Programming - User Support

Applications

Issue Number 50

May / June 1991 US$3.95

Offload a System CPU with Z181 Peripheral Control
Floppy Disk Alignment with the RTXEB and Forth

Motor Control with the F6SB8HC11
Modula-2 and the Command Line

Home Heating & Lighting Control

Getting Started in Assemble Language

ISSN # 0748-9331

Local Area Networks
Z-System Corner
Using the ZCPR3 IOP
PMATE/ZMATE Macros
Z-Best Software
Real Computing

The Computer Corner

EPROM PROGRAMMERS

$750.00

« Completely stand-alone or PC driven
= Programs E(E}PROMs

1 Megabit of DRAM

User upgradable to 32 Megabit

o .3/.6" ZIF socket, RS-232,
Parallel In and Out

32K internal Flash EEPROM for easy
firmware upgrades

Quick Puise Algorithm (27256

in 5 sec, 1 Megabit in 17 sec.)

* 2 year warranty

Made in US.A.

Technical support by phone
Complete manual and schematic
Single Socket Programmer aiso
available. $550.00

« Splitand Shuffle 16 & 32 bit

« 100 User Definable Macros, 10 User
Definable Configurations

Inteltigent Identifier

Binary, Intel Hex, and Motorola §

Stand-Alone Gang Programmer

8 ZIF Sockets for Fast Gang

ggramming and Easy
i e SPlitting

20 Key Tactile Keypad (not membrane) 20 x 4 Line LCD Display

Internal Programmer for PC $139.95

New Intelligent Averaging Algorithm. Programs 64Ain 10 sec., 256in1min., 1 Meg (27010,011)in2 min. 45 sec.,
2 Meg (2762001) in 5 min. Internal card with external 40 pin ZIF. 2 ft. Cable 40 pin ZIF
\

» Reads, verifies, and programs 2716, 32, 32A, 64,
644, 128, 1284, 256, 512, 513,010, 011, 301,
27C2001, MCM 68764, 2532

Automatically sets programming voltage

Load and save buffer to disk

Binary, Intel Hex, and Motorofa $ formats
Upgradable to 32 Meg EPROMs

No personality modules required

Cross-Assemblers xiowessso
SlmUIatorSaslowas$100.00
Cross-Disassemblers asiowsssiooow
Developer Packages

as low as $200.00(a $50.00 Savings

A New Project
Our line of macro Cross-assemblers are easy to use and full featured,
including conditional assembly and unlimited inciude files.

Get It To Market--FAST
Don't wait until the hardware is finished to debug your software. Our
Simulators can test your program logic before the hardware is built.
No Source!
Aminor glitch has shown up in the firmware, and you can't find the original
source program. Our line of disassemblers can help you re-create the
original assembly language source.

Set To Go
Buy our developer package and the next time your boss says "Get to work.",
you'll be ready for anything.
Quality Solutions
PseudoCorp has been providing quality solutions for microprocessor
problems since 1985.

BROAD RANGE OF SUPPORT
e Currently we support the following microprocessor families (with
more in development):

Intel 8048 RCA 1802,05 Intel 8051 Intel 8096
Motorola 6800 Motorola 6801 Motorola 68HC11 Motorola 6805
Hitachi 6301 Motorola 6809 MOS Tech 6502 WDC 65C02

Rockwell 656C02 Intel 8080,85 Zilog Z80 NSC 800
Hitachi HD64180 Motorola 68000,8 Motorola 68010 Intel 80C196
o All products require an IBM PC or compatibie.

So What Are You Waiting For? Call us:
PseudoCorp

Professional Develospment Products Group

716 Thimble Shoals Blvd, Suite E

1 year warranty + 10 day money back guarantee)

Adapters available for 8748, 49, 51, 751, 52, 55, Newport News, VA 23606

TMS 7742, 27210, 5761024, and memory cards ¥ (804) 873-1947 FAX: (804)873-2154
e MadeinUS.A
NEEDHAMIS ELECTRON |cs Call for more information
4539 Orange Grove Ave. » Sacramento, CA 95841 o (91 6) 9247'280%3)
Mon. - Fri. 8am - Spm PST c.OD w E FAX (916) 972-99

f \

Custom Software Solutions for Industry:
industrial Controls
Operating Systems
Image Processing

Custom Software Solutions for Business:
Order Entry
Warehouse Automation
Inventory Control
Wide Area Networks

Publishing Services:
Desktop Systems
Books

CBT

UE William P Woodall * Software Specialist

Hardware Interfacing
Proprietary Languages
Component Lists

Point-of-Sale

Accounting Systems
Local Area Networks
Telecommunications

Format Conversions
Directories

Interactive Video

33 North Doughty Ave, Somerville, NJ 08876

(908) 526-5980

The Computer Journal

Founder
Art Carlson

Editor/Publisher
Chris McEwen

Technical Consuitant
William P. Woodall

Contributing Editors
Bill Kibler
Tim McDonough
Frank Sergeant
Clem Pepper
Richard Rodman
Jay Sage

The Computer Journal is pub-
lished six times a year by Socrates
Press, P.O. Box 12, S. Plainfield, NJ
07080. (908) 755-6186

Opinions expressed in The Com-
puter Journal are those of the re-
spective authors and do not neces-
sarily reflect those of the editorial
staff or publisher.

Entire contents copyright © 1991
by The Computer Journal and re-
spective authors. All rights reserved.
Reproduction in any form prohibited
without express written permission of
the publisher.

Subscription rates* Within US:
$18 one year (6 issues), $32 two
years (12 issues). Foreign (surface
rate): $24 one year, $44 two years.
Foreign (airmail): $38 one year, $72
two years. All funds must be in U.S,
dollars drawn on a U.S. bank.

Send subscription, renewals, ad-
dress changes, or advertising in-
quires to: The Computer Journal,
P.0. Box 12, S. Plainfield, NJ 07080,
telephone (908) 755-6186.

Registered Trademarks

It is sasy to get in the habit of using company
trademarks ae generic terms, bit these trademarks are
the property of the reepactive companies. It is important
to acknowledge these trademarks as their property to
avoid their losing the rights and the term becoming pub-
lic property. The following frequently used trademarks
are acknowledged, and we apologize for any we have
overiooked.

Apple Ii, ll+, lic, lle, Lisa, Macintosh, DOS 3.3,
ProDos; Appromm Company. CP/M, DDT, ASM,
STAT, PIP; Digital Research. DateStamper, Back-
Grounder i, Dos Disk; Plu*Perfect Systems. Clipper,
Nantucket; Namucket, Inc. dBase, dBASE ||, dBASE |it,
dBASE lll Plus, dBASE IV; Ashton-Tate, Inc MBASIC,
MS-DOS, Windows, Word; MicroSoft. WordStar; Mlao
Pro International. IBM-PC, XT, and AT, PC-DOS; 1BM
Corporation. 280, 2280; Zllog Corporation. Turbo Pas-
cal, Turbo C, Paradax; Borland International. HD64180;
Hitachi America, Ltd, SB180; Micromint, Inc.

Where these and other terms are used in The
Computer Journal, they are acknowledged to be the
property of the respective companies even if not spe-
cifically acknowledged in each occurrence.

Issue Number 50

Editor's Deskccccoeeernevrimricnnsinssnsnnnne
Offload a System CPU...............c.cceucmeen..

with Z181 Peripheral Control
By James J. Magill and Doug Woodburn.

Floppy Disk Alignment with the RTXEB
Part Two
By Frank C. Sergeant,

Motor Control with the F68HC11

By Matt Mercaldo.

Modula-2 and the Command Line

Reading the ZCPR Command Line with Modula-2
By David L. Clarke.

Home Heating & Lighting Control
Part Two, The Electrical Interface
By Jay Sage.

Getting Started in Assemble Language

Making the Jump from High Level Languages, Part Two
By A. E. Hawley.

Local Area Networksccoovvevvenerereens
By Wayne Sung.

Z-System Corner vereens versssnnsenan

PCED, the Z-System for MS-DOS Computers
By Jay Sage.

Using the ZCPR3 IOP .eueveeeervreonn.

Add Function Keys to a Kaypro 10
By Lindsay Haisley.

PMATE/ZMATE Macrosccccceeeueennnn..

PMATE Facilities and Buffer-Saving Macros
By Clif Kinne.

Z-Best Software. S rerreeacscsnrnnnenns

We're Off to the Libraries
By Bill Tishey.

Real Computingccoeeeueeeecerereeerennnee

The 32FX16, CPU Caches and the Pi Benchmark
By Richard Rodman.

The Computer Cornercccevermrunene.
By Bill Kibler.

May / June 1991

................... 2
......... e 3

and Forth 7

............ eee 23

............ e 27

. 31

................. 45

Editor’s Desk

By Chris McEwen

The lead article in this issue tells about a brand new 8 bit
CPU from Zilog. When they asked if we wanted to play with
a Z181 development system, | jumped. Sure! Art dearly loves
running amok with new gadgets. From how they described
this new chip, I knew it was right up Art’s alley. But I baited
Zilog. Why spend all that money making a new chip? The
Z180 is a heck of a CPU. This elicited the same response you
would expect of a new father: On board CTC! On board SIO!
On board this-and-that-and-this-is-one-hot-chip! “Great,” 1
said. “Tell us about it.” Well, I've read the article and think
they have something here. Take a look. If you come up with
a good application for the Z181, let me know. I'd like to carry
the article here.

The Silent Key

Before we go further, we owe a moment of silence to Irv
Hoff. Irv’s contribution to public domain programming was
without measure. He co-authored BYE, the program we love
to hate but without which no remote access CP/M system
could run. But his work spans much more than that. It seems
that I am constantly running some little tool that signs on
with his name attached.

Irv passed away last month after a long illness. Please join
me in a thought of thanks for his long and fruitful efforts on
our behalf.

Trenton Computer Festival

We had a fine crowd in the CP/M conference at the Tren-
ton festival. The presentations were great. Hal Bower is cook-
ing up a banked operating system for systems over 64k that
will give massive TPA. Well, it is massive for us 8-bitters,
you understand. Remember, this is the side of the room
where we count bytes, not megabytes.

Bruce Morgen gave a discourse in programming for Z-
System. Al Hawley’s series of articles on Assembling Lan-
guage programming is quite timely in this regard and from
the crowd’s reaction, he hits the nail squarely on the head. By
the way, Al was there to hear the praise. No amount of
money can reward one as well as compliments and Al was
quite well paid that day. Deservedly so, I might add.

Humility makes it hard, but I should acknowledge similar
payment. As we went around the room introducing our-
selves, Jay Sage would mention what each person was doing.
When my turn came, he mentioned that I published TCJ.
There was resounding applause. If you were there, I thank
you. But the reality is that the applause belongs to the au-
thors—they’re the ones who make this journal so unique.

It was a very long day, continuing on well into the night.
Steve Dresser and | wrapped it up about 1:30 in the morning
and left Jay, Al Hawley, Howard Goldstein, Bob Dean, and
Ian Cottrell to explain the loud party to the hotel manage-

ment. What can [say? This was all serious work, you know.

CanYou Say “Oops”?

In the last issue, I told how Mark Burrows will be writing
about using Fidonet on a CP/M box. This was news to a
great many, most especially Mark Burrows. My apologies.
I've been calling several Texas systems, including Mark’s.
But the real name behind the story is Marc Newman! Marc
(not Mark) wrote MSBBS in Turbo Modula-2. That's the
Modula-2 compiler that never existed, remember? Well, I've
been popping in on Marc’s system for the last month or so,
and it’s the best vaporware I've ever seen. Fact is, he has it
working like a charm.

Marec distributes his system in a new way. It is not public
domain, though he gives you full source code. And it is not
shareware as he asks nothing for himself. He calls it “charity-
ware,” and asks you to make a donation for whatever you .
feel is right to MS. I like that. Anyway, I am hoping to see
something on this in the next couple of months.

Another topic begging discussion is Usenet on CP/M. 1
still have a marker out there. Let’s see how it goes. These are
important topics as they help bring people together. It is ex-
hilarating to engage in electronic conversation with folks
around the world.

Home Control, X10 and More.

Jay continues his series on home control in this issue. The
more he writes, the more intriguing it becomes. A user on
Jay’s Z-Node says that he is putting in the necessary wiring
as he builds his house this summer. Meanwhile, Rick Swen-
ton has pulled his partner, Biff Bueffel, into writing on X10.
These two have been working together on programs for X10
and [expect great things.

Roger Warren pulled rank on me. He wants to write about
modifying the Ampro to use a USR Dual Standard modem. I
wanted an article on his backup scheme. After reading his
article (it will be in the next issue), I humbly defer to Roger’s
judgment. You won't be disappointed.

We have a new author in this issue. Lindsay Haisley heard
that I was looking for an article on programming IOPs and
offered his work on remapping the Kaypro keyboard. This is
good information right out of the box if you own a Kaypro,
but stands as fertile ground for developing IOPs for other
machines and purposes. You will enjoy Lindsay’s write-up.

We also have a new editor! Frank Sergeant has accepted
the position of Forth Editor. Frank’s article on the Floppy
Disk Aligner won first place in the Harris Semiconductor
RTX contest last year and we are honored to be carrying it in
our pages. [will defer to Frank's better judgement when it
comes to Forth.

See Editor, page 56

The Computer Journal / #50

Offload A System CPU

with Z181 Peripheral Control

By James J. Magill and Doug Woodburn

Introduction

To remain competitive, companies are in a constant state
of flux developing new, higher performance products that
offer greater system performance and functionality, all at re-
duced system level costs. This needs to be done in a timely
manner to meet certain market windows, with minimal risk
to the schedule. As you might well expect, this is quite a
challenge for both software and hardware designers.

To feed this insatiable appetite for new products with a
minimum design cycle, designers generally opt for migration
from an existing hardware and software platform (Figure 1).
Thus, computer architectures are trending towards distrib-
uted processing where intelligence is put in the peripheral
function. This offloads the central processor from the 1/0
tasks, thereby increasing the overall system performance.
Further, it tends to make the architecture modular in nature
allowing you a much easier way to modify for later designs.

System level performance can be approached in several
ways. For example, a higher speed system clock can be used.
A 20 MHZ Z80 CPU is available today, but higher speed
brings with it noise in the form of EMI. It makes no sense to
increase the performance at the expense of having to add
extra cost to the system in the form of screening ferrite beads,
etc. Another approach is that of increased microprocessor
bandwidth. However, one should think real hard before de-
ciding to utilize a 16-bit processor. To make full use of a 16-
bit architecture, perhaps one should use a 16-bit peripheral,
memories, et cetera. Also, one must not lose sight of the final
cost objectives of the system.

A third and popular approach is to utilize the advances in
8-bit architectures. Say, for instance, a device was available
that could provide an increase of 25% in performance for the

same clock speed, while running the same code. Now, you
can attain many of the previously mentioned objectives. The
device, the meat of this article, is a highly integrated general
purpose intelligent peripheral or controller, that is used in a
wide variety of applications including data communications,
terminals, programmable controllers, printers, and modems.

Let us examine a typical peripheral within an overall
system context (Figures 2 and 3). Such a peripheral requires
intelligence, in the form of a CPU, to control the peripheral
function. The advent of larger programs provides MMUs that
can prove useful in extending the addressing capability. The
CPU on the Z181 SAC (Smart Access Controller - Figure 4) is
an enhanced version of the Z80 which provides an approxi-
mate 25% increase in performance from the same clock
speed, with additional instructions.

A peripheral typically communicates with a host
computer or network to transfer information or to receive
downloaded commands. Hence, a multi-protocol synch-
ronous serial communications channel is required to provide
the fast data transfer. Often a DMA channel is assigned to
each receiver and transmitter channel of the serial I/O device

“It is worthy to note that
software siphons off most of the
development dollars.”

to offload the CPU and complete transfers without CPU

intervention. Given that generally the communication is at

the local peripheral, where the communications are generally

asynchronous, the SAC provides two UARTSs with on-board
baud rate generators.

James Magill is director of the Intelligent Peripheral Product Line at Zilog. He
started his career at the British Broadcasting Corporation in London as a Senior
Engineer, then joined Texas Instruments in their consumer and logic products
manufacturing area. Prior to joining Zilog, Mr. Magill spent 10 years at Signetics
holding Product Control, Test Area Manager and Marketing Manager positions in

their microprocessor division.

Mr. Magill holds a Masters of Science in Operations Management from City
University, London and a Bachelors of Science with honors in Electrical Engineering

from Queens University, Belfast, Northern Ireland.

Doug Woodburn received his B.S. degree from the University of California Long
Beach in Industrial Technology with a major in Electronics. He has worked as a
Product Engineer for NCR Electronics Division and for Varian Data Machines,
both in computers. He switched over to a position as a Senior Technical Writer at
Varian in 1970 and has remained one for the last 21 years. Doug joined Zilog nine
Years ago and has published seven media articles in the last 18 months. Prior to this,

Doug wrote hardware manuals for Zilog's System 8000 series.

The Computer Journal / #50

Parallel 1/0 is often required for a
printer, display keyboard, et cetera.
The SAC provides 16 [/O channels. In
order to ensure design flexibility of a
highly integrated design system, de-
signers need a wealth of counter tim-
ing functions. The SAC provides 4x8-
bit counter timers in the on-board CTC
(Z84C30) megacell together with two
16-bit timers. Of course, this all needs
to be done within the cost constraints
of the project. With Superintegration
™ the functionality of the above can
be accomplished within one 100-pin
quad flat pack device, no bigger than
one’s thumb nail (Figure 4) . Although
most of the foregoing addresses the

3

Figure 1 16-Bit 280 CPU 4DMA
280 Product Evolution
MMU UART
P Cach 3C/Ti
.1 m
e L] imers
r 280 / Zbus WSG
f
______________ Z280
o r 1|
' |
m CPU+ 2 DMA CPU+ 2DMA scC
a (1) I
MMU 2 UARTS MMU 2 UARTS 161
n 110 r
, cTe —
Cc 2 Timers C/Ser 2 Timers C/Ser
e 7180 Z181
2K SRAM o) CPU S0
CPU
osc 0sC 401/0 PO | SIO cTe po | crc
CPU CPU
Pwr Down Pwr Down CPU CTC PIA CTC Enhancements Enhancements
Z84C01 Z84C50 Z84011/C11 Z84C90 Z84013/C13 Z84015/C15
| 2844X SI0 | Z84C4X SIO
[zs430cTC [zeacaccTC
[28420 PIO Z84C20 PIO
| 28410 DMA J 284C10 DMA
28400 280 CPU 784C00 280 CPU

NMOS
Discrete

CMOS
Discrete

hardware aspects of the design, it is worthy to note that soft-
ware siphons off most of the development dollars. The SAC
already has the software built in. Furthermore, in the periph-

[]

Host
Computer
Fast
Synchronous
0000 Serial
Modem Channel
FAX Parallel Printer
Interface

Figure2 Typical Embedded Controller Environment

eral control function where such attributes as fast interrupt
response time become paramount, the software is written in
assembly as opposed to high level languages, to speed the re-

sponse. Sometimes both high level lan-
guages and assembly language are
mixed with the assembly language
being used for fast control and timing
loops. This overcomes the inherent in-
efficiencies of higher level languages.
The Z80 product portfolio outlined in
Figure 1 provides a wide range of code
compatible devices offering differing
functionality and performance levels.

Synchronous Talk with the System
CPU

Embedded Control gives you cost
performance applications by using 8-
bit vs larger 16 or 32-bit intelligent
processors (Figure 5). When you want
to talk to the System CPU, the SAC
provides one fast synchronous trans-
mit/receive 8-bit channel via its on-

The Computer Journal / #50

Figure3 Z80181 Block Diagram

used in timer mode). Also, each one
has its own 8-bit counter to provide a
wide range of count resolution. Each of

the channels have their own Clock/
I Trigger input to quantify the counting
D7-Do ~= 780180 SCC * TxData process and an output to indicate zero
Gontrol = Compatible (1 Channel) Rx Data crossing/timeout conditions. These
A19-A0 —= Core 7= Modem/Control signals are multiplexed with the Paral-
8 signas lel Interface Adapter 1 (PIA1). With
only one interrupt vector programmed
c1c into the logic unit, each channel gener-
E"”,e ates a unique interrupt vector in re-
ogle sponse to the interrupt acknowledge
A19-A12 cycle.
Address PIA1 /= Bit Programmable Parallel and Asynchronous
/ROMCS = Decode 8 Bi-directional /O Communication
/RAMCS —= Logic or VO Pins of CTC The SAC has two 8bit PIA Ports
called PIA1 and PIA2. Each port has
PIA2 o two associated control registers; a Data
78 g?‘ Programmable Register and a bit direction register
i-directional I/0 . . .,
(input or output). PIA1 is muitiplexed
with the CTC 1/0 pins. When you se-
lect the CTC 1/0 feature, the CTCI/0O
780181 = 2180 + SCC + CTC + PIA functions override the PIA1 feature.
Mode selection is made through the
Hio SCC with " . System Configuration Register (Ad-
chip with a serial transmission
rate of 2.5 Mbits per second (Figure 6). 585
The SCC logic unit provides you with a ",wggsia‘gtiam, ged.y
multi-protocol serial 1/0 channel. Its £2e QEE;"’(‘?‘%EZ‘?%QE -
basic functions, like serial-to-parallel ” H H H H H H ‘V H [[[H |> H { l]
and parallel-to-serial conversions, can I L Ll . i
be programmed by the MPU for a I o % 8 o
broad range of serial co ications e — l ey
g MMUnIC ANT2 T T pRean
applications. This logic unit supports 5L — T oks
all common asynchronous and syn- A L— e ot
chronous protocols; Monosyne, Bisync, i i I el
SDLC/HDLC, byte or bit oriented. PE I st .
The PCLK for the SCC is connected R =) Test
to PHI (System clock), the /INT signal o I T eoneon
is connected to /INTO internally (re- P — 70 -] 7T Rere
quires external pull-up resistor) and ol — e el
the SCC is reset when the /RESET in- o — Z80181) e
put becomes active. Interrupt from the Mo C—F 15 100-PIN QFP — miso
SCC is handled via Mode 2 interrupt. L — 65 -|) AwTOuT
During the interrupt acknowledge o E— :E_J -
cycle, the on-chip SCC interface circuit 3 o
inserts two wait states automatically. A 2 /) momcs
These two wait states buy you access ‘[‘)2 L[_——.____;_—‘ Lot R— '(SSD
settle time with the On-Chip Timer o ——] 5 0co
(Figure 7). 02 — «Ts
The on-chip CTC provides you with (A — — mis
four separate 8bit Counter/Timer g‘; g ® —%J ﬂ%m
channels (Figure 8). They are pro- P — “—) e
grammed by the MPU for a broad A e— T R
range of counting and timing applica- AMOS [~ %0 " w0 " ——) Mmeo
tions. You can use them in the areas of 1

event counting, interrupt and interval
counting, and serial baud rate clock
generation.

Each of the designated CTC chan-
nels 0-3 have 8-bit prescalers (when

The Computer Journal / #50

o

Figure 4 0181 Pin-out Assignment

A18/TOUT

Figure5 280181 MPU Block Diagram

dress: EDH; bit D0). Schmitt-trigger in-
puts were designed into the PIA1 to
provide a better noise margin. After re-
set, these ports become inputs.

You have your choice of various
protocols with which to interface and
then down load data; You'll find two
other asynchronous channels on the
SAC for communications between ter-
minal and printer, terminal and key-
board, terminal and scanner, etc. Being
able to work with these two asynchro-
nous ports just gives you that much
more flexibility.

O x
W g = £ 8 x
Q = - -
2 K oz EETI28¢E, EFEECE
£ 0] EEEEEQEEQ@EU)WZ<<‘<
o Timing Bus State Control Interrupt
Generator . cPU)
-
16-Bit ~——> % /DREQ1
%rogrammb|9< DMACs |— /TEND
eload Timers 2
@ K y | ey L e
L TxS ~—-——of| Clocked '> = TxAO
RxS//CTS =1 Serial /O ~s{-¢# CKAO /DREQO
" cKs Port - Async;hé(i)nous - RxAD
L] =
'u'_: 5 (Channel 0) IRTSO
- < <:> 1CTSO
J [’
@ @ - /DCDO
¢ s
ol ©
,‘g [a}
L= 4
< > - TxA1
MMU Asynefonous <Y cxar menDo
<:> (Channel 1) |ee——— RxAt
A4 AV 4
A19-A0 D7-DO

peripherals. You'll find it active when
IEl is a 1 and the MPU is not servicing
an interrupt from the on-chip peripher-
als.

Note: Reference Figures 7 and 9 for
help in the explanation of the following
text:

One way of connecting an external
peripheral to the SAC is as an input
device when it has higher priority than
on-chip peripherals (Figure 9A). The
second way is when you want the ex-
ternal peripheral to have a lower prior-
ity than the on-c hip peripherals (Fig-

is a higher priority, the IEI-IEO delay
has to be less than two clock cycles.

In order to meet the on-chip SCC
and CTC timing requirements, the SAC
interface logic inserts another three
wait states into the interrupt acknowl-
edge cycle. (You'll find a total of five
wait states; includes two automatically
inserted wait states.) Therefore, to meet
the timing requirements, the SAC's on-
chip circuits generate interface signals
for the on-chip SCC and CTC.

To give you a better understanding
of the external vs internal peripheral
interrupts in relation to the SAC and
the daisy chain arrangement, reference
the three following cases in relation to
Figure 7.

Case 1 - On-Chip SCC: The SCC/IN-
TACK goes active on the T1 clock fall
time. The settle time is from SCC/IN-
TACK active until the SCC /RD signal
goes active on the fourth rising wait
state clock.

Case 2 - ON-Chip CTC: The settle time
for the on-chip /IORQ is between the
fall of /M1 until the internal CTC /
IORQ goes active on the rise of the
fourth wait state (the same time as SCC
/RD goes active).

Case 3 - Off-Chip Z80/Z180 periph-
eral: The settle time for the off-chip
Z80/Z180 peripheral is from the fall of
/M1 until CTC /IORQ goes active.
Since the SAC’s external IORQ signal
goes active on the clock fall of the first
automatically inserted wait state (T,),
the external daisy-chain device has to
be connected to the upper chain loca-
tion. Also, it must settle within two
clock cycles.

ure 9B). When the external peripheral See Zilog, page 59
interrupt Structure

The Z80 architecture, with it's dual
register bank architecture, is well
s.uited to emb.ec!ded contro.l applica- Baud Rate
tions by providing you with a fast Generator <————— — | Sorial Data
. . l——
interrupt response time or context LN channel b+ } Channel Clocks
switching. If you want to service one d > /SYNC
channel while setting up the other, the Internal 10X 19 | /Walt

. . Channet Frame

SAC has a complete context switching Control Registers Stalus
capability. This dual register bank Logle FIFO | oseste Modem, DMA,

i i Control or Other
switching approach halves the latency ﬁ ﬂ — M ssaus " [Controls
switching time.

To control interrupts, the Interrupt Internal BUS
Enable In (IEl) signal is used with L
Interrupt Enable Out (IEQ) to form a | -]

.. | . . nterrupt Interrupt
priority daisy chain when there is more Control "1 contol
than one interrupt driven peripheral. Lines Logic

IEO controls the interrupt of external Figure6 SCC Block Diagram

6 The Computer Journal / #50

Floppy Disk Alignment with the RTXEB and Forth

Second of Three Parts

By Frank C. Sergeant

We continue now with Frank Sergeant's first place winning entry in the Harris RTX design contest—Editor

Disk Drive Control Signals

Five outputs are used to send control signals to the drive:
Direction, Step, Write Data, Write Enable, and Side Select.
These are all digital signals. The *Motor On and the drive
select control signals could be connected to outputs, but are
not; they are hardwired active.

Signal Conditioner

Only one analog signal is needed from the drive: from the
head read amplifier. This is picked up with a test lead or
alligator clip (from TP1 or TP2 on Tandon drives). After con-
ditioning and comparing, this will trigger an interrupt on
EI3.

The signal we need to condition comes from the output of
{one of) the differential head read amplifiers. It is an AC
signal with about a 300 to 500 mV swing on top of about 6
volts DC. We run it through a capacitor to get rid of the DC
and through an op amp to level shift so none of the signal
goes below ground (we put back a little DC). That’s all. This
lets us use a single power supply op amp. We could go to
greater complexity and use both of the differential signals
(TP1 and TP2) but it isn’t necessary in this application. This
conditioned signal will usually be referred to as ‘the signal.”
It is not the raw read (digital) signal from the 34 pin disk
cable.

Digital to Analog Converter (DAC)

A simple R-2R resistor network connected to the upper 8
output bits does all the work. It makes a voltage divider with
256 possible settings between 0 and 5 volts. The output bits,

being CMOS, connect their ends of the resistors to either
GND or Vcc. This is not the best range to match to the condi-
tioned input signal, so it is scaled downward by a fixed volt-
age divider, to give a range between 0 and 450 mV. The word
DAC! sets the level (and leaves the other bits of the output
port unchanged). 0 DAC! sets it to the minimum level and
255 DAC! sets it to its maximum. Currently the prototype
uses 47K ohm SIP resistor packs. A resistor is used alone to
make a ‘2R’ and two are paralleled to make an ‘R’. This is
fast and works great but uses more pins than necessary. |
might use an integrated DAC for production.

The DAC is used to set a reference voltage that will be
compared with the signal from the disk. This reference will
be referred to as Vref.

The DAC is used by the software as part of the analog to
digital converter (ADC), in order to measure the analog sig-
nal from the drive.

Comparator

The conditioned signal (hereafter just called ‘the signal’) is
connected to the non-inverting input of the comparator. Vref
(from the DAC) is connected to the inverting input of the
comparator. As long as the signal is lower than Vref, the
comparator will be low. If the signal goes above Vref, even
briefly (as at the top of a wave-form), the comparator will go
high and trigger an interrupt. The inputs were connected this
way (Vref to the inverting input), so that a high would mean
the signal exceeded Vref, because the interrupt (EI3) is active
high.

The Aligner—Software Functions

Frank Sergeant is a hardware/software consultant specializing in business and/or

Status

realtime systems. He is the author/implementor of Pygmy Forth for PC/MS-DOS
systems (version 1.3 is auvailable from FIG, GEnie, and fine BBSs and shareware
houses everywhere). He has been designing, building, and programming microcom-
puter systems since the late '70s. One of his greatest joys is replacing hardware with
software. He is in the process of porting Pygmy to the Super-8, 68HC11, RTX, elc.
His floppy disk drive aligner entry won the RTX design contest. Shortly thereafter
he was shocked to hear the RTX was being abandoned by Harris. However, recent
conversations with Harris officials have reassured him that it was only future devel-
opment that was abandoned. Harris has fully, publicly committed to producing the
RTX for a minimum of 2-1/2 years. In light of that, Frank breathed a sigh of relicf
and continues his RTX development work. Frank can be reached as F.SERGEANT
on GEnie or through TCJ.

The Computer Journal / #50

The Aligner reads disk drive status
signals through the input port. As de-
scribed under the section on 1/ O Ports,
this is done with the phrase 31 G@ (see
screen #3606). We then AND this value
with a bit-mask to isolate the bit we are
interested in. Since these status lines
are active low, a resulting zero means
the line was active and a non-zero
means the line was inactive. We usu-
ally convert this to positive logic with
the word 0=.

scr §# 3611
(DAC! write to 8 hit R-2R DAC)

+ DAC! (u -)
7 POR 2* NEXT (u*256)
OUT @ 255 AND OR Pl ;
(put it in high half of output port; don’t change low half)

scr # 3911
Digital to Analog Conversion

This system uses an 8 bit DAC built with an R-2R
voltage divider network, using 47K ohm SIP resistor
packs. 2R equals 47K and R equals half of that (2 47K
resistors in parallel). This gives a 256-step output
between GND and the power supply. This is further

{ note that we do not save the dac value in OUT as we do) scaled by a fixed voltage divider (100K & 10K} to cut
(for the disk drive control bitas - the lower byte remains) the output by about an eleventh (a potentiometer could
{ undisturbed and the lower byte of OUT is still valid.) be substituted), giving a closer match to the signal to
be measured.
A similar result can be achieved by using an integrated
8-bit DAC.
DAC! Set the output voltage level.
scr #3612 scr §# 3912
(BI3-INTW interrupt handler used by CLOCK) EI3 interrupt routine to map windows for azimuth

(save time when each peak starts, starting at PAD)
(the beginning of each peak will trigger this interrupt)

: BI3-INTW (-)
TCl€ CRE (time cc)
1 #PEAKS +!
IMRE (time cc imr)
BI3 NOT IMR! { ie mask all interrupts except eil)
ROT PAD #PEAKS € 2* + (cc imr time a) I (cc imr)
BEGIN CRE 0> (ie msbit of CR will be set)
(as long as comparator is high)
TC1¢ 1000 U< (je bail out if timer counts down too far)
OR UNTIL (loop until wave peak goes away)
IMR! CR! H

burste

EI3-INTW (“W” for “window”) This stores the current
timer value at PAD and waite for the comparator to ¢o
low again, so we don‘t count a wave more than once.
These timer values represet the count-down values from
the start of the index pulse. All of the peaks of
interest occur in about the lst two milli-seconds.

This int handler just stores the values. It is set up
by CLOCK. Then MARK is used to figure out from these
times where the azimuth bursts occur.

scr # 3613

(CLOCK find when azimuth bursts occur)

1 CLOCK (-)
Vb € 4 + DAC! (set dac so any wave peak will trigger int)
PAD 200 ERASE (clear at least the lat few bytes for data)
[’} EI3-INTW 10 !INTERRUPT (install interrupt handler)

0 #PEAKS ! { initialize wave counter)
SYNC (wait for index pulse)

0 TC1l! EI3 UNMASK (start timer and allow interrupts)
2 MS (2 milli-seconds is plenty of time)

EI3 MASK ; (stop interrupt handler)

scr # 3913
Find when azimuth bursts occur

CLOCK Set DAC to a value low enough that every wave
peak should trigger the comparator. Set up the EI3
interrupt handler. Wait for the index pulse (SYNC).
Initialize timerl. Note that timerl is not enabled as
an interrupt source, but that the EI3 interrupt
(connected to the comparator’s output) reads timerl to
find out when the current wave peak occurs. We let it
run for “2 MS” (actually longer because of the time
spent in the interrupt handler) and then close down the
operation by masking the interrupt.

The data we have gathered will be processed by MARK.

scr # 3614
(EI3-INT note it if comparator ever goes active)
: EI3-INT (-)

-1 COMP-FLAG ! EI3 MASK ;

-

this is just about the ideal size for an interrupt handler)

scr # 3914

Note whether the comparator ever goes active.

EI3-INT This is a very simple interrupt handler. If
it is invoked (by the comparator going active) it notes
that fact by setting COMP-FLAG true. Then, it disables
itself. It is used to let ue know if the disk drive
signal exceeded the voltage reference level set by the
DAC at any time during a particular time intexrval. It
turns iteelf off so it won’t be invoked repeatedly
during the high part of a wave.

On the RTX, unlike most processors, the return from
interrupt instruction is the same as a return from
subroutine. This allows an interrupt handler to be
tested from the keyboard just like any other Forth
word !

The Computer Journal / #50

The word INX? is true during the index pulse. The follow-
ing definitions (from screen #3605) allow us to synchronize
with the disk:

: P@ { ~u) 31Ge ; MACRO
s+ INX? (-£f) Pe 1AND O= ; (true during index pulse)
: 2INX (=) BEGIN INX? UNTIL ;
¢t ?NOT-INX (-) BBGIN INX? 0= UNTIL ;
SYNC (=) ?NOT-INX ?INX ;

—

possibly wait through the current index pulse before)
looking for the next one)

-

The word ?INX waits until the index line is low. The word
NOT-INX waits until the index line is not low. Note the
convention of putting the question mark on the end of words
that return a flag and putting the question mark on the begin-
ning of words that do something that is conditional in some
way (but that probably don’t return a flag). Thus, 2INX does
something conditional: it hangs in a loop until INX? returns a
true flag,

Both ?INX & ?NOT-INX are combined into the word
SYNC which guarantees to wait until the next index pulse
starts. At first glance you might think that 2INX would ac-
complish this on its own, but it would fail if executed while
the index line was already low. It would immediately return
because INX? would be true, but we wouldn’t know that we
were at the exact beginning of the index pulse.

The status lines for *Write-Protect and *Track0 are read
similarly.

Control

The disk lines to control the motor and to select drive 0
and drive 1 are hardwired active (low) to reduce the number
of output lines we need. This is not really necessary, as we
have some spare output lines, but it does remove one more
complexity from the program. Usually you would only want
to connect one drive to the Aligner at a time. This way,
whichever drive you connect, it will be selected and its motor
will always run. Drives can be jumpered to respond either as
drive 0, 1, 2, or 3, but 0 and 1 are the most common. As long
as it is jumpered as 0 or 1, you do not need to do anything
special to select it for the Aligner.

Screen #3604 shows the bit-masks for the control lines.
These are used just as in the LED example. This application
does not use the Write or the Write Enable lines, but we
make sure they are set inactive (high) when we initialize the
output port to all ones. An extension to this project would
include using those lines for a write test.

That leaves only 3 control lines to handle: HEAD (Side
Select), *DIR (Direction), and *STEP. HEAD is used to select
which of the two heads will be active. The following words
from screen #3607 do this:

HO (-) HEAD OFF ;
H1 (-) HEAD ON ;

The *DIR line determines whether the head will move to-
ward the innermost track (higher track numbers) or toward
the outermost track (lower track numbers) whenever the
*STEP line is pulsed.

