Programming - User Support

Applications

p

ISSN ¥ 0748-9331

Issue Number 51 July / August 1991

Introducing the YASBEC

Floppy Disk Alignment with the RTXEB and Forth

High Speed Modems on Eight-Bit Systems
A Z8 Talker and Host
Local Area Networks
UNIX Connectivity On The Cheap
The PC Hard Disk Partition Table
A Short Introduction to Forth
Real Computing
Z-System Corner
PMATE/ZMATE Macros
Z-Best Software

Stepped Inference as a Technique
for Intelligent Real-Time Embedded Control

The Computer Corner

2l

Now $4.° Stops The Clock
On Over

100 GEnie Services

For the first time ever, enjoy
unlimited non-prime time* usage of
many popular GEnieS™ Service fea-
tures. For just $4.95 a month.
Choose from over 100 valuable serv-
ices including everything from elec-
tronic mail and stock closings to ex-
citing games and bulletin boards.
Nobody else gives you so much for
so little.

You can also enjoy access to a
wide variety of features like software
libraries, computer bulletin boards,
multi-player games, Newsbytes, and
the Computer Assisted Learning
Center (CALC) for just $6.00 per
non-prime hour for all baud rates
including 2400. That's less than
half of what some other services
charge. Plus with GEnie there's no

TCJ readers are invited to join us in the CP/M
SIG on page 685 and the Forth Interest Group
SIG on page 710. Meet the authors and editors
of The Computer Journal! Enter “M 710" to join
the FIG group and “M 685" to join the CP/M and

Z-System group.

We'll meet you there!

sign-up fee.

Now GEnie not only gives you
the information and fun you're look-
ing for. But the time to enjoy them,
too.

Follow these simple steps.

1. Set your modem for half duplex
(local echo), at 300, 1200 or 2400
baud.

2. Dial toll free 1-800-638-8369.
Upon connection, enter HHH.

3. At the U#=prompt, enter
XTX99486,GENIE then press RE-
TURN

4. Have a major credit card or your
checking account number ready.

For more information in the
U.S. or Canada, call us voice at
1-800-638-9636.

(" JUST $4.95)

Moneyback
Guarantee
Sign up now. If you're
not satisfied after using
GEnie for one month

¢'ll refund your $4.95.
g d W

*Applies only in U.S. Mon.-Fri.,, BPM-8AM local time and all day Sat., Sun., and select holidays. Prime time hourly rates $18 up to 2400 baud. Some features subject to surcharge and may not be
available outside U.S. Prices and products listed as of Oct.1, 1980 subject to change. Telecommunications surcharges may apply. Guarantee limited to one per customer and applies only to first
month of use. GE Information Services, GEnie, 401 N. Washington Street, Rockville, MD 20850, © 1891 General Electric Company.

The Computer Journal

Founder
Ant Carlson

Editor/Publisher
Chris McEwen

Technical Consultant
William P. Woodall

Contributing Editors
Bill Kibler
Matt Mercaldo
Tim McDonough
Frank Sergeant
Clem Pepper
Richard Rodman
Jay Sage

The Computer Journal is pub-
lished six times a year by Socrates
Press, P.O. Box 12, S. Plainfield, NJ
07080. (908) 755-6186

Opinions expressed in The Com-
puter Journal are those of the re-
spective authors and do not neces-
sarily reflect those of the editorial
staff or publisher.

Entire contents copyright © 1991
by The Computer Journal and re-
spective authors. All rights reserved.
Reproduction in any form prohibited
without express written permission of
the publisher.

Subscription rates+ Within US:
$18 one year (6 issues), $32 two
years (12 issues). Foreign (surface
rate): $24 one year, $44 two years.
Foreign (airmail): $38 one year, $72
two years. All funds must be in U.S.
dollars drawn on a U.S. bank.

Send subscription, renewals, ad-
dress changes, or advertising in-
quires to. The Computer Journal,
P.O. Box 12, S. Plainfield, NJ 07080,
telephone (908) 755-6186.

Registered Trademarks

it is easy to get in the habit of using company
trademarks as generic terms, but these trademarks are
the property of the respective companies, It is important
to acknowledge these trademarks as their property to
avoid their losing the rights and the term becoming pub-
lic property. The following frequently used trademarks
are acknowledged, and we apologize for any we have
overlooked.

Apple II, Ii+, lic, lls, Lisa, Macimosh, DOS 3.3,
ProDos; Appie Computer Company. CP/M, DDT, ASM,
STAT, PIP; Digital Research. DateStamper, Back-
Grounder il, Dos Disk; Plu*Perfect Systems. Clipper,
Nantucket; Nantucket, Inc. dBase, dBASE I, dBASE lil,
dBASE Il Plus, dBASE IV; Ashtor-Tate, Inc, MBASIC,
MS-DOS, Windows, Word; MicroSolt. WordStar; Micro-
Pro international. IBM-PC, XT, and AT, PC-DOS; IBM
Corporation. Z80, Z280; Zilog Corporation. Turbo Pas-
cal, Turbo C, Paradox; Borland International, HD84180;
Hitachi America, Ltd. SB180; Micromint, I nc.

Where theee and other terms are used in The
Computer Journal, they are acknowledged to be the

property of the respective companies sven if not spe-
cifically acknowtedged in each occurrence.

Issue Number 51 July / August 1991
Editor’s Desk S seseeanssene e corseernens 2
Introducing the YASBECccccrvvirrvrirvciirrencne 3

Yet Another Single Board Eight-bit Computer
By Wayne Hortensius and Paul Chidley

Floppy Disk Alignment with the RTXEB and Forth 5
Part Three
By Frank C. Sergeant.

High Speed Modems on Eight-Bit Systems 11
By Roger Warren,

A Z8 Talker and Host..............c.cineciiiinncieeee 15
By Brad Rodriquez.

Local Area Networkscocvceenrmnceecncnnesnessenseenee 21
Ethernet

By Wayne Sung.

UNIX Connectivity On The Cheapccccoeevrervenrnen. 23
A Simple Start for CP/M, Z-System or MS-DOS

By Bruce Morgen.

The PC Hard Disk Partition Tablecccceerurnnn. 25
By Rick Rodman.

A Short Introduction to Forth.............ccccevrvnnuene vene 27
By Frank Sergeant.

Real Computing.........ccocvvvencirvrrccnrrncees s . 29
The 32CG160, Swordfish, DOS Command Processor

By Rick Rodman.

Z-System COINErcceeeeeeiecircreen v ssessesesees 33
The Trenton Computer Festival

By Jay Sage.

PMATE/ZMATE MacCIOSccccoiviviervverersnnessnenseenens 37
By Clif Kinne.

Z-Best Softwarecccocrivveecnncincccc e 41
The Z3HELP System

By Bill Tishey. N
Stepped Inference as a Techniquec...cceereenee 45

for Intelligent Real-Time Embedded Control
By Matt Mercaldo.

The Computer Corner R -
By Bill Kibier.

Editor’s Desk

By Chris McEwen

I had a bit of a surprise when I called the printers to tell
them | was on the way in with this issue. “We close shop this
time every year for vacation. Can get you in on July 8,
though. Didn’t anyone tell you?” Well, no. No one told me,
and with a printing schedule of 10 days, I don’t need to tell
you this issue is late getting out of the starting blocks. You
know that already! Getting an issue out on a preset date is
frustrating me! Meanwhile, I have taken the opportunity to
add some last minute comments to this column, which you
will find in italics.

We have gained a raft of new readers in the last few
months. | thought this might be the appropriate time to talk a
little about our industry and where we all fit in.

Pocket Ventures

Let us start with a basic assumption. You are not Motor-
ola, and I am not Zilog. Collectively, we would not equal one
percent of Intel’s net worth. Facts are facts, friends, we are
small fish. TCJ, being a small fish, caters to such. This is not
bad. In fact, it is very, very good. Major corporations take on
a personality of their own, often at the expense of the indi-
viduals working for them.

Being a small fish, you can chose to swim in the smaller
ponds, and avoid the compromises that big business requires.
Many of our readers are involved in pocket-sized develop-
ment projects. | would venture to say that a good number
have not built a business to the point where they can leave
the corporate world, but they see the promise that one day
they will.

Now, why is this a valid topic for a technical journal? First
of all, TCJ fits the same pattern as its readers. This is a
pocket-sized business that I run to avoid the compromises a
large publisher would require. It is amusing to get messages
asking to speak to our engineering staff or from a foreign
university asking me to return the call and “chat.” Could you
imagine what your subscription would cost if I could afford
international calls to chat? If you call TG/ and get an answer-
ing machine, you now know why.

Custom projects for embedded control are a viable market
for a small enterprise. | always enjoy talking to readers (not
everyone gets that infernal machine!), and I hear what many
of you are up to. Fascinating. The common thread is that
these projects are small enough to be manageable by very
small businesses, advanced enough to require special skills in
both hardware and software and lucrative enough, at least at
the small scale presented, to make them viable.

Why would anyone go to an individual to develop some-
thing he could have a major house do? Simple answer:
Money. Your overhead is a fraction of that faced by the big
boys. Anyone needing half a million widgets has the bucks

2

behind him to hire anyone he wants. Many of the projects I
speak of are “one-offs” or perhaps a production run of a few
dozen.

TCJ is particularly well placed to deal with this. Our au-
thors make frequent use of Forth, an excellent platform for
quick development. Several own small companies selling
embedded controller boards that one can use to build up a
custom system at very low cost. And we have the recognition
of some major manufacturers.

You and [have a practical place in this industry; we serve
a niche. | hope that you never grow so big that you don’t
need me, that [never grow so big that I don’t hear you, and
that we both grow enough to reap modest reward for our
efforts.

Serious Hobbyists

Not all readers fit the mold I gave above. Quite a few are
what would be considered “serious hobbyists.” In his col-
umn this issue, Bill Kibler alludes that this entire industry
started with games. Perhaps so, but if we go back a bit fur-
ther, it started with people finding hobbyist use of a new
breed of chip—the micro-processor. Those were the days
when the 8080 was king, and the 6502 was an up-and-comer.
The Altair was the first computer available for home use. It
came as a kit and required significant skill to get running.

The early years marked a period when people built their
skills to gain functionality as hardware was very expensive.
Today, computers are cheap and pecple have no time to
learn. A “power user” is now defined as one who knows
tricks in configuring or using software, a microcosm of the
total picture.

The computer publishing industry has evolved to meet the
needs of the majority. Since few are interested in how a BIOS
works, or even that there is a BIOS, you will see few articles
telling how to write one. Rather than building a capability,
most now buy it and so the press emphasizes product re-
views. Where does that leave people like you and me?

Tomorrow's “Guru’s”

There is one other type of TG/ reader: the person who
does not currently have the skills to be a “serious hobbyist,”
but who recognizes that loading another TSR does not repre-
sent true skill. This is the same type of person who would
rather read a good book than watch the movie. There are no
easy paths to knowledge and this person will not take the
easy way out. If this means clearing the kitchen table and
hauling out the oscilloscope and soldering iron the night TGJ
arrives, then the kids can have pizza.

If you fit in this category of reader, you understand a

See Editor, page 56

The Computer Journal / #51

Introducing the YASBEC

Yet Another Single Board Eight-bit Computer

By Wayne Hortensius and Paul Chidley

Once upon a time, there were a couple of computer hack-
ers who were unsatisfied with their computers. One was run-
ning a homebrewed 65816 system, and was tired of having to
write everything he used himself. The other was running an
Ampro LB/Z80, and had finally realized that a single board
computer made expansion just a little difficult.

And so, YASBEC was born. It started off as a small project,
involving just a few boards. Then came the Trenton Com-
puter Fair, and YASBEC became a unstoppable monster. (By
the way lan, we'll get you for that. Remember that little
hassle with Customs? Heh, heh, just you wait. You haven't
seen anything yet.) '

YASBEC is a complete 8-bit, 2180 based single board com-
puter. The footprint of the card is a standard Eurocard, about
4" by 6.3" (for comparison, the Ampro LB/Z80 is 5.75" by
7.75", and the Micromint SB180 is 4" x 7.5"). This sucker is
tiny. Like most SBC’s, add a power supply, terminal and a
disk drive, and you're up and running. But YASBEC goes one
step further. It supports a full backplane, to which you can
add expansion boards. More about that later.

The Hardware

The hardware that makes up YASBEC is a fascinating
blend of leading edge technology, state of the art packaging,
and plain old obsolete chips that hardly anyone even makes
anymore. Rest assured, there, were reasons. Honest. Some of
them even still make sense.

The small footprint of the YASBEC board is due to an
extensive use of surface mounted components and PALs.
Consider; of the 23 ICs on the board, all but 7 are surface
mount. The memory decoding is accomplished with a single
PAL, as is the /O decoding.

The heart of the YASBEC is a Z80180 8 bit microprocessor,
operating at a clock speed of 9.216MHz. We used the PLCC
package, which can address up to IMeg of memory.

Sockets for both EPROM and RAM are provided on the
board. A single 28 pin socket provides for up to 32K of

EPROM. This socket can also contain the Dallas SmartWatch,
which provides the battery backed up real time clock, at no
cost in board space. Very slow EPROMs can be used if re-
quired, as the access time can be stretched out to over 400ns.

The system’s RAM is provided by two 32 pin sockets.
These sockets will accept any of the following static RAM
types: 32Kx8, 128Kx8, and 512Kx8. Mapping for the different
RAM sizes is controlled by a single PAL. If your RAMs are
100nS or faster, the YASBEC can operate with no RAM mem-
ory wait states.

We've been questioned about the decision to use static
RAM as opposed to the much cheaper dynamic RAM. Two
factors influenced us most: smaller parts count and board
space for static RAM, and we had lots and lots of 32Kx8
static RAM’s sitting around. Prices on the 128Kx8 static
RAM’s have also become much more reasonable lately, so
that’s not as much of a problem as it was. And if you need
still another reason, static RAM can easily be made into non-
volatile memory with the addition of a Dallas SmartSocket.

And to be honest, both of us hail from a time when the
standard joke about dynamic RAM's was, “What’s the differ-
ence between static and dynamic RAM’s? Static RAM
works”. Old habits die hard.

The Z180 provides two fully programmable serial [/O
ports. One channel, intended primarily for a terminal, pro-
vides a single flow control input (CTS). The other channel, in-
tended for a modem, provides two flow control inputs (CTS
and DCD), and a flow control output (RTS). The RS-232 con-
verter we used is a MAX-239, which happens to provide ex-
actly the right number of inputs and outputs that we needed
for the board.

The baud rates for these ports are programmable from 75
baud to 57.6 Kbaud. Any combination of 7 or 8 data bits, 1 or
2 stop bits, odd, even or no parity, can also be programmed.

The singularly useless DCD input can be jumpered to any
of three sources: DCD, DSR, or always low. The latter is the
most useful option for the vast majority of us.

The parallel printer port provides

Paul Chidley is a senior technologist at NovAtel, an Alberta based cellular phone
company. He’s a neophyte ZCPR user, but has been active in homebrewed hardware
and software design for many years, primarily in the Ohio Scientific and 6502/816
area. Paul can be reached by regular mail at 162 Hunterhorn Drive NE, Calgary

Alberta, Canada, T2K 6HS5, or by phone at (403)274-8891.

Wayne Hortensius is, in real life, a software designer also, strangely enough, at
NovAtel. His involvement with computers began in 1977 when he wirewrapped his
first computer together around an 8080A. Wayne's been involved with ZCPR since
1984, on a variety of machines beginning with an Apple Il clone and ending up,
most recently with the Z180 YASBEC. Wayne can be reached by regular mail at
166 Hunterhorn Drive NE, Calgary Alberta, Canada, T2K 6H5.

The Computer Journal / #51

the ten essential signals of a Centronics
compatible printer interface: data bits
1-8, data strobe, and acknowledge. The
acknowledge line is tied to one of the
Z180’s interrupt lines, which makes it
very easy to implement a buffered
interrupt driven printer port.

A Western Digital 1772 floppy disk
controller (FDC) provides all of the
functions required to interface with up
to four 525" and 35" floppy disk
drives. The 1772 includes the following

3

functions within a single 28 pin package:

+ digital phase locked loop

+ digital write precompensation

* motor on start/stop delay

* software controlled step rates from 12ms to 2ms

Timing for the floppy disk interface is derived from an
8MHz crystal oscillator, which is also used to generate the
* clock required for the optional APU (Arithmetic Processor
Unit).

The YASBEC native floppy disk formats are the same as
those used on the Ampro LB/Z80 and the Micromint SB180.
We could have gone with a newer FDC, and in retrospect,

. probably should have. The initial decision to go with the 1772
was based on a dream of being compatible with the Ampro
" LB/Z80. Very early in the design stage, we decided we could
do much better than that; but the 1772 had acquired a life of
its own.

The YASBEC can be hooked up to a variety of SCSI de-
vices through the NCR 53C80 SCSI bus controller. This low
power CMOS device supports all SCSI Initiator and Target
functions, including bus arbitration and disconnect/ reselect.
The YASBEC BIOS uses the SCSI controller in true DMA
mode to achieve a very fast data transfer rate.

The YASBEC includes a socket which will accept either the
Intel 8231A (a.k.a. AMD9511) or Intel 8232 arithmetic proces-
sor units. The socket is jumperable to support both 2MHz
and 4MHz parts. The 8231/9511 offers single precision real,
and double and single precision integer formats. It performs
the full gamut of arithmetic and scientific functions. The 8232
offers single and double precision real formats, but only the
basic four arithmetic functions.

While these devices are about as trailing-edge as you can
get, having been offered since the mid 1970’s, there don't
seem to be any other floating point processors that are de-
signed to work with more than one microprocessor. They all
seem to be true coprocessors, rather than stand alone devices.
[Ed: Is Zilog missing a bet here?]

The backplane is fully buffered, and every signal that you
could ever want is out there. Now remember, practically eve-
rything you could want in a computer is already on the
board, so it’s fair to ask exactly what good is having a
backplane, when there’s nothing to put on it?

Excuse me? The man in the back row? Did you just ask
something about graphics? Well, yes, now that you mention
it, we have designed a colour graphics board, with two reso-
lutions of 512x424x16 colours, and 256x424x256 colours, with
a 16 million colour palette. And yes, it will do frame grab-
bing (we think). But that's another article, ok?

Also in the works is an upgrade to the system speed.
While the YASBEC is already incredibly fast, we're still only
running with 10MHz parts at 9.216MHz. Zilog is promising
samples of 12.5MHz parts in a month or so, with 16MHz
parts by year’s end.

The Software
No discussion of a computer would be complete without
talking about the software. We're currently running ZCPR3.3
and a modified version of NovaDOS release [(a CP/M 2.2
BDOS replacement) that supports Z80DOS style datestamp-
ing. The main reason for this is that is what was running on
the Ampro LB/Z80. When all this started last autumn, we

had no idea that the YASBEC was going to go beyond a few
boards, and didn’t put a lot of thought into producing soft-
ware that could be distributed with a quasi-commercial prod-
uct. Neither ZCPR3.3 nor NovaDOS is licensed for anything
more than personal use, so they were unfortunately not us-
able. Hey, excuse us, we suffer from terminal honesty. Well,
now we've had to think about it, and have decided, just to-
day, to go with ZCPR3.4 and ZSDOS (this ought to make Jay
very happy). Many other options were bandied around, but
we kept coming back to the problem of having to be able to
distribute a bootable system disk. Even a kind offer from lan
Cottrell to distribute the software from his bulletin board
couldn’t get us around that one.

The BIOS we're using includes many of the features that
I'd come to know and love on my Ampro LB/Z80. Things
like foreign disk support, automatic sensing of various native
disk formats, and an easily configurable disk system. To this
add goodies such as: fully buffered, interrupt driven serial I/
O, interrupt driven keyboard, an interrupt driven real time
clock, and true DMA SCSI transfers. A RAM disk driver is in
the works, but you know the old story; so many things to do,
and only so many hours in the day.

The boot ROM included with the YASBEC can boot di-
rectly from either floppy or SCSI disk. It also includes a
monitor for those people who like working with computers
without talking to the operating system. As this article is
being written, the contents of the boot ROM are in a state of
flux, so please excuse us if we're very short on details.

Incidentally, lan Cottrell is apparently working on getting
CP/M+ working on his YASBEC. We're all looking forward

See YASBEC, page 51

YASBEC SPECIPICATIONS

CPU: 9.216MHz 280180, 8 bit microprocessor capable
of addressing 1Meg of memory

MEMORY : 64 Kilobytes - 1 Megabytes of static RAM,
with optional battery backup, and up to
32 Kilobytes of EPROM
TIMER: 2 780180 Programmable Reload Timers
1 timer not used by YASBEC software
SERIAL I/O: 2 780180 Asynchronous Serial Communications

Interface channels

2 RS232C compatible ports

Software controlled baud rates:
75 to 57.6 Kbaud

Modem control signals (DCD, CTS and RTS)
on port O

CTS control signal on port 1

DCD input jumperable to DCD, DSR or
permanently low

PARALLEL I/0: Centronice compatible printer port
10 signals supported
Data Bits 1-8 - output
Data Strobe - output
Acknowledge - input
10 ground pins

SCSI BUS INTERFACE: SASI compatible ANSI X3T9.2 (SCSI)
compatible Uses NCR 53C80 SCSI bus controller

BACKPLANE: 64 pin connector. All signals brought out:
power, address, data and control

POWER: +5VDC and +12VDC

SIZE: standard Burocard

The Computer Journal / #51

Floppy Disk Alignment with the RTXEB and Forth

Third of Three Parts

By Frank C. Sergeant

Frank completes his first place winning entry in the Harris RTX design contest, as he puts all the pieces together for us.—Editor

The Aligner—The Complete System

Tests
1. Sensors

*Write-Protect should go true for a write protected disk
and not for a writable disk. *Track0 should go true every
time you step to track zero. These statuses (along with the
track number and the active head) are displayed on the
screen. The words WP? and TRKO0? on screen #3605 check the
appropriate bit after reading the input port with P@.

2. Speed

The drive should spin the disk at 300 rpm (+/- 6 rpm). A
potentiometer at the rear of the drive can be adjusted to make
corrections. When the index hole in the diskette is lined up
with the hole in the jacket, an LED shines through to activate
a sensor, making the *Index line go low. To measure the
speed, we set up timer 1 so each roll-over represents a tenth
of a millisecond. Then a timer interrupt counts the number of
roll-overs. We initialize the counter, wait for the index pulse,
unmask the timer interrupt, wait for the next index pulse,
mask the timer interrupt, and read the roll-over counter. That
is how the word Trev finds the time for one revolution. The
square root register isn’t needed for any square roots, so it is
used as a convenient place to keep the roll-over count. It is
initialized to -1 instead of to zero to make up for the ‘extra’
timer interrupt we almost always get.

SPEED calls Trev and converts it from 10ths of millisec-
onds per revolution to revolutions per minute and displays
the speed. If it is not close enough to 300 rpm, turn the poten-

tiometer until it is.

3. Index to Data Burst

The AAD has a special track with a data burst starting at a
fixed position after the index pulse. If the drive’s index sen-
sor is positioned correctly, this time will be 200 microseconds
+/- 50 microseconds. The word .ITD on screen #3629 meas-
ures this by initializing a timer at the start of the index pulse
and reading the timer when the first wave peak arrives. This
value is in RTX clock cycles. Running at 8 MHz there are 8
clock cycles per microsecond, so the value is divided by 8
and displayed. ITD uses the word CLOCK to measure the
time, even though it is over-kill. See Azimuth below.

4. Azimuth

This is our most difficult measurement. The azimuth track
has four data bursts recorded at different head angles. If the
head is correctly aligned the middle two bursts will have a
greater amplitude than the first and last bursts. Each burst
lasts around 400 microseconds, so we have to be quick when
we measure the amplitude, and we have to measure it at the
correct time. The first thing we do is survey the azimuth
track to find when the data bursts occur (in RTX clock cycles
relative to the index pulse). This is done by the word CLOCK
which stores the timer value when each wave starts and by
the word MARK which analyzes the times to mark out the
data burst windows. Once we know where to look, AZ meas-
ures the amplitudes of the four azimuth bursts. .AZ averages
5 such readings and displays a graph of the relative ampli-
tudes.

5. Cat’s Eye

This is the main test. Track 16 is re-

Frank Sergeant is a hardware/software consultant specializing in business and/or
realtime systems. He is the author/implementor of Pygmy Forth for PC/MS-DOS
systems (version 1.3 is available from FIG, GEnie, and fine BBSs and shareware
houses everywhere). He has been designing, building, and programming microcom-
puter systems since the late '70s. One of his greatest joys is replacing hardware with
software. He is in the process of porting Pygmy to the Super-8, 68HC11, RTX, etc.
His floppy disk drive aligner entry won the RTX design contest. Shortly thereafter
he was shocked to hear the RTX was being abandoned by Harris. However, recent
conversations with Harris officials have reassured him that it was only future devel-
opment that was abandoned, Harris has fully, publicly committed to producing the
RTX for a minimum of 2-1/2 years. In light of that, Frank breathed a sigh of relief
and continues his RTX development work. Frank can be reached as F.SERGEANT
ot GEnie or through TCJ.

The Computer Journal / #51

corded with two out-of-round pat-
terns, so that when the head’s radial
position (how far it is from the center
of the diskette) is correct, there will be
two lobes of equal amplitude. The first
null point should occur about 25 ms
(+/- 5 ms) after the index pulse. The
word CE sets up the comparator inter-
rupt and waits for the index pulse, and
then waits for the trigger delay after
that (this is an adjustable delay-trig-
gered digital ‘scope, after all). Then it

scr #3620
(Vp find peak voltage level of azimuth burst or ce sample)

scr §# 3920
vp (“vee pee”)
Measures the peak voltage over a short interval. This

: Vp (- dac) is used for both the azimuth bursts and the cat’'s eye
200 SR! (set up the delay value used by ADC) pattern. '
ADC ; (measure the voltage)
This ie our workhorse word to measure wave-form
amplitudes.
scr # 3621 scr # 3921
(AWAIT Wait for the timer to count down to a specific value) AWAIT Wait until TIMER] drops down to the value on

: AWAIT (timerl-value -)
BEGIN TC1€ OVER U< UNTIL DROP ;

the stack. This is used by AZ so the azimuth bursts
will be measured at the correct times.

. scr § 3622
(Measure azimuth burst amplitudes)

1 AZ (- 4th 3rd 2nd 1lst) (amplitudes of the 4 bursts)
WINDOWS 12 + (a)
3FOR (. . . a) DUP @ SWAP 4 - NEXT DROP (t4 t3 t2 tl)
(above puts the starting time for each window on the stack)
SYNC 0 TCl1 (wait for the index pulse and start the timer)
3 POR (<starting timee>)

AWAIT Vp (wait for the next window and take a reading)
R> SWAP 2>R (tuck that reading under the loop index)
NEXT

2R> 2R> \\ ; (retrieve the 4 readings from return stack)

scr #3922

AZ Measure the amplitudes of the four azimuth bursts.
The WINDOWS array tells it when to do the measuring. It
starts timerl when the index pulse goes active (SYNC)
and AWAITs the correct timer values before taking the
readings. Note the \\ at the end of the definition.
This forces a separate EXIT instruction. Otherwise, the
compiler seems willing to “optimize” the return with
the 2R> instruction (which it should not do.)

scr # 3623
(SUM add corresponding numbers in two sets of four)

¢ SUM (abcdwxyz - a+w bi+x cty d+z)
4 ROLL + >R {abcwxy)
3 ROLL + >R (abwkx)
ROT + >R (aw)
+ 2R> R> ;

this will be used by .AZ to average several sets of readings)

)

scr # 3923

SUM Add corresponding numbers in two groups of 4. This
is used by the following word to average several
azimuth readings.

scr § 3624

(.AZ show azimuth test results)

: AZ ()

1Vb (find baee voltage)

CLOCK MARK (find azimuth windows)

AZ AZ AZ AZ AZ (take 5 sets of azimuth readings)

SUM SUM SUM SUM (4th 3rd 2nd 1lst) (add them up)

2 (ie etarting-row for cursor position)

3 FOR (make 4 passes, one for each of the 4 burste)
DUP 0 AT (position cursor on the next row down)
SWAP 5 / (we added up 5 readings so now we take average)
Vb @ - { then subtract the base voltage level)
FOR ASCIT X EMIT NEXT 20 SPACES 1+ (ie bump cursor row)

(print horizontal histogram representing amplitude)

NEXT DROP ;

ST-AZ (-) 34 SEEK ['] .AZ HEART 1| ;

scr # 3924
Read Azimuth Amplitudes & Show Results

the peak voltages to samething (1Vb). Find when to
sample (CLOCK & MARK). Take 5 samples and average them.
Position the cursor and display a horizontal histogram
with ‘X’s to represent the amplitudes less the base
voltage Vb.

ST-AZ start the azimuth test. Make the azimuth test
the active test.

scr § 3625
(reduce or divide each sample by a common value)

LOW-SAMPLE (- u) (find the minimum out of all 200 samples)
PAD 255 #SAMPLES FOR OVER Cf MIN SWAP 1+ SWAP NEXT
SWAP DROP ;

-SAMPLES (subtrahend -) SR! PAD #SAMPLES
FOR DUP C@ SR€ - OVER C! 1+ NEXT DROP ;

:+ /SAMPLES (divisor -) SR! PAD #SAMPLES
FOR DUP C¢ SR€ / OVER C! 1+ NEXT DROP ;

scr # 3925
LOW-S8AMPLE Find the group minimum.

-SAMPLES Subtract a common value from each sample.
/SAMPLES Divide each sample by a common divisor.
These worde are used to scale the measurements for
display on the terminal. (The samples are stored at PAD

by CE.) These words are called by MASSAGE to massage
the data.

The Computer Journal / #51

collects 200 samples, each a ms apart. (Each revolution takes
200 ms.) MASSAGE massages this data to scale it for display
and PLOT draws the ‘scope picture as 50 vertical bars of ‘X’s.
The height of each bar represents the average peak amplitude
of the sample during that group of 4 ms. With a graphics
screen it would be a simple matter to plot all 200 readings (or
even more) and have a much prettier cat’s eye. This pattern is
re-drawn repeatedly. You watch it as you adjust the head
position. After the head is aligned, check for excessive hyster-
esis, or slop, in the head motion. If there is too much slop the
head will be in different places depending on whether it was
moved inward to track 16 or outward to track 16. To check,
move the head to track 34 then back out to 16 and note the
appearance of the cat’s eye. Then move the head to track 0
and then back in to track 16. If there’s too much hysteresis
the cat’s eye pattern will show the mis-alignment.

User Interface
1. Main Menu

The main menu brings all of these individual tests to-
gether and makes it easy for the technician to switch from
one to another and to exercise the drive.

The menu continuously runs the selected test and updates
the drive status. It responds to single key-presses by moving
to different tracks, switching from head 0 to head 1, starting
different tests, or changing the ‘scope knobs (the trigger point
for starting the cat’s eye pattern or the scale factor). Where a
number is needed, the program prompts for it.

This prompting for a number is a commonly needed func-
tion that is often lacking in Forth systems. Here is one way to

handle it:

¢+ #IN (-~ u) { “number in”)
PAD 1+ 5 EXPECT 0 O PAD CONVERT 2DROP ;

It waits for a number to be typed and then converts it to a
number that is left on the stack. Screen #3626 shows ex-
amples of how to use it. #IN does not blow up if an invalid
or out of bounds number is typed, so it is usually followed
by the word CLAMP to keep the values reasonable.

2. Knobs

Two adjustments to the ‘scope picture of the cat’s eye
pattern can be made from the menu. The first is the trigger
position. Pressing ‘T’ prompts for the number of milliseconds
delay from the index pulse to the left edge of the display. The
second is the range control or scaling factor used to divide
the measurements to give a reasonable height display. A
good value is 8. This is similar to the volts/division control
on a real ‘scope. Press ‘R’ to change the range.

3. Terminal Requirements

The Aligner will run from an XT clone at 115,200 bps. It
will start up at any baud rate—it adjusts itself to the speed of
the terminal. | keep the source code in BLOCKs and use
Pygmy Forth on the XT to edit the source code and down-
load it and to serve as the terminal program in communicat-
ing with the RTX board. The source can also be downloaded
from a plain text file by an ordinary terminal program. Of
course, the code could be put in ROM on the RTX board -
there’s room for it in the existing EPROM that holds
EBFORTH.

The Aligner expects the terminal to be capable of direct
cursor positioning and to respond to a clear screen com-

The Computer Journal / #51

mand, and to use XON/XOFF handshaking. Any terminal
that can do those three things should work with the Aligner.

4. A Day in the Life of a Technician

The tech opens up the PC’s case and removes the drive to
be aligned. If the PC has only one drive he temporarily re-
places it with a spare he carries for this purpose. Then he
connects a power cable extension and Y-adapter to one of the
disk power connectors. This powers both the drive being
tested and the Aligner. This means the Aligner does not even
need its own power supply. He plugs the Aligner’s 34 pin
data and control cable onto the drive and clips a test lead to
the drive’s controller board.

That PC {or any handy computer or a portable terminal)
provides the interface between the tech and the Aligner
through a serial cable. The Aligner hardly even needs an LED
on it, never mind a keyboard and readouts! Then the tech
exercises the drive through the PC’s keyboard and reads the
results on the PC’s screen as he does the radial alignment,
motor speed, track zero, index-to-data, hysteresis, and azi-
muth adjustments and tests.

5. Enhancements

The question comes up of how fancy we want to plot the
measured voltages. The cat’s eye routine collects 200 samples
per revolution (and could easily collect many more, but what
would we do with them?). Then it averages 4 readings into 1
and plots 50 points on the terminal with ‘X’s. This shows the
upper halves of the two lobes. This character graphics ap-
proach was taken so it would work with any terminal. The 50
points fit nicely across an 80 column screen. If we wanted to
require the terminal to be a PC with a graphics card (or any
other graphics environment) or if we added video monitor
circuitry to the Aligner, we could plot a very pretty cat’s eye
display. But, it is very usable with just the ‘X’s.

If the volume justified it we could put the DAC and the 5
or 6 outputs (we only needed the other 8 because of the
DAC) and the 3 or 4 inputs on-chip.

Summary of Advantages

1. Size—Less bulky for on-site alignments. This might
make the difference whether the technician is willing to do
an on-site alignment. This means faster turn-around for both
the customer and the repair shop. “It’s ready” rather than
“We'll get it back to you eventually” can have far reaching
effects on customer relations.

2. Ease of Use—Fewer cables to string, fewer balancing
acts to position the drive where it can be worked on. Simple
one key control of the head position. Status always visible on
screen. All this adds up to a simpler interface and a more
complete display than most exercisers provide.

3. Upgradability—Because the essence of this machine is
software, upgrades for new and different disk drives can be
done with minimal expense: a new ROM and perhaps a new
cable. Since the software is written in Forth, upgrades might
not even need the ROM. If a PC is used for the terminal, an
upgrade diskette with the new Forth commands might suf-
fice. For the technician this means a longer life for his instru-
mentation investment. For the manufacturer it means the
same thing: lower development costs for an upgrade—no
new printed circuit board to layout—and the capability
(should the impossible happen) of correcting bugs with a
ROM change rather than a hardware redesign.

scr # 3626

(

oscilloscope knobs)

OIRIG! (~) 21 0 AT ." trigger (0-255)7 “ #IN 0 255 CLAMP
OTRIG 1 21 0 AT 50 SPACES ;

OSCALE! (-) 21 0 AT ." range (1-255)7 “ #IN 1 255 CLAMP
OSCALE | 21 O AT 50 SPACES ;

scr #3926

OTRIG! lets operator adjust the trigger position for
the cat's eye display. (“Moves” lobes left or right.)
It is the delayed trigger knob.

OSCALE! lets operator adjust scaling factor. It is
more or less the volts/division knob. Note how CLAMP
protects against an entry of zero.

ser & 3627

(

MASSAGE)

MASSAGE (-)
OSCALE § /SAMPLES LOW-SAMPLE -SAMPLES ;

scr # 3927

MASSAGE Divide the raw cat’s eye data by the scaling
factor and then remove the “DC” component. This helpe
it fit on the screen.

scr # 3628

. se o

Measure drive speed)
S-INT (-) SR€ 1+ SR! ; ("roll-over” interrupt handler)
Trev (- 10ths-of-a-ms-per-revolution)
['] S-INT 8 !INTERRUPT { install the roll-over int handler)
-1 8R! (initialize the roll-over counter to “zero”)

(the ‘extra’ int will make it zero)
SYNC 800 TC1ll TIMER1 UNMASK SYNC TIMER1 MASK
SRE H

.SPEED (-)
3000 2000 Trev */
0 <# # ASCII . HOLD # # # #> 19 59 AT TYPE ;

ST-SP (-) [‘] .SPEED HEART ! ;

scr # 3928
8—-INT This timerl interrupt routine counts the
roll-overs (using the SR register, which is available).

Trev (“tee rev") Measure time for one revolution
in tenths of a millisecond. The SR register serves as a
scratch-pad for counting roll-overs of the timer. Each
roll-over represents 1/10th ms as there are 8000 RTX
cycles in a full me. We pre-load SR with -1 instead of
0 as there is “always” a pending timer interrupt when
we atart.

and display it.

ST-SP start the speed test. Make the speed test the
active test.

scr ¥ 3629

(

index to data burst timing)

LITD (=)
IVb 5§ Vb +! CLOCK (collect timings for all the peaks just)
(so we can use the lat one - it’s over kill)
PAD 2+ @ NEGATE (get the lst time and convert to positive)
(time in 8ths of a microsecond)
8/ (convert to microseconds)
19 S0 AT 5 U.R ; (and display)

ST-ITD (-) 1 SEEK [’] .ITD HEART ! ;

scr #3929

JITD On the index track of the Analog Alignment
Disk (AAD),the data burst should occur 200 usec (+/- 50
usec) after the index pulse. Our wave peak timing
collector CLOCK gets this information for us and we
read it from the lst real position at PAD (PAD+2). It
is in RTX cycles, which we divide by 8 to convert to
microseconds. Then we display it.

ST-ITD Start the Index to Data Burst test. Make this
the active test.

scx # 3630

T

Cat’s Eye - take 200 amplitude readings - using Vp)

CE (-)
OVb ! PAD (a)
SYNC OTRIG € MS
199 FOR (a)
0 TCOt (init timer0 so we’ll know how long *this*)
{ loop takes)
(average two readings for this)
(sample and store it at PAD)
7992 TCO€ + CYCLES (kill just the right length of time)
(so *this* pass will take 8000 cycles total)

{ ie wait after index pulse)

Vb Vp + 2/ OVER C! 1+

NEXT DROP ;

scr # 3930

CE Measure the two Cat’s Eye lobes per revolution on
the CE track (16). Take a reading every millisecond.
This is more than we can display on a character-based
terminal, but we will average the readings to make
everything fit the screen.

Wait for an index pulse. Then wait the trigger value
longer, so the operator can control the left/right
positioning of the display. The 1lst null should occur
25 ms after the index pulse (+/- 5 ms).

Note the use of timer0 to force each pass through the
loop to take the same length of time, regardless of the
(variable) time consumed by the interrupt handler.

scr # 3631

(

- e

Cat’s Eye)

AVG (a # - a’ avg)

0 SWAP DUP >R 1- FOR

(a sum) OVER C@ + SWAP 1+ SWAP NEXT (a’ sum) R> / ;

PIOT (=)
11 FOR 13 I - 0 AT I SR!

PAD 43 FOR (a) 4 AVG SR€ > IF ASCII X ELSE BL THEN
EMIT NEXT DROP NEXT H

.CE { -) CE MASSAGE PLOT ;
ST-CE (=) 16 BEEK 8 OSCALE | ['] .CE HEART ! }

.CE HEART !

scr # 3931

Display Cat’s Eye Pattern

AVG Average # samples together. This is used by
PLOT.

