Programming - User Support

1

Applications

Issue Number 60 March/April 1993

10th Year Anniversary!
Four for Forth

Z-System Corner
Dr. S-100
Debugging Forth
Real Computing
Kaypro Il to IV
Center Fold
Support Groups for the Classics
Moving Forth Part i

The Computer Corner

ISSN # 0748-9331

US$4.00

EPROM PROGRAMMERS

$750.00

Stand-Alone Gang Programmer

QAL ER LTSN CEEIM « Completely stand-alone or PC driven

“ EGIMMHUC LN CE M » Programs E(E)PROMs

% LUl * 1 Megabit of DRAM

® User upgradable to 32 Megabit

] e ,3/.6" 2IF sockel, RS-232,
Parallel In and Out

* 32K internal Flash EEPROM for easy

firmware upgrades

Quick Pulse Algorithm (27256

in 5 sec, 1 Megabit in 17 sec.)

* 2 year warranty

¢ MadeinUSA

= Technical support by phone

Complete manual and schematic

Singte Socket Programmer aiso

available. $550.00

= Split and Shuffle 16 & 32 bit

« 100 User Definable Macros, 10 User
Definable Configurations

« Intelligent Identifier

Binary, Intef Hex, and Motorola §

20 Key Tactile Keypad (not membrane) 20 x 4 Line LCD Display

$139.95

Internal Programmer for PC

New Inteltigent Averaging Algorithm. Programs 64Ain 10 sec., 256in 1 min., 1 Meg (27010,011)in 2 min. 45 sec.,
2 Meg (272001} in 5 min. internal card with external 40 pin ZIF. 211, Cable 40 pin ZIF

« Reads, verifies, and programs 2716, 32, 324, 64,
64A, 128, 128A, 256, 512, 513, 010, 011, 301,
27C2001, MCM 68764, 2532

AMutomatically sets programming vollage

Load and save buffer to disk

Binary, Intel Hex, and Motorola S formats
Upgradable to 32 Meg EPROMs

No personality modules required

1 year warranty » 10 day money back guarantee
« Adapters available for 8748, 49, 51, 751, 52, 55,
TMS 7742, 27210, 57C1024, and memory cards
Made in US.A.

NEEDHAM'S ELECTRONICS

4539 Orange Grove Ave. * Sacramento, CA 95841

Call for more information

) (916) 924-8037
cop @O = FAX(916) 9729060

Crogs-Assemblers . iowassso
SII’T_IUlatOI'S as low as $100.00
Cross-Disassemblers : ows 100
DeveIoPer Packages

as low as $200.00(a $50.00 Savings
A New Project

Our line of macro Cross-assemblers are easy to use and full featured,
including conditional assembly and unlimited include files.
Get It To Market--FAST

Don't wait until the hardware is finished to debug your software. Our
Simulators can test your program logic before the hardware is built.

No Source!
A minor glitch has shown up in the firmware, and you can't find the original
source program. Our line of disassemblers can help you re-create the
original assembly language source.

Set To Go
Buy our developer package and the next time your boss says "Get to work.",
you'll be ready for anything.

Quality Solutions

PseudoCorp has been providing quality solutions for microprocessor
problems since 1985,

BROAD RANGE OF SUPPORT
e Currently we support the following microprocessor families (with
more in development):

Intel 8048 RCA 1802,05 Intel 8051 intel 8096
Motorola 6800 Motorola 6801 Motorola 68HC11 Motorola 6805
Hitachi 6301 Motorola 6809 MOS Tech 6502 WDC 65C02
Rockwell 65C02 Intel 8080,85 Zilog Z80

ockw NSC 800
Hitachi HD64180 Motorola 68000,8 Motorola 68010 Intel 80C 196
e Al products require an IBM PC or compatible.

So What Are You Waiting For? Call us:
PseudoCorp

Professional DeveIogment Products Group
716 Thimble Shoals Blvd, Suite E
Newport News, VA 23606

(804) 873-1947 FAX: (804)873-2154

Joumey with us to discover the shortest path between
programming problems and efficient solutions.