The variable TRK holds the value of the current track so
we’'ll know which direction and how far to step in order to
move to a specific track. For this to work, TRK must be ini-
tialized to the actual track the head is on. The only way to
achieve this initial synchronization is to step the head out-
ward until the track 0 switch goes true. At that point, the

The Computer Journal / #50

head is on track zero and we store a zero into TRK. Thereaf-
ter, each time we move the head, we update TRK. See screen
#3608.

DAC: Setting Voltages

The 8 bit DAC determines a reference voltage (Vref). We
set Vref by writing a value between 0 and 255 to the upper
output port connected to the DAC. The only caution is that
we must not disturb any of the lower 8 bits. DAC! from
screen #3611 takes care of this by shifting the DAC value 8
bits to the left. We could do it with 256 * or -8 SHIFT but the
phrase 7 FOR 2* NEXT does it faster. This value is then com-
bined with the value of the lower 8 bits, as follows:

t DAC! (u =) (uis between 0 & 255)
7 POR 2* NEXT (u*256)
OUT @ 255 AND (isolate lower 8 bits)
OR (combine with DAC value)
Pt ;

We do not have to update OUT as long as we don't
change the lower 8 bits.

Examples of setting voltages with DAC!:

255 DAC! (set Vref to its maximum)
127 DAC! (set Vref to mid-scale)
0 DAC! { set Vref to its lowest)

Whenever the input signal is higher than the reference
voltage the output of the comparator will be high.

THE COMPARATOR INTERRUPT ROUTINE

For measuring peak amplitudes of the signal, all we want
the interrupt to do is set a flag true and disable itself. We
disable the interrupt for two reasons: (1) once is enough to
tell us the peak exceeded Vref and (2) the interrupt is level
sensitive. That is, the interrupt would be continuously active
until the wave-form went below Vref and we have other
things to do than hang in the interrupt handler. Here’s the
comparator interrupt handler:

3 EI3-INT (-) -1 COMP-FLAG ! EI3 MASK ;

It is installed from within another word with the phrase
[*) EI3-INT 10 !INTERRUPT

This shows how simple interrupts are to deal with using
Forth on the RTX. To use the interrupt, set the DAC, clear
COMP-FLAG, wait a little while, and check COMP-FLAG. If
COMP-FLAG is now non-zero we know the comparator has
been triggered.

Sometimes we use the DAC & comparator for another
purpose: to time the wave-form rather than measure its am-
plitude. We set the DAC just a little above the signal’s quies-
cent level so every wave will trigger the interrupt. We time
the period between interrupts. This uses a slightly different
interrupt handler that waits for the comparator to go low
again before returning. That way we count each peak only
once.

ADC: Measuring Voltages

All the tests the Aligner performs measure either the time
between events or the amplitude of the analog read signal.
Measuring time is easy with the speed of the RTX and its

scr # 3615
(ADC successive approximation analog to digital conversion)
t ADC { =~ c) (time delay must be stored in SR)
[*] EI3-INT 10 !INTERRUPT
0 255 127 (lo hi mid) DUP DAC! 50 CYCLES
7 FOR (lo hi mid)
0 COMP-FLAG 1!
EI3 UNMASK SRE CYCLES SWAP (lo mid hi)
COMP-FLAG &
IF (dac is tco low) ROT THEN DROP
(lo hi) 2DUP + 2/ (lo hi mid) DUP DAC!
NEXT EI3 MASK >R 2DROP R> ;

scr # 3915
Successive Approximatiou Analog to Digital Conversioun

ADC This measures the peak voltage of a waveform.
The signal to be measured is one input of a comparator.
The voltage reference set by our DAC is the other
input. Whenever the signal to be measured exceeds the
DAC, the comparator output goes high, triggering the
EI3 int handler, which sets COMP-FLAG. We have 8 bits
to set Bo we go thru the loop 8 times. Each time we
split the difference between our high & low boundaries
and wait a while (determined by the value previously
loaded into SR) and see whether we were were too high
or too low. This midpoint then becomes either the new
high or the new low boundary for the next pass.

scr # 3616
(IVb measure gquiescent voltage level when there’s no signal)

-

this establishes a base level to compare azimuth burst)
amplitudes to)

S

tVb (-)

8 SR! (set up the delay used by ADC)

SYNC (wait for the index pulse)

ADC (quick, measure the voltage before data starts)
Vbt ; (save the base voltage reading)

scr § 3916
IVb Use the ADC to find the quiescent voltage of
the azimuth track. We've got to be quick!

scr § 3617
(These words help analyze the data collected by CIOCK)

: Tpk (pos — u) 2* PAD + DUP € SWAP 2- @ SWAP- ;
(this is elapsed time for this peak since previous peak)
(“tee peak”)

: Tabs (pos - timer-value) 2* PAD + & ;
(this is elapsed time since index pulse)
(“tee abs")

scr § 3917

Tools to help analyze the timing data stored at PAD by
CLOCK

Tpk (“tee peak”) This returns the time in RTX clock
cycles from the previous wave peak to the current wave
peak. The actual down-counting timer value from the
index pulse is what is stored at PAD. Since the current
reading is compared to the previous reading, we have a
zero value dummy position in the lst slot.

Tabs (“tee abs”) This is elapsed time since index
pulse for the current wave peak.

scr #3618
(More help in analyzing the data collected by CLOCK)

: PEAK<? (pos value - pos+l f)
(“peak less than” think of it as similar to 0<)
(true if value is less than peak or if at end of data)
OVER Tpk U< (pos f) OVER SR < 0= OR SWAP 1+ SWAP ;

: <PEAK<? (pos lo hi ~ pos+l f)
{ “peak within”)
(true if peak is within lo & hi or if at end of data)
2>R DUP 1+ SWAP DUP Tpk 2R> WITHIN SWAP SR€ < 0= OR ;

scr § 3918
Tools to help analyze the timing data stored at PAD by
CLOCK

PEAK<? (“peak less than”) Think of it as similar to
0<, This tells us if the current peak interval is
greater than the number on top of the stack. It also
returns true if there are no more peak intervals to
loock at. (True if value is less than peak or if at end
of data.)

<PEAK<? (“peak within”) This is true if peak is
within lo & hi or if we are at end of the data.

These two words alsc increment the position. I‘m on the
look out for better names for these or better

factoring, but at least they are easy to test and they
help make the next definition more readable (see MARK).

scr § 3619
(Locate azimuth burst windows by reading times at PAD)
: MARK { -)
WINDOWS 16 ERASE #PEAKS @ (end-marker) SR! ()
1 BEGIN 500 PEAK<? UNTIL (index to data burst)
BEGIN 1000 PEAK<? UNTIL (data burst to lst az burst)
WINDOWS SWAP 3 FOR (a pos)
BEGIN 30 150 <PEAK<? UNTIL
2DUP 1- Tabs SWAP ! SWAP 2+ SWAP
BEGIN 200 PEAK<? UNTIL
2DUP 2- Tabs SWAP ! SWAP 2+ SWAP
NEXT (a pos) 2DROP ;

10

scr § 3919

MARK This studies the times of the wave peaks on
the azimuth track to figure out when the azimuth bursts
occur. The data was placed at PAD by CLOCK (using EI3-
INTW). MARK leaves the timer values for the azimuth
windows in the WINDOWS array.

This info is used by the azimuth tests. There should be
a gap of at least 500 (1200-1300 typical) clocks from
the index pulse. Then there is a data burst. Then there
is another gap of at least 1000 clocks (2300 perhaps).
Then there are 4 groups of about 61 125 KHz bursts.
These should have a period of about 64 clocks, but
we’ll accept anything “close” (within 30 to 150). These
timings are used by AWAIT & AZ so that the azimuth
burst peak amplitudes can be read at the correct times.
scr § 3520

The Computer Journal / #50

three built-in timers. That leaves the problem of measuring
voltage. The RTX does this by setting the DAC to a certain
level and checking the comparator to see whether the signal
exceeds that level. Software controls this process, converting
the DAC and comparator into an ADC. This not only saves
the cost of an ADC but simplifies the conditioning circuitry
needed to measure the peaks of the wave-forms. Again, the
speed of the RTX helps eliminate hardware.

The 8 bit DAC determines a reference voltage (Vref). Set
Vref by writing a value between 0 and 255 to the output port

" connected to the DAC using the word DAC!. Whenever the
input signal is higher than the reference voltage the output of
the comparator goes high. The comparator is connected di-
rectly to external interrupt pin EI3. If we set Vref higher than
the peak amplitude of the input signal the comparator will
never go high and the interrupt will never be triggered.

The level of the input peaks can be determined by setting
Vref to various points and seeing which points cause an
interrupt. We start looking within a range of 0 to 255 (the
maximum range of values possible with an 8 bit DAC). We
set the DAC to the middle of the range (to 127) and wait a
little while and see if the interrupt was triggered. If it was,
we know that the peak exceeded Vref, so we narrow the
range to 127 to 255. Again we split the difference and set the
DAC to the middle of the (new) range (to 191), wait, and see
if the interrupt was triggered this time. If it was, we narrow
the range to 191 to 255. If it wasn’t, we narrow the range to
127 1o 191. We continue this process until the DAC has ze-
roed in on the answer. It only takes 8 times to find it with an
8 bit DAC. This method of analog to digital conversion is
called the successive approximation method. Programmers
call it a binary search.

Note that we not only have a software ADC, we also have
a software peak detector, without having to build a peak
detector circuit as part of the signal conditioner.

By taking these readings on a regular basis and plotting
them we have a digital oscilloscope. This is how we show the
cat’s eye pattern on track 16 of the AAD and the azimuth
bursts on track 34.

Measuring Time Intervals

For short intervals we can read a timer at the beginning of
the event and read it again at the end of the event. The differ-
ence between the two readings is the time of the event in RTX
clock cycles. With an 8 MHz clock, each cycle represents 125
ns (there are 8 cycles per microsecond). The timers roll-over
every 65,536 cycles (unless they have been initialized with a
smaller value). At 8 MHz this is only about 8 ms.

For longer intervals, we select a convenient value and load
the timer. Thereafter it will reload itself with the same value.
We set up a timer interrupt routine to count the number of
roll-overs between the start and end of the event to be meas-
ured.

The Aligner takes two time measurements. The first is the
time the drive takes for one complete revolution. This is used
to make sure the motor speed is set correctly. This is a long
interval of, we hope, 200 ms. This uses the roll-over interrupt
mentioned above and shown on screen #3628.

The second is the time between signal peaks of the analog
read signal. This is an example of a short interval - on the
order of 8 to 500 microseconds. To make this measurement
we use the EI3-INTW interrupt routine to store the current
timer value in a work area starting at PAD and wait until the

The Computer Journal / #50

peak goes away. To find the time between peaks, we com-
pare the two adjacent timer readings at PAD. See screens
#3612 and #3613.

Special Techniques

1. Make It Visible

The RTX with Forth is like a jeep with a winch: there is no
excuse for staying stuck in the mud. It is easy to use special
utility code to help investigate the hardware or software
you're working with. These tools do not need to be present in
the final application. For example, a routine might need to
complete within a certain number of cycles or you’ll miss an
event. Here's some code to let you determine exactly how
long a segment of code takes to execute.

+ T (-) 0TClLI ; (start the timer at zero)
¢ .T (=) TCld NEGATE 1- (elapsed-time)
-1 IMR! (disable all interrupts)
EI3 UNMASK (enable the serial interrupt)
U. ." cycles “ (print the result)
ABORT ; (halt everything so we can)

(read it)

The word T stands for “time” and is placed at the begin-
ning of the section you want to time. The word .T stands for
“print time” and is placed at the end of the section you want
to time. It turns off the interrupts (except for the serial line
communicating with the host!) and aborts after printing the
answer. This lets you put it in the middle of a loop without
changing the loop parameters - it will stop after just one pass
because of the ABORT. The word 1- compensates for the time
spent by T & .T between the two timer readings. It can be
found experimentally by running

t XL (=) T .T ;

until you get an answer of zero. This is a quick way to get
some information you need now without having to count
instructions. The point is to toss together a test rather than
worrying or guessing. Screen #3637 shows some more ex-
amples of timing instructions.

2. Make It Add Up

It is important that every pass through the cat’s eye loop
take exactly the same number of cycles. The unknown vari-
able was how much time would be stolen by the interrupt
handler - it would be different on each pass. A timer can be
used, sort of like a memory parity bit, to even the time out.
The definition of CE on screen #3630 illustrates this tech-
nique, forcing each pass to take 8000 cycles (1 ms). The trick
is to set the timer at the beginning of each pass and read it at
the end of the pass. From this you know how many cycles to
kill to make the entire pass come out exactly right. The con-
stant 7992 was found by using T and .T on the loop with
interrupts disabled.

We complete construction and programming of the
Floppy Disk Aligner in the next issue of The Computer
Journal with the final installment of the series.

11

ser ¢ 3620
(Vp find peak voltage level of azimuth burst or ce sample)

Vp (“vee pee”)
Measures the peak voltage over a short interval. This
is used for both the azimuth bursts and the cat's eye

:t Vp (- dac) pattern.
200 SR! (set up the delay value used by ADC)
ADC ; (measure the voltage) This is our workhorse word to measure wave-form
amplitudes.
scr #3921
scr § 3621 AWAIT Wait until TIMER1 drops down to the value on

(AWAIT Wait for the timer to count down to a specific value)

t AWAIT (timerl-value -)
BEGIN TC14 OVER U< UNTIL DROP ;

the stack. This is used by AZ so the azimuth bursts
will be measured at the correct times.

‘mcr #3622
(Measure azimuth burst amplitudes)

t AZ (- 4th 3rd 2nd 1st) (amplitudes of the 4 bursts)
WINDOWS 12 + (a)
3FOR (. . . &) DUP @ SWAP 4 — NEXT DROP (t4 t3 t2 tl1)
(above puts the starting time for each window on the stack)
SYNC 0 TC1t (wait for the index pulse and start the timer)
3 FOR (<starting times>)

scr § 3922 .

AZ Measure the amplitudes of the four azimuth burate.
The WINDOWS array tells it when to do the measuring. It
starts timerl when the index pulee goes active (SYNC)
and AWAITs the correct timer valuee before taking the
readings. Note the \\ at the end of the definition.
This forces a separate EXIT instruction. Otherwise, the
compiler seems willing to “optimize” the return with
the 2R> instruction (which it should not do.)

AWAIT Vp (wait for the next window and take a reading)
R> SWAP 2>R (tuck that reading under the loop index)
NEXT
2> 2R \\ ; (retrieve the 4 readings from return stack)
scr # 3923
scr # 3623 SUM MAdd corresponding numbers in two groups of 4. This

(SUM add corresponding numbers in two sets of four)

+ SUM (abecdwxyz = atw btx cty d+z)
4 ROLL + >R (abcwxy)
3 ROLL + >R (abwx)
ROT + >R { aw)
+ 2R> R> ;

{ this will be used by .AZ to average several sets of readings)

is used by the following word to average several
azimuth readings.

scr # 3624

(+AZ show azimuth test results)

t .AZ (=)
1Vb (find base voltage)
CLOCK MARK (find azimuth windows)

AZ AZ A2 AZ AZ (take 5 sets of azimuth readings)
SUM SUM SUM SUM (4th 3rd 2nd 1st) (add them up)
2 (ie starting-row for cursor position)

3 FOR (make 4 passes, one for each of the 4 bursts)
DUP O AT (position cursor on the next row down)
SWAP S / (we added up 5 readings so now we take average)
Vb @ - (then subtract the base voltage level)
POR ASCII X EMIT NEXT 20 SPACES 1+ (ie bump cursor row)

(print horizontal histogram representing amplitude)

NEXT DROP ;

ST-AZ (-) 34 SEEX [‘] .AZ HEART ! ;

scr § 3924
Read Azimuth Amplitudes & Show Resuits

the peak voltages to scmething (1Vb). Find when to
sample (CLOCK & MARK). Take 5 samples and average them.
Position the cursor and display a horizontal histogram
with ‘X‘s to represent the amplitudes less the base
voltage Vb.

ST-AZ Start the azimuth test. Make the azimuth test
the active test.

scr §# 3625
{ reduce or divide each sample by a common value)

1 LOW=-SAMPLE (= u) (find the minimum out of all 200 samples)
PAD 255 #SAMPLES FOR OVER C@ MIN SWAP 1+ SWAP NEXT
SWAP DROP ;

-SAMPLES (subtrahend -) SR! PAD #SAMPLES
POR DUP Cd SR€ - OVER C! 1+ NEXT DROP ;

/SAMPLES (divisor -) SR! PAD #SAMPLES
FOR DUP C@ SR¢ / OVER C! 1+ NEXT DROP ;

12

scr § 3925
LOW-SAMPLE Find the group minimum.

-SAMPLES Subtract a common value from each sample.
/SAMPLES Divide each sample by a cammon divisor.
These words are used to scale the measurements for
display on the terminal. (The samples are stored at PAD
by CE.) These words are called by MASSAGE to massage
the data.

scr § 3926

The Computer Journal / #50

Stepper Motor Control with the F68HC11

If One is Good, Two Is Better

By Matthew

Mercaldo

This segment of our journey will be a deviation from the
“Plan”; an exciting one. The original intent of this article was
to control a motor with feedback. The feedback was to be
some type of encoder or like device which measures the ra-
dian travel of the motor, or other feed-

were used in the last article in this series. Listing 1. is the new
code. Some of it will look familiar; some of it will look quite
alien. The code in listing one has been grown from the motor
code in the last article. Inmediately we see that the MCB has

back device that is attached to the mo-
tor. Unfortunately an encoder device
could not be found which would fit
within the meager budget of this series.
Attempts are still being made along
these ends.

Instead we will spin two motors, at
will and asynchronously, in the most
unique way. A framework will be dis-
cussed which allows for an extremely
efficient use of processor resources and
memory. To do this we will use a tech-
nique called “Stepped Inference”. It is a
way to represent state oriented models
with a system of rules. This technique
will give us the required medium to
factor the system states. From these
states we can, through techniques of
structured design, ascertain a set of
- rules representative of the system
states. In a concise form this set of rules
can be embedded into a “State Knowl-
edge Base”. If properly designed into

Listing 1
HEX

(Offset to be added

002 CONSTANT ACTION
004 CONSTANT SENSOR
006 CONSTANT >>PORT
008 CONSTANT TIMER

(More MCB structure

Q0E CONSTANT RATECNT

010 CONSTATN ACCICNT

the system, this set of rules can be used 012 CONSTANT STEPCNT Determines in cooperation with ratecnt the)
to run many similar devices asynchro- slowest motor velocity.)

1 Th lidati f devi 014 CONSTANT +SLOPE Determines the acceleration of the motor.)
nousty. € consolidalion o evice 016 CONSTANT =-SLOPE Determines the deceleration of the motor.)
context into some data object or struc- 018 CONSTANT InferenceTable (Pointer to the current state Knowledge.)

ture (the MCB in the last article) is the 01A CONSTANT

key to achieving asynchronous behavi-
our.

(Article III in a series)
{ Stepper Motor Control by Matthew Mercaldo)

(Timer Output Compare interrupt.)
VARIABLE TIMER OFFSET

{ The Motor Control Block structure.)
000 CONSTANT NEXT_ MOTOR

O0A CONSTANT STEP_BIT

00C CONSTANT ACCUMULATOR (

“InferenceTable (Pointer to the current)

to TCNT — free running timer — for next)

~1 TIMER_OFFSET !

{ Pointer
Pointer

to Next MCB)

{ to an action to carry out)

(Pointer to a sensor action)

{ Pointer to the NMIS 7040 Port)

(Pointer to a timer variable)

(The active motor bit of the NMIS 7040)

elements to the MCB)

A timer which is decremented by rateCnt on
each interrupt. When the accumulator’s
value reaches zero, a new phase pattern is
written to the motor step circuit, and the
accumulator is reinstantiated with
stepcnt’s value.)

Determines the velocity of the motor.)
This etate variable in cooperation with
acclent determine the motor’s acceleration
or deceleration.)

Determines the acceleration, both positive)
and negative, of the motor.)

- -

(
(
{
(
(
(
(
(
(
{
(
(
(
(
(

(position in the state)
(Knowledge table.)

Listing continued next page

A Walk Through the Code
The code for startup and the assembler are the same as

changed and grown to allow for the motor speed control
context information. Somewhat below, the rules are com-
piled into the system. Rules are each

composed of two parts; the condition
routine and the action routine. There

Matthew Mercaldo is employed by a huge firm. With a small group, he develops
software tools for field service engineers to do their thing. At 4:30 or 5:00 p.m.,
when the whistle blows, his thoughts race toward the edge. He dreams of articu-
lated six legged walking beasts, electronic brains that can fend for themselves, and
the stuff of “U.S. Robots and Mechanical Men.” Someday he dreams of running
power out to his garage, and with his wife and a select group of friends, opening his
own automoton shop - and thus partially fulfilling his childhood dreams. (Pluto-
nium, Tritium and the like are still not available for public “consumption”; but
seeing the moons of Jupiter would be spectacular in one’s own starcruiser!)

The Computer Journal / #50

are four groups of rules, each group
representative of a different motor
state. The states represented by rule
groups for this system are the initiali-
zation state, the acceleration state, the
constant velocity state and the done
state. Following the rules and their
combination into the State Knowledge

See Stepper, page 50

13

01C CONSTANT CV

.

Determines the length of)
motor run.)
O1lE CONSTANT MCB_SIZE (Size of this data structure)

-

000 CONSTANT [CONDITION] Offset into the table of the)
condition of current rule.)
Offset into the table of the)

action of the current rule.)

002 CONSTANT [ACTION)

_——— o~

Definition of the condition)
part of a rule.)
Definition of the action)
)
)
)

{CONDITION) CREATE ;

t (ACTION) CREATE ;
part of a rule.
Dafinition of a state
Knowledge base.

t (KB_) CREATE ;

8000 CONSTANT >PORT (Pointer to NMIS 7040 Port)

CREATE ANCHOR MCB MCB_SIZE ALLOT

The Base MCB for a multiple device
System. Each Device has its own MCB.
Bach MCB is linked to another. At a
Regular Heart beat interrupt, thie
MCB is used to Reference the rest of
the list of MCBs. The list is
circular so the anchor MCB's action
will also be fired last. The anchor
MCB’s action is an RTI.

All MCB’'s actions must fire before
the next interrupt fires.)

VARIABLE CURRENT_MCB
(This is the currently active MCB)
(during the MCB interrupt cycle.)

CREATE FIRST MCB MCB_SIZE ALILOT
(The MCB we will use for the NMIS)
{ 7040 Stepper motor example.)

VARIABLE >LAST ACTION

)
VARIABLE >SENSOR_ACTION (Forward reference sensor_action

)

(Forward reference last_action

(The Tools will live here...)

(Enable Interrupts; This word enables all Interrupts)
CODE EI (-)

ASSEMBLER

NEXT * JMP
EBND-CODE

(Disable Interrupts; This word disables all Interrupts)
CODE DI (—)
ASSEMBLER

NEXT " JMP
END-CODE

(A stub for future sensor update actions.)
(i.e. encoders, etc.
CREATE SENSOR_ACTION
ASSEMBLER

RTS

)
(— ; Must be called via JSR)

SENSCR_ACTION >SENSOR_ACTION !

(Steps the motor accessed by X's MCB)
CREATE STEP (— ; code to step the motor)
(X must point to MCB)
{ uses D)
(Toggle Step Bit UP)
STEP BIT ,X A 1DA
A ASL
>PORT * A EOR
>PORT * A STA
{ Toggle Step Bit Down)
STEP_BIT ,X A LDA
A ASL
>PORT * A EOR

>PORT * A STA

(End _STEP)

(

VARIABLE >INIT_KB
VARIABLE >ACCL_KB
VARIABLE >CV_XB

VARIABLE >DONE_KB

)

(Forward reference
(Forward reference
(Forward reference
(Forward reference

to init_kb
to accl_kb
to cv_kb

to done_kb

(Rules are made up of two components: a condition
(and an action. In the definition of rules, the
(following code defines condition and action names
(associated with the current state.

(1.X are the initialization rules.

2.X are the acceleration and deceleration rules.
3.X are the constant velocity rules.

4.X are the completion rules.

Rules come in two portione; the even and the odd.)
The even will be the condition portion of the rule)
and the odd will be the action portion of the rule)

—

(LA X222 222222222l dad il Rt addis i st tsdtds)])

(RULE 1 of the INIT KB)
(CONDITION) (1.0)

ASSEMBLER
-1 # A LDA
RTS
(ACTION) (1.1)
ASSEMBLER
STEPCNT ,X 1DD
ACCUMULATOR ,X STD
+SLOPE ,X LDD
ACCLCNT ,X STD
RATECNT ,X STD

>ACCL_KB * LDD
InferenceTable ,X STD
RTS

(FAA A LA 2222224 A2 AR a2 iRt ddRtltaddndlasdsd)])

(RULE 1 of the ACCL KB)
(CONDITION) (2.0)
{ if accumulator > 0 and)
{ ratecnt > 0)
ASSEMBLER
ACCUMULATOR ,X LDD
PL IF
RATECNT ,X LDD
PL IF
-1 # A LDA
RTS
THEN
THEN
A CLR
RTS
(ACTION) (2.1)
(then accumulator = accumulator - ratecnt)
ASSEMBLER
ACCUMULATOR ,X LDD
RATECNT X SUBD
ACCUMULATOR ,X STD
RTS

{ RULE 2 of the ACCL_KB)
(CONDITION) (2.2)

(if ratecnt >= 0 and)
{ ratecnt >= stepcnt and)
(accumulator < 0)
ASSEMBLER
RATECNT ,X LDD
GE IF
STEPCNT ,X CPD
LE IF
~1 # A LDA

14

The Computer Journal / #50

RTS
THEN

THEN

A CIR

RTS
(ACTION) (2.3)
{ then ratecnt = ratecnt + acclcnt and)
{ accumulator = stepcnt and)
(step the motor)
ASSEMBLER

_STEP ~ JSR

ACCLCNT ,X LDD

RATECNT ,X ADDD

RATECNT X STD

STEPCNT ,X LDD

ACCUMULATOR ,X STD

(RULE 3 of the ACCL XB)
(CONDITION) (2.4)
{ 1f ratecnt > stepent)
ASSEMBLER

RATECNT ,X LDD

STEPCNT ,X CPD

PL IF

-1 # A 1DA
RTS

THEN

A CIR

RTS
(ACTION) (2.5)
{ then step the motor and)
{ set the accumulator to cv count and)
{ set the state Knowledge Base to CV)
ASSEMBLER

_STEP ~ JSR

cv ,X LDD

ACCUMULATOR ,X STD

>CV_XB * LDD
InferenceTable ,X STD
RTS

(RULE 4 of the ACCL_KB)
(CONDITION) (2.6)
(if ratecnt <=0)
ASSEMBLER
RATECNT ,X LDD
LE IF
-1 #A1DA
RTS
THEN
A CIR
RTS
(ACTION) (2.7)
{ then set the state Knowledge Base to done and)
(we’'re done with this instance of motor run)
ASSEMBLER
>DONE_KB " 1DD
InferenceTable ,X STD
RTS

(AEE R RN RN AR RN AN AR AN AN AN RN AR T ANNNR NN NN NN)

(RULE 1 of the CV_ KB)
(CONDITION) (3.0)
(if accumulator > 0)
ASSEMBLER
ACCUMULATOR ,X LDD
PL IF
-1 # A LDA
RTS
THEN
A CIR
RTS
(ACTION) (3.1)
(then step the motor)
(note that this is a primitive way of approaching thisi)
ASSEMBLER
STEP “ JSR

ACCUMULATOR ,X LDD
1 # SUBD
ACCUMULATOR ,X STD
RTS

(RULE 2 of the CV_XB)
(CONDITION) (3.2)
(1f accumulator <= 0)

ASSEMBLER

ACCUMULATOR ,X LDD

LE IF

-1 # A 1IDA
RTS

THEN

A CIR

RTS
(ACTION) (3.3)
(then step the motor and)
{ set the appropriate state variables and)
(set the state Knowledge Base back to accl)
ASSEMBLER

_STEP * JSR

STEPCNT ,X LDD

ACCUMULATOR ,X STD

-S1OPE ,X LDD

ACCLCNT ,X STD

STEPCNT ,X ADDD

RATECNT ,X STD

>ACCL_XB " LDD
InferenceTable ,X STD
RTS

(LI2 A2 R84 2222222 2 22 22222 222222 22222))

(RULE 1 of the DONE_KB)
(CONDITION) (4.0)
ASSEMBLER
-1 # A 1LDA
RTS
(ACTION) (4.1) :
(The done kb action can be a sort of AST or completion)
(routine. This would be typical in a multitasker!)
ASSEMBLER
=1 # LDD
ACCUMULATOR ,X STD
RTS

(A2 A2 223822 2222222222 222 22 R 2222222228})

The state Knowledge Bases are tables of pointers to)
rules. The rules are laid down in the Forth)
Dictionary. When a KB is defined, its reference is)
instantiated.)

-~ o~~~

(XB_) INIT XB
(1.0) , (1.1) ,
INIT XB >INIT KB |

{KB_) ACCL_KB
(2.0 , (2.1) ,
(2.2) , (2.3) ,
(2.4) , (2.5) ,
(2.6) , (2.1) ,

ACCL_KB >ACCL KB !

(KB_) CV_KB
(3.0) , (3.1) ,
(3.2) , (3.3) ,
CV_KB >CV_KB !

(KB_) DONE_KB
(4.0) , (4.1) ,
DONE_KB >DONE_KB 1

()

{ Engine is the production rule engine. It is a)
(recursively propelled little beast. The main)
{ concideration is that each KB MUST have one ruls)

The Computer Journal / #50

15

{ that will fire on each Inference cycle.)
CREATE Engine (— ; Stepped Inference Mechanism)
(X -> MCB, Y saved on call)
ASSEMBLER
“InferenceTable ,X LDY
[CONDITION} ,Y LDY
0 ,Y JSR
EQ IF
(If this condition didn’t fire .. Get next)
*InferenceTable ,X LDD
4 # ADDD
“InferenceTable ,X STD
(and Recurse)
Engine ~ JSR
ELSE
(This condition fired so do the Action)
“InferenceTable ,X LDY
[ACTION] ,Y LDY
0 ,Y JSR
THEN
RTS
{ End Engine)

(doState sets up the registers for the run of this)
{ inference cycle.)
CREATE doState (— ; Y has the Current MCB)

PSHY PULX (Get MCB into X)
PSHY (Save Y)
InferenceTable ,X LDD (Instantiate “IT)
“InferenceTable ,X STD

Engine * JSR { Do inference)

PULY (Restore Y)

NEXT_MOTOR ,Y LDY
ACTION ,Y LDX
0 X I

(Y => Next MCB)
(X => Action)
(Do It)

(End doState)

(The last MCB’'s — Anchor MCB's — action)
CREATE LAST ACTION (— ; Returns from proceseing)
(interrupt }
ASSEMBLER
PULY
RTI

LAST_ACTION >LAST ACTION !

{ Output Compare Timer Interrupt handler routine Specific)
(to Output Compare Timer 1. This Interrupt Routine will)
(process the list of MCB's. The list must be circularitt)
(ANCHOR -> FIRST -> ... -> LAST ~> ANCHOR. The Anchor)
{(MCB's action must end with an RTI. All other MCBs must)
{ get the next MCB's action and execute it: This time We)
(will use Register Y to hold the CURRENT_MCB..)
CREATE ~MOTOR_HANDLER (— ; uses X, D ;; Processes list)
(of MCB's)
ASSEMBLER
OC1F # A IDA
TFIG1 * A STA

{ Acknowledge Interrupt.)

TCNT " LDD Set Up for next interrupt)
TIMER_OFFSET "~ ADDD (based on Interval from)
TIMER_OFFSET.)

TOC1 * STD

PSHY
ANCHOR_MCB # LDY
NEXT_MOTOR ,Y LDY

Save Forth’s Data Stack)
Get Anchor -> Y)

Get First Motor from }
Anchor -> Y)

ACTION ,Y LDX (Do First Motor's Action)
0 ,X J¥P

(End of ~MOTOR_HANDLER)

¢ INITIALIZE_MOTOR (—)
(Connect last block to itself, connect last action)

ANCHOR_MCB ANCHOR_MCB NEXT_MOTOR + !
>LAST ACTION € ANCHOR_MCB RCTION + 1
(set the interrupt vector)
~MOTOR_HANDLER >TOCl VECTOR ;

INITIALIZE MOTOR

CODE ADD_MOTOR_TO LIST (mcb — mcb ; uses X, D ;;)
(Adds a new MCB to the)
(List of MCBs.)
ASSEMBLER
ANCHOR MCB # 1DX
NEXT_MOTOR ,X 1DD
0 ,Y 1DX
NEXT_MOTOR ,X STD

0 ,Y LDD
ANCHOR_MCB # LDX
NEXT_MOTOR ,X STD

NEXT " JMP
END-CODE

CODE FILL MCB (mcb action sensor timer port #
(IT CV stepcnt +slope -slope — mch
{ ;y uses X, D

)
)
)
)

’
(; Sets parameters in a new MCB
ASSEMBLER
14 ,Y 1DX (Get MCB from bottom)
00 ,Y LDD -S1OPE ,X STD INY INY
00 ,Y LDD +SI1OPE ,X STD INY INY
00 ,Y LDD STEPCNT ,X STD INY INY
00 ,Y LDD CV ,X STD INY INY
00 ,Y LDD InferenceTable ,X STD INY INY
01 ,Y A LDA STEP_BIT ,X A STA INY INY
00 ,Y LDD >>PORT ,X STD INY INY
00 ,Y LDD TIMER ,X STD INY INY
00 ,Y LDD SENSOR ,X STD INY INY
00 ,Y LDD ACTION ,X STD INY INY
NEXT " JMP
END-CODE

: ADD_MOTOR (mcb action sensor timer port # —)
FILL MCB ADD_MOTOR_TO_LIST DROP ;

1000 TIMER _OFFSET !

FIRST_MCB MCB)

doState Action Routine

>SENSOR_ACTION & Sensor Routine

0 Reload Timer count “reserved”
8000 Address of Motor Port

01 Address in Port of Motor

(
()
()
()
()
()
INIT_KB (KB for starting up inference)
100 (constant velocity count)
100 { step count constant)
H (acceleration constant)
-1 (deceleration constant)
ADD_MOTOR (add this motor to listt)
: LEFT (MCB — ; motor left)
DUP >>PORT + & C@ (Get the Port contents on stack)
OVER STEP_BIT + C& (Get Motor control bit on stack)
OR (OR Port contents and Step bit)
SWAP >>PORT + € C! (Put ORd number into Port)

-

RIGHT (MCB — ; motor right)

DUP >>PORT + @ C@ (Get Port contents on stack)
OVER STEP_BIT + C& (Get Motor control bit on stack)
OFF XOR AND (Clear the relevent bit)
SWAP >>PORT + € C! (Put XORd number into Port)

-~

: RUN_MOTOR (MCB T | F — ; spin it};)
(T is right - F 1is left)
DI

16

The Computer Journal / #50

Modula 2 and the Command Line

Reading the ZCPR Command Line with Modula 2

By David L. Clarke

Introduction

In the past two articles | have shown how Modula 2 can
access the Z-System environment and make use of informa-
tion that it contains such as the TCAP. In this article I shall
show how to work with another element in the environment,

the Z3 command line. I've added a few
extras which may be used optionally.
You could say CP/M will never be the
same.

Most compilers lately seem to have
some method of examining the com-
mand line. The FTL compiler that I use
at home has a module called Com-
mand with a GetParams procedure
that supplies the arguments one at a
time. It even can expand file names
containing wild cards. You might ask
why I would want to write a replace-
ment module. For one thing, Com-
mand uses the standard CP/M com-
mand line at hex address 80, which is
shorter that the Z3 command line. It is
also not set up for multiple commands
on the same line. But for the most part,
" I think I just wanted to add a few addi-
tional features.

The first feature is file redirection.
This is not really new to CP/M. | have
seen several other programs that use it,
especially ones that were written in C.
(But why should they have all the fun?)
Redirection allows the same program
to accept input from the keyboard or
from a file. Likewise output can go ei-
ther to the screen or to a file. Unless
otherwise stated, the ‘standard input’ is
from the keyboard and the ‘standard
output’ is the screen. ‘Standard input’

is redirected to a specific file by putting a ‘<’ character before
its name in the command line. A ‘>’ is used to redirect the

‘standard output’ to a new file. The code within the program

does not need to know if the ‘standard’ input or output is a
terminal or a file, a single Read or Write, imported from the
InOut module, will work for either.

The second feature is pipelining. This concept was origin-

Listing 1

DEFINITION MODULE ZParam;

(* D. L. Clarke for TCJ 8 February 1991 *)
(* This module is designed to provide access to the command arguments *)
(* from the Z-environment (rather than the command line). Some UNIX - *)
(* like enhancements have been added. These include I/0 redirection *)

(* and a pipeline mechanism. (Note, 'Exit’' must be called to pipeline.))