PLOT For 12 passes, position cursor, store this

level in SR (this eases the stack manipulation burden),
then go through the data. For each display point, show
an ‘X’ if it is greater than the current level else
show a blank. This paints the ‘oscilloscope’ picture of
the cat’s eye in low resolution. It still gives a
usable representation of a cat'’'s eye., With higher
resolution graphics we could show all 200 points (or we
could collect even more) and make it pretty. 4 AVG
averages 4 samples per display point.

MASSAGE, & PLOT it.

ST-CE Start the Cat’s Eye test. Make Cat’s Eye the
active test.

The Computer Journal / #51

Summary

Developing with the RTX

The on-board Forth is pleasant with no great surprises. As
mentioned before, it makes the use of interrupts very easy.

The RTX is a friendly processor to work with, The Forth
development environment and the extreme ease of setting up
interrupt handlers make it a pleasure to use. The prototyping
board, with the addition of a PC as a host, provides its own
development environment. The board wakes up “smart”
because of the Forth in ROM. It obeys commands directly
from the keyboard or compiles source code downloaded
from the host. This entire application fits in the on-board 4K
bytes of RAM. The on-board Forth takes up 12K bytes of the
16K byte EPROM, leaving room in the EPROM for the entire
Aligner code.

Forth lets you read and set memory, registers, and ports
directly from the keyboard. It is easy to toss together little
timing and test routines. The feedback is immediate. This
gives you a microscope for peering into the hardware so you
can see what's going on. I would hate to do without this. If
you are beating yourself to death developing hardware using
a batch language such as C, Pascal, or assembler, do yourself
a favor and try Forth.

Instrumentation products such as the Aligner can expect
only a low to moderate volume of sales—far below that of an
oscilloscope and far, far below that of a television set or ra-
dio. Because of this, there are fewer units to absorb the devel-
opment costs. We don't want to have to lay out new PC

boards whenever an upgrade is desired (of course there
won’t be any actual bugs to fix). It is much cheaper just to
change ROMs. So, for instrumentation work, the RTX, with
its quick development Forth environment and the speed to
trade for hardware, allows us that less expensive upgrade
and maintenance path.

However! When and if the volume justifies it, the per unit
cost can be reduced by integrating more hardware functions
onto the RTX chip. For example, the DAC, inputs, and out-
puts could all be put on-chip with the processor. They’d still
be on the G-bus, so virtually no change in software would be
needed; they’d just be internal devices instead of external.
That would eliminate the DAC and three 74HC373 chips,
leaving only the external op-amp package (use a dual version
that will handle both the signal conditioning and the com-
parator functions). This would reduce the board size, parts
count, and assembly costs.

A designer can get up to speed quickly with the RTX. To
start, just lift examples from this and the other published
applications. The code for the Aligner shows how simple it
can be when done in bite-sized pieces. Speed of development
is usually vital to meet windows of opportunity. A fast inter-
active development environment lets you build a better prod-
uct. A slow environment encourages you to accept a lower
standard because a change is expensive. The RTX2001A lets
you replace hardware with speed. The interactive Forth gives
speed of development and code compactness and testability
that is very hard to achieve with a batch language. This ap-
plication illustrates these principles in the construction of a
floppy drive aligner.@®

scr # 3632
(Display drive and Aligner status)

3 W8T (-)
14 23 AT TRK & 3 U.R

scr §# 3932

This is used by the main-loop ALIGN. It shows the
current track and head and whether the write protect
and track zerc lines are true. It almso shows the
current values for the trigger position and range

14 40 AT OUT @ HEAD AND IF .” 1" ELSE .” 0" THEN (scaling factor).
14 50 AT TRKO? IF .” TRKO ~ ELSE 6 SPACES THEN
WP2 IF ." WP" ELSE 2 SPACES THEN
16 40 AT OTRIG € 3 U.R
16 56 AT OSCALE € 3 U.R H
scr # 3633 scr # 3933
{ Display menu) MENU Clear the screen & display the unchanging
text. The changing information ie displayed by .ST or
t MENU CLS by HEART.
0 17 AT .” The Aligner”
14 0 AT .” track (-,+,0,1,6,3) = “ The valid commands are single key-presses, which are
14 28 AT .” Head (H) = *~ shown in parentheses. Thus ‘0’ moves to track 0 (it
16 0 AT .” ‘scope (T,R)” does a RESET); ‘l’ moves to track l; ‘6’ moves to track
o Trigger = Range = " 16 (say it “SIXteen”); ‘3’ moves to track 34; ‘H'
18 O AT .” tests (C,A,I,S)" toggles the head; etc.
.7 Cat's eye Azimuth Index to data Speed” ;

The ~ key 18 used to exit the menu, back to Forth.

scr #3634
(TURN-KNOBS)

: ‘, (-) (input: key action) (to help us compile TABLE)

BL WORD 1+ C@ ’ o,
CREATE TABLE (to match key-press to an action)
', - -STEP ', + 4STEP ¢, 0 RESET ¢, 1 TRK1l
‘, 6 TRK16 ‘, 3 TRKM ‘', H-H ', T OTRIG!
‘, R OSCALEl ¢, C ST-CE *, A ST-AZ ¢, 1 ST-ITD
', 8 ST-sP ‘, 0 NOP

t TURN-KNOBS (key -)
(look up key in TABLE and perform the matching action)
>R TABLE BEGIN DUP @& (a value)
DUP RE = SWAP 0= OR 0= WHILE (a) 4 + REPEAT (a)
DUP @ R> = IF (a) 2+ @ EXECUTE ELSE DROP THEN ;

The Computer Journal / #51

scr #3934

.’ “comma-tick” reads the input stream and ‘comma’s
in the key and its corresponding action. This helpa us
build the following table.

TABLE Thie is used by TURN-KNOBS to match an action
to a key stroke. The final entry must be for ‘key’
zero. Note that with the help of ,’ we do not have to
say ASCII C to indicate the “C” key. It simplifies the
source code that creates this table.

TURN~KNOBS Look up key in TABLE and perform the
correasponding action. If no match, do nothing.

sor § 3635

{ ALIGN top level word disk aligner)
s ALIGN (~)
RESET
BEGIN MENU .ST
BEGIN
19 (XON) EMIT (tell terminal we'’re busy)
HEART @ EXECUTE (perform the current test)
17 (XOFF) EMIT (let terminal talk)
100 Ms (give terminal time to send a char)
KEY? UNTIL (keep going until a key is pressed)

KEY DUP 126 - WHILE (if not the ~ key, then)
BEGIN TURN-KNOBS KEY? WHILE KEY REPEAT (obey the)
REPEAT DROP ; (command and continue)

(WRERENRNNNNRA AR

The End RRKKERRRREEHIHHRN S)

scr ¥ 3935

ALIGNR Where It All Comes Together. Display menu and
status of drive and program. Start with the Cat’s Eye
test. Keep displaying the active test (whose execution
addreses is in HEART) until operator changes the active
test. Change tests, head, track, trigger position,
range (acaling factor) per operator’s single keystroke
commands .

scxr # 3636

{ flash LED in time with index pulse - it’s comforting)
VARIABLE OUT (so we can remember how we set output port)
"1 ON (bit-mask -) OUT € OR DUP OUT ! 31 G! ; =1 ON
OFF (bit-mask -) NOT OUT € AND DUP OUT ! 31 G! ;

(set or reset a bit without disturbing the others)

1 CONSTANT LED
1 CONSTANT *INDEX

(output port bit mask for LED)
(input port bit mask for index pulse)

P4 (~u) 31 Ggé ; (read imput port)
INX? (u ~ f) *YINDEX AND 0= ; (true if index pulse active)

1 SHOW-PULSE (-)
BEGIN KEY? 0= WHILE P@ INX? IF LED ON ELSE LED OFF THEN
REPEAT KEY DROP ;

scr # 3936
Get Some Feedback: It’s comforting and gives you the
courage to continue.

The output port‘s LSBit is connected to an LED. You can
make it go on with 1 ON and off with 1 OFF. Try
it. Now you know you can set an output bit. The input
port’s LSBit is connected to the disk drive connector's
*index line. The asterisk means it is active low (the
line reads as zero when the index hole in the diskette
is aligned with the hole in the disk jacket and light
shines thru both holes. Otherwise that line is high.

Read the *index line and turn on the LED when the
*index line is low and turn off the LED when the *index
line is not low. The LED should flash 5 times per
second when the disk is spinning.

sor # 3637

(T .T find execution time of a section of code)

: T (-) O0TClt ; (initialize counter)

T =)

TCl NEGATE 1-
=1 IMR!

EI5 UNMASK

(make timer value positive and adjust)
(mask all interrupts)

(then unmask the one used)

(for the serial line)

U. ." cycles “ ABORT ; (print result as we abort)

scr #3937
Find Execution Time of a Section of Code

This ie a very handy DIAGNOSTIC aid. Don’'t guess, don’t
add up instruction timings, don’t guess what the
optimizer did. Instead, slap a T before the troublesome
section and a .T after it and run it. The EXACT number
of cycles the sequence takes will be displayed!

T & .T were used during the testing of CE to determine
the exact value to subtract the timer from to get a
fixed length loop regardless of the time spent in the
interrupt handler. It was alsoc used in several places
to make sure time constraints were met and to satisfy
curiosity about certain instruction timings.

X T .T ; (it better be zero)
t X2 T NOP .T ; (it better be one)
$t X3 3 T FOR NEXT .T ; (it better be five)
P
A DISK DRIVE
8 p|<~8 | npyr| otatus - to be aligned
: A 6> PORT <-4 4 E |ribbory
T - A | cable
A P D read amplifier
B IE test point
R U control E’ﬁ
NR
8
T
X
B JOUTPUT! Sw=>
° IB=>1] porr
A LSB test clip
: [
D I eignal
: conditioner
B OUTPUT
R ls-> 8 BIT
R 8-> PORT et DAC
MSB
v comparator
P
T
8 <-E13
HARDWARE DIAGRAM
10

serial
PC or TERMINAL line RTX2001A
Disk Drive
| e I c— power Aligner -
ribbon
DISK DRIVE cable
to be aligned 34 lead
read amplifier
test point
ﬁrm test

clip

OVERALL SYSTEM CONNECTIONS

The Computer Journal / #51

High Speed Modems on Eight-Bit Systems

This is Not Your Father’s Ampro

By Roger Warren

Introduction

Once upon a time, I had a job that, in part, involved plac-
ing a company’s computer system on-line so that clients
could call in and use some the company’s proprietary pro-
grams. It was an interesting time. I was very green. I had
nearly barely heard of a modem before that time and, worse
yet, the minicomputer I was using had no system software
packages to support such an operation, so I had to learn
about telecomputing as I developed the software. My opera-
tor’s console was a Teletype model 33 operating at 110 bits
per second. At the time, modem signaling rates in excess of
300 baud were exotic. I learned all about flow control: the
machine could deliver data to the modem and Teletype much
faster than either could process. The RS-232 Request to Send
and Clear to Send signals (RTS and CTS) were employed for
the modem. Similar controls were used for the Teletype.

After that job, I conveniently ignored flow control. It just
wasn't necessary on a daily basis. CRTs seemed to be able to
gobble data as fast as it could be delivered. Some didn’t
bother to support flow control! In general, a three wire sub-
set of the RS-232 standard seemed to be sufficient for most
things.

Recently, I decided to outfit my Z-Node with a USR Cou-
rier HST Dual Standard modem. The real truth of the matter
was that | was finally just fed up with the antics of my previ-
ous 2400 baud modem—it had been performing great feats
of random firmware amnesia for years, and I was tired of
modifying my system’s BYE program to accommodate each
newly-discovered malady. I had reached the point where I
was willing to shell out the dollars to buy freedom from the
beast, but with an eye toward the future, too.

My flow control experience came in handy.

Most of us who operate 8-bit machines have not really run
into any speed-related problems with RS-232 communica-
tions. The system CRT always seems to handle data from the
CPU at whatever baud rate is being used, and fingers can’t
type at a rate approaching that at which the CPU can accept

and process data. However, there is a performance envelope
to deal with. For a Z80 operating at 4 MHz, approximately
650 instructions (using an average of 7 clock cycles per in-
struction) can be executed in the time it takes for a byte to be
sent or received over a 9600 baud serial link. This may sound
like a lot, but, really, it’s not! When your modem program
sends or receives a byte from your modem, several hundreds
of instructions are usually involved just in dealing with the
modem. Add to that the facts that your console input must
be polled for operator keystrokes (requiring more instruc-
tions) and that some kind of console display update will
probably be required (still more instructions), and it becomes
obvious that there’s a potential that the CPU may not be able
to keep up with a 9600 baud data stream.

When [first attached the new USR to my old Ampro (the
4 MHz Z80 that runs my Z-Node), I quickly found that the
‘effective’ maximum baud rate for my configuration was be-
tween 4800 and 9600. That is, things seemed to work well at
4800 baud and lower, but when I used 9600 baud or higher
the CPU couldn’t keep up with the modem, causing data to
be lost. The error correction feature of the modem made
things worse: when used, data is sent to the CPU from a
buffer in the modem at whatever rate it can pump data out—
not at the rate the computer on the other end of the modem
connection is supplying the data. Flow control was required
keep the CPU from losing information!

For the benefit of those who don’t have a clue as to what
flow control as implemented on the USR may be, let me
provide a brief summary: When the computer is able to ac-
cept data, it asserts a signal to the modem. When it's unable
to accept data—like when the CPU hasn't read a previously
received character—the computer removes the signal. This is
the receiver flow control. On the transmitter side, the mo-
dem sends a signal to the computer when it’s able to accept
data and removes the signal when it’s unable to accept data.
USR uses the RS$-232 signals Request to Send (RTS) for re-
ceiver flow control and Clear to Send (CTS) for transmitter
flow control.

Roger Warren is former metallurgical engineer who has been making a living as
a system, software, and hardware engineer since being introduced to computing in
the early 70°s. He's been in the aerospace and defense fields for a majority of that
time, working primarily with embedded controls and radiation-hardened memory

systems.

He's been active in the CP/M and ZCPR communities for several years, having
developed and released several enhancements to the Ampro BIOS and, more recently,
LZH compression for CP/M (CRLZH and UNCRLZH). He's been operating Z-
Node #9 (aka ‘The Elephant’s Graveyard’) in San Diego since 1986. Those who’d
like to see that the USR/Ampro combination in action can call the Elephant at 619-

270-3148. (PCP: CASAD, SL: 9183)

The Computer Journal / #51

Before going further, it's worth ob-
serving that USR’s use of RTS for re-
ceiver flow control, while workable, is
contrary to it’s traditional use. Origi-
nally, when modems were much
slower than computers, the computer
asserted RTS when it wanted to trans-
mit a character and the modem re-
sponded with CTS when it could ac-
cept the character. There was no corre-
sponding handshake when the modem

11

12

DART U15 [U7]

TXDA
RTSA

RXDA

CTSA

TXDB

RTSB

RXDB

CTSB

J3
575"33153'_"“"'“
15 | I
—{
17 1 3A TXDA
I T I
I 4, I
6 |
| 5 Jo— 4A HSOA
I____%Eﬂl
| ri/s 7siss | |
12 | 3< ! 5A RXDA
I |
I I
6 4
18 } < } 6A HSIA
I L _____Us [ui2] ; | 1A GND
10 Ne 2R PRT
16
{ LBSELN | 1/4 74L800 | —
1 r
3
2 o)
o o
J4
ri/2 75188 |
| 7 13, |
26 | [12 plll 3B TXDB
I |
| 10 . |
24 | | 9 >c } 4B HSOB
I |
L . .us [us],
I I72_7E§'§_—_'i
28 13
|1l o<} } 5B RXDB
I |
| I
23 8 10
} QQ i 6B HSIB
!___.___28_[112_1_ |
1B GND
2B PRT

The Computer Journal / #51

Listing 1
DART initialization modification for AMPRO BYE insert

PORT EQU 88H
MDCTL1 EQU PORT+4

;Data port
;Status/control port
H

; Disconnect and wait for an incoming call

H
MDINIT: MVI A,18H sReset channel

OUT MDCTL1

MVI A4 ;Setup to write register 4

OUT MDCTL1

MVI A,8CH ;*2 stop, 8 bits, no parity, 32x
ouT MDCTL1

MVI A,5 jSetup to write register 5

OUT MDCTL1

MVI A,68H ;jClear RTS causing hangup

OUT MDCTL1

; 11100000B to DART/SIO

; Enables W/RDY as a DMA RDY rgst for Receiver
mvi a,l ;set up for reg 1
out mdctll
mvi a,0EQ0h ;Enable RDY (for RTS)
out mdctll

PUSH B jSave in case it’s being used
;elsewhere
MVI B,20 72 seconds delay to drop any carrier

wanted to send data to the computer—the computer, being
faster, could handle whatever the modem sent. While this
shift in functionality of the RTS line from request for the com-
puter to send data to the modem to request for the modem to
send data to the computer makes sense under the circum-
stances, it may not be embraced by most existing communi-
cation hardware.

My point in bringing this up is this: One could not just
hook up the USR to an older machine, even if the machine
had support for the RS-232 RTS and CTS pair, and expect
flow control to work. Serial communication chips which in-
terface with these signal are designed to support the tradi-
tional use. It's likely that most of the other newer, higher
speed modems will have similar interfacing differences, so be
sure to do a bit of research before buying any new modem.

The remainder of this article describes the details of hard-
ware and software changes required to add a version of hard-
ware flow control on the Ampro Z80 Little Board so that the
USR can be used with the machine at 9600 baud. The deci-
sions | made when designing those changes are also pre-
sented. Those of you who don’t own Ampros should not just
stop reading at this point. The Ampro uses either the Z80A
DART or the Z80A SIO/0 (they're interchangeable in the ap-
plication) for serial communication, which are very com-
monly used on a variety of 8-bitters. While what follows is
Ampro-specific, it will be generally applicable to many other
machines.

Deciding How Far to Go

Compatibility was a major consideration when [was de-
ciding how to interface with the USR. I did not want to make
existing Ampro overlays for MEX, IME, BYE, et cetera, unus-
able on the machine. I also wanted to be able to use one of
my spare (slower) modems without major grief—and to not
have to maintain two sets of modem programs to do so.

First, I decided not to bother with the USR’s 12,000 and
14,400 baud rates. The Ampro’s serial port B, with a maxi-
mum baud rate of 9600, is the ‘standard’ modem connection.
Since the Ampro’s ‘effective’ maximum baud rate is about

The Computer Journal / #51

4800 (somewhat greater when doing file transfers because
there’s less screen updating going on), 9600 is optimal. Hap-
pily, the USR can be commanded not to use the higher rates,
and MEX and IMP overlays for the Ampro already support
9600 baud, so there seemed to be no real good reason to
make any modifications to support the USR’s higher rates.
Yes, I could have modified the Ampro to support higher rates
on serial port B, or could have operated the modem on serial
port A (which will go as high as 38400 baud), but either
approach would require more overlay modifications than I
was willing to accept.

While it was immediately obvious that flow control was
required for the receiver (my IMP program couldn’t even
field the USR’s HELP screens without losing data), the need
for transmitter flow control was not as readily obvious.

Under conditions of poor line quality, the USR (if con-
nected with another modem of similar capabilities) will ‘fall
back’ to a lower baud rate. When this happens, the commu-
nication rate with the computer is not modified, and data is
supplied to the modem faster than it is sent out. The modem
buffers the host’s data, but flow control is required to keep
data from being lost if the buffer becomes full.

If error correction is in use and the receiving modem
detects an error, the transmitting modem responds by
resending a block of data. While the block is being re-
transmitted, data from the host is being buffered. Again, flow
control is required to keep data from being lost.

Having determined that both receiver and transmitter
hardware flow control were required (software flow control
was never a serious consideration), the means to provide the
control had to be found.

Listing 2:
Output status routine modification for AMPRO BYE insert

;

; See if the output is ready for another character
; Return ZERO (w/flag set) if not ready

i

mdctl2 equ 80h+4 ;Secondary control port (modem CTS)
MDOUTST: IN MDCTL1

ANI 04H ;Check transmit ready bit
rz i1No data can be sent

mvi a,10nh ;Reset Ext status data
out MDCTL2
in MDCTL2 jRead CTs data
ani 20h :Check CTS
RET
Working With What's There

While the folks at Ampro have really squeezed a lot of
functionality out of the small number of chips on their board,
there’s not a whole lot of extra stuff on the board to play
with. My changes have been managed by stealing (generally
unused) parts from the interface to the operator’s console.
However, 1 couldn’t avoid the need to add one IC (an inver-
sion of a logic signal was required, and there were no spare
gates to steal). More on that later. A cut and a few jumpers
are also required, but more on that later, too.

First, the hardware to provide the flow control needed to
be found. Ampro has provided both serial ports with a pair
of handshaking signals: HSOA (output) and HSIA (input) for
port A, HSOB and HSIB for port B. They are intended to
provide limited support for flow control. There’s BIOS sup-

13

port for the use of these signals, which must be disabled (a
typical configuration) for the modifications described here to
work. The HSOB and HSIB signals of the modem port had
already been appropriated by communication program over-
lays for use as the Data Terminal Ready (DTR) and Data
Carrier Detect (DCD) signals, respectively. The HSOA and
HSIA lines from the system console (serial port A) weren’t
being used, so their connector pins, RS-232 transmitter, and
RS-232 receiver could be borrowed. These would be inter-
.faced to the modem’s RTS and CTS signals, respectively.

Next, the means to interface these lines to the serial port B
needed tobe found. The modem’s CTS (HSIA) was simple—
I didn’t interface it to serial port B. I left it where it was! Not
only had the real CTS function on serial port B been usurped
for DCD, but the other inputs related to serial port B, DCD
(the pin on the DART, not the DCD from the modem) and
Ring Indicator (RI), were already used by Ampro for disk
and printer ready status information. Leaving HSIA (the mo-
dem’s CTS) as an input on serial port A did not impact port
A operation. Four instructions are required to sense its state
when a MEX overlay or BYE insert requires the information.
Best of all is the fact that unmodified communication pro-
gram inserts, lacking those additional instructions, would
operate fine with the USR at 2400 baud (or with other 2400
baud modems)!

The interface for the modem’s RTS line was not as easy.
There were no spare output signals (none under direct soft-
ware control, that is) on either serial port. True, the DTR out-
put for serial port B is assigned as an (optional) floppy disk
controller reset control on the Ampro CPU 1B version (it’s a
spare on the CPU 1A version), but I decided against employ-
ing it. My major reason for rejecting it was the fact that serial
port B's RTS control (used by mqdem inserts for the DTR
function) shares a control register with the DTR control.
Since these controls would need to be operated independ-
ently by separate pieces of code, some coordination between
those routines would be required. The software changes to

‘inserts and overlays to accomplish the coordination
wouldn’t have been massive, but they were more than I cared
to accept. Besides, I had an idea that appealed to me more.

The Z80 DART (and SIO/0) have provisions to operate
with a Direct Memory Access controller (DMA). These
provisions aren’t used on the Ampro. When the feature is
used, the Wait/Ready output of a DART channel is
connected to the Ready input of a DMA. When the output is
asserted, the DART is signaling the DMA that it is ready to
transfer data. This operation was perfectly suited to
providing the necessary control of the USR’s RTS input: The
signal is in one logic state when the DART's receiver is
empty (is able to accept data) and in the other logic state
when the DART’s receiver is full (and can’t accept data—like
when software hasn’t read previously received characters
from the DART’s data register). An added plus was that,
aside from the addition of a few instructions to the
initialization portions of communication program inserts and
overlays (to program the DART to use the DMA request
signal on received data), there would be no software impact.

There was a small problem with using this signal: it’s logic
state is reversed from what was required. When used as a
DMA receiver ready control, the W/RDYB* signal (the ™ is
the ASCII text equivalent for the bar drawn over the signal
name) is driven low to signal the DMA that it has a byte
ready to transfer (receiver full), and high when no data is

14

Listing 3:
BAUD rate selection expansion for AMPRO BYE insert

i

; The following routine sets the baudrate. BYES asks for

; the maximum speed you have available.

i

SETINV: ORI OFFH ;Make sure zero flag is not set
RET tReturn

i
SET300: LXI H,BD300
JMP LOADBD

;Get 300 bps parameters in 'HL’
:1Go load them

i
SET1200:LXI H,BD1200
JMP LOADED

I
SET2400:LXI H,BD2400
Jmp loadbd

H
setd4800:1xi

h,bd4800
jmp loadbd
i
8et9600:1x1i h,bd9600
i
LOADBD: mvi a,4d ;Sel reg 4
out mdctll ;like so

H
mov a,m
inx h
out mdctll

;get data for clock etc.
jgovee pointer
;to port

mov a,m
inx h

OouT BRPORT
mov a,m
ouT BRPORT
XRA A

;get ctcl values
;goose pointer

;get second part

Locate this next part with the constants between the
labels ENDOBJ and PEND

.
’

; TABLE OF BAUD RATE PARAMETERS

i
bd300

db 8ch,47h,208 ;data reg 4,ctc command,cte value
bd1200 db 4ch,47h,104 ;data reg 4,ctc command,ctc value
bd2400 db 4ch,47h,52 ;data reg 4,ctc coammand,ctc value
bd4800 db 4ch,47h,26 ;data reg 4,ctc command,ctc value
bd9600 db 4ch,47h,13 ;data reg 4,ctc command,ctc value

available (receiver empty). The RTS* signal, on the other
hand, should be low to indicate a receiver ready (empty) con-
dition, and high for a receiver not ready (full) condition. The
addition of an inversion was required.

As I stated previously, there’s not a whole lot of extra stuff
to play with on the Ampro—and a spare inverter was not to
be found. Granted, I could have stolen the necessary logic
function from somewhere else on the board, but something
would have had to have been sacrificed to do so. The addi-
tion of a chip seemed best. The Ampro CPU 1B has a spare
14-pin IC location on the board, and this was the proper
occasion for its use. The Ampro CPU 1A (I own both types)
does not have a spare location on the board, so adding a chip
on that board required other methods (I chose to piggy-back
the added chip onto an existing 14-pin IC).

Modifying the Board
The modification to the Ampro board, itself, is small. 1
realize that some really won't feel comfortable with or ca-
See Ampro, page 52

The Computer Journal / #51

A Z8 Talker and Host

By Brad Rodriguez

Introduction
What do you do with a new, unfamiliar CPU, with no
accompanying development tools? Perhaps a board of your
own design, with untested logic? You need a program which
will let you both exercise your hardware, and load and de-
bug software. You need a “debug monitor.”

But..without a debug monitor to debug your debug
monitor, this program should be as utterly simple and obvi-
ous as possible. Something you can get running with nothing
more than a PROM burner.

You'd need at least three capabilities: examine the target
system’s memory, alter its memory, and start a program at a
given address.

In Forth circles, such a rudimentary monitor is known as a
“talker” program. This article describes a talker program for
the Zilog Z8. In addition to the basic features, it has embel-
lishments such as register access and a breakpoint facility.
The talker is small (under 300 bytes), easy to port to new
processors, and easy to get running. I've used it to debug
wirewrap prototypes, to bring up Forth kernels, to develop
and debug large assembly language programs, and to debug
applications in the field.

] The Talker Program
The secret to keeping the talker simple is to offload most
of the work to a host computer. So, there are really two pro-
grams involved. The “talker” program runs on the target
hardware, and communicates via a serial port with a “host”
program running in a personal computer. I'll discuss the
talker program first.

History and Design Philosophy
I originally wrote the talker program to replace Zilog's
debug monitor for the Super8. Zilog’s monitor program had
several shortcomings:
1. It was too big to be embedded in an application

program—it occupied 12K of ROM, needed 1K of

RAM, and used many of the CPU registers.

2. Because it needed RAM, it couldn’t debug “RAM-
less” hardware (or the RAM memory decoding).

3. Because it took over UART interrupts, and shut
off others, it couldn’t debug interrupt routines,

4. It couldn’t be “polled” in the background while
other tasks were running.

5. Its access to Super8 registers was flaky.

6. During breakpoints, it was difficult to examine
the processor state.

7. It couldn’t run on a half-duplex serial line (which

is what much of our hardware had).

I wanted a program which was more useful for debugging
tricky Super8 code, and which I could embed in a final appli-
cation. The program should:

1. use a minimum of ROM

2. use a minimum of on-chip RAM (register file)
3. use NO off-chip RAM, if possible

4. use NO off-chip I/0, if possible

5. use NO interrupts

6. use half-duplex serial communications

The simpler Z8 version described here uses only 300 bytes
of ROM, 6 bytes of on-chip RAM, and the on-chip UART.
The half-duplex feature is disabled, but can easily be re-in-
stalled by editing two macros.

Baslic Operation

Figure 1 is the listing of the Z8 talker program.

The program, TALKER, repeatedly calls the routine TALK
to poll the UART for received characters, and to process them
when received. TALK was “factored out” as a separate sub-
routine so that it could be called periodically from an appli-
cation program. (Obviously we can’t call TALKER, an infinite
loop, while an application is running.)

A received character is either a command, or a hex digit.
To simplify conversion, the characters

Brad Rodriguez, of T-Recursive Technology, Toronto, is a freclance software/hard-
ware designer specializing in real-time control applications. He has been working
with the Zilog Super8 since 1987, and is the proud father of several Z8 and Super8
Forth kernels. Forth has been his language of choice since he discovered it in 1978,
much to the dismay of his friends, co-workers, superiors. His thesis advisor shares

0123456789:;<=>7 (hex 30-3F) are used
as the hex digits.

The talker program maintains 4
“virtual registers”:

MDR: memory data register, 1 byte

MAR: memory address register, 2

this dismay, because Brad is currently working part-time toward a PhD in Electrical bytes

Engineering, in the field of real-time Artificial Intelligence. In his Copious Free Time

MBR: memory bank (page) register,

he pursues anachronistic endeavors such as building a Forth processor out of TTL 1byte

logic, building an 8-bit multiprocessor system, and writing assembly language code.

WKG: working (scratch) register, 1

His ambition of the moment is to see Forth displace LISP completely. Brad can be byte

reached as B.RODRIGUEZ2 on GEnie, or as bradford@maccs.dcss.memaster.ca on

the Internet. He prefers the former.

The Computer Journal / #51

(A sixth byte is used to hold tempo-
rarily the contents of the Z8's RP regis-

15

ter.)

When a hex digit is received from
the host program, it is shifted into the
low 4 bits of MDR. The previous low
nybble is shifted up, and the previous
high nybble is lost. Thus, sending “23”
from the host will set the MDR to 23
hex.

The characters 20-2F hex are used
‘for the commands. The basic command
set has these six commands:

HEX ASCII COMMAND

2A * fetch byte from MAR address
into MDR, send to host, and
increment MAR

2B + store byte from MDR into MAR
address, and increment MAR

2C copy MDR to low byte of MAR

2D =~ copy MDR to high byte of MAR

2E copy MDR to MBR (memory page)

2F / start program at MAR address

-

.

The memory address and page are
set by loading a byte into the MDR,
then transferring it to the desired regis-
ter. So, to specify memory address 1234
in page 00, the host sends the nine
characters

00.12- 34,

The MDR is then free for data. The
host can send two more digits and then
a “+” command to write data to mem-
ory. Or, the host can send a “*" com-
mand to read data from memory. In
this case, the talker program will send
the data byte as two hex digits, using

“the characters 30-3F hex (as above).

Note that the talker program only
transmits on request from the host. In a
half-duplex environment, the target
will turn on its transmitter, send the
two digits, and turn off its transmitter.
The host, of course, knows to turn off
its transmitter until two digits have
been received.

The fetch and store operators auto-
increment the address to make down-
loads, uploads, and memory dumps
more efficient. For example, you can
dump 16 bytes starting at address 1234
with the command sequence

12-34, ' EEEEEEE SRR RS NS S

The “memory page” register was
included to allow access to multiple
address spaces. The Z8 has 64K of
“Code” memory, 64K of “External”
memory, and 256 bytes of on-chip
RAM (register file), selected by page
numbers 0, 1, and 2, respectively. This
mechanism could also be used for 1/O
space, bank-switched memory, or ex-

16

~e w e we wa

e me ma W N ws we my we We Ne we Nm N0 we

e e I me Ne W we we e N

~e me Ne

~

~

me me NP ME Ne ws M i Ne wE We W We NE W N N N NE eS¢ N6 N

Ne wE mE NS e N WE ME We e e N8 Me Ws e e We We o we S

FIGURE 1. THE TALKER PROGRAM.

2ILOG Z8 “MICRO~TALKER” MONITOR PROGRAM
(c) 1990 T-Recursive Technology
placed into the public domain for free and unrestricted use

A minimal monitor program for the Zilog Z8.

Used in conjunction with a “smart” host program to examine &
modify code memory, external memory, and registers, and

to set and execute breakpoints in machine language and Forth.

The Talker program uses only 6 registers (OAh to OFh here),
no RAM, and about 300 bytes of PROM. No interrupts are used.
The Talker may be operated half-duplex over a bidirectional
serial line.

The program accepts characters from the Z8 UART.
Characters 30h to 3Fh are treated as hex digits and are
shifted into a one-byte data register.
Characters 20h to 2Fh are command codes:
20-23 reserved for future use (ignored)
group 2: breakpoint / debug support
24 = get a Forth “thread” breakpoint
25 = gpet a Forth “code field” breakpoint
26 = set a machine language breakpoint
27 = fetch lo byte of address (adrs lo -> data & output)
28 = fetch hi byte of address (adre hi —> data & output)
29 = read back data register (data -> output)
group 1: minimal talker
2A = fetch byte & incr addr (mem or reg -> data & output)
2B = store byte & incr addr (data -> mem or reg)
2C = get lo byte of address (data —-> adrs lo)
2D = set hi byte of address (data -> adrs hi)
2E = set memory “page” (data -> page)
2F = "go" (jump to current adrs)

The memory “page” is interpreted as follows for store and fetch:

0 = C {code) memory
1 = E (external) memory
2 = registers 00-FF

Internal register usage:
rri4 (OE,0F) = address

rlld (OD) = memory “page”
rl2z (0C) = data byte

rll (0B) = working

rl0d (OA) = saved rpl

Revision history

v 1.0 23 Aug 89 original Super8 program; functions 25h - 2Fh;
access to memory, registers, indirect registers;
‘talker’ and ‘talk’ entry points.

v 1.1 25 Feb 30 support for breakpoints and Forth words;
standalone initialization.

v 1.2 7 May S0 function codes reaseigned; added address
readback; improved breakpoint support; fixed problem
with direct register access to C8-CF and to RPl...now
correctly uses application program’s registers.

v 1.2CP 7 Jun 90 modified for Teatronics Echelon Channel Proc,
ae an include file. Uses half-duplex RS-485. Sets P37
low to turn LED ‘on’. Pulses watchdog on TXD.

Fixed bug where tx turned off during last tx character.
Changed to disable irpts on ‘mbreak’ entry, enable on ‘go’.

26 Jun 90 altered to assemble standalone; set IMR to 00
go that irpt enable on ‘go’ doesn’t lock up system.

78 v1.0 2 Dec 90 modified for Zilog 28

Monitor Configuration and Assembly-Time Options

STANDALONE - set to ‘1’ if this file is to be assembled as a
standalone program, to be put into PROM. Set to g’ if

The Computer Journal / #51

.
H

thie file is to be ‘included’ in ancther source file.

standalone .equ 1

g me NE M % s e W me we we e

g

txoff

kick

Macros for half-duplex communication on a bidirectional link,
e.g., a bidirectional RS-485 serial line. Define these macros
to control the transceiver connected to the 28’s serial port.

If full-duplex is to be used (separate transmit and receive data
lines), define these as “null” macros.

TXON -~ turns serial port transmitter on, and receiver off.
TXOFF - turns serial port tranemitter off, and receiver on.
KICK - kick the watchdog timer (v. 1.2CP)

-MACYO
.endm

.MACTO
.endm

+JMACLO
.endm

Register bank used by monitor: the monitor requires 6 bytes

of Z8 registers. These must be the last 6 bytes of a

16-byte register bank, since they will be mapped (via RP) onto
working registers R10-R15. These will be accessed directly

as working registers AND as general purpose registers.

Set ‘regs’ to an 16-byte boundary between 00 and 70, inclusive.

.equ 00h ; monitor will use reges+0b to regs+0f (0B to OF)

regs+8+2
regs+8+3

equ save area for applic’s rp
equ

.equ regs+8+4

equ

equ

working “scratch” register aka ril
memory data register aka rl2
memory bank register aka rl3
memory address register pair aka rril4

rege+8+5
regs+8+6

. we W e we

STANDALONE INITIALIZATION

For use when the monitor is used as a standalone program
in a Z8 development board. In this case, the monitor

is located in low PROM, to be started on reset. The %8
registers are “minimally” initialized, to allow full-duplex
serial communication at 4800/9600 baud, 8 bits, no parity.
The interrupts are vectored to a supplementary jump table
in code RAM.

Expects: reset state for all Super8 mode & control registers
Returns:
Uses:

e e mI we I Me W e W ME e NE N6 e e w6 e

~e s we

vecs

~. me we

.1f standalone

interrupt vectors

equ 0e000h ; base address of the interrupt jump table

.org 0 ; the 28 interrupt vector table

word vecs ; irg0 p32

.word vecs+3d ; irgl p33

word vecs+6 ; irg2 p3l, Tin

.word vecs+9 ; irg3 p30, serial in
i
i

word vecs+l2 irg4d TO, serial out
.word vecs+l5 ; irg5 T1

z8 initialization...immediately follows vectors

clr po ; output 0 hi adrs bits, just in case

1d p0lm,#10110010b ; pO=a8-al5, pl=adO-ad7, ext’l stack, slow mem
clr p3 output 0 for p34 (DM\)

1d p3m,#01000001b p3d=out(0) p33d=in; p3S=out p3i2=in

pi6=Tout p3l=Tin; p37=Sout p30=Sin
p2 push-pull; parity off

~ we we we

The Computer Journal / #51

tended addressing in processors such
as the 8088 or 64180.

Special notes: when TALKER is en-
tered, it sends an “M” (for “Monitor”)
over the serial line. This is the most ba-
sic functional test of the hardware.

Also, TALKER puts its own address
on the return stack. This means that
you can use “go” to start a subroutine,
and when the subroutine RETurns, the
talker will be re-started. This feature is
very useful for debugging subroutines.

These six functions are sufficient to
do useful work. When [start work
with a new CPU, they are all I include
in my first talker program.

Breakpoints

Eventually, I'll decide that I really
need breakpoint facilities. Fortunately,
they are easy to add.

To set a breakpoint, a machine in-
struction is replaced with a CALL to a
breakpoint routine. This breakpoint
routine saves the machine state, then
enters the debug monitor. The debug
monitor must include a command to
restore the machine state and resume
execution (return from the CALL).

In the talker, all you need to save are
the flags and the return address, since
the talker uses no other CPU resources.
(The six registers used by the talker are
reserved for its exclusive use.) Then
you just enter TALKER. The “resume”
operation depends upon a bit of clever-
ness, described below.

Four new commands implement the

breakpoint facility:

HEX ASCII COMMAND

26 & set a machine language break-
point at the MAR address

27 ' copy low byte of MAR to MDR,
and send to host

28 { copy high byte of MAR to MDR,
and send to host

29) send the MDR to host

The entry point for breakpoints is
MBREAK. When MBREAK is CALLed,
the flags are copied into MDR, and the
return address is popped into MAR. (A
similar entry point, IBREAK, pops the
flags from the stack. IBREAK can be
entered as the result of an interrupt.)
MBREAK then sends a “*” to the host
to signal that a breakpoint was encoun-
tered.

The “go” command has been modi-
fied to copy the MDR to the flags regis-
ter, before jumping to the MAR ad-
dress. This means that “go” is also the
“resume” function. (Note that the stack
usage has been carefully arranged to

17

allow this.)

