif|

fi

;7 SB180 DSDD Formatting

if eq :g: :51
or eq :g :$1
|if true]
b0:fved
<OSXTGF

!
Formatting in SB180 DSDD format camplete.
[

|abort |

|endif|

fi

;; Test for "G:"
s; Test for "G”

;7 Kaypro SSDD Formatting

if eq :kp2: :$1 ;; Test for “KpP2:"
or eq :kp2 :$1 ;; Test for “Kp2®
|if true]

b0: fved

<OSXTGF6 |cr

1]

Formatting in Kaypro 2 (SSDD) format complete.
1"l

| abort |

lendif|

£i

73 Manual Formatting

if eq :81 :
|if true|
b0:fved
<OSXTGF |until|
I

Formatting in interactive mode complete.
[

|abort |

|endif|

fi

;i Test for no argument

ji We get here if an illegal argument was given
I
—> Illegal format specification given: $1 $2 $3

'"l

The Computer Journal / #48

ger. The problem was clear very quickly.

Some Sample ZEX Scripts

As | mentioned earlier, Bridger Mitchell, author of ZEX
version 5.0, covered the specifications for the program in his
column in issue #38 of TCJ. Having just reread that column, I
have to agree with the comments [received that a few ex-
amples are needed to appreciate what ZEX can do. I will
assume that the reader is already familiar with the basic op-

. eration of ZEX and present the only two ZEX scripts that |
use regularly.

One of the advantages I got from writing about these
scripts is that, naturally, in the course of analyzing them 1
thought of new approaches and have significantly rewritten
them. They do seem to work, but you should be warned that
mistakes may have crept in.

If all one wants to do is run a sequence of command lines,
I don’t think that ZEX is the right approach (though there
may be some exceptions that I can’t think of now). On the
other hand, ZEX is appropriate—in fact, necessary—when
one wants not only to invoke a program but also to provide
interactive input to the program. ZEX is also useful for creat-
ing fancy screen displays, since it has the ability to generate
direct output to the console and to suppress output gener-
ated by running programs. My two sample scripts fall pri-
marily in the former class.

My first script, MAP.ZEX, is shown in Listing 2. As you
see, it is extremely simple. It is used to invoke the MAP
utility that is part of the XBIOS extended BIOS for the SB180
computer. This utility can temporarily set each floppy drive
to emulate one of a number of foreign formats.

I wanted to have simple alias commands, such as “KP4”
or “MD3”, that set the appropriate floppy to the Kaypro
DSDD or Morrow MD3 format. Unfortunately, MAP is a
purely interactive program; choices cannot be passed to it
from the command line, and so ARUNZ is powerless. This is
where ZEX comes in.

The first section of MAP.ZEX is an extended comment.
When a ‘{’ character appears in the first column of a line, all
text up to the first closing brace character }' is treated as a
comment and ignored by ZEX. [strongly recommend using
comments extensively, as with any other programming lan-
guage.

The first non-blank, non-comment line invokes the MAP
program, which I keep in directory BO:. The next line is the
one that does the special job that only ZEX can do. Lines that
begin with a ‘<’ character in the first column are interpreted
as program input by ZEX, which proceeds to emulate your

typing at the keyboard. In this case, the first character emu-
lated is ‘G’. The first input that MAP expects is the letter of
the drive to configure. Since all the foreign formats I use are
for 48-tpi drives, I always use my G drive.

Next, MAP wants one to select a format by number. This
we pass to the ZEX script as a parameter on the ZEX com-
mand line, and we represent it in the script with the symbol
“$1”. MAP then wants a carriage return. ZEX is supposed to
ignore carriage returns in the script, and so we should in-
clude the special directive “ |CR|”. However, for reasons
unknown to me, trial-and-error shows that this is not neces-
sary here; a carriage return is sent automatically whether we
want one or not.

MAP.ZEX is an incredibly simple script, but it provides a
lot of power. I can now define the following ARUNZ aliases:

The Computer Journal / #48

CLEAR=CLR zex bO:map 1;msg
KP4=KP10 /xxmap 8 KP4
MD3 /xxmap 9 MD3

TV,803 /xxmap 28 TV803
XXMAP zex bO:map $1;msg *** Drive G = §2 ***
MSG echo “[f$*

These scripts implement the nicety of putting a message in
the upper right special message area on my Wyse 50 terminal
to remind me of the foreign format setting. It is not reason-
able to try to remember the special escape sequence for pro-
gramming this message area, so | provide the alias MSG to
do this.

A second subroutine alias, XXMAP, saves space in the
ALIAS.CMD file by handling commands common to a num-
ber of other aliases. It takes two parameters. The first is the
format number for MAP, and it is passed to the MAP ZEX
script. The second is the name of the format, and it is passed
to the MSG alias. The other aliases, such as MD3, set up the
desired disk format. The alias CLR or CLEAR restores drive
G to its default SB180 format (MAP selection 1).

The second example script is called FORMAT.ZEX is
shown in Listing 3. It works with another XBIOS utility pro-
gram, FVCD (Format Verify Copy Duplicate). This program
can format diskettes not only in the standard SB180 formats
but also in several foreign formats. FVCD, like MAP, is a
purely interactive program, but I want to be able to format,
say, a Kaypro 2 disk by entering just “FORMAT KP2”.
Again, ZEX saves the day.

This script is much more complicated. Since [want all the
formats to be handled by a common alias called FORMAT,
the particular format will be designated by a command-line
argument and not by the name of the command. This re-
quires testing of the argument, a job that can be performed
nicely by a sequence of flow-control commands. That much
could be handled by a command alias, but since we will be
providing interactive input anyway, we might as well have
ZEX take care of everything.

As with MAP.ZEX, we begin the script with a comment
block. Note that a double semicolon can be used to enter
individual comments on a line. The first two executable lines
test the first argument, “$1”, to see if it is either “F” or “F.".
The colon prefix before the parameter is included to force the
argument to be treated as a string and not as a directory
specification even if it contains a colon. For reasons | cannot
entirely remember, the flow control string-equate testing
command does not work properly if it begins with just “:”.
For that reason, I put the definite string first and the string
with the parameter second.

Now we come to a very important ZEX directive: |if
true|. This directive tells ZEX to ignore all characters up to
the closing |endif| if the current flow state is false. You
might wonder why one would need this, since the command
processor would ignore commands anyway. The answer is
that the script contains material other than commands. It con-
tains interactive input and direct console output. The |if
true| and |endif| directives make sure that these are ig-
nored as well.

After ZEX processes a command, such as the line
“b0:fved”, and sends it to the command processor, it looks at
the next line. If it begins with a ‘<’ character in the first
column, then all the characters on that line up to but not
including the ending carriage return are loaded into a key-

21

stroke buffer and fed, as requested, as interactive input to the
running program. In this example, we send “OSXTFF2”, just
as if we pressed those seven keys manually.

We also send a carriage return, specified by the |cr| di-
rective. As noted with the MAP.ZEX script, ZEX automati-
cally sends one carriage return, but we need two for this
operation. We won’t bother to explain what all those charac-
ters do in FVCD. To figure out what to include, one just runs
the program manually and makes note of every key pressed.

This simulated input starts the first diskette formatting.
When that operation is complete, FVCD wants more user
input. Since the next ZEX line does not begin with a ‘<’, ZEX
no longer supplies the input and returns control to the user.
More diskettes can be formatted manually.

When one eventually exits from FVCD, the ZEX script
- continues with the line “ |say|”. This turns on direct console
output. Text, this time including carriage returns, line feeds,
and almost all other characters in the file, is sent directly to
the screen, until the terminating |end say| directive is en-
countered. The directive |”|, seen later in the script, is a
more compact alternative to |say| and |end say|. It auto-
matically toggles the console output state.

We could have used the ECHO command to display this
message, but ZEX’s direct screen output is easier and more
convenient, as it is case sensitive. You just write things as you
want them to look on the screen.

Once we are finished with the formatting, we can termi-
nate the ZEX script immediately. This is done with the
|abort| directive. It automatically returns the flow state to its
original condition, so we do not have to worry about the fact
the we have not executed the “FI” command that balances
the “IF” command earlier.

The rest of the script just proceeds to test for other argu-
ments and to pass the appropriate input to FVCD. The only
one of these other cases worth commenting on is the manual
formatting case near the end of the script. Here we simulate
input only to put FVCD in format mode with automatic
DateStamper initialization enabled but not to select any for-
mat or to start the operation. We must suppress the auto-
matic carriage return that ZEX generates (otherwise format-
ting will start immediately in some default format). The |un-
til| directive stops simulated input until a carriage return is
entered.

My ZMATE Autoexec Macro

The two ZEX scripts were needed primarily because the
two programs MAP.COM and FVCD.COM did not provide a
facility for designating options on the command line. Ampro
always made a particular point of providing such a facility
with its utility programs, and I wish all authors would do
that. It is nice to have interactive programs, but it should be
possible to run them “batch mode” too.

With a word processor or editor one expects the com-
mand line tail to include the names of any files to work with.
Indeed, this is ZMATE’s default action. However, there are
many situations in which one would like to do more. For
example, one might want to start ZMATE with a macro al-
ready loaded into one of the auxiliary buffers. One might
even want that macro to be executed immediately. That
macro might even carry things to the point of closing the file
and exiting from ZMATE! In that way one could use ZMATE
to create custom text processors.

How is this done? In an earlier column | described the

permanent macro area (PMA) in the ZMATE text editor. This
buffer area in the code contains a set of macros that become a
permanent part of ZMATE and are available at all times. The
first macro in the PMA can be designated as an autoexec
macro by placing a control-S in front of it instead of the usual
control-X. As soon as ZMATE has loaded and initialized it-
self—and before it opens any files—it executes this autoexec
macro.

Here is a very simple example of a text filter created using
this ZMATE facility. Suppose we have a macro that opens a
file, goes through it changing each of its characters to upper
case, saves the file, and exits. If we put this macro into the
PMA as the autoexec macro and then clone ZMATE with the
command “XDupcase$”, we will have a file called
UPCASE.COM. Then we can enter a command like

upcase infile outfile

to perform the case conversion on a file. This is just a
trivial example. With the full facilities of ZMATE macros,
one can easily write some very powerful filters.

What [want to describe now is the autoexec macro that I
have installed in my standard version of ZMATE (named
EDIT.COM). We might call it an indirect macro, since it al-
lows one to specify a macro for automatic execution on the
command line. Some sample commands will illustrate how
this works.

edit source.z80 $ b%e xicomment.mat$ bte

The part of the command up to a first dollar sign is taken
as the file specification. In this case, the assembler source file
SOURCE.Z80 will be opened. In addition, the macro follow-
ing the dollar sign will be executed. This macro goes to edit
buffer 9, reads in the file COMMENT.MAT containing a
macro for reformatting assembly code comments, and then
returns to the main editing buffer. The following ARUNZ
alias can automate this (remember that one needs double
dollar signs to represent a single ‘$’ character in the ex-
panded script):

ZED,IT edit $1.280 $$ b9%e xicomment.mat$$ bte

Now when | want to work on a Z80 assembler program
file called PROG.Z80, I can enter the simple command

zed prog

Here is a sample command line for editing my
ALIAS.CMD file with automatic searching for the alias defi-
nition we just showed.

aled zed

The definition for ALED is

ALED if nu $1;edit ram:alias.cmd;else;
edit ram:alias.cmd $$ e s"m$1$$;fi

If no search string is given, the alias just edits the file. If a
string argument is given, then ZMATE is passed a macro to
search for the string at the beginning of a line. The caret
followed by an ‘m’ is interpreted as a control-M or carriage
return.

A fully commented version of the autoexec alias is given

The Computer Journal / #48

in Listing 4. Since I tend to use buffers from both ends, keep-
ing text in the low-number buffers and macros in the high-
numbered buffers, for the autoexec macro I use a middle
buffer, number 5. The macro switches to it and then inserts
the string argument passed on the ZMATE command line.

Listing 4.
;Autoexec Macro

This macro allows ZMATE to be invoked with a macro on the
command line. The syntax is as follows:

ZMATE [infile (outfile]]{$<macro>]

The macxo line is processed using a special syntax. All
letters are normally converted to lower case; characters
following a ‘~’ are converted to the corresponding control
character and dollar signs are converted to escape
characters. However, a character following a ‘“‘’ is taken
literally so that upper case characters, dollar signs, and
carets can be entered.

N W e WP %e We Mo e We we we %o

BSE ; go to buffer S
I*A: ; read in command tail
A ; go to beginning
T ; tag it
[eT>" _M] ; move to first non-space, non-
; ...control character
#D ; delete the white space
eT=0{ ; IF nothing left
BTE ; go to T buffer
] H terminate this macro
} ; ENDIF
eT="${ ; IF line starts with dollar sign
D ; delete it
0, H push 0 (false) onto stack
H ; ELSE
-1, ; push -1 (true) onto the stack
B H suppress error trapping
S$$; search for a ‘$’ separator
QE({ ; IP none found
4 ; go to end of buffer
H ; ELSE
-D ; delete the ‘$’ separator
"y ; ENDIF
#BOM ; move file name specs to buffer 0
} ; ENDIF
[REPEAT

eT<*AL (eT>"2)'{ 1IF upper case letter

;
i
€T196R ; replace with lower case
~ H loop back
} ; ENDIF
T=""{ ; IF character is double quote
D H delete it
M H move past next character
. ; loop back
} ; ENDIF
T=""{ H IF character is caret
D ; delete it
€T&31R ; convert next char to control
. H loop back
} ; ENDIF
eT="${ H IF character is dollar sign
“$R ; replace it by escape char
. ; loop back
} ; ENDIF
M ; (otherwise) move past the char
eT=0]) ; UNTIL end of text
BTE ; go to T buffer
8s{ ; IF stack was true
XF AQOS H open the file spec in buffer 0
} ; ENDIF
BOK clear buffer 0

.