(* There are several types of arguments.
(* strings and remain as they are. Arguments preceeded by '<' or ‘>’ *)
(* are redirected files (they will be ‘redirected’ during initialisation *)
(v and will not be accessible by GetArgument).
(* called ‘names’, they may contain wildcards and will be expanded into *)

(* file names if possible.

TYPE

ZResult = (ZDone, ZNotFound, ZTruncated); (* success/error mnemonics *)

PROCEDURE NoOfArguments():

PROCEDURE GetArgument (
argNr:

VAR arg:
VAR result:

PROCEDURE Exit(
code:

END ZParam.

CARDINAL;

CARDINAL;

ARRAY OF CHAR; (* the returned argument *)

ZResult);

INTEGER) ;

Any arguments in quotes are *)

Other arguments are *)

*)

(* ZDone = successful *)
(* ZNotFound = not a *)
(* valid argument *)
(* ZITruncated = character r)
(* array too small for *)
(* camplete argument)

(* number of command args *)

(* get command argument v)
(* number of desired arg *)
(* note ~ 0 = prog name *)

(* success / error code *)

(* exit pipeline program *)
(* exit error code ")
(* note — 0 = no error *)

David Clarke was originally an Electrical Engineer at Pratt & Whitney Aircraft
until he discovered that it was more fun to program the data acquisition systems
that he developed. He therefore became a systems programmer.

Dave is also an Adjunct Professor at the Hartford Graduate Center in Hartford
CT., where he has taught courses in Systems Programming, Software Engineering,
and Real Time Programming. Dave can be reached at the Graduate Center where his
electronic mail address (Internet) is davec@mstr.hgc.edu. His home address for regu-

lar mail is P.O. Box 328, Tolland, CT. 06084.

The Computer Journal / #50

ally introduced with UNIX. It was later copied by MS-DOS.
In pipelining, the output of one program is fed into the input

of another program. In UNIX, the pro-
grams run simultaneously. In MS-
DOS, the programs run sequentially. |
followed the latter method. In this
form, piping is quite similar to having
multiple commands in a single com-
mand line. The major difference is the
way that data is fed from one to the
next. Also, multiple commands on a

17

L4

—

(*
(l‘
(i

1338 37 138

Listing 2
IMPLEMENTATION MODULE ZParam;

D. L. Clarke for TCJ 8 February 1991 *)
This module is loosely based on the ‘Command’ module supplied *)
originally with the FTL compiler. The concepts have been *)

axpanded to include the Z-environment and some UNIX like ideas. *)

Files IMPORT FILE, FileName, Lookup, Create, Rename, Close;

GetFiles IMPORT GetNames;

InOut IMPORT SwitchInStream, SwitchOutStream;

SeqBuffer IMPORT Sequence, Access, Deaccess, GetSeq, PutSeq, Delets,
Highest, Lowest;

IMPORT Writelnt;

IMPORT STREAM, Direction, Connect, Disconnect,
EOS, ReadChar, WriteChar;

IMPORT length, CopyStr, Insert;

Terminal IMPORT WriteString, WriteLn;

SYSTEM IMPORT ADR;

£34m2 IMPORT CL, 23PTR, Z3ENV, GetEnv;

SmallIo
Streams

stringe

TYPE ParClass = (Pipe, CommandEnd, String, Redirectln, Redirectout,

Name);

VAR Param: RECORD
Class: ParClass;
Chare: CL
END;
buff: Sequence;
ProgramName ARRAY [0..7] OF CHAR;
Names: ARRAY {0..26] OF FileName;
ArgList: ARRAY [0..100] OF RECORD
index: INTEGER;
name s FileName

env: %3PTIR;
new_CL: CL;

P_Name:
InF, OutPF: FILE;
InS, OutS:
ArgCount:
i, 3, ks

NameCount, erx: INTEGER;
InRedirected:
OutRedirected: BOOLEAN;
Pipelines
done: BOOLEAN;

PROCEDURE NoOfArguments(): CARDINAL;
BEGIN

RETURN ArgCount
END NoOfArguments;

PROCEDURE GetArgument (argNr: CARDINAL; VAR arg: ARRAY OF CHAR;
VAR result: ZResult);
BEGIN
IF (argNr < 0) OR (argNr > ArgCount) THEN
result := ZNotFound
ELSE
result 3= ZDone;
IF ArgList[argNr].index = -1 THEN
J := CopyStr(ArgList[argNr].name, arg);
k 1= Length(ArgList{argNr]}.name)
ELSIF GetSeq(Param, ArgList{argNr].index, buff) THEN
§ 3= CopyStr(Param.Chars, arg);
k := Length(Param.Chars)
ELSE
result := ZNotFound
END;
IF (result = 2Done) AND (3 < k) THEN
result := ZTruncated
END
END

END GetArgument;

PROCEDURE Exit(code: INTEGER);
BEGIN
IF code = 0 THEN

18

’

line are separated by a ‘; character
while programs that use pipelining are
separated by the ‘|’ character. This de-
scription may sound rather simple, but
don't let it fool you. Piping adds a lot
more functionality than you would
first think. Hopefully I'll be able to
demonstrate its utility within the
course of this (and other) articles.

The ZParam Module

The definition module for the
ZParam module is shown in Listing 1.
The primary procedure, of course, is
GetArgument. It is requested to return
a particular argument from the com-
mand line, however, it may have some
problems. One one thing, the requested
argument may not exist. For another,
the ARRAY OF CHAR supplied to re-
ceive the argument may be too small
for all of the characters in the argu-
ment. Therefore the GetArgument pro-
cedure returns a result of type ZResult.
The three possible return values are
enumerated at the beginning of the
definition module.

The NoOfArguments procedure is
supplied to tell how many arguments
exist on the command line (this could
possibly be used to prevent a ZNot-
Found result).

The final procedure in the definition
module need only be used by pro-
grams that pipeline. The Exit proce-
dure controls the passing of this pro-
gram’s output to the next program’s
input. However, if a non-zero code is
passed to Exit, the procedure will
break the pipeline and type out an er-
ror message on the terminal.

Listing 2 shows the ZParam im-
plementation module. All of the real
work of the module is done during the
initialisation. Since this module will be
using the Z-System environment, the
first thing to do is access the environ-
ment by calling GetEnv. If the environ-
ment does not exist we type an error
and exit, otherwise we continue. The
individual parameters are parsed from
the command by GetParams and
stored in a Seqbuffer named ‘buff’. The
contents of ‘buff’ are searched looking
for redirected input and output by call-
ing CheckInput and CheckOutput. Fi-
nally, all ambiguous file references are
expanded and the results are trans-
ferred to the ArgList array. This is
done by the ExpandNames procedure.

GetParams parses the command line
by scanning it character by character.
Spaces are skipped until a non-space is

The Computer Journal / #50

found. This character might be one of a

set of key characters. They are *}’, ‘|”,
‘<5, and “'”. A’y indicates the
end of the current command, anything
after it belongs to some other com-
mand and is therefore ignored. Like-
wise a ‘|’ indicates the end of the cur-
rent command, but in this case the
command is part of a pipeline. In each
case, the type of the terminating condi-
tion (i.e, ParClass) is saved in the
‘buff’ SeqBuffer. The ‘<’ and ‘>’ charac-
ters introduce redirection filenames.
The next name is scanned and saved
with the appropiate ParClass code.
Any text contained in quotes is consid-
ered a ‘String” and is saved as such. All
other sequences of characters are con-
sidered to be a ‘Name’ (i.e., it could be
a filename). Commas are just plain
skipped. When GetParams has com-
pleted, all parameters have been placed
in the ‘buff’ Segbuffer.

CheckInput and CheckOutput scan
through the parameters in ‘buff’. When
a redirected name is encountered, the
file is opened and connected to the ap-
propiate input / output stream. After
this, any calls made to InOut module
procedures will be directed to the redi-
rected file. Once the connection has
been made, the entry is deleted from
‘buff’, it must not be accessed by Ge-
tArgument. CheckOutput also scans
for a ParClass of ‘Pipe’. If it is detected,
an output file named ‘STDOUT.$$$’ is
opened and connected to the output

. stream. In addition, the next command
has a “<STDIN.$$$” string inserted
into it. This is how the information
shall be passed through the pipeline.
The FTL Streams module is used to
advantage in this procedure.

The ExpandNames procedure uses
the FTL GetFiles module to expand
ambiguous names into all the matching
filenames. Only parameters of ParClass
‘Name’ are expanded, ‘Strings’ are not.
The results are transferred sequentially
to the Arglist array. This array is
where GetArgument will find them.
ExpandNames also keeps track of the
argument count as it moves the para-
meters into ArgList. This count is used
by the NoOfArguments procedure.

The paragraph directly above ex-
plains the operation of NoOfArgu-
ments and GetArgument. The defini-
tion module also mentioned Exit. If the
code passed to Exit is non-zero, it will
cause the program to halt with an error
message. Otherwise, the ‘standard out-
put’ file is closed and renamed to

The Computer Journal / #50

IF InRedirected THEN Disconnect(InS, TRUE) END;
IF OutRedirected THEN

Disconnect (OutS, TRUE);
IF Pipeline THEN
env®.z3cl®.nxt := ADR(env*.z3cl”.str);
k := CopyStr(new _CL, env*.z3cl".nxt");
env®.z3cl”.len := CHR(k);
Lookup(OutF, “STDOUT.$$$”, err);
IF err >= 0 THEN
Rename (OutF, “STDIN.5”, “STDOUT.$$$", err)
END;
IF err < 0 THEN
WriteString(ProgramName):
WriteString(”: Cannot rename STDOUT.$$$");
WriteLn
ELSE
Close(OutF)
END
END

END

ELSE

WriteString(ProgramName);
WriteString(”: error exit = «);

Writelnt(code, 1);

END;
HALT
END Exit;

Writeln

PROCEDURE Save(size: CARDINAL; class: ParClass);

VAR j: INTEGER;

BEGIN

k: CARDINAL;

Param.Class := class;
FOR k := 0 TO size - 1 DO
Param.Chars(k] := env".z3cl”.str[i + k]

END;

Param.Chars[size] := Oc;

j := Highest(buff);
:= PutSeq(Param, j + 1, buff)

done
END Save;

IF j < 0 THEN j := -1 END;

PROCEDURE Scan;

BEGIN
=4+ 1
WHILE (j < ORD(env".z3cls)) AND
(env”.z3cl”.str[}] # Oc) AND
(env”.23cl*.etr[(j] # * ‘) AND
(env®.z3cl”.atr[§] # *|’) AND
(env”.z3cl”.str{j) # *,’) AND
(env®.z3cl”.str[(j] # ;') DO
INC(])
END
END Scan;

PROCEDURE GetParams;

BEGIN
i :=
LOOP

0;

WHILE (i < ORD(env".z3cls)) AND (env".z3cl*.str{i] <= ' ‘) DO

IF env”.z3cl”.str[i] = Oc THEN EXIT ELSE INC(i) END

END;
IF 1 >= ORD({env".z3cls) THEN EXIT END;
CASE env”.z3cl”.str[i] OF

HEE (* pipeline to next program *)

INC(1);

Save(ORD(env".z3cls)-i, Pipe);

J = ORD(env".z3cls)

‘33 (* end of command in multi command *)

INC(1);

Save(ORD(env”.z3cls)~i, CommandEnd);

J := ORD(env".z3cls)

e, Wity (* quoted string *)

Joe= i+ 1;

WHILE (j < ORD(env"*.z3cls)) AND
(env”.z3cl”.etr(j] # Oc) AND
(env®.z3cl”.str[j] # env".z3cl”.str(i]) DO

INC(])

END;

INC(i); Save(j-i, string);

IF (env®.z3cl”.str[j] = env".z3cl".str[i-1]) THEN

INC(])

19

END
<!, >'; (* redirected input / output *)
done := env*.z3cl”.str[i] = ‘<’;

INC(i);

WHILE (i < ORD(env".z3cls)) AND
(env*.23cl”.str[1] > Oc) AND
(env*.z3cl”.etr[i] <= ‘ ‘) DO

INC(1)

END;

Scan;

IF done THEN

save(j-i, RedirectIn)

ELSE
Save(j-i, Redirectout)
END
ELSE (* run of the mill parameter *)
Scan;

Save(j-i, Name)
END; (* case *)

i:=3;

IF env”.z3cl”.str[i] = Oc THEN EXIT END;

IF (1 < ORD(env".z3cls)) AND (env*.z3cl*.str{i] = ‘,') THEN
INC(i)

END

END (* loop *)
END GetParams;

PROCEDURE CheckInput;
BEGIN
i:=0; InRedirected := FALSE;
10OP (* search for input redirection *)
IF NOT GetSeq(Param, i, buff) THEN EXIT END;
IF i = 0 THEN j := CopyStr(Param.Chars, ProgramName) END;
IF Param.Class = RedirectIn THEN
IF InRedirected THEN
WriteString(ProgramName);
WriteString(“: Multiple input redirection”);
WriteLn; Exit(-1)
END;
InRedirected ;= TRUE;
j := CopyStr(Param.Chars, F_Name);
Lookup(InF, F_Name, err);
IF err < 0 THEN
WriteString(ProgramName);
WriteString(”: Cannot open “); WriteString(F_Name);
Writeln; Exit(err)
END;
Connect(InS, InF, input);
SwitchInStream(InS);
done := Delete(i, buff)
END;
INC(1)
END (* loop *)
END CheckInput;

PROCEDURE CheckOutput;
BEGIN
i:=0; OutRedirected := FALSE; Pipeline := FALSE;
LOOP (* search for output redirection *)
IF GetSeq(Param, i, buff) AND

((Param.Class = RedirectOut) OR (Param.Class = Pipe)) THEN

IF OutRedirected THEN
WriteString(ProgramName);
WriteString(”: Multiple output redirection”);
Writeln; Exit (-1)

END;

OutRedirected := TRUE;

IF Param.Class = RedirectOut THEN
j &= CopyStr(Param.Chars, F_Name)

ELSE
Pipeline := TRUE;
§ 3= CopyStr(”STDOUT.$$$", F_Name)

END;

Create(OutF, F_Name, err);

IF err < 0 THEN
wWritesString(ProgramName) ;
WriteString(“: Cannot open “); WriteString(F Name);
WritelLn; Exit(err)

END;

Connect (OutS, OutF, output);

20

‘STDIN.$$$’. As described above,
CheckOutput has already insured that
the next command will redirect its in-
put to this file. Thus, the piping func-
tion is accomplished fairly easily.

Compilation hint—I have found
that this module needs all the memory
it can get to compile. This means | have
to compile it under bare CP/M; ZCPR
must be unloaded.

Modifications to the Strings Module

One of the things that I like best
about the FTL compiler is that it sup-
plies the sources to its library modules.
This allows you to modify them to suit
your needs. One place where I've
made some changes is in the Strings
module. I chose to replace the supplied
Assign, StoS, and Copy procedures by
a single procedure called CopyStr. 1
also added a procedure that compares
two strings alphabetically which is
called CompareStr. The definition
module, as | use it, is shown in Listing
3. The implementation code for the two
modified procedures is shown in List-
ing 4; note, this is not a complete listing
of the module, the other procedures
are basically unchanged. When looking
at CompareStr, you may notice that it
uses the CaseSensitive boolean to de-
termine how alphabetic characters are
compared. This variable appears in the
definition module and is set to TRUE
during the module initialisation. The
Pos procedure was also modified to be
case sensitive.

Two Sample Programs
Listing 5 shows my version of the
‘echo’ program. As with the Z-System
program it uses ‘%>’ to start echoing in
lower case (and ‘%<’ to return to upper
case). Therefore, a command of

echo ht$>ello world

will output “Hello world”. On the
other hand, my version will expand

ambiguous filenames (much like
UNIX). Thus a command of

echo *.*

will give you a listing of your current
directory, however it will attempt to
place it all on a single line (which
could cause problems on your termi-
nal). If you don’t want wild cards ex-
panded, you should enclose that pa-
rameter in double or single quotes —
this disables the expansion.

Listing 6 shows my version of the

The Computer Journal / #50

popular ‘cat’ program. It concatenates
several input files into a single output
file (i.e., ‘standard output’, which may
either be the screen or be redirected to
a file). If no files are listed as inputs on
the command line, the ‘standard input’
is used, which could be the keyboard
or an input from a pipeline. So if
you're annoyed that ‘echo’ outputs the
command line arguments too fast or if
you like the reassuring sound of disk
drives clicking, try a command line like

echo “hello world” | cat | cat
| cat >greeting.txt

and then type out the contents of
greeting.txt

It is also possible to combine pipe-
line programs with standard (non-
pipeline) programs on the same com-
mand line. For instance, the ‘type’
command does not pipeline, and the
new ‘echo’ can either pipeline or write
to the ‘standard output’. The following
command line shows how information
may be fed from one program to an-
other.

echo “hello world”
>greeting.txt ; type greeting.txt

This command line forces ‘echo’ to
produce an output file that can be read
by ‘type’. The ’; character is used to
separate the commands in this form.

Compilation hint—don't forget to
M2instal echo and cat after linking
them. Otherwise they will not be able

SwitchOutStream(Outs);

IF Pipeline THEN
k := 0;
WHILE Param.Chara[k] <= ' ' DO 1INC(k) END;
WHILE Param.Chars[k] > ‘ ‘ DO INC(k) END;

Insert(” <STDIN.$$$ “, Param.Chars, k);
k := CopyStr(Param.Chars, new_CL)
END;
done
END;
INC(1);
IF i > CARDINAL(Highest(buff)) THEN EXIT END
END (* loop *)
END CheckOutput;

:= Delete(i, buff)

PROCEDURE ExpandNames;
BEGIN

o

0; (* ArgList index *)
H (* Param index *)

]

IF GetSeqg(Param, j, buff) THEN
IF Param.Class = Name THEN
GetNames (Param.Chare, Names, NameCount);
k 1= 0; (* Names index *)
LOOP
ArgList[i].index :
ArgList[i].name
INC(i);
IF (i > 160) OR
{k >= CARDINAL(NameCount)) THEN EXIT END

-1;
Names[k};
INC(K);

won

END
ELSIF Param.Class = CommandEnd THEN
EXIT
ELSE
Arglist[i}.index := j;
INC(i)
END
END;
INC(3);
IF (i > 100) OR (j > CARDINAL(Higheet(buff))) THEN EXIT END
END; (* loop *)
ArgCount := 1 - 1
END ExpandNames;

BEGIN
env := GetEnv();
IF CARDINAL(env) = 0 THEN

- to access the Z-System environment. WriteString(“<ZParam> No Z-Sys Env”); WriteLn;

Refer to my article in TCJ # 47 for more EISEHALT

information on M2instal. buff := Access(“Parameter buffer”);
GetParams;
CheckInput; CheckOutput;

. F:oncluslon ' ExpandNanes;
In this article | have introduced a END
END ZParam.

new module that gives us access to the

command line and provides several
useful options. I have built this upon a foundation of earlier
modules (SeqBuffer from the first article, 234m2 from the
second article, and many of the modules supplied with the
compiler itself).

A glance at the two sample program listings (cat and
echo) will show that, for all their capability, the main pro-
gram code is fairly small. Hopefully this demonstrates how
straightforward programming is in Modula 2 when we have
a foundation of good modules.

For more information on redirection and piping I would
suggest reading “Software Tools in Pascal” by Kernighan
and Plauger, Addison-Wesley, Reading, MA (1981). The text
has versions of echo and concat which are worth comparing
with the listings in this article. Another interesting point
about the book is to see how much effort the authors had to
go to just to force Pascal into doing things that Modula 2 can
do quite easily. Perhaps it's time for a book titled “Software
Tools in Modula 2”.@

The Computer Journal / #50

Home Control. from page 26

wiring in my house. Given my interests in electrical experi-
ments, | am lucky to live in a house with an unfinished base-
ment. The electrical wiring (and the plumbing) are conven-
iently exposed in the ceiling. All the wall outlets were fed
from the basement, and it was easy to install GE relays to
control those outlets I wished to switch. At the time, our
house also had an only partially finished second floor. The
few circuits (overhead lights) that I could not tap into from
the basement I could get to from the attic.

Shortly after I built the home controller, I renovated the
second floor. Actually, I gutted it and rebuilt it from scratch,
a project that took a whole year of full-time evening and
weekend work. It cured me of any desire ever to do that
again, but it did give me a golden opportunity to wire things

See Home Control. page 22

21

(* D. L. Clarke
('
(* FTL compiler.
(t

TYPE

VAR

Listing 3
DEFINITION MODULE Strings;

for TCJ

string = ARRAY [0..80] OF CHAR;

CaseSensitive: BOOLEAN;

PROCEDURE Length(

el: ARRAY OF CHAR)
i CARDINAL;

PROCEDURE Pos (

Match,
Search: ARRAY OF CHAR;
Start: CARDINAL)
: CARDINAL;

PROCEDURE Insert(

SubStr:; ARRAY OF CHAR;
VAR Str: ARRAY OF CHAR;
Start: CARDINAL) ;

PROCEDURE Delete(

VAR Str: ARRAY OF CHAR;
Start: CARDINAL;
Len: CARDINAL) ;

PROCEDURE CopyStr(

Source:
VAR Dest:

ARRAY OF CHAR;
ARRAY OF CHAR)
CARDINAL;

PROCEDURE CompareStr

(stl, st2: ARRAY OF CHAR)
: INTEGER;

PROCEDURE Concat (

sl, 82:
VAR 8d:

ARRAY OF CHAR;
ARRAY OF CHAR);

END Strings.

This is a modification of the Strings module supplied with the *)
Modifications were made to be compatible with scome *)
other versions as well as a proposed ‘standard’. *)

(ﬁ
(*
(t
(i

(t
("
(*

(t
(i
(i

(t

(*
(*

(modified) 23 Sept 1990 *)

here for compatibilty only *)
upper limit need not be 80 *)
Note, strings are terminated *)
by a zero byte or by length. *)

set to FALSE if you do not *)
want case sensitive compares *)

pre-set to TRUE *)
find length of string *)
the string *)
the number of characters *)

find position of substring *)
the substring to be found *)
the string tho be searched *)
number of characters to skip *)
the position in the string *)
=HIGH(Search)+1 if not found *)

insert substring into string *)
the subetring *)
the receiving string *)
number of characters to skip *)

delete substring from string *)

the original string *)
number of characters to skip *)
length of substring *)
copy string *)
the source string *)
the destination string *)

number of characters copied *)

alphabetic string comparison *)
the strings being compared *)

the resulting comparison *)
< 0 means stl < st2 *)
= 0 means stl = st2)
> 0 means stl > st2 *)
concatenate strings *)
the source strings *)
the destination string *)

truncated if both won't fit *)

8031 pController
Modules

NEW!!I
Control-R II

v Industry Standard 8-bit 8031 CPU

v 128 bytes RAM / 8 K of EPROM

v Socket for 8 Kbytes of Static RAM

Vv 11.0592 MHz Operation

v 14/16 bits of parallel /O plus
access to address, data and control
signals on standard headers.

v MAX232 Serial I/O (optional)

v +5 volt single supply operation

v Compact 3.50" x 4.5" size

\ Assembled & Tested, not a kit

$64.95 each

Control-R I

v Industry Standard 8-bit 8031 CPU
v 128 bytes RAM / 8K EPROM

v 11.0592 MHz Operation

v 14/16 bits of parallel 1/O

v MAX232 Serial 1/O (optional)

v 45 volt single supply operation

v Compact 2.75" x 4.00" size
 Assembled & Tested, not a kit

$39.95 each

Home Control. from page 21

the way | wanted to. | installed numer-
ous switch boxes and ran large bundles
of wires from each one back to central
control panels. There, as I described
earlier, | can easily rewire any of the
switches to perform any functions I
want. | also fed a huge bundle of low-
voltage cables down into the basement.
Some go to the computer and some to
switches on the first floor. Some are
spares for future use.

That completes the material I

wanted to cover for this issue. I'm not
sure right now what part of the project
[will treat next time, but 1 think it will
probably include some of the software.

22

You may have noticed that I have

not included detailed schematics of the
circuits | have described. There are two
reasons for this. First, I do not have the
tools to produce publication-quality
circuit diagrams with a reasonable ef-
fort. Second, these designs are quite
old at this point, and, if | were starting
on this project today, in most cases |
would not use the exact same circuits.
Therefore, I am more interested in pre-
senting ideas and concepts and leaving
implementation details to the reader. 1f
anyone is interested in pursuing this
type of project, I would be delighted to
provide more delighted to provide
more detailed information and discus-
sion. Just contact me in one of the
usual ways indicated on the side-bar.@®

Options:
« MAX232 1.C. ($6.95¢a.)
+ 6264 8K SRAM ($10.00ea.)

Development Software:

« PseudoSam 51 Software ($50.00)
Level 11 MSDOS cross—assembler.
Assemble 8031 code with a PC.

« PseudoMax 51 Software ($100.00)
MSDOS cross—simulator. Test and
debug 8031 code on your PC!

Ordering Information:
Check or Money Orders accepted. All
orders add $3.00 S&H in Continental US
or $6.00 for Alaska, Hawaii and Canada.
Illinois residents must add 6.25% tax.

Cottage Resources Corporation
Suite 3-672, 1405 Stevenson Drive
Springfield, Iilinois 62703
(217) 529-7679

The Computer Journal / #50

A Home Heating & Lighting Controller, Part 2

The Electrical Interface

By Jay Sage

In the introductory column last time on the embedded
controller that runs the electrical and heating systems in my
house, I described the history behind its development and
the control strategy it applies to managing the heating sys-
tem. This time I am going to talk about the electrical inter-
face, that is, how the computer, which runs on low-voltage
DC, is able to operate the high-voltage AC electrical circuits
in the house.

The GE Low-Voltage Wiring System
The basis of the interface is the General Electric low-volt-
age wiring system. It was designed primarily for industrial
installations, but somehow my group leader at Raytheon had
found out about it and used it when he built his own house.
Since then I have seen it several

one presses the top of the switch. This completes the circuit
to the ON winding of the relay. The switch need be closed for
only a small fraction of a second, after which the relay is
latched into the ON state. To turn the circuit off, one taps the
bottom of the switch, completing the circuit to the OFF wind-
ing of the relay and opening the circuit. The simplest, least
expensive low-voltage switches are so small that three of
them can fit in the standard electrical box used for one AC
switch.

Advantages of the GE Low-Voltage System
The GE low-voltage wiring system has many advantages.
For example, there are very strict codes that apply to the
treatment of 110-volt AC wiring. For obvious reasons, the
wiring has to be carefully protected—mechanically, electri-
cally, and thermally. All con-

other times. In fact, the lighting nections must be made inside
Si’ sLte m ;n Lt,}a\go?a?jn auditc.):'ium 10 VAC LOAD boxes that meet the standards of
at Lincoln ory uses it . .
. .] ——— the electrical code, and
The basic idea is as follows. € ehec nt b €o el aI:i ‘:Il:m
Each circuit, no matter from I:I D runs fave o be enclosed, el ner
how many piaces it is to be con [_—I RELAY inside walls or inside conduits,
i both. f igh
trolled, has a single, latching re- :lre dgcl;l IZ(:;ause :vaitll; il:ugin
lay installed to switch the AC (B 110-volt By ¢ load
current. These relays have two K |ON b -l‘clo clreut S dO:lel: (:a
windings that operate at 24 » mrez: ett:ear:u:;]:tlreﬂo“? 1;; exi';
volts, AC or DC.When one of (D P
the windings is energiaed, a f [om reaches a level that could cause
. . 4 O the wires to reach an unsafe
g b s pld ok empesure nd s e
operr)ﬁng the 110-volt circuit a |0 many, if not all,]uHSdlChOf\s’
when the other winding is acti- u“ype e} H0-volt wiring must b? .m-'
vated, the shorting bar is pushed 1 stal}lledl by a licensed electnc1a3,
. ! . . at the least, a permit is required,
mt.c: the contacts, closing the cir- | 1 and the work must be in-
cul,l;h lays are designed to — — spected. After all, if it is done
ese re esi . .
. Ficure 1 improperly, it can pose the dual
mount through the cutout in a ca threats of electrocution or fire.

standard electrical wiring box.

The 110-volt AC connections are made inside the box, while
the low-voltage connections are made outside. This main-
tains isolation between the two systems and keeps the low-
voltage system safe against shock hazard.

The single-pole single-throw toggle switches normally
used in the wall boxes to control the AC are replaced by
small, momentary-contact, single-pole double-throw (SPDT),
center-off low-voltage switches. The basic circuit is shown in
Figure 1. For reasons that will become clear later, we operate
the switches from a DC source.

At rest, the switches are in a neutral, center position with
the pole connected to neither side. To turn the AC circuit on,

The Computer Journal / #50

The low-voltage wiring is in-
trinsically safe. The voltage is too low to cause electrocution,
and the transformer that provides the power has a high
enough internal impedance that even if the wiring is shorted
it cannot generate enough heat to pose a fire hazard. Conse-
quently, there are, as far as I know, few or no code require-
ments on how this wiring is installed. It's basically like wir-
ing up a doorbell.

In principle, the wiring materials are also cheaper. For 20-
ampere service, the AC lines must use 12-gauge wires—
including a ground as well as a neutral lead—with heavy
insulation. The low-voltage wiring needs only 16- or 18-
gauge wire and lighter insulation. No grounding is

23

necessary.

The switches are also intrinsically much cheaper, since
they switch relatively low currents at low voltages. In prac-
tice, however, I have found that most of this advantage is
hard to realize. Standard AC wiring components, because of
the extremely high production volume and competition
among suppliers, are available at very low prices. For large-
scale industrial installations, there probably is a cost saving,

cuits. The diodes are needed to isolate the two relay control
circuits (and that's why we use a DC low-voltage source). If
you study the circuit, you will see that when switch A is
closed, it cannot draw current from a winding of the right-
hand relay because there will be a reversed diode in the path.
With conventional AC switches, this functionality can be
achieved only by ganging up electrically independent
switches, a bulky and expensive proposition. With the GE
system, the only extra components are

a few tiny, dirt cheap switching diodes.

|

?

The concept can be extended to a
complete diode crossbar connecting a
group of switches 1..M to a group of

f

relay windings 1..N, as shown in Fig-

T

o

ure 5. By inserting diodes into the
crossbar, any switch can be made to
control any combination of relay wind-

)
Lo

ings, completely independently of the
function of any other switch. When a

d
T
X

5

O

given switch grounds one of its leads,
all relay windings connected to that

j

1-WAY 2-WAY

Figure2

T

3-WAY

lead by a diode will be pulled to
ground, energizing the associated re-
lay. The directionality of the diodes
prevents one pulled-down relay wind-
ing from pulling down another switch

both in material costs and in labor for installation. For home
installations, this is not a significant factor.

One of the most important advantages of the GE system to
me was the ease with which it allows multiple controls in a
circuit. Consider the problem of wiring a circuit so that it can
be switched from two or three different places. Figure 2
shows the required switches and wir-

wire and thence other relay windings.
Note that the ON and the OFF functions of a single switch
may be programmed independently! For example, one of the
switches in our bedroom is set up to turn off all three lights
in the living room. This is handy when we go to bed. The ON
position of the same switch, however, turns on only one
light. Separate switches in or near the living room control the

ing for one-, two-, and three-switch cir-
cuits. You can see how rapidly they
grow in complexity.

With only one switch, a single-pole
single-throw (SPST) switch suffices,
along with a normal three-wire cable
(hot, neutral return, and ground). The
two-way circuit requires single-pole
double-throw (SPDT) switches, and the
cable between the two switches has to
have and extra conductor. By the time
we get to the three-way circuit, we

110 VAC
24VDC
]
QQQ 19191
4
OFF ON
LOAD

have double-pole double-throw

switches (DPDT) and up to four extra
wires in the cable.

The same circuit using the GE
wiring is illustrated in Figure 3. Note
the extreme simplicity. Although I

have shown only three switches, in fact
there can be any number of switches. The
circuit does not increase in complexity
no matter how many switches are
used. This is a bus architecture—if you

Figure 3

want another switch, you just hang it
off the bus!

And this just begins to show the flexibility of the GE sys-
tem. Look at Figure 4! There we show two AC circuits.
Switch A controls the circuit on the left; switch C controls the
circuit on the right. What about switch B? It controls both cir-

24

individual lamps. In fact, there is nothing to say that an OFF
position on a switch has to turn a circuit off; it can just as
well turn it on. One might have a switch whose ON position
turns one light on and another one off. The OFF position,
meanwhile, might turn the second light on and the first one

The Computer Journal / #50

off. Basically, you can do absolutely whatever you want.

Intertacing to the Computer
The next important thing to realize is that switches are not
the only things that can activate the relay windings. All the
switches are doing is pulling a circuit down to ground, and
that is something that a transistor can do just as well.
It would be very hard to use a transistor to control AC

dissipating power at any one time.

If only one driver is to be active at one time, I can get by
with an addressing circuit. Five bits are enough to select one
driver out of 32. Since most of the time no circuits are acti-
vated, we need one more line to serve as an ‘enable’ control.
That makes six lines in all; one parallel port from the micro-
computer can handle it.

It seemed a bit risky to me to have the relay windings
connected directly to the computer. For

110 VAC

24 VDC

24VDC

110 VAC one thing, inductive circuits, such as
relay coils, tend to produce nasty tran-

sients. Although I included in the cir-

e

E}_

cuit some protective diodes to clip any
voltages that tried to get outside the

ON OFF OFF

ON

O range from ground to 24 volts, 1 felt
that the computer was too expensive to

take any chances with. The low-voltage

LOAD

LOAD wiring involved hundreds or even

Ex:

b

Figure 4

thousands of feet of wire, and there
was always a chance for an error that
might put a very high voltage on that

wiring.

The answer was to optically isolate
the computer from the relay-driver cir-
cuitry. For those of you who are not
familiar with these components, they

have a photoemitter (light-emitting di-
ode or LED) controlled by the input
side of the IC and a photodiode or

circuits directly. First of all, transistors cannot easily control
such high voltages and currents. Secondly, transistors are in-
trinsically unipolar; they like to have current flowing in only
one direction. For example, with an NPN transistor, current
injected into the base controls a current flowing into the col-
lector toward the emitter. The magnitude of the current can
be controlled but not its direction.
- Although the relays latch at modest currents (fractions of
an ampere), the normal parallel-port drivers on a computer
are not, by themselves, powerful enough to operate the re-
lays. However, there are very nice, inexpensive, compact in-
tegrated circuits that provide the buffering between the mil-
liampere drive capability of parallel-port chips and ampere-
range currents of peripheral circuits.

I used ULN-2814 ICs made by the Sprague Electric Com-
pany. These are 18-pin DIPs with eight individually con-
trolled circuits, each capable of sinking 600 ma of current and
sustaining up to 50 volts in the OFF state. [can’t find the data
sheet for this specific part, but similar parts for which I do
have data sheets require input currents of less than 1 ma.

More Details on the Interface

I would now like to cover some details of the interface
circuit, which is actually a little more complicated than what
I suggested above.

I designed the controller to handle 16 circuits, which
means 32 relay windings. This would take four 8-bit parallel
ports to handle all at once, but I decided that the controller
would pulse no more than one relay at a time. This simpli-
fied the control software, since circuits can then be treated se-
quentially, one at a time. In addition, it completely eliminates
the possibility of exceeding the power dissipation limits of
the driver ICs, since only one of the eight drivers could be

The Computer Journal / #50

phototransistor detector on the output
side of the IC. The two parts are sepa-
rated by a high-dielectric strength insulator that is optically
transparent.

I chose the 5082-4351 optically coupled isolators from
Hewlett Packard. Each eight-pin mini-DIP houses one cou-
pler. The input leads are on one side of the chip (pins 1 to 4),
while the outputs are on the other side (pins 5 to 8). The chip
can operate with a potential difference of up to 2500 volts
between the two sides! There are six of these chips on the
board, one for each control line.

The Sprague 2814 interface chips get their inputs from
four CD4051 3-to-8 decoder chips. Address lines A0, A1, and
A2 will select one of the eight output lines. The CD4051 also
has an inhibit input. Only if the inhibit is released will any
output from that chip become active.

A fifth CD4051 is used to select which one, if any, of the
four main decoders will be enabled. Address line A3 goes to
the low order input of this fifth decoder and selects between
circuits 0..7 and 8..15. The fifth address line, which I call the
ON/OQFF line, selects between the drivers that connect to ON
relay windings and those that connect to OFF windings. Fi-
nally, the inhibit input is controlled by the sixth addressing
line. The microcomputer puts a 0.1 second pulse on this line
after the correct driver has been selected by the other address
lines.

Interfacing to the Heating System
The interface to the heating system controls is also made
using GE low-voltage relays. In this case, however, the relays
are being used as general computer-controlled switches and
not for the direct control of 110 volt AC.
I will start with a description of the control of the thermo-
stat setting. One’s first thought would be to have a GE relay

25

directly turn the circulator pumps on
and off. But what would happen, then,
if the computer failed and the circula-
tors did not go off or on? The house
could easily overheat or freeze. And
what would I do if the computer had
to be shut down for repair?

For safety and reliability reasons, I
decided to take an indirect approach. I
installed a second standard thermostat.