If any other monitor functions are to
be used, the host program must first
issue the commands:

y (!

to fetch the address and flags, and save
them for later resumption of the appli-
cation program:

<high-adrs> - <low-adrs> , <flags> /

Why is the “&” command is
needed, since the host program could
easily use “store memory” commands
to build a breakpoint? There are two
reasons. First, since 1 use many ver-
sions of this program, the host doesn't
know where the MBREAK entry point
is located. Second, since I use this
monitor for several CPUs, the host
doesn’t know what opcode to use.
Function 26 hex stores the right opcode
and the right address for all CPUs.

The host program is, however, re-
sponsible for saving the instruction
overwritten by the breakpoint. All of
the CPUs I use have a 3-byte subrou-
tine call, so the host program just needs
to fetch 3 bytes from the breakpoint
address and save them. This approach
allows any number of breakpoints, just
by modifying the host program.

Forth Breakpoints

One of my main uses for this pro-
gram is to bring up Forth kernels. So,
I've added two special kinds of break-

point for Forth code:

HEX ASCII COMMAND

24§ set a Forth “thread” break-
point at the MAR address

25 % set a Forth “code field”
breakpoint at the MAR
address

The difference between these two is
illustrated by a simple high-level Forth
word:

t DOUBLE DUP + ;

Example 1 shows how this would
appear in memory for a direct-
threaded Forth. (In an indirect-
threaded Forth, the call to DOCOLON
would be replaced by just the address
of DOCOLON.) Note that DOCOLON
is executable machine code, but DUR
+, and ; are Forth words.

A “code field” breakpoint is set by
replacing the call to DOCOLON with a
call to a breakpoint routine. This causes

18

1d p2m,#0£ffh ; p2 all input

1d ipr,#00010001b ; arbitraxy irpt priority

clr imr s all irpts disabled

el ; must ‘el’ to enable IRQ register!

di ;s then we can ‘di’

or irq,#10h ; set ‘tx ready’ bit in IRQ for lst byte

1d pre0,#(13*4)+1 prescale=13; modulo N timer

1d t0,#L for 4800 baud € 8 MHz clock

1d tmr,#00000011b ; Tout pgmd; Tin clk; tl off; load & go t0
; prel and tl not initialized at thie time

o ws we

1ld spl,#0£ffh ; stack at top of RAM
1d sph,#0£ffh

Brp #10h 3 wkg rege are 10-1f
; el

jr talker

.endif ; standalone

Ne % B We We ws me e Ne WA W M e ME NS We WE We ME e W We NS We W# Mo We W We W We e W» NE we b

TALKER MAIN ENTRY POINT
MACHINE LANGUAGE BREAKPOINT ENTRY

This is the main “talker” program. It calls the basic
character processing routine “talk” repeatedly, until a monitor
command transfers control to an application program.

This is also the entry point for machine language breakpointa.
A breakpoint consists of a “CALL" to this address. The call
causes the calling address to be pushed on the stack; this
routine pushes the flagse as well, to allow a common routine to
service both CALLs and intexrrupte.

Should it be desirable to have an interrupt cause a breakpoint
- e.g., a “break” pushbutton wired to an interrupt input —
the alternate “ibreak” entry point can be used.

The breakpoint routine copies the saved flag values into the
talker's data register, and the saved return address into the
talker’s address register. An immediate “go” function will
resume with these saved values (as well as the saved rp).

Entering the breakpoint routine causeas the ‘*’ character to

be sent to the host. Entering the monitor causes ‘M’ to be sent.
Note also that the main entry point its own address onto

the stack; thie is so that we can “go” to a routine which ends
in a RET. This “normal termination” can be distinguished from

a breakpoint by the ‘M’ character.

Expects:
Returns:
Usesa: 4 bytes of stack

~pushme :

talker:

mbreak:

.begin

call ~t0

ld wkg,#'M’ ; Talker program entry point

ir ~pushme ; some cleverness to push the address ‘talker’

push flags ; Machine language breakpoint entry
di

ibreak: ; Interrupt breakpoint entry
pop mndr ; get saved flags in mdr
pop mar ; get saved adrs in mar (2 bytes)
pop mar+l
1d wkg, #' '
; All entry points eventually land here
~t0:
~tls tm irq,#10h ; transmitter ready for another character?
Example 1 + + +

address of | addreses of | address of |
pUP | +] ; }

-+ e +
t \ t

CALL DOCOLON

+ —_——
4 ——

The Computer Journal / #51

~t2:

~t3:

jr z,~tl

and irq,#0efh ; clear the irq bit

push wkg ; save the ‘M’ or ’*’ character during ‘txon’
txon

pop sio ; transmit ‘M’ or ‘*’ to signal monitor/brkpt
tm irq,#10h ; wait ‘til character finished

jr z,~t2

txoff

kick ; at this point tx is off, so kick TXD wv. 1.2CP
call talk ; the talker loop

jr -t3

.end

FORTH LANGUAGE BREAKPOINT ENTRIES
These are the entry points for Forth language breakpoints.

The first is the “code field” breakpoint. This is an address

which can be stored in a Forth word’s code field, to cause a

break whenever that word is executed. This kind of breakpoint

can be set in any Forth word.

>>> In the 28 Direct-Threaded-Code implementation, the
parameter field of every Forth word begins with machine code.
So, an ordinary machine-code breakpoint can be set in the

first 3 bytes of a word. (All words have at least 3 bytea.) <<<

The second kind is the “thread” breakpoint. This is an address
which can be patched into a high-level “thread”, to cause a
break when a certain point is reached in high-level code. The
thread is a series of addresses of Forth words, executed by the
inner or “NEXI” interpreter. So, we provide the address of a
dummy Forth word whose execution action is to invoke a machine
language breakpoint. The Forth execution state can be deduced
from the registers.

g_s- MO MO Ne Me We ME e Me we we Me NP WE WA Ne Ws %6 ME MO WS e Ne we wo

H
x
:

~e we we

tbreak:

mbreak ; the code field breakpoint is simply
; a machine language breakpoint set
i

in a 28 DTC “code field”

what follows is the parameter and code field of a “headerless”
Forth word, to invoke the breakpoint routine. (In DIC, this is
simply a machine code fragment which does a breakpoint.)

call mbreak the thread breakpoint is simply

i
; a pointer to this code fragment

TALK - SINGLE CHARACTER PROCESSING ROUTINE

This routine processes one character received from the host.
If no character is received, it returns immediately.
It may cause two characters to be tranamitted to the host.

This routine is called repeatedly in a tight loop from the

‘talker’ program, if invoked standalone or by a breakpoint.
It may also be called repeatedly from within an application
program, as a polled “background” task, to perform monitor

functions simultanecusly with the application.

Note - on entry, the stack contains the following:
return adrs in ‘talker’, lo
SP—> return adrs in ‘talker’, hi

Expects:
Returns:
Uses: flags, regs OBh-OFh.

I M WE WE e We Mo We NE WS NS e e Mo NP WE W W W Ne e W e

.begin

talk: ; check for received character
tm irqg,#8
jr z,~axit
srp #regs ; point r8-rlS to talker'’s regs
and irq,#0£7h 3 clear the irq bit

The Computer Journal / #51

a breakpoint whenever the word
DOUBLE is entered, before any of its
definition was executed. This kind of
breakpoint can be set in any Forth
word.

A “thread” breakpoint is set by re-
placing one of the following addresses
with the address of a Forth breakpoint
word. This is simply a Forth CODE
word which calls the breakpoint rou-
tine. If a thread breakpoint were set at
“+” above, the breakpoint would be
taken after DUP was executed. Thread
breakpoints can only be set in high-
level Forth words (colon definitions).

Of course, ordinary machine-lan-
guage breakpoints can be set in CODE
words.

The Forth breakpoints are still ex-
perimental; I don’t yet have the corre-
sponding “resume” functions, and
these commands are not included in
the host program.

The Host Program

The host program is a set of Forth
words which send messages to, and
process messages from, the talker pro-
gram. The user works in the Forth en-
vironment, and sees the debugging
functions as additional Forth com-
mands.

Figure 2 is a listing of the host pro-
gram. It is written in MPE PowerForth
for the IBM PC, an 83-Standard Forth
with the ONLY/ALSO vocabulary ex-
tension. Certain functions, namely file
access and screen color selection, are
specific to this Forth implementation. 1
hope that the conversion to other
Forths is reasonably obvious.

This is an excellent example of
building a Forth application by “layer-
ing” successively higher levels of ab-
straction. Starting with the words to
perform character /O, you define
primitive talker functions, then more
useful operations, until you reach func-
tions such as “alter memory” and “dis-
play breakpoint.”

Since the code is reasonably
straightforward, and much of it is com-
mented, I will present just an overview
here.

The Serial I/O

The basic serial I/O functions are
TX, 7RX, (TX), (RX), TXON, and
TXOFF. The latter two deserve com-
ment. Several of my applications have
only a bidirectional RS-485 serial port.
I've built an RS-232-to-RS-485 con-
verter for my PC, using the RS-232

19

DTR line to control the direction of the
RS-485 transceiver. If you're not run-
ning half-duplex, these could be made
null functions.

PowerForth uses PC@ and PC! as
“fetch byte from port” and “store byte
to port”, respectively. If your Forth sys-
tem does not have equivalents, you
will have to write CODE words to do
-+ this.

Some applications poll the TALK
routine infrequently. If characters are
sent too rapidly to the target, some of
them are lost, and nonsense results. So,
PACE allows the transmitter to be
slowed in software. This is a crude ap-

* proach, and open-loop to boot, but it
eliminates the need for the target to ac-
knowledge every character.

BAUDTABLE sets up the COM port
for a fixed 4800 baud (as required by
the Z8 program). This would be easy to
alter for variable baud rates.

TERM is a rudimentary terminal
program. This is useful to see if the tar-
get system is responding at all. Also,
some of my application programs
(such as Forth kernels) use the serial
port for terminal 1/O once they are
started. I prefer not to exit the host pro-
gram in order to talk to them.

The terminal program uses a differ-
ent display color, to show when it's ac-
tive. The word COLOR uses a Power-
Forth variable CURR-ATTRIBS, and it
will need to be changed for your Forth
system. If your Forth doesn’t have an

* equivalent, I suggest:

: COLOR DROP ;

Basic Functions

SPILL is used to clean extraneous
characters out of the UART. An earlier
version of this program did not have
this; whenever an extraneous character
was received by the host, it remained
forever “out of sync” with the target.
The program now SPILLs periodically,
at times when it is not expecting data
from the target.

TXH and RXH send and receive
bytes as pairs of hex digits. These are
fundamental to almost every talker
function.

XADR (external address) uses TXH
and the commands 2C and 2D hex, to
send an address to the talker’s MAR.
X@+ and X!+ (external fetch/store with
postincrement) implement the com-
mands 2A and 2B hex, respectively.
And the words CMEM, EMEM, and
REGS are Forth “defined words” which

See Z8 Talker, page 46

20

1d rll,eio ; get character

and rll,#3fh ; mask off all but low 6 bits
sub rll,#30h : if less than 30 -

jr ult,~cmd ; - it‘s a command

30-3Fh: digit entry

~ e we

~digit: swap rl2 ; 30-3f: hex digit, shift into lo nybble
and rl2,#0£0h
add rl2,rll H note that rll has been converted to 00-0f

~done:
~exit: ret

24-2Fh: coamnand codes
we use a series of ‘djnz’ tests (simpler & just as economical as
a jump table) to select the appropriate function routine

~. N me N we

~cmd: add rll,#{30h-24h+1l) ; readjust it upwards for djnz testing

24H: set a Forth “thread” breakpoint at the given address (2 bytes)
this pute a the address of the “breakpoint” pseudo-word into
a Porth thread (a list of addresses of Forth words). It is the
responsibility of the user to ensure that this is a valid thread
address, and to save the previous value.

~a e e we wr Ne W

~settb: dinz rll,~setcb
14 r1l,#'HB(tbreak) ; store a pointer
lde frrl4,ril
1d rll,#'LB(tbreak) ; to the ‘tbreak’ Forth word
incw rrl4
ldc frri4, rll
decw rri4

25H; set a Forth “code field” breakpoint at the given address (3 bytee)
this changes the code fleld associated with a given Forth woxd to
point to a machine-language breakpoint routine. It is the
responsibility of the user to ensure that this is a valid code
field address, and to save the previous value.
>>>For the Super8 DIC Forth, this is the same as function 26H<<<

~e e N N4 we we e we

~setcb: djnz rll,-setmb
inec rll ; fall thru next djnz test

26H: set a machine language breakpoint at the given address (3 bytes)
this puts a machine-language CALL at the given address. It is
the responsibility of the user to ensure that this is a valid
instruction address, and to save the previous value.

e me me e e W

~setmb: djnz rll,~getlo
1ld rll,#0d6éh ; build a ‘call’ instruction
lde frriq,ril
1d rll,#* HB(mbreak) ; to the ‘mbreak’ entry point
inew rrld
ldc irrl4, rll
| r1l,#"LB(mbreak)
incw rrld
lde grril4,ril
decw rrl4
decw rrld
ret

27H: copy low address byte to data register, and send to host
Note that this destroys the previous data register contents.
Use function 2Dh to save that value first, if needed.

e we we me we

~getlo: djnz rll,~gethi
1d rl2,xls ; get low adras byte in data reg
jr ~schol ; and go send it

28H: copy high address byte to data register, and send to host
Note that this destroys the previocus data register contents.
Use function 2Dh to save that value first, if needed.

~e s we ws

The Computer Journal / #51

Local Area Networks

Ethernet

By Wayne Sung

I heard Dr. Bob Metcalfe, the inventor of Ethernet, say
once that Ethernet is one of those things that work in practice
but not in theory. He was referring to those studies which
claimed to show that Ethernet falls apart under even moder-
ate loads. He also said that he probably would not use the
term ‘collision detect’ if he could name the system over, be-
cause people get scared by the term.

The Aloha System

To fully appreciate Ethernet, we should first talk about a
system called Aloha. You might have guessed that this sys-
tem originated in Hawaii. This system was designed to pro-
vide communications across a large geographic area, where
the cost of dedicated lines was simply too high.

In the Aloha system, there is a large central radio transmit-
ter and receiver, with smaller stations in outlying areas. The
individual stations could not necessarily receive each other,
but all could communicate with the central unit.

If any station had a message to send to the central station,

it simply sent it. If two stations sent at exactly the same time,
then both messages would be damaged. The central station
did nothing about this. Each sending station would see that
no reply is forthcoming and try again.
. What could conceivably happen is that both stations retry
at exactly the same time, thus colliding again. The situation
becomes worse if more than two stations tried at the same
time. This leads to the collapse that many of the mathemati-
cal models of Ethernet predict.

The Metcalfe Inprovements

Dr. Metcalfe earned his doctorate by applying improve-
ments to the basic Aloha scheme and thereby greatly decreas-
ing the possibility of collision collapse. These are: carrier
sense, collision detect, and random backoff. Put together,
these define the CSMA/CD medium access method of Eth-
ernet. The MA refers to multiple access, the primary purpose
of LANs.

In the Aloha scheme individual stations typically cannot
hear each other. In Ethernet they specifically can. Thus the
first rule: carrier sense. Before transmitting, listen to the wire
to see if someone else is already transmitting. If so, hold off
until they finish.

Even so, because there is propagation delay in any physi-

cal medium, collisions can still occur. If two stations fairly far
apart on the wire both want to transmit, both may decide
that the wire is quiet and send. The actual collision will hap-
pen somewhere between the two. Thus rule number two: col-
lision detect. While transmitting, check that all your bits are
correctly sent onto the wire.

Originally, collision detect used a bit-by-bit compare of the
transmitted and received signals. Unfortunately, some rule
changes allowed this scheme to be replaced by a simpler
energy-detect scheme. The reasoning went that one station
transmitting produces so much energy on the wire, so if more
than one transmitted there would be an addition of energy
even if the information was garbled.

This usually further reduces to a voltage-detect scheme.
Since transceivers used in Ethernet each send a certain
amount of current into the wire, this should result in a certain

“It is important to realize that Ethernet is not a
guaranteed-delivery system.”

voltage because the wire has a predictable impedance. The
rules specify the tolerances that apply.

If collision is detected, the Ethernet hardware will
reattempt the transmission without intervention. What hap-
pens if the other guy does the same thing? Here is the most
significant part of Dr. Metcalfe’s thesis, the truncated binary
random backoff. Let’s see what that is.

If every station attempted retransmission in exactly the
same way, then most likely the collision would reoccur. Thus
Ethernet hardware is built so that in the event of a collision,
retransmission is attempted at increasingly larger intervals
(in fact each interval is double the previous one). The first
interval is random, so that multiple collisions can be mini-
mized. After ten unsuccessful attempts, the hardware will
give up.

It is important to realize that Ethernet is not a guaranteed-
delivery system. This is not an overriding concern, though,
because all data transmission systems have some finite possi-
bility of loss. With proper precautions, the overall loss rate
can be reduced to arbitrarily small numbers. For the most

part this means doing some error

Wayne Sung has been working with microprocessor hardware and software for
over ten years. His job involves pushing the limits of networking hardware in
attempting to gain as much performance as possible. In the last three years he has
developed the Gag-a-matic series of testers, which are meant to see if manufacturers

meet their specs.

The Computer Journal / #51

checking on the delivered data.

In actual Ethernets, the important
thing becomes that all players play by
the rules, and the same rules. In many
cases, complaints that Ethernet does
not sustain high loads is actually due to

21

‘packets do cause some de-

faulty hardware and software, not the
theory. I have observed loads over 70%
without collision collapse. Some stud-
ies claim Ethernet should collapse at
less than 30% load.

Since we have moved away from
using bridges, we have fewer medium
statistics than before. Nonetheless,
even on busy Ethernets you would

- probably find that perhaps one packet

in several thousand suffers a collision.
On the other hand, deferred packets
(the ones where you heard someone al-
ready using the network so you
waited) are easily ten times

to build very fast but much smaller
Ethernets, and, in fact, test networks as
fast as 150 Mb/s have been tried.

The next most often disobeyed rule
is the necessity of continuously check-
ing collision detect during the entire
transmission. Some systems assume
that if the first part of a transmission
succeeded then the rest will also suc-
ceed. In fact, for minimum-sized trans-
missions in maximum-sized networks
this assumption is false.

[have seen both hardware and soft-
ware faults that resulted in not check-

wrong place. Total received length will
not necessarily be excessive, as even 10
packets of 64 bytes run together is still
less than the 1518 byte maximum.

One other error condition I have
seen involves the use of different sets
of rules for the players. Unfortunately
there are two sets in common use: Eth-
ernet 2 and IEEE 802.3. In the best case,
they do not interfere with each other.

The first twelve bytes of each packet
contain the destination and source ad-
dresses (each is six bytes or 48 bits
long). So far so good. The next two
bytes cause trouble some-

that high. These deferred

lay, but the delays are meas-
ured in units of packet
intervals and are seldom

“Some have decided that the silent interval is for the
sake of fairness, so that no one can monopolize the

wire. This is not the case.”

times. In Ethernet 2, these
two bytes contain a “type
field” which is mainly an
identifier of what type of
software is in use. 802.3

noticeable.

Furthermore, we almost never see
values other than zero in the retries-ex-
hausted counters. Usually that happens
when there is an electrical fault in the
network. Even so, when a packet does
collide, the retry mechanism is often
noticeable, particularly in terminal
echo return times.

What If We Break the Rules?

The easiest rule to violate in Eth-
ernet is the length (the physical extent
of the network). As a network gets
larger, someone on one side of a build-
ing may decide it's ok to stretch the

length a little. Then someone on the
" other side of the building decides the

same thing. Then someone on the other
side of campus...

Ethernet depends heavily on its tim-
ing windows to make the collision de-
tect scheme work. This is why Ethernet
has minimum transmission times. You
must stay on the wire long enough to
be sure that if a collision occurred any-
where in the network you will have
found out about it.

If you stop listening sooner than it
takes your transmission to reach the
farthest extremes of the network plus
the amount of time it takes a collision
to come back to you, you may fail to
detect the collision. If the network is
longer than allowed, then the default
times are not long enough, and many
people will miss collision detect.

An interesting sidelight to the
CSMA/CD scheme is that distance can
be traded for speed. For example, by
shortening the length of the network to
10% of normal, the signaling rate can
be 10 times as high. Thus it is possible

22

ing collision detect to the end of a
transmission. For example, some con-
trollers distinguish between early and
late collisions, but the software did not
check both conditions.

Each transmission begins with a
preamble (unmodulated carrier) of 64
bits. The last 2 bits of the preamble are
actually ‘start bits’. Then there is a data
stream with a minimum of 64 bytes
and a maximum of 1518 bytes of infor-
mation. At the end of each transmis-
sion is an enforced silence period of 9.6
us (which would correspond to 96 bit
times). The entire transmission is called
a packet.

The silent interval is often violated.
If you were the last talker, you would
normally not attempt to transmit again
until the silent interval has expired.
What about other stations? Well, some
have decided that the silent interval is
for the sake of fairness, so that no one
can monopolize the wire. This is not
the case. The silent interval is to allow
all stations to reset their receivers.

Consider station A transmitting a
message to station B. If C starts trans-
mitting immediately after A finishes, B
may think C's message is a continu-
ation of A’s message, since there was
not a silent interval to allow B to reset.
The only way any station knows a
message is over is to receive complete
silence for the required period.

This is also the only way a station
can know where the CRC bytes are in a
packet (they are the last four). if the
silent interval is too short or nonexist-
ent, then packets can run together, and
hence correctness cannot be deter-
mined because the CRC will be in the

uses these two bytes to
show the length of the information-car-
rying part of the packet, since not all 64
bytes may be used up.

The two camps informally agreed to
a scheme of coexistence. The physical
packet cannot be more than 1518 bytes
long (actually 1500 information bytes
after subtracting the addresses, type,
and CRC fields). Thus the 802.3 length
field cannot have a value greater than
that. It should be safe then to assume
that larger values must mean Ethernet
2 isin use.

This scheme works reasonably well,
but again all players have to under-
stand the agreement. In most cases,
packets have specific destination ad-
dresses, so non-addressed receivers
who do not understand the scheme do
not get bothered. The problem is with
broadcasts. Then everyone must look
at those two bytes. When the protocols
are mismatched, Ethernet 2 devices
complain about an unknown protocol,
and 802.3 devices complain about the
packet being too long.

It takes correctly designed protocols
to do a good job over Ethernet, espe-
cially when the network gets quite
large. It is also possible to run an access
scheduler on the network to essentially
eliminate the small variability caused
by the CSMA/CD mechanism. The to-
ken bus system is an example of this:
you retain the fast broadcast mecha-
nism of a bus, and use a token-passing
method to schedule access so collisions
don’t happen.

Next time we will look at using
broadband cable (CATV) as a
distribution medium for LANs and
other services. ®

The Computer Journal / #51

UNIX Connectivity On The Cheap

A Simple Start For CP/M, Z-System, or MS-DOS

By Bruce Morgen

Introducing the power and flexibility of a UNIX or XENIX
system into an environment where CP/M, Z-System, or MS-
DOS computers currently predominate need not be an pro-
hibitively expensive or technically intimidating. Here are
some generalized procedures for connecting popular single-
user systems to UNIX that provide a useful level of resource
sharing with minimum expenditure and installation effort,
creating a connection

that allows users of Fieure 1
the popular single- 1gure
. 25-pin pin # 9-pin pin #

user operating sys- 2 3
tems access to UNIX 3 2
facilities without giv- 5 8

. 6 6

ing up the use of fa- 7 5
miliar programs and 20 4

procedures for their
day-to-day work. With some minimal alterations, these same
procedures could be used to link other non-UNIX systems
into the UNIX world.

Specifically, this simple technique makes each single-user
system into a UNIX terminal, with the additional advantages
of sharing a UNIX spooled printer and cptionally transfer-
ring files between the UNIX system, which effectively takes
the “server” role, and the single-user system. Though not
nearly as powerful as a sophisticated mixed LAN environ-
ment like SCO XENIX-NET, this level of interaction provides
an “entry level” solution that will meet the needs of many
applications while providing users with an educational intro-
ductory look at UNIX.

The Physical Connection
The first step is to wire the single-user computer to the
UNIX server, serial port to serial port. Most microcomputers,
regardless of their vintage, come with at least one more-or-
less standard RS232 port as standard equipment, and UNIX

servers generally have several additional ports through use
of a multiplexing multiport board. Although the assumptions
in this description apply to the vast majority of hardware,
referring to the documentation of the actual equipment is
recommended, particularly in the case of multiport cards.

R5232 ports come in two major “flavors,” Data Terminal
Equipment (DTE) and Data Communications Equipment
(DCE). Serial terminals, most CP/M-compatible computers,
and almost all PC-style “COM” ports are wired as DTE, mo-
dems are generally DCE devices, while printers—and mul-
tiport cards—can go either way. Identifying the ports is es-
sential to establishing a working connection. Connecting DTE
to DCE requires a “straight-through” cable, connecting DTE
to DTE or DCE to DCE requires a cross-over or “null mo-
dem” cable. The following discussion refers to standard 25-
pin connectors, refer to the conversion chart in figure 1 if you
are dealing with AT-style 9-pin connectors.

Port identification is a relatively simple task if you have a

Figure2
Receive Data I e 2 Transmit Data
(RD) (TD)
Transmit Data R >3 Receive Data
(TD) (RD)
Clear to Send 5-+ +-5 Clear to Send
(CTS) | | (cT8)
Data Set Ready 6-+ +-6 Data Set Ready
(DSR) | | (DSR)
Carrier Detect 8-+ +=-8 Carrier Detect
(DCD) | | (pcDp)
Data Term Ready 20-+ +20 Data Term Ready
(DTR) (DIR)
Ground 7€-—~————->7 Ground

DC voltmeter. A typical analog or digital volt-ohm meter
(VOM) or “multimeter” is sufficient. Just set the meter for
low DC voltage measurements (in the 0-12 volt range) if nec-
essary, and, with the target PC powered up, connect the “+”
(usually read) probe to pin 7, the port’s

A former Associate Editor of Electronic Products, and columnist for User’s
Guide, Bruce Morgen is currently a free-lance technical writer specializing in
marketing and promotional material. He is perhaps best-known for his long-time
involvement with ZCPR3, DateStamper, Backgrounder 11, XBIOS, and ZSDOS.

Bruce co-authored Echelon’s Z-System User’s Guide and “bootable disk” Z-Sys-
tems for Kaypros and was on the software development team for the Oneac “ON!”
computer. He headed up a Micromint SB180 users group for several years. Bruce has
authored several popular Z-System utilities and revised countless others.

A professional musician and songwriter through the 1970s, Bruce remains an
avid listener with a keen ear for American and Celtic traditional music. He resides
in “ruburban” Bucks County Pennsylvania with his wife Julie and their sons, lan
and Brett. He is co-sysop of Bob Dean’s Drexel Hill NorthStar RCP/M (Z-Node

#15), 215-623-4040.

The Computer Journal / #51

“signal ground.” Touch the “-” (usu-
ally black) probe to pin 2. A reading of
12 volts or so means the port is DTE, ‘
anything close to 0 volts indicates
DCE. To confirm that a port is DCE,
test pin 3 for a reading in the 12 volt
range.

Since the vast majority of serial
ports on CP/M-style hardware as well
as PC-, XT-, and AT-compatibles are
DTE, you'll probably be establishing a
DTE-to-DTE connection like the one
shown in figure 2. Note that the CTS,
DSR, DCD, and DTR lines are tied to-

a3

gether, a measure not usually necessary for terminal connec-
tions, but one often required to access the port as an operat-
ing system device, as we will be doing.

You should also take notice of pin 1, the “frame ground.”
If used at all, this pin should generally be connected at one
end of the cable only, as a noise-limiting measure. Don’t con-
fuse it with the signal ground line at pin 7, which establishes
the common zero-voltage reference point between the two
computers and must be connected at both ends. Since we are
using a minimal three-wire signal circuit and have not man-
dated shielding, limiting the cable length to 50 feet as speci-
fied in the RS232 standard is strongly recommended.

Establishing a UNIX Terminal

-With the physical connection completed, the next step is
the selection of the terminal emulation software. Various
public domain, commercial, and “shareware” serial commu-
nications packages—e.g. QTERM and MEX+ for CP/M or Z-
System, ProComm, Crosstalk, and MEX-PC for MS-DOS—
are well-equipped for this role. The choice is yours. Set the
terminal emulator’s serial port characteristics—baud rate,
data word length, stop bits, and parity—to match those in
effect at the connected UNIX port. Consult the UNIX server’s
system administrator if you don’t know these parameters.

We then have to introduce the our “terminal” to UNIX.
Procedures for doing this are in the UNIX system documen-
tation. As an example, for SCO XENIX Release 2.2 consult
Chapter 7 of the Operations Guide, for SCO’s Release 2.3 the
required information is in Chapter 14 of the System Adminis-
trator’s Guide. With the physical connection complete and
the appropriate software set up on both systems, the user
should be able to log in as a UNIX user. When that is accom-
plished, we can go on to implementing the single-user-to-
UNIX printing process.

Setting Up for Printing

. Once users are able to perform the UNIX log-in sequence
when they start up their systems each day, they can check for
UNIX mail, read the system news, check their personal calen-
dars, or take advantage of whatever other UNIX facilities are
available on the server. It important to emphasize to not log
off UNIX when exiting the terminal emulator, because an
active shell prompt is required in order to print via UNIX.
Logging off should be done at the end of the work day or at
the request of the system administrator.

I'll actually present two printing sequences, the first of
which is for WordStar files, the second for straight ASCII
printouts. If you want use another application program, your
chance of success are good with the appropriate changes to
the examples, but you are on your own.

Setting The Stage

Each CP/M or Z-System computer may need one or more
device selection and initialization commands issued. De-
pending on the individual system, these can be done with the
CP/M STAT utility or (if an appropriate ZCPR3 I/O Package
is loaded) the Z-System DEV command. Under Z-System,
these commands can be added to the startup alias with an
alias editor/generator like SALIAS. A typical STAT com-
mand might be:

STAT LST:=TTY:

Each MS-DOS system will require one or more MODE

24

commands added to DOS’s AUTOEXEC.BAT start-up script
with EDLIN or another non-document DOS text editor. If

you are using the COM1 port, the first of these lines should
be:

mode lptl:=coml:

We cannot depend on the single user system’s default se-
rial port settings matching those on the UNIX server, so our
next addition to the Z-System startup alias or DOS's
AUTOEXEC.BAT should specify them exactly, just as we've
already done for the terminal emulator. CP/M and Z-System
have no standard syntax for doing this and appropriate utili-
ties are usually hardware-specific—Ampro uses SET.COM,
Kaypro uses BAUD.COM, et cetera. On an MS-DOS PC, if
the UNIX port is set for 9600 baud, no parity, 8 data bits, and
1 stop bit, the DOS command line should be:

mode coml:9%6,n,8,1

Strings For Unix
Now we need to create two text files containing UNIX
commands that will start and conclude the printing process
on the server.
CP/M and Z-System users can use the console input func-
tion of PIP to produce the first of these files, LPOPEN:

A0:BASE>pip lpopen=con:<CR>
cat | 1p<CR>
<CTL-2Z>

AO:BASE>

Under MS-DOS you can use the console input function of
the COPY command as follows to produce LPOPEN:

C>copy con: c:\lpopen<CR>

cat | lp<CR>
<CTL~2>
c>

Now make the second file, LPCLOSE. Under CP/M or Z-
System, do:

AQ;:BASE>pip lpclose=con:<CR>

<CR>
<CTL-D>
<CTL-Z>

Under MS-DOS do:

C>copy con: c:\lpclose<CR>

<CR>
<CTL-D>
<CTI~Z>

Finally, we must create the Z-System alias LP, or the DOS
batch file LPBAT, which will start the printing process. The
syntaxes given assume WordStar Version 4.0 or later, as well
as the availability of PIP/COPY. Vanilla CP/M die-hards will
have to concoct a SUBMIT file,restricting their operations to a
single user area—just eliminate any directory change lines
from the Z-System example below and assign drive letters to

file specifications as required. o
See Connectivity, page 30

The Computer Journal / #51

The PC Hard Disk Partition Table

by Rick Rodman

From the early days of hard disks on the IBM PC-XT, PC
hard disks have had what is called the “partition table”. Yet,
to my knowledge, the structure of this table has never been
documented, nor have programs been presented to access or
modify this table.

DOS, whether PC-DOS or MS-DOS, comes with a ridicu-
lously cumbersome and stupid program called FDISK. It ap-
pears to have been designed intentionally to frustrate and
frighten people—maybe so they’ll take the machine back to
the dealer. Programs intended to “protect the unsophisticated
user against himself”, in my mind, come from an elitist
mindset I find very offensive.

Minix 1.5 includes a much better FDISK program, and the
discussion in the manual, and the prompts issued by that
program, are the source of much of the insight presented
here. However, much of what is here was determined
through study and experimentation: fooling around with a
hard drive for hours, and studying FDISK internals.

So, once againTCJ breaks the information cartel and dares
to bring you the true facts about the partition table. Save this
issue, because who knows when—or if-——you'll ever see this
information in print again.

Why is there a partition table?

* The partition table allows different sizes of hard disks to
be used in the system, with automatic configuration. Its func-
tion is somewhat similar to the Boot Parameter Block (see
“Mysteries of PC Floppy Disks Revealed”, issue #44) in this
regard. However, the partition table is really a layer below
the BPB. One of its functions is to divide a hard disk into
multiple “logical drives”.

Another function of the partition table is to allow different
parts of the hard disk to be used under different operating
systems. For example, the first hard disk of the system I am
using to write this has a single DOS partition and two Minix
partitions.

How the partition table is used under DOS

A DOS-only hard disk generally has two partitions. The
first is called the “Primary DOS” partition. This must be the
first partition on a disk if it is to boot DOS. The Primary DOS
partition can contain only one logical drive. The second is
called the “Secondary DOS” partition. This partition is di-
vided up (by a means outside the scope of this article) into
multiple logical drives.

Where the partition table is located
The partition table is the first sector of a hard disk. It is on
cylinder (track) 0, head 0, sector 1, that is, the first sector. It
seems to be a PC tradition to number disk sectors starting at

The Computer Journal / #51

1, although heads and cylinders (tracks) are numbered start-
ing at zero. Don’t ask why, it's just tradition. Another little-
known (and little-documented) fact of the AT BIOS is that the
hard disk drive identifiers are numbered starting at 128.

Structure of the partition table

The partition table is located at the very end of that first
sector. The first part of that sector usually includes some boot
code. The table begins at offset 1BE hex in the sector and
contains four entries, allowing up to four partitions on a
single hard drive.

Each record of the partition table has the following general
structure:

Offset Bytes
0

Contents

Boot indicator

Starting head

Starting sector

Starting cylinder
Operating System ID
Ending head

Ending sector

Ending cylinder

Relative sector

Total sectors in partition
bytes in partition record

N OO J e WwN

[y
-
o Bk R e e

The four partition records are at offset 1BE hex, 1CE, 1DE,
and 1EE hex. At offset 1FE hex (the last two bytes of the
sector), a two-byte indicator value 55 AA hex is stored to
indicate the presence of the partition table.

The structure is unfortunately not as simple as it looks.
Larger hard disks with more than 256 cylinders made neces-
sary some modifications to this scheme, and these modifica-
tions were made in the screwy way that assembly-language
programmers are fond of. The following discussions of each
field will note these oddities.

Boot indicator: This value is supposed to be set to 80 hex to
indicate a partition as being bootable. However, it doesn't
work. The BIOS will attempt to boot only the first partition,
and only if it contains a DOS-style BPB.

Start head: This is the first head used in a partition. Basi-
cally, each partition is a “chunk” of the hard disk which goes
across all heads of the drive for a range of cylinders. There is
no other way of knowing how many cylinders the drive has,
so the start head used for all partitions must be zero, and the
end head must always be the number of heads minus one.

Some operating systems may support a partition not end-
ing on the last head, or not ending on the last sector, last head
of the last cylinder of the partition. But exercise caution; I
don’t think DOS 3.3 is that smart.

Start sector: The low-order six bits of this byte store the

25

first sector of a partition. That is to say,
the sector number of the first sector
used on the start head, on the start cyl-
inder, of the partition. Usually this
value is 1, but the first partition must
start at 2 to leave room for the partition
table itself.

The upper two bits of this byte are
an extension of the start cylinder field,
1o allow it to specify a cylinder of up to
1023.

Start cylinder:This field contains the
low-order eight bits of the starting cyl-
inder of a partition. The high-order two
bits are stored in the start sector field.

Operating System ID: This field iden-
tifies the type of the partition. The val-
ues are not standardized by any known
body and appear to have been arbitrar-
ily chosen by people as they put OSs
out there. The following are a few val-
ues known to have been seen in this
field (hexadecimal):

01 Primary DOS with 12-bit FAT entries
02 Xenix?

03 Xenix?

04 Primary DOS with 16~bit PAT entries
05 Extended DOS with 12-bit FAT entries
06 Extended DOS with l6é-bit FAT entries
07 HPFS (05/2 1.2 and later)

08 AIX

51 Novell?

52 CP/M-862

€3 386/IX?

64 Novell?

75 PC-IX

81 Minix

DB CP/M-86?

. If you have any additions or correc-
tions to this table, please share them
with your fellow readers. (Note that
some of the values given by Minix 1.5
are listed here; on the other hand, some
of the values given by Minix 1.5 are
clearly wrong, too.)

Ending head: This value is the ending
head of the cylinder and appears to be
required to be the last head of the
drive.

End sector: This is the sector number
on the last head of the last cylinder of
the partition. Note again that only six
bits are used. The upper two bits be-
long to the next field, End Cylinder.

End cylinder: This is the last cylinder
of the partition. The eight least-signifi-
cant bits are stored in this byte; the up-
per two bits are stored in the End Sec-
tor byte.

Relative sector: This is a long, 4-byte
unsigned integer which represents the
count in sectors from the start of the
drive to the beginning of the partition.
The first partition will always have

See Partition, page 55

/* READPART.C - Read partiticn table
901219 rr from readabs.c
901224 rxr get working

For Datalight Optimum-C
*/

#include “dos.h”
#include “stdio.h”

#ifndef IB086L
*+ error must be compiled large model
#endif
unsigned char buffer[1024];
static int read partition_table(void);
static void check_drive type{ void);
static void show partition(int, unsigned char *);
static int drive id = 128;
/* — main program — */
main(int argc, char *argv[]) {
int n;
char tbhuf{ 80], *p;
if(arge > 1) {
drive_id = atol(argv[1]);
} elze drive id = 128;
memset(buffer, 0, 1024 };
check_drive type();

n = read partition_table();
printf(“result of read is %d\n”, n);

if{n==10) {

#1if 0
/* print buffer as 21-1/3 lines of 24 */
for(n = 0; n < 512; +n) {
if(n 8 24 == 0) printf(“\r\n%04x :”, n);
printf(~ 802x*, buffer[n]);
}
#endif
show_partition(0, &buffer[Ox1BE]);

0
show partition(1, &buffer[OxI1CE]);
show partition(2, &buffer[Ox1DE]);
show partition(3, &buffer[Ox1EE]);

}
/* read partition table */
static int read partition_table() {(
int retry, n;
union REGS regs;
struct SREGS sregs;
for(retry = 0; retry < 3; Hretry) {
sregs.es = sregs.ds = getDS();

/* Drive = 0 = A:, 1 = Bz, 128 » C3, 129 = D: +/

regs.h.dl = drive id;

regs.h.dh = 0; /* head */

rega.h.ch = 0; /* cylinder */
regs.h.cl = 1; /* sector number (0?) */
regs.h.ah = 0x02; /* read sector(s) */
regs.h.al = 1; /* 1 sector */
regs.x.bx = (unsigned int) &buffer[0];

/* buffer */
int86x(0x13, ®s, ®s, &sregs);
/* invoke BIOS */

n = regs.h.ah; /* get errors */

The Computer Journal / #51

A Short Introduction to Forth

By Frank Sergeant

The Forth System
* Forth is easy to grasp once a few things are explained.
First, keep in mind three of the parts of a Forth system: the
stack, the dictionary, and the input stream. Numbers go on
the stack. Named, executable routines go in the dictionary.
Characters you type from the keyboard (forget the disk for
now) go into the input stream.