.
wn
~

execute macro in buffer 5

BSK clear buffer 5

~e

ZMATE has the special string symbol control-A-colon for
this. [In the listing, control characters are indicated by lead-
ing carets, and escape characters are shown as dollar signs.
However, some of the characters really are dollar signs, and
you will have to determine which are which by the context.]

The next block of code in the macro removes any leading
space. If there is then nothing left, the main text buffer is
reselected, and the macro is aborted.

The next task is to split any arguments passed into those
that specify files and those that comprise a macro to execute.
The code begins by checking whether the first character is a
dollar sign and saving this information on the stack. If the
first character is ‘$’, then no edit file was specified, and the
rest of the line is a macro. Otherwise, we try searching for a
dollar sign. If one is found, everything before it—which
specifies the files to open—is moved to buffer 0. If none is
found, we will be at the end of the buffer, and the entire text
will be treated as the file specification.

The next block of code performs some special interpreta-
tion on any macro command that remains. Since the CP/M
command line imposes some limitations on the characters
that can be passed, we provide means for indicating those
that cannot be put into the command line. When a double
quote character is found, it is deleted, and the next character
is allowed to pass without interpretation. Otherwise, the fol-
lowing special conversions take place: (1) all alphabetic char-
acters are converted from upper case to lower case; (2) dollar
signs are converted to escape characters; (3) a caret is deleted
and the character after it is converted into the corresponding
control character.

Once the macro in buffer 5 has been fully interpreted, we
switch back to the main editing buffer. If the Boolean value
on the stack is true, then we open the files (using the “XF”
macro) specified by the string in buffer 0. | don’t think we
talked about this before—at least not in detail—but this is an
example of the way ZMATE can use the contents of buffers
as string arguments for other macro commands. This greatly
enhances ZMATE’s power.

The macro completes its work with three more steps.
Buffer 0 is cleared out. Then the macro in buffer 5 is exe-
cuted. Finally, buffer 5 is cleared out. That’s all for the macro,
and that’s all for this column! See you again next issue.*

Wanted:
DEC TU-80 Tape Drive

with Unibuss Controller for

VAX 730

Am interested in either purchase or trade
Contact:
Billy D’Augustine
95 East Central Avenue

Wharton, NJ 07885

or usenet: billy@westmark.com

The Computer Journal / #48

23

Continued from Page 3

Graphics can be submitted in either TIFF or EPS formats.
In time we will be getting a more complete set of tools for
handling advanced graphics. One piece I see a particular
need for is Schema. Until that day arrives, play it safe with
graphics. Always send a hard copy printout.

We can handle MS-DOS disks in 5.25" 360k, and 3.5" 720k
and 1.44M formats, and any soft sectored 5.25" CP/M soft
sectored format, including quad density. If you are upload-
ing, please ZIP the files or make a library of them. Socrates Z-
Node is at (908) 754-9067, at up to 2400 bps. Starlink users
can use the 3319 outdial.

Continued from Page 31

label files such as -UTILITY.001, however, Gene has made
SAP-Z configurable to erase all, keep all, or to keep only
those disk-label files which begin with a certain tag character.
A CFG configuration file is supplied for use with
ZCNFG.COM.

Another smart feature is SAP-Z’s preservation of date
stamps. The DateStamper !'TIME&.DAT file is also sorted
and rewritten to keep all date stamps in proper order.

To sort and pack drive D;, then, | ran SAP-Z thus...

AO:BASE>SAPZ D:
Sorting and packing drive D:
—> Reading, Sorting, Writing, Saving Dates, Relogging, Done

The D: directory now lists files alphabetically, speeding
up access by DIR, SD and other DIR programs. And, since
we've “cleaned” the directory of erased files, the problems,
. which sometimes arise in using UNERASE on directories
/ containing a large number of erased files, have also been
minimized.

LBREXT31 (ZSUS Vol 1 #12)

Howard Goldstein (Z program debugger extraordinaire)
has made a number of improvements to the LiBRary EXTrac-
tion utility over the past year (between versions 2.6 and 3.1).
LBREXT is great for quick extraction of files from LBRs when
you don’t want to invoke the larger LBR managers (VLU,
NULU). Many users automate transfer of files between LBRs
using LBREXT and LPUT under control of an alias.

As with many utilities updated this year, LBREXT has
been linked with Version 4 of the Libraries, including the
DSLIB time and date stamping routines, and now can handle
date stamps from ZSDOS, DateStamper, a LBR’s DRI-style
member date, or CRUNCH (vs 2.3d)-style imbedded
datespecs. Another improvement has been the addition of
CRC checking (older versions would not extract files from a
LBR if there were no CRC's in the directory). Now, if the
CRC doesn’t match that of the file, instead of aborting, a
warning message is issued and the file is extracted nonethe-
less. Finally, (and another trend in recent updates) is the ad-
dition to the LBREXTxx.LBR of a .CFG configuration file for
use with ZCNFG, Al Hawley’s fine Z-System configuration
program. Now you can avoid the trepidation of manually
patching LBREXT to install default parameters.

24

And Now, Introducing...

We introduce several new authors in this issue. Carson
Wilson gives a review of “BDS Z”. Carson is one of the au-
thors of ZSDOS, the modern replacement to the DRI BDOS
for CP/M. Certainly not the sort of fellow to shy from assem-
bly programming. If he has taken an interest in this version
of C, it must be pretty good! By the way, Carson tells me his
ZSDOS Programmer's Guide is being very well received.
Don't delay in ordering your copy.

Wayne Sung shows how to interface an lomega Bernoulli
drive to a CP/M computer. In so doing, he builds a $CSI
interface! That should keep you busy a while. This leads to a
much wider topic: how does one go about installing general-
ized 1/0 with SCSI on existing equipment without a SCSI
port? Wayne’s approach certainly deserves your scrutiny.

Bill Tishey joins us with a run down on the latest Z-Sys-

‘tem software. Bill is the Z-System Software Update Service edi-

tor and for good reason. You should see his Z-System soft-
ware database! He lists hundreds upon hundreds of pro-
grams. Bill is undoubtedly the pre-eminent authority on Z-
System software availability and usage.

Clif Kinne joins us to explain the ZMATE macro language.
Think of ZMATE as a programming language for text and
you can imagine how far this can lead. We will be seeing
more of Clif.

Enough rambling. There is plenty in this issue to occupy
your winter evenings. Let’s get on with it. Enjoy yourself.
This, bud, is for you!*

Crosgs-Assemblers .o ssoo
SImUIators as low as $100.00
Cross-Disassemblers . ow s sioc0
DeveloPer Packages

as low as $200.00(a $50.00 Savings;

A New Project
Our line of macro Cross-assemblers are easy to use and full featured,
including conditional assembly and unlimited include files.

Get it To Market--FAST

Don't wait until the hardware is finished to debug t;rour software. Our
Simulators can test your program logic before the hardware is built.

No Source!
A minor glitch has shown up in the firmware, and you can't find the original
source program. Our line of disassembiers can help you re-create the
original assembly language source.

Set To Go
Buy our developer package and the next time your boss says "Get to work.",
you'll be ready for anything.

Quality Solutions

PseudoCorp has been providing quality solutions for microprocessor
problems since 1988,

BROAD RANGE OF SUPPORT
e Currently we support the following microprocessor families (with
more in development):

Intel 8048 RCA 1802,05 intel 8051 Intel 8096
Motorola 6800 Motorola 6801 Motorola 68HC11 Motorola 6805
Hitachi 6301 Motorola 6809 MOS Tech 6502 WDC 65C02
Rockwell 65C02 Intel 8080,85 Zilo

OCkwe g 280 NSC 800
Hitachi HD64180 Motorola 68000,8 Motorola 68010 Intel 80C196
e Al products require an IBM PC or compatible.

So What Are You Waiting For? Call us:
PseudoCorp

Professional Develogiment Products Group
716 Thimble Shoals Bivd, Suite E
Newport News, VA 23606
7

(804) 873-194 FAX: (804)873-2154

The Computer Journal / #48

Adding a Bernoulli Drive to a CP/M Computer

By Wayne Sung

No matter how large a disk drive you have, eventually it
will be full. No matter how much you paid for a drive, seem-
ingly somewhere along the line it crashes. To get decent ac-
cess times you have to buy a much larger drive than you
really wanted. Then there’s the question of backup...

The Drive

Iomega has been making a family of drives called Ber-
noulli drives for close to ten years now. These drives answer
all the above concerns. They are removable cartridge drives,
so if one cartridge gets full you put in another one (and you
get to control-C it!) [Ed. unless, of course, you are using a modern
replacement DOS like ZSDOS, which handles this automatically].

The Bernoulli technology means that the recording surface
is allowed to deform. As a result, particulates do not cause
head crashes, just soft errors. With the advanced error correc-
tion in the drives, you might not even notice the soft error.

The Alpha drive, lomega’s first product, is a 10 Megabyte
drive with 35 millisecond average access time. Although this
is not a current product (they now make drives of up to 40
Megabyte capacity) the 10 Megabyte size is a good fit for
CP/M 2.2 systems. Since the disks are removable, backup is
just like any other floppy backup, especially if you have two
drives. These drives are now beginning to show up in the
surplus market, and | finally have a decent mass-storage sys-
tem.

Physically, the drive is the same size as a full-size 8-inch
floppy drive. It even looks like one. The power requirements
are a little different, so you can’t generally use the same disk
boxes. I bought a dual drive cabinet ready to run except for
an interface cable. The box came with a DC37 connector,
which I removed to run a 50-conductor ribbon cable directly
to the connector on the drive.

On the drive are a number of setup switches. The one that
will probably have to be changed is the parity switch (I don’t
use parity; the drive came expecting it). There are also
switches for unit number, termination, and SCSI select num-
ber. There is normally one master unit and up to three slave
units. The master unit has all the interface electronics, both
analog and digital. The slave units only have a motor control
board. There are actually two sets of terminators, one for
SCSI and one for the internal chain.

The Port

The hardware of a SCSI port has three sections. There are
8 bi-directional data lines with an optional parity line. Then
there are two sets of unidirectional control lines. SCSI has the
capability of multi-master operation, that is to say, each SCSI
controller can direct any other on the same port. For our
purposes | will bypass that capability. It simplifies the hard-
ware if you want to make your own port, and it simplifies
the software considerably.

There is also a disconnect capability, where, for example,
if you have a combined tape and disk drive you could com-
mand a disk to tape backup and let it go. It will notify you
when it’s finished. This feature is not often available in con-
trollers, so it also will be sidestepped.

I had built a number of other interfaces using an 8255
parallel port, and this port is also done with one. Some ma-
chines already come with SCSI ports, and on those all you
would have to do is plug the two together.

The lines that go from the computer to the drive are RST
(reset), SEL (select), and ACK (acknowledge). The lines that
go from the drive to the computer are C/D (command/ data),
1/0 (input/output), MESG (message), REQ (request), and
BSY (busy). There is one more line called ATN (attention)
from the drive to the computer to signal exceptional condi-
tions (including the “return from disconnect” mentioned
above). This signal is not used on the Alpha drive. All signals
are active low. The sequence of operations is as follows.

Upon power up you would toggle the reset line to the
drive. This is not absolutely necessary but does not hurt. To
begin accessing the drive, first you put the value of the select
code on the data lines. There can be up to 8 devices on the
port, corresponding to the 8 data lines. Only one line is used
to identify the device. There have been proposals to allow
devices to decode the entire 8 bit word for a device address,
but generally devices only use the single bit. A controller can
address any number of sub~devices, though.

Next you assert the select line to the drive and wait for it
to assert the busy line. At this point you are ready to talk to
the drive. If this is the first time the drive has been used after
power up, it is good to send it a rehome command (the
command formats will be described later). This command
also clears out any error messages which may have accumu-
lated, including a somewhat unknown

Wayne Sung has been working with microprocessor hardware and software for
over ten years. His job involves pushing the limits of networking hardware in
attempting to gain as much performance as possible. In the last three years he has
developed the Gag-a-matic series of testers, which are meant to see if manufacturers

meet their specs.

The Computer Journal / #48

condition after power on.

To send the command block, the C/
D line will be set to command mode,
and the 1/0 line will be set to input
mode. Then the REQ and ACK lines
handshake each byte across. Note that

25

whether the data bus is writing to the drive or reading from
the drive, it is always the drive that asserts REQ and the
computer that returns ACK. A command block is usually six
bytes. At the end of the command block C/D changes to data
mode, and 1/0 will change or stay the same depending on
the direction of data.