"The original thermostat was left

with an explosion. There is a second,
safety aquastat that is supposed to pro-
tect against this, but I really did not
want to rely oniit. ,

Instead of removing the aquastat, |
just installed the GE relay in series with
it. In this way, the computer could turn
off the oil burner, but it could not force
the burner to remain on after the water
temperature reached the aquastat set-

system requires knowing three
temperatures: the temperature of the
air in the house, the temperature of the

air outside, and the temperature of the

water in the boiler. | chose to use
precision . linear thermistors
manufactured by YSI, the Yellow
Spring Instruments Company. These
are tiny modules, perhaps a millimeter
across, that look like little capacitors.
Inside there are two thermistors.

exactly as it was, but it was set
to the lowest temperature to
which we would ever want the

RELAY

house to go (about 50 degrees
Fahrenheit). If the air tempera-

¥

ture drops below that setting,
the circulator pump will come
on quite independently of the

T
T

computer, and if the computer
ever has to be shut down, all I
have to do is go back to using
this thermostat in the usual
way.

T

The second thermostat is in-
stalled in parallel with the origi-
nal one, except that a GE relay is
installed in series with its wires.
This thermostat is set to the
highest temperature we would
ever want the house to reach

£}

2 3
SWITCH

M

Figure5

1

Z

When wired up with a pair of
precision resistors, the circuit
can produce either a resistance
or a voltage that is a very highly
linear function of temperature.
Of course, the computer could
have converted the signals from
single, nonlinear thermistors to
accurate temperature values,
but it seemed much easier
simply to buy the better
components.

The thermistors come in vari-
ous types for different tempera-
ture ranges. For example, the
one for sensing inside air tem-
perature is designed for tem-
peratures from 30 to 100 degrees
Fahrenheit. It has an absolute
accuracy of plus or minus 0.3

(about 73 degrees). Now con-
sider a normal situation where we are
trying to control the temperature at,
say, 68. In this case, the first thermo-
stat’s circuit will be open (since the air
temperature is above its setting), but
the second thermostat’s circuit will be
closed (since the temperature is below
its setting). Now, if the computer
closes the GE relay, the circulator will
run, and, if it opens the relay, the circu-
lator will stop. Thus the computer can
control the circulator, but the range of
control is bounded by the settings on
the two thermostats. If we set both th-
ermostats to the same temperature,
then we are back to normal control of
the circulator.

Now let’s look at how I control the
temperature of the water in the boiler. [
explained last time that the system has
what is called an aquastat. Just as a th-
ermostat senses the air temperature
and opens or closes a contact, the ag-
uastat senses the water temperature
and opens or closes a contact.

I could have let the computer con-
trol the oil burner directly by installing
a GE relay in place of the aquastat, but
this would be risky. What if the com-
puter made a mistake and failed to
turn off the boiler? We could end up

26

ting. We set the aquastat to the highest
temperature that would be needed on
the coldest expected day.

Now what happens if the computer
fails to turn on the boiler on a very cold
day? Our fail-safe thermostat arrange-
ment will start the circulator pump,
but this will not help if the boiler is off.
To protect against this possibility, I in-
stalled another thermostat in the base-
ment and wired its contacts in parallel
with the GE relay. I had observed that
enough heat leaked into the basement
from the boiler that the temperature
there never dropped below about 50
degrees, so | set this thermostat to just
under that. Now if the computer
should fail to turn on the boiler, this
thermostat would short out the GE re-
lay and again allow the regular aquas-
tat to regulate the boiler. if the com-
puter has to be removed for repair, all |
have to do is raise the setting on that
thermostat to, say, 80. Then the relay
will always be bypassed, and the nor-
mal controls will operate.

The Sensors
As | discussed last time, the con-
troller requires various environmental
sensors. Management of the heating

degrees. | wired the thermistors
for voltage outputs and then fed the
signals to CMOS operational amplifi-
ers. The gains of the amplifiers were
set to provide a convenient mapping of
temperature onto a one-byte binary
scale in the output from the analog-to-
digital (A/D) converter. For example,
the inside air temperature uses 255
units of 0.1 degree Celsius to read from
0 to 25.5 (78 F). The boiler temperature,
which spans the greatest range, uses
255 units of 0.5 degree to cover tem-
peratures from 0 to 127.5. [By the way,
with this project I made the conscious
decision to go metric. All temperature
displays and settings are in Celsius.]

The one other environmental sensor
is a photocell to measure outdoor light
level. I just grabbed some old photo-
cells from a junk barrel and tested
them until I found one with a logarith-
mic voltage response. This signal, too,
goes to a CMOS op amp, whose gain is
set to give a nearly full-scale input to
the A/D converter on a clear, sunny
day.

Closing Comments
Some of you may wonder how I
managed to retrofit the GE low-voltage
See Home Control, page 21

The Computer Journal / #50

Getting Started in Assemble Language

Part 2

By A. E. Hawley

In part 1, we discussed the background information you
should have, the software tools you need, and the nature of
assembler instructions used in AL programming. Boolean
algebra was mentioned, and some references given. The
concepts of boolean logic are so powerful and useful that
another good exposition of it is recommended: that of Maley
and Earle (reference 11).

In part 2,we will explore your computers memory space,
emphasizing the relation between important addresses and a
conceptual model. We will cover some basics of your
operating system and how your program uses it. After a brief
review of what Assemblers, Hex Loaders, and Linkers do,
we will illustrate with a simple program some of the
concepts and programming practices of effective AL
programming. Finally, we will take a look at how to
assemble and link a sophisticated PD program that you can
use as the basis for a simple Local Area Network.

Memory Model

Programs you write will execute within a memory
environment that includes other code: the Operating System.
Such programs interact with the operating system, or at least
avoid trashing it. It helps in writing programs and
understanding other peoples code to have a mental image for
guidance. Such an image is a Memory Model. Figure 1 shows
three such models. Here, the memory space represented on
each line is the full 64K address space. Addresses increase
from left to right, starting at 0. This technique can be used to
outline memory usage in a more restricted range like your
programs usage of the TPA space.

Three different operating system configurations are
shown in Figure 1. The Console Command Processor symbol
is shown as [CCP). The brackets are used to indicate that the
CCP is transient; it is replaced each time the Warm Boot
entry of BIOS is invoked. Notice the two names given to the
BIOS segment in the CP/M and ZCPR models. DRI
originally distinguished BIOS and CBIOS. Actual
implementations, however, have combined both into one

module and called it BIOS. Here's a useful definition that is
consistent with both approaches. BIOS is characterized by a
set of at least 17 jump instructions (a jump vector) whose
arguments are pointers to routines that perform functions as
defined in CP/M and Z-system standards. The CBIOS
contains a similar jump vector whose targets are within the
CBIOS module. When BIOS and CBIOS are separate, the
target routines may be in either module. The pointer for
routines not in the BIOS points to the corresponding CBIOS
vectors. When BIOS and CBIOS are one and the same, only
those vectors that point to actual routines are retained. In
figure 1, the models for CP/M and ZCPR3 indicate a unified
BIOS structure. For the NZCOM system configuration, BIOS
and CBIOS are separated. In the simplest case, only the warm
boot jump in BIOS points to a routine in the BIOS module; all

|-P0-|~TPA | {cCP]]-DoS—| -B1OS=CBIOS~ |
CP/M
(B T v e — | {ccP] | -DOS- | -BIOS=CBIOS-| -OTHER- |
2CPRIx
| =PO~ | -TPA~~~--=--n-—| [CCP] | -DOS- | ~-B1OS~ | ~OTHER- |-cBIOS-|
NZCOM

PO = Page 0, TPA = Transient Program Area
CCP = Console Command Processor (CP/M CCP or ZCPR3xX)
DOS = CP/M BDOS or ZRDOS or 2SDOS or ZDDOS

OTHER = other system modules or unused memory space

Figure 1-Memory Models

others point to the corresponding CBIOS jump.

The space occupied by ‘'OTHER’ includes the ZCPR3 sys-
tem modules, such as the ENV, RCP, FCP, NDR, IOP, and
several ZCPR buffers.

Let’s put some numbers to some of the locations shown
symbolically in figure 1. Sizes for page 0, CCP, and DOS are
unambiguously defined for CP/M compatible systems. They
are shown in figure 2. Whenever a Cold or Warm Boot oc-
curs, it is the responsibility of the BIOS to install the address

of the warm boot jump vector and the

A. E. (Al) Hawley started out as a Physical Chemist with a side line love of
electronics when it was still analog. He helped develop printed circuit technology,
and contributed to several early space and satellite projects. His computer experience
started with a Dartmouth Time-Share system in BASIC, FORTRAN, and ALGOL.
His first assembly language program was the REVAS disassembler, written for a
home-brew clone of the Altair computer. As a member of the ZCPR3 team, he helped
develop ZCPR33 and became sysop of Z-Node #2. He has contributed to many of the
ZCPR utilities, and written several. He is author of the ZMAC assembler, ZML

linker, and the popular ZCNFG utility.

The Computer Journal / #50

entry point to DOS in the base page at
locations 1 and 6, respectively. Thus,
your program can always calculate the
top of TPA by using the relation show
as the size of TPA: the highest address
in the TPA is (0006)-7. Some programs
need to make calls to BIOS functions
directly; the address of BIOS is calcu-
lated as shown in the figure. Since each
jump instruction is 3 bytes long, the
address for the 4th bios function would

27

be BIOS+4*3.

There is no entry for the length of BIOS in figure 2. The
BIOS, CBIOS, and other modules are as long as they need to
be; there is no standard length! That's why absolute
addresses cannot be given for DOS and CCP.

You can easily get these addresses for your system; run
the public domain programs Z3LOC (for Z-System) or CPM-
LOCS (for CP/M systems). The ZCPR3 Peek command can
show the data in your base page.

_ Thessizes and addresses are shown in hexadecimal, as you
have no doubt surmised. Sizes are also sometimes stated in
Pages and in CP/M Records (usually shortened to just
‘records’). One record is 80h (128 decimal) bytes. A Page is 2
records. The length of the CCP is 16 records; that of the DOS

SEGMENT SIZE ADDRESS
Page 0 0100 0000
TPA + (0006)-00FA 0100
ccp 0800 pDos -~ 0800
DOS OROO BIOS - OEOO
BIOS _— (0001)-3

* (0006)-00FA == subtract OOFA from the word at address
0006
This is the maximum TPA size, assuming CCP is destroyed.

Figure2. CP/M & Z-System Constants

is 28 records. Sizes are frequently stated in a mixed notation;
400h (1024 decimal) is 1K. You knew that, didn’t you? I'll
never mention it again.

Did you notice that I did not suggest using a debugger to
look at the values in the base page? Try it now, and compare
the bytes at address 6 & 7 with those observed without the
debugger. They're different, aren’t they? Now look at figure
3, which shows what happens to the size of the TPA for
several situations. Debuggers and RSXes modify the address
at 0006 to point to themselves! Well behaved programs will

, use the address at 0006 to calculate the top of usable memory
and will only write memory above that point at the risk of
causing a system malfunction. Thus the debugger/RSX code
is protected as if it were DOS!

Note that when an RSX is present, the CCP is also
“protected’; the space allocated to the CCP can no longer be
usurped by the program.

When a program reads or writes to a file, it does so
through calls to DOS functions. Each call transfers one
record. When CP/M was first conceived, floppy disks
conformed to an existing IBM standard; there were 128 bytes

. per sector. That's one record. Early CP/M documentation

used the words ‘record’ and ‘sector’ interchangeably. But
why 80h bytes, when 100h seems so much more natural?

Could it be that in Octal, the same number of bytes is

expressed as 10?

The Operating System Interface

Programs that you write will almost always require the
services of the DOS and occasionally the BIOS. The services
provided by DOS include all Input or Output (I/O) involv-
ing your Console, Printer, and Disk Drives. BIOS services
may be required for such tasks as setting or reading a system
clock, or accessing unique-to-your system 1/O ports such as
a Modem or Controller board. BIOS services are required by
certain programs that must access the system tracks, because

DOS functions have no way of specifying tracks below the
directory storage area.

DOS functions are defined and described in the CP/M
Operating System Manual from Digital Research, available
from Elliam Associates (see “sources”.) This is a valuable
source of other system data structure definitions you will
need. If you are fortunate enough to own ZSDOS/ZDDOS,
then you have an even more informative manual. (also see
“sources” to get ZSDOS) Your program invokes a DOS func-
tion by loading the function number into register C, loading
any required argument into the DE register pair, and then
executing a CALL 0005h instruction.

We observed above that the argument of the jump at 0005
points to top-of-TPA + 6, and not reliably to DOS. So how
can a call to 0005 execute a DOS function? It is the responsi-
bility of the Debugger or RSX to ensure that there is a chain
of jumps that finally terminate at the DOS function! So the
jump instruction at location 5 serves two purposes: it marks
the top of memory assuming that the CCP is not there, and at
the same time it is the place to call from a program to execute
DOS functions. The entire point of this discussion is to firmly
establish that (a) you must never change the bytes at loca-
tions 1 & 2, almost never change those at 6 & 7, and (b) you
may use the address at 1 to find the BIOS and the address at
location 6 to find the current top of usable memory.

We'll talk later about a useful program (ZREMOTEQ3)
that does change the address at location 6.

The Assembly Process

Assembler Input—Main Source, Included Files
Your assembler takes as input a single source file that has
been prepared with a text editor. Within that source file may

| -P0-|-TPA |-DOS, etc.—————m——- |
Maximum TPA
| -PO- | ~TPA-—=———————m——— | -DEBUGGER- | -DOS, etc.————————|
TPA Reduced by Debugger
| PO~ | “TPA-—=mm e e | =RSX=|~CCP-|-DOS, etc.———————-]

TPA Reduced by RSX
Figure 3. Available TPA

be an INCLUDE or MACLIB instruction which causes
another named file to be inserted into the input stream and
processed just as if it had been part of the original source file.
The main source file for ZCPR34 contains little more than a
series of INCLUDE files! ZMAC permits nesting of included
files. Other assemblers may not be as accommodating. I often
use SYSDEF.LIB as an included file. You'll see it in listing 1.
The source file is processed to produce (at your discretion)
several kinds of output files, console displays, and printer
listings.

Assembler Output—PRN, SYM Files and Console
Displays:

The console displays and printer listings are for your own
use in following the course of the assembly. The same
listings may also be written to files. The .PRN listing
contains the code to which the instructions in the source file
were translated, along with a copy of each source line (even
those that produced no code, like blocks of comments). A

The Computer Journal / #50

symbol listing may be produced as a separate .SYM file or
appended to the .PRN file. Command line options select
which, if any, of these are created.

Assembler Output—HEX, REL Flles:

One of two kinds of file may be produced for use by
another program. A HEX file may be produced for use by
LOAD, MLOAD, or MYLOAD. HEX files may also be used
by EPROM or PROP programming software/hardware. A
REL file is used by a Linker and by linking loaders like
" NZCOM and JETLDR. Which of these is produced is your
choice when you run the assembler; an optional argument
on the command line tells the assembler which kind of file to
produce. For example the following command line is used
with ZMAC to produce a HEX output file:

ZMAC MYFILE H

Without the ‘H,” ZMAC defaults to production of a REL
output file. The SLR Z80 and HD64180 assemblers produce
either standard Microsoft REL files or SLR-REL files,
selectable with a command line switch. Use the Microsoft
REL output if you want your REL files to be usable by others
who may not have SLR! All linkers can use mREL files,

Assembler Output—COM Files:

SLR assemblers for Z80 and HD64180 can produce a COM
file directly. Producing COM files directly is very handy for
small programs, but suffers from lack of flexibility afforded
by the two-step process of assemble-and-link. If you have an
SLR assembler, by all means take advantage of its capability
to make COM files directly. But beware of stopping there!
Many of the most useful features of AL programming are a
direct result of the two step process. HLL programmers are
generally aware that their function libraries are made
possible by one step of the compilation process: LINKING.

HEX Loaders

The first widely used assembler for microcomputers was
ASM, provided with CP/M by Digital Research. ASM could
make only HEX files, so LOAD was used to convert the HEX
files into COM files. HEX files contain a series of data rec-
ords (note: not CP/M records!), each of which comprises a
starting address, a byte count, and the bytes to be loaded at
successive memory locations. The loader does the obvious: it
deposits the bytes in memory at the indicated addresses. The
public domain program MLOAD by Ron Fowler completely
replaced LOAD, because it is able to load code at locations
other than starting at 100h. MLOAD can also perform an-
other vital function. It can combine an existing COM file
with the code loaded from a HEX file, overwriting the code
at the designated addresses in the COM file. This is a popu-
lar method of installing configuration data in already-linked
COM files. Under CP/M, this was a preferred method of
installing the data necessary to adapt the program to your
particular terminal for screen oriented programs. Take a tip
from Digital Research: they did not use ASM (or MAC) and
LOAD to produce CP/M and its utilities!

The Linking Process
The job of the linker is to produce a file which can be
loaded into memory and executed by your computers cpu.
To do this, The linker accepts one or more files as input. It

The Computer Journal / #50

interprets and combines the code from each to make a single
binary output file. The rules which the linker follows during
this process come from three places: from algorithms built
into the linker, from instructions encoded in the source
file(s), and from command line options that you specify.

Linker Input and Output files:

REL files as produced by the assembler contain special
code sequences at the start and end of each file. The linker
detects these tags, so it knows the limits of each module
independently of the actual file contents. Because of this
feature of REL files, it is possible to concatenate any number
of REL files to make one Library file which may be named as
an input file for the linker. SYSLIB, VLIB, and Z3LIB are such
REL libraries. Note that these REL libraries have nothing in
common with the popular .LBR type libraries! They are in no
way interchangeable. The linker extracts and links only those
library members that are needed by your main REL files
(external references).

If you have ZML, then there are two additional input files
that you can specify as linker input. They are the PRL and
RSX header files. These files contain normal code, produced
perhaps in a separate linking operation. Here’s the order of
the components in a ZML binary output file:

[RSX_HDR] [PRL_HDR] (CODE_IMAGE) [BIT MAP if PRL]

The HDR files are included only if requested by an option on
the command line, and the Bit Map is only generated if a PRL
file is being constructed. Bytes at offset 1 and 2 in the PRL
HDR will contain the length of the code image that follows.
ZML puts it there at the same time that it produces the BIT
MAP following the code image. In PRL mode, ZML makes a
null filled (except bytes 1 and 2) PRL header unless you give
it the name of a file which you want used. The PRL header
file specified usually contains code which uses the length
word and the bit map to move the image into its final
destination in memory and then adjust address references in
the relocated image to correspond with its memory location.
Type 4 programs used with ZCPR34 are PRL files whose
PRL header file is publicly available as T4LDR. T4LDR
contains the code that performs the module relocation. We'll
discuss RSX type headers later in connection with
ZREMOTEO03, which uses both RSX and PRL headers. RSX
type programs are discussed by Bridger Mitchell, who
defined the standard structure of such files for CP/M 2.2 and
Z-systems (reference 12). Hal Bower (reference 13) describes
an RSX program and how you can build it without ZML..
Linkers can produce a SYMbol file, which contains pro-
gram symbols and their final linked addresses. Only those
symbols originally declared PUBLIC (or one of its synonyms)
in the original assembler source file are included in this

listing, because those are the only ones whose name is passed
in the REL files.

Writing a Program

That's enough introduction, especially for those who have
digested (in-digested?) the material in the references! First
we'll state the circumstances that called for this program,
shown in listing 1.

My Z-Node runs on an aging $100 computer. It is so old
that the battery that runs the RT Clock has died! Other more
serious ailments cause the system to crash at random times.

29

It needs an extended time on the workbench. So, I have put
together a new system using an Ampro Little Board Plus. 1
need to transfer about 30MB of files from the 5100 to the new
machine. The 5100 only talks to 8" disks, and the Ampro only
talks to 5 1/4" disks! [could transfer files via modem, but
that's awfully slow at 2400 baud. ZREMOTE to the rescue!
ZREMOTE (ZR) is BYE stripped down to the bare essentials
for direct RS232 connection and implemented as an RSX.
With MEX running in the Ampro and ZR in the $100, a trial
_run showed that I could transfer files at 9600 baud. KMD
runs just fine under ZR. But the remote terminal dropped
characters. The solution was to modify ZR to provide a delay
(equivalent to nulls) after each line transmitted to the remote.
That delay was proportional to the the number in the ZR data
pool that specifies added nulls. I needed an utility that could
change the number of nulls while ZR was installed in high
-memory. The program I wrote is listing 1, SETNULL.

When ZR is running, it intercepts BDOS calls and tests the
value being passed in the C register. If that function number
is one that belongs to BDOS, it is passed on. If it is one of the
functions supported by ZR then the function is performed
by a subroutine in ZR before returning to the caller. Function
72 sets or returns the number of nulls, according to the value
passed in the E register. The signal to return the current
number of nulls in E is 0FFh. Any other value is the number
of nulls to set. BYE works the same way:.

Here are some specifications for the program:

1. If ZR is not running, the program should do nothing.

2. If the program is invoked as SETNULL / or as SETNULL
/ / then a help screen should be displayed.

3. To set the number of nulls to 15 the command is
SETNULL 15

4. If there are no arguments, then the program should set
nulls to some default value. I chose 16 as the default,
because that was the number that made the remote behave
properly.

.5. Except for the help screen, there is to be no console

output. (This is a personal preference. I don't like
programs to ‘chatter’.)

The first part of the program is a set of standard
comments showing the program identification, date, and
function. A year from now, I won't have any trouble
knowing what this code is all about!

I save some time by using a set of standard symbol
definitions in SYSDEF.LIB (in the public domain). For
example, CR is defined there as 0Dh, YES is defined as OFFh,
NO is defined as 00, and so on for commonly used symbols
that convey meaning better than raw numbers.

The program will be parsing the command tail for a num-
ber, and it will be printing to the console for HELP (//), so
we'll save some programming time (and possible errors) by
using those routines from SYSLIB. The .request pseudo-op
puts the name of the library to search for those routines into
the REL file, where the linker will find it and know to search
the REL library.

I use a standard skeletal form for programs with spaces
allocated for this boilerplate. The form also includes the first
part of the code up to and including the label START:. It also
includes the line labeled EXIT: and the ‘END’ pseudo-op at
the very end of the listing. Everything else gets inserted in a
copy of the form with my editor. Here, the edited file gets

30

named SETNULL.Z80.

The main routine at START is short, a very desirable goal
for any program. Since this program is short and simple
stack usage is very modest; it is not really necessary to set up
a local stack. The code involving the SP here, in the exit
routine, and at the program end could be deleted. I left it in
because it is an excellent habit to cultivate; stack overflow
causes mysterious or catastrophic behavior in a program.
After the program is working you can reduce stack size (or
eliminate the local stack) if you need to save a few bytes.

Note the EXIT: routine. When CCP loads this program, it
transfers control to the program with a CALL 100h. Thus, a
simple RET is all that is needed after restoring the CCP stack
to get back to the system prompt level. If the program were
large (or greedy) enough to over-write the CCP, then a RET
would result in a system crash. In such a case the proper way
to exit would be via JP 0, which results in a warm boot and
restoration of the CCP. These cautions illustrate a fundamen-
tal responsibility of the AL programmer that is far less visible
in the HLL world: memory usage and stack usage must al-
ways be considered.

The coding of SETNULL is straightforward, and copiously
commented. Coding practices in AL follow about the same
rules as for HLL; for a refresher on coding practices I recom-
mend owning and reading a copy of Kernighan & Plauger
(reference 15). You will observe in studying the listing an-
other principle: your program will often depend on a knowl-
edge of data structures that are not part of the program itself.
The extended BDOS calls that ZREMOTE makes available are
an example; the test for the existence of BYE/ZREMOTE is
another. SETNULL can be assembled with ZMAC, M80, and
Z80ASM or SLR180. It can be linked with any of the compan-
ion linkers for those assemblers to make a .COM file which,
when executed, will set the default number of nulls of a
running BYE or ZREMOTE program. Here is the assembly/
link syntax for ZMAC/ZML (with SYSLIB.REL present on
your current directory):

ZMAC SETNULL
ZML SETNULL

Refer now to Listing 1.

ZREMOTE

ZREMOTE is a program that performs the essential
functions of BYE, essentially putting your Console and
another 1/0 port on your computer in parallel. To that port
may be connected another terminal or another computer,
through the normal RS232 connectors. ZREMOTE is an RSX
which loads into memory just below CCP/ZCPR and stays
there until it is removed by Bridger Mitchell's REMOVE
utility or you do a COLD start of the machine. If you have
KMD installed, and the remote computer has a
communications program like MEX or IMP, then you can
transfer files and communicate between the two computers
just as if the ZREMOTE machine were a Z-Node and the
machine with MEX is a caller. No modem is required. You
can set the baud rate to much higher than the usual 2400
baud maximum with modems for very fast file transfers.
ZREMOTE is available on Z-nodes. | won't say much about
how the program works because this article is already too
long. I want to show, though, how the program can be
assembled simply and efficiently with ZMAC and ZML.

See Assembler, page 48

The Computer Journal / #50

Local Area Networks

By Wayne Sung

LAN stands for Local Area Network, a way of connecting
computers together to allow information to be sent among
them. The ‘local area’ part of the name is meant to imply a
small distance between the farthest stations on the network,
for example adjacent buildings.

Two rules seem to be true of local area networks. The first
is that each individual network grows larger and at a faster
rate than would have been expected. The second is that more
and more often it becomes necessary to join multiple
networks together. Both of these situations require good
engineering when building networks.

Every LAN system
has defined limits for
things such as cable
lengths. In the
beginning stages of a
LAN most of the
limits can be
stretched. However,
as the network
grows, there will be
mysterious failures
that in the worst cases require total reworking of the wiring.

There has been much debate about what kind of LAN is
the best. In many of these kinds of arguments, although some
of the facts and figures are correct, the overall picture is
clouded by vested interests. In reality, the LAN hardware is
probably the least important part of the total system.

What | propose to do here is to develop from more
fundamental principles how a LAN works and perhaps
show that there is really not that much difference between
one type of LAN and the next. As we go along, | will give
examples primarily based on Ethernet since this is what |
work with the most.

Ethernet embodies some techniques that are often
misunderstood, so it would be well to have them explained.
However, any correctly designed LAN behaves well and
becomes invisible to the user. Unfortunately, there are many
bad habits that LAN designers have gotten into that make
tuning a LAN difficult. We will get into all that.

Let’s look at hooking up computers in general. A small
number of computers can be connected with a number of
point-to-point lines (Figure 1). The key word here is small,

Figure 1
Poinf—to—point

because if every machine is to have a direct connection to
every other, then we find the total number of links goes up
by the square of the number of machines, L = N * (N-1).
Typically, machines are not equipped to handle very many
ports. Also, there must be tables that define who is connected
to which port.

An alternative to this arrangement is to let some machines
have lots of ports and others have only a few, or even one
(Figure 2). This arrangement, often called tandem switching,
allows certain machines to handle switching for others. Each
machine, especially the ones with many links, must still
know who is potentially reachable by which link.

The biggest problem here is that if one of the intermediate
machines fails, many machines lose contact with each other.
Also, with an indirect connection, all transmissions must
contain information to identify the source and destination of
a message.

Another possible arrangement is the bus LAN (Figure 3).
All units are connected to a party line. Since the tandem
arrangement already requires source and destination identifi-
ers, we can use hardware to recognize these identifiers. In
essence we take the switching machines and distribute them
among individual computers (the networking hardware).

In addition, we raise the speed of the line significantly to
accommodate the total number of machines. This is the same

Figure2
Tandem Point—to—point

idea as having a very fast computer divided among many
users so that each appears to have a moderately fast one.
Since we have distributed the job of switching to the network
hardware in each computer, a higher

Wayne Sung has been working with microprocessor hardware and software for
over ten years. His job involves pushing the limits of networking hardware in
attempting to gain as much performance as possible. In the last three years he has
developed the Gag-a-matic series of testers, which are meant to see if manufacturers

meet their specs.

The Computer Journal / #50

speed link can be provided by this
same hardware.

One of the most common miscon-
ceptions is that the signaling speed of a
LAN has something to do with the

31

processing ability of the computers us-
ing that LAN. In fact, the high speed is
there only so that more units are able
to use the LAN in turn, not so that any
one unit can have it all.

A fundamental assumption of LAN
technology is that the traffic on it is
uniformly distributed. If there is one
large machine that many small ma-

!

11

broadcast mechanism makes it almost
trivial. One unit sends out a broadcast
that asks whether a certain other unit is
available. If so, the second unit sends a
message back to the first one and any
further messages occur directly be-
tween those two units.

Unfortunately, the broadcast
mechanism is also very easy to abuse.
Many systems
routinely send
out broadcasts in
the spirit of “I

‘

chines want to get to, this is probably
the worst kind of arrangement for a
LAN because the traffic distribution is
not at all uniform.

A big difference between a central-
ized switch and a distributed switch
(which is what a LAN is) is the hard-
ware broadcast mechanism available.
With all units attached to a party line,
any information to be made known to
all units can be broadcasted. This is no
more work than an ordinary message,
since all stations hear all messages any-
way. In the tandem switches, broadcast
messages must be replicated and sent
to each port separately.

It is also possible to form subsets of
broadcast messages called multicast
messages. These are messages that
many, but not all, units might be inter-
ested in. Indeed, broadcast is a special
case of a multicast. The networking

thought you

might like to

Figure 3 know”. This is a

Bus Topology LAN reasonable as-

sumption where
only one type of
software is in use. This is not usually
true with LANs.

Where many different types of sys-
tems are in use,
not all systems

In a ring topology, each station is at-
tached to one upstream and one down-
stream neighbor. Messages always
flow downstream, and, again, whether
it is processed or not depends on
whether the specific station address is
present.

Totally separate from this logical to-
pology is the physical topology, ie.
how the wires are actually run. Eth-
ernet, for example, is a logical bus.
However, in many installations, it is
more convenient to run a number of
stations back to one central spot (for
example, a wiring closet). This makes a
physical star (Figure 4).

By the same token (ocops!) a token
ring system is obviously a logical ring
but is also most often wired as a physi-
cal star (Figure 5). In essence, the physi-
cal arrangement and the logical ar-
rangement are totally separate, and any

have to work
with all others.

Ethernet Multiport Repeater

In the case of a
broadcast,

though, there is wiring closet

no choice. By
user stations

definition, every-
one receives the
broadcast and
has to check it
even if only to
disregard it. One of the easiest ways to
rob everyone on a LAN is to send a lot
of broadcasts. The cpu cycles required
to process the broadcast come out of
everyone’s machines.

There is also much confusion be-
tween the net-
working system

Token Ring Multi-Access

wiring closet

itself and the
shape of the
physical net-

work. A number
of ‘topologies’,

user stations

J

hardware is programmed to recognize
these special addresses, in addition to
some address that it is explicitly
known by.

In the LAN case, then, the problem
of maintaining a table of who may be
reached by the network port reduces to
one of “they’re all out this port”. It's
really not quite that simple, but the

Figure 5 Ring wired as Physical Star

32

S

which refers to
the way switch-
ing is done, are
common.

In a star to-
pology, several
units are attached to a central unit,
which handles all the switching. In a
bus topology, all units attach to the
same wire (much like a backplane bus),
and each station can hear transmissions
from all other stations, including itself.
The station does not process any mes-
sages unless the specific station ad-
dress is in the message.

N

J S

logical arrangement can run on any
physical arrangement.

There is a further confusion. There
is a combination of hardware and soft-
ware to allow stations on a network to
transmit messages to each other. It is a
totally separate issue what services are
available in a system of computers,
whether networked by way of a LAN
or by way of a large multi-user main-
frame.

It is not at all necessary to have a
LAN to be able to have, for example,
mail or file services. In fact, using a
LAN for centralized services almost
completely negates the purpose of one.
Still, in small systems you can get
away with it.

Consider this: if you are sending a
message, you have the whole message
in hand from the beginning and can
give it to the networking hardware all
at once. The networking hardware will
send it as soon as possible and will
send it at the signaling rate of the LAN.

On the other hand, if you are to re-
ceive a message, you don't start off

See LAN, page 52

Figure 4 Bus wired as Physical Star

The Computer Journal / #50

The Z-System Corner

PCED, the Z-System for MS-DOS Computers

By Jay Sage

The main subject for this column will be PCED, an operat-
ing system extension program for MS-DOS that gives one a
working environment as close to Z-System as I have seen for
MS-DOS. First, I have a few other small items to cover.

ZEX Script Correction
“My ZEX script for formatting disks on the SB180 using the
FVCD utility had a mistake, and I would like to publish a
correction (due once again, I believe, to the legendary mis-
take-catcher and bug-fixer Howard Goldstein).

I, and many others, keep forgetting that the flow-control
string tests performed by the IF commands (resident and
transient) are not string tests at all; they are file name tests.
Thus, if we have

IF EQ D:A.B B:A.B

the test will return TRUE, since the file name parts are identi-
cal. Directory prefixes are ignored.

In my ZEX script I wanted to detect a string of either “F”
or “F:". The proper way to do this is with the command

IF EQ :$1 F

The colon before “$1” forces the “$1” string to be taken as a
file name even if it contains a colon, since a directory prefix
(the colon) has already appeared. Any additional colon in the
“$1” string will be taken as a file name terminator, and it and
anything after it will be ignored. Thus, if the command line
token is “F:JUNK”, the test will return TRUE.

Z-Node Update

It has been some time since we last published the Z-Node
list, and there have been a couple of changes. We lost Z-Node
#73 in Missouri. On the other hand, Z-Node #40 in Winne-
peg, Manitoba, has been revived after years of neglect. The
node has been transferred to new sysop Greg Kopp. We also
have good news about accessing nodes 21 and 32 in South
Plainfield, NJ. Both can now be reached by PC-Pursuit.

Finally, I would like to pass on a message I received by
Internet email from Helmut Jungkunz, the incredibly ener-
getic Z-System enthusiast in Munich, Germany. (He has pro-
duced German editions of the NZCOM and Z3PLUS manu-
als!) See the side panel for the text of his message.

PCED: Professional Command Line Editor

We now turn to the main subject for this issue. For many
years, even after | had a Compaq 386/16 DOS computer at
work, I continued to use CP/M machines. Among my collec-
tion were a couple of Ampros and a Wave Mate Bullet. The
Z.System was so far superior to MS-DOS that the CP/M
machine was often easier to use, even though its raw com-
puting power was far less than that of the DOS machine.
Several circumstances have led me at this point to retire the
CP/M computers at work.

For one thing, | make heavy use of several applications
that require a big machine. I do all my writing, including
scientific and mathematical work, with TeX (actually LaTeX);
I do a lot of my calculating with MathCAD, a computerized
blackboard; and 1 now use PSPICE for electronic circuit
simulations. All of these applications require about S00K of
free memory. This is way beyond any-

thing CP/M could dream of support-

Jay Sage has been an avid ZCPR proponent since the very first version appeared.
He is best known as the author of the latest versions 3.3 and 3.4 of the ZCPR com-
mand processor, his ARUNZ alias processor and ZFILER, a “point-and-shoot” shell.

When Echelon announced its plan to set up a network of remote access computer
systems to support ZCPR3, Jay volunteered immediately. He has been running Z-
Node #3 for more than five years and can be reached there electronically at 617-965-
7259 (MABOS on PC Pursuit, 8796 on Starlink, pw=DDT). He can also be reached
by voice at 617-965-3552 (between 11 p.m. and midnight is a good time to find him
at home) or by mail at 1435 Centre Street, Newton Centre, MA 02159. Jay is now
the Z-System sysop for the GEnie CP/M Roundtable and can be contacted as
JAY.SAGE via GEnie mail, or chatted with live at the Wednesday real-time confer-
ences (10 p.m. Eastern time).

In real life, Jay is a physicist at MIT, where is tries to invent devices and circuits
that use analog computation to solve problems in signal, image and information
processing. His recent interests include artificial neural networks and supercon-
ducting electronics. He can be reached at work via Internet as SAGE@LL.MIT.EDU.

The Computer Journal / #50

ing; unfortunately, it sometimes ex-
ceeds what MS-DOS can provide! |
have to be very careful about the driv-
ers | use and how I load them, or | end
up with too little free memory. The 386
is now tweaked up to the point where
it just barely handles the jobs I need
done.

The second thing is an operating
system extension called PCED (for Pro-
fessional Command Line Editor) that
makes DOS bearable. It provides the
closest thing to a Z-System interface
that [have found for MS-DOS comput-
ers. | began to use version 1 of PCED

33

many years ago. It was a great improvement over plain DOS,
but there were many areas where the author just had not
thought things through far enough. This, I find, is typical in
the DOS world, where programmers do not share their work
as we do in the CP/M community, and any given program
tends to be limited to what one programmer can accomplish.

I contacted the author of PCED several times, and during
one call he told me that he was working on release 2. At that
point, I began to lobby heavily for certain improvements.
Most importantly, I sent him copies of old TCJ columns that
described ARUNZ and LSH. PCED had alias processing, but
the parameter parsing was as feeble as that provided for BAT
files. Only complete tokens could be passed; there was no
way to extract pieces of tokens, such as just the path or just
the file name or extension. There was a command history
facility, but it, too, was extremely primitive. To find an old
command line, one had to back up line-by-line until the right
command was found; the computer did not provide the help
with searching the way EASE and LSH do.

Well, PCED release 2 is now out. The author has not cop-
jed the user interface of ARUNZ and LSH, but he has incor-
porated most of the functionality. In addition, with the far
greater memory available on a DOS computer, PCED is able
to do some things that we cannot with our 64K machines.