The Interpreter

Forth stuffs keystrokes into the input stream until you
press return, then it interprets that input stream one word at
a time. It takes each word and tries to look it up in the
dictionary. If found in the dictionary, the word is executed.
Otherwise, Forth tries to convert it to a valid number. If it can
do so, it pushes the number to the stack. Otherwise, it reports
an error. When the input stream is empty, Forth starts over
collecting keystrokes and then interpreting them.

The Stack

Numbers are kept on the stack. Sometimes this is called
the data stack or the parameter stack. It is the central clearing
house for numbers. Every word that needs numeric input
knows where to find it: on the stack. Every word that
supplies numeric output knows where to deliver it: to the
stack.

Words

The basic unit of Forth is the word. A word is any group of
characters separated by white space (one or more spaces or
carriage returns). Thus, there are seven words on the
following line:

[] 1 12345 DUP SWAP H 27QQDI

Forth words are active. They don’t mean something; they
do something. That is, they are not symbols the compiler or
interpreter looks for to determine what to do. Instead, each
Forth word just plain does it. For example, the Forth word +
(pronounced “plus”) is not a symbol indicating addition
should be done; it does the addition. + removes the top two
numbers from the stack, does the addition, then puts the sum
onto the stack.

This active nature of Forth words is a key concept. It gives
Forth much of its modularity and power. Each little piece in
a Forth program is an active, independent unit.

Even Forth’s comment indicator, the left parenthesis, is
active. It doesn't signal a comment, it actively gobbles up the
input stream until it finds a right parenthesis. Thus,
comments start with a left parenthesis followed by at least one

space.

The Computer Journal / #51

Numbers

How, you might ask, do those two numbers get onto the
stack in the first place? The answer, from the viewpoint of +
is that it doesn’t care! This is important because it eliminates
dependencies and side effects between words. But, even if +
doesn’t care, you might. There are several ways to get
numbers on the stack. Earlier words can put numbers on the
stack, or, you can just type them. Remember the 3-way
process of the interpreter? When it can’t find the word in the
dictionary, it tries to convert it to a number and put it on the
stack. So, typing 3 4 would put those two numbers on the
stack.

Isn't “reverse Polish” difficult? No, no, this “postfix” is
very simple. It just means the operator (the active Forth

“Isn’t ‘reverse Polish’ difficult? No, it just means
the operator follows its operands.”

word, for example) follows its operands. This is how to add
4and7:

4 7 +

The + would remove the 4 and 7 from the stack and return an
11 to the stack.

Many Forth words take two operands. In some cases like
+and * and AND, their order makes no difference. In others,
such as - and /, the order of operands is very important. It is
easy to get the order right by remembering that it is the same
as you are used to. The only difference is the location of the
operator; the order of the operands remains the same. For
example, the algebraic 15 / 3 would be written in Forth as 15
3 / meaning in both cases to divide 15 by 3, giving 5 as the
quotient. This is called “postfix” because the operator comes
after the operands, rather than “infix” where the operator
goes in between the operands. In a similar manner, 7 3 - is
the Forth way of subtracting 3 from 7.

Programs

In Forth, rather than just writing a program, you extend
your system by building tools to make writing your program
easier. Finally, your program can be written in one or two
lines. More powerful words are built up from simpler words.
These new words, in turn, are used in the definition of other
words. As you progress you customize the language to the
specific task at hand. Each word is simple and can be tested
easily from the keyboard, making testing a dream instead of
a nightmare.

Forth systems come with many words already defined in

27

the dictionary. These include words that allow you to define
your own additional words. The word : (pronounced
“colon”) puts a new word into the dictionary. For example,
suppose you want to define a word named 3* to multiply a
number by 3. Here is what to type in:

t 3 3 *

The : creates a dictionary entry for the new word 3* and
then compiles the following words up to the semicolon. The
word following colon, i.e. 3* , becomes the name of the new
word. The rest of the words, namely 3 and * are laid down in
the dictionary as the actions that the word 3* will perform.

Now that 3* has been added to the dictionary, you can
type 17 3*. The 3* will put a 3 on the stack, then consume the
17 and the 3, and leave 51 on the stack. This new word is a
full citizen. 1t is indistinguishable from words in the
dictionary that came built in. It behaves just like the rest of
the Forth words: it takes its arguments from the data stack
and puts its results back onto the data stack. This feels
different from languages where the functions and procedures
and subroutines are second class citizens. There are no
“reserved words” in Forth.

Stack Comments

When a new word is defined it is helpful to show a
picture of its effect on the stack. This is called a stack
comment. It is usually placed inside a comment within the
new word’s definition. The left side shows the “before”
condition of the stack, i.e. what the word expects on the
stack. The right side shows the “after” condition, i.e. what the
new word leaves on the stack. There must be some separator
so you can tell where the “before” ends and the “after”
begins. I use a single hyphen as the separator, some people
use a double hyphen. Don’t confuse this with a minus sign or
Forth’s subtract word. Since the stack comment is a
comment, you can write it any way you wish as long as you
follow the left parenthesis with at least one space. Here is the
definition of 3* rewritten to include a stack effects comment:

$ 3* {n- 3*n) 3 *

When you know the stack action of a word, you know
everything (within reason). In the above example, n
represents any number and 3*n represents three times that
number. Sometimes throughout the definition you'll find
additional comments showing what is on the stack at that
point, If the stack picture gets too complex, perhaps the
programmer should break the definition into several smaller,
simpler definitions.

Building Blocks

A Forth word can be thought of as both a program and a
subroutine. You can execute it from the keyboard or you can
use it as a building block within another word. Contrast this
with the difficulty of testing a single procedure or subroutine
in most languages.

There is no distinction between words built in to the
system, words you add, programs, subroutines, et cetera. In
Forth they are all just words, and can be executed from the
keyboard or as part of the definition of another word.

This means several important things. It means a Forth
system can have a number of “programs” available in
memory for immediate use. Often Forth can serve as a self-

contained environment, allowing immediate access to the
editor, assembler, debugging tools, plus all the routines
you've defined.

This ability to exhaustively test each little piece from the
keyboard adds robustness (and flavor). That is, you build
programs on a solid foundation of tested and certified
elements. Proper Forth programming style is to build your
program as small, easily tested pieces. Don't write huge
procedures, as we often see in Pascal, for example. Ideally,
each word’s definition will take a single line, as in the 3*
example.

These little pieces are reusable. As you program you
gradually customize the language to suit exactly what you
want to do.

Funny Names

Frequently used Forth words are usually short. This
makes them easy to read and type. But, until you know what
they mean they can stand in the way of your understanding
Forth source code. You need a glossary you can refer to. C@
C! @ and ! are four examples. They are pronounced “C-
fetch,” “C-store,” “fetch,” and “store.” The first takes an
address from the stack and returns the byte value located at
that address. It is similar to PEEK in BASIC. The second takes
a byte value and an address and stores the value at the
address, rather like POKE in BASIC. The “C” in C@ and C!
stands for “character” and indicates byte size values. @ and !
work the same way, but with 16-bits values.

The . (pronounced “dot”) is a word that takes a number
off the stack and displays it. Thus, the dot is associated with
printing or displaying. Often it is used in the names of words
that have something to do with displaying or printing. For
example, the word .” (“dot-quote”) prints a string up to the
ending quote mark. It is similar to PRINT” in BASIC.

IF THEN WHAT?
Some people seem to have trouble with Forth’s IF
example:

: TRUE? (flag -) IF .” YES” ELSE .” NO" THEN ;

IF is an active word that takes a number off the stack. If
the number is “true” (i.e. non-zero), then the part between IF
and ELSE is executed, otherwise the part between ELSE and
THEN is executed. THEN marks the end of the entire
structure, where both paths converge. If it gives you trouble,
read THEN as “end-if”.

Loops

Loop structures of one sort or another are usually pretty
obvious, if you remember that WHILE and UNTIL each take
a truth value off the stack to decide whether to branch or not.

There are two main counted loop structures in Forth.
These days [only use FOR ... NEXT. For example,

¢ STAR (-)
t STARS (n =)
7 STARS ***twuw

. owm EMIT
FOR STAR NEXT ;

It works much like you’d expect it to. In some Forths 7
STARS would print 7 stars and in others it would print 8
stars. Hopefully the ones that print 8 will change their ways.

The other is DO ... LOOP as in
See Intro to Forth, page 32

The Computer Journal / #51

REAL COMPUTING

The 32CG160, Swordfish, and the DOS command processor

By Richard Rodman

AMD has been using its 29000 RISC processor to try to
capture the high-end embedded systems market from Motor-
ola and National. They have targeted both the VME-bus mar-
ket and the laser printer market. As an example, Hewlett-
Packard’s new IIISi printer uses the 29K. In the meantime,
Motorola is targeting Sun and SPARC with its 88000 (while
selling 68040s to NeXT and Apple), and Intel is still wonder-
ing what to do with its 80860.

National, meanwhile, is trying to capture the mid-field,
where high integration and low cost are expected to move
great quantities of parts against competition from the 68332
and the 80386SX.

The 32CG160

The 32CG160 is a new part oriented towards embedded
computing. It takes the 32CG16 CPU, with its additional
graphics logic, and, on the same die, adds a Bit-BLT process-
ing unit, a two-channel DMA controller, a simplified ICU
including three 16-bit programmable timers, and an on-chip
clock generator. It can use an FPU but not an MMU. It is
housed in an 84-pin PLCC. It also includes a high-speed
multiplier similar to that on the 32GX320.

Based on the projected costs of this chip, it should be very
popular in high-volume applications. It should also be a
popular choice for low-priced X terminals.

X terminals, by the way, are the sleeper market of the
nineties. While the pundits of the press continue to say that
there is little use for them, they are quietly shipping in sur-
prisingly large volumes. Wouldn't it be funny if the industry
moved back to separate computers and terminals again? In
fact, wouldn’t it be something if PC operating systems could
take care of the device dependencies and the application soft-
ware wouldn’t have to write directly to the hardware? Wow,
it could be like... CP/M again!

At any rate, with all of the apparent convergence in Motif,
Xt, PM, Windows, and Open Look, I think there could be a
really neat board with a CPU, Xlib, and VGA emulation on it,
which plugs into a PC and runs ho-hum VGA or screaming
X. If you use TIGA it'll cost $3000; if you use the ‘CG160, it
could cost $300. Somebody do it. Please!

But we interrupt these niceties for some real news.

Swordfish

CISC has blown away RISC once again. National has fi-
nally released the production version of what was to be the
32764. 1t has two complete CISC integer processors on it,
which interleave the processing of instructions over 64-bit
busses to achieve 100 MIPS.

Each of the two CPUs has its own four-stage pipeline. An
on-chip FPU allows integer and floating point operations to
be done in parallel. Yet all of this complexity is managed
without requiring the programmer to jump through hoops,
as with a RISC. National compared the performance of the
Swordfish (actually called the 325F640) with DSPs. Although
its floating-point performance of 20 MFLOPS isn’t that out-
standing compared to other DSPs, remember that this chip
has the ease of programming of a general-purpose CPU, and
100 MIPS integer performance.

There appear to be some additional enhancements over
the other N$32 processors. The chip contains additional reg-
isters which can be used for interrupt handlers, eliminating
the need to save and restore them (shades of the Z-80!). The
chip also includes a single 16-bit counter timer, a two-chan-
nel DMA controller, and a simplified ICU.

The chip is packaged in a (get this) 223-pin PGA. Prices
are not cheap for this processor. There is an evaluation board
for $10,000 from National, who is also offering a specially
optimized C compiler for the VAX and for the Sun.

Personally, I've always considered RISCs and DSPs as
temporary aberrations along the road to faster general-pur-
pose, easy-to-program CPUs. We'll be seeing more GaAs
(gallium arsenide) hardware soon, too. But someday soon,
things will be good. Good enough to where, for example, if
you want to track objects in real-time video, you'll just sit
down at your general-purpose PC and write a program in
your favorite language. The Swordfish is a big step in the
right direction.

The DOS command processor
A useful feature of the DOS command processor is that
environment variables can be used as a form of “logical
name”, but only in batch files. For example, if the environ-
ment variable COMPILER has been set to a directory where
the compiler resides, a batch file could

contain a line:

Rick Rodman works and plays with computers because he sees that they are the

world’s greatest machine, appliance, canvas and plaything. He has programmed

$COMPILERS\cc tl.c

micros, minis and mainframes and loved them all. In his basement full of aluminum

boxes, wire-wrap boards, cables running here and there, and a few recognizable
computers, he is somewhere between Leonardo da Vinci and Dr. Frankenstein. Rick
can be reached via Usenet at uunet!virtech!rickr or via 1200 bps modem at 703-330-

9049.

The Computer Journal / #51

Oddly, however, this won’t work on
the normal command line. Remember
never to use spaces in SET commands
under MS-DOS. Everything starting

29

with the first nonblank character after the word SET is
stored in the environment, verbatim. So, if you would hap-
pen to enter spaces in there, those spaces become significant.

Another oddity is the fact that the FOR command is differ-
ent between batch files and the command line; in a batch file,
two percent signs must be used before the variable, but on
the command line, only one may be used.

In working on the command processor for Bare Metal,
these idiosyncrasies have all been corrected. (Why emulate
COMMAND.COM instead of, for example, the Bourne shell?
Because it's easier to do, and easier to use.)

Of course, these aren’t the most glaring deficiencies of
DOS’ command processor. The most glaring deficiency, the
inability to nest batch files, was corrected in version 3.3 with
the CALL statement, although the reason for requiring the
additional word is unclear. What's really amazing is that,
after ten years, Microsoft has still not addressed the following
severe deficiencies:

1. No BEGIN/END for multi-line FOR or IF blocks.

2. No lexicals for string parsing, e.g. to separate drives
and directories.

3. No real CALL/RETURN for subroutines within the
same batch file.

4. ECHO OFF echos to the screen.

5.1 could go on, but why bother.

It seems as though Microsoft’s priorities lie elsewhere than
in developing the command processor. IBM, on the other
hand, is supposedly bundling REXX with 0S/2 2.0, which is
a real command processor. This is a good move. Anyone who

= 0

Promotional
and

Technical Writing
for Electronics Marketing

X Kk Kk ok %k

| Technical Articles for Publication
Advertising Concepts and Copy
Product and Service Brochures
Press Releases
Speeches and Lectures
Editing/Rewrite Service
Consulting

* k* *x k %k

Bruce Morgen
P.O. Box 2781
Warminster, PA 18974

215-443-9031
(Voice, Data by Appointment)

_OOOOOOrOO;srsrTrTr,rEEE s O O E @ G G s sErErrErrC rErEE -

D

y
%

Z%%%%%%%%%%%%%%%%Z%%2%%%%%%%%%%%%%%%%%%%%%%%%%7/

o

has done any programming for GUIs knows that it is ex-
tremely tedious to program under a GUI—you simply must
have a command processor.

A common oddity of both DOS and 0S/2 is that, al-
though directories are files, they cannot be accessed as such.
Instead, special search first/search next calls must be used.
There’s no logical reason for this that I can see, so it must be a
quirk of the internal implementation. (Remember under DOS
2.x, you couldn’t access read-only files unless you used
FCBs?) This has caused much difficulty in Bare Metal's re-
mote manager logic and is delaying release of version 0.7.

Ideally, of course, you want the application programs to
access the directory via the operating system and not have to
worry about the structure of directory entries, especially in
an operating system supporting multiple different file system
structures, as does Bare Metal.

0S/21.3

On my OS/2 system, I recently upgraded from version 1.2
to version 1.3. The improvement in speed from this upgrade
is really startling. Screen operations, like scrolling of text in
windows, repainting, and other graphics operations, are sev-
eral times faster. As I mentioned before, any DOS program
I've tried, including Windows 3.0, will run in the DOS Com-
patibility Box. But by producing 0S/2 versions of my NS32
tools, the compiler, linker and assembler, I can now run these
in one session while editing in another, and watch the output
scroll in a window. You can’t do that under Windows, buddy.

I've recently heard that programmers are actually devel-
oping Windows programs under OS/2, using the Software
Migration Kit (now called WLO), then porting them back to
Windows. They do this to gain the multitasking and pro-
tected memory modes of 05/2. I could rant and rave about
the bizarre modes and memory models of Windows...but
let’s just say Windows is like sausage: it sizzles and makes
your mouth water, but don’t ask about its internals.

Anyway, anyone thinking about putting Windows 3.0cn a
system ought to give some thought to 0S§/2 1.3.

Next time
Minix may be getting its own GUI. We'll check that out,
plus other developments on the Minix, Mach and Amoeba

fronts. In the meantime, please share your insights with your
fellow TCJreaders.@

e =
Connectivity, from page 24

Here’s the Z-System alias text for LP. It assumes LPOPEN
and LPCLOSE are in the named directory BASE:

BASE:

PIP LST:=LPOPEN
$D§U:

ws $1 PX

BASE:

PIP LST:=LPCLOSE
$DSU:

Under MS-DOS, we can once again enlist COPY, this time
to create the batch file LP.BAT:

C>copy con: c¢i\lp.bat<CR>

copy c:\lpopen coml:<CR>
we $1 px<CR>

copy c:\lpclose coml:<CR>
<CTL~2>

The Computer Journal / #51

With these files in place, reboot the single-user system
(vanilla CP/M users may also need to enter some commands
manually) and you'll find you can print WordStar files via
the UNIX server with your new “LP” command. To print the
file MYFILE.WS, enter this:

C>1lp myfile.ws<CR>

The first PIP/COPY command of LP executes a UNIX
.command that will take input from the connected port and
route it to the XENIX print spooler, “lp.” Then WordStar is
executed with MYFILE.WS as its input file and “px” as trail-
ing parameters that tell WordStar to print the file and exit.
Because of the redirection implemented by the commands in
the startup alias or AUTOEXEC.BAT, the printer output will
go to the serial port and become the input to the previously
set up UNIX command. The last line sends carriage return
and a <CTRL-D> to the UNIX command line to indicate that
we’ve completed our input to the print spooler.

The LP command can be run from WordStar’s opening
menu via the “R” option if available memory allows. The
WordStar printer driver must match the UNIX printer for
correct printed output, and, depending on the printer, certain
WordStar print controls may have be avoided, as determined
by experimentation.

A variant of LP for unformatted printing of plain ASCII
text is next on the agenda. We'll call it LPA, and its attendant
text files LPOPENA and LPCLOSEA. Here’s how to create
LPOPENA (please note the “grave accent” marks on the first
line—this character is usually found sharing a key with the
tilde (“~") character):

A0:BASE>pip lpopena=con:
(OR)
C>copy con: c:\lpopena<CR>

oldstty='stty -g‘;stty igncr -icrnl;cat|lp<CR><CTL-2>
To make LPCLOSEA, do:

A0:BASE>pip lpclosea=con:
(OR)

C>copy con: c:\lpclosea<CR>

<CTL-J><CTL-D>stty $oldetty<CTL-J><CTL-Z>

For Z-System, make the alias LPA:

BASE:

PIP LST:=LPOPEN
DU:

PIP LST:=§1
BASE:

PIP LST:=LPCLOSE
$DSU:

Finally, here’s how to create LPA.BAT using COPY under
MS-DOS:

C>copy con: c:\lpa.bat<CR>

copy c:\lpopena coml:<CR>
copy 81 coml:<CR>

copy c:i\lpclosea coml:<CR>
<CTL-Z>

The reason for the various “stty” commands in LPOPENA
and LPCLOSEA is that UNIX normally converts incoming

The Computer Journal / #51

carriage returns to newlines (otherwise known as linefeeds),
which, when added to the newlines already in CP/M- and
DOS-style ASCII files, would cause the text to be printed out
double-spaced.

The first line of LPOPENA saves the initial characteristics
of the UNIX port, which are correct for terminal operations,
the second tells UNIX to ignore carriage returns and to not
map them to newlines, thus effectively filtering the input
from DOS to UNIX text file conventions. The last line of
LPCLOSEA restores the original, normal UNIX terminal port
characteristics after the input has been spooled for printing.

The examples given for Z-System refer to the named di-
rectory BASE. Z-System savants will recognize this as arbi-
trary—feel free to alter as required to your directory layout
and/or preferences.

Similarly, the example MS-DOS files were all placed in the
DOS root directory on the system’s primary hard drive. If
you understand how MS-DOS pathnames work, then you
can place these files where you please as long as you modify
the references in the associated batch files accordingly.

Possible Problems

Most glitches will be the result of users attempting to run
a print job when they were not logged into the UNIX server.
This is usually benign, because UNIX will reject each line of
printer output as an incorrect login attempt. At worst, some
versions of UNIX will ban the user from the server pending
system administrator intervention. A similar, but potentially
much more dangerous, situation could occur if the user ex-
ited the terminal emulator while a UNIX application was still
active. In that case, the harm done would depend on how the
application responds to the input.

Most problems with strangely formatted printer output
can be corrected with “stty” commands along the line of
those used in the LPOPENA and LPCLOSEA examples. The
UNIX documentation contains pages of information on stty, a
powerful command that should be used with the utmost cau-
tion (if at all) by inexperienced UNIX users.

Adding File Transfer

File transfer is another facility supported by a simple se-
rial UNIX connection. Only two things are required: a UNIX-
compatible version of the public domain XMODEM program
on the server, and XMODEM capability on the DOS side, a
feature built into almost all CP/M and MS-DOS modem
communications software. Depending on the vintage of the
UNIX-compatible XMODEM program, a number of variants
of the error-correcting XMODEM protocol are supported,
with the original Christensen version (128-byte packets and
simple checksum error testing) being the lowest common de-
nominator supported by all XMODEM implementations.

Consult your XENIX XMODEM program’s built-in help
screen and your communications software’s documentation
for more information on file transfer via XMODEM. Many
communications packages support batch-style command
scripts that can simplify and automate file transfer

operations, check your package’s documentation for further
details.@®

MOVING?

Don’t leave us behind!
Send Change of Address six weeks prior to move.

31

Intro to Forth, from page 28

: STAR (=) .” *° EMIT ;

: STARS (n -) 0 DO STAR LOOP ;
7 STARS **#*hkkk

The difference is that FOR ... NEXT takes a single number
and DO ... LOOP takes a limit and a starting number.

Stack Manipulation
Sometimes we need to re-arrange the numbers on the
-stack. Forth has a collection of words to manipulate the stack,
such as the following: DUP copies the top item, DROP
throws away the top item, SWAP reverses the positions of
the top two items, ROT moves the third item to the top (thus
ROT ROT ROT would leave the stack unchanged). Here's
another way to define 3* that uses DUP
Y3% (n-3*n) DUPDUP (nnn)

+ (n 2*n) + (3*n) ;

A BASIC Rosetta Stone
Here are some sample Forth phrases with their
equivalents in BASIC:

. BELLO # PRINT “HELLO";
3. PRINT 3;
TRST GOSUB TEST
37+. PRINT 3+7
3 FOR .” B” NEXT FOR I=3
PRINT"H";
NEXT I

(This is a comment) REM This is a comment

KEY EMIT 100 LET A$=INKEY$:IF A$=0 THEN 100
120 PRINT AS;

KEY . 100 LET A$=INKEY$:IF A$=0 THEN 100
120 PRINT ASC(AS§);

VALID?

IF RTNA ELSE RTNB THEN IF VALID THEN GOSUB RTNA
ELSE GOSUB RINB

3721 c@ . PRINT PEEK(3721);

65 3721 C! POKE 3721,65

Speed and Assembly Language

Forth is the fastest language. Bear with my little joke. In
high-school, a friend was a sports car enthusiast. He said no
matter how fast your car was, a cop car was always faster—
because it had this special speed device—called a
“Motorola.” By that he meant the two-way radio whereby
the cop could radio ahead. How does that make Forth the
fastest language? Well, it really only makes it equal to the
fastest. In Forth it is very easy to drop down to assembly
language any time greater speed is needed. It is almost never
the case that every part of a program needs to run flat out.
Usually there are one or two key routines that make or break
the program, speed-wise. One of the beauties of Forth is you
can code the whole program, without using assembly
language, and test it. When it is working, you replace those

few key routines with assembly language if you really need
greater speed. The program looks and works the same. No
special calling conventions are needed.

So, suppose it turns out that 3* is the bottle neck in your
program. If only it were faster all would be well. You could
re-write it in 8088 assembly language as follows:

CODE 3* (n - 3*n)

BX AX MOV, BX BX ADD, AX BX ADD, NXT,
a
END-CODE

Don’t worry too much about the assembly language. I just
want to get across the general idea. CODE and END-CODE
correspond to the beginning colon and ending semi-colon of
colon definitions. The definition is short! This aids
immeasurably in testing assembly language routines. 3* will
appear in the dictionary just like it did when defined as a
colon definition. All the other words that call 3* will work
the same. They won't know the difference. Also, 3* can still
be tested directly from the keyboard. If you have to deal with
assembly language, this is the way to do it.

For the curious I'll explain the parts of the code definition
above. It is written for Pygmy Forth, which keeps the top of
the data stack in register BX. The assembly mnemonics end in
commas. You can think of the comma as marking the end of
a phrase, thus BX AX MOV, is one instruction. The source
register and destination register are arranged left to right as
god and Motorola intended. Thus, the first instruction copies
the top stack item to the AX register, because we’'ll need it in
a minute. Then, the BX BX ADD, instruction doubles the top
stack item. This is the same as multiplying it by 2. The AX BX
ADD, instruction adds the original value to BX, giving just
what we want, 3 times the original value. Since the whole
word consumes one stack item and returns one stack item,
and since Pygmy keeps that stack item in register BX, the
final result is right where we want it in the top stack item.
The last “instruction” NXT, is actually an assembly language
macro defined in Pygmy to lay down the code that will move
to the next word to be executed.

The assembly language will differ from Forth to Forth and
especially from processor to processor. It is less portable and
more trouble than high-level Forth, but is very easy compared
to most other methods of dealing with assembly language! If
you want to do everything in assembly, you could think of
Forth as an interactive assembly language subroutine
manager, allowing you to test each little subroutine from the

keyboard.

You Try It

Practice makes perfect. Try reading some Forth and see if
it makes more sense to you now. If you want a Forth to
practice with on the IBM PC/XT/AT/386 you can get my
shareware Pygmy Forth version 1.3 from the Forth Interest
Group (FIG) at (408) 277-0668 or from finer bulletin boards
everywhere. If you get it from FIG be sure to ask for a free
quick reference card as well. If you have specific questions,
you can reach me ¢/o TCJ or on GEnie as F.SERGEANT, and
I'll try to answer directly or via TCJ or both.@

“Never Tangle with Any Creature That Has More Teeth Than the Osmond Family” — anonymous

The Computer Journal / #51

The Z-System Corner

The Trenton Computer Festival

By Jay Sage

Announcements

- The announcements for this time are about some exciting
price reductions. A small band of programmers has long en-
joyed the help of the wonderful DSD (Dynamic Screen De-
bugger) in getting the bugs out of our code. The $130 price
tag, however, was a deterrent to many. I recently located and
spoke with the author, John Otken, and suggested that there
would be a great advantage in reducing the price. More
people would get to take advantage of his superb program,
and he would actually make more money because of the
increased sales. He agreed to my suggested price of $50!

I hope that many more of you will take advantage of this
opportunity. DSD is not only a powerful aid in debugging
problems with code; it is also a wonderful way to learn about
how programs work. The full-screen display allows one to
see everything that is happening during program execution.
One sees a section of disassembled source code, the contents
of the CPU registers, the contents of the stack, and two blocks
of memory. In all cases, symbolic as well as numeric data can
be seen, and all user entries can make use of defined sym-
bols.

There have been two price reductions of interest to owners
of SB180 computers. XBIOS has been reduced from $75 to
$50, as a reflection of the fact that it is no longer actively sup-
ported. We have also acquired the remaining stock of the
excellent Electronic Technical Services ETSIO180+ board. Its
low power CMOS design includes a battery-backed real-time
clock, two high speed (115.2 kbps) serial ports, 24 bits of
parallel I/0, and an SCSI interface for hard disk drives. It is
fully supported by XBIOS (which is required to run the
board). I use the ETSIO180+ on my own computer and have
been very satisfied with it. The original price was $280; we

will sell the remaining stock (currently about six boards) for
just $100 each (or $145 including XBIOS).

The Trenton Fiascos

The main contents of my column for this month were
originally intended for publication in the printed proceedings
for this year’s Trenton Computer Festival. Although our
session there was again a great success (because of the
speakers), the organization of TCF has deteriorated
alarmingly over the past few years.

When 1 originally sent in my speaker form for TCF, 1
checked the box indicating that I would contribute a written
piece. Shortly before the deadline, when they had not re-
ceived my submission, | was called by Sol Libes, who runs
the conference, asking if 1 was going to write something. I
told him that I was still interested if there was time. He said
that it could be accepted if I got it in by the end of the next
weekend. We agreed that | would upload it to the board run
by the Amateur Computer Group of New Jersey. Once it was
there, I was to call Sol.

I worked extremely hard for a couple of days, staying up
until 3 am to get it finished and uploaded to the ACGN]
board. As instructed, I placed a voice call to Sol. He was not
there, so I left a message on his answering machine. When he
did not call back, I called several more times, leaving mes-
sages each time. Finally he returned my call, and we agreed
that he would call me again if there was any problem with
the file had left for him. I never heard anything further.

You can imagine my dismay when I learned during the
festival that my article had not been included. I still have no
idea why, as no one has had the courtesy to contact me. Was
its omission deliberate? I'm inclined to think it was adminis-
trative incompetence, since most other

aspects of the conference organization

Jay Sage has been an avid ZCPR proponent since the very first version appeared.
He is best known as the author of the latest versions 3.3 and 3.4 of the ZCPR com-
mand processor, his ARUNZ alias processor and ZFILER, a “point-and-shoot” shell.

When Echelon announced its plan to set up a network of remote access computer
systems to support ZCPR3, Jay volunteered immediately. He has been running Z-
Node #3 for more than five years and can be reached there electronically at 617-965-
7259 (MABOS on PC Pursuit, 8796 on Starlink, pw=DDT). He can also be reached
by voice at 617-965-3552 (between 11 p.m. and midnight is a good time to find him
at home) or by mail at 1435 Centre Street, Newton Centre, MA 02159. Jay is now
the Z-System sysop for the GEnie CP/M Roundtable and can be contacted as
JAY.SAGE via GEnie mail, or chatted with live at the Wednesday real-time confer-
ences (10 p.m. Eastern time).

In real life, Jay is a physicist at MIT, where is tries to invent devices and circuits
that use analog computation to solve problems in signal, image and information
processing. His recent interests include artificial neural networks and supercon-
ducting electronics. He can be reached at work via Internet as SAGE@LL.MIT.EDU.

The Computer Journal / #51

were also handled poorly.

On my speaker registration form I
had checked boxes indicating the
equipment that I wanted them to sup-
ply in our meeting room. My speaker
confirmation form indicated that the
information had been recorded, but I
telephoned the program coordinator
the day before I drove down just to be
absolutely sure. Do you think the
equipment was there? No. And do you
think that anyone at TCF knew what to
do about it? No. We had to struggle
through a couple of talks before, al-
most by accident, we stumbled upon
the people who had the equipment (no

33

one had told them we needed it).

I had hoped that the following ma-
terial would be read by an audience
that might include many people with
CP/M computers who did not know
that magazines like TCJ and advances
like Z-System existed. [Ed: Thanks for the
thought anyway, Jay.] So that my effort on
this composition was not totally
wasted, I am presenting it here.

CP/M is Not Dead!

I'm sure you all know the famous
Mark Twain anecdote. Somehow the
newspapers picked up a story that he
had died. At his next public appear-
ance he delighted in relating that his
reported death was, as he put it,
“greatly exaggerated.” The rumored
death of CP/M, the granddaddy of mi-
crocomputer operating systems, is
similarly exaggerated!

Unfortunately, the erroneous im-
pression about CP/M is much harder
to correct. Were it simply the result of
false reports in the media, one could
bring the truth to the media’s attention
and have them publish a correction.
Regrettably, the belief that CP/M is
dead arises via a mechanism that can-
not be used to correct the view.

I will try here to give you some im-
pression of the vitality that continues to
flourish in the CP/M world, particu-
larly in connection with the develop-
ment of the Z-System, a highly ad-
vanced successor operating system to
CP/M. While maintaining total com-
patibility with CP/M and its software
base, the Z-System brings concepts and
features that are as advanced as can be
found on any computer anywhere.
Nothing can give a 4-MHz Z80 with 64
kilobytes of memory the raw comput-
ing horsepower of a 33-MHz 80386 mi-
croprocessor with several megabytes of
memory, but the Z-System can give an
old CP/M computer a surprisingly
powerful user interface and can turn it
into a fun, educational, and productive
machine.

At the end of this article, I have
listed three magazines with strong CP/
M support. By subscribing to them you
will be able to learn about sources for
public-domain programs and the
names and addresses of vendors who
actively support 8-bit software and
hardware products. You are also wel-
come to call me.

Why Do People Think CP/M Is Dead?
The community did not learn of the

death of CP/M, as with Mark Twain,
by reading a report; they inferred it
from personal experience. The main-
line computer magazines, such as Byte,
gradually carried less and less news
about CP/M until eventually they car-
ried none. Why did they stop? Basi-
cally because the volume of interest
shifted naturally enough to MS-DOS
and the newer hardware. There was no
longer much activity in CP/M hard-
ware development or sales, and almost
all mainline software houses stopped
developing new CP/M programs. Soon
most of them stopped even offering
their old CP/M programs for sale.
Some, like Borland, have even gone so
far as to deny that CP/M products they
once offered were ever offered by their
company! (I swear | remember a
Borland Turbo Modula 2, but many
people tell me that when they contact
Borland they are assured that Borland
never offered that product.)

This situation notwithstanding, a
very high level of CP/M activity did
continue, but not in the spotlight. There
were smaller, specialty magazines that
continued to focus on hobbyist com-
puting, and there were also smaller
software vendors who continued to
support CP/M with great enthusiasm.
For veteran CP/M users there was
some chance of their learning about
these alternate sources of support be-
fore the mainline sources shut the door
on CP/M, but even many of the veter-
ans lost touch.

For new owners of CP/M comput-
ers—and though it might surprise you,
there are many—the situation is worse.
Typically, they have inherited a retired
CP/M computer from a family mem-
ber, friend, user group, or even a
stranger. When they try to contact the
sources for CP/M information and
support listed in their old documenta-
tion, they find them to be either out of
business totally or at least out of the
CP/M business. And these days the
sales representatives at the software
houses have often never even heard of
CP/M! No wonder these new CP/M
computer owners conclude that CP/M
is dead.

The Real Story

It is natural that the major focus of
interest in computers will continually
shift toward the latest, most advanced,
and most widely sold hardware. Nev-
ertheless, a tremendous level of activity
still exists in the CP/M world, most of

it centered on the further development
of the Z-System.

Why would someone still be inter-
ested in CP/M? The special spirit that
persists in the CP/M world is one im-
portant factor. As in the Unix world,
there is a very strong sense of commu-
nity and sharing. This includes a well
established tradition of public-domain
software, that is, programs written spe-
cifically for the benefit of the general
community and shared totally with
that community. By contrast, the MS-
DOS world has what they misleadingly
call “shareware.” These programs are
distributed for free, but users are told
that they must send money to the au-
thor if they continue to use them.

A second attraction in the CP/M
world is the intellectual challenges and
rewards it offers. The relative simplic-
ity of the Z80 microprocessor and the
CP/M operating system allow easy en-
try to new programmers. Although ex-
tremely rare in the DOS world, it is
nearly universal in the CP/M world
that programs are published with
source code. This has several far-reach-
ing consequences. In terms of quality, it
means that the development of a pro-
gram is not limited to the conceptual
and coding ability of a single author.
Others in the community can take that
source code, make improvements to
the program, and return the results to
the community. Many of the most im-
portant CP/M programs have a very
long history of development involving
many authors.

Reading source code is also an in-
dispensable vehicle for learning about
how a computer system works. New
programmers can quickly learn coding
techniques and apply them to new ap-
plications. Amazingly, source code is
available not only for the numerous
utility programs but also for at least
some versions of all parts of the operat-
ing system as well.

The seminal event in the survival of
CP/M took place almost exactly a dec-
ade ago. Richard Conn, eager to make
his own contribution to a community
that he felt had helped him so much,
spearheaded a group effort to write re-
placement code for the Console Com-
mand Processor (CCP) portion of the
CP/M operating system. The result,
named ZCPR for Z80 Command Proc-
essor Replacement, was released to the
public in February, 1982.

Not much later, 1 discovered this
much improved command processor

The Computer Journal / #51

and installed it on my CP/M computer.
Then I did something even more sig-
nificant: I looked at the source code. To
my amazement, | discovered that the
operating system, that “holy of holies,”
is nothing more than a computer pro-
gram, rather like any other, and that I,
albeit untrained in systems program-
ming, could not only understand it but
.experiment with changing it! Discover-
ies like this from reading source code
continue to inspire new CP/M hobby-
ist programmers, and computer bulle-
tin boards and user group meetings
continue to be scenes of intense discus-
sion.

The Features of Z-System

ZCPR command processor has gone
through several stages of evolution,
and the same approach has now been
applied as well to the Basic Disk Oper-
ating System (BDOS) component of the
CP/M operating system. The combined
result is now referred to as the Z-Sys-
tem, and it represents a remarkable
point in the development of microcom-
puter operating systems. It has many,
many features inspired by minicom-
puter and mainframe operating sys-
tems and some not available even on
those powerful machines. When I use
my DOS 386 machine at work, there
are many Z-System features that I
sorely miss, and I am constantly
amazed at their absence from an oper-
ating system whose code is bigger than
the entire memory address space on a
CP/M machine!

For the most part, the original Digi-
tal Research CP/M accomplished in
admirable fashion the essential func-
tions it was required to perform: to run
a few resident commands and to load
external commands from disk. How-
ever, it devoted little attention to the
user interface and did not provide
many services to make the operator’s
life easy. To be fair, of course, CP/M
was born in the days when 16K of
mermnory cost about $500 (in 1970s dol-
lars, no less) and occupied an entire S-
100 card, roughly the size of the moth-
erboard of a modern DOS machine.

The central goal of the Z-System
since the beginning has been to make it
easier and more convenient to operate
the computer. My own ideal has been
to have the computer perform all tasks
that it can handle on its own and to
leave to the user only those tasks that a
computer cannot figure out by itself. In
other words, the computer should take

The Computer Journal / #51

care of all the routine matters; the hu-
man operator should handle only the
thinking. I will now run through a
short summary of Z-System features
and try to indicate how they make the
operator’s life easier.

User Area Access

CP/M introduced the concept of
disk “user” areas, which allowed the
operating system to group files into
separate logical directories. Unfortu-
nately, CP/M provided no practical
way to access files across user areas,
which made them almost useless.

Z-System makes it very easy and
convenient to organize your files.
Where CP/M allowed only a drive pre-
fix in file specifications (e.g.,
B:.TEXT.DOC), Z-System allows drive
and/or user number prefixes (e.g,
A3'WORK.WS) so that files in other
user areas as well as other drives can
be referenced directly. In addition, Z-
System allows meaningful names
(similar to DOS subdirectory names) to
be assigned to drive/user areas (so we
might have LETTERSJOE.WS). This
provides an interface that is far more
suitable to the way people think and

remember.

Terminal Independence and the
Environment

While some would argue that the
DOS hardware and software standards
established by IBM’s market domi-
nance have resulted in an enforced
mediocrity, there is no doubt that hav-
ing a single environment in which to
operate makes life much easier for ap-
plications programmers. Programs for
DOS generally work right out of the
box on any IBM-compatible computer.
Configuration is required only for fine-
tuning.