If there is no further data, one byte of status becomes
available. This indicates whether the previous operation was
successful. Then MESG asserts, indicating the last byte of the
exchange. At this point all control lines go back to their rest
state. Note that the controller must be reselected for each
exchange.

In my port, ACK is generated in hardware. Each time 1
use the data port I send an ACK to the drive. REQ is polled
and is connected to the high bit, so I can use a rotate to get
the bit value. The other lines can be arranged in any order,
since each time you read them you would be comparing
against a mask anyway.

I had a controller once that was fast enough that I could
use the INIR and OTIR instructions to read or write the data
blocks. Unfortunately, most controllers are not that fast, and
you do have to synchronize the transfers. If your hardware
includes a SCSI chip, then of course all this handshaking is
done for you, and you won’t have to program it yourself.

Referring to the schematic diagram in Fig. 1, we see that
the 8255 has three ports. I use the first port for the data bus
so that the two address lines can both be 0 during data bytes.
This makes the hardware ACK easier. The second port is the
input to the computer from the drive, and the third port is
the opposite.

A fourth port exists for configuring the 8255. This port is
also used during operation, as the data port has to change
direction often. The buffers for the port are not exactly SCSI
spec, but the port works well enough for two devices.

The control line buffers are all one-way, so they are sim-
ply inverters. The data buffers have to be two-way, and the
direction change is actually controlled by the [/O line from
the drive. Note that I used 741.5243's for the data lines simply
because that's what I had on hand. You can use a 74L.5244 or
7415245 just as easily. If you use an inverter, then you elimi-
nate the need for inverting the data in software. The control
line drivers should be inverters because the 8255 resets with
all lines low. If there is no inversion, then the SCSI side will
look as if all lines are asserted.

The automatic ACK circuit works as follows. The data
port on the 8255 is at the lowest of a four-address group.
Thus both A0 and A1 to the chip will be low when the data
port is accessed. One of the four sections of a 74LS02 checks
for this condition. Of course, either read or write accesses
count, so three sections are used to ‘OR’ those two together.
However, the select process also uses the data port but
should not generate an ACK. So one section of a 74L574 (the
other section is not used) is set by a REQ pulse from the
drive. Combining all these conditions gives the ACK pulses
only for data port accesses that are in response to REQ
pulses.

The Device Driver

Certain characteristics of the drive determined the best
way the device driver should be written. Note that with SCSI
devices, accesses are by ‘logical block” and not by track and
sector. In fact, with this drive you really have no way of
knowing what track and sector you are accessing, because
there can be bad block replacements going on that are com-

26

Listing 1. Driver code for the Bernoulli
drive.

; Addresses of the parallel ports

data equ Ofch
stat equ 0fdh
ctrl equ Ofeh
setup equ Offh

; Commands for setting the direction of the data port

setout equ 082h
setinp equ 092h

: Output command bit values

select equ 1
reset equ 2

; Input bit mask values

req equ 1 ;iprobably use rar instead
cd equ 2 ;bit high = command

;-.low = data
io equ 4 ;high = in from controller
mesqg equ 8 ;jcompletion flag
bsy equ 80h ;jprobably use ral instead

; These are variables that the driver needs. The values are
; for my setup

ERRFIG EQU ODE18H
HSTBUF EQU OE700H

; Valuea used in constructing the DPB. Deblocking code alsc
; has to know them. The physical sector size requires a hack
; in calculating the SCSI block number.

HOSTSZ EQU 512
CPMSPT EQU 256
BLKSIZ EQU 16384

; The command values are complemented because of the
; hardware actual data on disk will also be complemented but
; this is invisible.

rddisk equ 0f7h
wrdisk equ 0fSh
ctladr equ Ofeh jcontroller address is 1

; These are the rdhost and wrhost calls that can be added to
; a bios. Input values needed are track, sector and where

; the data is or is going.
rdhost: call cnvsec ;change track/sector to
;..logical block

call selctl ;select the SCSI controller

jnc done ;1f select failed return
;..error

mvi a,rddisk ;put read command into
; - -.command block

sta comtbl

call sendé ;send command block to
;..controller

rdla: in stat ;check for the controller

; - -response

cpi bsy+iot+req

jnz rdla jwait for the proper state

nvi a,setinp

out setup ;turn data port around

1xi h,hstbuf

1xi b,0200h ;512 bytes per sector

rdloop: in stat

rar

jnc rdloop

in data

xri 0ffh

mov m,a

inx h

The Computer Journal / #48

der c
jnz rdloop
der b
jnz rdloop
jmp chkerr

;move the data in
;see if xfer was errxror free

; The comments for the wrhoet call are essentially the same

; as for rdhost.

wrhost: call cnvaec
call selctl

jnc done

mvi a,wrdisk

sta comtbl

call sendé6
wrla: in stat

cpl bsy+req

inz wrla

1xi h,hstbuf

1xi b,0200h
wrloop: in stat

rar

jnc wrloop

mov a,m

xri Offh

out data

inx h

der c

jnz wrloop

der b

jnz wrloop

;move the data out

; Coammon check for status and message bytes. B is set non-
; zero if there is an error or 0 if no errors. This will
H

then be stored in ERRFIG.

chkerr: mvi c,basy+cd+iot+req
call rechk
jnc chkl ;reached the status state
mvi b,2 jany value other than 0
chkl: call checkl
mov b,a ;this is actual status byte
mvi ¢,bsy+mesg+cd+iotreq
call rechk
jnc chk2 jreached the mesg state
mvi b,4 ;jany value other than 0

chk2: call check2

~ we e

be removed.
done: mov a,b
ani 7
sta errflg
ret

- e % we Ne W e

cnvsec: lhld hsttrk
dad h t dad h 1 dad h
dad h 1t dad h | dad h
1da hstesec
mov e,a
mvi d,0
dad d
DAD H
mov a,l
xri Offh
sta camtbl+3
mov a,h

;jmessage is always 0

The return value includes the drive number in the chain.
Error, if any, is in the low bits so the drive number can

Logical block number = track number * 64 sectors/track +
saector number except two logical blocks are available in
each sector. CP/M sector number has been changed to host
sector number at RWOPER, but we want to double the logical
block number presented to the drive because both blocks
are read each time. This is not two separate reads, rather
it is a single read calling for two blocks of data.

;jget CP/M track value and
;..multiply by 64
;81x double adds

;add the CP/M sector number
;jone more double -~ final
;..result is

;..track*128 + sector*2

sput the values in the
; - .command block

The Computer Journal / #48

pletely invisible to you. Thus the CP/M disk declarations are
more for the purpose of having your STAT DSK: display give
you something close to what you would expect, rather than
corresponding one-for-one with the physical characteristics.

For example, you could have the drive declared as 65536
sectors on one track. Since everything has to be converted to
logical block numbers to the drive, it won’t matter. My final
declaration looks like 256 tracks of 256 sectors (CP/M sec-
tors, not physical). The physical mapping of the sectors pre-
sented a problem. The disk sectors are 512 bytes but are pre-
sented as two logical blocks.

The easy way would have been to use 256 byte physical
sectors, but this resulted in rather slow transfer rates. | was
able to get a much better transfer rate by reading both blocks
at once, making CP/M think the disk has 512 byte sectors.
However, and you will notice this in the driver code, I had to
rig the block numbers to make everything come out right (for
each CP/M disk read it thinks it’s reading one 512 byte rec-
ord but actually it’s reading two 256 byte records).

Except for this bit of trickery, the device driver is pretty
straightforward and runs from the read and write host call
points of the CP/M deblocking code. The driver I use is
shown in Listing 1.

A lot of the code is simply for synchronizing the control
lines. If you have a real SCSI port, the code should be a lot
shorter. Note that there is no error retry in this code. The
drive would have done sufficient retries on its own. If it
comes back reporting errors, that will be pretty much final.
Also no effort was made to extract the exact error condition if
one is returned. Not enough errors occur to make the effort
worthwhile.

I would like to digress for a moment to talk about the con-
struction of the DPB and how different items affect each
other. I have installed many DPBs, but usually they are al-
ready done and I don’t think about why a given DPB may
have been done that way. Going through this one in a little
more detail allowed me to realize that there is considerable
interplay among the entries.

To begin with, there is a 16 bit record pointer, which
means the maximum number of CP/M sectors on a disk is
65536 128 byte sectors or 8 Megabytes (CP/M 3 and other
systems have extended the record pointer so as to allow
larger disks). There is actually no notion of tracks in the DPB.
The sectors-per-track entry and the total number of host sec-
tors on the drive are used to derive which track a given sector
should be on.

How would one chose the block size, i.e., how many CP/
M sectors per block? Smaller block sizes are more efficient.
The minimum allocation is one block, so that much is used
whether a file is one byte or exactly one block. Small blocks,
however, require a large allocation vector. One bit in the
allocation vector represents one block on the disk, so an 8
Megabytes drive using 2k blocks would require 4096 bits or
512 bytes of allocation vector. This is a lot of memory to give
up, especially if you don’t have a banked system. Also,
smaller blocks mean that large files would require more di-
rectory entries, which in turn means that the total number of
directory entries allowed should be increased. This winds up
increasing the size of the directory check vector. Of course,
you could omit directory checking altogether (which I did),
but it is removable...

Not evident from the code is the fact that the physical disk
has been reformatted with a 32 sector skew (on a 64 sector

27

track). This allows access to two sectors per revolution and is
about the highest rate the computer can handle. Many sys-
tems that claim no interleave are merely ensuring they get to
at least one sector per revolution. It is quite difficult to put
away a sector in the time between sectors. If you had enough
memory, you could read a whole track at once and then

distribute it later. Not having access to the actual track
and sector numbers, though, means you really can’t do this
effectively.

Note that the drive maker tried to help access time by
deliberately offsetting the beginning of successive tracks,
since when you read past the end of one track the step neces-

sary would have caused a number of sectors to go by. This
offset is not removable and 1 really can’t say whether it
makes a whole lot of difference in a simple operating system.
Also, the second byte of the command block can include
another few bits of the block number but we don’t have that
many.

If you are interested in pursuing this project yourself, you
may get copies of this listing and also of a formatter program
by sending a labeled, formatted diskette with a return mailer
and postage plus $1 handling to Jay Sage (see the SME ad for
the address).*

Listing 1. Continued

out data
mvi a,select
xri 0ffh out ctrl
sta comtbl+2 xra a
ret out ctrl ;select controller
in stat
sendé: mvi b,06h ;the command block is always ral
3..6 bytes mvi b,1 ;non-zero for select error
1xi h,comtbl ret jcarry set if selected
send6a: in atat
rar ; This is the command block. the values for unit and blocks
jnec sendéa ; do not change. This data is complemented due to the
mov a,m ; inverted data bus.
out data
inx h comtbl: db Offh ;opcode goes here
der b db 0dfh sjunit number goes here (I
inz sendéa ;send the command block j..use 2nd unit)
ret db Offth ;high byte of the logical
; - -block number
; This call compares the input leads with an expected value. db Ofth ;and low byte
db 0fdh ;two blocks every time
rechk: 1xi d,0 ;timeocut was included so the db Ofth jextension byte - always 0
;<.call won’t lock the
rechkl: in stat ;. .machine if something went ; These can be filled by the SETTRK and SETSEC calls or if
cmp c ;..wrong. It has not proven ; you know where these actually are those can be used
;..to be useful. ; instead.
rz
dex d HSTTRK: DW 0
‘mov a,e HSTSEC: DB 0
ora d
jnz rechkl ; 64 512-byte sectors per track, 306 tracks, 256 directory
stc ;set carry if error ; entries, NO CHECK, no system tracks
ret
DPB: oW 256 ;64*(512/128) records/trk
checkl: mvi a,setinp ;change port direction DB 07 ;128*(2**7) = 16K blocks
out setup DB TFH ;block mask (01111111)
check2: in data ;get error byte DB 07 ;16K per directory entry
xri offth ;see if O bW 512 - 1 ;highest block number
ret DW 256 - 1 ;highest directory entry
DW 80H ;initial allocation vector
selctl: mvi a,setout o 0 ;bytes in directory check
out setup ;be sure data port direction ;..use 64 for full checking
;+.1s correct DwW 0 ;reserved track offset
mvi a,ctladr scontroller is reselected DB 0
; « »@ach cammand end
Listing 2. Formatter for Bernouilli drive format equ 0fbh ;format entire drive
This is the formatter for the IOMEGA ALPHA drive, giving a ctladr equ Ofeh

32 sector interleave. Cartridges are formatted from the
factory so this step can be omitted. The operation occurs
offline and completes in less than 5 minutes. Note that if
you replace the format command with another coammand this

e e %o we we e we e

The code here is essentially the eame as the main device

H
; driver.