The Forth programming language is a model of simplicity:
Inabout 16K, itcanofferacomplete developmentsysteminterms
of compiler, editor,andassembler, aswell asaninterpretivemode
to enhance debugging, profiling, and tracing,

As an “open” language, Forth lets you build new control-flow
structures,and other compiler-oriented extensions thatclosed
languages do not.

Forth Dimensions is the magazine to help you along this
journey. Itis one of the benefits you receive as a member of the
non-profit Forth Interest Group (FIG). Local chapters, the
GEnie™ForthRoundTable,andannual FORML conferencesare
alsosupported by FIG. To receive a mail-order catalog of Forth
literature and disks, call 510-89-FORTH or write to:

Forth Interest Group, P.0. Box 2154, Oakland, CA 94621,
Membership dues begin at $40 for the U.S.A. and Canada.
Student rates begin at $18 (with valid student L.D.).

GEnie is a trademark of General Electric,

SAGE MICROSYSTEMS EAST
Selling and Supporting the Best in 8-Bit Software

Z3PLUS or NZCOM (now only $49 each)
XBIOS for SB180 ($50)
ZMATE text editor ($50)
BDS C for Z-system (only $60)
DSD: Dynamic Screen Debugger ($50)

PCED: ARUNZ and LSH for MSDOS ($50)
ZMAC macro-assembler ($50, $70 with printed manual)
Order by phone, mail, or modem and use
Check, VISA, or MasterCard.

Z-System public domain software by mail.
Regular Subscription Service
Z3COM Package of over 1.5 MB of COM files
Z3HELP Package with over 1.3 MB of online documentation
Z-SUS Programmers Pack, 8 disks full
Z-SUS Word Processing Toolkit
And More!

For catalog on disk, send $2.00 ($4.00 outside
North America) and your computer format to:

Sage Microsystems East
1435 Centre Street
Newton Centre MA 02159-2469
(617) 965-3552 (voice 9 to 11AM)
(617) 965-7259 (pw=DDT)
(MABOS on PC-Pursuit)

The Computer Journal

Founder
Art Carlson

Editor/Publisher
Bill D. Kibler

Technical Consultant
Chris McEwen

Contributing Editors
Herb Johnson
Charles Stafford
Brad Rodriquez
Matt Mercaldo
Tim McDonough
Frank Sergeant
Clem Pepper
Richard Rodman
Jay Sage
The Computer Journal is pub-
lished six times a year and mailed
from The Computer Journal, P. O.
Box 535, Lincoln, CA 95648, (916)
645-1670.

Opinions expressed in The Com-
puter Journal are those of the re-
spective authors and do not neces-
sarily reflect those of the editorial
staff or publisher.

Entire contents copyright © 1992
by The Computer Journal and re-
spective authors. All rights reserved.
Reproduction in any form prohibited
without express written permission of
the publisher.

Subscription rates within the
US: $24 one year (6 issues), $44 two
years (12 issues). All funds must be
in U.S. dollars drawn on a U.S.
bank.

Send subscription, renewals, ad-
dress changes, or advertising in-
quires to: The Computer Journal,
P.O. Box 535, Lincoln,CA 95648.

Registered Trademarks

it is easy to get in the habit of using company
trademarks as generic terms, but these trademarks are
the property of the respective companies. It is important
to acknowledge these trademarks as their property to
avoid their losing the rights and the term becoming pub-
lic property. The foltowing frequently used trademarks
are acknowledged, and we apologize for any we have
overlooked.