CP/M, on the other hand, was de-
signed to allow programs to run on an
extremely wide variety of hardware. In
those days, “personal” computer took
on a different meaning—each person
designed and built his own hardware.
CP/M could be made to work with all
of them, but elaborate configuration
procedures were generally required,
especially to match programs to the
particular terminal used. To this day,
we still have to deal with this hardware
diversity.

What CP/M could have provided,
but didn’t, was a means for conveying
to application programs information
about the operating environment. Z-

System has several modules that afford
such communication. An area called
the environment descriptor (ENV) con-
tains information about the system
configuration. Another system area
called the message buffer (MSG) stores
information that one program can
leave for use by another program that
runs later.

Part of the ENV is a section called
the TCAP or Terminal-CAPability de-
scriptor (if you know Unix, you will
recognize this). When the appropriate
TCAP has been loaded, a Z-System
program will automatically use the
right video control codes for that termi-
nal.

Command Processing
Enhancements

Under CP/M, you had to specify
where the COM file to be run was lo-
cated (otherwise the current drive was
assumed). This is a perfect example of
something that a computer can easily
be smart enough to do for you, and Z-
System does. As with modern versions
of DOS (which took many years to
catch on to this Z-System feature), you
specify a list of directory areas that the
operating system will scan for a re-
quested COM file. Unlike DOS, Z-Sys-
tem does not insist that the current di-
rectory be first in the path; it can ap-
pear wherever you want it to, or not at
all.

With Z-System one is also no longer
limited to issuing commands one at a
time (DOS has been even slower to
catch on to this). A single line of com-
mand input can contain a whole se-
quence of commands. As a result, you
do not have to interrupt your thinking
to wait for one command to finish be-
fore you can specify the second and
subsequent steps in a process. You can
work out a strategy for what you want
to accomplish and issue all the com-
mands at once, before you forget or get
confused.

Many oft-repeated computational
tasks involve sequences of commands
(e.g., editing, spell-checking, printing).
In such cases, the Z-System alias facil-
ity (similar in some ways to CP/M'’s
submit or DOS's batch operations but
far more flexible—more akin to Unix
scripts) can be used to define a new
command name, which, when in-
voked, performs the entire sequence.
This saves the user a lot of typing but
more importantly eliminates the need
to remember exactly what the sequence

35

is. Basically, you solve the problem
once and put the solution into an alias
script. From then on, the computer is
smart enough to take care of the com-
plex details for you.

Conditional Command Execution

There is only so much one can ac-
complish on a computer (or in life)
without making decisions. Have you
ever seen a programming language
with no ability to perform tests and act
in different ways depending on the re-
sults? Flow control (IF/ELSE/ENDIF)
is unique to the Z-System command
processor. Other operating systems that
offer flow control at all limit it to op-
eration inside a batch or script lan-
guage. A special set of Z-System com-
mands can test a wide range of condi-
tions, and the tests can be nested to a
depth of eight levels.

Command Processor Shells

If you do not want to deal with the
operating system at the command level
or if you want to have a command
processor with extended features, the
Z-System shell facility allows you to
install substitute user interfaces of your
own choice at will. They can even be
nested within each other.

Shells come in two common varie-
ties: menu shells and history shells.
The menu interfaces allow the user to
pick tasks with single keystrokes and
have the shell program generate the
complex sequences of commands re-
quired to perform those tasks. The
menu system shields the user from
complexity, saves typing, and greatly
reduces the chance of error.

History shells are enhanced com-
mand processors that remember your
commands and allow you to recall and
edit previous command lines. I wish
the Apollo Domain minicomputer sys-
tem I use at work (not to mention my
DOS computer) had a history shell as
nice as Z-System’s LSH. It works like a
wordprocessor on the command his-
tory, allowing searching and extensive
editing.

What If You Make a Mistake

This is one of the other areas in
which most operating systems behave
in an abominably primitive manner.
When you issue a command that can-
not be performed, they just issue an er-
ror message and then dump you back
to square one. Often you are not even
told what sort of error occurred (con-

36

sider DOS’s wonderfully helpful “bad
command” message).

The Z-System behaves in a civilized
manner under these circumstances.
When an error occurs, the command
processor turns the bad command line
over to a user-specified error handler.
The most sophisticated error handlers
allow the operator to edit the com-
mand and thus recover easily from typ-
ing mistakes.

The system environment even con-
tains an error type, which the error
handler can use to give you more spe-
cific information about what went
wrong. It may be the familiar error of a
COM file that could not be found, but
there are many other possible causes
for the difficulty. A file that you speci-
fied as an argument might not have
been found (e.g, “TYPE FILENAM”
when you meant “TYPE FILENAME"),
or you may have specified an ambigu-
ous file name to a program that cannot
accept one (e.g, “TYPE *DOC").

System Security

Like minicomputer and mainframe
operating systems, the Z-System is a
secure operating system. This means
that it has mechanisms for limiting
what any particular user can do or get
access to. Commands that perform
dangerous operations (such as erasing,
copying, or renaming files) can be dis-
abled when ordinary users are operat-
ing the system but enabled when a
privileged user is at work. Areas of
your disk can be restricted from access
for storage of confidential or other sen-
sitive information. These security fea-
tures come in very handy in the im-
plementation of a remote access system
or bulletin board.

Summary

To sum it up, the goal of the Z-Sys-
tem is to provide an operating environ-
ment that can be tailored extensively to
user preferences and that can be made
to handle on its own and automatically
as many computational details as it
can, leaving the user free to concentrate
solely on those aspects of computer
operation that require human intelli-
gence.

Z-System, The State of the CP/M Art
Now that you've seen the remark-
able features of the Z-System, you
might be curious about how it can be
installed on your CP/M computer. In
this regard, the most spectacular step

in the evolution of Z-System took place
about three years ago. At that time
some major programming break-
throughs made it possible to configure
and install the Z-System as if it were an
application program running on the
CP/M computer. Before that, you re-
ally had to be a rather skilled assembly
language programmer to get Z-System
running.

The new Z-System comes in two fla-
vors: NZCOM for computers that use
version 2.2 of CP/M and Z3PLUS for
computers running CP/M-Plus. Joe
Wright, Bridger Mitchell, and 1 were
the main developers.

NZCOM and Z3PLUS embody, I be-
lieve, some of the most exciting and
remarkable developments in the his-
tory of microcomputer operating sys-
tems. With all the microcomputers [
have had experience with, the operat-
ing system has been a static entity. You
boot up the computer, and there you
have the operating system, fixed and
immutable. Few computers offer more
than one operating system. With those
that do, changing the operating system
usually requires rebooting and starting
over. And never do you, the user, get to
define the characteristics of the operat-
ing system. You just take what the
manufacturer decides to give you.

With NZCOM and Z3PLUS the op-
erating system becomes a flexible tool
just like an application program. You
can change operating system configu-
rations at any time, even right in the
middle of a multiple command line se-
quence. You can do it manually, or
alias scripts can do it automatically in
response to conditions in the system!

You can change the whole operating
system or just a part of it. Would you
like a different command processor?
No problem. With a simple command,
NZCOM or Z3PLUS will load another
one. No assembly or configuration is
required. If you want to experiment
with a new disk operating system
(BDOS), NZCOM can load a new one
in a jiffy. This makes for a whole new
world of flexibility and adaptability,
learning and experimentation.

Do you need more memory to run a
big application program? Fine. While
that application is running, just load a
small operating system without some
of the bells and whistles. Then, after
that task is finished, go back to the big
system with named directories, lots of
resident commands, or special input/

See Z Corner, page 48

The Computer Journal / #51

PMATE/ZMATE MACROS

4. “Mother of All Macros”

By Clif Kinne

Before | get engrossed in this issue’s subject matter, let me
ask once more for your feedback. This has been a one-way
street so far. True, I have managed to clean up and enhance
my MATE in the process of preparing these columns, but I
really miss the stimulus of your responses. Who is going to
call oversights to my attention if not you? (Did anyone notice
the missing lines at the ends of 3 listings in column 27 See
corrections in TCJ #50. Also in that issue, I just discovered I
failed to precede instances of the GoBack macro, .*G, with its
argument, @7. Please mark your copy with that correction.)

Mainly, however, I am sure there are macro ideas out
there that I've never thought of. Please share them with oth-
ers, through this column. And, for some of you, I may have
raised more questions than I have answered. Please, let me
know.

In addition, I should very much like to know if there are
readers using each of the variations of PMATE: MATE,
ZMATE, and PCMATE, and to what extent.

Buffers as Macros

You have noted, I am sure, that all of the macros offered
so far have been for the permanent macro area. This time we
turn our attention to buffers as macros.

- Many times we write macros for use with particular files
in one user, or directory, area. It seems wasteful to clutter up
the permanent macro area with such specialized macros. Us-
ing up the limited supply of names available for permanent
macros is of even greater consequence. Thus it makes sense
to let such macros reside as files in the relevant user area and
be called into a buffer for execution when needed.

However, since most macros are no more than a few
hundred bytes long (usually much less), it also makes sense
to collect most of those macros in a single file for each user
area. This, then, leaves us with the problem of executing a
particular one of those macros after they are loaded. My so-
lution to this problem is this month’s macro.

The names for the macros in previous columns came eas-
ily to mind, and I thought them fairly apt. But, I must tell
you, I didn’t have any idea of a name for this one until
Saddam came along. I’d like to think that this is as effective
in managing macros as the “Mother of All Battles” was in
managing Saddam.

N

The Mother Macro
Before calling your attention to the coding in Listings 1
and 2, I want to describe the external nature of the macro: a)
some of its features and b) how it fits into the overall scheme
of my PMATE.

Salient Features.
Again I am indebted to Jay Sage. First for pointing out
that this macro introduces two novel techniques:

1. A macro which modifies its own code in accordance
with external input supplied by the user. In this case, the
target label, s, of a Jump command, Js, is changed to a char-
acter typed by the user.

2. The use of scrolling when displaying a menu, to remove
extraneous material from the screen.

And second, for prodding me into making the Mother macro
independent of the nature of the menu. This turned out to
have several beneficial side effects.

Integration into PMATE.

As you might expect, the effectiveness of this macro is at
least as dependent on how it is integrated into your PMATE
system as it is on the coding of the macro. I shall describe
how I have done it, and offer help on variations only if
asked:

In each user arca having regularly edited text files there
is a file called MACS.MAT. Each such file holds macros
specific to it’s User Area, along with some general-purpose
macros.

The autoexec macro (the permanent macro which is exe-
cuted when PMATE is brought up) loads MACS.MAT into
buffer 9.

Buffer 9 is executed by pressing Function Key F9.

Having lived so closely to this macro during its many
years of evolution, I fear that I may underestimate the diffi-
culty of grasping how it works. In an effort to ease such
difficulty, I am presenting it in stages: first an implementa-
tion of just the minimum features necessary to the macro
management; then with added frills to make it easier to use.
(This was not, of course, the way it evolved, but, believe me,

you don’t want to go through the con-

volutions of its actual development!

Clif Kinne is a retired computer designer. He cut his teeth on vacuum tube and

acoustic delay line machines in the fifties, made the transition to transistors and
magnetic cores in the sixties, left the field to his children in the seventies, and tried,
vainly, to catch back up with them in the eighties. He can be reached by voice at 617-
444-9055, or via a message on Jay's BBS, 617-965-7259. His address is 159 Dedham

Ave., Needham, MA 02192

The Computer Journal / #51

The MACS.MAT File.

Figure 1 depicts the general nature
and appearance of a minimal
MACS MAT file (not including the line
numbers on the right, which are for

37

Listing 1. Code for the minimal Mother Macro.
;MiniMom 38 bytes

FUNCTIONAL SPECIFICATION:

~

1. Moves to Buffer 9
a. Displays the labeled “Children” macros.
b. Prompts user to type a macro label.
c. Replaces the final character in MiniMom
macro with the character typed.
2. Returns to home buffer.
a. Jumps to label chosen
b. Executes that “Child” macro.

e Ne me me e we e e

CODE:
eBv7 ;Save home buffer in V7. 1
B9E ;Go to buffer 9. 2
A ;To top. 3
2{SEJS$} sMove past 2nd EJ in thie macro. (E is 4
) ; added to provide a more nearly unique
; string to search for than ‘J’ alone.)
GWhich macro?$;Prompt user to enter label letter of 5
; desired Child macro.
eKR ;Overwrite the target byte of this 6
; J instruction with the key typed.
87.°G sReturn to home buffer (MATE). 7
EJs ;Jump to selected label and execute that 8
; macro.

Figure 1. Typical Implementation of a Minimal MACS.MAT file

reference use in this discussion).

Line #1 is the minimal Mother Macro, “MiniMom”. Fol-
lowing that are a few “Child” macros, some truncated to
conserve space. The labels for these “Children” can be any
printable characters in any order you like.

Embellishment of the minimal MACS.MAT file to that of
Figure 2 is explained as follows:

1. The Mother Macro does not have to be the first line of
MACS.MAT, just the first executable code. Thus, we can put
an embedded filename on the top line and skip a line, for
appearance sake, before Mother. The top line of figure 2 also
includes recent revision dates and a reminder of its user
area.

2. Note that it doesn’t matter what is between the final
command, Js, of Mother and the first following label. I have
taken advantage of that to put there a 21-line menu (22-line
for 25-line screens) that will neatly fill the screen when
buffer 9 is called. Note that I have also added a column to
remind the user of buffers used.

You could, instead, put in any message and instructions
to the user that you like. Just don’t make a colon the first
character of any line!

3. You notice that Mother is spread over 2 lines in figure
2. That is because it includes a search for a 2-byte string: a
CR followed by a Colon. That command necessarily inserts a
carriage return into the macro.

4. In figure 2, | have included my full menu, but only
about half of the actual macros. I thought you might be
interested in some that are helping me to write these col-
umns. In macro :E you will have to figure out which of the
dollar signs are Escapes and which are real dollar signs.

The Commented Macros, Listings 1 & 2.

In both of these listings we have to get the cursor on the
target character of the final] command so that we can re-
place it with the label selected by the user. If we just execute
the command, AS]$, we shall find the cursor on the ESC fol-
lowing the] in the command we have just executed, or an

@BV7B7E A 2{SEJ}GWhich macro?$ @KRBE7EJs 1

2

12 BBE."BES{XKXIFORMS.MAT$}JQ ;Illustrates handling 3

;of large macros like FORMS.MAT. 4

5

:6[BS $EE_-3IMET=(13){MS"N $"}@T="21(@T="1){GEnd of sent?$ €

.“Y@S’"MIX}@T=", (M) :X2M[@T=" '_gDelete?$."Y@S’'_D]]JQ 7

8

:9 .“PFind:$@8' {#B2C}-L3K[LES;$EE E0S"AE2SEE" 9

G{Q)uit$”Q."A€S10GDone! $40QDJQ 10

11

3B [@T=0_@T=131(QT=";){K"}$[€T=32"_D] 12

E1S;$@E~-D[~-MAT=32! (8T=9) '_D]MK]JQ 13

14

:Q QBBR7E"X 15
Listing 2. *“Mother of All Macros”

“X9 ;Mother 69 bytes

; FUNCTIONAL SPECIFICATION:

; Manages a collection of macros in Buffer 9.

H 1. Displays a menu of those macros.

H 2. Responds to the user’s keypress by beeping

; if no macro label corresponds to that key;
H else jumps to that label.

H 3. Executes that macro.

H 4. Jumps to the common cleanup code at label :Q.

: VARIABLES USED: V7 saves home buffer.

BUFFERS USED: B9 holds this Mother macro and the

“Children” thereof.

~ w.

H SUBROUTINES: USING:
; ."R Restore .“G GoBack
H ."8 SaveEnv ."G GoBack

USAGE: This makes most sense if the macro, .9,
which exscutes buffer 9 as a macro, is in
the permanent macro area and can be invoked
as an Instant Command by 1 or 2 keystrokes,
preferably function key F9, if available.

~ we wme e we

H CODE:
eBV? ;Save home buffer in V7. 1
BSE ;Go to Buffer 9 2
.'s ;Save environment of Buffer 9 3
Y ;Label for restart if no macro found. 4
A2 {SRJS$} sMove to Jump target at end of this macro 5
; (assumes no other preceding RJ strings
T ;Tag this target character location. 6
L sMove to first line after Mother macro. 7
1QJ7 sScroll Mother macro out of view. 8
G§ sWait for keypress. 9
t ;jSearch for macro label. 10
E 7 Disable error messages. 11
8:$; Search for a colon in column 0. 12
(}.1¢ ; IF no label is equal to key struck, 13
QB H THEN beep and 14
JY ; redisplay menu. 15
} : END IF 16
€T132=(@K132) ; 1IPF character at cursor = key struck, 17
] 3 THEN escape loop; ELSE loop again. 18
jReturn to Jump-target character and 19
€XR ;replace it with keystroke character. 20
< R ;Restore buffer 9 environment. 21
7.°6 ;Return to home buffer (for MATE), 22
sBO7E 1 (Alternative for PCMATE or ZMATE.)
QR ; and redraw it. In the executable
; version there must be no character
; between this R and the following J.
Js ;Jump to selected macro for execution. 24

The Computer Journal / #51

earlier] in the macro, if any.

To get around these difficulties, I have elected to:

1. Make the search target the 2-character string:] with its
preceding character.

2. If the preceding character is inappropriate, insert arbi-
trarily an E, which should have no side effect.

3. Search for the second instance of that target string with
A2(SEJ$} (or A2{SR]$} for Listing 2).

The two major enhancements to the Mother macro, de-
tailed in Listing 2, are:

a. The bracketed loop checks if there is, indeed, a label
corresponding to the user’s keypress. If not, it simply beeps
and waits for another try, instead of letting PMATE com-
plain: “STRING NOT FOUND”.

b. The code, L@LQ]J, scrolls the Mother macro and any
preceding lines out of sight and leaves just the 21- or 22-line
menu visible. (Since the menu communicates with the user,
there is no need for a command-line message.)

Application Notes
1. Note the distinct similarity to Instant Commands. Any
of the macros can be executed with 2 keystrokes: F9 plus the
menu item key. However, you don’t have to remember a
macro’s name in order to invoke it. In fact, you don't even

Figure 2. Contents of Full MACS.MAT file in Buffer 9.

sMACS .MAT 5-3’91 4-10'91 4-7'91 3-13'91 TCJ.MAT 1
2
@BV7BYE. “S:YA2 {SRJ$} TLELQIGS [ES 3|
:$EB{QBJY)@T!32=(6K!32)]#4KR. “"RBE 7TEQRJIQ 4
5

- - ENTER NUMBER OF MACRO CHOICE ~ - 6

7
Q. Quit Buffers used g
9

0. Set TABs. 10
1. Get date. 11|
2, Get telephone number(s). 0,3 12
3. Move table entries around. 5;7,8 13
4. Compare T buffer with buffer 1, line at a time. 0,1,2 14
Comparison ends at first ESC in either line7 15]

5. Get list of unused macro names. 1,21
6. Remove redundant spaces. 17
7. List variables. 0 18
8. Number macro lines for TCJ. 19,
9. Search for a string to left of semicolon. 20
A. Make soft CRs hard. 21
B. Compress commented macro 22
C. Get buffer size (excl. top line). 23]
D. Number all lines on right. 24
E. Change escapes to dollar signs. 25
F. Change Ctrl-letter macros to caret,letter strings. 26
27
36 [ES $EE_-3IMAT=(13){MS"N §7}AT="21 (§T="1) 28}
{GBnd of sentence?$,"YQ@S’"MJIX}ET=".{M} 29
$X2M{@T=" ‘_GDelete?$."YES’_D]]JQ 30

t8 GIs there a blank line after last line?$ 31
.“Y85’{0GMake one$30QDJIQ)} .*S1V1 32
GMove cursor to first line to number. Then type ENTER.$ 33
~L [LeT=0_@T=13{QBGDone?$."YES_*}§[@T=321(QT=9) ' _M] 34
@T="; (L~-M[8X<57_~D]"}57QX@1<10{321}€1\VA1[@T=13_D]].“RIQ 35|
t9 .“PFind:$@8' {#B2C)-L3K[LES; $¢E_R0OS"AE2$¢E" 36
G(Q)uit$"Q. A€S]0GDone t $40QDIQ 37,
tB [@T=0_@T=131(@T=";){K"}$[€T=32"'_D] 38|
B1S;$@B"-D [-M@T=321(€T=9)’'_D]MK]JQ 39

1C ALQC,ZeC-@S\GType any key$0KJQ 40
tD 1V11[eT=0_#T=13{GDone?§."Y#s_} 41
580X€11<10({32I)€11\VA11[dT=13_D)L]JQ 42

1B [S"L$$GChange$. YES(-M"$R} 170 43
1P{8.$8T=9"¢T=13"4T="Q_@T<32{GChange?$. "Y@5{*“IAT+64R} }] JQ44
:Q OBB47E"X 45

The Computer Journal / #51

have to remember what macros are available.

2. Of course, when MACS.MAT is in buffer 9, it reduces
memory available for your working text. Sometimes you will
want to delete buffer 9 for that reason. In any case, this is a
good reason not to include any Children that run to a kilo-
byte or more.

3. A way to handle such large macros is illustrated by line
3 in Listing 1. That makes FORMS.MAT, which runs to 5
kilobytes, readily available but not in memory until really
needed. If you recall my column 2 (TCJ 49), my Buffer 8 is
executable by function key, F8. So, after executing macro 1 of
Buffer 9,you will have to type F8.

4. My macro labels (menu item numbers) can be thought
of as hex digits, since there is just about room for 16 of them
if no more than one or two use two lines. Of course, as
indicated above, you can use any other scheme you like for
macro labels and menu item designators.

5. Note that we save the environment (."S) after entering
Buffer 9 and restore it (.*R) before returning to the home
buffer. This is advantageous when debugging a Child macro.
After trying the Child out and returning to Buffer 9 for more
editing, we find the cursor just where we left it.

6. To invoke one of these Child macros from another
macro is a bit awkward, but it can be done. For example: Say
you want to call :3, having your home buffer already stored
in V7. With PCMATE, you can make use of the ..n command,
which starts executing Buffer n at the cursor position:

B9E A S:3§ BE7E ..9

should do it. For MATE or ZMATE, you can move macro :3
to another buffer for execution:

BY9E A S:3§ T S:4 #B2C €7.°G .2 jFor
MATE.

or B9E A S:3$ T S:4 #B2C B47E .2 ;For ZIMATE.

is a possibility. Of course, you should check that you don’t
have “:3” or “:4” in a comment somewhere ahead of the
labels. If you do, you could search from the bottom up,
maybe. Just change A 5:3 to Z -S:3.

7. Some macros you don’t always want to run from the
beginning. You can use this Mother macro technique to invite
optional starting at any one of several points in a macro.
Simply write the menu describing those points, and label
them accordingly.

For Next Time
It’s just possible I may skip the next issue. Without some
reader feedback, the strain of just deciding where to go from
here is becoming unbearable. ®

[Three corrections from last issue:

1. Listing 1, line 4 should read “@A%" instead of “@0%".

2. The paragraph on the botiom right column of the first page of
Clif's article starting with “Since any contents of this butfer are wiped
out’ should have been preceded with “0”, which is the buffer number in
use.
3. Listing 2, line 35 begins with an extraneous character that evi-
dently was picked up during electronic transfer and not noticed. Please
disregard the “6".

Again, our apologies for any inconvience. Editor]

39

Corner, from page 64
spent hunting down parts.

With systems coming along like
these it backs up what I said last time
about not needing to teach the hard-
ware side of electronics anymore.
Pretty soon even embedded systems
will be plug and play operations.

EForth68K
I have been working on EForth and
got it running on my Sage system. The
EForth is not much of a system, but if
you want a quick Forth on a new sys-
tem here is the product. It can be
downloaded from the GEnie Forth sec-

badly on the macros. | learned first
hand why most people metacompile
Forths, Forth's special use of characters
just drives the assemblers crazy. With
Avocet the preprocessor allows you to
go over the code after the macro and
correct any of the failures (I have
learned to like that feature a lot!). There
are several characters that can not be
used in macros at all and those words
will have to be done by hand coding,
period.

I now have a working (with a few
minor bugs) 68K version for 68K
assemblers. A number of problems
were solved by doing away with any
macros. In

“In MASM you can equate locations over and over
again. The Microtek assembler has limited number
of times you can equate things or set the origin.”

MASM you can
equate locations
over and over
again. The

tion and assembled with Microsoft’s
MASM. Now I am not one to say much
for Microsoft’s products, but their as-
sembler does work and as I will point
out does pretty good over what Motor-
ola assemblers can do.

So what I did was download one of
the EForths for the PC and played with
it. Then I got one for the 68K from
GEnie. Now it is still in the MASM
format, just the 68K code is entered as
defined words. This means all the hand
coding has been done for you. What
will need changing is the terminal
input and output ports or addresses. To
test it out 1 just replaced the 1/0
subroutine calls with ones to my
hardware, using DOS’s DEBUG. You
can edit the S records with an word-
processor or patch the binary code
supplied. I tried reassembling and
combining the code properly but found
the special routines crashed.

The resulting product is pretty
good, but you need to use MASM in
order to get all the macros to work
properly. I found this out the hard way
when I ported the code to several 68K
assemblers. 1 used mostly the Avocet
and Microtek assemblers. Each has
their own problem which must be
overcome. In the Avocet you use a
macro preprocessor which I like as you
will see later. The Microtek you as-
semble like the MASM, all in one pass.

Way back when, Motorola used a
pretty limited set of characters in their
assemblers, and especially their macro
assemblers. MASM has no limits and
will assemble all the macros as sup-
plied. Both 68K assemblers will choke

assembler has limited number of times
you can equate things or set the origin.
We ran into this problem earlier with
their use of strings for the section
command. | think you can have 256
different sections each with a 32
character string name. That is pretty
nice except it drives us crazy when we
try to do math inside a macro to
determine which section code should
go into. Now this
math inside a

Microtek

In my code, what you see is what
will be assembled. It also makes how
the assembler actually does things a lot
more clear. This last point I feel is im-
portant as the main reason for EForth
was to provide a quick and simple
learning process for new people to
Forth and to bring other systems on
line quickly. Now patching the existing
code is probably the fastest and easiest
way to get up and running. My 68K
code will get you there, but you do
need to know about 68K assemblers
and such. The macros just hide too
much of what is going on from the pro-
grammer and so little is learned. The
whole linked list was made inside the
macro where as mine is listed code
showing the links, names, counts, and
flags. Make it simple if you want
people to learn from it and progress.

Hopefully by the time you read this
my code will be bullet-proof and on
GEnie. I discovered the 68K assemblers
do -1 differently than MASM and some
flags are handled differently as well. 1
have found most of the differences, but
one of them still eludes me. | have been
forced to break down and do a bit-wise
comparison of the output to find the
problem. Needless to say it takes time
as some difference are acceptable, some
are not.

macro is not my
idea and I want
no part of it, but
my company’s

“The macro listing is short until expanded, but
without expanding you have little knowledge of
what the actual code is.”

code has tons of
this sort of nonsense and the Microtek
will not work using it. You have to
manually set each section name and
ORG statement and do not exceed 256
of both.

The EForth uses a macro that re-
ORGs the word as it is being defined.
They do this to get a separate
dictionary in upper memory going
downward, while the code section
starts in lower memory going upward.
I solved the problem by just having
two separate code sections, with the
dictionary starting from a pointer that
is calculated as each word is defined.
The original code was about 40K in
length (text words) and after removing
the macros and creating a separate
word linked list, you have about 140K
of assembly code. So yes the macro
listing is short until expanded (about
300K expanded), but without
expanding you have little knowledge
of what the actual code is.

Minix

I have talked to fellow workers
using Minix 1.5 on a Maclntosh and
they seem very pleased. | have version
1.3. There is a discount for upgrading
and I will do it later for the PC. My
Atari ST however just has 1 meg of
memory which is ok for 1.5 on it but
not the Sage which only has a half
megabyte. I think I will port the 1.3
version as it will still run on both
machines, and 1 hope the disk and
most programs are still compatible
between 1.3 and 1.5. That is next on my
list as soon as the 68K EForth is on
GEnie.

Which brings me to an end this time
around. Check out GEnie and see some
of the good Forth programs there. Join
FIG. There is lots more support and
other programmers willing to talk
about how-to. I find Forth an excellent
personal language. Keep programming
and hacking. @

The Computer Journal / #51

Z-Best Software
The Z3HELP System

By Bill Tishey

Z-System tools have been released at a steadily increasing
rate over the past 3-4 years. Since the appearance of version
3.3, many programmers seem to have awakened to the
power and potential of ZCPR and to new-found enjoyment
in programming under CP/M. This has been great for Z us-
ers, who now have as wide a selection of system utilities as
any UNIX user probably enjoys! At times, however, this
flurry of development, has had one drawback—diminished
attention to documentation. Updates to existing programs, in
particular, have appeared so frequently that there’s been an
annoying lag between the release of a new version and ap-
propriate documentation describing the new features and
changes to previous usage. This seemed to be the case, at any
rate, before ZSIG began to provide some control over the
development process.

In response to the need for more up-to-date documenta-
tion, in late 1987, I began putting together a Help system for
the Z utilities to keep track of the many new programs and
new functions being added to older ones. I patterned the
system after ALIASES.HLP, a ‘Help System for Online Ali-
ases’ presented in Echelon’s ZNEWS-letter #507. My goal
was to make it both comprehensive (in terms of the pro-
grams which needed Help files) and practical (in terms of the
information to be included in each file).

First, | had to decide what information about a utility I
wanted to have ‘on-line’ in a Help (.HLP) file. I came up with
the following categories:

1. A quick view of stats about the program: its size, crc,
version number, date of issue, author, and where I could find
it in my archived files.

2. A brief description of what function the program
served.

3. A brief explanation of the program’s syntax and any
available options.

4. Special reminders concerning the program’s operation,
configuration, compatibility with other tools, et cetera.

5. Explanation of any error messages.

6. A history of changes from one version to another (usu-
ally as “Notes”)

7. Examples of Use

I then set out to examine existing .HLP files, DOC files,
the ZNEWS-letters, and even source code and BBS messages,
to compile information in these categories for each utility.
This was a monumental task, to say the least, and I soon
decided first to develop a base of essential data on each util-
ity and later to expand on such things as ‘Notes’ and ‘Ex-
amples of Use’ as time permitted.

Next, | wanted to be able to access this information
quickly and easily. An alphabetical sorting by utility name, in
a‘user-indexed’ Help file, seemed logical, since this 1) would
organize the information, 2) provide an easy menu with
which to access it, and 3) provide an extensible system for
future additions. The only question at this point was whether
to provide a separate help file for each utility or to include all
information in several large, user-indexed files.

While separate files might allow for easy updating, the
idea of over a hundred .HLP files in a directory was rather
distressing. Then came LBRHLP from Bob Peddicord—just
what the doctor ordered. This super utility (now at version
1.8) allowed me to have separate files without the hassle of
over-crowded directories. I simply created an ‘A.HLP file to
serve as a menu, developed separate .HLP files for each util-
ity beginning with ‘A’, and did a ‘Group Build’ on them with
VLU to create a crunched ‘ALBR’. Defining ‘D15 as my
‘default du’’ for LBRHLP, I then set out to create a similar
LBR for each letter of the alphabet to reside on D15:. [Note:
The uncrunching routines in early versions of LBRHLP used
up to 22k of buffer space, leaving only 25k+ for files. This

resulted in ‘memory overflow’ mes-

Bill Tishey has been a ZCPR user since 1985, when he found the right combina-
tion of ZCPR2 and Microsoft’s Softcard CP/M for his three-year-old Apple 11+.
After graduating to ZCPR30 and PCPI's Applicard CP/M, he did a “manual in-
stall” of ZCPR3.3 (with help from a lot of friends!), and in late 1988 switched to
NZCOM and ZSDOS, all on the same vintage Apple I1+. Bill is the author of the
Z3HELP system, a monthly-updated system of help files for Z-System programs, as
well as comprehensive listings of available Z-System software. Bill is the editor of
the Z-System Software Update Service and has compiled such offerings as the

sages when trying to read large help
files such as DU3HLP, VLUHLP,
VMENU.HLP, and help modules for
some of the system libraries. With
LBRHLP14, however, Howard Gold-
stein improved the buffer allocation, so
that uncrunched files within a LBR
could be an additional 24k in size.]

To simplify accessing the files, I cre-
ated a series of aliases:

Z3COM package and the Z-System Programmer’s Toolkit. Bill is a language analyst

for the federal government and frequents the Foreign Language Forum (FLEFO) on
Compuserve. He can be reached there (76320,22), on Genie (WATISHE), on Jay

A LBRHLP -A A
B LBRHLP -B B

Sage's Z-Node #3 (617-965-7259) and by regular mail at 8335 Dubbs Drive, Sev-

ern, MD 21144.

The Computer Journal / #51

and a similar one for each letter of the

41

sions of a program are available. The
Figure 1. . .
; menu bar will vary from one help file
Help Menu for I-System Utilities to another, but usually begins with
online utiliti described he o aot hel inply ¢ “Syntax/Options” and ends with
ne u es are 8cr' re. O ge elp on a ccmmand, a8 Y Ltype ’“" ” “ ”
the corresponding letter. To go back to CP/M, enter a “C. Notes” and Examples of Use”. The
function description is brief (often
A-2¢ -CoM - N taken from the “.FOR” file provided in
AT e most distribution LBRs). Some utilities,
D ~ ACMDUTIL.COM -Q of course, are released with already ex-
E - ACOPY .COM -R cellent Help files, and these are in-
F - ACREATE .COM -5, cluded in the system. Usually they are
G - ADIR .COM -7 - .
H - APIND .COM -v an additional, more detailed, source of
I - ALIAS .COM -v information, accessed from the menu
J - ANY4 .Z80 - bar of the root Help file.
;:m:x.m:ﬁ ___z Updating the Help files has also
Im - asx . COM -3 proven to be simple. Using VLU to
ta :AT uncrunch/extract the HLP file in ques-
:: ?RT tion, I use ZDE to make appropriate
+d 1ACMD changes, recrunch the file (supplying a
ze :ACOPY1 new date of update), open the .LBR
£ :g’;im with NULU, and use option -R to re-
:g +AFIND place the old HZP with the new. This
11 :ALIASL usually takes no longer than a few
:] :ANY4 minutes. So, there you have it—a
‘: gy simple Help system, made ‘simple’ by
em :ASK the excellent tools (ARUNZ, VLU,
LBRHLP, et cetera) already available

alphabet and placed them in ALIAS.CMD in my ROOT di-
rectory. Then Jay Sage showed me how, instead of 26 such
aliases, the following single alias could serve for all:

A=B=C=D=E=P=G=H=]=J=K=L=M=N=0=P=Q=R=. .=W=X=Y=Z LBRHLP -$0 $0

..the $0 equating to whichever letter I pressed. [Ed: | have
truncated the alias to fit on one line. Fill it out with each letter of the
alphabet]. Now, all I had to do was type ‘<space>A’ in any
. disk and user area, and ‘A.HLP would come up with a
‘menu’ of Help files for all utilities on the system beginning
with ‘A’. [Note: Z3PLUS users must use ‘/A’ since
‘<space>A’ had to be omitted as an option under Z3PLUS.
/A’ will work for all Z-System users]. See Figure 1 for
AHLP, the Z3HELP menu file for utilities beginning with
”A”.

Individual help files are accessed from such lettered menu
files. To call ASK.HLP, for example, simply type “M” from
the menu and LBRHLP will retrieve and uncrunch the appro-
priate file from A.LBR on D15:. The menu files can also be
easily edited and expanded to suit a user’s needs. When I get
around to adding a Help file for Bridger Mitchell’s command
scheduler (ATOSC.LBR), for example, I'll simply include “AT
.COM - N” for option “N” in the menu

for ZCPR3.

For the past several years I've been bundling individual
updates of Help files into Z3HELPxx.LBRs and distributing
them with the ZSUS monthly releases. The update LBRs are
also available for download from Jay Sage’s Z-Node #3 and
from other popular Z-Nodes (Z3HELP40 is the latest as of
this writing). A number of people have devised clever ways
of automating the process of updating the Z3HELP system
from the monthly Z3HELPxx.LBRs, and I'll describe a few of
these in my next column. The entire Z3HELP system,
comprised of five disks and current as of April 19, 1991, can
be ordered through ZSUS for just $20 (a significant savings,
no doubt, in what it would cost to download 1.5 megabytes
of data!). For Z-Node sysops who would like to use the
system online on their BBSs (presumably in a HELP
directory), the price is but $10. As I've said before, error
reports and suggestions for improving the system are always
greatly appreciated.

Z-System LBR Tools
Bruce Morgen, Howard Goldstein, and Gene Pizzetta
have been busy of late refining existing LBR utilities and even
creating a few new ones. See Figure 3 for a list of the most

section and add “:n :AT05C” in the in-
formation section to invoke
ATOSCHLP for selection “N”.

Figure 2 shows the header and initial
screen for ASK.HLP, a typical user-in-
dexed, “root” Help file from the
Z3HELP system. The program name
and “menu bar” are in reverse video
which serves to neatly block off the
program stats from the function de-
scription. The stats section may contain
extra lines if Type-3 and Type-4 ver-

Figure 2.

in batch files.

Size (recs) CRC
6k (46)

1- Syntax 2- Usage 3- Notes

ASK is a version of the M5-DOS utility which allowe testing of user input
Tt is tailored for use with zex/alias/arunz scripts and will
only run on Z-System
to make use of this program.
Cam Cotrill‘’s CFORZ02.

ASK.COM

Author/Latest Issue Disk
Richard Campbell 2/91 Z3COoM1

Version
1765 2.2

4- Examples of Use

(ZCPR3X). You must have the message buffers available
Written in BDS-C/Z vs 2.0 with routines from

The Computer Journal / #51

recent versions of available LBR tools. i

gure 3.
CL.COM CL.COM 1.00

If you use LPUT to build a library
(LBR) file, then decide to replace a
member with a larger (or, for that mat-
ter, smaller) modified version, you've
probably had to resort to NULU to
deal with repacking the LBR. Until
now, LPUT author Bruce Morgen has
been putting the finishing touches to
Compact Library, an idea originated
séveral years ago by Michal Carson to
compact a library in place and truncate
it, leaving only the necessary blocks al-
located. The program was dormant for
a’long time, since it was found to fail
on some systems while writing the disk
directory. Bruce took up the challenge
to fix, improve and generalize it, how-
ever, and CL is now a welcome addi-
tion to the Z-System LBR toolset. See
Figure 4 for CL's syntax.

CL. compresses an LBR, overwriting

Peddicord.

LDIR-B.COM 1.80

LGET.COM 1.10

LLF.COM 1.10

LPUT.COM 2.00

LREPAIR.COM 1.00

0 V2/09 4 31 FAOE IC10
Compacts a library, eliminating “dead space” caused by member files marked
as “deleted”. Can also erase members from the LBR, lists and wildcards
allowed. For CP/M 2.2, with runtime ZCPR3 support.

&LBREXT.COM 3.20
Extracts crunched, squeezed and LZH-encoded files from LBRs. Vs 2.0 by Bob

0 V2/06 2 16 CD0O5 LDIRB1S
Displays library directories showing file dates and sizes. Includes summary
line giving total member files found. Vs 1.0 by Steven Greenberg.

0 4 30 2A8E 1GET11
Extracts specified files from an indicated LBR. Vs 1.0 by Richard Conn.

0 5 36 AlEl LLF11
List Library files displays the directory of a declared library file. Vs
1.0 by Richard Conn.

4 V208 6 48 8F34 LPUT20
Automated ZCPR3 library maker. Does for LBR creation what LGET does for
extraction. Vs 1.0 by Bruce Morgen.