I'm sure I am not the only Z-System user who also has
occasion to work on DOS machines, so I would like to use
this column to describe some of the main features of PCED.
Perhaps we can even learn something that we can apply in
the Z-System. I will start with the features that are most like
those we are familiar with from the Z-System and then go on
to some of the extra capabilities of PCED.

As usual when I see a program that should be of great
interest to Z-System enthusiasts, I try to get it added to the
Sage Microsystems East product line. PCED is no exception,
and SME now offers it for the very attractive price of only
$50.

Muitiple Commands on a Line

With PCED running you can enter multiple command
lines at the DOS prompt just as you are used to doing with Z-
System. You can set the command separator to the character
of your choice. The default is the caret character, which I find
to be a nuisance to type, since it requires pressing the shift
key. Besides, for Z-System compatibility I prefer the semico-
lon. Occasionally this causes a problem, however, because
some DOS commands use a semicolon in their syntax (the
PATH command, for example).

There are several ways around this problem. There is a
simple command to turn off PCED entirely so that user input
goes straight to DOS. Then one can enter such commands
with no interference. One can also change the separator char-
acter on the fly. Thus a single command line can change it to
the caret, run the command that requires a semicolon in its
argument line, and then switch it back to semicolon. Such a
command line might look like this:

ced chainch “;path dirl;dir2;dir3"ced
chainch ;*echo back to semicolonjecho all done

The first command, separated by a semicolon, is
ced chainch "

CED.EXE is the executable program that constitutes PCED.

It’s “‘chainch’ option redefines what PCED calls its chain char-
acter (what we know as the command separator). PCED then
parses off the next command using the new separator:

path dirl;dir2;dir3

PCED is able to do this because it buffers user command line
strings and feeds the individual commands one at a time to
DOS’s COMMAND.COM. Since, unlike MS-DOS, the Z-Sys-
tem supports multiple commands on a line at the operating
system level, ARUNZ ships the entire alias command line to
the command line buffer immediately.

Alias Scripts

PCED supports alias scripts, which it calls ‘synonyms’,
and it has much of the alias processing power of ARUNZ. As
a result of our efforts, the author has incorporated a very
powerful parameter parsing facility. It can pull apart tokens
into the drive, path, filename, and filetype, and it can return
the current date and time and the default drive and path. It
lacks only the parameters for accessing memory and the sys-
tem environment (things like the number of drives defined).
PCED command lines can recognize DOS environment vari-
ables created using the SET command. As under the Z-Sys-
tem, aliases can be nested to any degree. The only limit is the
total length of the multiple command line buffer. The default
length is 512 bytes, but you can make it longer if you like.

Here is a command that defines a synonym that displays a
directory listing with the file specification automatically
wildcarded:

ced syn d “cdir $1{$r*.$e*} &x”

The ‘syn’ option on the CED command causes it to enter a
new synonym (alias) definition into memory. In this case, the
name of the alias is ‘D’ and its prototype command line is the
text enclosed by delimiter characters (here the double quote,
but any character may be used).

The script in this example invokes the CDIR command,
which lists the files in a directory. We will have more to say
about CDIR later, but any directory listing program could be
used (even DOS'’s horrible DIR). What is interesting here is
how parameters are parsed.

As with MS-DOS batch files, command line tokens are
designated by the percent sign followed by a number. What
is different here is that curly braces can be used to indicate
that further processing is to be performed. The dollar sign
introduces special symbols. The first one, ‘$r" represents eve-
rything in the token except for the file type and the dot sepa-
rator. The form ‘$e’ represents the extension. Other charac-
ters are literals to be included exactly as entered into the
script.

There are parameters of a different type that are intro-
duced by an ampersand. In this example ‘&r’ represents the
rest of the tokens on the command line after any that have
been referred to explicitly (%1 in this example). Thus, if the
user enters the command

d d:\main\sub\a.b /date
PCED will generate the DOS command
cdir d:\main\sub\a*.b* /date

A question mark can be used to define a default value for the

The Computer Journal / #50

parameter in case the user enters no token. Here is an ex-
ample:

ced syn format “format $1{7a:}”

Now when the user enters just “format”, DOS will get the
command

format a:

but if the user enters “format b:”, that is what PCED will
send to DOS.

If you have been really alert, you may have wondered
how we could get away with defining an alias command
named FORMAT in terms of a real command called FOR-
MAT. Well, PCED is pretty sophisticated in the way it
handles this and prevents infinite recursion.

First, it is important to note that PCED always treats com-
mands as aliases first. This contrasts with the way ARUNZ

asterisk, but for compatibility with Z-System 1 redefine it to
be the period using the command

ced ignorech .

Then when I enter a command like
.path subdirl;subdir2;subdir3

This, obviously, is another way to permit the command sepa-
rator in the command line.

Finally, a command can be entered with a leading space,
since synonyms are matched only if they begin with the first
character. For example, if 1 have defined an alias with the
name DIR but want to run the standard DOS DIR command,
I can enter either of the following commands:

dir
<space>dir

The latter has the advantage that the

r

Z-System Report from Germany

Today, the sysop of NBBS and 1 have rearranged the file section for the

command line will still be processed by
R PCED and placed on the history stack.
This is especially useful for an alias
definition like the following:

ZNODE. 5till the ZNODE server will carry directly accessible menus and mes-
sages to experiment with ZCPR, even if people do not run ZCPR themselves.
There is one SIG for all Z80, 64180, Z280, and even 8086 (or the like) CP/M
computers, where | work as a SIG-op. The file section is broken down into:

1) CP/M general 9) Database Programming
2) CP/M 2.2 only 10) Turbo Pascal

3) CP/M Plus approved or only 11) Assembler and ‘C’

4) ZCPR 12) Information for CP/M
5) CP/M 86 13) Information for ZCPR
6) Librarians (Pack/Unpack tools) 14) The Computer Journal

7) Editors and Text-Tools (Non-WS)
8) WordStar Trouble Shooting

15) I forget....

~ Anyway, something like this is what the new NBBS structure is going to look
hke So much for people’s questions about RCPMs in Germany. Also, there is a
good one in Wuppertal, WODS Wuppertal Online Database Service. They have
very good support for C128, MSX, and Spectravideo machines, but also for gen-
eral CP/M. Maybe you can send part of this info on to other ZNODES. Hello

ced syn dir “echo running dir; dir 1~

Without the leading space before the
DIR in the script, this would be a circu-
lar definition, and any invocation of
DIR would result in a command stack
overflow in PCED. The space option
must be used here if we want the pa-
rameter expansion to be performed. If
the first command in a definition is the
same as the synonym name, then syno-
nym processing is automatically sus-
pended for that command; that’s why
our FORMAT alias above was OK.
Well, I think this is enough detail to
give you the idea of the sophistication
that is possible with PCED aliases. One
thing | would like to make clear at this
point is that we do not have to enter all

Cnd bye from Munich, Germany, Ciao, -> Helmut Jungkunz <-

PCED commands (such as synonym
Yy, definitions) manually each time we

operates under Z-System, where ARUNZ is invoked only if
the command processor cannot handle the command.
PCED’s behavior arises out of necessity. In Z-System,
ARUNZ is a tool invoked knowingly by the operating sys-
tem; PCED, on the other hand, has to sneak in front of the
highly incompetent MS-DOS operating system.

Second, PCED provides several ways to turn off special
processing of a particular command. The command

ced ignore cmdname

will cause CED to completely ignore any command line that
starts with the specified command. There will be no parame-
ter expansion and no stacking in the history. This is the most
extreme way to turn off special processing.

A slightly less drastic measure is to put a special character
in front of the command that tells PCED to ignore the com-
mand this time only. The default for this character is the

The Computer Journal / #50

start the computer, as the examples
above may have suggested. This would clearly be an
enormous inconvenience. PCED includes a ‘load’ option that
will read a file containing any valid PCED commands, that is,
arguments that would normally follow a CED command. For
example, I have a file called PCED.CFG that | invoke as part
of my AUTOEXEC.BAT file using the following form:

ced load c:\pced\pced.cfg

The PCED.CFG file contains lines like the following;
chainch ;
ignorech .

ayn d “cdir $1{$r~.Se*} &r"
. (other synonym definitions)

History Shell
PCED provides a command history shell environment like
that of LSH. Command lines can be edited nicely as they are

35

entered, just as with LSH. The history function in PCED is
called the command stack. Commands can be viewed either
in line mode or, by loading the optional VSTACK program,
in full-screen mode. If a partial command line is entered, the
search function returns only those lines that begin with that
string. Even the full-screen display shows only matching
lines. Unlike LSH, however, one cannot edit the full com-
mand history but only individual command lines.

Another advantage LSH still has over PCED is in the op-
tions it offers as to how the next-command pointer is posi-
tioned after a command has been executed from the history.
In PCED, the pointer always points between the command
just executed and the one that followed it in the past. This is
similar to LSH’s auto line sequencing mode, except that LSH
is actually ready to execute the next command line with just a
carriage return. With PCED one must press the down arrow
key.

1 have found that PCED's method easily results in confu-
sion as to which direction one should search for a new com-
mand. | have LSH configured to use line auto line sequenc-
ing only in full-screen mode but to put the pointer at the
bottom of the history when in line mode. In general, I think
that the author of PCED could have learned a lot had he been
able to see LSH in operation,

Command Completion

PCED has a command completion feature similar to the
one in LSH, but slightly more powerful even. As with LSH, if
you begin to enter a command line, such as

edit tc

and then press the TAB key, PCED will try to complete the
last token on the line, “tc”, by looking up all files in the
specified (or current) directory and displaying the next one
each time the TAB key is pressed. Thus if the directory in-
cluded TCJ49.WS and TCJ50.WS, the command line would
cycle through the following as the TAB key is pressed:

edit tcjdd.ws
edit tcjS50.ws
edit tc

PCED also allows one to enter a wildcard file specification
and then have the TAB key display the matching files in
sequence. Thus one might enter the command line

edit *.ws

I thought this was something that LSH did not offer, but I
just tried it and discovered, to my surprise, that LSH does
this too!

The area where PCED is a little more advanced is with
completion of the first token on a line. PCED is smart enough
to scan only executable files and to omit the file type. It also
automatically supplies a trailing space so that one is immedi-
ately ready to enter any command arguments. The closest
thing to this with LSH would be to enter a command line of

e*,cam

and then press TAB until “edit.com” appeared. Then one
would backspace over the “.com” and enter the command
tail. PCED does this automatically when just “e” is entered
on the command line. PCED will also include in the scan
PCED synonym command names. This is a nice feature, but |

36

don’t make much use of it, perhaps because | am not accus-
tomed to it from Z-System.

Flow Control

PCED provides a very rudimentary flow control, vastly
inferior to what we have in Z-System, but better than noth-
ing. A CED option called CANCEL will discard any pending
commands and insert the command (which may be an alias)
given in its argument. It can be used with the standard DOS
IF command, as in this example:

ced syn test “if ex $1{$r.bak} ced cancel
dobak $1;nocbak $1"

If a BAK file already exists, the DOBAK command or alias
will run; otherwise the NOBAK command or alias will run.
This is essentially a single level of flow control with no
ENDIF. It reminds me of the so-called recursive alias that |
invented before Dreas Nielsen showed how to do recursion
rigorously under Z-System (see TGJ issues 27 and 28). If
TEST is called from another alias with multiple commands,
all pending commands from that script will be lost if the
CANCEL branch is taken. This makes nesting impossible and
can cause some unplanned, unexpected, and undesirable be-
havior.

With a little bit of work, | think that the author of PCED
could have implemented a full flow facility like the one in Z-
System. Having had no experience with it, he probably could
not appreciate just how much power it provides. Perhaps |
will be able to convince him to put it into version 3 of PCED.

Unique Features of PCED

While PCED does not have all the power of Z-System in
the areas described above, it does have many features that we
do not have, and probably could not have given our memory
constraints.

PCED operates entirely from memory, with fixed-length
buffers allocated for its various features. As a result, PCED
performs its functions with lightning speed. Having its alias
definitions and other information in memory also allows it to
do some interesting and useful things, some of which we will
describe below.

Dynamic Alias Definitions

As we have already seen, PCED allows new alias defini-
tions to be added directly from the command line at any
time. This can be handy in its own right, but what is really
spectacular is that one alias can create or remove other alias
definitions! For example, one can create an ADDPATH alias
that not only adds a new directory element to the search path
but also creates an alias RPATH (restore path) for resetting
the path to its previous configuration. RPATH includes a
command (the PCED “clear syn” option) to remove its own
definition after it has performed its function!

There can be multiple definitions for the same alias, with
the newest one always being used. Thus, running
ADDPATH several times will add several new path elements
and create several new RPATH aliases. Each time RPATH is
run, it sets the path back one step and then removes itself.
Thus, the PCED aliases create, in effect, a path stack.

Many other creative uses like this can be implemented.
For example, | have some scripts like the following:

See Z-Corner, page 57

The Computer Journal / #50

Using The ZCPR3 IOP

to Add Function Keys to a Kaypro 10

By Lindsay Haisley

A few years ago | dropped the keyboard of my Kaypro 10,
broke a key, and had to remove the steel cover to make the
necessary repair. While [had the cover off, I had an opportu-
nity to examine the internal workings of the keyboard. The
Kaypro keyboard, at least on my K-10, was manufactured by
a company called Maxi-Switch. It is a general-purpose key-
board which is apparently capable of doing a lot more than
Kaypro asked of it. What caught my eye right away was the
presence of numerous switch-sized square holes in the metal
grid which holds the keys in place, each with corresponding
marks and holes for switch leads on the underlying pc board.
A little experimentation revealed that all of these unused key
positions were functional, and hardware implementation of
them involved no more than soldering in key switches and
cutting away the metal keyboard cover to make room for the
added keys.

Software implementation of the four extra keys which I
originally installed required a few minor modifications to the
stock Kaypro BIOS. I submitted an article to Kaypro’s Pro-
files magazine on the subject which was never published. I
learned a great deal from the project, however, which led to
the system improvements described in this article.

The keys on the Kaypro are of two types. The “normal”
keyboard, consisting of the traditional typewriter keys, the
line feed, the control keys, the escape, etc., all return the
expected ASCII value. The number keypad keys, the cursor
control keys, and the extra key positions which I discovered
return values which have more to do with their physical po-
sition in the key layout than with their meaning or function.
The defining characteristic of the latter group of keys is that
they all return values with the high bit set, i.e., in excess of 7f
hex. The stock Kaypro BIOS CONIN routine tests for this
high bit when the keyboard is read and proceeds accord-

ingly.

My Kaypro 10 has evolved over the years and now sports
an Advent TurboROM, a MicroSphere RAM disk and printer
buffer, ZCPR34, and a set of 9 extra keys. One of the keys
does triple duty, since its return value, like that of many of
the standard ASCII keys, is sensitive to the shift and control
keys. I have configured most of the added keys as “function
keys” which do system jobs rather than return characters.
This article will describe how I use the ZCPR3 Input Output
Package (IOP) to implement these functions. This involves a
close and somewhat unorthodox relationship between the
BIOS and the IOP. I'll cover each of these software systems
separately in detail.

The End Result

This is the way my extra keys work. I have several pure
function keys, called “blue keys” in the code, since that’s the
color of the key caps I salvaged from an old Kaypro II key-
board.

Blue key 1, above the ESCape key, performs a warm boot.

Blue key 2, just to the right of Blue Key 1, performs a cold
boot.

Neither of these are maskable by software as long as the
keyboard is beingchecked for input. They function similarly
to Ctrl-Alt-Del on an MS-DOSmachine.

Blue key 3, to the right of the right cursor control arrow,
toggles on andoff the high bit of ASCII characters typed at
the keyboard, enabling thekeying of any 8 bit value.

Blue key “-“, just below the Ctrl key, is rather like the Sys-
Req key on theold PC’s. It executes an RST 10h. Whatever
code is placed at address 10hwill execute when this key is
pressed. The default is initialized on a coldboot to a RET.

Blue key “.”, to the right of the backspace key, can be

shifted with boththe Ctrl and Shift

Lindsay Haisley makes his home on the banks of beautiful Sandy Creek in
Leander, TX where he lives with his wife Cheryl, their two pet birds, Chewey and
Baby, and seven or eight computers of various sizes shapes and vintages. He travels
several times a year to various parts of the country where he teaches and performs
contemporary folk music at clubs, concerts and festivals. He has gained a reputation
over the years as an autoharp player of note and is currently a staff writer for The
Autoharp Quarterly, a national magazine for autoharp enthusiasts. When at home,
he is the proprietor of Further Music Productions, a small music recording studio.

Lindsay graduated from Earlham College in 1963 with a BA in physics and math,
and as a result, he takes his computer hobby quite seriously.His revision of P2DOS
for CP/M, called NovaDOS, has circulated internationally, and can be found, along
with a number of his other public domain offerings, in major CP/M archives such as
Royal Oak and Simtel20. He is the sysop of the Znode 77 RAS which is owned by

the Kaypro Club of Austin.

The Computer Journal / #50

keys. By itself, it toggles a pause in
output from theMicroSphere printer
buffer. Shifted, it initiates a screen
dump to theprinter. With the Ctrl key,
it clears the print buffer, aborting any
printjob in progress.

Additionally, there are 4 “grey
keys” in a line along the top of my
numberkeypad. These keys return
multiple ASCII values, determined by
my runtimekey configuration software
(KPAD and KVEC) and are frequently
used withinapplications for setting
margins, running special macros, dis-
playingapplication help, and similar
tasks.

37

The Hardware

A Brief discussion of hardware problems is in order for
anyone who might take this article seriously enough to try
adding keys to his or her Kaypro keyboard. The key switches
may be hard to find these days. Members of Kaypro users
groups frequently have old keyboards around from which
they salvage key switches and caps. The switches are almost
identical to the ones used on the old Apple 2e computers,
except that the stems are longer and the caps shorter. Both
switches are made by SMK. The Apple key switch part num-
ber is SMK 705 0084 (I don’t know the Kaypro part number).
The Apple key switches were considerably cheaper than

Kaypro key switches back when they were readily available
through service centers; however, that may have changed
now. Cutting spaces for the extra keys in the keyboard chas-
sis may prove daunting. The chassis is solid steel, and cutting
it requires some metal-working skills. One quickly realizes
why the old Kaypros had a reputation for being indestruc-
tible! Farm the job out to a metal shop if necessary.

The BIOS

If the BIOS alone is programmed to perform the jobs to
which my extra keys are dedicated, then the programming
job required is relatively simple. Each time a keyboard char-

Listing 1

CUSTOM BIOS CONST AND CONIN ROUTINES TO SUPPORT KAYPRO
FUNCTION KEYS

-, we we

These are TurboROM entry points, defined in my BIOS.

. e

xentry xcrtsta ; standard keyboard input status
xentry xcrtin ; standard keyboard input
maxkey equ 92h Largest return+l from ‘regular’

keys. Values above 7fh are
returned by the TurboROM for
the cursor control and number
pad keys for further processing.

~e wE e we we

Tables for mapping keypad keys and cursor control keys

’
.
H

akeys:
defb Obh,0ah,08h,0ch ; Standard adm 3a cursor keys
keypad:
defb ‘0123456789—+' ; Modified keypad definition
defb cr,’.’
H
; ** Console Status **
‘consta:
. (IOBYTE routines, TurboROM motor
. timer sensing, etc.)
bufclr equ $§+1
1d a,0 ; Buffer clear flag
or a
1d 1,0 ; Return null in L to indicate
; real char.
ret nz ;3 Return if buffer not clear
; (bufclr set).
1d 1,xcrtsta ; Call the TurboROM keybd status
; to see 1f anything new. A=0,
call calrom ; Zero flag set if not.
1d 1l,a ; L must return zero if no char
; waiting.
ret z ; Return to caller if no
character.
14 1,xcrtin ; Else, fetch it with raw
; TurboROM conin.
call calrom

Check for function keys pressed. Note that maxkey is set to
include as ‘normal’ the TurboROM return value for the
number pad and cursor control keys, even though they have
their high bits set.

~ e we e

cp maxkey ; Key >= maxkey=pure function key
jr c,isnorm ; < maxkey = normal character or
; hybrid (extended input) key.

If the key pressed is a function key, then we execute the
following code.

i
-
’
.
’
i

sfunc: ld 1l,a ; Save char in L reg. for return
;s to IOP
xor a ; A=0 means say no key pressed.
ret

If the key is a regular ASCII key, then we proceed as
follows. Since const cannot return the normal key byte,
it is saved in bufchr (in conin) for the next conin call.

snorm: 1d (bufchr),a ; An ASCII key has been pressed
xor a
1d 1l,a s+ Return null in L
dec a ; Make A=0ffh

We store Offh in bufclr (near the begining of consta) so
that the next call to conin will acceses the character
stored in ; bufchr rather than looking to the SIO for a
key input.

~e = we we

1d (bufclr) ,a
ret

-~

** Console Input **

conins
call consta ; Check for key pressed.
jr z,conin ; Loop out of ROM.
d a, (lobyte)

H etc. seenue

; If consta detected a valid character, then it placed it in
; bufchr.
i

bufchr equ $+1 ; One character look-ahead where
1d a0 ; const places characters.
1d hl,bufclr ; Clear the character stored flag
1d {(hl),0 ; in const.

; The number keypad keys and cursor control keys are mapped

; by the TurboROM into values between 80h and 91h. Bit 7 of

3 TurboROM's bsflag determines whether or not these values

; are further converted into the values provided in the akeys
; and keypad lists above.

mapfncs
or a ; Check for high bit set
ret P ; If no high bit then return
1d hl,besflag ; See if we are to map
bit 7,(hl)
ret nz ; Return raw function if set
1d hl,akeys ; Else, point to mapping table
and 1fh ; Strip high bits
add a,l
1d 1l,a ; Get offset,
; (always in first page)
ld a,(hl)
ret

The Computer Journal / #50

acter is input from the keyboard SIO (serial input/output
chip), the high bit is tested and appropriate action taken if it
is set. If, on the other hand, we wish the BIOS to be transpar-
ent to these function keys—for processing to be done by a
higher structure such as the ZCPR3 IOP—then the situation
is not so simple. The BIOS has two routines which return
information about the keyboard to the BDOS or other calling
programs. At the lowest level, the BIOS CONST routine re-
turns effectively a simple logical true/false value depending
on the current availability of a key value for input from the
‘S10, while the CONIN routine “debriefs” the keyboard SIO,
returning the key input and resetting the SIO so that subse-
quent calls to CONST return false until another key is
pressed.

Because my function keys aren’t true keys, but rather
pushbutton switches which use the keyboard mechanism to
communicate with the operating system, they really aren’t
entitled to return anything to calling software via CONIN.
CONST must similarly return false (no key pressed) in re-
sponse to a function key. How are we, then, to return a value
from these keys using standard BIOS functions? The solution
which I adopted relies on the fact that while CP/M requires
the BIOS to return appropriate values in certain Z80 or 8080
registers, it assumes nothing about other registers, which
may or may not have their contents preserved through a

sloppy software design; however, it does allow my function
key values to ride “piggyback” in an unused register, in this
case the L register, on a call to the CONST routine.

Programs, including the BDOS, which call CONST expect
nothing of significance to be returned in the L register and
routinely discard it's contents. However, my 10P intercepts
calls to the BIOS CONST and is written to interpret the con-
tents of the L register and take the appropriate action. The
situation is not a simple one. While a primitive CONST rou-
tine need only interrogate the keyboard SIO status register
and determine the presence (or lack thereof) of a data byte,
my CONST must additionally read this byte and, if it is not a
function key byte, store it internally until requested to release
it via a subsequent CONIN call. It must return a function key
value in L once and only once (lest the requested function
execute repeatedly). The CONST and CONIN routines must,
therefore, work hand in hand to insure that they present a
unified front to higher level software.

The BIOS console status and console input routines can be
thought of as layered structures, paired to each other at each
level. The introduction of an IOP adds yet another layer on
which the relationship must be harmonious. At each level
(although CONST may be called independently) the CONIN
routine calls the CONST routine and loops until a character is
available. The lowest level, on my system, lies within the

BIOS call. I have always considered this to be somewhat See IOP, page 55
Listing 2
i
LR s L A2 2R s Al s i d sl A sz 22 2222 sndtab equ Ofebbh
title Custom IOP Kaypro 10, adds extra keys 10/13/89 sstat equ 0fh ; Status port, unused sio
subttl Documentation icbyte equ 0003h
cdrive equ 0004h
Package: NZIOP.Z80 bdos equ 0005h
Author: Joe Wright rom equ Offfch

Date: 30 July 1987
Version: 1.0

- we s we

Modified by Lindsay Haisley to support extra Kaypro keys

T e

; This IOP implements several special function keys on the
; Kaypro 10 with an Advent TurboROM and enables the cursor
; control and number keypad keys to return strings of up to
; 4 characters each.

eject
subttl Mapping of special keys added to Xaypro Keyboard

; Blue Key Mapping

keyl equ Ofeh ; Blue Key marked “1”
key2 equ 0f0h 7 Blue Key marked “2"
key3 equ 0f5h ; Blue Key marked “3
dashkey equ 0bOh 3 Blue Key marked *-"
dotkey equ OeOh ; Blue Key marked ”.”
shftdot equ Oeah : Shft Blue Key marked “.”
ctrldot equ Oebh 7 Ctrl Blue Key marked “.~

; Now assign functions to blue keys

.
7

exwb equ keyl 7 Execute warm boot
excb equ key2 ; Execute cold boot
pauspb equ dotkey ; Pause printer buffer
haltph equ ctrldot ; Halt printer buffer
crtdmp equ shftdot 3 Dump screen to printer
sethbt equ key3 ; Paas next char with high bit set
rstl0 equ dashkey : Execute routine at 10h
eject

subttl Equates and Macros

. (ROM entry point generation, etc.)

. (Standard jump table, a la Joe Wright's
NZBIO, v 1.0)
. (IOP id's, etc.)

The main body of the IO Package starts here.
The preceding jumps and package ID MUST remain in their
present positions. Code that follows is free-form.

- we we we

status: ; Internal status routine
namer: ; Device name routine
newlo: ; New i/o driver inetallation
; routine
copen: ; Open con: disk file
cclose: ; Close con: disk file
lopen: s Open lst: disk file
lclose: ; Close 1lst: disk file
’
zero: xor a ; Any call to this pack
; returns zero
ret

. (Standard select routine)
. (Standard tinit routine)

; Tinit must set bit 7 of beflag, the TurboROM configuration
; flag. Likewise, select, which is used to remove the IOP,

The Computer Journal / #50

39

must reset this bit. Bsflag bit 7 determines whether
cursor control and number keypad keys are mapped in the
BIOS or whether mapping responsibility is passed on to the
IOP. I use a special entry in the BIOS jump table to return
a pointer to bsflag. This BIOS vector (calspc) is
referenced by a vector in the IOP, initialized by tinit.

e we we we e we

Console Status

~ W we

nconst: 1d a, (cnt) ; Get count of chars pending
or a :+ from an extended key.
jr nz,loadup ; If > O, then return A=0ffh
1d a, (lobyte)

rrca ; Test for crt/tty
1d 1,xttysta ; Call ROM directly
jr nc,calrom ; No buffering from tty

Retchr will contain the return value from one of the grey
extra number keypad keys, if one has been pressed.

~e we

14 a, (retchr) ; Is a character waiting in conin?
or a
ir nz,loadup ; If so, then return status true
i
call const Call BIOS console atatus.

H
1d c,a ; Put return value in C

Since register L is used to return our “hidden” function
code from the keyboard, we must check for reg L > 0.

~ we

or 1 ; If both A and L zero,
; no key pressed
ret z ; No L, just return A=0
1d a,c
or a ; A and not L. Regular key
jr nz,loadup ; So return Offh

; This leaves only the option of a blue or grey key having
; been pressed, 80

1d a,l Get special key code

-

Find the key code and jump to the appropriate routine

~ e W

cp exwb ;+ Execute warm boot
ip z,0000
i
cp exch ; Execute cold boot
la 1,0
ip z,calrom ; Use TurboROM for cold boot
i
cp pauspb ; Pause print buffer
ld c,0
ip z,calspc 3 Special BIOS jump
H
cp haltpb ; Balt print buffer
1d c,1
ir z,calspc : Special BIOS jump
H
cp crtdmp ; Screen dump
jr z,dcrtdmp
H
cp sethbt ; Set high bit
jr z,dsethbt
H
cp rstl0 ; Execute RST 10
jr z,drst10

; Only keys left are grey keys (extra number pad extra keys.)

dec a
ret

Toggle the setting of the high bit on all ASCII characters

H
; returned
H
desethbt:
1d hl,himask ; Call it from its lair
1a a,(hl)
xor 80h ; Amend it
1d (hl),a ; And send it home
xor a
ret

The himask is set to 80h by the key which toggles the
return of high bit set ASCII characters.

“~ we we

outkey:

himask equ $+1 ; Set msb
or 00 ; 1if requested to do so
ret

; Execute the routine located at address 1lOh

!

drstl0: rst 10h
xor a
ret

Screen dump function, a la TurboROM

dertdmp:
1d c,0ffh
loopl: 1d 1,xgetscr ; Screen dump ROM entry
call calrom
push af ; Save character
1d a,l ; Test for end of line
and 07fh ; Mask column
jr nz,not0 ; Jump if not column zero
1d c,0dh ; Start new line
call list ; List is external to this listing
1ad c,0ah
call list
not0: pop af ; Get character
ir z,endscr ; Dump ends with zero return
1d c,’ ! s Skip greek/foreign
; characters
cp c
jr c,grph
id c,a ; Get character to print
grphs call list ; Send it to the printer
jr loopl
endecr: xor a ; Return with status false
ret

special jumps added to my BIOS. Calspc controls the
MicroSphere printer buffer and returns the value of the
TurboROM config byte. Calrom is a direct call to the
TurboROM

. e we we e

calspc: jp ; Filled in by tinit
calrom: jp 0 ; Filled in by tinit

o

Console Input

~ we we

nconin: call nconst
ir z,nconin

The cnt location contains the count of characters pending
from an extended input key (number pad, cursor control or

grey keys)

me e e we

1d (retchr),a ; See note in IOP conin
cnt equ $+1
; Return A=0ffh indicating a valid character waiting ld a0 ; Get counter value
H or a ; Any chars left from an
loadup: xor a ; Valid character ;1 extended key?
40 The Computer Journal / #50

PMATE/ZMATE Macros

3. PMATE Facilities and Buffer-Saving Macros

By Clif Kinne

Although I did not consider features of PMATE, other
than macros, to be within the scope of this column, the im-
plementation and choice of macros is so intertwined with
certain other facilities that that I feel I must discuss my use of
them somewhat so that the basis for the choice and develop-
ment of further macros will not be completely abstract, but
be seen in the context of a specific framework.

PMATE Facllities
In my mind the facilities of PMATE relevant to macro
considerations encompass:

Variables

Function Keys (if your system has dedicated f keys).
Buffers

Permanent Macro Area

Varlables (numeric)
I pretty much covered my thoughts on variables in the last
issue. To summarize those thoughts more explicitly:

1. The .”S (SaveEnv) subroutine macro pushes five vari-
ables and two cursor coordinates on the stack. To avoid
frequent stack overflow, this is less than half of the 16
available stack levels.

2. Thus, these 5 variables, 0,1,2,7, & 8 in our case, should be
preferred for data bytes which have to be retained while
other macros are called.

3. Using V7 to save the home buffer when necessary, is an
excellent example of such use. (Unfortunately, after 1
wrote the last column, [learned that Jay Sage is using V9
for that purpose. Had I checked earlier, I could have
avoided that difference.)

4. The .C(Change) and .*P (Prompt) macros, introduced in
Column #2, illustrated a common use for V8: the return
of a single data byte from a subroutine to its calling
macro.

Function Keys

If your keyboard has dedicated function keys, your deci-
sions on how to use them will impact critically on the effi-
ciency of your editing. Ten function keys allow you to invoke

ten different macros with single, one-finger keystrokes. They
should, then, be bound to macros you expect to use most
frequently. This line of reasoning has led me to the following
choices:

f1 Displays a directory of all editable files, with a “micro
menu” on the command line.

f2 Toggles between Tag and Cursor

f3 Saves to disk the file in the current buffer. (See Buffer-
Saving Macros below.)

f4 Toggles between the T-buffer and Buffer 1.

f5 Toggles circularly around Buffers 5-4-3-2-5-4-...

f6 Toggles circularly around Buffers 6.7-8-9-6-7-...

£7-f9 Invoke buffers 7-9 as macros.

f10 Clears the current buffer.

Buffers

T This, of course, is the primary buffer for file editing,
being the only one capable of automatic disk buffering
and generation of back-up files.

1 This is my second choice for text. The f4 key makes this
very handy for such things as file comparisons, merging,
et cetera.

2,3 These are sort of scratch buffers for mostly short- term
jobs,- holding search- and replace-strings, for example.

4 This is the preferred choice for reference material, such
as help files and others that can readily be recovered
from disk if corrupted inadvertently.

5,6 These are my third choices for text. They can be alter-
nated by pressing the two adjacent function keys, f5 and
f6.

7-9 These, being executable by {7-f9, are left for that purpose
unless no other buffer is free. (Jay has also, coinciden-
tally, allocated these same buffers for this purpose.)

Since any contents of this buffer are wiped out by the next
*T, “E block command, I try to use it only with macros that
do their jobs and terminate. | believe that if you set up your
own guidelines, such as these, you will find it easier to write
macros that minimize the chance of wiping out wanted text
(or, alternatively, aborting macros to avoid it).

Clif Kinne is a retired computer designer. He cut his teeth on vacuum tube and
acoustic delay line machines in the fifties, made the transition to transistors and
magnetic cores in the sixties, left the field to his children in the seventies, and tried,
vainly, to catch back up with them in the eighties. He can be reached by voice at 617-
444-9055, or via a message on Jay’s BBS, 617-965-7259. His address is 159 Dedham

Ave., Needham, MA 02192

The Computer Journal / #50

Permanent Macro Area (PMA)

This facility deserves a column of its
own, including some macros for deal-
ing with it. In addition, you will have
noted that | have alluded to other mac-
ros and matters that deserve more at-
tention, and which could be deferred

41

Listing 1. Revisions of .”S and .”"R macros. “X*R iRestore Rev A. 61 bytes
~“X*s ; SaveEnv Rev A. 42 bytes ; FUNCTIONAL SPECIFICATION: Restores the environment
saved by the SaveEnv macro.
; FUNCTIONAL SPECIFICATION: Pushes variables 0, 1,
2, 7, 8, and cursor position on the stack. &; USAGE: Must be invoked when exiting a macro which
H Loads variable, V7, with current buffer, @B. H has used SaveEnv, .”S, whether that exit
; IF 0 argument, prepares B0 to receive string. ; was normal, a conditional exit, a jump, or
H a programmed abort.
H STACK USE: 7 out of the 16 available levels. H If the macro is aborted with Ctrl-C or
; terminated accidentally, the variables muet
H USAGE: ."s lLeaves Buffer 0 alone. ; be reinitialized, manually or otherwise.
; 0.8 Prepares B0 to receive string.
; Normally called at the start of any macro which ; Rev A additions:
; will alter more than one of the items saved. BEA ;Go to top of Buffer 0 1
E ;Disable error messages 2
+ Original code: 1S"L$$;Search for an ESCAPE on topline 3
90,01,82,87,88, ;Push variables VO,V1,V2,V7,V8 on stack. 1 ¢EJO ;IF not found, jump to origninal code. 4
X, eL, ;Push current col. and line no. on stack. 2 =" ;IF found and next character is §, 5
€BV7 ;Put current buffer no. in variable, V7. 3 {D ; THEN delete it and 6
oK ; delete line left. 7
; Rev A additions: } +END IF found 8
08 ;IF arqument was not 0, terminate. 4
BEA ;ELSE go to top of Buffer 0. 5 10 ; Original code: 9
271 ;Insert an ESCAPE (uee “6/2I for radix 6 BE7E ;Return to home buffer (ZMATE & PCMATE) 10
; invariance). ;87.°G ; Alternate line 7 for MATE
31 ;Insert a % sign. 7 4S-0LL sMove from cur. line (€L) to saved line. 11
A ;Return to top of Buffer O. 8 QR ;Refresh screen (avoids format mode bug) 12
BR7E ;Return to home buffer (ZMATE & PCMATE) 9 850X ;Move to saved column no. (@€S). 13
;87.%G ; Alternate line 9 for MATE esvs 4sv7 ;Restore original contenta to V8 & V7. 14
@SV2 §SV1 @SV0 ;Restore original contents to V2,V1,& V0.15
Listing 2. Macro to save non-open files. i1F a comment
(8T="; ;for PMATE or Assy langquage 9
"Xo ;SavBuf 154 bytes HeT="{) i OR Pascal 10
L (8T="*) ; OR C (2nd character) 11
; FUNCTIONAL SPECIFICATION:)& iAND 12
(8L=0) ; on the top line, 13
; 1. IF fn (filename) is not found in the top
; line, requests fn from user. { ;THEN copy £n into Buffer 0: 14
; 2. Copies fn to top of Buffer O. M :+ Move off the lead-in character. 15
; 3. Checks if file is on disk T ; Tag first letter of fn. 16
: IF so, asks permission to delete it. 2[; Start loop. (2 is for fn + ext.) 17
; 4. 1IF permission given, deletes (XX) old file. MA j Move to 2nd letter 18
: 5. oOutputs (XO) the buffer contents to disk. S™W§ i Find let non-letter/non-digit. 19
; 6. Restores environment and terminates. M i Move back onto character. 20
; eT="." ; IF not a period, escape loop 21
; VARIABLES USED: V8 Set by ."P if user types an ESC] i ELSE loop to get extenslon. 22
#BD : Duplicate the fn in buffer 0. 23
; BUFFERS USED: 0 Holds filename
o ;ELSE (no embedded fn) get fn from user: 24
; SUBROUTINES: .°C Confirm. USING: ."Y iR i label to Reask for fllename. 25
; _~p Prompt. ."PFilename:$; Display prompt and get user’s response26
; _*R Restore. G #BN ; Move the fn typed to Buffer 0. 27
: .*S SaveEnv. "G ~L3K ; Remove the prompt space. 28
: Y Yes LA (1] ; IF abort flag is set, 29
a {GAbort savez?$; Verify 30
; SIDE EFFECTS: As written, this will not preserve .YEs i IF ‘yes’ 31
; the tag or the cursor position in Buffer 0, JT i jump to Terminate 32
: nor the tag in the home buffer. JR} i ELSE reask for filename. 33
} ;END of IF THEN ELSE 34
H USAGE: This may be invoked from any buffer except
; BO. ;Filename 18 now in Buffer 0:
0."s ;Save the environment. (Note 0 argument) 1 &4F AQO0§ iIs a file of that name on disk? 35
A ;To top of buffer. { iIF mo, 36
.°C ; Ask if okay to delete. 37
i ;Find first non-space, non-ctrl character 3 es’ i 1IF not okay, 38
T>32 ;IF character > ASCII space, escape loop 4 JT ; Terminate gracefully. 39
M - ;ELSE move to next character. 5 XX“AQ0S ; ELSE delete existing file from disk. 40
) ; 6 } ;END IF so. 41
(4T="/) ;IF first of a 2-char. (‘/*’) comment 7 .
™ ; lead-in, move to next character. 8 XO"AR0$;Output the Buffer contents to diek. 42
:T ;Terminate 43
;Is it a comment lead-in? .“R ;Restore the environment. 44

42

The Computer Journal / #50

over a year or more if | am left to my own devices. If any of
you would like to hear more about a particular macro, or
other item, a word from you could greatly alter my schedule.