Apple 1I, I+, lic, lle, Lisa, Macintosh, ProDos;
Apple Computer Company. CP/M, DDT, ASM, STAT,
PIP, Digital Research. DateStamper, BackGrounder ii,
Dos Disk; Plu*Perfect Systems. Clipper, Nantucket;
Nantucket, Inc. dBase, dBASE 1|, dBASE I, dBASE lil
Plus, dBASE IV; Ashton-Tate, Inc. MBASIC, MS-DOS,
Windows, Word; MicroSoft. WordStar, MicroPro Inter-
national. IBM-PC, XT, and AT, PC-DOS; IBM Corpora-
tion. Z80, Z280; Zilog Corporation. Turbo Pascal, Turbo
C, Paradox; Borland International. HD64180; Hitachi
America, Ltd. SB180; Micromint, Inc.

Where these and other terms are used in The
Computer Journal, they are acknowledged to be the
propetty of the respective companies even if not specifi-
cally acknowledged in each occurrence.

TC

The Computer Journal
Issue Number 60 March/April 1993

Editor’'s Commentscccoivviveeermireirenseermmiresiensasseesenns 2
Reader to Readercccevrrireermmeiiiineeeneerseeenerreenssernnnes 3

Next Ten Years Part ll.........ccevivieiiirmmreenreeeeeneneseneees 8

The last word on TCJ's future.
By Bill Kibler.

Support Groups for the Classicseevrrrireecunnennn 10
A new feature on helping you find support..
By J. Wm. Weaver.

Z-Systems Cornercccevcvniinninens cersssessssannn s 11
Reviewing the past 8 years of Z-system.

By Jay Sage.

DR. S-100.....cccieerrcrrsnrrnereeecesessesssasessmsnes s snnes 15

Letters and collecting computers.
By Herb R. Johnson.

Four for Forth..........ccooovrrriiiiiienees cersresuennnn 19
A review of Forth engines.
By Jack Woehr.

Real COMPULINGocvererrerernrmrneeescnrnisssensnissenessanes 23
Reviewing UNIX, Minix, and Coherent.
By Rick Rodman.

Center Fold................. ererrrrsssserrreesssererreee .1
IMSAI CPA, the Front Panel.

Debugging Forth............... everrmmmraarerrnnaerernnsaeasannanns 30
Some good advice and tips on working with Forth.
By Walter J. Rottenkolber.

Mr. Kayprocccoiceminnncerinisnnnnnnnnnnon, reersssmsnnesneeeess 30
Making a Kaypro !l into a IV.
By Charles B. Stafford.

Moving Forth.................. reernersrerissesnnnnnennrne cereneeneenes 40

Part Il, case studies of Forth kernels on different CPU's.
By Brad Rodriguez.

The Computer Corner...........ccccevveviiiecrmsemeeeenenne s 51

Reviewing good books on computing.
By Bill Kibler.

EDITOR'S COMMENTS

" Welcome to the Tenth Year of The
Computer Journal. This is our 60th
issue of TCJ and with that we want to
thank all our readers for supporting us
for all these years.

In this issues we have a special letter
from Art Carlson, the founder of The
Computer Journal. Art asks what
projects interest you and how he might
be able to help. So please read his
comments and drop him a letter to
show him how much we miss seeing
his words in print.You will find his
reflections on the next page, our
Reader-to-Reader section.

Walter J. Rottenkolber provides his

special review of the past after Art’s.

Walter also provides excellent sup-

port for beginning Forth users on page

30 as he explains how to debug Forth
(also some good advice for any lan-
" guage - like Keep It Simple). Walter's
letter shows just how diverse our writ-
ers and readers interests and
backgound in computers can be. In
fact Walter owns a system I haven't
hear about before. Helmut Jungkunz
follows Walters letters with some com-
ments and ARUNZ scripts.

Our regular writers have incorporated
their thoughts on the past and future
within their articles. Jay Sage takes
this issue to review his past eight years
of articles by commenting on the de-
velopment of the Zsystem as he and
others explained it in 7CJ columns
You will be amazed just how much
we have covered in the last Ten Years,
I know I was!