0 V209 2 16 8304 LREPAIR
LBR file integrity tester with limited correction capabilities. Matches
CRCs of member files with values stored in LBR directory and fixes the CRC
if the value is 0000h and the member file is not empty.

25 05/07/91 Bruce Morgen

0 V2/08 8 62 CE71 LBREXT32 35 04/06/91 Howard Goldstein

30 02/17/91 Gene Pizzetta

9 11/19/86 Bruce Morgen

10 11/27/86 Bruce Morgen

36 04/06/91 Howard Goldstein

9 05/05/91 Bruce Morgen

deleted entries and other unused sec-
tors of the LBR file with active members. It then de-allocates
the remaining blocks and/or extents of the LBR file. CL will
1) compact an LBR in place, 2) report the amount of free
space remaining in an LBR, 3) force a compaction, or 4) de-
lete members from an LBR. Compacting is not done if none is
required, even if the “Z” option is selected. Directory sorting
is done any time there is a compacting operation, whether
forced via the “Z” option or decided on by CL itself. Only
the sort is done if there’s no need for compacting and the
“Z" option is selected. See Figure 5 for some examples of
CL's usage.

Giving CL the ability to delete a library member was a
stroke of genius and makes it the perfect “Pack/Erase” utility
to complement existing LBR tools. [Note: CL may not be
compatible with all systems, so caution is advised. CL does
not create a new library. It overwrites the existing library.
Also, CL. cannot currently Krunch a file (ala NULU) to make
a larger directory. An enhanced LPUT might well be better
equipped to do this than CL, since LPUT already has the
code to build a new LBR and to add members.]

LREPAIR.COM

Bruce Morgen’s LREPAIR is a new LBR utility which
checks CRCs and repairs LBRs built by old or non-LUDEF-
compliant programs. LREPAIR is loosely derived from Sigi
Kluger's LCRCK v1.10. It tests LBR file integrity by checking
member file CRCs against LBR directory data. It will correct
member CRCs when they are invalid 0000h values as created
by LBRDISK and early versions of LU and NULU, and will
also fix the directory CRC in such cases. Uncorrected

member CRC errors are reported to the Program Error Flag
(a value of 255 indicates the LBR directory is probably
corrupted, 254 tells you that no members files were found).
Another instance in which LREPAIR corrects the LBR
directory CRC is when it strips any high bits encountered in
member files’ names. See Figure 6 for LREPAIR’s syntax and
an example of usage.

Other LBR Tools

Bob Peddicord’s LBREXT32, Bruce’s LPUT20, and Steven
Greenberg's LDIRB18 are undoubtedly the best trio of tools
for extracting, adding, and listing member files of LBRs. The
latest versions of LBREXT and LPUT (courtesy of Howard
Goldstein) store and retrieve the create and modify times as
well as dates from the LBR’s directory. LPUT also now al-
lows an input filespec or dir: which is equivalent to dir*.*.
The latest enhancement to LDIRB by Gene Pizzetta is a count
of the member files to be displayed, a nice addition to such
LDIRB niceties as display of member file creation and modi-
fication dates, as well as the original names of squeezed,
crunched, and “LZHed” members.

We should not overlook ZCPR 3.0 author Richard Conn’s
LLF, however, as an alternative to LDIRB. While LDIRB is a
more informative LBR lister with regard to member file his-
tory, LLF can show member file CRCs (which LDIRB at
present does not) and member file indices (which only the
larger LBR managers, NULU and LU, can do). Aware of
these advantages, Bruce has provided an update to LLF
(LLF12PAT.LBR) which fixes a cosmetic flaw on abort.

Bruce has also provided a patch (LFINDPAT.LBR) to give

Z-System support to Martin Murray’s

Filgure 4.

CL (Compact Library), Version 1.0
syntax:
CL (DU:)filename[.LBR]
CL [DU:])filename[.LBR] ?
CL [DU:)filename[.LBR] Z
CL [DU:]filename[.LBR] -afnl(,afn2,...]

compact filename

force compact
delete members

report free space

LFIND, which searches one or more
LBRs for a specified file. A patched
LFIND 1.13z will extract the maximum
drive and user from the environment
if running under Z33 or above and will
respond to “//” help queries.

The Computer Journal / #51

Figure 5.

NULU is used to delete one of 3 member files from SCATV208.LBR. CL is run
(Step 1) to show that 25 records of free space (4k) exist, represented by the
deleted member. CL is run again (Step 2) to compact the library and reclaim
the 4k. The far right column (20k) indicates the resulting size of the LBR.
CL is run again (Step 3) and shows that no free space remains to be claimed.
The deleted member file is replaced using LPUT, and CL is used this time (Step

grams are functionally the same as
type-3 programs except that they fig-
ure out where to load themselves at the
time they load. All the ones released to
date automatically load themselves as
high in memory as possible. Because of

sorted and checked.
1) BO:WORK>cl d3:scatv208 ?

CL (Compact Library), Version 1.0
25 records of free space in D3:SCATV208.LBR 24K

2) BO:WORK>cl d3:scatv208

cL (Compact Library), Version 1.0

25 records of free space in D3:SCATV208.LBR 24K
3) BO:WORK>cl d3:scatv208 ?

CL (Compact Library), Version 1.0

0 records of free space in D3:SCATV208.LBR 20K
4) BO:WORK>cl d3:scatv208 -zsusv208.czt

&CL (Compact Library), Version 1.0

ZSUSV208.C2T deleted.

25 records of free space in D3:SCATV208.LBR 24K
5) BO:WORK>cl d3:scatv208 z

CL (Compact Library), Version 1.0
0 records of free space in D3:SCATV208.LBR 20K

4) to delete it. CL is then run with the ”Z" option (Step 5) to force a
compaction. Since a compaction is not required, the directory is simply

not compacted
Contents: 2 active members, 1 deleted member, 4 open member slots.

20K
Contents: 2 active members, no deleted members, 5 open member slots.

not compacted
Contents: 2 active members, no deleted members, 5 open member slots.

sorted & checked

the address relocation required, load
time is very slightly longer (probably
imperceptibly); also the file is a little
longer because of the header and relo-
cation map. The type-4 program is ei-
ther less likely to clobber a loaded ap-
plication (because it loads higher) or
will work when type-3s will not (if
there is not enough high memory for
them). Thus, type-4s are generally to be
preferred. Perhaps 1 should have said
earlier that all this matters only if you
use the GO command. Also, my Z33
User Guide discusses type-3 programs
in detail! (Jay Sage, Sysop)

Z-Node #77, 4/30/91, NZCOM-DBASE
Il WARNING.....

1 just reviewed Bruce Morgen's sug-
gestion for solving the problem of the
placement of the $$$.SUB file when us-

20K ing dBase-1{ with ZCPR 3.3 and ZCPR

Contents: 2 active members, no deleted members, 5 open member slots.

3.4. This suggestion came packaged
with a recent release of NZCOM, and
suggests that the user use a small bi-
nary file with the dBase CALL com-
mand which will switch to user 0 prior

Z Message Base

In gathering the updates and new program releases for
ZSUS from the many RASes supporting Z-System, I also take
time to read many of the messages between developers, pro-
grammers, and users. Since I capture, edit and organize
many of these messages, anyway, it seemed like a good idea
to share a select few with you each time at the end of this
column.

Z-Node #3, 04/17/91, TYPE 3 AND TYPE 4 PROGRAMS
Question: Although 1 have been running NZCOM for
some two years now, up to this point I have completely ig-
nored using Type 3 and Type 4 versions of programs simply
because I don’t understand this concept. I realize that these
versions are intended to run faster, but I don’t know enough
about their limitations, if any. Are they preferable for any-
one running NZCOM? Is there the danger that they will
somehow get in the way of other programs? How do you
decide between choosing a Type 3 or Type 4 program? | sus-
pect I'm not the only one in the dark in this matter, and I'd
appreciate some guidance about using these versions.
Answer: A type-3 program is just like a type-1 (standard
program) except that it loads and runs at an arbitrary ad-
dress, while standard programs run only at 100H. There is no
speed difference at all. The advantage is that a type-3 pro-
gram will generally not clobber the application program that
you had in memory. Thus they are particularly suitable for
programs that the system runs automatically, sometimes
without the user’'s knowledge even, such as error handlers
and extended command processors and shells. Type-4 pro-

44

to exiting dBase with the QUIT TO
command. Bruce correctly points out that switching to user 0
will cause dBase to write the $$$.SUB file to a0:, which is
where ZCPR3.3 and 3.4 look for it. THIS METHOD
SHOULD BE USED WITH >>EXTREME CAUTION«<<.
dBase-II maintains internal buffers containing database infor-
mation and does a certain amount of housekeeping—includ-
ing disk writes—on exit. If the user area has been changed,
databases can be lost or corrupted. IF YOU USE THIS PRO-
CEDURE, BE SURE TO EXPLICITLY CLOSE ALL OPEN
FILES PRIOR TO CHANGING USER AREAS. The USE com-
mand, with no arguments, applied to both the primary and
(if any) secondary databases will accomplish this, and [
would advise using the CLEAR command as well. (Lindsay
Haisley, Sysop)®

Figure 6.
BO:WORK>1repair //

LREPAIR, Version 1.0

Checks CRC of all or selected member files in
an LBR, corrects invalid 0000h CRC values, and
strips high bits from member file names.
Syntax:

LREPAIR [dir:)]lbrname[.LBR] [afn.typ]

B0 :WORK>lrepair multiprt

LREPAIR, Version 1.0

Checking BO:MULTIPRT.LBR

CRC for PR .ALI is 8392h (OK)
CRC for PRINT .ZEX is DE66h (OK)

The Computer Journal / #51

Stepped Inference as a Technique

for Intelligent Real-time Embedded Control

By Matt Mercaldo

In the last article of this series I promised feedback for our
system of motors. Well, [ts been a very short bi-month (I

couldn’t get my hands on an encoder to complete this proj-

ect). Instead of giving you feedback, this article will concern
itself with the Stepped Inference model touched on in the last
article. With the advance of embedded processors and the
need for concise and standard expressions of real-time state
oriented models, Stepped Inference offers a mechanism for
the concise expression of complex state oriented models. This
article will discuss the stepped inference model, the internals
of the inferencing mechanism, and some application of the
stepped inference model.

Real Time Control

Typically real time control concerns itself with the recep-
tion, analysis and reaction to a “real world” environment.
The real time system has a certain perspective on the reality it
has been focused upon through its hardware and software
architecture. At predicted times, certain events will trigger
certain of the system’s actions. An event can be thought of as
any single monitored occurrence or combination of moni-
tored occurrences. Actions change both the real and or per-
ceived reality. From the real-time system’s perspective there
are two realities: the real and the perceived. The “real” reality

is that reality which directly acts upon the real time system.

The perceived reality is that perspective or aspect of the real
reality which is accounted for within the system and is used
indirectly for the control or manipulation of the real reality.
Data objects and their associated methods typically embody
the “consciousness” of perceived reality.

Real time systems are usually modeled with state transi-
tion diagrams, data dictionaries, and transformation specifi-
cations. From these techniques an important framework of
data objects and functional relationships are developed.
These can be used to directly define the system in terms of
stepped inference.

The Stepped Inference Model
Stepped inference is a technique whereby states of a

multi-state model are expressed in rule sets, and upon any
given expected event the current rule set will dictate action.
Events can be any combination of expected external or inter-
nal stimulus. An inferencing process is induced by any re-
ceived event. Perception of the event occurs when the correct
rule is resolved. Associated with each rule is an action that
alters either the perceived reality or the real reality or both.

Stepped inference is a reflexive system that dictates action
based on events. These events can originate from any source,
internal to the processor or external to the processor. Actions
can be direct or indirect. Direct actions alter reality while
indirect actions alter data objects representing the perceived
reality.

The knowledge of how to handle specific states is kept
within rule sets. A rule is an object that contains a pointer to
a condition function followed by a pointer to an action func-
tion. The condition function determines if a certain percep-
tion has occurred (A perception being a group of events).
Instance information is not embedded within any given rule.
The instance information is specific to activator context (acti-
vator being that which effects action). Instance information is
contained within a control block specific to the activator.
Rules should only know how to control a class of activator,
not a specific instance of activator. In Article Il of this series,
rules and rule sets have the knowledge of how to run a step-
per motor while the motor control block (MCB) has the nec-
essary instance information for a specific motor.

When an event occurs, an inferencing process is initiated.
The inferencing process is done with a tightly coded infer-
ence engine that does a partial inference of a context of rules
(group of rule sets). The engine runs through the current rule
set attempting to synchronize on an event. One of the rules in
the rule set will resolve and fire its action. If the condition
portion of the current rule returns true then the action por-
tion of the rule is fired and the inference cycle is complete. If
the condition portion of the current rule returns false then the
next rule is made current and the inferencing mechanism
calls itself recursively. One of the rules in the rule set must
fire. Rule priority is based on a rule’s position in the rule set.

The closer to the top of the rule set, the

Matthew Mercaldo is employed by a huge firm. With a small group, he develops
software tools for field service engineers to do their thing. At 4:30 or 5:00 p.m.,
when the whistle blows, his thoughts race toward the edge. He dreams of articulated
six legged walking beasts, electronic brains that can fend for themselves, and the
stuff of “U.S. Robots and Mechanical Men.” Someday he dreams of running power
out to his garage, and with his wife and a select group of friends, opening his own
automoton shop - and thus partially fulfilling his childhood dreams. (Plutonium,
Tritium and the like are still not available for public “consumption”; but secing the
toons of Jupiter would be spectacular in one’s own starcruiser!)

The Computer Journal / #51

higher the priority.

The inference engine is typically run
at interrupt level. For example, a regu-
lar clock interrupt can invoke the infer-
encing process. This is how the motor
control example runs. Care must be
exercised if the inferencing mechanism
is run at interrupt level. The inference
latency (time to complete an inference

See Stepped Inference, page 54

45

i
~gethi: djnz

~ we we

get high adrs byte in data reg

rll,~echo
1d rl2,rl4 ;
jr ~echol ; and go send it

29H: read back contents of data register

~echo: djnz rll1,~fetch
~echol; txon ; turn on transmitter (tx buf is empty)
1d rii,rl2 ; transmit high nybble
swap rll
and rll,#0fh
or ril,#30h
and irq,#0efh ; clear the irq bit
1d sio,rll
~txl: tm irg,#10h ; wait for tx buf to empty
ijr z,~txl
1d rll,xl2 ; transmit low nybble
and rll,#0fh
or rll,#30h
and irq,#0efh ; clear the irqg bit
1d sio,rll
~tx2: tm irqg,#10h ; wait for tx buf to empty
jr z,~tx2
txoff ; turn off transmitter
ret

.
1

s 2RH: fetch byte from memory or register, and transmit

-

!
~-fetch: djnz

rll,~store
; the fetch operations can go one of

1d rll,rl3
~efetch: djnz rll,-ifetch H T
lde ri2,8rrl4
jr ~fdone
~ifetch: djnz rll,~cfetch : 2:
1d ri2,erl5
jr ~fdone
~cfetch: ldc rl2,érrid ; O:
~fdone: incw rrl4

1 we we we

; now output two hex digits from the
jr ~achol

2BH: store byte in memory or register, per

store: djnz rll,~setlo
; the store operations can go one of
1d rlli,rl3
-estore: djnz rll,-istore ; 1z
lde @rrl4,ri2
jr ~sdone
~istore: djnz rll,~cstore s 2t
1d €rls,rl2
jx ~sdone
~cstore: ldc frridq,ri2 ; O0s
~sdone: incw rrl4

i

.
i

i
~getlo: djnz

1 we we we

~e we me e

sethi: djnz

ret

2CH: set low address byte

rll,~sethi
1d rlS,rl2
ret

2DH: set high address byte
rll,-setext

d rld,rl2
ret

five ways, depending on rl3

E memory

indirect reg

C memory

data register just fetched

bank select

five ways, depending on rl3

E memory

indirect reg

C memory

2EH: set extended address byte (memory page)

Note: out of range values will default to

C memory, later

Z8 Talker, from page 20
all set the memory bank register in the

target.

With these words, it is straightfor-
ward to implement words such as
DUMP and FILL.

Breakpoints

The breakpoint words allow up to
ten breakpoints to be set in the target.
When a breakpoint is set, its address
and the three bytes replaced by the
CALL must be saved. These are kept in
BPARRAY. When a breakpoint is not in
use, the address in BPARRAY is set to
zero. (This means you can’t set break-
points at location zero...which is just as
well, since those are interrupt vectors.)

INITBP simply marks all of the
breakpoints as “unused”.

BP0 through BP9 are the words
which set breakpoints. They use the
common word BREAK. If an existing
breakpoint is being changed, the old
three-byte code fragment must be re-
stored first; this is done by -BREAK
(“un-break”). Then IBREAK fetches the
three bytes at the new location, and
sets a breakpoint there.

When breakpoints are set, the appli-
cation program should be started with
GO. This uses AWAIT to listen for the
“*" sent when a breakpoint is encoun-
tered; ?BREAK then fetches the flags
and breakpoint address from the target,
deduces which of the ten breakpoints
was encountered, and displays a mes-
sage.

HEX File Load and Save

LOAD loads an Intel hex file into
the target system; SAVE saves a given
range of target memory in an Intel hex
file. These words are rather cryptic, but
(I hope) easy to figure out.

These are the only words in the host
program which do file access; they will
need to be rewritten for your Forth sys-
tem.

Using the Talker

1. Your Z8 board must be running
the talker program.

2. The Z8's serial port must be con-
nected to the PC's COM1 port. This
may be either a full-duplex connection
(separate wires for TXD and RXD), or a
half-duplex RS-485 connection. For the
half-duplex connection you should use
a 75176 or DS3695 transceiver, with di-
rection controlled by the COM1 port's
DTR line.

3. The IBM PC must run the talker

The Computer Journal / #51

host program, ZTALK.FTH.

The command set, in Figure 3, has
been loosely modelled on the Zilog
Super8 debug monitor. All numbers
are entered and displayed in hex. You
may put more than one command on a
line.

If the talker program fails to re-
spond while the host is waiting for
data, the host will halt. This can hap-
pen if the target is dead and you at-
tempt to do a DUMP or SET com-
mand—the host will send commands
to a dead target, and then wait for a
reply. Use ESC to escape this wait loop.

If this happens in the midst of a
dump, or at random intervals, check
that your serial line is clean. If you
have embedded the TALK routine in an
application, you may be polling TALK
too infrequently. Type SLOW in the
host and see if the problem goes away.

I almost always start a debugging
session by entering TERM and then
typing a couple of “*” characters. This
is the memory examine command. If
the talker is running, you will see a
pair of characters each time you press
o

Eventually I plan to improve the
host program by using the command
29 hex to verify that data appears cor-
rectly in the MDR register. This would
allow the host to automatically test for
a “live” target, and to verify the serial
line. But that’s for another day...

, Conclusion

I hope that you find this program,
or a variant, useful in your work. |
have attempted to generalize the func-
tions of this talker so that they can be
used with any 8-bit CPU. The program
can easily be extended for 16-bit CPUs
and larger address spaces. 1'd be inter-
ested to hear of any of these.

The Z8 and Forth source code can
be found in the Forth Interest Group
Roundtable on GEnie, in file
Z8TALKER.ZIP.

Credit for the technique of shifting
data into MDR and MAR belongs to
Dr. Don Schertz of Bradley University,
who used it many years ago in an 8080
monitor program. | had the good for-
tune to be one of his students at the
time.@

"You have not
converted aman
because you have
silenced him.”

—Lord Morley

~setext: djnz rll,-go
1d ril3,ri2
~nofunc: ret

7
i 2FH: go to given address (resume execution at given address)
;

~got dijnz rll,~nofunc

incw sph ; drop return adrs in ‘talker’

incw sph

1d flags,rl2 ; restore saved flags (if any)

ei

ip @mar i go to address in monitor adrs reg (rrild)
\ FIGURE 2. THE HOST PROGRAM

SUPERS “MICRO-TALKER” host program for IBM PC
(c) 1989,1950 T-Recursive Technology
placed into the public domain for free and unrestricted use

This is the host program for the minimal serial monitor
program, with customization for the Zilog SuperS8.

vers 1.0 original program under real-Forth for the IBM PC

vers 1.1 26 Jun 90 bjr
modified talker function codes; added breakpoint
functions; various minor improvements

vers 1.2 2 Jul %0 bjr
converted from screen file to text file; modified
for L.0.V.E.-83Forth; added multiple breakpoints;
various minor improvements

vers 1.3 10 Oct 90 bjr
converted for €-port SIO card using 2681, (2) Z8530

vers 1.4 17 Dec 30 bjr
modified for MPE PowerForth; added support for
COM1 thru COM4

vers 1.4TCJ 26 May $§1 bir
removed support for 6-port SIO card and COM2:-COM4:;
removed Super8-specific worde, for TCJ article

i i i P i P g P A e e G B

VOCABULARY TALKER ONLY FORTH ALSO TALKER DEFINITIONS

\ IRARA kAR khkhhhhdhhhr BASIC SERIAL I/o RERAARR TR RN R RN R AR AN L

HEX

\ port select parameters
VARIABLE ‘STSREG \ status register, for multiport words
VARIABLE ‘DTAREG \ data register, for multiport words

3F8 CONSTANT COMIPORT \ COMl: base address (data reg, sts is at 5 +)
2F8 CONSTANT COM2PORT \ COM2:
3E8 CONSTANT COM3PORT \ COM3;
2E8 CONSTANT COM4PORT \ COM4:

: COM1: COMLPORT 5 + ‘STSREG ! COMLPORT ‘DTAREG ! ;

\ ?TX returns true if transmitter is ready for a character
t ?TX ‘STSREG € PCé 20 AND ; \ COM porta

\ ?RX returns true if receiver has a character
?RX ‘STSREG € PC@ 1 AND ; \ DUART, SCC, and COM ports

TXON uses the DIR line to switch a remote 75176 RS-485
transceiver to the “transmit” mode.
TXON 0 ‘DTAREG @ 4 + PC! ;

o

\ COM ports

-

TXOFF switches the remote transceiver to the “receive” mode.
\ It waits for the last character to clear the tx.
TXOFF BEGIN ‘STSREG € PC@ 40 AND UNTIL 3 ‘DTAREG @ 4 + PCIl

I

(TX) transmite a character thru the SIO port. Note that it
DOES NOT wait for the UART to be ready.
(TX) ‘DTAREG ¢ PC! ; \ all devices

o

\ (RX) gets a character from the SIO port. Note that it

The Computer Journal / #51

47

\ DOES NOT wait for the UART to be ready.
: (RX) ‘DTAREG @ PCR ; \ all devices

\ PACE is used to slow the PC down for slow target CPUs

VARIABLE PACE DECIMAL \ approx 1.5 usec per count w/ 9.54 MHz V30

: FAST 1 PACE 1 ;
: MEDIUM 500 PACE ! ;

: SLOW 10000 PACE ! ;

: PACED PACE € 0 DO LOOP ;
HEX

\ AFKKEXXRNRNKANAX UART INITIALIZATION H*¥*asxsaskahxsasshss
CREATE BAUDTABLE (COMn:, 4800 baud, N-8-1)

6 C, \ 6 pairs follow
3F81+, 0C, \ disable uart irpts
3

3F8 + , 80 C, \ enable divisor latch

3F8 , 18 ¢, \ divisor low

3F8 1+, O0C, \ divisor high

IF8 3 +, 3¢C, \ 8 bite, no parity, 1 stop
JF8 4+, 3¢C, \ modem ctl: RTS, DIR

General initialization program...expects a count, followed
by a list of port # (low byte of port adrs), data pairs
S-INIT (a)
BAUDTABLE DUP Cé 0 2DO

1+ DUP 2+ DUP C@ (data) ROT @ (port) PC!
LOOP DROP ;

w

\ *kkkrkwxkdktsrt QUICK & DIRTY TERMINAL PROGRAM ***stkxhkkkrihti
HEX

: COLOR CURR-ATTRIBS t ; \ change screen color in PForth
07 constant white

70 constant yellow \ actually this is black on white

\ We redefine TX to use the half-duplex serial link. It turns
the transmitter on before sending, sends, then waits for the
character to finish and turns the transmitter off.

If ueing a full duplex link, this definition can be omitted.
TRAP KEY? IF .” *escape*” KEY DROP QUIT THEN ;

X (¢) PACED BEGIN TRAP ?TX UNTIL TXON (TX) TXOFF ;
RX (- ¢) BEGIN TRAP ?RX UNTIL (RX) ;

o e e S S

\ TERM is a simple terminal program. ESC exits back to Forth.
: (TERM) BEGIN ?RX IF (RX) EMIT THEN
?2TX IF KEY? IF KEY DUP
1B = IF DROP EXIT ELSE TXON (TX) TXOFF THEN
THEN THEN
AGAIN ;

: TERM YELLOW COLOR (TERM) WHITE COLOR ;

\ kA hkkxkekiehn SUPPORT FUNCTIONS FOR TALKER (2222222222222
HEX -

\ SPILL will empty the UART receiver (read and discard chars

\ until the UART is empty). This is frequently necessary,

\ e.g., when external serial switches are used, or if the

\ target malfunctions. ANY garbage characters in the rx data

\ stream will *unsynchronize” the talker and cause permanent

\ confusion, so it’s good to SPILL at frequent intervals.

: SPILL BEGIN ?RX WHILE RX DROP REPEAT ;

NYBLIZE takes an 8-bit value, and converts it to two
peeudo-hex characters (ASCII characters from 30 to 3F hex).
NYBLIZE (¢ - lo hi) OFF AND 10 /MOD SWAP 30 + SWAP 30 + ;

“ o

\ DENYBL takes two pseudo-hex characters (30 to 3F hex), and
\ converts them to a byte value (00 to FF).
: DENYBL (hi lo - c) OF AND SWAP OF AND 10 * OR ;

\ >< swaps the hi and lo bytes of the top stack item.
CREATE SWAPPER 3 ALLOT

t>) (n-n) SWAPPER ! SWAPPER CE@ SWAPPER 2+ C! SWAPPER 1+ ¢

>BYTES splits the top stack item into its high and low bytes
>WORD takes high and low byte values and merges them into

a 16-bit word value.
>BYTES (n - lo hi) DUP >< ; { note hi 8 bits unknown)
>WORD (hi lo - n) SWAP >< OR ; (hi 8 bits must be 0)

- e

\ TXH transmits a byte as two pseudo-hex characters.

Z Corner, page 36

output facilities (such as keyboard
redefiners or redirection of screen or
printer output to disk). Until you try
NZCOM or Z3PLUS, it is hard to imag-
ine how easy it is to do these things.

Sources of Support

Here are three magazines that pro-
vide significant CP/M support. By
reading them you will learn about
s :urces for public-domain software
(both by modem and on disk) and
about vendors who sell CP/M com-
mercial software (a vendor listing,
CPMSRC.LST, posted on bulletin
boards runs to 15 printed pages).

The major, professional publication
with strong coverage of Z-System and
CP/M is The Computer Journal. 1ts six
issues per year have a broad hobbyist
focus, with articles on several operat-
ing systems, programming languages,
embedded controllers, hardware proj-
ects, and many other topics.

The Computer Journal ($18/yr)
P.O.Box 12

S. Plainfield, NJ 07080-0012

voice: 908-755-6186

modem (Z-Node #32): 908-754-9067
on GEnie as TCJ$

Two other, more informal maga-
zines of interest to the 8-bit community
are:

The Z-Letter ($15/ yr)
Lambda Software Publishing
720 S. Second Street

San Jose, CA 95112

voice: 408-293-5176

Eight Bits and Change ($15/yr)
Small Computer Support

24 East Cedar Street
Newington, CT 06111@

Sponsor a Friend

A reminder to subscribers: when
a friend enters a prepaid sub-
scription as a result of your
discussions, you are entitled to
an extension of one issue to your
own subscription for free. Be sure
your friend identifies you as the
sponsor when ordering.

The Computer Journal / #51

\ RXH receives a byte as two pseudo-hex characters.
: TXH (n) NYBLIZE TX TX ; (transmit a hex value)
: RXH (- n) RX RX DENYBL ; { receive a hex value)

\ Axkkakkvkrerr PRIMITIVE TALKER OPERATIONS ** %kt ktkhhduy
HEX

XADR sends the “current address” to the target.

This ie done as: send hi byte, send “hi adrs” command,
send lo byte, send “lo adrs” command.

We do a SPILL aes part of XADR because XADR is used by
everything, and when it is used we aren’t expecting data.

“w s s

MPGE builds words whichsend a page-select commandtothe
target. Pages are selected by an 8-bit “page address.”
CMEM, EMEM, and REGS are the memory pages defined
for the 28 talker program.

MPGE CREATE C, DOES> C& TXH 2E TX ;

MPGE CMEM \ “C" code memory

MPGE EMEM \ ”E" external memory

‘MPGE REGS \ registers

N = O o~

Xé+ fetchesabyte fromthe target at the current address.
X!+ stores a byte inthetarget atthe current address.
Both of these functions usethe currently selected memory
page, and increment the current addrees when done.

Xé+ (- n) 2ATX RXH ;

Xi+ (n) TXH 2B TX ;

P

e »

JUMP starts target execution at the current address.
The 28 talker expects the flag byte to be inthetalker
data register whena “go” is issued. This words sends a zexo
flag byte, which will force bank 0 (also no fast irpt).

JUMP (a) XADR O TXH 2F TX ;

R

\ *wxxrwnwnrsxx MEMORY/REGISTER DUMP AND EDIT ****xaxttxnsx
HEX

?EMIT filters nonprintable characters.

?EMIT (¢) 7F AND DUP 20 < IF DROP ASCII . THEN EMIT ;

“ -

\ DUMP dumps a range of memory or registers.
: DUMP (an) OVER + SWAP DO CR I 5 U.R 2 SPACES
I XADR I 10 OVER + SWAP DO X@+ 3 .R LOOP 2 SPACES
I XADR I 10 OVER + SWAP DO X@+ ?EMIT LOOP
10 +LOOP ;

g

FILL fills a range of memory with a byte value c.
LJFILL (anc) ROT XADR SWAP 0 DO DUP Xt+ LOOP DROP ;

SET is an interactive examine/alter of memory or registers,
modelled after the Zilog Super8monitor “set” command.
Given an address, it displays its contents. The operator
may then type <CR> to advance to the next address, or a
Forth expression followed by <CR> tostore anew value and
advance. The loop is exited with Q <CR> .
SET (a) BEGIN CR DUP S U.R DUP XADR X&+ 3 .R SPACE
DEPTH >R QUERY INTERPRET (parse a line of Forth)
DEPTH R> - 1 - 0= IF (ifdepthis+]), ...adrnonstack)
OVER XADR X!+
THEN 14+ AGAIN ;

w S S

: Q (a) DROP QUIT ; (droptheadrsé& return to Forth)
\ kaxxnanrrccxcrkkxs BREAKPOINT FUNCTIONS WA** kX XARKAXKKANK

BPARRAY isused to “remember” up to 10 breakpoints. For each
we must remember the 2-byte address of the breakpoint, and
the 3 bytes at that addrese which were replaced by the
breakpoint CALL instruction. We allot 3 cells (6 bytes).

BPADR returns the “address storage” location for breakpt n.
A breakpoint is flagged ‘inactive’ by storing an address of
zero. (So, youcan'’t set breakpoints at address zero.)

BPMEM returns the “target memory storage” location forb.p. n

CREATE BPARRAY DECIMAL 10 6 * ALLOT

BPADR (n - adr) 6 * BPARRAY + ;

BPMEM (n - adr) 6 * BPARRAY + 2 + ;

P A A

\ INITBP initializes all breakpoints (clears the breakpoints
\ without attempting to restore memory contents).
: INITBP 10 0 DO O I BPADR ! LOOP ;

XADR (a) SPILL >BYTESTXH2DTX (hi) TXH 2C TX (lo) ;

INITBP
\ .BP prints the addresses of all the currently active
\ (non-zero) breakpoints.

.BP CR ." Breakpoints are set at:” 10 0 DO
I BPADR € 2DUP IF CRI 3 .R 7 U.R THEN
LOOP ;

FINDBP finds the breakpoint with the given address.
If none found, -1 is returned.
FINDBP (adr - n) -1 10 0 DO
OVER I BPADR @ = IF DROP I LEAVE THEN
LOOP SWAP DROP ;

“ oo

HEX

\ {BREAK sets breakpoint n at the given address.

\ Note that this selects CMEM.

: IBREAK (adr n) 2DUP BPADR | (save the address)

CMEM OVER XADR X@+ X€+ Xé+ (get old contents)
>WORD ROT BPMEM 2t (save old contenta)
XADR 26 TX ; (send adrs, request breakpoint)

~-BREAK restores the previous contentes of breakpeoint n,
and marks breakpoint n as inactive.
If breakpoint n was not set, no action is taken.

Note that this may select CMEM.

-BREAK (n) DUP BPADR & ?DUP IF (only if active!)
CMEM XADR { set the address in the target)
DUP BPMEM 2@ >BYTES ROT (get oldcontents, reversed)
X1+ Xi+ X1+ (restore old contents }

0 OVER BPADR ! (mark this b.p. cleared)

THEN DROP ;

L

BREAK sets breakpoint ‘n’ at the given address.

The previous breakpeoint ’‘n’ (0-9) is cleared.

If the new breakpoint address is zero, this

simply clears breakpoint 'n’.

BREAK (adr n) DUP -BREAK OVER IF | BREAK ELSE 2DROP THEN ;

. s

BREAKPOINT is used to build BP0 thru BPI.

BP0 thru BP9 are simply shorthand versions of

#0 BREAK” thru ”9 BREAK", respectively.
BREAKPOINT (n) CREATE C, DOES> C@ BREAK ;
BREAKPOINT BP0 1 BREAKPOINT BP1 2 BREAKPOINT BP2
BREAKPOINT BP3 4 BREAKPOINT BP4 5 BREAKPOINT BPS
BREAKPOINT BPé 7 BREAKPOINT BP7 8 BREAKPOINT BPS8
BREAKPOINT BP9

Pl

O N W O e

?BREAK gets the target programstatus upon occurence of a
breakpoint. The %8, on a break, leaves the return
address in the talker address register, and the CPU flags
in the talker data register. Note that the flags must be
read first, since all other operations destroy the data reg.
Note also that the breakpoint address is 3 less thanthe
return address (a Z8 CALL is 3 bytes).

The address and flags are saved in variables for RESUME.

- S T

VARIABLE RESUMEADR VARIABLE RESUMEFLAG

: ?BREAK 29 TX RXH (flags) RESUMEFLAG !
28 TXRXH (ahi) 27 TXRXH (alo) >WORD 3 - RESUMEADR 1
CR ." * BREAKPOINT “ RESUMEADR @ FINDBP
DUP 0< IF .” unknown” DROP ELSE 1 .R THEN
." at ” RESUMEADR & U.
." flags=" RESUMEFLAG € 2 .R ;

AWAIT waits for a character tobe received from the target.
If it is an ‘*’, get and print the breakpoint info.
The talker sends an ‘M’ when themonitor is initialized,
an ‘*' when breakpoint encountered.

AWAIT RX ASCII * = IF ?7?BREAK THEN ;

"

e

GO starts execution at a given address, and AWAITs.
:t GO (adr) JUMP AWAIT ;

RESUME continues execution after a breakpoint, and AWAITs.
Execution continues at the address of the breakpoint call.
NOTE! if you don’t reset the breakpoint, you simply
trip it again instantly!

RESUME RESUMEADR @ XADR RESUMEFLAG € TXH 2F TX AWAIT ;

"

\ thrrrnwrrrnrrrars HEX FPILE LOAD AND SAVE *h¥tassassrxssss
HEX

The Computer Journal / #51

49

PCB HEXFILE
VARIABLE CSUM
VARIABLE HEXCHAR

\ used for checksum calculation
\ can only READ and WRITE frommemory!

\ hex-to-ASCII conversion table
CREATE HEXASC 30C, 31C, 32C, 33C, 34C, 35¢C, 36¢C, 37¢C,
38 C, 39 ¢C, 41 C, 42 C, 43 C, 44 C, 45 C, 46 C,

PUT writes a character to the currently open file
PUTH puts a single hex digit

PUTHH puts a byte value as 2 hex digits, hi & lo
PUT (c) HEXCHARC! HEXCHAR 1 HEXFILE HANDLE WRITE-PATH
ABORT” Error writing file.” DROP ;

PUTH (n) HEXASC + Cf PUT ;

PUTHH (n) DUPCSUM+! DUP OF0 AND 10 / PUTH OF AND PUTH ;

L

[

\ WREC writes a single record (line) of an Intel hex file,

\ starting at memory address a, for nbytes. The record type

\ istyp. If Obytes arerequested, only the header info is

\ written.

‘s WREC (typan) 0 CSUM ! ASCII : PUT (rec start)
DUP PUTHH (length) OVER >< PUTHH OVER PUTHH (adrs hi,lo)
ROT PUTHH (type) DUP IF (length>0)

OVER 0D EMIT 4 U.R

SWAP XADR 0 DO X&+ PUTHH LOOP
ELSE 2DROP THEN
CSUM @ NEGATE PUTHH (checksum) ODPUT OAPUT (cr,1f) ;

(data bytes)

\ SAVE given an address and length, writes it as a hex file.
\ The hex records will beno more than 16 data bytes long.
\ Note: maximum SAVE length is 32K.
: SAVE (an) CMEM HEXFILE PATHNAME “” .HEX" HEXFILE SET-EXT
HEXFILE CREATE-PATH-PCB
ABORT” Can‘t create file.” CR
BEGIN DUP 0> WHILE
2DUP 10 MIN O ROT ROT WREC
SWAP 10 + SWAP 10 - REPEAT
2DROP 1 0 O WREC
HEXFILE HANDLE CLOSE-PATH ABORT” Can’t close file.” ;

(write <= 16 bytesa)
(+address, -length)

\ GET reads a character from the currently open file

\ GET: scans the file until a : is encountered

\ GETH gets a hex digit from the file

\ GETHH gets a byte value from the file astwohex digits

$ GET (- ¢) HEXCHAR 1 HEXFILE HANDLE READ-PATH
ABORT” Error reading file.”

0= ABORT” End of file encountered.” HEXCHAR C@ ;

¢ GET: BEGIN GET ASCII : = UNTIL ;
:t GETH (- n) GET DUP 3F > IF 9 + THEN OF AND ;
s GETHH (- n) GETH GETH DENYBL DUP CSUM +! ;

\ GETREC reads an Intel hex record from the file. The

\ record type is returned on the stack.

: GETREC (- typ) O CSUM | GET: GETHH { length)
GETHH >< GETHH + (adrs) DUP XADR 0D EMIT 4 U.R
GETHH (type) SWAP
?DUP IF 0 DO GETHH X!+ LOOP THEN (data bytes)
CSUM @ GETHH + OFF AND ABORT” Checksumerror inhex file.” ;

\ LOAD loads a hex file into the target’s memory.

: LOAD CMEM HEXFILE PATHNAME “” .HEX" HEXFILE SET-EXT
HEXFILE OPEN-PATH-PCB
ABORT” Can’t open file.” CR
BEGIN GETREC UNTIL (continue until record type<>0)

HEXFILE HANDLE CLOSE-PATH ABORT” Can’t close file.” ;

ONLY FORTH ALSO TALKER
COM1: S-INIT FAST
.{ Talker is ready.) CR

/[TCJ and Forth, a perfect combination. M

TCJ welcomes submissions on practical application of Forth.
Articles should range between 10-30k in ASCI| format and be

submitted on disk to:
The Computer Journal
P.O.Box 12

K\ S. Plainfield NJ 07080-0012

=

50

COMMAND FUNCTION

DUMP

SET

FILL

FIGURE 3. TALKER HOST PROGRAM COMMANDS

selects Z8 “C” (code) memory for subsequent DUMPs
and SETs.

selects Z8 “E” (external) memory for subsequent DUMPs
and SETs.

selects Z8 registers for subsequent DUMPs and SETs.