becomes a standalone command sender. For example, the data equ Ofch
recal comand may be needed if your setup seems to power stat equ 0fdh
up in a samewhat unknown state. ctrl equ Ofeh
setup equ Offh
; The command values are complemented because of the
; hardware. setout equ 082h
setinp equ 092h
recal equ 0feh ;rehome the drive select equ 1
28 The Computer Journal / #48

reset equ 2 Figure 1. scs1
req equ i ;probably use rar instead All unused inputs are pulled high
cd equ 2 ;bit high=command, low=data
io equ 4 ;high = in from controller
mesg equ 8 jcompletion flag
bsy equ 80h ;probably use ral instead
8255 243
org 100h 4,3,2,1 ,4,6,8
Jmp start PA 0-3
3,4,5,6 DO* - D7*
send6: 1lxi b,0600h+data ;b = count, ¢ = port
’ Lxd h, comtbl Do - D7 40,39,38,37 243
send6a: in stat PA 4-7
b 34 - 27 3,4,5,6 P,4,6,8
jnec sendéa
mov a,m
out data |1r13
inx h |
der b
inz sendéa cs¥ 6 PCl 15 1 RST*
ret
rechk: lxi d,0 R* 5 Pco 114 15 $ SEL*
rechkl: in stat
cmp c W+ 36 PB7 5 12] 240
rz BSY*
dex d
mov a,e PB3 pP1 14} MSGH
ora d
jnz rechkl A0 9 PB2 PO 1 c
stc I/0%
ret
checkl: mvi a,setinp ;change port direction Al 8 PBlL j19 16 c/D*
out setup
check2: in data ;get error byte pBO |18 3
xri otth ;see if 0 ——¢— REQ*
ret
ACK*
selctl: mvi a,setout
out setup ;be sure data port direction
;..is correct
mvi a,ctladr ;controller is reselected
; - -per command
out data
mvi a,select
out ctri
xra a
out ctrl ;select controller
’ in stat
ral
ret ;carry set if selected
start: call selctl
jnc error
nvi a,0DFh
sta intrlv ;interleave=32
mvi a,format
sta comtbl
call send6
mvi c,bsy+cd+ictreq ;these lines high when ;..normally Offh
; - .command done db Qffh ;not used
ckfmtd: call rechk end
je ckfmtd
call checkl ; This is a fragment showing how to reset the port. If you
mvi ¢,bsy+mesg+cd+iotreq ; are using an 8255 this should be run before the drive is
call rechk ; used. Port addresses are the same as above.
je error
call check2 start: mvi a,setout
jnz error out setup ;set 8255 pa=in, pb=in,
ret ;. .pc=out
error: hlt ;whatever you might want here. mvi a,reset
; ..Format errors hardly ever happen out ctrl
;..on new disks. xra a
out ctrl ;reset controller
; This data is complemented due to the inverted data bus. 1xi b,1000h ;give it some time to do it
delay: dcx b
comtbl: db 0ffh ;command byte mov a,b
db 0dfh ;unit number ora c
db 0ffh ;not used for format jnz delay
db Offh ;not used for format
intrlv: db 0ffh sinterleave code - otherwise end

The Computer Journal / #48 29

Z Best Software

A Look at New Z-System Programs

By Bill Tishey

Hi everyone! Welcome to this new section on Z-System
software. Readers may remember TCJs ZSIG and ZCPR3
columns several years ago in which Jay Sage outlined new
ZSIG program releases. This column might be considered a
revival of that concept. Each issue I will be bringing you
some brief views of Z-System programs and utilities avail-
able in the public domain (and distributed through the Z-
System Software Update Service). I'll describe new releases,
as well as the on-going improvements being made to existing
utilities, and from time to time will try to relate trends in Z-
System program development in general.

Who Am |, You Ask?

First, I should make it clear that I am not a programmer
myself, just a user who has “grown up” with Z (from ZCPR2
to the current Z34/NZCOM), and done some simple com-
puting along the way (file-patching, assembly of system seg-
ments, alias-building, etc.) to get my system to work for me
vice against me. Over the years, however, I've gained some
familiarity with much of the software available for ZCPR and
Z-System. For the past few years I've been what you might
call the “Z-System Librarian”, comparable to Jay’s role as
original “Z-SIG Librarian.” Jay reviewed new, user- gener-
ated software and organized it into official ZSIG libraries.
I've also been collecting and reviewing new program releases
and organizing them for distribution through the new Z-Sys-
tem Software Update Service. As a result, I've developed a
rather comprehensive library and database (over 700 items at
last count) of existing Z software.

A firm believer in program documentation, I’ve also built
a rather extensive system of help files to go along with these
many programs and utilities. The process of creating .HLP
files has been very educational and I hope I can pass on to Z
users what I have learned. My objective will be to familiarize
you with the best and most useful of existing programs. At

throughout

the same time, I will be taking requests. If you’ve heard of a
Z program which you would like discussed, please let me
know. I'd be happy to fit it in.

Z Happy Programmers...

I thought it appropriate in this first column to highlight
some of the programmers who bring you “Z Best Software”.
These aren’t in any special order, although I've tried to place
Z-System “developers” first. This list certainly isn’t exhaus-
tive. There are many Z enthusiasts who share their creations
with others. These are simply some of today’s most active
programmers with whom I'm familiar (I apologize if I've
overlooked anyone). Many of the programs listed (and oth-
ers) will be discussed in future columns. Note that the num-
bers in each filename indicate the current version of the pro-
gram. In most cases the programmer is the original author of
the program, but in some instances may be responsible only
for the latest improvement or update (a subject for a future
column!).

Jay Sage. Jay is the author of ZCPR34 and architect of the
NZCOM and Z3PLUS autoinstall Z-Systems. Besides his
highly popular alias expander (ARUNZ09U) and file shell
(ZFILER100), Jay has produced many system-related utilities
the development of ZCPR. [CLRRSX11,
COMIF10, ERRSET13, NZEX-D, PAUSE11, SHOW14,
VALIAS2B, XECHO10, XTCAP10, Z33ERR08, Z33IF14,
ZBGQK11, ZMSAVE11]

Bridger Mitchell. Bridger is well-known as the author of
DateStamper, BackGrounder ii, JetFind, and DOSDISK. His
Z3PLUS (Z-System for CP/M Plus computers; see TCJ #33)
was a major contribution which allowed porting of Z to
many other Z80 machines. [FIXT&D, JETLDR10, JLTOOLS,
V06, ZEX5]

Joe Wright. Joe is the author of NZCOM (and its prede-
cessor Z-COM) and holds the source

Bill Tishey has been a ZCPR user since 1985, when he found the right combina-
tion of ZCPR2 and Microsoft’s Softcard CP/M for his three-year-old Apple I+
After graduating to ZCPR30 and PCPI's Applicard CP/M, he did a “manual in-
stall” of ZCPR3.3 (with help from a lot of friends!), and in late 1988 switched to
NZCOM and ZSDOS, all on the same vintage Apple 11+. Bill is the author of the
Z3HELP system, a monthly-updated system of help files for Z-System programs, as
well as comprehensive listings of available Z-System software. Bill is the editor of
the Z-System Software Update Service and has compiled such offerings as the
Z3COM package and the Z-System Programmer’s Toolkit. Bill is a language analyst
for the federal government and frequents the Foreign Language Forum (FLEFO) on
Compuserve. He can be reached there (76320,22), on Genie (WATISHE), on Jay
Sage’s Z-Node #3 (617-965-7259) and by regular mail at 8335 Dubbs Drive, Sev-

ern, MD 21144.

30

code for the Z-System Libraries. His ef-
forts have helped to ensure standardi-
zation and compatibility among pro-
grams in the Z-System environment.
Joe has produced the B/PRINTER, 1/0
RECORDER and NUKEY input/out-
put packages, the NZ-TOOL4 and NZ-
TURBO Turbo Pascal interface pack-
ages, and many other system and pro-
gram enhancements. [ALIAS15, DIR14,
MENU41, NZBIO15, NZTIM, NZ-WS4,
PATH31, SAVNDR13, ZEX404]

Harold Bower. Hal is a member of
the ZDOS development team and,

The Computer Journal / #48

along with Joe Wright, has been entrusted the source code for
the Z-System Libraries. Hal continues to improve on SYSLIB,
Z3LIB, VLIB and DSLIB (vs 4.3 should be available by the
time you read this). He is also working on a new-generation
MCAT/XCAT (a generic cataloger for CP/M 2.2, CP/M Plus
and Z-System). [MYLOAD, PDMSHELL, SPEEDUP12]

Cameron Cotrill. Cam is the architect of ZSDOS/ZDDOS
and a great organizer and conceptualist. He continues to pro-
vide many programming and system-level enhancements to
Z-System. [CFORZO02, NZBLTZ10, Z33TRC11, TXT2DBI10,
.and TRAP02]

Carson Wilson. Carson is a member of the ZDOS devel-
opment team, author of the acclaimed ZDE Display Editor,
and is responsible for much of the program development in
support of Z3PLUS. [BU17, CALRCP11, CD39, FORZ10,
CPA12, DIFF30, DIRATR11, DU314, EXTEND13, NZFCP13,
JETCP10, LUSH10, PARMLIB1, PPIP19, TAILZ10, ZLT13A,
ZSLIB21, ZTYPE10]

Al Hawley. Al is the author of the ZAS and ZMAC as-
semblers, REVAS debugger, and the Z-System configuration
program ZCNFG. Over the years, he has provided many
tools and continuing advice and support for Z-System pro-
grammers. [ARRAYS, TCLOCK11, EDITND11, LOADND12,
PWD20, RLIB12]

Howard Goldstein. Howard has the reputation of being
the premier Z-System software sleuth, bug finder and fixer.
In addition to his many hours of debugging and keeping
programs efficient and working to standard, Howard still
finds time for support and advice to others (both budding
and experienced programmers alike). [Z33IF15, MOVE22,
REG13, RESOLV14, SAVE15, SHFILE11, SHVAR13, XD13C,
Z3LOC18, Z3VARS2, ZCRCK13, CPSET13, FF20, LBREXT31,
LDIR-B16, LBRHLP16, LX21, TLINE12]

Rob Friefeld. Rob is well known for his screen-oriented
alias builder (SALIAS15) and his outstanding command line
editing shell (LSH10R). He continues to improve on his other
screen-oriented utilities and to find new and innovative ap-
‘plications for Z-System (note his bevy of RCP alternatives).
[BCOMP21, SREN10B, VCOMP21, VIEW43, RCPZRL11, DE-
BUG11, RCPCALC, RCPMC, RCPPEEP DIRBAR, NT46,
SNAP12, XOX10, ZERR13A]

Bruce Morgen. Bruce has been an active ZCPR and Z-
System programmer, patcher, and troubleshooter for some
time. A tireless beta tester, he’s exercised many programs
which otherwise might not have been tested. [ANY4 CLO5,
CMD13, DEV11A, FOR12, GOTO14, HOLDZ11, LGET11,
LLF11, MEX+2Z, MU314, NAME10, PAGE21, SDD301P2,
SETDZ3, SETFILE11, SHCTRL11, SHSET22, TEX14, TRIM10,
VREN10, ZIPDIR12]

Gene Pizzetta. Gene has been incredibly prolific these
past two years not only providing new and useful utilities,
but improving on others that have needed upgrading for
some time. [BAK13, CHKDIR10, CONCAT10, CRCZ11, D17,
DATSTP13, DETABZ13, DSKNUM15, ECHO12, ERASESS,
LIST10, MDU11, OE15, PRETTY30, PRTASM19, QUIET13A,
RCOPY11, RENAME37, REVFN11, ROMANO3A, SAPZ1],
TCVIEW24, UNARCZ10, UNJUST12, W23, WHEEL33,
XX110, Z34ERR12]

Terry Hazen. Terry is known for his fine line of system
utilities which operate in both ZCPR3 and CP/M environ-
ments. [ACOPY30, DD17, ENVSRC10, ERAZ14, PRNTXT15,
RENAMZ17, SCAN23A, TCSRC14, UNERAZ12, ZP11]

The Computer Journal / #48

The First Few Nuggets...

CHKDIR10, SAPZ11 (ZSUS Vol 1 #12)

CHKDIR.COM and SAP-Z.COM, introduced this past Oc-
tober by Gene Pizzetta, are really handy utilities for analyz-
ing and ordering disk directories. Based on the last version
(1.8) of CLEANDIR, CHKDIR does some helpful diagnostics
on a disk directory. It reports: zero-length files, duplicate
entries, extents and user areas greater than 31, records greater
than 128, illegal filename characters, and duplicate allocation
group assignments. CHKDIR does no writing, so poses no
danger to your directory or to DateStamper !TIME& DAT
files. It calls the error handler on error, so you can abort if
calling it from a ZEX or SUB script. Invoking CHKDIR, you
might see something like this...

AO:BASE>CHKDIR D:

Checking Drive D: —> Reading ..
Zero length file 30:-.123
1 null file(s)
Sorting .. Checking ..