Rick Rodman covers UNIX, Minix,
and Coherent, before commenting on

why 32bit systems represent Real
Computing. Our S-100 supporter,
Herb Johnson, answers a letter or two
and then speculates on the future of
collecting classic systems. Answering
letters is also done by Mr. Kaypro or
Chuck Stafford. His answers show
how to covert an old Kaypro Il into a
newer IV.

A new feature starting with this issue
is “Support Groups for the Classics™
by J. Wm. Weaver. JW will be at-
tempting to help our readers find orga-
nizations or groups that support your
interests in computing systems. This
will not be a simple job without your
support. JW will be collecting infor-
mation by region (including foreign)
and reporting here on what he finds.
He will need your input, so please read
his introduction and send him infor-
mation about your favorite organiza-
tion.

Our special articles start with the sec-
ond edition of ““The Next Ten Years.”
This position paper summaries your
comments and feed back I have re-
ceived since the first version appeared
in issue #56. Let me make it clear, that
this is the last installment on this topic!

Brad Rodriguez provides part two of
moving Forth and presents case stud-
ies of actual Forth implementations.
In issue #61, Brad provides his long
awaited 6809 Multiprocessing project
with the hardware layout. This is
Multiple CPU's running one system,
not one CPU running mulitple users.
What's more, he starts with the hard-
ware part of the project, first. I am

really forward to this one. Thanks,
Brad!

Mr. Jack Woehr honors us in this
special issue with a review of Forth
hardware engines. If you think the
new 586 is suppose to be a fast com-
puter, you need to read Jack’s article
and sec what speed really is about.
The article reviews those high speed
devices presented at the last Roches-
ter Forth Conference.

The last word from me, is a review of
books to get and use. I have had many
requests from reader as to what books
to get and I have answered those re-
quests in my Computer Corner. Due
to the size of this issue, I have delayed
the start of a new operating system
support column. Since many of our
new readers have little experience with
CP/M and other eight bit operating
systems, I am starting a new series on
operating systems. The first set of
articles will cover the basics of CP/
M. Later series will cover other sys-
tems such as Flex, and OS9.

All in all this issue provides reviews,
new items, and great topics for your
reading enjoyment and pleasure.

Please note the special offers inside.
For our advertisers, I am rolling back
the cost to 1982 levels, or HALF
PRICE! That is right, 1982 levels, so
order two advertisements and only pay
for one. Like all good offers this only
applies to the next three issues.

One offer with no time limits is the 10

and 15% discounts on large orders of
back issues. See page 49 for details.

The Computer Journal / #60

READER to READER

 Letters to the Editor
All Readers
'MINI Articles

SPECIAL LETTER FROM
ART CARLSON

The Birth of TCJ

It was ten years ago that I bought my
Apple II+ and started searching for the
information I needed to make it do more
than just run the few available canned
application programs. What we had to
work with then is almost comical when
compared with what is available today.
My Apple was fully stuffed with a whole
64K, and the display was limited to 40
characters of upper case, but it did have
a crude graphics mode. The single sided
floppy drives held what at that time was
considered a gigantic 135K -- people
laughed at me because I bought a whole
box of ten disks (priced at $4.50 per
disk) because no one could ever fill up
the entire ten disks. Now at work I use
a 33 MHz ‘386 with 8 Meg of RAM and
a 512 Meg hard dive, and buy 1.44 Meg
disks 50 at a time. But you know what?
Today’s computers are no longer any
fun!

The Apple was a good learning tool at
the time. With its built-in BASIC and
Monitor plus a S-C assembler I pecked
and poked, and started to learn program-
ming. The addition of a John Bell A/D
(Analog to Digital) card whetted my
interest in interfacing to real world de-
vices instead of just writing another ball-
bouncing BASIC program. That’s when
I really got hooked, and my life has
never been the same since.