Note: many commands leave CMEM selected. When in
doubt, always explicitly specify the desired memory
space.

“address length DUMP” will dump a range of memory or
registers. “address” and “length” are hoth hex
values; note that they PRECEDE the DUMP command word.
BOTH MUST BE GIVEN. DUMP will use the latest CMEM,
EMEM, or REGS selection.

Example: EMEM 8000 50 DUMP

>>> LIMITATIONS <<<

The current version of DUMP will always dump a
multiple of 16 bytes.

There is, at present, no way to abort a long DUMP.

“address SET” will examine memory or registers one
byte at a time, and allow optional modification.
Starting at “address”, the program displays the
address, its contents, and then awaits input. You
may either enter

<CR> to leave unchanged & advance to
next address

number <CR> to change the contents to “number”
and advance

Q <CR> to end the SET command

This ie intended to resemble the Zilog “D address”
command. Note that the address must PRECEDE the SET
command word. SET will use the latest CMEM, EMEM, or
REGS selection. All values are given in hex.

Example: REGS 0 SET

>>> LIMITATIONS <<<
An invalid “number” will abort the SET command.

In a future incarnation we will allow decimal numbers
or Forth arithmetic expressions to be used for the
SET values.

“address length value FILL” fills a range of memory
or registers with the a byte value. *“address”,
“length”, and “value” are all hex valuee; note that
they PRECEDE the FILL command word. ALL MUST BE
GIVEN. FILL will use the latest CMEM, EMEM, or REGS
selection.

Example: CMEM FF00 100 55 FILL

HEX FILE SAVE AND LOAD FUNCTIONS

“IOAD filename” loads the Intel format hex file into
the 28's “C” (code) memory. The address and length
are obtained from the file. Note that the filename
FOLLOWS the LOAD command word.

Example: LOAD P4TEST.HEX

NOTE that LOAD will leave CMEM selected when done.

The Computer Journal / #51

SAVE “address length SAVE filename” saves a range of “C”
(code) memory as an Intel format hex file. “address”
and “length” are both hex values, and must PRECEDE
the SAVE command; the filename must FOLLOW the SAVE
command. All of these must be given.

Example: 8000 300 SAVE TEST.HEX

NOTE that SAVE will leave CMEM selected when done.

“length” must not exceed 7FFF hex (32K bytes minus
1).

BREAKPOINT FUNCTIONS

The talker host program allows ten independent breakpoints
to be set in a target program. Note that all breakpoint
information is kept in the host PC.

BPn “address BPn" (where n is 0 to 9) sets breakpoint
‘n’ at the given %8 hex address. If breakpoint ‘n’
was already set somewhere else, the previous
breakpoint is cleared.

Example: 807F BP2 (sets breakpoint #2)

#0 BPn" (where n is 0 to 9) CLEARS breakpoint ‘n’.

If breakpoint ‘n’ was not set, this performs no function.

Example: 0 BPO {clears breakpoint #0)

Implementation notes (Z8): a breakpoint is set by

patching a 3-byte CALL instruction at the given

address. The previous contents of those three bytes
are saved inside the host PC. When the breakpoint is
re-set to a new address, or cleared (set to address

0), the original three bytes are put back into the

Z8 memory.

>>»> LIMITATIONS <<<

The breakpoint address MUST be the address of an
instruction in the application program.

Each breakpoint uses 3 bytes in the application
program. So, a breakpoint should not be set (for
example) on a RET instruction if the following two
bytes are the beginning of another subroutine. Also,
two independent breakpoints cannot be set less than
3 bytes apart.

If you reload a new version program while breakpoints
are set, the stored 3-byte code fragments may no
longer be valid, and clearing a breakpoint may patch
these old fragments into the new program. To avoid
this, use INITBP.

INITBP clears ALL breakpoints, WITHOUT patching any code
fragments back into the 28's memory.

NOTE that if you do this when breakpoints are set,
you will leave some breakpoint CALLs patched into
the I8 program, with no way to find them and no

record of their previous contents. In general, use
INITBP only when you are reloading the application

program.

.BP prints a list of all the currently set breakpoints,
and their addresses.

GO ~“address GO” starts a Z8 program at the given hex
address. The host PC will thenwait for one of three events:

1. A breakpoint ie encountered. Thie causees the
message “BREAKPOINT n at: aaaa flags=dd” to
appear on the screen. “aaaa” is the address of
breakpoint ”“n”, and ”dd” is the contents of the

flags register when the breakpoint occurred.

The Computer Journal / #51

If a breakpoint CALL is encountered that does

not correspond to a currently set breakpoint (such
as a breakpoint left in memory by an ill-timed
INITBP command), the message is “BREAKPOINT unknown
at: aaaa flags=dd".

N
.

A reset (or a JP 0Ch) occurs, restarting the Z8
talker program. This gimply causes the “Ok”
message to appear.

Actually, ANY character transmitted over the z8
UART, except an asterisk (*}, will cause this to
happen. (The ‘*’ character is the signal of a
breakpoint.)

3. ESC is typed at the PC keyboard. This aborts the
wait loop, but leaves the application program
running in the Z8.

RESUME continues program execution from the location of the
last encountered breakpoint. The 28 flags are
restored to the values they had when the breakpoint
was encountered.

Note: you must clear the breakpoint before you can
RESUME at that address. If you try to RESUME without
clearing the breakpoint, you will simply trip the
breakpoint again, instantly!

PECT CTION

TERM activates a “dumb terminal” program over the COM1
serial link. The serial port is set at 4800 baud, 8
bits, 1 stop, no parity. Characters typed at the PC
keyboard are sent over the serial port; characters
received from the serial port are displayed on the
PC screen. Note that this is a “full duplex”
terminal: characters typed on the keyboard are NOT
automatically echoed to the screen.

The ESC key ends the terminal program and returns to
the talker host program.

e e
YASBEC, from page 4
with interest to see how that works out.

The system software disk contains a full range of YASBEC
system utilities and generic ZCPR3 utilities. A special copy of
ZMF, the Zmodem communications program, is included.
Why special? Well, it doesn’t need to be installed for your
terminal; everything it needs to know comes out of the ZCPR
termcap. A small touch, but very handy. Several of the
people who received the first round of boards were neophyte
CP/Mers, and we wanted to make things as easy on them as
possible. '

The Documentation
The YASBEC documentation consists of a 136 page soft-
ware manual, and a complete set of schematics. A hardware
manual is in the works, but there’s that problem with not
enough hours in the day again.

And They All Lived Happily Ever After

The two original YASBEC production boards have been in
constant use since the start of the year. Both prototype boards
have, after a long and error-free service, been honourably re-
tired. And stripped for their parts.

Creating the YASBEC computer has been an interesting
experience. We've learned more than anyone would ever
possibly want to know about the idiosyncrasies of the Z180

processor, and that's a lot. We've also learned about the dan-
See YASBEC, page 56

51

Ampro, from page 14

pable of taking tools to their boards, but I'll avoid the temp-
tation to digress into a tutorial on the subject and offer this
advice instead: ask a friend to perform the surgery. It should
require 5 minutes’ time (once the board is on the bench} and
cost in the neighborhood of $5 for parts.

To provide the required inversion | elected to use an
741500 quad NAND gate. NANDs or NORs are more useful
than inverters as spare devices, hence my personal preference

-(old habits die hard). I've drawn the changes using the
‘LS00, but the choice of device is yours.

Figure 1 shows the a portion of the Ampro CPU 1B sche-
matic in the area to be changed with the modification com-
pleted. The reference designators differ between the 1A and
1B CPUs. CPU 1A reference designators for the same devices
are in brackets.

There are four operations to be performed:

1) Add the new ‘LS00 at U1 [none].

2) Cut the trace between pin 17 of the DART (U15 [U7])
and pins 4 and 5 of U9 [U8], a 75188 (or 1488) RS-232 driver.

3) Jumper pin 30 of the DART (W/RDYB*) to pins 1 and 2
of the “LS00.

4) Jumper pin 3 of the ‘LS00 to pins 4 and 5 of U9 [U8].

If you have the Ampro CPU 1B, then all you must do is
use the already provided IC location (designated U1) for the
new ‘LS00. It's already got power and ground routed to it, so
all you need to do is attach jumpers. Use of a socket rather
than installing the new chip directly is strongly suggested.

If you're modifying the Ampro CPU 14, you'll have to
attach the new chip some other way. I prefer to piggy-back
on an existing chip, soldering pins 7 and 14 (GND and Vcc)
to the those of the ‘host’ chip, bending the piggy-backer’s
other pins out horizontal to the board, and soldering to those
‘flying’ pins. If you try this, make sure that as much air space
as possible is left between the chips to allow for cooling.

No matter what device you use to achieve the required
inversion, remember that unused inputs of the device should

“not be left floating. Floating input pins can cause a variety of
problems on a board, noise (which can cause spurious incor-
rect operation of some devices) being the most insidious.
The preferred way of ‘tying off’ unused inputs is to attach
them to Vcc via a current limiting resistor (4.7K is typical for
LSTTL). According to the manufacturers’ documentation,
LSTTL inputs can be tied directly to Vcc without the current
limiter, but use of the resistor is still typical practice. I prefer
to use the current limiter, but did not want to add any more
parts to the board, so ! chose, instead, to tie all of the unused
input pins on the ‘LS00 (pins 5,6,9,10,12 and 13) to GND.
This causes more power to be consumed (that’s why pulling
up to Vec is preferred), but is acceptable on a small scale. If
you choose to use the pull-up method, individual resistors
aren’t required if the size of the pull-up is adjusted. A single
resistor in the 600-700 Ohm range can handle all of the un-
used inputs on the device you use.

Modifying the Cable

For this portion of the changes you're on your own! Am-
pro did at one time (and may still) sell cabinets and cables,
but many Ampro systems (like mine) have been assembled
by their owners from the CPU board and whatever was
available or handy. Indeed, the cabling arrangements on my
two Ampros differ! The best I can do is state what changes
need to be made, suggest where to make them, and state

52

what the final configuration needs to be. You'll have to de-
cide how and where to make the changes.

The cabling needs to be modified to deliver serial port A’s
handshaking lines (HSIA and HIOA) to the modem. It's
probably easiest to make the changes close to the Ampro
before any cabling connecting the modem to the board. As-
suming that you're using the system with a communication
overlay that uses serial port B's handshaking lines for the
modem’s DCD and DTR lines, the final cabling arrangement
is as follows:

AMPRO AMPRO MODEM MODEM
CONNECTOR/PIN SIGNAL NAME PIN (DB25) SIGNAL NAME

J4 / 1B PRT 1 Chassis Ground

J4 / 2B GND 7 Signal Ground

J4 / 3B TXDB 2 Transmitted Data

J4 / 4B HSOB 20 Data Terminal Ready

J4 / 5B RXDB 3 Received Data

J4 / 6B HSIB 8 Carrier Detect

J3 / 4A HSOA 4 Request to Send

J3 / 6a HSIA 5 Clear to Send

The column labeled Ampro CONNECTOR/PIN refers to
the connector and pin on the Ampro board, itself (shown in
Figure 1), and does not refer to any cable connector.

Modifying the Communications Software

Your communication software must now be modified to
handle the new controls. Actually, the changes are not major.
Users of communication programs like MEX or IMP need to
make a few additions to their overlays. Sysops (BYE users)
have got a few extra changes to make. I've opted to present
the BYE changes. MEX and IMP users should be able to find
the corresponding points to modify in their overlays.

In the supplied code listings, additions and changes are in
lower case. Original code is in upper case. I've left enough
lead-in text and/or labels to allow the areas to be modified in
the Ampro insert or BYE program to be located.

First, the DART must be programmed to use the W/
RDYB* line as a DMA request signal for the receiver. This
should be incorporated into the initialization of the serial
port. Four instructions need to be added to the initialization
code. Listing 1 shows the changes from my BYE insert for the
Ampro.

Next, the transmitter status routine must be modified to
make sure that the modem is capable of accepting a character
when the DART is able to. This requires the sampling of the
modem’s CTS signal. The changes to the BYE insert are in
Listing 2. MEX and IMP users must make slightly more in-
volved changes (the spaces for the status routines are fixed in
size and A-register significance on return to the calling rou-
tine may differ).

There is no corresponding change to make to the receiver
routine. The hardware changes handle RTS to the modem
without further software intervention.

Next, the Ampro insert must be expanded from its origi-
nal maximum baud rate of 2400 to 9600. This involves add-
ing the labels SET4800 and SET9600 (and the code to pro-
gram the hardware for those baud rates). Listing 3 shows my
new baud rate selection routines. Note that there’s a section
of constants included in Listing 3 which must be placed in a
different section of the BYE program. They’'re presented with
the code in the same listing for clarity’s sake. These constants
replace the equates BD300, BD1200, and BD2400 in the BYE
insert. IMP and MEX overlays for the Ampro ['ve seen al-

The Computer Journal / #51

Listing 4:
BYE modifications for USR result codes

i

i Get next character if first was a ‘1
CALI. CHECK1
ENDIF

;Is it a 1, 10 or 11?2
;B5IM

IF B5IM AND PRGRSS
CALL. RCDISP ;Show RC to local terminal

ENDIF ;BSIM AND PRGRSS
H

IF BSIM
cpi 0ffh ;Error? <~INSERT
jz set3 ;If so, must have been a ‘1/<-INSERT
push psw
call eatall
pop psw
CPI ‘0’
JZ SET24 jFor Vadic and Hayes, 10=2400 bps
cpi ‘3! ;For 9600 non-ARQ <-INSERT

jz set96 ;Go set baud rate <-INSERT
cpi ‘57 jFor 1200 ARQ <-INSERT

jz setl2 ; <~INSERT
cpi ‘6’ ;For 2400 ARQ <-INSERT

jz set24 ; <=INSERT
cpi ‘7 sFor 5600 ARQ <~INSERT
jz aset96 ; <-INSERT
cpi ‘9’ ;For 4800 ARQ <=INSERT
jz setds ; <-INSERT
cpi &:N ;jFor 4800 non-ARQ <-INSERT
jz setd48 ; <-INSERT

’

JMP SET3 ;Was 1 (300 baud)

MDR2: push psw
call eatall

pop psw

CPI ‘51 31200 bps?

Jz SET12 ;Yee

CPI ‘6’ ;Some modems use 6

Jz SET24

CPI ‘97 ;or 9

J2 SET24 ;For Connect-2400
ENDIF ;B5IM

ready support these rates, so you'll probably not need to
change yours.

The last required changes are to the BYE program itself (as
opposed to the Ampro insert). These changes are required to
allow BYE to interpret the USR’s result codes so that the
proper baud rate can be selected. These changes have been
circulated around the BBS community in a file named
BYE9600.FIX.] cannot credit the originator of the file—there
was no authorship claim in the file. I've added a few addi-
tional delays in my implementation of the changes, which
appears in Listing 4.

There are a few additional changes to BYE that don’t quite
fall into the ‘required’ category—but which I've found help-
ful and/or necessary for the configuration I use:

1) When using the DOATZ control, I've found that the
modem takes much longer than the 1 second processing time
allowed in the program to respond to the ATZ command.
Through experimentation, I've found that an additional 2
second delay must be installed after the ATZ string is sent.
Without the delay, commands sent after the ATZ may be
ignored.

2) The USR will ignore commands while its DTR input is
low. If you use the OFFHK control in BYE, you'll have to
assure that the DTR control is only used to hang up the

The Computer Journal / #51

phone, and that it is not removed for extended periods of
time. Specifically, it must be on when command strings are
being sent to the modem. [had to modify my Ampro insert
slightly for this. Changes can be found in Listing 5.

Setting Up the Modem

To complete the job, a few commands need to be sent to
the USR to cause it to operate with hardware handshaking
and to avoid baud rates in excess of 9600. Only a few changes
to the factory defaults must be made. No changes to the
factory default DIP switch setting are required.

With your modem program in terminal mode, enter the
following string:

AT&FS27=128534=3&H1&R2&W

The elements of this command string are:

&F - Start with the factory defaults

527=128 - Disable 7200 (and 12000, 14000) result codes
S34=3 - Disable rates in excess of 9600

&H1 - Enable hardware transmit flow control

&R2 - Enable hardware receive flow control

&W - Write settings to Non-Volatile RAM

The two register commands bear some discussion due to
their ambiguous and/or obtuse descriptions in the modem
documentation:

When the most significant bit of register 27 is set
(527=128), the result codes for connect at 7200 (and 12000 and
14000) are not sent by the modem. These result codes are two
digit codes beginning with ‘2, which will not be processed
by BYE or most CP/M modem programs—they all expect
‘connect’ result codes to begin with a ‘1". A baud rate of 7200
is not supported as a computer-to-modem rate either by the
USR or by the Ampro (only as modem-to-modem rate), so
it's use isn't necessary in the first place. Regardless of the
state of this control, when a 7200 baud connection is estab-
lished, a computer-to-modem baud rate of 9600 would have
to be used. With this control in force, a ‘'CONNECT 9600’
result code will be sent if a modem-to-modem rate of 7200 is
initially established.

Setting the least significant 2 bits of register 34 (534=3)
disables both V.32bis and USR’s proprietary version of
V.32bis. This setting disables high speed modulation and as-
sures that the modem will not attempt to establish a connec-
tion above 9600 baud. The documentation is somewhat

Listing S:
Modification to AMPRO BYE insert for use of
DIR and OFFHK control

MDQUIT: IF IMODEM ;If using a smartmodem
CALL IMQUIT ;Tell it to shut down
ENDIF ;s IMODEM
if imodem and (nodtr or offhk)
ret
endif jimodem and (nodtr or offhk)

murky when describing these controls, but a bit of research
yields the information that this setting does not disable
v.32bis—it merely keeps the modem from trying to go above
9600 baud when establishing a connection.

Other Concerns, Problems and Tricks

Once full hardware handshaking is implemented, one is
free to use a rather interesting feature of the USR: fixed com-

53

puter-to-modem rates. This feature is accessed by the &Bn
commands. By using the &B1 command, for example, the
computer-to-modem baud rate will not change regardless of
the rate the connection is established at. I have experimented
with this, hoping to simplify my BBS operation by always
using 9600 baud between the Ampro and the USR. The fea-
ture works well (and, coincidentally, provides a fine demon-
stration of transmitter flow control in operation). However, 1
_ advise against it’s use on a BBS. Since the modem buffers a
good deal of data, a person calling into a system using this
feature finds it virtually impossible to use XON-XOFF flow
control on data typed from the system to him. While the
caller is receiving page ‘n’, the computer is sending page
‘n’ +1, and when he presses control-S (XOFF) to halt the steam
“of data, the key seems to have no effect! Those who only call
. out on their machines may, on the other hand, find this
feature worth playing with. However, data may be buffered
in the modem when this feature is used, causing file transfer
problems.

Buffering of data in the modem tends to make some data
transfer programs very unhappy. Consider what goes on
during a transfer using MEX or IMP: When a block of data is
sent (via XMODEM protocol, for example), the modem pro-
gram expects an acknowledgment from the machine on the
other end within a certain time. If that acknowledgment is
not received in time, a time-out is declared, and the block is
re-transmitted. Suppose that, because of error control re-
transmissions of a previous data block or because of a differ-
ence between your computer-modem baud rate and the one
being used on the phone lines, the last data block from your
modem program is still sitting in the modem’s buffer. From
your computer’s point of view, the data block was sent. The
time-out timer is running, when, in fact, the message hasn’t
had a chance to arrive at the other modem. If your machine
declares a time-out and sends the block again, the situation
can rapidly deteriorate. Imagine what the receiving computer
~ will make of the situation when it (eventually) gets the same

block twice!

I've experienced similar problems in the past when using
PC PURSUIT. The service’s packet delays, large when system
usage is high, can cause outgoing data to be buffered in the
Jocal PCP computer, making modem transfers difficult. My
solution to the problem was to re-configure my IMP overlay,
specifying that my system’s clock was an 8 MHz rather than
the 4 MHz it actually is. This had the effect of doubling all
time-outs in the program, which seemed to get me past most
of the problems.

For the USR, buffering will be pretty much avoided if the
computer-to-modem baud rate matches the modem-to-mo-
dem rate. Buffering will still occur if the modem ‘falls back’
to a lower baud rate due to poor line quality or if the modem
has to re-transmit blocks as part of the error correction
scheme. If buffering becomes a problem, try changing the
clock speed in your modem overlay. This will be preferable
to disabling fall-back or turning off error control—these fea-
tures help to compensate for poor line quality and save you
from getting even more errors.

Some experimentation with the Xn result code option
commands may be required for your modem program to
work properly with the USR. Since CP/M modem programs
like MEX and IMP predate the introduction today’s high
speed modems, they can’t be expected to handle all of result
codes returned by those modems. Begin experimenting with
the ARQ result codes disabled (&A0).

Closing Remarks

The decisions and implementation presented above cer-
tainly do not constitute the only way to solve the technical
problems of hooking the USR to an old 8-bitter. There are
probably a dozen of adequate solutions for the Ampro,
alone! I’ve tried to add sufficient general discussion so that
the material will be helpful for those who may want to at-
tempt a similar project with a different high speed modem or
different host machine. Hopefully, that goal was met.®

#

Stepped Inference, from page 45

cycle) must be shorter than the time between interrupts. With
only one activator (one inference cycle per interrupt) this is
not as critical. With more than one activator (more than one
inference cycle per interrupt cycle) timing becomes very im-
portant.

Application

Stepped Inference is not limited to motor control. It can be
applied to anything from communication protocols to high
level intelligent scheduling mechanisms. The recommended
application is to connect the engine to a timer interrupt or
other regular source of interruption as was done in the Jast
article. This will make prediction of inference latency as it
relates to the interrupt interval feasible.

With the stepped inference model, you may envision a
system with many axes. You would assign the axis feedback
monitoring responsibilities to a very quick regular interrupt,
say a timer whose interval is two milliseconds. Every two
milliseconds the timer interrupt fires, and all of the axes’
encoders are read and updated by a small set of rules. Each
encoder update assigned to the axis’ MCB (motor control
block). You would assign the motor movement control rules

54

to a slower regular interrupt, say a timer whose interval is
thirty two milliseconds. Every thirty two milliseconds the
motor rules decide what to do to a motor based on what the
MCB’s state is. Finally you would assign a set of scheduling
rules with their own feedback (antennae and the like for sys-
tem feedback and obstacle avoidance) to a slow regular inter-
rupt, say one quarter of a second. This set of rules would
avoid collision, decide what the system of axes should do
next and handle the coordination of the axes.

This is only a small possibility; many other applications
abound! Stepped inference brings a lot of intelligence very
close to the metal. In a forth system, and the flexibility associ-
ated with it, stepped inference becomes a very powerful tool
for embedded controls.

This concludes the series on stepper motor control. Next 1
want to delve into the application of multiaxis systems, their
coordination and the like. We're heading down the path of
autonomous control. Ultimately we will develop an autono-
mous creature that in a primitive way can react to the world
though its own learned behavior.

“It would be great if they could think on their own,
dad!!!” @

The Computer Journal / #51

}

}

if(n == 0) break;

return n;

static void check drive type() {

/* Show

int

n;

union REGS regs;
struct SREGS sregs;
unsigned long 1;

sregs.es = sregs.ds = getDS();

rege.h.ah = 0x08;

int86x(

printf(
printf(
printf(
printf(

printf(

/* get drive parameters */

0x13, ®s, ®s, &sregs);
/* invoke BIOS */

“Number of drives is %d\n”, regs.h.dl);

“Max. head-side number (?) ie $d\n”, regs.h.dh);

“Max. cyl./track number (?) is %d\n”, regs.h.ch);
“Highest sector number (?) is %d\n”, regs.h.cl);

“Type of drive 3d is: ”, drive id };

srege.ee = sregs.ds = getDS();

regs.h.dl = drive_id; /* drive ID */

regs.h.ah = 0x15;

int86x(

n = regs.h.ah;

switch(
case 0:

case 1:
case 2:

case 33

default:

}

/* get drive type */

0x13, ®s, ®s, &sregs);
/* invoke BIOS */

/* get drive type */

n) {

printf(“drive not present\n”);

break;

printf(“floppy drive\n”);

break;

1 = (((uneigned long) regs.x.ex) << 16L)
+ (unsigned long) rege.x.dx;

printf(“hard drive, $lu sectors total\n”):

break;

printf(“unknown type %d\n”, n);

partition table records

Boot indicator 0x00 = no, 0x80 = yes
Start head

start sector (6 lower bits)

hi bits of start cylinder (2 upper bits)
start cylinder lo 8 bits

system ID

0x00 = none

0x01 = PRI DOS (12Z) 0x04 = PRI DOS (16)
0x05 = EXT DOS

0x02 = XENIX 0x03 = XNX OLD

0x06 = DOS BIG (?)

0x07 = HPFS

0x08 = AIX

OX0A = Opus

0x51 = Novell? 0x64 = Novell

0x52 = CP/M? 0xDB = CP/M

Ox63 = 386/1IX

0x75 = PC/1X

0x80 = Minix old 0x81 = Minix

OxFF = bad blocks

end cylinder

end sector (6 lower bits)

hi bits of end cylinder (2 upper bits)
end cylinder lo 8 hits

The Computer Journal / #51

Partition, from page 26
01 00 00 00 in this field (the data is
stored least-significant byte first).

Partition size: This is another 4-byte
unsigned integer giving the size of the
partition in sectors.

Note that the term “sector” here is a
logical sector containing of 512 bytes.
In the discussion of the BPB, it was
noted that the DOS operating system
internally can handle smaller sizes, but
not a larger size. It appears that the
DOS and hard disk boot logic in PCs
cannot tolerate any size other than 512.
In non-PC environments, a sector size
of 1024 is usually used for MFM me-
dia, including hard disks. If a sector
size other than 512 is to be used on a
PC, the blocking and deblocking must
be done in the lower levels of the BIOS.

Typical partition table

Let's take apart a typical partition
table for an AT with a 40-megabyte
hard disk. The drive has 1024 cylinders
and five heads. Each track has 17 512-
byte sectors. The hard disk is broken
into three logical drives, C;, D: and E:.
As mentioned before, the first drive is
by itself in a primary DOS partition,
and the other two are together in an
extended DOS partition. Here’'s a
dump of the partition table in hex:

O1BE: 80 00 02 00 01 04 S0 11
01 00 00 00 F8 SA 00 00
01CE: 00 00 41 12 05 04 DO FF
FA 5A 00 00 04 F$ 00 00
O01DE: 00 00 00 00 00 00 00 00
00 00 00 00 0O 00 00 00
O1EE: 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 55 AA

In the first partition, the boot indica-
tor is set to 80 hex. The start head is
zero, The start sector is 2, and the start
cylinder is zero. The partition type is
01, Primary DOS with 12-bit FAT. The
end head is 4. The end sector is 16,
computed as follows: 50 hex, take the 6
least-significant bits by ANDing with
hex 3F, giving 10 hex or 16. The end
cylinder is 273, computed as follows:
Take the two most-significant bits of
the previous byte, 50 hex, by ANDing
with hex C0, giving 40 hex or 64; multi-
ply by four, giving 256; then add the
next byte, 11 hex or 17, giving 273. The
relative sector is 1; the size in sectors is
5A F8 hex or 23,288 (11.6 megabytes).

Let’s check that value. Five heads
times 274 cylinders times 17 sectors per
cylinder is 23,290 sectors, minus one
sector for the partition table, giving
23,289. But apparently DOS has a prob-

55

lem with the odd number of sectors, so
we round to 23,288.

On the second partition, the calcula-
tions are left as an exercise for the
reader. The partition starts at head 0,
sector 1, cylinder 274. It's type 05, Ex-
tended DOS with 12-bit FAT. The end
head is 4. The end sector is 16. The end

cylinder is 1023. The relative sector is
23,290, as we would expect; the num-
ber of sectors is 63,748 (31.8 mega-
bytes).

The program
Provided with this article is a pro-
gram, READPART.C, which will allow

*/

printf(“Partition %d:
i_part,
p_part_desc[0],
p_part desc[4]);

p_part_desc[1],

printf(”

p_part_desc[5],

}

/* end of readpart.c */

8 relative sector (from begin of drive) (4 bytes)
12 size in sectors (4 bytes)
static void show partition(int i_part, uneigned char *p_part_desc) {

Boot indicator: 0x%02x System ID: 0x%02x\n",

printf(“Start Head: %2d Sector: $2d Cylinder: %4d\n”,

(p_part_desc{ 2] & 0x3F),
p_part_desc[3] + ({(p_part desc[2] & 0xCO) << 2));

End Head: $2d Sector: $2d Cylinder: $4d\n”,

(p_part_desc[6] & Ox3F),
p_part_desc[7] + ({ p_part_desc[6] & 0xCO) << 2));

printf(“Relative sector: $1d Total sectors: $ld\n”,
* (unsigned long *) &p_part_desc| 8 1],
*+ (unaigned long *) &p_part_desc{ 12]);

you to examine your own partition
table. It is written for Datalight C, but
should easily adapt to any common PC
C. Be sure to compile it without align-
ing structure elements.

Given that head start, perhaps an as-
tute reader would like to produce an
improved FDISK program. Others may
take advantage of the information to
develop hard disk drivers for other op-
erating systems, such as the Z-system
or a homebrew OS, which shares a
hard disk with a PC. Still others may
take this scheme as a basis for an im-
proved partitioning scheme for com-
puters of the future.

New CPU technology which is com-
ing out today is so powerful as to be
mind-boggling. With hardware avail-
able today, it is possible for a single
computer to simultaneously run sev-
eral CPUs and several operating sys-
tems at once. For example, a Z280 run-
ning Z-system, or a Harris RTX-2000
running Forth, could reside on a
coprocessor board in a PC running
DOS; the coprocessor accesses its own
partition by means of a small TSR pro-
gram on the PC.

To make these kinds of neat tricks
happen, we've got to share our infor-
mation and technology. That’s why
TCJis here!®

N

Editor, from page 2

fraction of the information we present.
You further understand that being ex-
posed to this information is, in itself, a
valuable lesson. How can one seek an-
swers when one doesn’t know the
question? As time goes by, more and
more of our articles will make sense to
you. One day, you will write one, and
teach the next generation. Hang in
there. Ask questions. Each author gives
his or her address and if not, feel free
to send letters here. [will pass them on
for you.

Our interest in CP/M results from a
collective desire to learn rather than
buy other people’s knowledge. CP/M
and its current day successor, Z-Sys-
tem, represents a full fledged operating
system in 8k of code. You can get
source to every part of the system and
it is small enough to sink your teeth
into. Hardware to run this can be
bought at flea markets for under $50. If
you blow something up (though 1
haven’t heard of this happening), what
have you lost? Get another used
Kaypro and try again. With the risks so

56

low and the field of knowledge so rich,
you can run amok with hardware and
software projects. Everything you learn
will carry with you as you move to
larger systems.

One reason | have always liked TCJ
(to newcomers: I took over as editor at
the beginning of this year. Rather like
the fellow selling electric razors, | liked

.the journal so much, I bought the com-

pany!) is that we have a cross section of
several disciplines here. None of us are
involved in everything in TCJbut all of
us have something to offer. I like seeing
what other groups are up to. Perhaps
they have something to offer me. Per-
haps I should consider joining up with
them. Perhaps you should, too. It is im-
portant to keep
an open mind.
As deadset
against the appli-
ance approach to
computing that I
see MS-DOS rep-
resents, | find
some things

done on that side of the house interest-
ing, even exciting. The work done with
PCED caused Rob Friefeld, the author
of LSH, to jump back into his source
and add some features. We all learn
from each other.

This can all be summed up with one
thought: The spirit of the individual
made this industry. TCJ will never for-
get that.

Neither Rain Nor Sleet....

We had a bit of a fiasco getting the
foreign copies mailed last issue. The
post office told me that we had grown
to the point where we needed a postal
meter. In fact, they showed me their
rule book. Any self-respecting post of-

e)
YASBEC, from page 51

gers of designing in your RS-232 converter backwards
(toasted chip, anyone?), not decoding your chips selects cor-
rectly (code that works fine in one location, but won't work if
you move it twenty bytes), and a whole lot of other things
that both of us would prefer to forget. But it’s been fun. And
there’s more to come. Stay tuned!®

The Computer Journal / #51

Reader Survey

Help us serve you better by taking a moment to fill out
this survey. We will use this information in planning future
issues of The Computer Journal. You may prefer to photo-
copy the survey rather than to deface your copy.

Remember that as a journal, TCJ takes its editorial direc-
tion from its readership. Your input is important to us.

" Please mail completed questionnaires to The Computer
Journal, PO Box 12, S. Plainfield, NJ 07080-0012

What are your interests (check all that apply):
___Embedded Controllers
—__Robotics
___Microprocessors (identify which)

' ___Home Control
___Interfacing
____Communications
__LANSs and Connectivity
__ 8-Bit Operating Systems

__CP/M

___ Turbo-DOS

___ Z-System

__other (identify)
__16-bit Operating Systems

__ Ms-DOS

___Minix, Concurrent

___Unix

___other
___Languages

___Forth

___Assembler (identify processor)

C

___Pascal

___Modula-2
__Programming and Algorithms

Are you more interested in articles on:

(A) Software (B) Hardware (C) Both

If you answered “Both”, what is the perfect mix you
would like to see? Answer as a percentage (e.g. 40% Soft-
ware, 60% Hardware):

__ Software ___ Hardware

Would you like to contribute an article? If yes, tell us briefly
what the topic would be. Also, please be sure to give us your
name so that we may get back to you.

What kind of computers do you use?

Do you use computers in your employment?
__Yes __ No

If you answered “Yes” above, is your computer usage at
work related to the topics we cover in TGR?
__Yes _ No

Do you like having source code and schematics printed or
would you rather these be available for sale on disk and
leave the space free in the journal for more text?

___Keep thelistings __ Sell by disk

Would you recommend TCJ to a friend or colleague?
__Yes _ No

[f you answered “No” above, why not?

If you answered “Yes” above, are you aware of the
“Sponsor a Friend” policy? __Yes __ No

How long have you been a reader of TGJ ? ___ years
TCJ has a new editor as of the first of this year. We have been
working on many aspects of the journal since then. On a
scale of 1 to 5 (1 being very bad and 5 being outstanding), tell

us how you feel about the changes.

What directions would you like to see the journal go?

Optional:

What is your age?

What is yoursex? ___Male / ___ Female

What is your occupation?

What is your annual income?
___Less than $20,000
___ Between $20,000 and $30,000
___ Between $30,000 and $40,000
____Between $40,000 and $50,000
___Over $50,000

fice has a selection of rule books. This one said they didn’t
need to handle more than six transactions at the counter for
any single customer. I said I have been happily married for
years, but this didn’t phase them.

It was time to get a meter.

Now, I don’t mean to tell stories on any particular com-
pany. We can all have our problems. If I tell you that the
postage meter company promised the unit in three to four
weeks and took nearly two months, and since there is only

The Computer Journal / #51

one postage meter company in the United States, I would be
telling you which company screwed up. So, I won’t. What I
will say is that the foreign issues were mailed the morning
after the meter arrived. Shipments of back issues and other
mail was similarly delayed. My apologies. Meanwhile, I re-

serve my own right to mess up.
A new wrinkle seems fo be appearing as regards to Canadian
subscriptions. Evidently, it has becn taking about a month and a
See Editor, page 60

57

Z-Node List #63

Last Update June 27, 1991 by lan Cottrell

This list includes information about accessing the Z-Nodes using the two low-cost data services, PC-Pursuit (PCP) and
StarLink (SL). For nodes accessible by PCP, the city code and maximum data rate are given. Where known, the StarLink code is
given (all Starlink nodes support 2400 bps). An asterisk with the code indicates that the call to the Z-Node may incur local toll
charges. If you know the SL code for any nodes that do not have a code listed, I would appreciate it if you would send me that

" information.

Well, you win some and lose some. Node 13 in Fergus, ON is temporarily down while Larry Moore relocates and gets
things re-established. Also down this time are node 66 (Dave Van Horn), node 21 (Dick Roberts) and node 4 (Ken Jones). But on
the plus side, Ben Grey reports node 8 is up and running again in Portland and lan Cottrell joins the list as node 5 in Ottawa,
ON, Canada.

Report any changes or corrections in a message to Jay Sage on Z-Node Central (#2) or Z-Node #3 in Boston (or by mail to

1435 Centre St., Newton Centre, MA 02159-2469).
A ¥ in the first column indicates that the node uses a 9600 bps modem.

Verified

—NODE SYSQPp CITY STATE ZIP __RAS Phome PCP SL
Z-Node Central
2 Al Hawley Los Angeles CA 90056 213-670-9465 CALAN/24 3173* 04/20/91
Satellite Z-Nodes:
UNITED STATES
3 Jay Sage Newton Centre MA 02159 617-965-7259 MABOS/24 8796 06/22/9%1
4 Ken Jones Salem OR 97305 503-370-7655 3174 (down)
6 Robert Dean Drexel Hill PA 19026 215-623-4040 ©PAPHI/24 9581 06/22/91
7 Dave Trainor Cincinnati OH 45236 513-791-0401 1785* 06/22/91
8 Ben Grey Portland OR 97229 503-297-0741 ORPOR/24 9164 07/05/91
* 9 Roger Warren San Diego CA 92109 619-270-3148 CASDI/24 9183* 06/22/91
10 Ludo VanHemelryck Mill Creek WA 98012 206-481-1371 WASEA/24 9170* 06/22/91
11 Carson Wilson Chicago IL 60626 312-764-5162 TILCHI/24 8257* 06/22/91
12 Lee Bradley Newington CT 06111 203-665-1100 CTHAR/24 5128 (down)
15 Liv Hinckley Manhattan NY 10129 212-489-7370 NYNYO/24 1059* 10/25/89
16 John Anderson Colonie NY 12205 518-489-1307 9192 10/29/90
17 Bill Biersdorf Tampa FL 33618 813-961-5747 FLTAM/24 5518 (down)
21 Dick Roberts S. Plainfield NJ 07080 908-757-1491 NJINBR/24 3319 (down)
32 Chris McEwen S. Plainfield NJ 07080 908-754-9067 NJNBR/24 3319 06/22/91
33 Jim Sands Enid OK 73703 405-237-9282 10816 06/22/91
36 Richard Mead Pasadena CA 91105 818-799-1632 2940* 06/22/91
45 Robert K. Reid Houston TX 77088 713-937-8886 TXHOU/24 4562* 06/22/91
58 Kent R. Mason Oklahoma City OK 73107 405-943-8638 9165* (down)
65 Barron McIntire Cheyenne WY 82007 307-638-1917 4213 06/22/91
66 Dave Vanhorn Costa Mesa CA 92696 714-546-5407 CASAN/24 9184* (down)
77 Lindsay Haisley ARustin TX 78745 512-259-1261 1306 06/22/91
78 Gar K. Nelson Olympia WA 98502 206-943-4842 06/22/91
81 Robert Cooper Lancaster CA 93535 805/949-6404 5991* 11/06/89
CANADA
5 Tan Cottrell Ottawa, ON K2G 0T7 613-952-2289 06/27/91
* 13 Larry Moore Fergus, ON N1M 3H7 519-843-7314 (down)
20 Brian Grover Burnaby, BC V5C 2Y3 604-299-0935 03/11/90
40 Greg Kopp Winnipeg, MB R2C 1J4 204-224-1282 01/01/91
AUSTRALIA
50 Mark Little Alice Springs NT 5750 61-089-528-852 (2222)
62 Lindsay Allen Perth WA 6153 61-9-450-0200 07/01/89
GERMANY
51 Helmut Jungkunz Munich, GERMANY NBBS 08165/60041 03/30/91

The Computer Journal / #51

T(J he Computer Journal Market Place

Ta’Ths Computer Journal Market Place
Advertising for Small Business

Looking for a way to get your message across?
Advertise in the Market Place!