User Over 31 —~> 134:"2=."T

Two files use allocation block 0041
15:ALIASES. HLP

Two files use allocation block 0043
15:ALIASES.HLP

Two files use allocation block 005D
15:ALIASES.HLP

Two files use allocation block 008D 3:UNERAZ12.FOR

15:ALIASES.HLP

3:RENAME37.LBR

3:RENAME37.LBR

3:SCAN23A.LBR

..which is what I was alarmed to see and I'm sure would
cause many others some concern. This is just the information,
however, you would want to begin setting your directories in
order. First, | erased the files with duplicate block assign-
ments on D3: and D15: (I, of course, had these backed up
elsewhere) as well as the null-length file which somehow got
misdirected to D30:. Then, since I couldn’t access the file
which was mysteriously assigned to D134, 1 pulled out the
trusty Z-System DU3 disk utility, located the file in the direc-
tory tracks and carefully changed the leading byte to E5 to
mark it as erased. Running CHKDIR again, all was now well
with disk D:...

A0 :BASE>CHKDIR D:
Checking Drive D:
No Problems.

—> Reading .. Sorting .. Checking ..

Confident that the directories were now garbage-free, |
next turned to SAP-Z to sort and pack them. SAP-Z is based
on the CP/M program SAP.COM (vs 6.0) and will work only
under ZCPR3 and systems with a CP/M 2.2 compatible bios.
It will operate on both floppy and hard drives (a TPA of 50k
will allow 1500 filenames to be sorted), but should never be
used unless you're sure there are no trashed entries in your
directory tracks (hence, the importance of using CHKDIR
first).

SAP-Z accepts a DU or DIR, but only the drive is signifi-
cant. If only a user area is specified, the default drive is se-
lected. When only the filename is given, a help message is
displayed (for safety purposes, the default DU is not accessed
in this case).

A nice feature about SAP-Z is that it will optionally erase
all null- length files on a disk, such as temporary files with an
$$% extension. Knowing that many users want to retain disk-

Continued Page 24

31

Review of BDS ‘7’

Bringing C and Z-System Together

by Carson Wilson

For over a year now, Sage Microsystems East in coopera-
tion with Leor Zolman has been offering a customized ver-
sion of Leor’s famous BDS ‘C’ compiler which makes the

- most of Z System. This new version, christened “BDS ‘Z’,”

sells for between $60 and $90, and generates Z programs at
will (those unfamiliar with Z System should see “The Z Sys-
tem Corner” in this and previous issues of The Computer
Journal). However, perhaps because C is not his native com-
puter language, Jay has been unusually quiet about this
package. Until now little information about BDS Z has been
available outside of brief promotional notices and an occa-
sional snatch of conversation overheard on Jay’s Z-Node #3.

After agonizing for months about BDS's compatibility
with other C compilers, the size of the programs it produces,
and its speed and ease of operation, I finally broke down and
bought a copy of BDS Z from Jay at last April’s Trenton
Computer Festival. Having used the package for a few
months I know that I probably would have “broken down”
sooner had I known more about it. Hence this review. I hope
it encourages you to try BDS Z.

First and foremost, BDS Z is a mature compiler package,
and it shows. The documentation has obviously gone
through many, many revisions. The manual anticipates many
of the questions a new user is likely to ask, and answers them
in an organized fashion. The compiler, linker, and link librar-
ies included with BDS Z also show their maturity in several
ways. In my experience the compiler and linker have yet to
crash, make good use of memory, and display information
clearly (see figure 1). In addition, the large variety of routines
included in the link libraries are well thought out and allow a
great deal of flexibility of use.

The “feel” of BDS Z is one of being much closer to the
compilation process than with Turbo Pascal or other CP/M
high level language compilers. For example, the BDS package
lets you control the compilation and linkage processes sepa-
rately, and this has several benefits. First, you can write and
compile one part of a program at a time. If part of your code
doesn’t compile correctly the first time you aren’t forced to
re-compile the entire program repeatedly as with Turbo Pas-
cal. Rather, with BDS Z you need edit and recompile only the
offending function. The separate linker also allows “hackers”
to incorporate their own super-efficient assembly language
routines into C programs. But let me stress that while BDS Z

allows you to perform these programming tricks, it doesn’t
force you to. It is also easy to create elegant and useful pro-
grams from a single C source code file in one step. With BDS
Z there is no one “correct” mode of operation, so the choice
between simplicity and complexity can be tailored to meet
the task at hand.

The compiler and linker are also very swift, especially
with smaller programs. Larger programs do take some time
to compile (still, we're usually talking about seconds, not
minutes). But since compilation is a two-pass process, error

A>ce bechart.c

BD Software C Compiler (for 2ZCPR3) v22.0 (part I)
30K elbowroom

BD Software C Compiler vZ2.0 (part II)
28K to spare

A>clink bechart

BD Software C Linker (for ZCPR3) v22.0

Last code address: OF7C
Externals start at OF7D, occupy 0006 bytes, last byte at 0F82
Top of memory: CEFF
Stack space: BF7D
Writing output...
39K link space remaining
A>

Figure 1. Typical Compilation and Linkage
Session

messages are usually quite explicit, and unlike Turbo Pascal
(don’t get me wrong, Turbo is a fine tool too), the compiler
normally doesn’t stop at the first error. While this sometimes
means a flood of messages result from a single mistake (for-
getting to close a C comment will do it), it also means you
can reduce overall development time by fixing more than
one bug between compiles. BDS Z can also output an error
file whenever a compiler error occurs (see figure 2). This file,
named PROGERRS.$$$, can in turn automate the edit-com-
pile-debug process to a very high degree. I've even written a
Z System Alias that appends the error file to my program
source as a comment and automatically returns me to my
editing session if errors occur (see figure 3).

That's the Good. And then...,
Okay, those are the benefits of BDS Z; how about the

Carson Wilson has been active in the ZCPR community for over four years now,
and has enjoyed every minute. He is author of the Z System Display Editor (ZDE),
co-author of Z System Disk Operating System (ZSDOS), and SysOp of Z-Node
#11, 312/764-5162, Chicago. In real life Carson is a doctoral student in Political

Science at Loyola University of Chicago.

32

drawbacks? There are a few. First, |
would generally not recommend this
package for those just learning to pro-
gram their computers. The C language
is itself a rather formidable barrier,
consisting as it does of compact, cryp-
tic-looking statements. And the down-

The Computer Journal / #48

side of the flexibility of BDS Z is that, at least initially, it
requires a greater understanding of what’s going on beneath
the surface than self-contained compiler/editor packages like
MBASIC or Turbo Pascal. For example, some of BDS Z's
error messages and their explanations in the manual assume
that you already know what a “linker” is.

Second, even experienced C programmers are likely to

with BDS C haven’t yet been updated to work with the
newer compiler (they still work with the standard compiler
included in the $90 package, however).

Complaints aside though, my overall impression of BDS Z
is quite favorable. This is a very fast C compiler/linker pack-
age, far faster than others on the market. It allows you to
generate efficient, useful CP/M and Z System programs. BDS

#include <stdio.h>

main()

begin

4
char a;
byte b;

for (a = 0; a <= (255-92);) do
{

printf(~“$03d = %08b $03d = %08b %03d = 3%08b %03d = %08b \
103d = $08b\n”, a, a, at+23, a+23, a+46, a+d6, at+69, a+69, at+92, a+92);

if ((++a % 23) == 0)
pause();

BCHART.C: 6: Undeclared identifier: byte

BCHART.C: 15: Expecting “while”

BCHART.C: 16: Expecting “(“

BCHART.C: 17: Encountered EOF unexpectedly
(check curly-brace balance)

Figure 2.

Typical Error Report and Accompanying Source Code.

Z’s small runtime library lets you write
utility programs that are considerably
less bulky than those generated by
other high level language compilers
(some as tiny as 3k!). The BDS com-
piler and linker include command line
options for further optimization. For
example, on many CP/M systems pro-
gram code size can be reduced by
grabbing one or more of the Z80's re-
start vectors. While BDS Z achieves
some of this performance by imple-
menting only a subset of the C lan-
guage, the manual is quite explicit
about the limitations.

The BDS compiler has also been
around long enough to have generated
all kinds of support packages which
make up for its weaknesses by extend-
ing the language and its environment.

have some difficulty with BDS’ exclusion of several elements
of the C language standard as specified by Kernighan and
Ritchie. Most, perhaps all, of the omissions in the BDS im-
plementation can be worked around, and I don’t doubt that
each choice was made carefully and with a view to the pecu-
liar needs of the CP/M environment (C was originally imple-
mented on much larger machines). Nonetheless, I find that C
source from other compilers can almost never be ported to
BDS without some adjustments, and this can become quite a
nuisance.

- Another minor drawback: BDS Z emits (and is probably

written in) 8080 code only. I gather that this is because BDS C
was born when the Z80 chip was still considered an “innova-
tion.” While there are certainly arguments in favor of a code
that runs on the older equipment, one can’t help but imagine
the improvements Z80 code could bring to the BDS compiler
and its progeny. Perhaps we could even “earn back” some of
the C language constructs that have been omitted from BDS
Z due to the constraints imposed by earlier microprocessors.
Finally, BDS Z still has some bugs. Notably, though the

compiler is supposed to set the Z System error flag when it
finds an error in your code, some sorts of errors don’t set the
flag (this is why my Z System Alias senses the presence of
the error file instead, which is reliably produced). And a few
functions don’t operate exactly as described in the manual.
For example, the manual says that the “topofmem” function
“returns a pointer to the last byte of user memory,” but I
found by trial and error that it does not work unless the
program calling it was linked using the “-t” or “-n” options.
still, there is so much versatility built into the standard func-
tions of BDS Z that a workaround is usually available. I eas-
ily solved my problem with “topofmem” by substituting an-
other of BDS’ standard routines. Another difficulty with the
‘Z’ version is that the debugger and RED editor that come

The Computer Journal / #48

One very significant extension of BDS
for Z System users is Cameron Cotrill’'s Z System interface
project. Cameron’s library of C routines allows BDS pro-
grams to make Z System environment calls similar to those
offered by the VLIB and Z3LIB assembly language libraries.
Using this package (available on bulletin boards as
CFORZxx.LBR) it is easy to write full Z System utilities that
access such structures such as named directories, the shell
stack, and the error flag for enhanced performance. You can

xif
zde $l.c /n
cc $l.c $2
if ex progerrs.$$$$$$
echo fix
if in
concat $l.c = stcmt progerrs.$$5§$$$ endoemt /a
era progerrs.$$$$$$
c §*
else
era progerrs.$$$$$$
fi
else
cl §1
if er

£i
fi

Figure 3.
Debugging

Z System Alias for Automated

even access the new TCAP’s business graphics character set
from within your C programs!

To sum up, there is really no limit to what you can do
with BDS Z. This can be a real thrill at times, but it can also
be dangerous. Because there is so much flexibility built into
the package, | sometimes have trouble concentrating on a

Continued Page 36

33

PMATE / ZMATE Macros

Introducing a New Column

By Clif Kinne

That pillar of support to TCJ, your friend and mine, Jay
Sage, feels that enough of our readers are current, or pro-
spective, users of the PMATE editor to warrant a regular
PMATE column. Being loathe to curtail any of his other en-
deavors to get such a column started, he invited me to take it
on.

PMATE, as many of you must know by now, is Jay's
favorite editor. It was also, and probably still is, the favorite
of Ward Christensen, that venerable guru of hackers every-
where, originator of the bulletin board concept and author of
the first BBS program (CBBS) and the first telecommunica-
tions program (MODEM). That I, too, have been crazy about
PMATE for almost ten years adds nothing to the testimonial,
but it may explain why Jay thought I might do justice to a
column on it.

Briefly, PMATE is an extremely customizable and config-
urable editor, with an outstanding built-in macro language
for text processing. It is available in CP/M and MS-DOS ver-
sions, and now has been rewritten by Jay and Bridger Mitch-
ell in a new version, ZMATE, to take full advantage of the Z-
System. Jay’s dissertation on ZMATE, which began in TCJ
#46, promises to be a better in-depth description of PMATE
than any of the previously published PMATE manuals. All of
you PMATE users will want to read The Z-System Corner to
benefit from Jay’s insight into PMATE. [shall endeavor not
to be redundant.

After nearly 10 years, both Jay and I find that we are still
discovering new wrinkles in and uses for PMATE macros. It
is primarily for that reason that we feel that a column should
be reinstituted. I say reinstituted because there was a “Mac-
ros of the Month” column, edited by Michael Olfe, in Lifelines
magazine in 1981 and 1982. That column gave many of us a
jump start at taking advantage of the macro language.

Maybe we can jump start those who have acquired
PMATE more recently and let this column be a forum where
all of us can exchange macros and other ideas to further
expand PMATE’s utility. So let us hear from you with a pet
macro, a suggestion, questions, or even just a vote to con-
tinue the column.

My thinking at the moment is that the main focus in each
issue will be on one or two major macros submitted by read-
ers or culled from Jay’s collection or mine. These will include

many of the most useful macros from the Lifelines column.

In addition, there are some philosophical points of view,
guidelines to setting up your macro area, pitfalls, etc., that
have filtered up over the years. We shall offer comments and
general observations on such matters for your consideration.

This Month’s Macro

To get our feet wet gradually (mine as well as yours), I
have chosen a rather modest macro that is not only a useful
subroutine in its own right, but illustrates a couple of tech-
niques that will be very useful in many other macros:

1. It calls a subroutine of its own.
2. It builds a macro in a buffer and then executes it.

If you write in standard programming languages such as
BASIC or C, you are well acquainted with subroutines, but
have you ever seen routines that, themselves, write other
routines and then execute them?