I soon bumped into the Apple’s limita-
tions, and got a REAL computer with a
4MHz Z-80 that ran CP/M (which [soon
upgraded to ZCPR). It still had only
64K, but it had a real operating system
and a TV-950 terminal with 80 columns

The Computer Journal / #60

plus upper and lower case. I still remem-
ber Donna asking if I really needed two
computers -- after all one should be
enough for any sane person. Now, she
just admits that I have lost my sanity,
and sighs when I bring home ANOTHER
computer that I have saved from the
dump. I regret that I recently missed a
complete North Star system that went to
the land fill because nobody was inter-
ested in the obsolete relic. Oh well, there
is always another chance on something
else tomorrow, and this way I can still
(barcly) get the car in the garage. We
have 27 acres and I have considered
building another garage, but the arc lim-
its to how much I can pile up. Does
anyone know of a home for two Teletype
machines? I’ve already scrapped out two
other ones for parts.

After becoming familiar with the CP/M
system [had even more questions about
interfacing and control. [was running a
print shop at the time, and 1 kept com-
plaining that the available books and
magazines didn’t have the information
that I needed. So, after several friends
suggested that the only way that I could
get the information was to start a maga-
zine, I started TCJ. Now, there was a lot
of information available, but I was so
busy editing and publishing that I didn’t
have time to play with the computers.
I'm ashamed to admit that I recently
dusted off a six year old list of projects
which were never completed. But my
rcal interests haven’t changed, and now
that I am moving into semi-retirement I
still intend to work on them.

Moving Onward

[am now moving into semi-retirement,
and will have more time to work on

hardware/software projects. I have the
original Apple IT+, five CP/M systems,
two MS-DOS systems, plus buckets full
of chips and parts. For equipment I have
a Tektronix dual beam scope, a Needham
EPROM burmner, plus a EPROM eraser.
Most of my work will be in assembly, so
the PseudoCorp cross-assemblers and
simulators will take care of the language
needs.

1 intend to concentrate on small control-
lers based on the Z80 and 8051 families,
which include the Z8 serics, the Z180
(HD6480), 8052, 80C552, etc. Many of
these will be stand-alone units, some
will be multi-processor systems which
communicate with each other, and a few
will communicate with a computer
motherboard.

I fully agree with Bill that the project
modules should interface over a serial
link when ever possible. One of the pri-
mary reasons for this choice is that we
open the projects to everyone who has a
serial port available. Other people may
have projects which must connect di-
rectly to the motherboard bus in order to
obtain sufficient speed for large amounts
of data, but that is not the type of project
which I intend to work on.

As an example of a project with a small
amount of communications traffic, I
would like to record the daily minimum
and maximum ground temperature ev-
ery six inches down to a level of four feet
and upload the data to disk once a week.
That is 16 bytes a day, or 112 bytes a
week. Any system with a serial port can
handle that very easily. I only regret that
I don’t have date for the past ten years,
because [feel the variations in the sub-
soil temperature will be very useful in

determining if there really is a signifi-
cant warming trend.

Most of the projects at the top of my list
involve timing, measurement, and mo-
tion control. And most of them must be
small, portable, low power, and low cost,
which rules out the use of a computer.

Where Do We Go From Here?

I am not sure how many reader’s inter-
ests coincide with mine. I'll be design-
ing small project boards, evaluating com-
ponents, wirewrapping prototypes, writ-
ing assembly language programs, and
wrestling with the trade-offs in real world
control. Almost all of my project soft-
ware will be self-contained, and will not
use an operating system such as CP/M
or MS-DOS. The serial link will be used
for data and/or commands where exten-
sive data manipulation or graphic dis-
plays are required.

I have been forced to start using a pow-
ered wheelchair, and am not satisfied
with anything available, so I'll design
my own. Much of my work will be in the
areas of measurement, motors, motion
control, and robotics.

I would be interested in helping to estab-
lish a disk library of assembly language
routines related to measurement and
control. I'm also interested in preparing
a tutorial on the selection and applica-
tion of motors for motion control.