First Insertion: $50
Reinsertions: $35

Rates include typesetting. Payment must accom-
pany order. Foreign orders paid in US funds

drawn on a US bank or intemational money order.

Resetting of ad constitutes a new advertisement
at first insertion rate. Camera ready copy from
laser printers, photo typesetters, etc., are accept-
able. Dot matrix, daisy wheel, typewriter output
- not accepted. Inquire for rates for larger ads if
required. Deadline is eight weeks prior to publi-
cation date. Mail to:
The Computer Jounal
Market Place
PO Box 12
S. Plainfield NJ 07080-0012 USA

Advent Kaypro Upgrades

TurboROM. Allows flexible configura-
tion of your entire system, read/write
additional formats and more. $35

Hard drive conversion kit. Includes
interface, controller, TurboROM, soft-
ware and manual—Everything needed
to install a hard drive except the cable
and drive! $175 without clock, $200
with clock.

Personality Decoder Board. Run more
than two drives, use quad density
drives when used with TurboROM. $25

Limited Stock — Subject to prior sale
Call 916-483-0312 eves/weekends or

write Chuck Staftord, 4000 Norris
Avenue, Sacramento CA 95821

THE STAUNCH 8/89'er
Support for Heathkit
H-8 and H/Z-89 Computers:

Bimonthiy Newsletter,
Z-System & HDOS Systems,
CP/M and HDOS Utility and

Applications Software.

THE STAUNCH 8/89°'er
c¢/o Kirk L. Thompson
P.0, Box 548
West Branch, IA 52358
Voice: 319-643-7136
{eves and weekends)

CP/M SOFTWARE

100 page Public Domain Catalog, $8.50 plus $1.50 shipping
and handling. New Digital Research CP/M 2.2 manual, $19.95
plus $3.00 shipping and handling. Also, MS/PC-DOS Soft-
ware. Disk Copying, including AMSTRAD. Send self addressed,
stamped envelope for free Flyer, Catalog $1.00

Elliam Associates
Box 2664

Atascadero, CA 93423
805-466-8440

Z-System Software Update Service
Provides Z-System public domain software by mail.

For catalog on disk, send $2.00 ($4.00 outside North America)

The Computer Journal / #51

Regular Subscription Service

Z3COM Package of over 1.5 MB of COM files
Z3HELP Package with over 1.3 MB of online documentation
Z-SUS Programmers Pack, 8 disks full

Z-SUS Word Processing Toolkit
And More!

and your computer format to:

Sage Microsystems East

1435 Centre Street

Newton Centre MA 02159-2469

Kenmore
ZTime-1
Real Time Clocks

Assembled and Tested with
90 Day Warranty
Includes Software

$79.95

Send check or money order to
Chris McEwen
PO Box 12

South Plainfield, NJ 07080
(allow 4-6 weeks for delivery)

59

Editor, from page 57

half for the copies to arrive. I am not sure what is going on here.
Until we get to the bottom of it, I would appreciate any feedback
from you kind folks north of the border. One person reported that it
took three months for his copy of issue 49 to appear! And I thought
the US Postal Service held title to the term “Snail Mail!” Maybe
the two groups are working together on this, and what we have is
the postal equivalent of Critical Mass.

- Good Folks To Know

The Rochester Conference on Automated Controls is being
held as I write this. I've been in contact with Larry Forsley of
the Forth Institute, which has been putting this conference on
over the years. He sent a copy of last year’s proceedings. This
_conference is not for the casual observer; the list of speakers
looks like a Who's Who in the Forth world. I would like to

" make next year’s conference, just to rub shoulders. For this
year, | had to satisfy myself with providing a copy of our last
issue for each participant.

1 was on the telephone with Randy Dumsey at New Micros the
other day. Word has it that NMI is hosting three gentlemen from
the Soviet Union for the next few months. I had been mulling over
an idea for an article: could they tell us how the working environ-
ment differs for programmers in the two countries? We have all
been hearing comparisons of “computing” between the two na-
tions. But “computing” implies just machinery. What about the
people? Randy had the three in the room with him and turned the
speaker phone on. Unfortunately, the connection was not clear
enough for me to jot their names down, but they all liked the idea.

There are two schools of thought towards adding capabilities.
You can keep stacking more chips, boards and peripherals on a
system until you blow the power supply and your budget, or you
can take a good strong look at the system you have and get the last
ounce of efficiency from it. The latest, greatest achicvements in
American computing follow the first path; Windows needs two
megabytes of RAM and Unix wants four. It is a rare programmer

 that worries about the size of code he writes. But what if your
* project requires a given level of performance and buying the hard-
ware makes your product unprofitable? Moving from 8-bits to 16
can quadruple the price of your components. The extra cost of effi-
cient coding is spent once but the cost of additional hardware is re-
peated with each unit.

Since programmers in the Soviet Union have limited hardware
resources, they have to get more from less. This forces program-
ming discipline. As I see it, their shortage of hardware is putting
them in a position to whip our pants when they do get access to
state-of-the-art machinery. When they combine their efficient code
with our efficient equipment, we will be left standing in the dust.

We stand to learn from these fellows.

In his column, Jay mentions the Z-Letter. | made a passing
comment on this a few months ago. At that time, | had never
seen a copy. | have now, and I must say that [was impressed.
David McGlone does a fine job with it.

A group that Jay didn’t mention, because he didn’t know
of them, is the Morrow-Atlanta Users Group. They produce
what may be the best user group newsletter I have seen. In
fact, I was so impressed that [am sending a sample of this
issue to each member. Ask for information by writing to Mr.
Harold Arnovitz, Editor, Mor-Atlanta News, 1259 Kittredge Ct
NE, Atlanta GA 30329.

Late breaking news: Lee Bradley just announced that he is ceas-
ing publication of Eight Bits & Change. We have mentioned
EB&C on several occasions. Jay lists it at the end of his column in

60

this issue. Please make a note that EB&C moves into history with
the upcoming issue. We'll miss your work, Lee.

Lee will be taking his Z-Node down at the same time. But for
those who step back, others step forward. lan Cottrell has joined
the ranks with Z-Node 5. And Ben Grey, a Z-Node sysop for years,
has gone back on-line.

Mountain View Press

Glen Haydon has taken over at Mountain View Press and
will be running it as a division of Epsilon Lyra, along with
WISC Technologies. Glen is working on synthesis tools for
process control and is looking at Mitch Bradley’s approach to
boot ROMs that will automatically configure systems.

Mountain View Press publishes books on Forth, and was
chosen as a center for Forth educational materials at the re-
cent Rochester Forth Conference.

You can contact Glen at (415) 747-0760 or write to Moun-
tain View Press, Box 429, Route 2, La Honda CA 94020.

What We Have and What We Don't

This issue introduces four new authors. Roger Warren tells
us how to modify an Ampro Little Board to handle hardware
flow control. He found this necessary when he installed a
9600 bps modem. The solution he found can be applied to
any machine, so if you have another brand, don’t despair.

Paul Chidley and Wayne Hortensius introduce their new com-
puter, the YASBEC. | mentioned this in passing last issue. What
started as a home-brew project is quickly developing into a cult. As
a result, Paul and Wayne find themselves being pushed into pro-
duction. The possibilities here are exciting and we will report what
develops. 1 hear that Hal Bower is involved in putting his banked
system on the YASBEC. Perhaps we can convince Hal to tell us
more on this in a later issue.

Paul tells me that they have ordered a boatload of boards. This
is good news to those who have been waving checkbooks and shout-
ing “When? Where? How much?” Be advised the line starts from
the left, first come, first served.

More good news: the Calgary Crew has a color graphic video
board up and running. They've been hitting each other over the
head with problems relating to RFI until they discovered the flux
on one type of solder was slightly conductive. So, bye-bye wavy
lines, hello stable picture and new board. This story gets more and
more interesting. Think they'll come up with a multi-1/O board?

Brad Rodriguez joins us with an article on the Z8. He has

=

TCJ On-Line M)

Readers and authors are invited to join in dis-
cussions with their pcers in any of three on-line
forums.

+ GEnie Forth Intercst Group (page 710)

+ GEnic CP/M Interest Group (page 685)

* Socrates Z-Node 32

For access to GEnie, set your modem to half
duplex, and call 1-800-638-8369. Upon connec-
tion, entcr HHH. At the U#= prompt, enter
XTX99486,GENIE and press RETURN. Have a
credit card or your checking account number
handy.

Or call Socrates Z-Node, at (908) 754-9067.
PC Pursuit users, use the NJNBR outdial. Star-
kLink users, use the 3319 outdial. y)

The Computer Journal / #51

a “Talker” that takes under 300 bytes on the target system
and uses a host computer for the majority of the logic. This
results in having a fully-capable monitor available for an un-
tested system in development. Have you ever wondered how
you bring up a system that has never been booted before? Is
this the computer equivalent to the chicken-and-egg ques-
tion? Brad works us through this.

Frank Sergeant finishes up his disk aligner project in this
issue and gives us an introductory look at Forth. A fair share

- of our readers have been asking where to start. Frank has the
answers. Meanwhile, Matt Mercaldo finishes up his series on
motor control with Stepped Inference. We welcome Matt as
our newest contributing editor—his work with embedded
control has earned his place on the masthead.

This is a good point to mention that our expansion to 64
pages is to provide additional coverage of Forth and embed-
‘ded control without sacrificing our traditional areas of cover-
age. You are already seeing some of the new material. I am
still prowling for others. Our liberal payment policy applies.
(“Payment? This is User-Supported Publishing!”) I'd like a
thrust towards practical applications. Let’s see what you've
been cooking up in that workshop of yours.

Rick Rodman reveals the secrets of the MS-DOS hard disk
partition table. You would think that ten years after the fact,
we would have ready access to this information. In fact, it
takes real digging to find it and Rick comes through for us
once again.

Interesting item: the BPB contains a byte to tell the machine
what operating system you are booting. I hadn’t known that. Add-
ing to this, Brian Moore reports that he has successfully ported Z-
System to his ‘386 box, running ZCPR 3.3, and Z80DOS. While
CP/M has been ported before, this is the first known case of install-
ing a dynamic 780 opcrating system onto an Intel platform. He
promises to tell us all about it. I'd walk barefoot from New Jersey
to Oregon to pick up that article!

Brian, by the way, is the author of ARK11 for CP/M and is a
sysop on GEnie.

Bruce Morgen rejoins us after a brief hiatus. His topic is
using CP/M and MS-DOS machines through a Unix box.
This opens many possibilities: shared peripherals, file storage
on a large system. And the best part is in the title, “Cheap
Connectivity.” All it costs is a little cabling!

That is the good news. The bad news is that we are miss-
ing two articles I had wanted to give you. Al Hawley had a
bout of bad health these last couple of months and missed
this issue. His series on Assembly Language Programming for
the High Level Programmer has been exceedingly well re-
ceived. We expect Al to return next issue. Meanwhile, | wish
you good health, Al Drink plenty of fluids and watch soap
operas. That always gets me back to the office!

Jay Sage will continue with his series on Home Control
next issue. His mother passed away last month. Blessings
come in many ways; she was able to spend her last days with
her children. I pray my passing will be as peaceful and that I

may also be surrounded by love. My deepest sympathies, Jay.

Is CP/M Dead?

Jay did get his Z-System Corner column in. He takes on
the old “CP/M Is Dead” syndrome. I can relate to this. What
we have here is a problem of scale. Ten years ago, a total
installed base of a million units was significant. Today, mil-
lions of MS-DOS machines are shipped every month.
Guesses to the remaining number of CP/Mers ranges from
ten thousand to well over 100,000. Whatever the real number
is, it is a fraction of one week’s shipment of new PC’s. Does
this mean CP/M is dead? By these numbers, it was never
alive! I dispute this.

We face a self-fulfilling prophesy with all this talk. For
example: I sent out over a thousand copies of TCJ to CP/M
groups all over the country a few months ago. Yes, there are
that many groups. Less than a dozen responded. Why? This
is the sole remaining major publication for CP/M in the
world. One conclusion is that CP/M is, in fact, dead. Yet in
speaking to people, | hear over and over that they are still
active with CP/M but don’t want to invest money because
“no one else is.” Great! This attitude ensures the demise of
support for CP/M. (Note: we have no plans to drop CP/M.
My reference is to support by others).

The future of CP/M, as with any other group, requires
developing new blood. This means training, helping, guiding
newcomers. As long as we have something to offer, and to
anyone interested in learning, really learning, about micro
computers CP/M has plenty to offer, it will survive.

One hundred thousand of anything is a lot. Open your
wallet and pull out 100,000 dollar bills. Shuck 100,000 clams.
Copy 100,000 disks. Why must we focus on a hundred mil-
lion of some other system and say our numbers are too
small?

The next time you hear someone say CP/M is dead, re-

member the number of people represented, including your-
self,

And Thanks Goes To....

I try to take a moment in each issue to thank someone
who helps make TCJ possible. The person I will highlight
this time is in a make-or-break position for this publication.
Without her support and assistance, 1 would have collapsed
before putting out my first issue in January. We all joke about
our spouse being our “better half.” Those who know both
my wife and me know how serious I am when [say this.
How many wives would let their husband take over one
floor of the house for his projects and then fill the living
room with thousands of magazines for several days every
other month? Every closet in this place contains supplies,
back issues, stamps, meters, lists, letters.... She keeps a sem-
blance of order in this dervish’s domain. Pardon me for just a
bit, friends, while I turn to Ester and say, “Thanks! I couldn't
do it without you.”®

Success is...

“To laugh often and love much; to win the respect of intelligent persons and the affection of children; to earn the approba-
tion of honest critics and to endure the betrayal of false friends; to appreciate beauty; to find the best in others; to give of one’s
self; to leave the world a bit better, whether by a healthy child, a garden patch, or a redeemed social condition; to have played
and laughed with enthusiasm and sung with exultation; to know that even one live has breathed easier because you have
lived—this is to have succeeded.”—Attributed to Ralph Waldo Emerson (1803-1882)

The Computer Journal / #51

61

The Computer Journal

Back Issues

Sales limited to supplies in stock.

Isoie Number 18;

+ Pavallel Interface for Apple || Game Port

+ The Hacker's MAC: A Letter from Lee
Felsenstein

» §-100 Graphics Screen Dump

» The LS-100 Disk Simulator Kit

* BASE: Part Six

* Interfacing Tips & Troubles: Communicat-
ing with Telephone Tone Control, Part 1
lasue Number 19:

+ Using the Extensibility of Forth

+ Extended CBIOS

« A $500 Superbrain Computer

* BASE: Part 7

« Interfacing Tips & Troubles: Communicat-
ing with Telephone Tone Control, Part 2

+ Mutitasking & Windows with CP/M: A
Review of MTBASIC

Iasue Number 20;

+ Designing an 8035 SBC

+ Using Apple Graphics from CP/M: Turbo
Pascal Controle Apple Graphics

« Soldering & Other Strange Tales

+ Bulld an S-100 Floppy Disk Controller:
WD2787 Controlter for CP/M 68K

Issue Number 21;

« Extending Turbo Pascal: Customize with
Procedures & Functions

*» Unsoldering: The Arcane Art

+ Analog Data Acquisiton & Control:
Connecting Your Computer to the Real
World

+ Programming the 8035 SBC

lasye Number 22:

+ NEW-DOS: Write Your Own Operating
System

«Variabiiity in the BDS C Standard Library

» The SCS! Interface; Introductory Column

+ Using Turbo Pascal ISAM Files

* The Ampro Little Board Column

leoye Number 23;

* C Column: Flow Control & Program
Structure

« The Z Column: Gelting Started with
Directories & User Areas

+ The SCSI Interface: Introduction to SCSI

+ NEW-DOS: The Conscle Command
Processor

« Editing the CP/M Operating System

» INDEXER: Turbo Pascal Program to Create
an Index

* The Ampro Little Board Column

Isaue Number 24:

* Selecting & Building a System

« The SCSt Interface: SCS! Command
Protocol

+ Introduction to Assemble Code for CP/M

+ The C Column; Software Text Filters

+ Ampro 186 Column: Instaling MS-DOS
Software

* The Z-Column

* NEW-DOS: The CCP Internal Commands

« ZTime-1: A Real Time Clock for the Ampro
2Z-80 Little Board

lssye Number 25;

* Repairing & Modifying Printed Circuits
+ Z2-Com vs. Hacker Version of Z-System
« Expioring Single Linked Lists in C

« Adding Serial Port to Ampro LB

» Building a SCSI Adapter

» NEW-DOS: CCP Internal Commands

+ Ampro 188 Networking with SuperDUO
* ZSIG Column

issye Number 26;

* Bus Systems: Selecting a System Bus

+ Using the SB180 Real Time Clock

» The SCSI Interface: Software for the SCS|
Adapter

« Inside Ampro Computers ~.

+» NEW-DOS: The CCP Commands

» Affordable C Compilers

+ Concurrent Muiltitasking: A Review of
DoubleDOS

Iasue Number 27;

+ 68000 TinyGiant: Hawthorne's Low Cost
16-bit SBC and Operating System

» The At of Source Code Generation:
Disassembling Z-80 Software

+ Feedback Control System Analysis; Using
Root Locus Analysis & Feedback “Loop
Compensation

« The C Column. A Graphics Primitive
Package

* The Hitachi HDB84180: New Life for 8-bit
Systems

« 2SIG Corner: Command Line Generators
and Aliases

« A Tutor Program in Forth: Writing a Forth
Tutor in Forth

+ Disk Parameters; Modifying the CP/M Disk
Parameter Block for Foreign Disk Formats

Issue Number 28;

« Starting Your Own BBS

+ Build an A/D Converter for the Ampro Littie
Board

« HDB4180: Setting the Wait States & RAM
Refresh using PRT & DMA

» Using SCSI for Real Time Control

» Open Letter to STD Bus Manufacturers

« Patching Turbo Pascal

+ Choosing a Language for Machine Control

Issue Number 29:

+ Better Scitware Filter Design

+ MDISK: Adding a 1 Meg RAM Disk to
Ampro Little Board, Part 1

- Using the Hitachi hd64180: Embedded
Processor Design

* 88000: Why use a new OS and the 680007
+ Detecting the 8087 Math Chip

» Fioppy Disk Track Structure

«» The ZCPR3 Corner

issue Number 30

« Double Density Floppy Controller

« ZCPR3 IOP for the Ampro Little Board
* 3200 Hackers’ Lai

- MDISK: Adding a 1 Meg RAM Disk to
Ampro Little Board, Part 2

* Non-Preemptive Multitasking

» Software Timers for the 88000

« Liliput Z-Node

+ The ZCPR3 Corner

*» The CP/M Corner

Isoue Number 31;

+ Using SCS| for Generalized |/O

+ Communicating with Floppy Disks: Disk
Parameters & their variations

+ XBIOS: A Replacement BIOS for the SB180
+ K-0S ONE and the SAGE: Demystifying
Operating Systems

+ Remote: Designing a Remote System
Program

* The ZCPR3 Corner: ARUNZ Documentation
looue Number 32;

- Language Deveiopment: Automatic
Generation of Parsers for Interactive
Systems

» Designing Operating Systems: A ROM
based OS for the Z81

» Advanced CP/M: Boosting Performance

+ Systematic Elimination of MS-DOS Files:
Part 1, Deleting Root Directories & an In-

Depth Look at the FCB
+ WordStar 4.0 on Generic MS-DOS

. Systems: Patching for ASCHl Terminal Based

Systems

+ K-OS ONE and the SAGE: System Layout
and Hardware Configuration

+ The 2CPR3 Corner: NZCOM and ZCPR34

Issye Number 33;

« Data File Conversion: Writing a Filter to
Convert Foreign File Formats

» Advanced CP/M: ZCPR3FLUS & How to
Write Self Relocating Code

» DataBase; The First in a Series on Data
Bases and Information Processing

» SCSI for the S-100 Bus: Ancther Example
of SCSi's Versatility

» A Mouse on any Hardware: Implementing
the Mouse on a Z80 System

+» Systematic Elimination of MS-DOS Files:
Part 2, Subdirectories & Extended DOS
Services

+ 2CPR3 Comer: ARUNZ Shells & Patching
WordStar 4.0

Issue Number 34;

« Developing a File Encryption System,

» Database: A continuation of the data base
primer series.

< A Simple Multitasking Executive:
Designing an embedded controller
multitasking executive.

« ZCPR3: Relocatable code, PRL files,
ZCPR34, and Type 4 programs.

« New Microcontrollers Have Smarts: Chips
with BASIC or Forth in ROM are easy to
program.

- Advanced CP/M: Operating system
extensions to BDOS and BIOS, RSXs for
CP/M 2.2,

« Macintosh Data File Conversion in Turbo
Pascal,

« The Computer Corner

Issue Number 35;

+ Al This & Modula-2: A Pascallike
alternative with scope and parameter
passing.

+ A Short Course in Source Code
Generation: Disassembling 8088 software to
produce modifiable assem. source code.

» Real Computing: The NS32032.

+ $-100: EPROM Burner project for S-100
hardware hackers.

- Advanced CP/M: An up-to-date DOS, plus
details on file structure and formats.

» REL-Style Assembly Language for CP/M
and Z-System. Part 1: Selecting your
assembler, linker and debugger.

+ The Computer Corner

) mber

« Information Engineering: Introduction.

» Modula-2: A list of reference books.

« Temperature Measurement & Control:
Agricultural computer application.

» ZCPR3J Corner: Z-Nodes, Z-Plan, Amstrand
computer, and ZFILE.

» Real Computing: NS32032 hardware for
experimenter, CPUs in series, software
options.

» SPRINT: Areview.

+ REL-Style Assembly Language for CP/M
& ZSystems, part 2.

« Advanced CP/M:
programming.

= The Computer Corner.
lssue Number 37;

« C Pointers, Arrays & Structures Made
Easier: Part 1, Pointers,

+ 2CPR3 Corner: 2-Nodes, patching for
NZCOM, ZFILER.

- Information Engineering: Basic Concepts:
fields, field definition, client worksheets.

- Shells; Using ZCPR3 named shell
variables to store date variables.

- Resident Programs: A detailed look at
TSRs & how they can lead to chaos.

« Advanced CP/M: Raw and cooked console
/0.

* Real Computing: The NS 32000.

« ZSDOS: Anatomy of an Operating System.
Part 1.

+ The Gomputer Corner.

lssue Number 38:
« C Math: Handling Dollars and Cents With
c

Environmental

. 'Advanced CP/M: Batch Processing and a
New ZEX.
« C Pointers, Arrays & Structures Made

" Easier. Part 2, Arrays.

« The Z-System Corner: Sheils and ZEX,
new Z-Node Central, system security under
Z-Systems.

« Information Engineering: The portable
Information Age.

« Computer Aided Publishing: Irtroduction to
publishing and Desk Top Publishing.

» Shells: ZEX and hard disk backups.

+ Real Computing: The National
Semiconductor NS320XX.

« ZSDOS: Anatomy of an Operating System,
Part 2.

The Computer Journal / #51

\ssue Number 39;

» Programming for Performance: Assembly
Language techniques.

* Computer Aided Publishing: The Hewlett
Packard LaserJet,

- The Z-System Corner:
enhancements with NZCOM.

» Generating LaserJet Fonts: A review of
Digi-Fonts.

* Advanced CP/M: Making okl programs Z-
System aware.

» C Pointers, Arrays & Structures Made
Easier: Part 3: Structures.

* Shells: Using ARUNZ alias with ZCAL.

*+ Real Computing: The National
Semiconductor NS320XX.

« The Computer Corner.

issue Number 40;

* Programming the LaserJet: Using the
escape codes.

* Beginning Forth Column: Introduction.

*+ Advanced Forth Column: Variart Records
and Modules.

*+ LINKPRL: Generating the bit maps for PRL
tiles from a REL file.

* WordTech's dBXL: Wiiting your own
custom designed business program.

+ Advanced CP/M: ZEX 5.0°The machine
and the language.

* Programming for Performance: Assembly
language techniques.

> Programming !nput/Output With C:
Keyboard and screen functions.

* The 2-System Corner: Remote access
systems and BOS C.

* Real Computing: The NS320XX

* The Computer Corner.

lssue Number 41;

* Forth Column: ADTs,
Concepts.

* Improving the Ampro LB: Overcoming the
88Mb hard drive limit.

* How to add Data Structures in Forth

* Advanced CP/M: CP/M is hacker's haven,
and Z-System Command Scheduler,

+ The Z-System Corner: Extended Multiple
Command Line, and aliases.

+ Programming disk and printer functions
with C,

» LINKPRL: Making RSXes easy.

+ SCOPY: Copying a series of unrelated
files.

+ The Computer Correr.

System

Object Oriented

The Computer Journal

Back Issues

Sales limited to supplies in stock.

lasye Number 42:

* Dynamic Memory Allocation: Allocating
memory at runtime with examples in Forth.

* Using BYE with NZCOM.

* C and the MS-DOS Screen Character
Attributes.

« Forth Column: Lists and object oriented
Forth.

« The Z-System Corner: Genie, BDS Z and
Z-System Fundamentals.

* 68705 Embedded Controller Application:
An example of a single-chip microcontroller
application.

* Advanced CP/M: PluPerfect Writer and
using BDS C with REL files.

+ Real Computing: The NS 32000.

« The Computer Corner

Issue Nymber 43;

* Standardize Your Floppy Disk Drives.

« A New History Shell for ZSystem.

* Heath's HDOS, Then and Now.

* The ZSystem Corner: Software update
service, and customizing NZCOM.

» Graphics Programming With C: Graphics
routines for the IBM PC, and the Turbo C
graphics library.

* Lazy Evaluation: End the evaluation as
soon as the result is known,

* $-100: There's still life in the oid bus.

« Advanced CP/M: Passing parameters, and
complex efror recovery,

* Real Computing: The N$32000.

* The Computer Correr.

Iooye Number 44;

* Animation with Turbo C Part 1: The Basic
Tools.

* Multitasking in Forth: New Micros FEBFC11
and Max Forth,

 Mysteries of PC Floppy Disks Revealed;

FM, MFM, and the twisted cable.
+ DosDisk: MS-DOS disk format emulator for

lssue Number 45:

» Embedded Systems for the Tenderfoot:
Getting started with the 8031,

* The Z-System Corner: Using scripts with
MEX.

* The Z-System and Turbo Pascal: Patching
TURBO.COM to access the Z-System.

+ Embedded Applications: Designing a Z80
RS-232 communications gateway, part 1.

* Advanced CP/M: String searches and
tuning Jetfind.

+ Animation with Turbo C: Part 2, screen
interactions.

* Real Computing: The NS32000.

* The Computer Corner.

Issye Number

+ Build a Long Distance Printer Driver.

* Using the 8031's built-in UART for serial
communications.

* Foundationat Modules in Modula 2.

+ The Z-System Corner: Patching The Word
Plus spell checker, and the ZMATE macro
text editor.

* Animation with Turbo C: Text in the
graphics mode.

« 280 Communications Gateway:
Prototyping, Counter/Timers, and using the
Z80 CTC.

lssue Number 47;

= Controlling Stepper Motors with the
68HC11F

« 2-System Corner: ZMATE Macro Language
« Using 8031 Interrupts

= T-1: What it is & Why You Need to Know

* ZCPR3 & Moduta, Too

+ Tips on Using LCDs: Interfacing to the
68HC705

* Real Computing: Debugging, NS32 Muiti-
tasking & Distributed Systems

« Long Distance Printer Driver: correction
+ROBO-SOG 80

Issue Number 48:

* Fast Math Using Logarithms

» Forth and Forth Assembler

* Modula-2 and the TCAP

+Adding a Bernoulli Drive to a CPM
Computer (Bullding a SCSI interface)

* Review of BDS 7

* PMATE/ZMATE Macros, Pt 1

* Real Computing

» Z-System Corner: Patching MEX-Plus and
TheWord, Using ZEX

+ Z-Best Software

* The Computer Corner

lssue ber

« Computer Network Power Protection

+ Floppy Disk Alignment w/ATXEB, Pt. 1
+ Motor Control with the FEBHC11

+ Controlling Home Heating & Lighting, Pt, 1
* Getling Started in Assembly Language
* LAN Basics

* PMATE/ZMATE Macros, Pt. 2

« Real Computing

* Z-System Corner

+ Z-Best Software

* The Computer Corner

lasue Number 50;

+* Offload a System CPU with the Z181

+ Floppy Disk Alignment w/RTXEB, Pt. 2

* Motor Controf with the F68HC 11

* Modula-2 and the Command Line

+ Controlling Home Heating & Lighting, Pt. 2
* Getting Started in Assembiy Language Pt 2
¢ Local Area Networks

* Using the ZCPR3 I0P

« PMATE/ZMATE Macros, Pt. 3

+ Z-System Corner, PCED

+ Z-Best Software

* Real Computing, 32FX16, Caches

* The Computer Corner

\.

CPM. « The Computer Corner
+ Advanced CP/M: ZMATE and using lookup
and dispatch for passing parameters.
+ Real Computing: The NS32000.
* Forth Column: Handling Strings.
« Z-System Corner; MEX and telecommuni-
cations.
+ The Computer Corner
uU.s. Foreign Foreign Total Name:
Subscriptions (Surface) (Airmail)
j Address:
1year (6 issues) $18.00 $24.00 $38.00
2 years (12 issues) $32.00 $44.00 $72.00
Back lssues
18 thru #43 $3.50 ea. $5.00 ea. My Interests:
6 or more $3.00 ea. $4.50 ea.
#44 and up $4.50 ea. $6.00 ea. Payment is accepted by check or money order. Checks must be in US
6 or more $4.00 ea. $5.50 ea. funds, drawn on a US bank. Personal checks within the US are welcome.
Back Issues Ordered:
Subscription Total TGJ
Back issues Total P.0O. Box 12, S. Plainfield, NJ 07080-0012
Total Enclosed Phone (908) 755-6186

The Computer Journal / #51

63

Computer Corner

By Bill Kibler

~ Never a slow moment these days,
which has led me to some deep think-
- ing. | have also got some work done on
porting Forth. First lets tackle those
deep thoughts.

To Game or Not to Game
The company I work for just had a
small layoff, well small only if you
weren’t one to be let go. While
pondering how this might affect me, I
considered what really fuels the
industry. While teaching I am often

very little into support either for clients
or support of the product as it matures.

Now I am not saying that only the
company I work for does this. I think it
is industry wide. What I think does it is
funding; they learned from the game
side of the industry. Your money back-
ers call the shots in most businesses.
Therefore they have a short money
cycle and want fast and quick profits.
Get in and win before the competition
beats you to the next product.

The problem is in developing new
products which

“The biggest problem with making products that
can grow and be enhanced is thinking ahead.”

have very long
development
cycles, and need
lots of support

asked about why high tech businesses
are so volatile. Usually I say something
about new products and competition
and all that stuff.

The other day I started on a
different concept. The computer
industry is based on games, computer
games that is. At first there were the
8080 and 6502 as computers for the
hardware hacker. When the industry
really took off, however, games are
what really paid those first big profits.
Ten years ago some small business
computers were being sold, but it was
games that fueled the market place and
small computers were small business.

As an industry (the computer indus-
try that is) things really haven’t
changed much over the last decade.
Many of the same ideas and business
tactics are still in operation. In gaming
you have products with short life
spans, low development cost, and
hopefully no support. Now you take a
large company like mine and what is
management’s approach to their prod-
uct? They may say otherwise, but
when you see where the money actu-
ally goes, you see that they are trying
to sell products with a short life span,
hire only cheap programmers, and put

64

both inside and
out of the company. The hardware for
these products cost plenty and needs
just as much support. What happens to
many companies is they blow all their
funds getting things going and leave
little for the long haul. I once took a
course in market-

preconceptualization through product
development. You will also need to
listen to your users and adjust to their
changing needs. In short, support,
more support, and plan for further
support. Sounds expensive and it is.

What alternatives do you have?
Hoping someone buys you out before
you run out of steam? I feel that last
concept is what most programmers
hope for. However, quick profits and
then retirement is rare in any industry.
So my advice is plan, plan, and do
more planning. With good planning
you will find the first product falls into
place and sets you up for many more
options later.

Embedded Planning
When speaking of planning, [have
seen a friend’s Forth based embedded
system. 1 can’t say much now, as he
hasn’t released it officially. The main
points about his project is his planning
and trying to think of everything the

ing and they de-
scribed a prod-
ucts cycle. Usu-
ally a product
goes like this,

“Plan, plan, and do more planning...You will find
the first product falls into place and sets you up for
many more options later.”

slow to catch on,

hot and fast once the word gets out,
then drops on its face almost as fast as
it started. The really good companies
know how to stretch the middle part
by adding more features or enhance-
ments (otherwise known as making it
appear like a new gamel).

The biggest problem with making
products that can grow and be
enhanced is thinking ahead. You can't
design a product one weekend and
expect it to work well 2 years from
now. It really takes skill and courage to
stick to your guns and require all the
items needed for a good product that
can last a long time. Some of those
concepts are: good modular design;
good documentation; extensive

user might want. It is one thing to just
design a product and throw it out in
the market and quite another thing to
consider how it will be used and then
provide all the possible support they
might need.

His actual boards are well designed
with several options already pro-
grammed in. Their cost will make it
hard not to use them. The software
package will be very easy to use. It will
come with several already available
options, either to use or experiment
with. If I had had this product when
we were designing a controller for a
coating process, I would have used it
and saved plenty of dollars in time

See Corner, page 40

The Computer Journal / #51

EPROM PROGRAMMERS Cross-Assemblers . iovss ssw

Stand-Alone Gang Programmer $750.00 SimUIatOI‘S as low as $100.00
Cross-Disassemblers asiowas s

. AR LIC RIS G I CE LT« Completely stand-alone or PC driven
’ 'W weaydeliiGhELI L o Programs E(E)PROMSs
"ﬂﬁ&%.m ST * 1 Megabit of DRAM DeveIOPer PaCKa es
) e User upgradable to 32 Megabit as low as $200.00(a $50.00 Savings
3 e .3/.6" ZIF socket, RS-232, A New Project
Parallel In and Out
* 32K internal Flash EEPROM for easy Our line of macro Cross-assemblers are easy to use and full featured,
firmware upgrades including conditional assembly and unlimited include files.
* (Quick Pulse Algorithm (27256 Get It To Market--FAST
in 5 sec, 1 Megabit in 17 sec.) Don't wait until the hardware is finished to debug your software. Our
* 2year warranty Simulators can test your program logic before the hardware is built.
. Made in US.A No Source!
. EZ?:S;S?J z:j;pfaﬁt:!dpsh&neema,ic A minor glitch has shown up in the firmware, and you can't find the original
o Single Socket Programmer also source program. Our line of disassemblers can help you re-create the
g original assembly fanguage source.
available. $550.00
« Split and Shuffie 16 & 32 bit Set To Go :
* 100 User Definable Macros, 10 User Buy our developer package and the nexttime your boss says "Get to work.",
Definable Configurations you'll be ready for anything.
* Intelligent Identifier Quamy Solutions
+ Binary, Intel Hex, and Motorola § PseudoCorp has been providing quality solutions for microprocessor
! problems since 1985,
20 Key Tactile Keypad (not membrane} 20 x 4 Line LCD Display BROAD RANGE OF SUPPORT
Internal programmer for PC $-| 39.95 . Curreptly we support the following microprocessor families (with
. more in development):
New Intelligent Averaging Algorithm. Programs 64Ain 10 sec., 256in 1 min., 1 Meg (270106,011)in 2 min. 45 sec., Intel 8048 RCA 1802,05 Intel 8051 Intel 8096
2Meg (2702001) in 5 min. Internal card with external 40pin ZF. - (o) 40 pin 2IF Motorola 6800 Motorola 6801 Matorola 68HC11 Motorola 6805
y : \ Hitachi 6301 Motorola 6809 MOS Tech 6502 WDC 65C02
= Reads, verifies, and programs 2716, 32, 32A, 64, Rockwell 65C02 intel 8080 85 Zilog Z80

g NSC 800
Hitachi HD64180 Motorola 68000,8 Motorola 68010 Intel 80C196
e Al products require an IBM PC or compatibie.

64A, 128, 128A, 256, 512, 513,010, 011, 301,
27C2001, MCM 88764, 2532

; Automatically s programming voltage So What Are You Waiting For? Call us:
* Load and save buffer to disk
« Binary, Intel Hex, and Motorola S formats PSCUdOCOl‘p
¢ Usgradable fo 32 Meg EPROMS Professional Development Products Group
Mo persanaity modules required 716 Thimble Sfoals Blvd, Suite E
= 1 year warranty « 10 day money back guarantee 5 N N VA 2'3606 ‘
« Adapters available for 8748, 49, 51, 751,52, 55,) ewport News,
TMS 7742, 27210, 57C1024, and memory cards o (804) 873-1947 FAX: (804)873-2154
* Madein US.A.

NEEDHAMIS ELECTRONICS Call for more information
4539 Orange Grove Ave. » Sacramento, CA 95841 (91 6) 924-8037

i FAX (916) 972-9960
Mon. - Fri. 8am - 5pm PST C.OD. T) E {916)

U-B William P Woodall - Software Specialist |

Custom Software Solutions for Industry:

Industrial Controls Hardware Interfacing
Operating Systems Proprietary Languages
Image Processing Component Lists

Custom Software Solutions for Business:

Order Entry Point-of-Sale
Warehouse Automation Accounting Systems |
Inventory Control Local Area Networks

| Wide Area Networks Telecommunications

Publishing Services:

Desktop Systems Format Conversions
Books Directories
CBT Interactive Video

33 North Doughty Ave, Somerville, NJ 08876 « (908) 526-5980
&_ E——J_JJ

SAGE MICROSYSTEMS EAST

Selling & Supporting the Best in 8-Bit Software

Automatic, Dynamic, Universal Z-Systems: Z3PLUS for CP/M-Plus computers,
NZCOM for CP/M-2.2 computers ($70 each)

XBIOS: the banked-BIOS Z-System for SB180 computers at a new, lower price (350)
PCED — the closest thing to Z-System ARUNZ, and LSH under MS-DOS ($50)

DSD: Dynamic Screen Debugger, the fabulous full-screen debugger and simulator,
at an incredible new price, down from $130 ($50)

ZSUS: Z-System Software Update Service, public-domain software distribution service
(write for a flyer with full information)

Plu*Perfect Systems

— Backgrounder ii: CP/M-2.2 multitasker (375)

~ 7ZSDOS/ZDDOS: date-stamping DOS ($75, $60 for ZRDOS owners, $10 for
Programmer’s Manual)

— DosDisk: MS-DOS disk-format emulator, supports subdirectories and
date stamps ($30 standard, $35 XBIOS BSX, $45 kit)

— JetFind: super fast, extemely flexible regular-expression text file scanner (350)
ZMATE: macro text editor and customizable wordprocessor (350)
BDS C — including special Z-System version ($90)
Turbo Pascal — with new loose-leaf manual ($60)

ZMAC — Al Hawley’s Z-System macro assembler with linker and librarian
($50 with documentation on disk, $70 with printed manual)

SLR Systems (The Ultimate Assembly Language Tools)

— 780 assemblers using Zilog (Z80ASM), Hitachi (SLR180), or Intel (SLRMAC)
mnemonics, and general-purpose linker SLRNK

— TPA-based ($50 each tool) or virtual-memory ($160 each tool)
NightOwl (advanced telecommunications, CP/M and MS-DOS versions)

— MEX-Plus: automated modem operation with scripts (360)

~ MEX-Pack: remote operation, terminal emulation ($100)

Next-day shipping of most products with modem download and support available. Order
by phone, mail, or modem. Shipping and handling $3 per order (USA). Check, VISA, or
MasterCard. Specify exact disk format.

Sage Microsystems East
1435 Centre St., Newton Centre, MA 02159-2469
Voice: 617-965-3552 (9:00am - 11:30pm)
Modem: 617-965-7259 (pw=DDT) (MABOS on PC-Pursuit)