The main macro will read the first string of decimal digits
following the cursor and store it as an integer in V1 (variable
1). This macro is a variation on one written by Ward Chris-
tensen and published in Lifelines in 1982. He gave it the name
‘D’ for “Decimal”, and we shall use that name here.

It is useful when you want a macro to arithmetically mod-
ify numbers in your text, want the user to supply numeric
input to initialize a variable, etc. We will give examples of
such uses in future issues of TCJ.

A complete specification for this macro is given with the
source code in Listing 2.

The Auxiliary Macro, Control-D

To the macro that ‘D’ calls as a subroutine I have arbitrar-
ily given the name control-D or ‘*D’. It simply checks
whether the character under the cursor is a digit. It is 14 bytes
long and is called twice by ‘D', resulting in a net saving of 10
bytes. Furthermore, having it in your permanent macro area
will encourage you to use it in one-shot macros, where you
otherwise might not bother.

The complete specification for this macro is given in List-
ing 1.

Clif Kinne is a retired computer designer. He cut his tecth on vacuum tube and
acoustic delay line machines in the fiftics, made the transition to transistors and mag-
netic cores in the sixties, left the field to his children in the seventies, and tried, vainly,
to catch back up with them in the eighties. He can be reached by voice at 617-444-9055,
or via a message on Jay’s BBS, 617-965-7259. His address is 159 Dedham Ave.,

Needham, MA 02192

34

Variations

There are quite a few variations of
this macro that might suit your needs.
First, if you don’t mind PMATE’s own
error control, you could save some
space in your macro area by omitting
lines 1 - 5 in Listing 2, which abort the

The Computer Journal / #48

Listing 1.

Ra e we me WE NS Ne e N Ne

o D D S Ne w5 wE me we we we we w8 N

Auxiliary macro, ‘"D’
FUNCTIONAL SPECIFICATION

Pushes -1 on the stack if cursor is on a digit.
Pushes 0 on the stack if it is not.

VARIABLE USAGE - None
BUFFER USAGE - None
SUBROUTINES USED - None
SIDE EFFECTS ~ None

USAGE

.*Des{Code to be
digit}

executed if you’‘re on a

jor
."D@S’ {Code to be executed if you're on a
non-digit}

Note that ASCII ”/” is 1 less than ASCII "0"
and ASCII “:” is 1 more than ASCII “9”

macro if it is called from buffer 0.

Second, you will note that ‘D’ is limited to integers in the
range +/-32767. This could easily be changed, of course, to
0...65535 by changing line 6 of Listing 2 from Q-to 0Q-.

Third, you can reverse the effect of a leading argument on
the macro call, 0.D, by changing line 7 of Listing 2 from
‘@A{OV1Y to ‘@A=0{0V1}. Then .D will add to V1, while 0.D
will replace the contents.

Finally, it is possible to eliminate the side effects described
in Listing 2. First I must digress somewhat.

Version 1, as given in Listing 2, is pretty much what [have
used for 6 or 8 years. | put the digit test code into a subrou-
tine fairly recently, but I never gave much thought to side
effects, just lived with them, 1 guess. However, when I first
passed a draft of this column to Jay, he immediately spotted
the side effects, and said he has been frustrated by side ef-
fects in other macros, though he has not had an equivalent of
this one.

T>"/ ;IF the character at the cursor is greater than “/” Fortunately, as Jay pointed out, for MS-DOS users, and
i and now for ZMATE also, there is a new primitive command,
eT<”z) ; also less than ":” B@SE that ki idi th id ffect lativel
s ;THEN push the Boolean result (~1 if true, ’ al makes avoiding ese side elrects relatively easy.
; 0 if false) onto the stack. For users of the original CP/M PMATE, one can get around
H the side effects, but the required techniques are much more
i Note also that parentheses are not required around complex. However, as | mentioned, I found the side effects a
; the first conjunct (or disjunct) of a series. R
minor annoyance at worst, and you may too.
The use of the B@SE command is best explained by ex-
ample. Say you are working in buffer 5. The following se-
Listing 2. Main macro, .D, versionm 1.
Q- ;Display numbers as +/-, not as positive only. 6
H 8A{0V1} ;If the calling arg. was 0, do not clear V1. 7
; FUNCTIONAL SPECIFICATION $; (Character to separate ‘}’ from ‘(‘ so that 8
H H “}{” isn’‘t interpreted as an "else”)
;1. Can be called from any buffer except buffer 0.
;2. Stores the lst integer to the right of the cursor in V1. ; Search for the first digit to the right:
;3. If a zero argument preceeds the macro call (0.D) the 4 ;Start loop. 9
H integer will add to, not replace, V1’s contents. @T=0% ;If at End-of-File, terminate macro. 10
;4. Carries a leading minus sign into V1. ."D ;Is cursor on a digit? 11
;5. Handles numbers from -32767 to +32767 es ;If it is, 12
;6. When called, requires the cursor to be on, or to the _ jescape loop. 13
. left of, the number’s first digit. M ;Else move right 14
;7. Terminates with the cursor just past the final digit] ;and loop. 15
H ; End search. You are on the first digit (or at end
; VARIABLE USAGE H of buffer).
;
; V1l Holds the signed integer at the end of the macro. eC>0 sIF first digit is not on column 0 of line 0 16
; { ; THEN 17
; BUFFER USAGE ; Pick up minus sign, if any:
; T ;Tag first digit. i8
; Buffer 0 is used to build the macro, nVAl. -M ;Move left. 19
H €T="-;If preceding column is a - sign, 20
; SUBROUTINES USED {T} ; vretag. 21
H H Got minus sign.
; ."D Tests whether the character under the cursor is a } sEND “IF first digit...” 22
H decimal digit, “0”..”9".
; Pushes -1 on the stack if it is. $; (Character to separate } from [23
; Pushes 0 on the stack if it is not.
; ; Search for the next non-digit:
: SIDE EFFECTS { ;Start loop 24
; M ;Move right. 25
;1. Wipes out contents of buffer 0. ."D ;Is cursor on a digit? 26
;2. If the macro which called ‘D’ was using the Tag that use 8s’ ;If not, 9S=0, €s‘=1l, and you will escape loop. 27
; will be destroyed by this macro.] ;Else loop again. 28
; End search. You are just past the last digit.
: Abort the macro if you are in buffer 0:
H #BC ;Copy the signed string of digits, to buffer 0. 29
4B=1 ;IF you are in Buffer 0, 1 T ;Tag. 30
{ ; THEN 2 IVAl1Y$;Insert the string, “VAl%”, at the cursor. 31
GCannot call this macro from buffer 0§ ;Remind user. 3 #BN ;Append “VAl%” to buffer 0, removing it from 32
] ;Abort macro. 4 ; the current buffer.
} ;END IF 5 .0 ;Execute buffer 0, nVAl, adding n to V1. i3
; End Abort if Buffer 0
The Computer Journal / #48 35

quence is possible:

B, iPush the current buffer no. (5) onto the
sstack. (actually, @B returns 0 for the T
;buffer and one plus the buffer number for
;all others, but BE@SE takes care of this)

B2E ;Move to buffer 2.

cee ;Execute some code on the contents of
sbuffer 2.

BOSE sReturn to buffer 5.

e ;Continue work in buffer 5....

Furthermore, this technique also works if @B is put into
one of the variables, VO - V9, instead of onto the stack. This is
advantageous if you have to go back and forth between two
buffers several times. It saves repeatedly pushing @B onto
- the stack each time. This variation is applicable here. 1 have
arbitrarily used V7, and to avoid another side effect, 1 push
@7 onto the stack before use and pop it back into V7 after I'm
through.

Listing 3 is source code with which I propose to replace

lines 16-33 of Listing 2. As you can see, this will leave buffer
0 restored to its condition before the call to ‘D, except that its
cursor will be at the top of the buffer, whether it was before
or not. With some effort, even this change could be pre-
vented, but the main reason for leaving buffer 0 intact is in
case cut-and-paste operations were in progress when ‘D’ was
used, and they do not depend on the cursor position. And
the tag command, T, is no longer used, leaving the tag status
undisturbed.

For Next Time

Among topics I hope to discuss while awaiting the deluge
of responses from you other readers are:

1. CP/M vs MS-DOS. Considerations in adapting macros
written for one version of PMATE for use in the other.

2. Small, general purpose, utility macros, which will
greatly simplify our writing and discussion of larger, more
specialized macros later on.

3. The organization and management of the permanent
macro area.

Listing 3. Main macro, ‘D’, version 2. Source code changes
for MS-DOS and ZMATE macros to eliminate side effects.

; VARIABLE USAGE

vli Holds the signed integer at the end of the macro.
v7 Stores the ID number of the working buffer.

~ we

€c>0 ;IF first digit is not on column 0 of line 0 16
{ ; THEN 17
; Pick up minus sign, if any:
-M ;Move left. 18
€T="~’;If preceding column is not a - sign, 19
{M} ;Move right again. 20
H Got minus sign.
} ;END “IF first digit...” 21
H Prepare buffer 0 to receive macro:
87, ;Save caller’s V7 on the stack. 22
8BV7 ;jPut ID of current buffer in V7 23
BE ;Go to buffer 0. 24
A ;To top. 25
IVAl$$;Insert the string, VAl%, at top of BO 26
A ;Leave cursor at start of BO. 27

Be7E ;Return to your calling buffer (This works only 28

H with MS-DOS and ZMATE).

; Transfer the integer one digit at a time:

[;Start loop. 29
eT, ;Push minus sign or ASCII digit on the stack. 30
BE ;Go to buffer ©. 31
és ;Pop minus sign or ASCII digit off the stack. 32
I ;Insert into buffer 0. Kk}
BR7E ;Return to calling buffer for next digit. 34
M jMove right 35
.°D ;Is next character a digit? 36
€s’ ;If yes, €S=1, (so €S'=0 and you will loop); 37

1 ; else €5’=1 and you will escape loop. 38

H Transfer complete. Cursor is just past last digit.

.0 ;jExecute buffer 0, nVAl, adding n to V1. 39

H Restore buffer 0:

BE ;Go to buffer 0. 40

S%§ ;Move to end of macro. 41

OK ;Delete line left, removing macro. 42

B@7E jReturn to your calling buffer. 43

esv7 ;Restore caller’s V7. 44

Continued from Page 33

single task. Other high-level CP/M languages such as
Turbo Pascal and MBASIC generally insulate me from the
operating system, reducing the number of decisions involved
in performing a given task. BDS Z (and C in general), by
constantly enticing me to go one step deeper, places greater
demands on my skills and knowledge. This can be quite re-
warding when it leads to a solution, because knowing that 1
have studied a problem in depth [am usually more confident
of my solution. However, the temptation to explore can also
distract unnecessarily from the task at hand if [am not care-
ful.

Of course, there is much more to tell about BDS Z that this

36

space will hold. There are literally hundreds of programs
written for BDS C whose source code is available through
The C User's Group (CUG). As | mentioned above, a
full-screen editor which uses BDS's extended error reporting
to form an efficient development environment comes with
the full-priced BDS package, as does a debugger that dis-
plays the symbols in your C source code as you step through
a program (both of these are described in detail in the man-
ual). And the compiler and linker boast many command line
options that [haven't touched upon. To learn more, contact
me at Antelope Freeway or Jay Sage at the addresses given in
The Z System Corner. Or boldly order a copy and see (“C?”
“Z"7) for yourself!

The Computer Journal / #48

Continued from Page 6

The result is a binary fraction 0.00001001, or 0.09,. We can
still use the bits shifted out to increase accuracy. Pad 10101
with 0’s to obtain an 8-bit value 10101000, or A8,. The result
then becomes 0.09A8, 0.0377,. What we have done is re-
versed our original division to 7 divided by B9,, and 7/185, =
0.0378,, which brings us to the next part.

. Other Things to Do: Inversion, Exponentiation & Roots

As we just saw, by negating the log of a value, and then
taking the antilog we actually performed an inversion or 1/
value. But there are other math functions that can be
achieved--such as exponentiation. Just multiply the log with
the exponent. For example 7* is calculated as LOG,7 * 4 or
2.CE, * 4 which gives B.38,. Reintroduce the error to B2A ,
and reverse shift to obtain 950, or 2384,. It should of course
be 2401, an error of 0.7%. When multiplying logs, the error
also multiplies.

Roots can be extracted with somewhat greater precision
by dividing the log by the root. When a log is divided, the
error is reduced accordingly. %~B9, would be LOG,B9, /2 or
7.88, /2 giving 3.C4,. Reintroduce the error to 3.B4, and do
the reverse shift. The result is 0D.A, %»B9, =0D.99FC, .

Tweaking the Code

There are numerous tricks to improve performance and
reduce space. Here are a few points:

(1) IMPORTANT! When one of the arguments is a con-
stant, always code the log of that constant into the program
to save one conversion routine.

(2) When you have an idea of the range of an argument,

use a separate shift routine for it, starting off with the highest
bit that is likely to be set i.e. if the high byte in a 16-bit
argument is 00, proceed as if for 8 bits. Use byte or nibble
shifts where possible.