Should TCJ include this type of mate-
rial? Tell Bill how you feel about this, or
contact me at:

Art Carlson

190 Sullivan Crossroad

Columbia Falls, MT 59912

(406) 257-9119 (Voice--6 to 9 p.m. or
weekends)

Thanks for the Article/Letter Art. I know
that all our readers would like to per-
sonally thank you for starting TCJ! How-
ever, if they all did, your mail person
would be most unhappy, but then what
better way to say thanks than sending
you a personal note.

We all are looking forward to those ar-

ticles you talk about, and I will find
space as soon as you send them to me.
TCJ has only gotten better over the years
thanks mostly to your good start. Now
all we have to do is let others know
about what you did in the past and what
we are doing for the future.

Thanks again Art, Bill Kibler and all of
TCJ'’s readers.

Dear Mr. Kibler,

First, I'm enclosing a short article on
some words that turns Forth into a pow-
erful script language for a Forth modem
program. As you can seg, it doesn’t take
many words.

Second, about the last ten years of com-
puting.

Ten years ago I bought my first and still
primary computer system, a Kaypro II.
Back then, computers had made the move
from ‘hobby’ to ‘home’ computer status,
and my thought was to jump on the
computer train before it passed me by.
At the time, I could discover only two
really good reasons for spending the then
pricely sum of $1,800.00, word process-
ing and learning about computers. These
reasons still hold true, except that I've
combined them by writing articles about
my computer tinkering. The Kaypro, of
course, hasn’t stayed the same. Micro
Cornucopia character and Pro-8 ROM
upgrades, larger disk drives, a 5 Mhz
speed change, and a Micro-Sphere IMB
Ram Disk make computing much more
pleasant.

[also bought an Atari 800XL, an Imsai-
8080, a SWTp 6809 and a Data-Master
32 (the latter two not working, alas).
This has sparked an interest in history
and development of computers.

These simple systems can’t be beat for
learning about inner workings of a com-
puter, especially if you aren’t a Wizard.
The 8080/Z80 cpu’s are a paradigm for
register based systems, while the 6502/
6809 cpu’s represent the memory based
systems. A great body of technical infor-
mation on hardware, and source code for
programs and operating systems reveal

the mysteries of these simpler comput-
ers.

Times change. At a recent computer
conference, Bill Gates and Phillipe Kahn
spoke of the future. Mainframes on a
desk capable of 100 MIPS, with 32 MB
RAM (on up) and gigabyte hard drives,
running programs based on 10 million
lines of code. Programming will be by
linking standardized black-box objects
together. These objects would be created
by third party groups specializing in
different aspects of a program (lans,
graphics, etc.). The language of choice
would be C++, though any language
capable of producing the object to stan-
dard could be used.

As a first step, Borland released its new
version of C++, which it is using to
develop all its new product releases. It
took some 120 man years to create,
weighs in at 30 pounds and takes 27 MB
of hard drive space (and 5 more to in-
stall). Are we talking about mere mor-
tals here? NOT! Even professional pro-
grammers admitted to being at sea with
sharks circling.

So long life and prosper to “The Com-
puter Journal’. Perhaps it can lead the
way back to the future when computers
were on a human scale and programs
had less than 200 pages of documenta-
tion.

Yours truly,
Walter J. Rottenkolber
Mariposa, CA.

Well Walter your letter is just perfect
and expresses my ideas perfectly. I have
one of those C++ book collections at
work and can only put it on a lower shelf
for fear the shelf will break and kill
someone. I am lucky in that I only work
on 68000 assembly and don’t do much
C++. I often see those same books take
flight when one of the unfornutnate pro-
grammers gets so frustrated trying to
figure out what they are suppose to do
that they toss the book (would throw the
computer if it wasn’t so heavy) at the
neares! trash can.

I am running a bit short of space this
issue and will run your *‘script’’ article

The Computer Journal / #60

latter. We do need to see about helping
you get your other two systems running.
1 know you are interested in getting the
SWTp started up again, especially now
that Brad Rodriguez is showing us how
to do a 6809 Forth system. Maybe these
6809 units would be a good candidate
for starting on my universal operating
system (since I have a GIMLX that runs,
but needs more software). By the way,
what is a Data-Master 23, it is one sys-
tem that I don’t seem to recall.