Buffer-Saving Macros

(or, efficient use of the XE, XJ, XO, and XH commands)
Here we shall cover three macros:

.0 (SavBuf) A substitute for the XO command, bound to the
ALT O instant command in my PCMATE. (For MATE
and ZMATE options, see the section, “Key Bindings”, in
Jay Sage’s Z-System column in TGJ issue 46.)

.3 (SavFil) My universal Save command, bound to f3.

.Q (QuitMate) A macro to terminate PMATE, bound to ALT
Q inmy PCMATE.

- These are among my most important and frequently used
macros and illustrate, [think, why I felt impelled to include
the above discussion, especially on function keys. Before in-
troducing them, I must make two preparations.

Embedding a filename in a file

First let me describe a technique for having a text file carry
its own name. This was introduced in the 10/83 Lifelines by
Todd Katz and has saved me hours of typing and who
knows how many mistakes.

Right here I don’t think I can improve on Katz so 1 shall
quote: “The trick is to put the name of the file as a header line
preceded by a semicolon” (or other comment delimiter if it is
a source file for another language). Of course, after a space or
a tab you could put the date or other comments on the same
line.

You can use this technique to name other text files as well
as source code. To avoid having the header line print with
XT, simply precede the comment delimiter with a Ctrl F.

Enhancements of the SaveEnv and Restore subroutines.
" The second preparation is effected through revisions to
two of the macros introduced in column 2.

Our principal macro, SavBuf, has to store a string (the
filename) in a buffer for subsequent reference. Certainly we
shall want to preserve that buffer’s contents, since we shan’t
want anything to deter us from hitting the SaveFile key when
we think of it. We can leave the contents of that buffer undis-
turbed, so long as we put the string at the top and terminate
it with an ESCAPE.

Recall that we did a similar thing in column 1 with the
macro, .D, except that that time buffer 0 was to be called as a
macro, so the string terminated with a %, rather than an ESC.
These two kinds of uses for buffers occur rather frequently. If
we use Buffer 0 for both, we can expand ."S to prepare
Buffer O for these uses and .*R to restore it afterwards.
Listing 1 presents revisions of .*S and .*R to achieve this.

For .S, note that:

1. Unless it is called as 0.7, it terminates before executing
the new code.

2. Otherwise it inserts an ESCAPE followed by a % at the
top of B0, in preparation for a string to be inserted before
them by the calling macro.

3. Such a string will then be recognized as * A@0, or be exe-
cuted as a macro by .0 without disturbing, or being af-

The Computer Journal / #50

fected by, other contents of the buffer.

For .”R, note that:

1. It searches for an ESC,% sequence on the first line and if
found deletes it and any preceding string.

2. It is possible that ESC,% could be on the top line of BO
without having been put there by ."S, but I'm willing to
risk it. If someone sees a simple way of removing all
doubt, I shall be glad to pass it on in a subsequent col-
umn,- with credit, of course!

The SavBuf macro, .O (See Listing 2).

Some comments are in order to amplify those in the List-
ing. (I try to strike a balance between having enough com-
ments that the listings stand alone, yet few enough that |
don’t divert attention from the main train of thought).

1. The listing illustrates code that will recognize both 1-
character and 2-character comment delimiters, as used
with Pascal and C source, code as well as the ;" for
Assembly and PMATE. You should include delimiters
for the languages you use.

2. The code checks that the filename, if found, is on the top
line of the buffer. | see no reason why it has to be there,
but neither do I see any reason not to enforce that much
uniformity.

3. If the filename is not embedded in the file, the Prompt
macro, ."P, is invoked to get it from the user. Since this
gives the user a chance to change his mind and abort, .0
recognizes the abort flag and responds appropriately.

4. Though I most frequently use this to save files in other
than the T Buffer, it is often convenient to use it for
saving a file, open in the T buffer, to another name.

The SavFil macro, .3 (See Listing 3).

This listing is pretty self sufficient. Note the use of @N.
This is a flag that is set if there is a file open. I believe it is
only available in PCMATE versions. For others [have offered
substitute code that queries the user. If you find this interrup-
tion annoying (as I do), you may prefer to forbid yourself to
use the T buffer for unopened files, and omit the code on
lines 2 (2a & 2b) and the close- brace on line 9. Then, if you
embed filenames, you can hit your equivalent of my f3, any-
time you want without a thought as to which buffer you're in
or what file is in it.

The QuitMate macro, .Q (See Listing 4).

This macro tries to make it easy for you to leave PMATE
without leaving changes unsaved. It asks if you want to save
the buffer you're in when you call it. If, in addition, there is
something in the T-Buffer, it asks if you want to save that
also. Of course, there might be a change to a third or fourth
buffer, but it is hoped that these two queries will jog your
memory enough that you won't forget them.

The same remarks on the use of @N apply as in the fore-
going SavFil macro, but to lines 18, 18a & 18b instead of 2, 2a
&2b.

Macros covered in columns 1, 2 and 3.

This seems like a good time to refresh our memories on
macros presented so far. Table 1 does this, and I shall try to
include an update in each issue, when space permits.@

43

Listing 3. Universal Save File Macro.

function key. Can be called from any
buffer except BO.

“X3 ;SavFil 20 bytes
H FUNCTIONAL SPECIFICATION: €B=0 +IF in T-buffer, 1
{8N ; THEN IF file is open, 2
; 1. 1IP in T-buffer, checks if file is open. ; If you don’t have €N, substitute lines 2a and 2b:
H IF so, saves file to disk using XJ. ; {Gls this file open?$§. ;Query user. 2a
; 2. ELSE saves by calling .O. ; Y@s ; THEN IF answer is ‘Yes’, 2b
; 3. In either case leaves cursor pesition as it was. { H THEN 3
.8 H save the env. (cursor lecation). 4
H SUBROUTINES : USING: XJ$ H Save file to disk and reopen. 5
; '8 SaveEnv. "R ; Restore the env. (cursor). 6
H R Restore. L ; Terminate the macro. 7
H .0 SavBuf. ve, BO, ."C, ."P } ; END IF open 8
} ;END IF in T~buffer 9
H USAGE: This should be bound to an easily typed ;ELSE (unopened file in any buffer):
; instant command, preferably a dedicated .0 ;Call SavBuf macro. 10
Listing 4. Macro to exit PMATE. JA ; Restart 16
H ; ELSE (in T-buffer) 17
“XQ ;QuitMate 88 bytes eN{ H IF an open file, THEN 18
[} ; If your PMATE does not support €N, use 18a & 18b
' FUNCTIONAL SPECIFICATION: ; GIs this file open? 18a
; .CYes{ H IF ‘Yes’, THEN 18b
; 1. 1If buffer not empty, displays query, “Save?”. XES ; Close it and save to disk. 19
H 2. Any response but ‘Y’ or ‘N’ aborts macro. }{ H ELSE (file not open) 20
H 3. Por “Yes”, saves current buffer (XE or .0) .08 H Save non-open file. 21
H 4. If current buffer not T, moves to T~buffer and } H END IF THEN ELSE open 22
; repeats steps 1. and 2. XH ; Leave PMATE 23
: 5. Exits PMATE (XH). } ; END IF THEN ELSE not in T-buffer 24
}H ;ELSE (not ‘Yes’ to ‘Save?’) 25
; SUBROUTINES : USING: ."Nes’ 5 IF not ’‘Neo’, 26
H N No .“A % ; abort macro 27
; St 4 Yes .“A [}:] ; ELSE ('No’) IF not in T-buffer 28
: .0 SavBuf. v8, B0, .*C, ."P & { : THEN 29
BTE H Move to T-buffer 30
H USAGE: This is beat bound to an instant command. JA ; and restart. 31
; Can be called from any buffer except BO. } ; ELSE (in T-Buffer) 32
XK ; Close file (if open) 33
XH : and leave PMATE. 34
tA jRestart label 1 } ;END IF THEN ELSE ’‘Yes’' (to ‘Save?’) 35
2C1eT=0{ ;IF current buffer empty, THEN 2
eB{ ; IF not in T-buffer THEN 3
BTE ; go there 4
JA : and restart. 5 Table 1. MACROS LISTED TO DATE.
¢ ; EILSE (in T-buffer) 6
XH : Leave PMATE. 7 My ™I My TCT
} ; END IF THEN ELSE. 8 ID My Name No. ID My Name No.
} 7END IF buffer empty 9 - Tm T - - T -
A Answer 49 .“R Restore 45,50
;Current Buffer is not empty: ."B BufferTest 49] SaveEnv 43,50
QB ;Prompt alert. 10 .C Confirm 49 Y Yes 49
Gsave?$."Y ; Save current buffer before quitting?z 11 -"D DigiTest 48 -3 SavFil 50
!s(: IF ‘Yea' THEN 12 ."G GoBack 49 .C Change 49
€B{ ; IF not in T-buffer, THEN 13 -°N No 43 -D Decimal 48
.0$: Call routine to save non-open fileld <P Prompt 49 -0 SavBuf (X0) 50
BTE ; Move to T-buffer 15 -'Q Quit 43 -Q QuitMate 50

Corrections: Please add the following lines to the ends of listings 1, 2 and 3 from the previous issue. They were inadvertently
dropped during typesetting. My apologies to Clif and to you—Editor.

In Listing 1, after the lines reading:

€C14T=0 ;IF Buffer is empty,

: €CIeT =

i

Add the following:

{ ; THEN
-1, ;s Push

¥4 ;ELSE
C g

} ;

;Compact form:

Ask if ok to delete buffer. Push answer
on stack (TRUE if “Y", otherwise FALSE).

0 only if both €C and 4T are 0, which is
TRUE only for an empty buffer.

TRUE on the stack

Cc1eT=0{-1,}{."C})

AU AW N

In Listing 2, after the lines reading:

@s-eLL ;Move from cur. line (8L) to saved line. 2
€sQx ;Move to saved column no. (€8S). 3
Add the following:

esvs esv7 ;Restore original contents to V8 & V7. 4

@SV2 @SVl @sV0 ;Restore original contents to V2,V1,& V0. 5

And in Listing 3, after the lines reading;

#K=127{ ; IF a DELETE (127), 12

-D"}) H delete previous character and loop. 13
Add the following:

@K1 ; ELSE display character on CRT & loop. 14

] +End of loop. 15

The Computer Journal / #50

Z-Best Software
We’re Off to the Libraries

By Bill Tishey

First, a quick thank-you to Bruce Morgen and Richard
Swift who took time to report some typos and mixups in
several of my Z3HELP files and ZFILEVxx.LST. Such coop-
eration is greatly appreciated. These two works represent an
enormous amount of information and I'm sure still contain
some misprints or even misinformation. Please continue to
pass along any errors that you may find, so that we can make
them as accurate as possible. I'll discuss the Z3HELP system
in depth next issue.

The Libraries (SYSLIB, VLIB, Z3LIB, DSLIB, ZSLIB)

(ZSUS Z3PROG Pack)

There has been a great deal of confusion over the past few
years about the status of the Libraries, particularly as many
programmers are used to finding the source for ZCPR in the
public domain. Richard Conn released

there are many in the Z community (if not Hal and Joe
themselves) who can work with you in the interim on any
difficulties you may with the routines. Hal and Joe, I'm sure,
would also like to hear of any problems which surface with
the Libraries and any suggestions you have to improve them.
The Reader-to-Reader column here might be a good forum for
such discussions.

One problem which Hal Bower has mentioned in refer-
ence to public access to the source code to the Libraries is the
failure of some programmers to anticipate problems which
can result in the way they use certain routines. An example is
some of the liberties taken with the system registers which
may wreak havoc on some systems where these have an es-
sential use. Programming for Z-System, in particular, must
be done in a highly defensive manner. Routines must not only

all of ZCPR30 to the PD, including Neme Vers
SYSLIB (3.6), VLIB and Z3LIB. Source

for the newer versions of the Libraries, DSLIB .REL 4.3a
he der development by Joe DSLIBS .REL 4.3a
owever, uncder P y SYSLIBO .REL 4.3c
Wright and Hal Bower, has not been SYSLIBSO.REL 4.3c
released. This has been necessary SYSLIBl .REL 4.3¢
simply for the purposes of edition 3{::1851'% :‘;C
control. Joe and Hal have plans for still 23LIB .REL 4.3b
other improvements and, for a while at Z3LIBS .REL 4.3b
least, as they approach the end of ::2;';8 g :'ig
Version “4”, they will continue to))

S 2SUS Siz Rec CRC Library/Size lssued
m oEEmE e |mERF EDES
4 PROG 6 44 E090 DSLIB43A 24 01/01/91 Harold Bower
4 PROG 6 41 68B0 DSLIB43A 24 01/01/91 Harold Bower
4 PROG 13 103 937E SLIB43C 45 12/12/90 Harold Bower
4 PROG 12 93 F6C2 SLIB43C 45 12/12/90 Harold Bower
4 PROG 8 63 6CC3 SLIB43C 45 12/12/90 Harold Bower
4 PROG 8 61 65C7 SLIB43C 45 12/12/90 Harold Bower
4 PROG 6 43 4D3C LIBS43 45 08/18/90 Harold Bower
4 PROG 11 87 9Al12 Z3LIB43B 26 02/17/91 Harold Bower
4 PROG 10 79 33A9 Z3LIB43B 26 02/17/91 Harold Bower
4 V103 6 45 08F7 ZSLIB21 78 02/02/90 Carson Wilson
4 V103 6 47 425D 2zSLIB21 78 02/02/90 Carson Wilson

Figure 1

Author

release only the relevant REL and
HLP files for public use. At the end of their effort, they
intend to offer a Reference Manual and source code at a
reasonable price. So, although the source will not be “free” as
before (at least for some time), we can rest assured that some
means will be devised to make it available at reasonable cost
to those who have a need for it. If you program for Z-System,

be used for the purposes for which they were intended, but
also with considerable thought to their affect (i.e., compatibil-
ity) in a wide range of uses.

One can view the Libraries in terms of progression from
very generalized to more specialized routines. SYSLIB con-
tains basic routines which access features of both vanilla CP/

M and Z-System; Z3LIB adds general

Bill Tishey has been a ZCPR user since 1985, when he found the right combina-
tion of ZCPR2 and Microsoft’s Softcard CP/M for his three-year-old Apple I1+.
After graduating to ZCPR30 and PCPI's Applicard CP/M, he did a “manual in-
stall” of ZCPR3.3 (with help from a lot of friends!), and in late 1988 switched to
NZCOM and ZSDOS, all on the same vintage Apple 11+. Bill is the author of the
Z3HELP system, a monthly-updated system of help files for Z-System programs, as
well as comprehensive listings of available Z-System software. Bill is the editor of
the Z-System Software Update Service and has compiled such offerings as the
Z3COM package and the Z-System Programmer’s Toolkit. Bill is a language analyst
for the federal government and frequents the Foreign Language Forum (FLEFO) on
Compuserve. He can be reached there (76320,22), on Genie (WATISHE), on Jay
Sage’s Z-Node #3 (617-965-7259) and by regular mail at 8335 Dubbs Drive, Sev-

ern, MD 21144.

The Computer Journal / #50

routines which provide access to
ZCPR3 features and capabilities; VLIB
adds still more specialized routines
which support CRT control and utiliza-
tion via the Z3TCAP; and DSLIB adds
routines supporting file time and date
stamping and real-time clock features.
ZSLIB, developed by Carson Wilson,
provides additional routines for dates-
tamp maintenance under ZSDOS,
Z3PLUS and CPM Plus.

Hal Bower has been hard at work in
recent months with updates to SYSLIB,
(4.4 should be available as you read

45

this), Z3LIB (now 4.3b) and DSLIB (4.3a). See Figure 1 for
stats on the most recent releases (both Microsoft and SLR
REL formats are available for most of the libraries). With
release 4.3 last August, Hal consolidated all the changes since
4.2 to make the version numbers the same and establish a
more controlled baseline. He also added a module,
LIBVERS.REL, which, when linked with SYSLIB/Z3LIB/
VLIB/DSLIB and executed, displays version-specific data for
each Library.

The major improvement to SYSLIB

mand line). TTOOLS, in our Z-SUS Word-Processing Pack,
is a set of UNIX-style utilities which also contains some use-
ful “pipelines” for combining files under CP/M.

For both CP/M and Z-System (NZCOM, Z3PLUS), Car-
son Wilson’s EXTEND13 stands out. Based on Ron Fowler’s
program, EXTEND13 appends an input line to a new or ex-
isting ASCII file (see Figure 2 for EXTEND13’s syntax). Great
for batch- processing under Z-System, EXTEND13 can “keep
notes” on what happened during unattended batch runs.

this past December (version 4.3c) was

Figure2
inclusion of Joe Wright’s new, general- Name Vers
purpose sort routine. Now much faster

EXTEND.COM 1.30

and smaller, it replaces the unique, em-
bedded sorts used in the directory rou-
tines and provides primitives for true

relational database management for Syntax:

Text file extender for all Z80 machines.
existing ASCII file.

EXTEND <filename> <string>]

S ZSUS Siz Rec CRC
= mEmz To= === smm=
4 V104 1 8 B1B2

Library/Size Issued Author

EXTEND13 10 03/16/90 Carson Wilson
Appends input line to new or
Vs. 1.0 (09/81) by Ron Fowler.

CP/M: sorted arrays, pointers to point-
ers, searching an array that has been sorted, et cetera.

One side-note to Hal’s work with SYSLIB has been having
to cope with its sheer size. The source to SYSLIB is now over
a megabyte, which presents a problem to some library man-
agers which must build the library entirely in memory (Al
Hawley’s ZMLIB, we should note, operates in a paged mode
and doesn’t have this limitation). As a result, at one point,
SYSLIB was released in two pieces (SYSLIBO.REL and
SYSLIB1.REL), but this proved to be too much of a nuisance
(some assemblers and linkers don’t handle 7-character labels)
and, with version 4.4, we're now back to a single .REL file. If
you happen to have the split-file version, however, just re-
member to rename the files (e.g.,

Probably the best utility in this category to appear in the
past few years, however, is Gene Pizzetta’s CONCAT13. Like
Gene’s XFOR, which we discussed last issue, CONCAT is the
result of several years of collaboration among Z-program-
mers and Z-users to produce a highly efficient and functional
program. Howard Goldstein, Jay Sage (and undoubtedly oth-
ers) assisted Gene with many programming decisions and
many users helped to test new options and versions as they
appeared.

For ZCPR3 only, CONCAT will either concatenate two or
more source files into a new file or append them to an exist-
ing file. See Figure 3 for CONCAT's syntax.

SLIBO.REL and SLIB1.REL) before link-

Figure 3
ing. If you have the ZMAC package, Name Vers
you can concatenate the two RELs
with “ZMLIB SYSLIB = SYSLIBI, CONCAT.COM 1.30
SYSLIBO”.

DSLIB and Z3LIB have both needed
tweaking to take advantage of the new

Concatenates two or more source files into a new file, similar to PIP or
appends them to an existing file. Accepts both DU and DIR specs. ZCPR3 only.

Syntax: CONCAT {dir:}outfile={dir:}infile {{dir:}infile {...}} {/options}]

S 2SUS Siz Rec CRC Library/Size Issued Author

4 va207 7 52 A98D CONCAT13

43 02/23/91 Gene Pizzetta

SYSLIB improvements. The DSLIB di-
rectory routines (DDIRQ, DDIRQS), for example, were modi-
fied to return both the address of the sort table and the record
table. This allows use of the new sort routine with pointers to
perform customized directory lists with date and time
stamps (by selecting/ packing/ resorting, etc.).

One final note is a caution which Hal has made in the past
to programmers using Z3LIB, and it relates to his emphasis
on writing code in a defensive manner: “In many cases the
Z33 functions in Z3LIB rely on the CPR to do their work.If a
program overwrites the CPR, these routines probably will not
work. Many programs (VLU, for example) may bomb be-
cause of this, either directly or indirectly.”

Text File Extenders
EXTEND13 (ZSUS Vol 1 #4)

CONCAT13 (ZSUS Vol 2 #7)

Utilities to append strings and entire files to other files or
to concatenate two or more files into one have been available
for CP/M about as long as the original PIP.COM, which,
although primarily a file copy utility, is also capable of the
latter. Two other useful text file extenders, for vanilla CP/M,
are Joe Wright's CON20 (good for appending a small file to
the end of another file) and Ron Fowler's EXTEND (for
appending ASCII strings to the end of a file from the com-

46

Since CONCAT is Z-aware, it offers many special fea-
tures. Since DU/DIR specs are allowed, some elaborate con-
catenations are possible across drives and user areas. In con-
catenate mode (the default), the file create datestamp is
transferred to the new file (in append mode, the original
create stamp is preserved). An object (binary) file mode is
also available for “rejoining” files split on record boundaries
(such as those created by FSPLIT, which allows splitting of
binary files, or some hard-disk backup programs which
break large files across two or more floppy disks). A divider
string can be inserted into the destination file before it is
concatenated or appended, and the system date and time can
also be inserted (an included patch file even allows you to
change the format of these to your liking). Other command-
line toggles include: quiet mode, datestamp transfer, and
disk-space checking. CONCAT is configurable with ZCNFG,
so if your usage mostly entails appending files, you can
make this the default mode as well as change other defaults.

FF24

(ZSUsS Vol 2 #5)
The Z-System File Find program is one of those indispen-
sable system utilities which performs a basic function, is used
See Z-Best, page 54

The Computer Journal / #50

REAL COMPUTING

The 32FX16, CPU caches, and the Pi benchmark

By Richard Rodman

32FX16
_ The 32FX16 is an N532 CPU designed for the explosive fax
and fax-related marketplace. It is designed to make a fax-
related product inexpensive, yet feature-rich. Like the
32CG16, it has an on-chip clock generator, enhanced graphics
instructions, and can use an FPU, but not an MMU. It's
packaged in an inexpensive 68-pin PLCC package.

Unlike the 32CG16, the 32FX16 has an on-chip “DSP mod-
ule”. The DSP module is intended to implement modems,
tone decoders or other digital filtering applications. It per-
forms one of four operations on a complex vector (that is, an
array of complex numbers, each of which has a 16-bit real
part and 16-bit imaginary part): VCMAD (Vector Complex
Multiply Add), VCMUL (Vector Complex Multiply),
VCMAC (Vector Complex Multiply and Accumulate), and
VCMAG (Vector Complex Magnitude). These instructions
run in parallel with whatever the FX16 CPU is doing. The
DSP has 6 registers and is memory-mapped at address
FFFFD400.

The 32FX16 also has 384 bytes of on-chip RAM, which can
be used with the DSP or for any other purpose. It is located
at FFFFD000.

A companion part to the 32FX16 is available, the 32FX210
facsimile/data modem analog front end. This device is a
combination of a CODEC (coder/decoder, in other words, a
combined A/D and D/ A converter) and a filter device. The
CODEC includes programmable gain and “mu-law” re-
sponse, which is the standard North American companding
method. While this is handy for telephony, to write a mo-
dem it will be necessary to convert the response back to lin-
ear values with a lookup table.

There is an evaluation/development board available,
which is a PC/ AT motherboard form factor board with four
XT-compatible slots and from 2 to 8 megabytes of SIMM
DRAM. For those itching to get into the fax machine busi-
ness, National has available a complete software package in-
cluding the complete V.29, V.27 and V.21 modems, the T.30
initial handshake, and the T.4 (Group IIl) compression/de-
compression logic. Plug in your scanner and printer, and an
LCD display and keypad, and a DAA, and you're in busi-
ness.

Needless to say, prices on this kind of thing are outside
the experimenter’s budget. But the 32FX16 has enough inter-

esting aspects to it that, if low in cost, it could be useful for
all kinds of neat projects.

Cache on the Barrelhead

In the marketspeak of the 32-bit CPUs, one word often
heard is “cache”. While National and Motorola have had on-
chip caches for years, the word is new to the ears of the Intel-
processor community. Intel has added a “four-way set-asso-
ciative cache” to their 80486 CPU. The PC journalists have
seized the opportunity to dredge up all of the old “cache”
puns - after all, it’s not a new concept by any means. But just
what the heck is a “four-way set-associative cache”, anyhow?

A cache is a block of high-speed memory which keeps
copies of recently-accessed, and hopefully frequently-used,
memory locations. It can be implemented on the CPU chip,
or on external chips or boards. Whenever the CPU accesses a
location, the cache logic checks to see if the location matches
any of those in the cache. If it matches, the CPU saves time
getting its data. You could call it a “cache discount.”

The cache itself consists of the memory itself plus a list of
addresses to which the cache memory locations are mapped,
called the “tag directory”. Matches are referred to as “cache
hits”, whereas the times when the CPU must go and access
main memory are referred to as “cache misses”. The goal of
the cache design is to attempt to keep the ratio of hits to
misses high, because the misses can be expensive. You could
call them being “short of cache”.

The locations in the cache are not assigned randomly. If
the entire block of cache memory corresponds to a single
block of main memory, this is called a “direct mapped”
cache. Otherwise, the cache memory can be divided up into
sections, each of which corresponds to a different block of
main memory. This is referred to as an “N-way set-associa-
tive” cache, where N is the number of sections. This im-
proves throughput, because the CPU is usually accessing
more than one location in memory during a given set of
instructions. It’s like being in a store with multiple “cache
registers.”

The Intel 486 processor has an on-chip 8 kilobyte 4-way
set associative cache. This means that its cache is divided
into four sections, each of which could correspond to instruc-
tions or data. The cache has a dramatic effect on perform-
ance, as you will see in the “Pi benchmark” section to follow.
You could call this “cache on deliv-

Rick Rodman works and plays with computers because he sees that they are the
world’s greatest machine, appliance, canvas and plaything. He has programmed
micros, minis and mainframes and loved them all. In his basement full of aluminum
boxes, wire-wrap boards, cables running here and there, and a few recognizable
computers, he is somewhere between Leonardo da Vinci and Dr. Frankenstein. Rick
can be reached via Usenet at uunet!virtech!rickr or via 1200 bps modem at 703-330-

9049.

The Computer Journal / #50

ery”.
How does this newfangled 486’s
cache compare to the NS32 chip
caches, available in the 32532 since
1986 and later in the 32GX32 and
32GX3207 Internally, the ‘532 and
‘GX32 processors have a RISC-like
See Real, page 49

47

Assembler, from page 30

ZREMOTO03.LBR contains five modules that are assembled
and linked to produce the final ZREMOTE program for Cam
Cotrill's Ampro system.

ZRLDR.280 2R program signon, etc. Calls RSXLDR.
RSXLDR.Z80 Generic RSX installation code. Calls RELOC.
RELOC.280 Generic code relocator for PRL modules.
ZREMOTE. 280 Main ZREMOTE RSX hardware independent code.
ZRAMPRO. 280 Hardware specific part of the RSX code.

The only module that changes for other hardware is
ZRAMPRO, the hardware-dependent driver. If you have an
IMP or MEX hardware insert (also called overlay) for your
system, you can get the correct port addresses and bit mask
data from it for modification of ZRAMPRO. After making
the modification for my 5100 system, | renamed this module
to 825010.Z80. Lets assume you name your ZRAMPRO re-
placement MYDRVR.

Assemble all the modules to make REL files. (MYDRVR
instead of ZRAMPRO)

The next step is to combine all these into a file named
ZREMOTE.COM whose code is arranged like this, where all
parts are present:

[RSX_HDR] {PRL_HDR] (CODE_IMAGE) [BIT_MAP_ if PRL]

We will use ZREMOTE.HDR as the name for RSX_HDR.
This file is the same as a .COM file and must be made with a
simple linking operation.

ZREMOTE.HDR is made with:

ZML ZREMOTE.HDR=ZRLDR,RSXLDR, RELOC

The next task is to link ZREMOTE.REL with
MYDRVR.REL as a PRL, prefixed with ZREMOTE.HDR to
make ZREMOTE.COM:

H LISTING 1.
;Program SETNULL

;Author Al Hawley

;Version 0.1, 3/18/91

;This program silently sets the NULLS variable in BYE
;or ZREMOTE to values from 0 to 254. Becauee of the
snature of the routine in ZREMOTE/BYE which handles this
;task, the nulls cannot be set to 255.

H .280 suncomment this line for M80 only
include sysdef sstandard equates
request syslidb jtell linker about syslib

ext eval,sksp,print ; and the routines we use
; from syslib

jo———
H START OF PROGRAM CODE

[RS—

NULLS: JP START

DB ‘Z3ENV’ ;identifies program for ZCPR3x

bs 1 ;external environment

Z3ENV: DW 00000H sthis address set by Z3INS or
ZCPR3x

W NULLS ;for Type 3,4 compatibility

;jeonfiguration area

DB ‘NULLS’ ,0 ;PRGM ID FOR ZCNFG

DS 10 sextra space, just in case..
DEFNUL: DB 16

;-—-—-

START':

1ld (stack),sp ;jeave CCP stack pointer

1d sp,stack ;set up local stack

id hl,tbut ;CCP puts the command tail here
id a,(hl) snumber of characters in the tail
or a ;any argument?

jr z,default ;no, set default nulls if possible
inc hl jpoint to first character

call sksp ;8kip over any space characters
ld a,(hl) jget the first non-space

cp ‘o ;info request?

jr z,help syes, if 2

cp ‘2! ;this aleso gete info

jr z,help

call eval ;jget the arqument in E (SYSLIB
routine)

call nc,gsnulls sset nulls if arg is valid
;fall through and do nothing on error

exit:

ld ep, {stack) ;restore CCP stack pointer
ret ;exit to CCP

; —————

default:

1d a, (defnul) ;get default nulls from config area
1d e,a

call gsnulls ;and set nulls

jr exit ;all done

P—

gsnulls:

;sentry E = number of nulls to set

sexit if E was Offh

H A = current nulls value

; else nulls set to requested value

push de

call byetst ; ZREMOTE/BYE present?

pop de ;E contains number of nulls
ret nz ;nothing there to set!

1d c,72 ;extended BDOS function call,

;defined in BYE and ZREMOTE
call bdos
ret

byetst:
;routine to test for presence of BYE/ZREMOTE
jentry none

sexit flags 2 if ZREMOTE or BYE present,

H else NZ

1d c¢,20h 7ZR & BYE intercept this function
1d e,0£f1h ;which is set/get user with an

;jillegal value in E
call bdos

cp ‘M’ ;-.-and returns ASCII M if there.
ret ;2=>BYE or ZREMOTE is present

; _____

help: call print

db ‘Sets Nulls in BYE or ZREMOTE',cr,lf

db ‘ SYNTAX: SETNULL <ARG>',CR,LF

db ! <ARG> result:’,cr,lf

db ‘ none sets 16 nulls’,cr,1lf

db ! number sets number (0...254) nulls’,cr,lf
db ’ / or ? gets this screen.’,cr,lf

db 0

jp exit

ds 10*2 sallow 10 level stack

stack: ds 2

end smarks end of code for assembler

The Computer Journal / #50

IZML ZREMOTE.COM=ZREMOTE, MYDRVR , ZREMOTE. HDR/I P

Here, the /I tells ZML what to do with ZREMOTE.HDR,
and the ‘P’ argument specifies that the rest of the image is to
be made as a PRL module. (ZML creates a PRL header if the
name of one is not supplied.) That’s it! Type ZREMOTE, and
it will sign on and become invisible. Your computer works
like it always did, except that you can connect a second ter-
minal to your auxiliary port. [t will operate in parallel with
your main console. Or you can connect another computer
(with an RS232 cable) to that port and use a program like
MEX or IMP in that machine to communicate in terminal
mode or file transfer mode. That's a simple two-station LAN!
There is no program with ZREMOTEO3 for removal of this
RSX. You can use Bridger Mitchell's REMOVE.COM if you
have it, or you can obtain KILLZR from Z-node Central (213-
670-9465).

: Conclusion

That's it for this session. As you can see, the easy part of
AL programming is writing code! The hard parts are the
same as in HLL programming: knowing the computing
environment and planning the program to accomplish well
defined objectives.

This second part was written before the first was pub-

lished, so questions you have cannot be addressed. I will, by
the time you read this, have talked to many readers at the
Trenton Computer Festival. The next article will attempt to
address issues that your responses and theirs bring to light.@®

References
11. Maley & Earle, The Logic Design of Transistor Digital
Computers
pub. 1963 by Prentice-Hall, Inc
ICCCN 62-19494
12. Bridger Mitchell, Advanced CP/M - Extending the Operating
System
TCJ, Iseue No. 34, Sept/Oct 1988, p. 30
13. Harold F. Bower, LINKPRL - Making RSXes Easy
TCJ, Issue No. 40, Sep/Oct 1989, p. 16 (part 1)
TCJ, Issue No. 41, Nov/Dec 1589, p. 27 (part 2)
14. Jay Sage, The ZCPR3 Corner - PRL files and Type-4
Programs
TCJ, Issue No. 34, Sept/oct 1988, p. 20
15. B.W. Kernighan and P.J. Plauger, Software Tools
Pub. by Addison-Wesley, 1976
ISBN 0-~201-~03669-X

Sources:
For CP/M manuals: Elliam Associates, P.O. Box 2684,
Atascadero, CA 93423

For ZSDOS/ZDDOS, ZCPR34, ZMAC/ZML/ZMLIB, other Z-System
programs: Sage Microsystems East, (See advertisement on back
cover of this issue)

Real, from page 47

Harvard architecture, with separate paths for instructions
and data. This prevents CPU bottlenecks without requiring
the programmer to make any special efforts. The ‘532 and
‘GX32 processors have 1.5 kilobytes of on-chip cache mem-
ory, but it's divided into two two-way caches. This basically
means that there are four caches, two for instructions and
two for data. Notice that if you had only one big cache, like
the 486, data references could fill all but one of your cache
sections, causing cache misses on every subroutine call and
return. This is very likely, too, because one cache section will
almost always map to the stack. The NS32 design ensures a
better hit/ miss ratio, you might say, the chips maximize your
“cache flow.”

Because the NS32 chips use memory-mapped 1/0, logic
has been implemented to prevent 1/0 locations from being
cached. The 486 does not have this feature, so watch out if
you plan to use memory-mapped 1/0. Also, DMA logic or
multiple-CPU systems might involve changing memory con-
tents outside the CPU, so cache invalidate instructions are
needed to prevent the old data from being reused. The NS32
chips allow you to invalidate either a whole cache or only a
small part of it. The 486 only allows the entire cache to be
invalidated, causing immediate cache misses. You might call
this “cold cache”.

The newer Motorola CPUs feature on-chip caches as well.
Now that you know what the terms mean, you can assess
their claims for yourself, because I'm out of space for this
topic - but I'm not out of puns yet. I had these left over:

" u

“take it in cache”, “cache and carry”, “cache crop”, “cache in
on” ...

In summary, Intel’s 486 cache is a big, and welcome, im-
provement, but they’ve still got a lot to learn. While I'm on
the subject of Intel 386 and 486 CPUs, as one whose work
obliges him to work daily with these critters, I have to point
out how Byzantine these chips are. Backward compatibility
to the 8086 and the 80286 is accomplished by a set of modes
layered atop segments, with global and local descriptor
tables, layered atop a paging scheme. The result is bizarre to

the point of being schizophrenic. For example, 32 bit instruc-

The Computer Journal / #50

tions will work in “real” mode, but some 16-bit instructions
won't execute in 32-bit mode. In 32-bit mode, however, code
segments may be flagged as containing 16-bit instructions,
and the chip will change modes dynamically. And then
there’s the “virtual 8086” mode. It's no surprise that most
386/486 users just pick one mode, usually either the “real”
mode or the “32-bit small-model” mode, and pray they don’t
get bitten by the others. It makes me wonder just how many
of the thousands of transistors are dedicated to putting the
user through such torture.