(3)To save space in longer error tables, one byte in an
entry can actually hold an 11-bit error if left shifted 3 times.
The 3 MS bits in the error are always 000. For example, the
error of 0.91, is 0.14C, but can be stored as A6,. It is not
worth to have 256 entries in an 8-bit table, but 11 bits can
produce good results.

In Conclusion

And that’s all there is to it. As far as speed improvement,
an 8-bit division executes slightly faster using logs, but when
we get up to 16-bit or larger arguments (especially if one is a
constant) the savings are much more impressive. There is
however a great deal of difference between various controller
families, and it might pay off to check execution times before
committing the code.

In a recent exercise with an 8048 controller I had to divide
a 19 bit constant (2 000 000,) by a 16 bit variable within a
wide range. To try various routines I selected a value of 2000,
as the variable, for the obvious result of 1000,. These aren’t
nice and round figures in hex. Using a 24-bit standard divi-
sion routine took 680 MC'’s (Machine Cycles) and produced
the expected 1000. Reducing accuracy by removing 5 bits and
then using a 16-bit routine took 430 MC’s with a result of
1008. The final solution was to use logs, with a 128 byte error
table, which took only 140 MC’s and returned 1000 as the
result. The penalty was code size. The 24-bit division routine
used 48 bytes while the log routine occupied 68 plus another
128 for the error table.

Happy logging. *

Continued from Page 40

option does not pay off. The older more tried and true
,method was the best option.

OF LANS

The major drive in the PC work of late, is porting our
products to LAN based platforms. What has been interesting
is finding out how the different LAN companies do their
interfaces. The standard interface for programs to use the
LAN are all based on NETBIOS. NETBIOS is suppose to be a
standard interface which programmers can write applica-
tions to use. By using it, supposedly any program then can
access the LAN and send data to other users. As with other
things in the industry, the standard is rather vague and we
have had many problems. We started with IBM LAN prod-
uct, went to 3COM, and are starting on NOVEL next. Each
loads the NETBIOS differently and NOVEL gives you the
option altogether.

Our program is a device driver and with IBM their
NETBIOS is also a device driver. We loaded our program
after IBM’s and all worked just fine. 3COM’s NBP (NetBios
Program) is loaded as a TSR and therefore was not installed
when we started checking for LAN activity. | believe Novel's
NETBIOS is also a TSR and we expect the same problems as
with 3COM's. Our first solution is to make sure your pro-
gram can continue to work until the NETBIOS is loaded.
Typically that means testing, waiting, testing, then trying
again.

The major problem was using 3COM and interrupts. We

The Computer Journal / #48

redirect the keyboard interrupt handler to our own. The
adapter board also use the COM3 interrupt which we find
getting turned back off. Apparently one of 3COM’s programs
turns off the PIC (interrupt controller) on us. We have been
using Token Ring cards and when we tested Ether net cards
found a problem with 3COM not redirecting the timer tick
correctly. We also found IBM doing the same on one of their
LAN:-programs. It seems these big companies do not follow
their own instructions when it comes to interrupt processing.
It turned out the only way to handle the stolen interrupts was
give our interrupt driver a GO command. I now have the
program delay setting interrupts until it receives the GO
command. At that point it then installs our interrupt redirec-
tion and everything works fine. Putting the GO command
last in the AUTOEXEC.BAT now solves all the problems.

We have seen some other minor problems, things like ex-
cessive delays, time outs, lost names, and other problems that
come and go, but for the most part it works in our minor test.
We have yet to put more than 6 units on line. We have a test
coming up soon with over 100 units and will report later on
those results. Overall the use of LANs looks good, but [still
have lots of reservations. I personally feel that lots of expen-
sive LANSs are in places where cheaper and less maintenance
intensive option are possible. One of our big problems is
system supervision, someone has to be in charge of the LAN
system and all the security, and software problems that en-
tails. Most small organizations have neither the resources or
experienced personnel to do the supervision properly.

That's ALL
Well this is a busy month, so off to other things.

37

The Computer Journal

Back Issues

Sales limited to supplies in stock.

back issues only.

3 or more, $1.50 each postpaid in
the US or $2.50 postpald surface
outside US.

Iseue Nymber 1;

v RS-232 Interface Part 1

+ Telecompiting with the Apple i
* Beginner's Column: Gemng Started
- Buﬂd aﬂ ‘Epram

' RS-232 Interface P

+ Build Hardware Prit Spoo(er Part 1
*Review of Fioppy Disk Formats

« Sending Morse Code with an Apple 1l
Beginner's Column: Basic Concepts “and

+Add- an- 8087 Math ChiptoYour Dual
Prooessor Board

« Build an'A/D Corverter fo Apple {8

< Modems for Micros:

*The CP/M Operating System .

“Build Hardware Print Spoolet: Pait 2
+“Opronics,” Part 13 Detecting; - Generating
and Using Light In Electronics

* Muiti-User: An Introduction

< 'Making :the - CP/M'Usear ‘Function ‘More
Useful

- Bulld Hardwane Print Spaoler: Pait 3

« Beginner's Column: Power Supply Design

lssye Number 8:

L+ Buid VIC-20 EPROM Programmer

" Mutti-User: CP/Net

< Build: High'- Resolution S-100 “Graphics
Board, Part 3. B

« System Integratlon. Part3: CP/M 3.0

« Linear Optimization with Micros

Ipsue Number 18;

« Parallet Interface for Apple Il Game Port

« The Hacker's MAC: A Letter from Lee
Felsenstein

* §-100 Graphics Screen Dump

* The LS-100 Disk Simulator Kit

* BASE: Part Six

* Interfacing Tips & Troubles: Communicat-
ing with Telephone Tone Controt, Part 1
issue Number 19;

« Using the Extensibility of Forth

« Extended CBIOS

« A $500 Superbrain Computer

«BASE: Part 7

* Interfacing Tips & Troubles: Communicat-
ing with Tetephone Tone Control, Part 2

+ Multtasking & Windows with CP/M: A
Review of MTBASIC

lssve Number 20:

« Designing an 8035 SBC

« Using Apple Graphics from CP/M: Turbo
Pascal Controls Apple Graphics

* Soldering & Other Strange Tales

« Build an S-100 Fioppy Disk Controller:
WD2797 Controfler for CP/M 68K

38

(" 8 3)
Special Close Out Sale on these

L J

lssue Number 21;

+ Extending Turbo Pascal: Customize with
Procedures & Functions

« Unsoldering: The Arcane Art

* Analog Data Acquisiton & Control:
Connecting Your Computer to the Real
World

* Programming the 8035 SBC

Num|

* NEW-DOS: Write Your Own Operating
System

*Variability in the BDS C Standard Library

» The SCSI interface: Introductory Column

« Using Turbo Pascal ISAM Files

* The Ampro Little Board Column

lssue Number 23:

+ C Column: Flow Control & Program
Structure

« The Z Column: Getting Started with
Directories & User Areas

* The SCSI Interface: Introduction to SCSI

* NEW-DOS: The Console Command
Processor

+ Editing the CP/M Operating System

« INDEXER: Turbo Pascal Program to Create
an Index

* The Ampro Little Board Column

Issue Number 24:

« Selecting & Building a System
* The SCS| Interface: SCSI
Protocot

» introduction to Assemble Code for CP/M

* The C Column: Software Text Fitters

* Ampro 188 Column: Installing MS-DOS
Software

* The Z-Column

* NEW-DOS: The CCP Internal Commands

« ZTime-1: A Real Time Clock for the Ampro
Z-80 Little Board

Issue Number 25;

* Repairing & Modifying Printed Circuits
* Z-Com vs. Hacker Version of Z-System
« Expiloring Single Linked Lists in C

« Adding Serial Port to Ampro LB

« Building a SCS!| Adapter

* NEW-DOS: CCP internal Commands

» Ampro 186 Networking with SuperDUO
+ ZSIG Column

lssue Number 26;

» Bus Systems: Selecting a System Bus
* Using the SB180 Real Time Clock
* The SCSI Interface: Software for the SCSi

Command

Adapter

* Inside Ampro Computers

« NEW-DOS: The CCP Commands
{continued)

* ZSIG Corner

* Affordable C Compilers
+ Concurrent Multitasking: A Review of
DoubleDOS

Issue Number 27;

» 88000 TinyGiant: Hawthorne's Low Cost
16-bit SBC and QOperating System

+ The At of Source Code Generation:
Disassembiing Z-80 Software

» Feedback Control System Analysis: Using
Root Locus Analysis & Feedback Loop
Compensation

+ The C Column: A Graphics Primitive
Package

* The Hitachi HD64180: New Life for 8-bit
Systems

« ZSIG Corner: Command Line Generators
and Aliases

* A Tutor Program in Forth: Writing a Forth
Tutor in Forth

» Disk Parameters: Modifying the CP/M Disk
Parameter Block for Foreign Disk Formats

Isgue Number 28:

- Starting Your Own BBS

+ Build an A/D Converter for the Ampro Little
Board

« HD64180: Setting the Wait States & RAM
Refresh using PRT & DMA

* Using SCS! for Real Time Control

* Open Letter to STD Bus Manufacturers

« Patching Turbo Pascal

» Choosing a Language for Machine Control

Issue Number 29:

- Better Software Filtter Design

* MDISK: Adding a 1 Meg RAM Disk to
Ampro Little Board, Part 1

* Using the Hitachi hd64180: Embedded
Processor Design

= 68000: Why use a new OS and the 680007
« Detecting the 8087 Math Chip

* Floppy Disk Track Structure

* The ZCPR3 Corner

Number 30:

« Double Density Floppy Controller

« ZCPR3 IOP for the Ampro Little Board

» 3200 Hackers' Language

* MDISK: Adding a 1 Meg RAM Disk to
Ampro Little Board, Part 2

* Non-Preemptive Multitasking

* Software Timers for the 68000

« Lilliput Z-Node

* The ZCPR3 Corner

* The CP/M Corner

Issue Number 31:

* Using SCSI for Generalized I/0

« Communicating with Floppy Disks: Disk
Parameters & their variations

+ XBIOS: A Replacement BIOS for the
SB18o

+ K-OS ONE and the SAGE: Demystifying
Operating Systems

* Remote: Designing a Remote System
Program

« The 2CPR3
Documentation

Corner: ARUNZ

Issue Number 32:

+ Language Development:
Generation of Parsers for
Systems

* Designing Operating Systems: A ROM
based OS for the 281

*+ Advanced CP/M: Boosting Performance

« Systematic Elimination of MS-DOS Files:
Part 1, Deleting Root Directories & an In-
Depth Look at the FCB

« WordStar 4.0 on Generic MS-DOS
Systems: Patching for ASCIlI Terminal Based
Systems

+ K-OS ONE and the SAGE: System Layout
and Hardware Configuration

» The ZCPR3 Corner: NZCOM and ZCPR34

issue Number 33:

« Data File Conversion: Writing a Filter to
Convert Foreign File Formats

» Advanced CP/M: ZCPR3PLUS & How to
Write Seif Relocating Code

+ DataBase: The First in a Series on Data
Bases and Information Processing

« SCSI for the S-100 Bus: Another Example
of SCSI's Versatility

* A Mouse on any Hardware: Implementing
the Mouse on a 280 System

+ Systematic Elimination of MS-DOS Files:
Part 2, Subdirectories & Extended DOS
Services

* ZCPR3 Corner: ARUNZ Shells & Patching
WordStar 4.0

Automatic
Interactive

Issue Number 34:

« Developing a File Encryption System.

» Database: A continuation of the data base
primer series.

« A Simple Multitasking Executive:
Designing an embedded controller
multitasking executive.

* ZCPR3: Relocatable code, PRL files,
ZCPR34, and Type 4 programs.

* New Microcontroliers Have Smarts: Chips
with BASIC or Forth in ROM are easy to
program.

* Advanced CP/M: Operating system
extensions to BDOS and BIOS, RSXs for
CP/M 2.2,

» Macintosh Data File Conversion in Turbo
Pascal.

« The Computer Corner

Issue Number 35;

* Al This & Modula-2: A Pascallike
alternative with scope and parameter
passing.

« A Short Course in Source Code
Generation: Disassembling 8088 software to
produce modifiable assem. source code.

* Real Computing: The NS32032.

* $-100: EPROM Burner project for S-100
hardware hackers.

+ Advanced CP/M: An up-to-date DOS, plus
details on file structure and formats.

- REL-Style Assembly Language for CP/M
and Z-System. Part 1. Selecting your
assembler, linker and debugger.

« The Computer Corner

Issue Number 38:

« Information Engineering: Introduction.

* Modula-2: A list of reference books.

* Temperature Measurement & Control:
Agricultural computer application.
« 2ZCPR3 Corner: Z-Nodes,
Amstrand computer, and ZFILE.

+ Real Computing: NS32032 hardware for
experimenter, CPUs in series, software
options.

* SPRINT: A review.

« REL-Style Assembly Language for CP/M
& ZSystems, part 2.

« Advanced CP/M:
programming.

* The Computer Corner.

Z-Plan,

Environmental

Issue Number 37:

» C Pointers, Arrays & Structures Made
Easier: Part 1, Pointers.