The Pi benchmark

A new benchmark circulated on Usenet calculates the
value of pi to up to 15,000 digits. It’s fun, simple, and uses a
preponderance of long math. I[t’s just the thing to make
people realize how horribly slow their PCs are and how fast
the VAX is. After all, all’s fair in love and benchmarks, right?

Here are some timings for 1000 and 10,000 digits for vari-
ous machines, in minutes and seconds:

CPU: MHz: OS: Compilers: 1000 10000
80286 12 DOs Datalight 1:19 -
32016 10 Metal Cl6 0:47 -
80386 33 08/2 1.21 Microsoft 5.1 0:39 -
802386 33 DOS Microsoft 6.0 0:29 -
Microvax-II ? VMsS GCC 0:27 -
68020 ? Sun 3/60 Sun 0:22 -
32532 25 - Gee 0:06 9:52
80486 25 RMX~-III ic 4.2 0:05 8:12
VAX 6410 ? VMS GCC 0:03 5:48

The interesting thing about this benchmark is that it’s vir-
tually all long math (no floats are used). For this reason, 16-
bit environments pay a heavy penalty. The strong showing
by the 80486 is mostly due to running in 32-bit mode, but the
cache and optimizing compiler help too. As for the 32532,
we're still tweaking it.

Next time
Next time we’ll examine the 32CG160 and some other in-
teresting industry trends. In the meantime, speak softly ...
and carry lots of cache.@®

49

- =

. we

"~

~

: STOP_MOTOR (MCB — ;

(

OC1lF TMSK1 CI
IF RIGHT ELSE LEFT THEN
EI

1STEPCNT (StepCnt MCB — ; Set Step Count)
STEPCNT + !

14SLOPE (+slope MCB — ; Set +slope)
4+SIOPE + 1!

{-SLOPE (-slope MCB — ;
~SILOPE + |

Set -slope)

1CV (CV MCB — ;
v+ 1

Sest Constant Velocity)

iInferenceTable (InferenceTable MCB — ;)
(Set State Knowledge Base)
InferenceTable + 1

Stop the motor }
>DONE_KB & SWAP !InferenceTable

Debugging tools to help us develope more)

(wonderous applications!!)

CODE STEP_CYCLE

(MCB - ;

ASSEMBLER

0 ,Y LDX INY INY

PSHY

InferenceTable ,X LDD
“InferenceTable ,X STD
Engine * JSR

PULY
NEXT " JMP
END-CODE
: DUMPMCB (MCB — ; Aids in debugging.)
CR
.” ACC RATE ACCL STEP +§ -5 IT “IT ”
CR
DUP ACCUMULATOR + € O <# ### # # TYPE .” “
DUP RATECNT + @ O<# # ###4# TYPE .” *
1 DUP ACCICNT + 4 O<# ###4# & TYPE ." *
DUP. STEPCNT + @ 0 <# # # # # # TYPE .” *
DUP +SLOPE + @ O <t ##4# ##H TYPE ." *
DUP -SLOPE + € 0o<# ## # ## TYPE .” *
PUP InferenceTable + @ O <# # # # # #> TYPE .”
*InferenceTable + @ 0 <# # # # # # TYPE .” *

CR ;

: steplt (MCB — ;

-

This steps the Inference Engine
{ ; and displays the MCB structure
DUP STEP_CYCLE DUMPMCB

)
)

Step thru one inference cycle)

Listing 2
CREATE OTHER_MCB MCB_SIZE ALLOT
(The MCB we will use for the NMIS)

(NMIS 7040 Stepper motor example.

)

OTHER_MCB (MCB)

doState (Action Routine)
>SENSOR_ACTION ¢ (Sensor Routine)
0 (Reload Timer count “reserved”)
8000 (Address of Motor Port)
04 (Address in Port of Motor)
INIT_XB (XB for starting up inference)
100 (constant velocity count)
100 (step count constant)
5 (acceleration constant)
-1 (deceleration constant)
ADD MOTOR (add this motor to listl)

50

Stepper, from page 13
Ba?éz, th’g Inference Engine is compiled along with its sup-

port routines.

The Engine

The Engine is actually quite simple. It is given a pointer to
a set of rules. It cycles through each rule, executing the condi-
tion portion of the rule. If the condition portion of the rule
returns with the CC register Z bit set (We'll call this FALSE),
the Engine will call itself through a recursive call. When the
condition portion of the rule returns with the CC register Z
bit clear (We'll call this TRUE), the Engine fires the TRUE
condition’s action and completes its cycle. The action portion
of the rule alters state variables in the MCB and can initiate
external events such as “Step the motor”. The above cycle is
termed the “Inference Cycle”.

Rule priority is governed by the rule’s placement in the
State Knowledge Base. One rule MUST fire its action in the
active State Knowledge Base. This is not a caveat because of
the execution speed gained and the nature of state machines.
It does mean that all of a state’s possible events must be care-
fully and methodically thought out.

Care must be exercised when designing the rules which
fire during an inference cycle. Inference Latency is the time
required to complete one inference cycle as it relates to the
current timer interrupt interval. If the inference latency is
longer than the interrupt interval for one cycle, the regularity
of timed interrupt is broken and the system'’s confidence de-
grades dramatically. In some instances a “crash” can occur. If
more than one device is attached to the timed interrupt, the
complexity involved in the determination of maximum infer-
ence latency increases. Once again it is evident that the states
must be factored into rules concisely and methodically, and

the implementation of rules must be carefully thought
through.

On Real-time Systems

In a real-time system model, various events are moni-
tored. When specific events occur actions are taken. These
actions either directly or indirectly alter the system’s behav-
jor. Events and their reactive actions can be grouped to-
gether. These groups are states. A state has a specific goal.
When the state goal is achieved, a new state or behaviour is
established. Along with the new state a new goal is asserted
which governs the state. Some action in the retired state es-
tablishes the next state to be activated. The state transition
diagram and the transformation specification are two struc-
tured design tools that enable us to quickly and concisely de-
termine the required rules for the various states. Figure 1.
defines the required states and their relationships. Figure 2. is
the state transition diagram of our stepper model. (At this
point the reader may wish to refer to article II. of this series.)
Figure 3. is the derived transformation specification. The
transformation specification maps directly to a system of
rules! The implementation details can be directly derived
from this system of rules.

The Interrupt
Within the timer heartbeat interrupt that propels our sys-
tem, the Y register is used in two layers. The interrupt cycle
uses the Y register to hold the current MCB, and the Engine
uses the Y register to cycle through the current State Know!l-
edge Based. Care is taken to ensure the integrity of the Y reg-

The Computer Journal / #50

Initiatization Stale

States Diagram

Acceleration State
(Positive and
Negative)

Constant Velocity
State

STOP State

Promotional
and

Technical Writing
for Electronics Marketing

x k Kk Kk Kk

Technical Articles for Publication
Advertising Concepts and Copy
Product and Service Brochures

Press Releases
Speeches and Lectures
Editing/Rewrite Service
Consulting

k ok ok K Kk

Bruce Morgen
P.O. Box 2781

Warminster, PA 18974

215-443-9031
(Voice, Data by Appointment)

R

N
T

N

T R Y

The Computer Journal / #50

ister for its subsequent use by the non- interrupt level Forth
system. (The Y register is used as the Forth data stack
pointer.) doState maintains the integrity of the Y register as
used in the interrupt cycle. Once Engine is finished, the Y
register is restored to its function of MCB pointer. Once the
interrupt is complete, the Y register is restored to its function
of being the Forth data stack pointer.

Tools

Certain tools are required to allow experimentation, and
debugging if necessary. ADD_MOTOR adds more informa-
tion to the MCB now. The code illustrates its usage.
RUN_MOTOR is now MCB specific. It also accepts a flag to
determine if rotation is to the Right or Left (TRUE is Right).

STEP_CYCLE steps the inference engine one inference
cycle. It grabs the current State Knowledge Base and sets the
appropriate registers for the Engine. It then runs the Engine
for one Inference Cycle. DUMPMCB displays the important
members of the MCB object. steplt combines the two to form
a single step mechanism for debugging rules. Set up the ap-
propriate (and or troublesome) set of events and “steplt” to
see why the rule set in question does not work.

Figure 3
1.0 Initiailize State Space
accumulator = stepCnt
rateCnt = +slope
acelCnt = +slope
2.0 Maintain Accumulator
IF
accumulator > 0
THEN
accumulator = accumulator - rateCnt
2.1 Maintain Rate Count
IF
rateCnt < stepCnt AND
rateCnt > 0 AND
accumulator <= 0
THEN
rateCnt = rateCnt + acclCnt
3.0 Sustain Motor Velocity
IF
rateCnt >= stepCnt AND
accumulator <= 0
THEN
rateCnt = rateCnt + acclCnt
3.1 Sustain Motor Velocity
IF
accumulator > 0
THEN
accumulator = accumulator - 1
3.2 Sustain Motor Velocity
IF
accumulator <= 0
THEN
accumulator = stepCnt
rateCnt = =slope + stepCnt
acelCnt = -slope
4.0 STOP
IF
rateCnt <= 0 AND

51

Try variations on TIMER_OFFSET, STEPCNT, +SLOPE, -
SLOPE and CV with the !CV, ISTEPCNT, !+SLOPE,
ITIMER_OFFSET and !-SLOPE words. Remember that these
words are MCB specific; an MCB MUST be on the stack be-
fore calling these words as well as the instantaneous value.
Experiment with your own rules by using the !InferenceTable
word. !InferenceTable establishes a State Knowledge Base for

the identified MCB. !InferenceTable is also used to restart a
motor. Call this routine with the appropriate Initialization State
Knowledge Base and the selected motor will restart.

Two'fer
Listing 2 illustrates two motors in place by the addition of a
second motor. Note how simple it is to add a second motor. All
that is required is an MCB

State Transition Diagram

Initiailize State Space

sized block of memory! The
rules are “reentrant” in that
they have no knowledge of
individual motors, only
knowledge of how to run a
motor. All instance infor-
mation or contextual infor-

nitialize State Space mation resides in the mo-
accumulator = stepCnt tor's MCB.
rateCnt = +slope
acciCnt = +slope
accumulator > 0 On Stepped Inference

T
STOP
accumulator < 0

Maintain Accumulator accumulator = accumulator - rateCnt

I ‘ way of implementing com-
accumulator < 0 AND Plex state machines and

Stepped Inference is a

state intense models. It can

rateCanO
rataCnt < stepCnt AND be used for other applica-
rateCnt > 0 AND

tions from communication

Maintain Rate Count

accumulator <= 0 AND l
rateCnt >= stepCnt

rateCnt = rateCnt + acciCnt prOtOCOlS to neural net-
accumulator = stepCnt

works. 1 have found that
this approach saves space,
time and confusion on these
sorts of problems. You may

accumulator = sustain

=]

accumulator > 0

Sustain Motor Velocity

find this to be so in your en-
deavors.

Next time I hope to have
a feedback mechanism to

accumulator = accu?ulator -1

accumulator <= 0
accumulator = stepCnt
rateCnt = -slope + stepCnt
acciCnt = -slope

play with. We will talk
about the lack of torque that
occurs in steppers at higher
RPMs and how to counter
that with Boost techniques.
Until then, have fun with
Forth! @

LAN, from page 32

knowing a whole lot about it. You don’t know how long
the message will be or whether it all got there in one piece.
There may be errors to deal with.

So it should be easy to see that a transmit process
(program) is normally much smaller than a receive process,
with the result that almost every machine can talk faster than
it can listen.

When all machines are about the same in capability,
though, that is not too much of a problem because the
average sending rate of any one machine will not exceed
anyone else’s average receive rate (often machines alternate
sending and receiving, so your own receives will moderate
your transmit rate).

If one machine is supposed to be used by many other
machines, there is a design problem. If it is made to be able
to talk fast and do so continuously so that it can service many

52

users, its average transmit rate will greatly exceed the aver-
age receive rate of the users.

This causes a problem called retransmissions, where a
receiving station was processing a previous message and
missed this one, causing the sender to time out and send
again. On the other hand, if the average transmission rate of
the central unit is made to match the average receive rate of
all users, then no one will be serviced often enough, giving
users the impression that the network is slow.

In summary, three major reasons for poor LAN
performance are: rules violations; excessive broadcasting,
which steals cycles from all users; and retransmissions,
which in effect cut the signaling rate by a factor of the
number of retransmissions needed.

Next time we will look at some of the implementation
details of Ethernet and its CSMA/CD (Carrier Sense Multiple
Access/ Collision Detection) method of communication.@

The Computer Journal / #50

Computer Corner, from page 64

the market is going. Products like the soon-to-be-released
Deskview X-window will certainly be one of the front con-
tenders for a new standard. If I were developing a new prod-
uct, 052 however would not be a platform I would write it
for. It would be very modular, with the user interface re-
placeable in case my current choice doesn’t make it in the
market.

Next Front

The area where [do see a major change and plenty of
growth, especially for the small developer, is embedded sys-
tems. To develop anything for the new and bigger boxes,
requires a large financial investment. I said before how to test
the program I am currently working on required 30 PC
workstations in a LAN based network. Each station cost
about $5000 of OEM money (large discounts). Not many ga-
rage developers can spend that kind of money to get their
product into the market.

Embedded systems and small PC-based development can
still be done by the little person. The cost of small controller
boards can be very inexpensive to design and build. The av-
erage small garage could easily hold the needed material and
space to build hundreds of 6805 or 8048 controllers. Special
software that could turn a small PC-XT into an industrial
controller is where I think the major chance for growth over
the next few years will be.

The competition for the major systems is now in the hands
of multi-million dollar companies who can afford the prob-
lems and time needed to come to market. This has also
forced out the little mechanical engineer who needs a small
controller. Will they be willing to play with the big boys and
their high up front cost. I doubt it. The little guys want little
developers. They want a personal approach, ability to talk
with the person doing the work. It will be this hand holding
of the clients that makes developing small systems work. I
feel we have not began to see just how much this market is
capable of supporting, yef!

' Cross-Assemblers

In embedded development, cross-assemblers are the name
of the game. | have recently become involved in the search
for a new 68K cross-assembler at work. The story goes like
this: used Motorola exormacs development system for ten
years; need to move to PC based systems; find compatible
cross-assembler for 68K and 68K “C” existing code; try a
number of assemblers; reject most but find one; fix up code
to work with new choice; now do all work on PCs’. Well that
project is still going and will go for another year. We have
tested the cross-assemblers and settled on Microtec. I like
Avocet assembler better, but their macro pre-processor
caused too many problems. Avocet 68K “C” was so bad I can
not recommend you even consider it for testing.

We selected Microtec for two reasons, no major code
bloom in “C” output and a one-pass assembler that did most
of our macros without change. The previous programmers
used all undocumented and not-allowed operations inside
the macros. This makes the macros almost impossible to port
to new assemblers. The “C” code was done on a Greenhills
Unix product that is not available for DOS use. It produced
very tight output, which fit tightly inside our ROMS. We
tried the Avocet “C” compiler and it produced almost 30%
more output for the same source files. The Microtec is only

The Computer Journal / #50

5% larger, still not good but with a little trimming of options
we can fit it in the ROM.

What was interesting is how others have reviewed the
cross-assemblers. An article came during this time, and all
the reviewer was interested in and tested for was speed.
Speed was the least of our concerns. Compatibility and code
output size are top on our list, with speed on the bottom.
Actually my personal most important item is how well it
produces correct code. I don't care how fast it is; if it pro-
duces code I can’t trust, who needs it.

Porting

A few projects floating around my place are porting oper-
ating systems. I am finally getting back to my Sage system.
This 68K system needs a new operating program and I plan
to port Minix to it. Until I get Minix ready [am checking out
porting Forth. The Minix will take some time with all the files
needing changing. Forth, on the other hand, should be
quicker by using the public domain programs from GEnie.

1 have down loaded a new program that may be worth
looking at. M16PC is a complete metacompiler to move F83
to 68K based systems. The code by Wilson Federici is cur-
rently set to work on a PC and produce Atari ST-compatible
F83. The main thing is how you can make minor changes and
be able to output for your own projects. Metacompiling has
been around from day one of Forth; the problem is getting
enough information on how to use it. Here we have a work-
ing program so one only needs to change the 1/O screens,
then compile and test. | have worked with Mr. Federici be-
fore and he does good work, so his port will also provide
some good samples of how to do it.

I plan on doing this for the Sage as soon as | can and will
have more later. My main plan is finding a way to put F83
into ROM on 68K systems (also Z80). I have lots of old ma-
chines with limited memory and Minix will not work in
those places. So that leaves Forth as the only way to make
use of all these different and limited machines I have.

‘Till Next Time
Well that is about it for now, and hopefully I have made
you consider some alternatives for the future of computing. I
still keep coming back to doing things in Forth, especially
after fighting with cross-assemblers. Hope your fights are
little ones!®

f(

TCJ On-Line 2

Readers and authors are invited to join in dis-
cussions with their peers in any of three on-line
forums.

* GEnie Forth Interest Group (page 710)

* GEnie CP/M Interest Group (page 685)

* Socrates Z-Node 32

For access to GEnie, set your modem to half
duplex, and call 1-800-638-8369. Upon connec-
tion, enter HHH. At the U#= prompt, enter
XTX99486,GENIE and press RETURN. Have a
credit card or your checking account number
handy.

Or call Socrates Z-Node, at (908) 754-9067.
PC Pursuit users, use the NJNBR outdial. Star-

kLmk users, use the 3319 outdial.)

Z-Best, from page 45
quite frequently, but whose power is often taken for granted.
Based on FINDF vs 2.6 by Bruce Morgen, FF finds all files

offers ways of manipulating the output of such programs. FF
has been used innovatively on some RAS's, for example, to
ask a user if he would like a description of the file it has

found. The count of files found is

placed in a register and checked by an
Author alias which then poses the question at

| syntax: FF [D: or DIR:]afn(,afn]... [d...][/0...]

Figure4
Name Vers S 25US Siz Rec CRC Library/Size Issued
= =m=s mmm === s===
FF.COM 2.40 4 V205 4 31 A609 FF24 73 01/19/91 Al BRawley

Pile Find utility which finds all files matching a list of file specs on all
drives, a specific drive, or a list of drives. Vs. 1.0 (3/87) by Jay Sage.

the right time. By setting the error flag,
FF even saves the correct count if the
user aborts a search (the desired file is
found and he doesn’t want to waste
] time searching the remaining drives).

matching a list of file specs on all drives, a specific drive, or

-a list of drives. See Figure 4 for FF's syntax.

All file specs are automatically made wild, so that “A.B”
becomes “A*B*’. The “d” before the slash is the list of

drives to scan. The “0” after the slash can be E - exact

matches only, P - no paging of output, and/or S - inclusion
of SYS files (based on configuration defaults).

Al Hawley has made some significant improvements to
FF which make it both noticeably faster in file searching and
easier to install:

1. FF has been recoded a) to use SYSLIB43C routines, in-
cluding the new and faster sort routines developed by Joe
Wright, and b) for brevity, clarity, and code optimization.

2. The filename parser has been changed to accommodate
both DU and DIR forms in the list of search filenames. Add-
ing a properly working NDR (named directories) function to
FF was no small task. Al had to write a routine to search the
NDR after failing to find such a function in Z3LIB (are you
reading this, Hal?). Neither was there a function available for
returning or testing the password. With FF24, two drive
search vectors can be configured—one based on the currently
logged drives and the other based on drives represented by
entries in the current NDR. By subjecting use of NDRs to the
status of the wheel-byte, you can restrict search to NDRs for
non-wheels and within certain drive-map constraints (a

. much needed security feature if you're allowing use of FF on

aRAS!).

3. The command-line syntax has been relaxed to allow
white space after the drive list, and the “/” before the option
field may also be replaced with white space.

4. Many users of earlier versions of FF have had difficulty
patching the drive table to skip certain drives on their sys-
tem. Gene Pizzetta at one point (vs 2.1) provided a patch file
(FFPATCH.ASM) to edit/assemble /overlay to FF which sim-
plified the process, but version 2.4 now makes this quite ef-
fortless. A ZCNFG configuration file (.CFG) displays a table
of possible drives (A-O) in which one simply toggles the
desired search drives. A candidate set of drives is even pre-
sented as a default. This is made possible by FF’s use of your
Z3ENV drive vector (if any) and a mask derived from your
Z3ENV maximum drive to record your current system’s
drives. The Z3ENV maximum user, by-the-way, is employed
only for non-wheels. A wheel will get a search of all 32 pos-
sible user areas.

5. Defaults for the three command-line non-drive options
(E, P, S) can also be configured with ZCNFG.

The development issue now being tackled with FF is the
protocol for reporting data returned by FF. Should FF’s func-
tion be expanded from simply finding and reporting a list of
files to one of doing something with that list (writing the list
to a file, deleting the files found, etc)? Certainly Z-System

54

Writing a file count to a register is easy
(EXFIND.COM, another RAS tool, uses the same approach to
report the existence of files in archive catalogs); reporting a
filespec (DU:filename) to the environment, however, is more
complicated. The question is whether FF and similar tools
(AFIND, XFOR, to name two) should really be in the busi-
ness of redirecting output to a file and other programs. We'll
keep you posted on any decisions in this area which may
drive further development of FF.

Waving the Z Flag...

John Dvorak in PC Magazine last April described the MS-
DOS version of the now ancient CP/M text editor VDE thus:
“This may be the finest piece of word processing code ever
written, I've never been as impressed with anything as | have
with VDE.” Of course, VDE has been even more improved
upon by Carson Wilson, whose ZDE might now be the most
used program under Z-System. What astounded Dvorak
most was that VDE is a full-blown word-processor in just
over 40k of code! To me, this is a great testament to the skill
and diligence of CP/M programmers in continually improv-
ing their work, not only in terms of functionality, but of
efficiency of design and, most importantly, of usability for as
wide a range of users as possible. VDE/ZDE became works
of art due to the care and pride of the author in his work and
his continuing interaction with users for feedback and sug-
gestions for improvement. You rarely see this attitude in the
MS-DOS world (at least not to the extent that it exists in CP/
M), and the result is that tons of sloppy, bloated code are
dumped daily into the MS-DOS Public Domain with little or
no support and usually with the main goal of making
money, not sharing ideas with and supporting the wider
community of users. Even beyond the sharing of ideas and
source code, though, there is a set of values at play in the
CP/M world which I think is right and which has kept me
involved to this day. Maybe at the heart of it is just a simple
feeling of belonging, of sharing in a commitment to an ideal
(“big is not necessarily better”) and in the challenges that has
brought us. Whatever it is, you can’t beat the camaraderie
that develops so easily among CP/M’ers. What's not to like
about someone who understands where you're coming from,
respects your opinions, values your suggestions, and gives
freely of his time and energy when you’re having a problem?
You've undoubtedly heard this “spirit of CP/M” spiel before,
but, believe me, based upon my experiences with the group
of Z-System developers I've known over the past five years,
this spirit still exists. Get yourself a modem, connect to one
of the various Z-Nodes and follow the message bases. A list
of the nodes is on the outside back of the shipping cover that
protects yourTCJ in the mail. You'll find that the spirit is
very much alive and evident in the help and support avail-
able for anyone who seeks it.@

The Computer Journal / #50

IOP, from page 40

TurboROM code, hidden from view. TurboROM typeahead
buffering takes place on this level and must itself involve a
fairly sophisticated relationship between CONST and
CONIN to maintain the typeahead feature. In the view from
the RAM BIOS, however, this relationship is invisible.

At the level of the RAM BIOS, CONIN and CONST must
cooperate to manage the single-character lookahead required
by the function keys. At the level of the IOP, these functions
cooperate to extend the function of the number keypad keys,
the cursor control keys, and the grey keys above the number
keypad, which I frequently refer to as extended input keys.

The BIOS code in Listing 1 should be fairly self explana-
tory. Note that the one-character lookahead in the BIOS is
supported by self-modifying code. A true/false flag in
CONST (bufclr) works with a one-character buffer in CONIN
(bufchr) to determine whether the ROM BIOS routines for
character input are called or a previously stored character is
used as the next available character input. The TurboROM’s
single-key mapping for number keypad and cursor control
keys is done by the mapfnc routine. Note that the output
from this routine is switchable depending on a TurboROM
configuration bit. If no IOP is installed, mapfnc maps these
keys to the values listed at akeys and keypad. When the IOP
is installed, this configuration bit is reset (by the IOP’s tinit
routine), and the key codes returned by the TurboROM are
passed unaltered to the IOP, where they are used to select
extended input strings, as explained below.

The IOP

The relevant portions of my custom [OP are shown in
Listing 2. With no IOP or the NZCOM dummy IOP installed,
most of my normal, factory installed keys return their
marked values, and my added keys are effectively inopera-
tive. When my IOP is installed with NZ-COM or JetLDR, the
tinit routine is called to perform a number of basic installa-
tion and initialization functions. (Because most of these func-
tions are common to all IOP’s, the tinit routine is not shown
in Listing 2.) Briefly, tinit substitutes jumps to its own rou-
tines for the 7 BIOS jump-table entries dealing with console
1/0 and the list, punch, and reader physical devices. In my
IOP, all but the CONIN and CONST routines simply redirect
program control into the BIOS proper. Additionally, my tinit
must turn off the mapping of number keypad and cursor
control keys (extended input keys) by the BIOS so that the
IOP can assume and expand on this task.

Although I've added four “grey keys” above my number
keypad to the set, the extended input keys on the original
Kaypro 10 consisted of only the cursor control and number
keypad keys. The mapping data for these keys was read from
the system tracks and was, while the system was up and
running, memory resident. These keys could be remapped
easily, either temporarily (through modifying memory) or
permanently (by writing the necessary information to the
system tracks). Software such as the original Kaypro CON-
FIG program and the terminal initialization routines in the
Kaypro-installed WordStar took advantage of this facility.

jr nz, frip ; If so, frjp will return one.
1d a, (iobyte) ; Ootherwise, as usual
rreca

ir n¢, reader

j Retchr will contain the return value from one of the grey
f extra number keypad keys, if one has been pressed.

4
retchr equ $+1 ; Where exkeys go
' 1d a,0
1d c,a ; Retchr to € (juggling act)
xor a
1d (retchr),a ; Clear retchr
1d a,c ; Retchr to A
or a
jr nz,isexkey ; If retchr > 0, Use exkey
; value instead of conin
; return.
call conin ;7 If no retchr, go get char
; from BIOS.
or a
ip p,outkey ; Msb not set, so we have an

; ASCII key.

f Isexkey is exscuted if a key from either the number keypad
| keys, the cursor control keys, or the extra grey keys above
t the number keypad has been pressed. Both isexkey and frjp
} are supported by a table of strings in high memory of from
f 1 to 4 characters each, the address of which is returned by
[the special BIOS routine calspc.

call calspc Calspe returns with extended

keytable address in HL

j sexkey:
and 01PH ; Form index to table
1d c,4 ; Get address of keytable
; from BIOS
push af ; Save off character in question
;
i

pop at
sla a ; Shift left twice to

sla a ; multiply by 4
1d c,a ; Get new character position
1ld b,0
add hl,bc ; Set hl to character position
ld {pntr),hl ; Store position in pointer in
; code below
1d a,4d ; Set to this value
ld {(ent),a ; Initialize in-code counter to 4

; Frip is executed after isexkey and while an extended input
; key character remains in the pipeline.

i
patr equ $+1
frip:

1d hl,0000 ; Get pointer value

1d ¢, (hl) ; Load character into C regq

inc hl ; Increment pointer

1d (pntr),hl ; Save this value off

1d a,(cnt) ; Retrieve current counter value

dec a ; Decrement this value

1d {cnt) ,a ; Save this value off

1d a,c ; Move character into A

ret z s+ Return if char is last of 4

1d a,(hl) ; Get next byte value

or a ; Compare to 0

1d a,c ; Char to A again

ret nz ; Return if intermed. char &
; next not nul

xor a

1d (cnt) ,a ; Clear counter value

1d a,c ; Char to A once more

ret ; Return if intermed char &
; next is nul

. (remaining IOP code)
end

i
; End of NZIOP.Z80

The Computer Journal / #50

55

The original Kaypro BIOS provided the ability to assign
strings of up to 4 characters to each of the extended input
keys, but this capability was not continued in the Kaypro
TurboROM and its RAM-resident BIOS. Several years before
my purchase of a TurboROM, I had developed the KEYSET
software which allowed these keys to be mapped to prede-
fined character strings from a single command line, and by
the time I converted to a TurboROM, I had a considerable
programming investment in application macros and keypad
configurations which took advantage of this flexibility. I was
unwilling, therefore, to settle for the TurboROM'’s single-
character key map, even though remapping was still a fairly
simple software task. Once I understood the IOP well
enough to implement my function keys, it was only logical to
extend my code somewhat to enable the IOP to support the
old Kaypro character strings of which I had grown so fond.

Once my IOP has been installed using NZCOM, it inter-
cepts all calls to CONST and CONIN. Calls to CONST, either
directly or from within CONIN, check the value returned in
the L register by the BIOS CONST, and, if it is nonzero, an
appropriate system function is executed. Otherwise, CONST
simply returns 0 or Offh in a normal fashion. IOP CONIN
enhancements are concerned primarily with the extended in-
put keys, and, like the original Kaypro BIOS from which the
code is adapted, enable up to 4 characters to be returned
from a single keystroke.

Note that the grey keys above the number keypad consti-
tute a special problem. These keys are not logically function
keys, since they return characters instead of executing system
functions. However, they are passed to the IOP by CONST as
function keys, i.e, with A = 0 and with L equal to the raw
SIO input from the keyboard. This problem is circumvented
with another inline code modification. If a grey key has been
pressed, the IOP CONST assumes that it is a function key,
the function of which is to poke it's value into retchr in the
IOP CONIN routine so that the next call to CONIN will
retrieve it instead of calling for input from the BIOS CONIN.

The jobs I selected to have performed by my extra keys

were chosen because of the special needs of my system—my
MicroSphere RAM disk and print buffer, my TurboROM,
and my attachment to the Kaypro extended input keys. One
might easily choose a radically different set of functions,
which could be as easily coded into an IOP as those | have
chosen. A screen recorder might be toggled on and off or a
byte entry mechansism might be installed which allows one
to type in the ASCII value of a desired character following a
special key, as on all MS-DOS machines. Because IOP mod-
ules are interchangeable, it would be easy to swap one set of
functions for another using NZCOM or JetLDR. There are
also 6 more key positions on the stock Kaypro 10 keyboard, 3
each on either side of the space bar, which are available for
use,

Few limitations exist on what one could do with such CP/
M function keys. One caution, however, must be observed.
Many, if not most, CP/M DOSs, including DRI’s original
BDOS, are not reentrant. Since CONIN and CONST are usu-
ally called via the BDOS, these functions may not themselves
invoke any BDOS routines. Any secondary 1/O performed
by IOP routines must be handled directly by the BIOS. Some
of the new BDOS replacements, such as ZSDOS, claim to be
reentrant, so this limitation may not apply to these systems.
However, other BDOS replacements which claim to be reen-
trant, such as some versions of ZRDOS, don’t hold up well
under the strain, or so I've been told.

I will be happy to provide anyone interested in pursuing
this subject further with the complete code for my BIOS and
IOP. The BIOS code is intimately intertwined with the sup-
port code for my RAM disk, while the IOP code contains a
number of experimental (and rejected) serial printer routines,
extensively commented out. Nonetheless they should prove
helpful to anyone seriously interested in fully implementing
extra keys in the same manner that [have. My BBS Z-Node
77 phone number is 512-259-1261, and I'll be glad to try to
answer serious questions relating to the material I've set forth
in this article.@®

Editor, from page 2
Yet Another What?

Ever hear of a YASBEC? Yet Another Single Board Eight Bit
Computer. Paul Chidley, from north of the border, wanted the
hottest CP/M box he could make and headed into the work-
shop. The YASBEC is the result. It runs at 16 MHz, has up to
1 MB of static ram, SCSI interface, the works. lan Cottrell
brought one down to Trenton to gauge the reaction. Some
reaction! Paul never intended to go into mass production
with this thing. When [talked with him last month, he said
all he hoped for was someone to help defray the cost of
producing the motherboard. I think Paul needs to make more
boards—there is a waiting list already. With luck, we will
have something more to tell you in a future issue.

What’s With GEnie?

Astute readers will notice that the GEnie advertisement
from last issue has been pulled. 1 have nothing official but
from what the rumor mill tells, there has been a tussle be-
tween GEnie and a competitor over the use of the term “Star
Services.” It seems one side feels this infringed on a copy-
right of theirs. | am no lawyer and don’t want to speculate on
the merits, but have noticed that GEnie now calls their spe-

56

cial service “GEnie Basic.”

Be that as it may, the service is the same as before and TGJ
is on-line in both the Forth (room 710) and the CP/M (room
685) SIGs. You are certainly invited to join us.

Mutual Backscratch

Notice anything different about this issue? No, it isn't
printed on edible paper. Count the pages. Issue 47 had 36
pages; today we have 64!

If you recall my first editorial, I said that a journal is
written and produced by a small group for people who are
called friends. The authors are our treasure. I put the word
out that we were seeking good, meaty articles to print and
they have responded gladly. I faced a dilemma: should I wait
until the circulation warranted an increase in size? Though
we are growing fast, that would have meant holding off
some of the best articles | have seen in any journal lately. Or
should I bite the bullet and move out to 64 pages now?

You see, while TCJ is a labor of love, it carries a strong
current of reality with it. The larger the journal, the bigger
the expenses. Paper costs money, and the more paper you

See Editor, page 58

The Computer Journal / #50

Z-Corner, from page 36
ced syn wow “makewow &a;xwowjced clear syn xwow”

When this alias is invoked, the alias XWOW has not even
been defined! The program MAKEWOW creates it based on
the parameters passed in the command tail. Then the XWOW
alias is run, and finally its definition is removed. I use this
complex approach when the program MAKEWOW, which
figures out what needs to be done, uses too much memory
for it to perform all the tasks itself. The alias that it creates
runs later, after MAKEWOW is no longer in memory.

PCALL (Parameter Recall)

With PCED one can declare a list of commands for which
automatic parameter recall should be performed. For these
commands, the last command line involving the command is
stored in a special buffer. The next time the command is
invoked without any command tail, the previous command
tail is provided automatically.

I have EDIT assigned to PCALL status using the com-
mand

ced pcall edit

When | first started writing this column, I would have used
the command

edit tci50.ws

Later, 1 would type “edit” alone on the command line, and
the original command would be executed for me. This is a
very handy feature but probably not important enough to
implement in Z-System, since it would require additional
disk activity to save and recall the information. With LSH |
would type “ed” and then control-O to recall the last editing
command.

[I thought new code would be required to do this under
Z-System, but Howard Goldstein showed me that it can be
done already! He suggested the following ARUNZ script,
assuming that WS is one’s editor:

EDIT if -null $1;shvar edtail §$+;fi;
resolve ws Sedtail

This uses the shell variable facility of Z-System. Storing and
then recalling the variable “edtail” would take some time
unless the programs and data files are on a RAM disk.]

User Synonyms

So far we have described how PCED functions at the DOS
prompt. PCED is also capable of functioning when applica-
tion programs are prompting for user input. This only works
when the input is requested using a particular DOS function
call, the one equivalent to CP/M'’s buffered line-input func-
tion (#10). This feature of PCED is normally not engaged
(since it could cause problems) and must be activated by
entering the command

ced on user

Once it is activated, many PCED functions become active.
The full command line editor can be used, except that com-
mand completion using the TAB key is disabled. There is a
command history stack that is separate from the one that
saves DOS commands. PCED commands can be executed,
including those that define, edit, or remove synonym defini-

The Computer Journal / #50

tions.

Most importantly, one can now define what PCED calls
“user synonyms”. For example, you might create a display
alias for use in DEBUG with the following command:

ced usyn d ‘D DS:100 L1060’

User synonyms-defined with the ‘usyn’ option-and
command synonyms-defined with the ‘syn’ option-are
completely independent.

Few of the programs I use regularly get their input via
MS-DOS'’s buffered console input function, and, therefore, I
never use this PCED facility. Under the right circumstances,
however, I'm sure it could be very handy, and perhaps I
should give it a try some day.

Internal (Directory) Synonyms

There is a third class of synonyms that-1 have found very
helpful (and wish I had on my Apollo minicomputer run-
ning Apollo Domain or Unix). With its nice, flat named di-
rectory structure, the Z-System does not have the problem,
but on systems with tree-structured directories, one wastes
enormous amounts of time trying to type excruciatingly long
directory specifications. For example:

cd d:\editors\wordperf\letters\personal\john

Tree-structured directories make for a very logical and or-
derly collection of files, but they sure aggravate finger-tip
calluses!

With PCED we could define an “internal” synonym as
follows:

ced isyn john“d:\editors\
wordperf\letters\personal\jchn”

Then we could change default directories by entering the
simple command

cd @john
or edit a file there using the command
edit @john\file.doc

The ‘@ sign is a signal that the string following it is to be
interpreted as an internal synonym name and expanded. I
use this mainly for expanding directory names, but it can be
used to provide shorthand string definitions for any purpose
one wishes.

You do have to watch out for some confusing side effects.
Suppose you wanted to edit a file with the name
“@johnson.doc” and enter the command

edit @johnson.doc

The “@john” part would be recognized as an internal syno-
nym, and the command would turn into

edit d:\editors\wordperf\
letters\personal\johnson.doc

One has to watch out for all of PCED’s special characters.
They can generally be made to be taken literally by prefixing
them with the variable prefix character (normally ‘&’). Thus
one would enter

edit &@johnson.doc

There is, unfortunately, a bug in PCED that prevents this

57

from working in alias definitions. I have pointed this out to
the author and hope he will have a maintenance fix. It causes
me great difficulty with some aliases for sending Internet
electronic mail (where all addresses contain the ‘@
character).

User Programs
PCED has a very powerful facility for adding independent
resident programs. It never occurred to me before, but this is

. somewhat like the RCP (Resident Command Package) in the

Z-System. PCED comes with a number of very nice programs
of this type, and software developers can write new ones.
These programs have several advantages. If PCED’s user
mode has been turned on as we described earlier, then they
can be activated while inside an application program. Some

‘of the programs—such as VSTACK, the full-screen history
- shell—are designed to augment existing PCED features.

Other programs are just particularly nicely conceived and
written. I will describe only a few of them here.

CDIR is a directory display program whose format I par-
ticularly like. It has many options that can be declared on the
command line (or automatically in aliases). It can list files in
anywhere from one to four columns; it can sort by filename,
filetype, or date and in ascending or descending order; it can
include only directories, only files, or both; it can display
different types of files in different colors for easy identifica-
tion. It can also generate a file containing the list of file names
for processing by other programs.

HS (for “HindSight”) buffers screen output and allows
one to retrieve it. Now when stuff scrolls off the top of the
screen before you could read it, you can get it back! This is
particularly usefull on very fast computers, where informa-
tion can disappear before the finger can respond with a con-
trol-S. One can also write the captured screen data to a disk
file. In PCED2, HS can be configured to use expanded mem-
ory for its buffer, so one can have a large buffer without
losing valuable program memory space.

KEYDEF allows macros to be assigned to function keys.
Separate definitions apply at the DOS prompt and at user
input prompts inside application programs.

KEYIN establishes a buffer which holds simulated key-
board input. When the next prompt for user input occurs,
KEYIN will supply characters from its buffer. This allows
programs that operate only in interactive mode to be run in
batch mode. KEYIN is particularly useful in alias scripts and

BAT files.

SEND is a program to send character strings to any device
or file. It is similar to the DOS ECHO command but is more

flexible. For example, while ECHO always sends a carriage
return and linefeed at the end of a line, SEND sends only
what you tell it to. This can be very important, such as when
sending setup commands to a printer or when constructing a
prompt line in pieces.

PCED and Personal REXX

PCED has special interfaces to allow it to work with cer-
tain other software packages. | particularly appreciate its
coupling to Mansfield Software’s implementation of the
mainframe batch processing language called REXX.

REXX would be worthy of an entire TGJ column, so | will
not say much about it here. Basically, it is a programming
language for processing strings and generating command
lines. Strings can be pulled apart into their words and charac-
ters; strings can be concatenated with other strings; strings
can be substituted for other strings. All kinds of program
looping can be performed. There is a complete interface to
the operating system so that one can get the system time and
date, check for the existence of files; read and write file con-
tents; change file attributes; and so on. The resulting strings
that REXX builds can then be passed as commands to the
operating system’s command processor.

REXX programs are written in files with the extension
REX. Normally one would have to invoke them using the
explicit command

rexx filename

where “filename” is the full path specification of the REX
program file. With the PCED add-on program RXRUN
loaded, these REX files can be executed automatically, just as
BAT files are. In this way, REXX becomes an integral part of
the system.

When I described the WOW alias earlier, what 1 really had
in mind was REXX. It takes up over 200K of memory, so one
often cannot afford to have it resident when commands are
run. To get around this problem, instead of having REXX
pass the ultimate command lines to the operating system, I
have it pass CED commands that define a new alias. That
alias is then run after REXX is finished and no longer resident
in memory. Without PCED, REXX would lose much of its
power for me.

Well, that completes what [will say this time about PCED.
I hope that many of you who use DOS computers will order
PCED so that the author will feel it is worth his while to add
more of the features that we Z-System users would like to
see.®

Editor, from page 56
mail, the more the post office wants. We have the resources
to do this, but admittedly, it limits our reserves.

Our authors have made a commitment to us. They are
pulling through. You have the evidence in your hands, and I
have more sitting here for the next issue. | made a commit-
ment before | accepted this job, and hope you feel I am pull-
ing through as well. Now, | want to ask your help in attract-
ing new readership. This is no desperate plea—things are
growing quite nicely—but your involvement in TCJ's future
is important. Don’t forget to have anyone you sponsor men-
tion your name. If you are a current subscriber, I'll add an-

58

other issue onto your own subscription.

And Speclal Thanks Goes To....

I said TCJ is the sum of three parts, the authors, the editor
and the readers. There is another group I need to thank as
their help and understanding has been of immeasurable
value. These are our printers, the folks at the Mill River Press
in Brooklyn. Pat Moakley and his gang are another treasure.
Have you known someone with “the patience of Job?” That's
them! Thanks, guys.

Well, that's it. Let’s get on with the show!®

The Computer Journal / #50

Figure7 Interrupt Acknowledge Cycle Timing

[N £ I T2 I Twa 0 Twa | Tw L Tw L Tw T3
«1 L1 L] LI LJ Ll L]
Setile Time for
Ofi-chip Z80 Settle Time lor
M Peripherals / On-chip CTC
L I
le t »
! 1
HORQ]

Settle Time
ScC for SCC
/INTACK
']

F
/WAIT Signal generated
AWAIT I / by interlace circull
' e ¢
L

scc
/RD

CTC
/IORQ

Zilog, from page 6

The System Configuration Register
(address EDH) determines the func-
tionality of PIA1 and the Daisy-Chain
Configuration (Figure 10). The follow-
ing list gives you an explanation of
each of the eight control bits:

Bit D7 - Reserved and programmed for
0.

Data —N\

Control <:

Bit D6 - Daisy-chain configuration de-
termines the arrangement of the inter-
rupt priority daisy chain. When this bit
is set to 1, priority is as follows:

IEI pin - CTC - SCC - IEO pin
When this bit is 0, priority is as fol-
lows:

IEl pin - SCC - CTC - IEO pin
[Bit 6's default (after Reset) is 0].

Bit D5 - Disable /ROMCS. When this
bit is set to 1, ROMCS is forced to a 1
regardless of the status of the address

Figure8 CTC Block Diagram

cPU
BUS
Vo

Vee

Bl Pen'?heral
Device(s)

EQ IEl IEO B

CTC

SCC

IEOQ

Z80181

Figure 9A Peripheral Device as Part of the Daisy Chain

The Computer Journal / #50

TTTTT 15

decode logic. This bit's default (after
Reset) is 0 and /ROMCS function is
enabled

Bits D4-D3 - Reserved and pro-
grammed as 00.

Bit D2 - When set to a 1, the Z181 is in
ROM Emulator mode. In this mode,
bus direction for certain transaction pe-
riods are set to the opposite direction
to export internal bus transactions out-
side the SAC. This allows you to use
ROM Emulators/Logic Analyzers for
applications development. Bit D2’s de-
fault (after Reset) is 0.

Bit D1 - Reserved and programmed as
0.

Bit DO - When this bit is set to 1, PIA1
functions as the CTC’s 1/O pins. Bit
D0’s default (after Reset) is 0.

internal
——N Control
14 Logic
N] Interrupt ANT
— Logic [IEI
2 — IEO
[
o
§
€ 4
- N Coynler/ ZC/TO)
j) Tlmg 4 Mutiplexed
Logic <: CLK/TRG with PIA1
/RESET

Directing the Data Bus
When SAC is the bus master, Table
1 shows the state of SAC’s data bus.
Table 2 shows the state of the SAC data
bus when SAC is NOT bus master.

Using the Software

When it's necessary to control on-
chip peripherals and features, you can
use the SAC's 78 internal registers.
Sixty-four of these registers are used by
the Z180 MPU control registers. Table 3
lists all the addresses for on-chip I/0
control. These control registers are as-
signed in the SAC’s 1/0 addressing

59

Figure 9B Peripheral Device as Part of the Daisy Chain

Vee
€| cre €O _®1]| scc |EC El ?;Lﬁ::(':)' IEO
/IORQ
External
Logic to
Extend
/IORQ
280181 Signal
Figure 10 System Configuration Register
EDH
[Te]slefs]z]1]0]
T T T TT
I—— PIA1/CTIO
1 PIA1 Functions as CTC's VO Pins
0 PiAt Functions as /O Port
Reserved - Program as 0
ROM Emulator Mode (REME)
1 Data Bus in ROM Emulator Mode
0 Data Bus in Normal Mode
Reserved - Program as 0
Reserved - Program as 0
Disable /ROMCS
1 /ROMCS is Disabled
0 /ROMCS is Enabled
Daisy Chain Configuration
1 |El Pin-CTC-SCC-IEQ Pin
0 IEl Pin-SCC-CTC-EQ Pin
Reserved - Program as 0
/O And Memory Transactions
vo vo Vo rvo Write Read Refresh 280181
Write To Read From | Write To Read From | To From ldle
On-Chip On-Chip Off-Chip Off-Chip Memory Memory Mode
Peripherals | Peripherals | Peripheral | Peripheral
{SCC/CTC/ | (SCC/CTC/
PIA1/PIA2) | PIA1/PIAZ)
280181 Data Bus Out Z Out tn Out fn z Y
(REME Bit « 0)
280181 Data Bus Out Out Out In Cut In b4 Y4
(REME Bit = 1)
Interrupt Acknowledge Transaction
Intack For Intack For
On-chip Off-chip
Peripheral Peripheral
(SCC/CTC)
280181 DataBus | Z In
(REME Bit = 0)
780181 Data Bus Out In
(REME Bit = 1)

Table1 Data Bus Direction (2181 is Bus Master)

The Computer Journal / #50

Table2 Data Bus Direction for External Bus Master (Z181 is not Bus Master)

{/0 And Memory Transactions
e} vo vo Vo Write Read Refresh Ext.
Read From | Write To Read From{ To From Bus-
On-Chip On-Chip Off-Chip Off-Chip Memory Memory Master
Peripherals | Peripherals | Peripheral | Peripheral is idie
(SCCI/ICTC/ | (SCC/ICTC/
PIA1/PIA2) PIA1/PIA2)
280181 Data Bus In Out Z z z In z Zz
{REME Bit = 0)
280181 Data Bus In Out b4 r4 z In Z z
(REME Bit = 1)

Interrupt Acknowledge Transaction

Intack For
On-chip
Peripheral
{SCC/CTC)

Intack For
Off-chip
Peripheral

280181 Data Bus Out
(REME Bit = 0)

Z80181 Data Bus Out
(REME Bit = 1)

The word "OUT" means that the Z181 data bus direction is
inoutput mode, “IN“ means inputmode, and “HI-Z" means

high impedance.

Address Register

00h 2181 MPU Control Regislers

to 3Fh (Relocatable to 040h-07Fh, or 0B0h-0BFh)

EOh PIA1 Data Direction Register (P1DDR)

Eth PiA1 Data Port (P1DP)

E2h PIA2 Data Directlion Register (P2DDR)

E3h PIA2 Data Register (P2DFP)

E4h CTC Channel 0 Control Register (CTCO)

ESh CTC Channet 1 Control Register (CTC1)

E6h CTC Channel 2 Control Register (CTC?)

E7h CTC Channel 3 Contro| Register (CTC3)

E8h SCC Control Register (SCCCR)

ESh SCC Data Register (SCCDR)

EAh RAM Upper Boundary Address Register
(RAMUBR)

EBh RAM Lower Boundary Address Register
(RAMLBR)

ECh ROM Address Boundary Register (ROMBR)

EDh System Configuration Register (SCR)

EEh Reserved

EFh Reserved

Table 3 1/O Control Register Address

The Computer Journal / #50

“REME " stands for “ROM Emulator Mode™ and is the stalus
of D2 bit in the System Configuration Register

space and the I/O addresses are fully decoded from A7-A0
and have no image.

The 1/0 address for these registers can be relocated in 64
byte boundaries by programming the I/ O Control Register at
Address xx111111bH. However, do not relocate these regis-
ters to addresses from 0COH since this causes an overlap of
the Z180 registers and the 16 Z181 registers (address 0EOH to
OEFH).

As part of the initialization procedure, the OMCR register
(Address xx111101bH) is programmed as OxOxxxxxbH (x:
don’t care). Program the M1E bit (Bit D7) of the OMCR regis-
ter to 0 or the interrupt daisy chain is corrupted. To ensure
that the timing of the /RD and /IORQ signals are compatible
with Z80 peripherals, the /10C bit (Bit D5) of this register is
programmed to 0.

Summary
I have highlighted the main features of the Z181 SAC.
Upcoming artiles in The Computer Journal will describe an
actual Z181 hardware and software design getting into the

for your Heart...

...Jake a

S

The Computer Journal

Back Issues

Sales limited to supplies in stock.

lasue Number 18;

* Parallel Interface for Apple Il Game Port

* The Hacker's MAC: A Letter from Lee
Felgsenstein

= 8-100 Graphics Screen Dump

* The LS-100 Diek Simulator Kit

« BASE: Part Six

« Interfacing Tips & Troubles: Communicat-
ing with Telephone Tone Control, Part 1
Iseue Number 19;

+ Using the Extensibility of Forth

+ Extended CBIOS

+ A $500 Superbrain Computer

*BASE: Part 7

* interfacing Tips & Troubles: Communicat-
ing with Telephone Tone Control, Part 2

+ Multtasking & Windows with CPM: A
Review of MTBASIC

Issye Numpber 20:

» Designing an 8035 SBC

* Using Apple Graphics from CP/M: Turbo
Pascal Controls Apple Graphics

+ Soldering & Other Strange Tales

+ Build an S-100 Floppy Disk Controller:
WD2787 Controller for CP/M 88K

lssye Number21:

+ Extending Turbo Pascal: Customize with
Procedures & Functions

» Unsdldering: The Arcane Art

* Analog Data Acquisiion & Control:
Connecting Your Computer to the Real
World

+ Programming the 8035 SBC

fssue Number 22:

+ NEW-DOS: Write Your Own Operating
System

“Variability in the BDS C Standard Library

* The SCSI Interface: Introductory Column

= Using Turbo Pascal ISAM Files
« The Ampro Little Board Column

lasue Number 23;

+ C Column: Flow Control & Program
Structure

= The Z Column: Getting Started with
Directories & User Areas

*» The SCSI Interface: Introduction to SCSI

+ NEW-DOS: The Console Command
Processor

« Editing the CP/M Operating System

+ INDEXER: Turbo Pascal Program to Create
an Index

* The Ampro Little Board Column

looue Number 24;

« Selecting & Building a System

« The SCSI Interface: SCSI Command
Protocol

« Introduction to Assemble Code for CP/M

« The C Column: Software Text Filters

» Ampro 186 Column: Installing MS-DOS
Software

* The Z-Column

* NEW-DOS: The CCP Internal Commands

+ ZTime-1: A Real Time Clock for the Ampro
Z-80 Little Board

lesue Nymber 285;

* Repairing & Modifying Printed Clircuits
» Z-Com vs. Hacker Version of Z-System
+ Exploring Single Linked Lists in C

+ Adding Serial Port to Ampro LB

* Building a SCS!

» NEW-DOS: CCP internal Commands

* Ampro 186 Networking with SuperDUO
* ZSIG Column

Issue Number 26:

« Bus Systems: Selecting a System Bus

* Using the SB180 Real Time Clock

* The SCSI Interface: Software for the SCSI
Adapter

« Inside Ampro Computers

+ NEW-DOS: The CCP Commands

« ZSIG Corner

+ Affordable C Compilers

+ Concurrert Multitasking: A Review of
DoubleDOS

lseve Number 27;

* 68000 TinyGiant: Hawthorne's Low Cost
16-bit SBC and Operating System

* The Art of Source Code Generation:
Disassembling Z-80 Software

* Feadback Control System Analysis: Using
Roat Locus Analysis & Feedback Loop
Compensation

* The C Column: A Graphics Primitive
Package

« The Hitachi HD64180: New Life for 8-bit
Systems

¢ ZSIG Corner: Command Line Generators
and Aliases

* A Tutor Program in Forth: Writing a Forth
Tutor in Forth

+ Disk Parameters: Modifying the CP/M Disk
Parameter Block for Foreign Disk Formats

issye Number 26:

« Starting Your Own BBS

* Build an A/D Converter for the Ampro Little
Board

» HDB4180: Setting the Wait States & RAM
Refresh using PRT & DMA

« Using SCSI for Real Time Control

* Open Letter to STD Bus Manufacturers

* Patching Turbo Pascal

« Choosing a Language for Machine Control
issye Number 29;

» Better Scftware Fiter Design

« MDISK: Adding a 1 Meg RAM Disk to
Ampro Little Board, Part 1

« Using the Hitachi hd64180: Embedded
Processor Design

+ 68000: Why use a new OS and the 680007
+ Detecting the 8087 Math Chip

« Floppy Disk Track Structure

+ The ZCPR3 Corner

issue Number 30;

« Double Density Floppy Controller

» ZCPR3 |OP for the Ampro Little Board
» 3200 Hackers' Language

- MDISK: Adding a 1 Meg RAM Disk to
Ampro Little Board, Part 2

* Non-Preemptive Multitasking

« Software Timers for the 68000

» Lilliput Z-Node

«» The ZCPR3 Corner

* The CP/M Corner

Issye Number 31:

« Using SCSI for Generalized I/O

+ Communicating with Floppy Disks: Disk
Parameters & their variations

* XBIOS: A Replacement BIOS for the SB160
» K-0S ONE and the SAGE: Demystifying
Operating Systems

¢ Remote: Designing a Remote System
Program

* The ZCPR3 Cormer: ARUNZ Documentation
Iseue Number 32

« Language Development: Automatic
Generation of Parsers for Interactive
Systems

+ Designing Operating Systems: A ROM
based OS for the Z81

« Advanced CP/M: Boosting Performance

« Systematic Elimination of MS-DOS Files:
Part 1, Deleting Root Directories & an In-
Depth Look at the FCB

¢ WordStar 4.0 on Generic MS-DOS
Systems: Patching for ASCIl Terminal Based
Systems

+ K-OS ONE and the SAGE: System Layout
and Hardware Configuration

* The ZCPR3 Corner: NZCOM and ZCPR34
lasue Number 33

« Data Flle Conversion: Writing a Filter to
Convert Foreign File Formats

» Advanced CP/M: ZCPR3IPLUS & How to
Write Self Relocating Code
 DataBase: The First in a Series on Data
Bases and Information Processing

* SCSI for the S-100 Bus: Another Example
of SCSI's Versatility

« A Mouss on any Hardware: Implementing
the Mouse on a 280 System

« Systematic Elimination of MS-DOS Files:
Part 2, Subdirectories & Extended DOS
Services

+ ZCPR3 Corner: ARUNZ Shells & Patching
WordStar 4.0

Issve Number 34;

» Developing a File Encryption System.

» Database: A continuation of the data base
primer series.

« A Simple Muititasking Executive:
Designing an embedded controller
muttitasking executive,

+ ZCPR3: Relocatable code, PRL files,
ZCPR34, and Type 4 programs.

- New Mkrocontrollers Have Smarts: Chips
with BASIC or Forth in ROM are easy to
progrem.

« Advanced CP/M: Operating system
extensions to BDOS and BIOS, RSXs for
CP/M 2.2.

* Macintosh Data File Conversion in Turbo
Pascal.

« The Computer Corner

{ssye Number 35;

= All This & Modula-2: A Pascallike
aiternative with scope and parameter
passing.

« A Short Course In Source Code
Generation: Disassembling 8088 software to
produce modifiable assem. source code.

+ Real Computing: The NS32032.

« S-100: EPROM Burner project for S-100
hardware hackers.

+ Advanced CP/M: An up-to-date DOS, plus
details on file structure and formats.

» REL-Styie Assembly Language for CP/M
and Z-System, Part 1: Selecting your
assembier, linker and debugger.

« The Computer Corner

lssue Number 36:

* Information Engineering: Introduction.

* Modula-2: A list of reference books.

* Temperature Measurement & Controk
Agricultural computer application.

+ ZCPR3 Corner: Z-Nodes, Z-Plan, Amstrand
computer, and ZFILE.

* Real Computing: NS32032 hardware for
experimenter, CPUs in series, software
options.

* SPRINT: A review.

* REL-Style Assembly Language for CP/M
& ZSystems, part 2.

+ Advanced CP/M:
programming.

* The Computer Corner.
Isoue Number 37;

« C Pointers, Arrays & Structures Made
Easier: Part 1, Pointers.

« ZCPR3 Corner: Z-Nodes, patching for
NZCOM, ZFILER.

+ Information Engineering: Basic Concepts:
fields, field definition, cliert worksheets.

* Shells; Using ZCPR3 named shell
variables to store date variables.

* Resident Programs: A detailed look at
TSRs & how they can lead to chacs.

» Advanced GP/M: Raw and cooked console
0.

« Real Computing: The NS 32000.

« 2SDOS: Anatomy of an Operating System:
Part 1.

« The Computer Corner.

lsgue Number 38;
» C Math: Handiing Dollars and Cents With

Environmental

C.

+ Advanced CP/M: Batch Processing and a
New ZEX.

« C Pointers, Arrays & Structures Made
Easier: Part 2, Arrays.

* The Z-System Corner: Shells and ZEX,
new Z-Node Central, system security under
Z-Systems.

« Information Engineering: The portable
Information Age.

» Computer Aided Publishing: Introduction to
publishing and Desk Top Publishing.

» Shelis: ZEX and hard disk backups.

*» Real Computing: The National
Semiconductor NS320XX.

+ ZSDOS: Anatomy of an Operating System,
Part 2.

The Computer Journal / #50

- |soue Number 39:
* Programming for Performance: Assembly
Language techniques,
» Computer Alded Publishing: The Hewlett
Packard LaserJet.
- The Z-System Corner:
enhancements with NZCOM.
* Generating LaserJet Forts: A review of
Digi-Fonts.
= Advanced CPM: Making old programs Z-
System aware.
+ C Pointers, Arrays & Structures Made
Easier: Part 3: Structures.
+ Shells: Using ARUNZ alias with ZCAL.

System

+« Real Computing: The National
Semiconductor NS320)XX.

+ The Computer Corner.

Issue Number 40;

* Programming the Laserjet: Using the

escape codes.

+ Beginning Forth Column: Introduction.

« Advanced Forth Column: Variant Records
and Modules.

* LINKPRL: Generating the: bit maps for PRL
files from a REL file.

* WordTech's dBXL: Writing your own
custom designed businees program.

* Advanced CP/M: ZEX 5.0:The machine
and the

« Programming for Performance: Assembly
language techniques.

* Programming Input/Output With C:
Keyboard and screen functions.

* The Z-System Corner: Remote access
systems and BDS C.

+ Real Computing: The NS320XX

* The Computer Corner.

Issue Number 41;

* Foth Column: ADTs, Object Oriented
Concepts.

* Improving the Ampro LB: Overcoming the
88Mb hard drive limit

* How to add Data Structures in Forth

« Advanced CP/M: CPM Iis hacker's haven,
and Z-System Command Scheduler.

* The Z-System Corner: Extended Multiple
G d Line, and ali

« Programming disk and printer functions
with C.

+ LINKPRL: Making RSXes easy.

« SCOPY: Copying a serles of unrelated
fites.

* The Computer Corner.

The Computer Journal

Back Issues

Sales limited to supplies in stock.

lasue Number 42:

* Dynamic Memory Allocation: Allocating
memory at runime with examples in Forth.

* Using BYE with NZCOM.

«C and the MS-DOS Screen Character
Attributes.

¢« Forth Column: Lists and object oriented
Forth.

* The Z-System Corner: Genie, BDS Z and
Z-System Fundamentals.

+ 88705 Embedded Controlier Application:
An example of a single-chip microcontroller
application.

* Advanced CP/M: PluPerfect Writer and
using BDS C with REL files.

» Real Computing: The NS 32000.

« The Computer Cormner

|sove Number 43:

« Standardize Your Floppy Disk Drives.

» A New History Shell for ZSystem.

+ Heath's HDOS, Then and Now.

« The ZSystem Corner. Software update
service, and customizing NZCOM.

« Graphics Programming With C: Graphics
routines for the IBM PC, and the Turbo C
graphics library.

» Lazy Evaluation: End the evaluation as
soon as the result is known.

* §-100: There's still life in the old bus.

* Advanced CP/M: Passing parameters, and
complex error recovery.

* Real Computing: The NS32000.

* The Computer Corner.

{ssye Number 44;

* Animation with Turbo C Part 1: The Basic
Tools.

* Multitasking in Forth: New Micros F68FC11
and Max Forth.

* Mysteries of PC Floppy Disks Revealed:
FM, MFM, and the twisted cable.

* DosDisk: MS-DOS disk format emulator for
CP/M.

+ Advanced CP/M: ZMATE and using lookup
and dispatch for passing parameters.

+ Real Computing: The NS32000.

« Forth Column: Handling Strings.

* Z-System Corner: MEX and telecommuni-
cations.

« The Computer Corner

Issve Number 45:

« Embedded Systems for the Tenderfoot:
Getting started with the 8031.

* The Z-System Corner: Using scripts with
MEX.

* The Z-System and Turbo Pascal: Patching
TURBO.COM to access the Z-System.

* Embedded Applications: Designing a Z80
RS-232 communications gateway, part 1.

* Advanced CP/M: String searches and
tuning Jetfind.

« Animation with Turbo C: Part 2, screen
interactions.

» Real Computing: The NS32000.

* The Computer Corner,

Issve Number 48;

« Build a Long Distance Printer Driver.

« Using the 8031's built-in UART for serial
communications.

* Foundational Modules in Modula 2,

* The Z-System Corner; Patching The Word
Plus spell checker, and the ZMATE macro
text editor.

« Animation with Turbo C: Text in the
graphics mode,

« 280 Communications Gateway:
Prototyping, Counter/Timers, and using the
280 CTC.

lssye Number 47;

+ Controlling Stepper Motors with the
68HC11F

« Z-System Corner; ZMATE Macro Language
« Using 8031 interrupts

*T-1: What it is & Why You Need to Know

« ZCPR3 & Modula, Too

» Tips on Using LCDs: Interfacing to the
68HC705

+ Real Computing: Debugging, NS32 Multi-
tasking & Distributed Systems

« Long Distance Printer Driver: correction

« ROBO-SOG 80

« The Computer Cormner

{ssue Number 48;

« Fast Math Using Logarithms

* Forth and Forth Assembler

+ Modula-2 and the TCAP

«Adding a Bemoulii Drive to a CPM
Computer (Buikling a SCSI interface)

* Review of BDS ‘Z"

* PMATE/ZMATE Macros

* Real Computing

- Z-System Corner: Patching MEX-Plus and
TheWord, Using ZEX

+ Z-Best Software

*» The Computer Corner

lsove Number 49;

« Computer Network Power Protection

* Floppy Disk Alignment w/RTXEB, Pt. 1

* Motor Control w/F88HC1 1

« Controlling Home Heating & Lighting, Pt 1

« Getting Started in Assembly Language

« LAN Basics

* PMATE/ZMATE Macros

* Real Computing

« Z-System Corner

« Z-Best Software

« The Computer Corner

(us.

Subscriptions
1year (6 issues)
2 years (12 issues)

Forelgn Foreign Total
(Surface) (Airmail)

$18.00 $24.00 $38.00
$32.00 $44.00 $72.00

Back lssues
18 thru #43 $3.50 ea. $5.00 ea.
6 or more $3.00 ea. $4.50 ea.
#44 and up $4.50 ea. $6.00 ea.
6 or more $4.00 ea. $5.50 ea.
Issue #s
ordered
Subscription Total

Back Issues Total

Total Enclosed

Name

Address

Payment is accepted by check or money order. Checks

must be in US funds, drawn on a US bank. Personal

checks within the US are welcome.

The Computer Journal
P.O. Box 12, S. Plainfield, NJ 07080-0012
Phone (908) 755-6186

The Computer Journal / #50

63

The Computer Corner

By Bill Kibler

In reviewing the last article, I realized that I had missed
_doing a “state of the computer industry” review. At least
once a year | like to indicate where I think things are going
- and how they might relate to your work-a-day situations.
Here it goes.

State of Computing

This last year has brought lots of changes, mostly from the
Microsoft—IBM alliance. That “on again, off again” relation-
ship may have put OS2 into the OEM market. I would dis-
agree with lots of computer people that OS2 is dead. I see
OS2 becoming instead a platform for special and vertical
market users. Some people don’t understand the vertical
market concept, so lets elaborate.

My company produces products for a very narrow group
of users. In the past they have built everything themselves.
Now with the advent of cheap clones and their clients want-
ing to be able to run various DOS programs as well as our
programs, the use of proprietary products does not work.
You need to use standard platforms, hopefully with enough
power to run your programs. MS-DOS lacks the overall
power. Unix is not standard enough (maybe later). Digital
Research has a better DOS but lacks marketing ability. So the
only current candidate is OS2.

" From the users’ stand point, they could care less about the
actual operating system. Their main needs are DOS compati-
bility, how well your program runs, and cost. These special
users have a large number of programs they wish to run,
including yours. From the programmers’ view, they want a
operating system with enough structure to be able to write a
program that solves the problem at hand.

Our programs require lots of memory to do the graphics
and special text processing operations. This is almost impos-
sible under regular DOS. If there were a protected mode DOS
available, lots of companies besides ourselves would be us-
ing it. That leaves OS2 as the only means of providing DOS

“X-windows will become the real standard for
graphic interfaces”

and protected (or using all the memory your machine has as
one memory space) operations.

So my crystal ball says OS2 will not die, but become a
platform for many companies to put their product on. The
results will be few, if any, of the general public buying 052
for their homes and especially limited business use, as there
are few shrink wrapped products that use OS2. The only
inroad in this area is X-windows.

[feel fairly strong that X-windows will, over the next few
years, become the real standard for graphic interfaces. | see a
general feeling that both IBM and Microsoft are becoming the
companies not to put your product with. They set standards
many years ago, and most of the industry jumped on the
band wagon. Now that they are trying to change the stan-
dard, the industry does not want to change, no matter how
much the two biggies wanted them to. I have noticed over
the years how our industry has developed. The story of Mi-
crosoft is typical. They did not have any special skill or pro-
gramming expertise that got them started (ok, MBASIC was
good, but not that good). Instead they took someone else’s
work and made a deal with IBM that got them started. Their
product and its upgrades over the years have always left lots
to be desired, but for the most part, the users had no alterna-
tives.

What happened, then, was a closed market in which they
could do anything and the user had to accept it. What [see

“Microsoft did not have any special skill or
programming expertise that got them started.”

happening now is Microsoft being caught up in the inability
to meet their customer needs. It is time for people to start
turning to other choices. Most people are happy with plain
old DOS. What they want is better access to the power and
memory available in their box. Deskview has given them that
for some time (as well as others). The world is turning gra-
phical and so is Deskview. For considerably less than OS2,
you will soon be able to run X-window programs and use all
your box’s memory.

Unix gets into this picture because lots of boxes can now
run it thanks to the 386 cpu. At the same time, the hardware
is getting better for Unix, open standards are forming and X-
window-type graphical interfaces are getting their final
touches. Unix already handles communications between us-
ers, which is more than I can say for the problems in DOS-to-
LAN operations. Unix has had many years to iron out their
problems with the basic structure and now lots of new pro-
grams are on the way to making it as easy to use as simple
old DOS. Let’s not forget all the DOS window emulation pro-
grams that give you standard Unix and DOS at the same
time.

Now my crystal ball isn’t very specific and I do not want
you to get the impression that I am selling Deskview or Unix.
I do not use either now, but have run them and know other
who use the products daily. What [am getting at is where

See Computer Corner, page 53

The Computer Journal / #50

T Jthe Computer Journal Market Place

Advent Kaypro Upgrades

For: CP/M Users with a sense of humor

WHILE YOU WERE OUT

Mr Bradley

TurboROM. Allows flexible configura-
tion of your entire system, read/write
additional formats and more. $35

of: Small Computer Support Hard drive conversion kit. Includes

interface, controller, TurboROM, soft-
ware and manual—Everything needed
to install a hard drive except the cable
and drive! $175 without clock, $200
with clock.

Personality Decoder Board. Run more
than two drives, use quad density
drives when used with TurboROM. $25

Address: 24 East Cedar Street
Newington, CT 06111

[] called for you
[x] stopped by

{x] wanis to hear from you

Message:

Remember Pieces of 87 It's back, better than
ever as Eight Bits & Change, a bimonthly
newsletter filled with humor, tutorials, graphics
and fine technical articles. Only $15 per year
in the U.S. ($18 in Canada and $21 foreign.)
Subscribe today! Satistaction guaranteed!

Limited Stock ~ Subject to prior sale

Call 916-483-0312 eves/weekends or
write Chuck Staftord, 4000 Norris
Avenue, Sacramento CA 93821

CP/M SOFTWARE

100 page Public Domain Catalog, $8.50 plus $1.50 shipping
and handling. New Digital Research CP/M 2.2 manual, $19.95
plus 83.00 shipping and handling. Also, MS/PC-DOS Soft- ||
ware. Disk Copying, including AMSTRAD. Send self addressed,
stamped envelope for free Flyer, Catalog $1.00

Elliam Associates
Box 2664
Atascadero, CA 93423
805-466-8440

Regular Subscription Service

Z-SUS Programmers Pack, 8 disks full
Z-SUS Word Processing Toolkit
And More!

and your computer format to:
Sage Microsystems East
1435 Centre Street
Newton Centre MA 02159-2469

Z3COM Package of over 1.5 MB of COM files
Z3HELP Package with over 1.3 MB of online documentation

TClTho Computer Journal Market Place
Advertising for Small Business

Looking for a way to get your message across?
Advertise in the Market Place!

$50
$35

Rates include typesetting. Payment must accom-
pany order. Foreign orders paid in US funds
drawn on & US bank or international money order.
Resetting of ad constitutes a new advertisement
at first insertion rate. Camera ready copy from
laser printers, photo typesetters, etc., are accept-
able. Dot matrix, daisy wheel, typewriter output
not accepted. Inquire for rates for larger ads if
required. Deadline is eight weeks prior to publi-
cation date. Mail to:
The Computer Journal
Market Place
PO Box 12
S. Plainfield NJ 07080-0012 USA

First Insertion:
Reinsertions:

Kenmore
ZTime-1
Real Time Clocks
Assembled and Tested with

90 Day Warranty
Includes Software

$79.95

Send check or money order to
Chris McEwen
PO Box 12

South Plainfield, NJ 07080
(allow 4-6 weeks for delivery)

Z-System Software Update Service
Provides Z-System public domain software by mail.

For catalog on disk, send $2.00 ($4.00 outside North America)

SAGE MICROSYSTEMS EAST

Selling & Supporting the Best in 8-Bit Software

¢ Automatic, Dynamic, Universal Z-Systems

— Z3PLUS: Z-System for CP/M-Plus computers ($70)
— NZCOM: Z-System for CP/M-2.2 computers ($70)
— ZCPR34 Source Code: if you need to customize ($50)

e ZSUS: Z-System Software Update Service, public-domain software distribution service
(write for a flyer with full information)

o Plu*Perfect Systems

Backgrounder ii: CP/M-2.2 multitasker ($75)
ZSDOS/ZDDOS: date-stamping DOS (875, $60 for ZRDOS owners)
ZSDOS Programmer’s Manual ($10)

DosDisk: MS-DOS disk-format emulator, supports subdirectories and
date stamps ($30 standard, $35 XBIOS BSX, $45 kit)

JetFind: super fast, extemely flexible text file scanner ($50)

|

|

|

o ZMATE: macro text editor / customizable wordprocessor ($50)
e PCED — the closest thing to ARUNZ and LSH (and more) for MS-DOS ($50)
¢ BDS C — including special Z-System version ($90)
e Turbo Pascal — with new loose-leaf manual ($60)
e SLR Systems (The Ultimate Assembly Language Tools)
— 780 assemblers using Zilog (Z80ASM), Hitachi (SLR180), or Intel (SLRMAC)

mnemonics
— linker: SLRNK
— TPA-based ($50 each) or virtual-memory (special: $160 each)

o ZMAC — Al Hawley’s Z-System macro assembler with linker and librarian
(850 disk, $70 with printed manual)

e NightOwl (advanced telecommunications, CP/M and MS-DOS versions)

— MEX-Plus: automated modem operation with scripts (360)

— MEX-Pack: remote operation, terminal emulation ($100)

Next-day shipping of most products with modem download and support available. Order
by phone, mail, or modem. Shipping and handling $3 per order (USA). Check, VISA, or
MasterCard. Specify exact disk format.

Sage Microsystems East
1435 Centre St., Newton Centre, MA 02159-2469
Voice: 617-965-3552 (9:00am ~ 11:30pm)
Modem: 617-965-7259 (pw=DDT) (MABOS on PC-Pursuit)