» ZCPR3 Corner: Z-Nodes, patching for
NZCOM, ZFILER.

« Information Engineering: Basic Concepts:
fields, field definition, client worksheets.

* Shells: Using ZCPR3 named shell
variables to store date variables.

« Resident Programs: A detaited look at
TSRs & how they can lead to chaos.

= Advanced CP/M: Raw and cooked console
/0.

* Real Computing: The NS 32000.

» ZSDOS: Anatomy of an Operating System:
Part 1.

+ The Computer Corner.

lssue Number 38:
* C Math: Handling Dollars and Cents With
[o]

* Advanced CP/M: Batch Processing and a
New ZEX.

« C Pointers, Arrays & Structures Made
Easier: Part 2, Arrays.

+ The Z-System Corner: Shells and ZEX,
new Z-Node Central, system security under
Z-Systems.

* Information Engineering: The portable
Information Age.

» Computer Aided Publishing: introduction to
publishing and Desk Top Publishing.

« Shells: ZEX and hard disk backups.

* Real Computing: The National
Semiconductor NS320XX.

+ ZSDOS: Anatomy of an Operating System,
Part 2.

The Computer Journal / #48

|sove Nymber 39;

» Programming for Performance: Assembly
Language techniques.

* Computer Aided Publishing: The Hewlett
Packard LaserJet.

* The Z-System Corner:
enhancements with NZCOM.

« Generating LaserJet Fonts: A review of
Digi-Fonts.

* Advanced CP/M: Making old programs 2-
System aware.

« C Pointers, Arrays & Structures Made
Easier: Part 3: Structures.

* Shells: Using ARUNZ alias with ZCAL.

* Real Computing: The National
Semiconductor NS320XX.

-+ The Computer Corner.

1ssue Number 40;

« Programming the LaserJet: Using the
escape codes.

« Beginning Forth Column: Introduction.

« Advanced Forth Column: Variant Records
and Modules.

« UNKPRL: Generating the bt maps for PRL
files from a REL file.

+ WordTechs dBXL: Writing your own
custom designed business program.

« Advanced CPM: ZEX 5.0-The machine
and the language.

» Programming for Performance: Assembly
language techniques.

* Programming Input/Output With C:
Keyboard and screen functions.

+ The Z-System Corner: Remote access
systems and BDS C.

* Real Computing: The NS320XX

* The Computer Corner.

Isoue Number 41;

e Forth Column: ADTs, Object Oriented
Concepts.

« Improving the Ampro LB: Overcoming the
88Mb hard drive limk.

« How to add Data Structures in Forth

« Advanced CP/M: CP/M is hacker's haven,
and Z-System Command Scheduler.

* The Z-System Corner: Extended Multiple
Command Line, and aliases.

» Programming disk and printer functions
with C.

« LINKPRL: Making RSXes easy.

« SCOPY: Copying a series of unrelated
files.

« The Computer Corner.

System

The Computer Journal

Back Issues

Sales limited to supplies in stock.

issue Number 42:

* Dynamic Memory Allocation: Allocating
memory at runtime with examples in Forth.

» Using BYE with NZCOM. ‘

+ C and the MS-DOS Screen Character
Attributes.

* Forth Column: Lists and object oriented
Forth.

* The Z-System Corner: Genie, BDS Z and
Z-System Fundamentals. .

« 68705 Embedded Controller Application:
An example of a single-chip microcontroller
application.

* Advanced CP/M: PluPerfect Writer and
using BDS C with REL files.

* Real Computing: The NS 32000.

» The Computer Corner

lssye Nymber 43;

« Standardize Your Floppy Disk Drives.

» A New History Shell for ZSystem.

» Heath's HDOS, Then and Now.

» The ZSystem Corner: Software update
service, and customizing NZCOM.

* Graphics Programming With C: Graphics
routines for the iBM PC, and the Turbo C
graphics library.

» Lazy Evaluation: End the evaluation as
soon as the result is known.

+ $-100: There's still life in the old bus.

« Advanced CP/M: Passing parameters, and
complex error recovery.

« Real Computing: The NS32000.

* The Computer Corner.

u mb H

* Animation with Turbo C Part 1: The Basic
Tools.

« Multitasking in Forth: New Micros F68FC11
and Max Forth.

* Mysterles of PC Floppy Disks Revealed:
FM, MFM, and the twisted cabile.

« DosDisk: MS-DOS disk format emulator for
CP/M.

+ Advanced CP/M: ZMATE and using lookup
and dispatch for passing parameters.

* Real Computing: The NS32000.

« Forth Column: Handling Strings.

+ Z2-System Corner: MEX and telecommuni-
cations.

+ The Computer Corner

lssue Number 45;

+ Embedded Systems for the Tenderfoot:
Getting started with the 8031.

* The Z-System Corner: Using scripts with
MEX.

* The Z-System and Turbo Pascal: Patching
TURBO.COM to access the Z-System.

+ Embedded Applications: Designing a Z80
RS-232 communications gateway, part 1.

» Advanced CP/M: String searches and
tuning Jetfind.

» Animation with Turbo C: Part 2, screen
interactions.

« Real Computing: The NS32000.

* The Computer Corner.

lssue Number 46:

« Build a Long Distance Printer Driver.

+ Using the B03t's built-in UART for serial
communications.

« Foundational Modules in Modula 2.

* The Z-System Corner: Patching The Word
Plus spell checker, and the ZMATE macro
text editor.

« Animation with Turbo C: Text in the
graphics mode.

+ 780 Communications Gateway:
Prototyping, Counter/Timers, and using the
280 CTC.

Issye Number 47:

+ Controling Stepper Motors with the
68HC11F

+» Z-System Corner: ZMATE Macro Language
+ Using 8031 interrupts

* T-1: What it is & Why You Need to Know

« ZCPR3 & Modula, Too

« Tips on Using LCDs: Interfacing to the
68HC705

* Real Computing: Debugging, NS32 Muiti-
tasking & Distributed Systems

- Long Distance Printer Driver: correction

» ROBO-S0G 90

+ The Computer Corner

fSubscriptlons

1year (6 issues)
2 years (12 issues)
Air Mail rates on request.

Back issues
16 thru #43
6 or more
#44 and up
6 or more

Issue #s
ordered

u.s. Foreign Total

(Surface)
$18.00 $24.00
$32.00 $46.00

$3.50 ea. $4.50 ea.
$3.00 ea. $4.00 ea.
$4.50 ea. $5.50 ea.
$4.00 ea. $5.00 ea.

Subscription Total
Back Issues Total

Total Enclosed

Al funds must be in U.S. dollars on a U.S. bank

Name

Address

JCheck
Card #

QVISA

{OMasterCard Exp. Date

Signature

The Computer Journal
P.0O. Box 12, S. Plainfield, NJ 07080-0012
Phone (908) 755-6186

The Computer Journal / #48

39

The Computer Corner

By Bill Kibler

It is PC strikes again time. Been working on PC machines
lately so have a number of facts, problems, and ideas to pass

along.

80287

For some time now I have been trying to buy a 80287 co-
processor for my AT. The 12 MHZ version normally runs
over $200 and so finds its way to the bottom of the “need-to-
buy” list. AMD came to the rescue with a CMOS version for
$99 dollars. I saw the stories about the Intel/ AMD law suits
over it, and decided | had better buy one while the option
was available.

AMD ran a few ads and articles, which supplied an 800
number (1-800-888-5590). I called them some time earlier and
was promised a 3 week shipment. I think that actually turned
into over 2 months, but actually I lost track because it took so
long. What I got was the chip, a disk, and installers guide.
Chip went in easily and seems to run considerably cooler
than the other chips. I have noticed in the past that the 286
chip set runs extremely hot, especially at 12 MHZ. The 287
from AMD is CMOS which runs cooler and faster. Although
I told the order taker I had a 12 MHZ machine, the part has
no indication of speed.

Speaking of speed, the few benchmarks | have run make
considerable improvements. As | continue to test, it amazes
me how many programs seem to run faster, even the ones
that don’t use it. When you start paying attention to speed of
program execution, it becomes a rather funny situation. [
find programs I thought went slow, aren’t really that slow.
Graphic programs however are definitely faster by many
times. Where you could watch the program fill the screen,
you now almost instantly (well close to that) get a full
graphic display. We even noticed an increase in the old Win-
dows 2 package, and will be testing Windows 3 later. The
disk contain VGA and EGA fractal programs and my test
machine only has a mono card in it. The fractal test will have
to wait till later, although it is rather a poor choice of pro-
grams to not support more formats.

The bottom line is, if you have been waiting to get an co-
processor, now seems to be the time to do it. The AMD prod-
uct appears to work just fine, and at $99 the cost is well
within most budgets.

Extended Memory
In the PC world of IBM based machines, the 640K mem-
ory space has always been a problem. Two ways around this

40

limit have been use of expanded memory and now extended
memory. Expanded memory is the extra memory beyond the
640K but not beyond the 1Meg. This is also called shadow
memory by some, as it resides behind the ROM space. Ac-
cessing expanded memory or boards that use expanded
memory addressing is rather easy and free of problems.

Extended memory is the memory space beyond the 1
Megabyte limit. Using this memory unfortunately is not as
easy as expanded memory. The only way to get to it in a
normal PC is to use a 286/386 in protected mode. The DOS
system interrupt $15 and it’s function $87 provide a means of
getting to it. The documents have a big warning however
that no interrupts are allowed during data moves.

At my work we have two board designs; one uses an dual
ported memory device located in the PC option ROM ad-
dress. Writing to that board is easy, fast, and can interleave
with interrupts without problems. The second design how-
ever uses memory mapping in extended memory. Problems
abound with that design and we have only been able to
barely make it work. Extended memory and interrupts cur-
rently do not work together. OS2 gets by the problem by
putting the machine in protected mode all the time. What we
needed is a protected mode DOS operating system.

I have checked the actual IBM ROM code and found that
the INT $15, function $87 puts the machine into protected
mode, and then when finished, does the same as an CLT-
ALT-DEL, or master reset of the entire CPU. The WARM
reset checks a CMOS memory location (that is where all the
configuration information is kept) and based on what is
stored there, what type of reset action is needed. If you were
to write your own program, as a FORTH friend of mine did,
the only way out of protected mode he could find was a
power-on reset.

In protected mode, the 286/386 uses different tables that
contain the address for interrupts, program pages, and every-
thing. The interrupt $15 has some ROM interrupt tables to
allow it to get through the block move you want to do. For
other interrupts however, these special tables don’t exist.
What would happen with interrupts without these tables is
most likely disastrous. Add to that the fact that the actual
address lines are turned off (A20 to A24) except in the pro-
tected mode, and one asks the question, what good is ex-
tended memory if you can only use it in protected mode.

Our company has decided that our only option is to re-
design the board to not use extended memory. We think we
can do this by using a PAL in place of an address buffer. The
main problem is changing all past boards and software. This
is an good example of where going to the latest and greatest

Continued Page 37

The Computer Journal / #48

SAGE MICROSYSTEMS EAST

Selling & Supporting the Best in 8-Bit Software

e Automatic, Dynamic, Universal Z-Systems

— Z3PLUS: Z-System for CP/M-Plus computers ($70)
— NZCOM: Z-System for CP/M-2.2 computers ($70)
— ZCPR34 Source Code: if you need to customize ($50)

o ZSUS: Z-System Software Update Service, public-domain software distribution service
(write for a flyer with full information)

e Plu*Perfect Systems

Backgrounder ii: CP/M-2.2 multitasker ($75)
ZSDOS/ZDDOS: date-stamping DOS (875, $60 for ZRDOS owners)
ZSDOS Programmer’s Manual ($10)

DosDisk: MS-DOS disk-format emulator, supports subdirectories and
date stamps ($30 standard, $35 XBIOS BSX, $45 kit)

— JetFind: super fast, extemely flexible text file scanner ($50)

!

ZMATE: macro text editor / customizable wordprocessor ($50)
PCED — the closest thing to ARUNZ and LSH (and more) for MS-DOS ($50)

e BDS C — including special Z-System version ($90)

e Turbo Pascal — with new loose-leaf manual ($60)

SLR Systems (The Ultimate Assembly Language Tools)
— Z80 assemblers using Zilog (Z80ASM), Hitachi (SLR180), or Intel (SLRMAC)
mnemonics
— linker: SLRNK
— TPA-based (350 each) or virtual-memory (special: $160 each)

o ZMAC — Al Hawley’s Z-System macro assembler with linker and librarian
($50 disk, $70 with printed manual)

e NightOwl (advanced telecommunications, CP/M and MS-DOS versions)

— MEX-Plus: automated modem operation with scripts ($60)

— MEX-Pack: remote operation, terminal emulation ($100)

Next-day shipping of most products with modem download and support available. Order
by phone, mail, or modem. Shipping and handling $3 per order (USA). Check, VISA, or
MasterCard. Specify exact disk format.

Sage Microsystems East
1435 Centre St., Newton Centre, MA 02159-2469
Voice: 617-965-3552 (9:00am - 11:30pm)
Modem: 617-965-7259 (pw=DDT) (MABOS on PC-Pursuit)