I appreciate your words and especially
your articles. Thanks for being a TCJ
writer! Bill Kibler.

Various matters concerning TCJ:
Dear Bill,

I am an eager reader of TCJ and I find
some of the articles very interesting, but
in some respect, I find TCJ to have
changed. I read your discussion with
Tilmann Reh about specialist themes and
so on, but I think, the real situation boils
down to two main aspects:

The few specialist articles that deal with
specialist ideas or programs and the mass
of people who are interested in getting a
possibly global view of “‘the scene’ of
the 8-Bit world.

I personally feel a bit left out, if I com-
pare the interesting articles on the devel-
opment of the general ZCPR-tools or
CP/M Public Domain to the High-Tech
articles of today that are maybe interest-
ing as high-lights, but not truely satis-
factory for the “‘standard computer user’’.
I also think of TC]J as a valuable instru-
ment to maintain programmers’ contacts,
but it shouldn’t be forgot, that the aver-
age computer user is a more or less naive
person, hacking in his own living room
world and trying to understand, what he
(or she) is doing and why it does (or
doesn’t) work.

Therefore I think it essential to explain
programs and concepts in a simple lan-
guage (not for idiots, but legible for
strangers like us sour krouts here). There
are a lot of things to be said and to be
done of which the average user has much

The Computer Journal / #60

advantage, like tricks of the trade. A
very good example of what I mean were
early articles in M.O.R. and the
F.0.G Horn, such as ‘“Tools for Tyros™’
and the great ZCPR-articles by Rick
Chames ‘‘Forever Z”°, that sent me on
my way to Z-World. Also, I'd like to
say, that nothing can hurt a technically
oriented magazine more, than if the
publishers and writers take themselves
too seriously. Pieces of Eight (Eight bits
& Change) showed, that humor has a
very good right to appear in a techno-
magazine. After all, we’re all people,
aren’t we?

This is why 1 sit down every now and
then to think over the many little prob-
lems I get presented every day by people
calling me up or writing letters, most of
them dealing with typical CP/M prob-
lems (or ZCPR ones). Here is one thing
that obviously nobody dealt with before,
a really small thing, some people might
think, but a big problem for others. What
I’'m talking about is, how to write an
automatic letter with ZDE with CP/M
Plus, which carries built-in date and time
anyway. Remember, there was a solu-
tion with DW.COM, a program that
would tell you the Day of Week and
program a ZCPR-register. Another file
would then be processed through com-
plicated SH-scripts and ZEX to redirect
the input to ZDE, my favourite Editor.

Since DW only works with CP/M 2.2, it
couldn’t be used for CP/M Plus. So, while
thinking it through, I suddenly remem-
bered the variables used by Jay Sage’s
fantastic ARUNZ.COM. The first step
was to look at an alias called DAY-
TIME, that I found on one of the disks
Jay sent me:

DAYTIME echo "M~ID%>ate:
$DD.SDM.$DY"J"M%<Time:
$DH:$DC:$DNA "M

this would output the folling:

Date: 27.02.93
Time: 00:12:03

Then I reviewed the DATLET.LBR and
found the two aliases to work best:

PUTDATE REG s3 $dd;go s2 $dm;go s4 $dy.go
s5 $dh;go s6 $dc;go s7 $dn

DL2 $z61,ZEN DATELET $1 $2 $rf03 $dy
$rf04 $rf0S $dn $da

The final alias starts my standard letter:
LETTER PUTDATE;DL2 ZDE $1

What actualty happens, is that the CP/M
Plus date and time is broken down to
small ARUNZ-variables and successivly
poked into the ZCPR (Z3PLUS) regis-
ters via the tool REG.COM. Then the
file, whose name had been passed to
ZDE as parameter, has to be opened by
ZEX and the scriptfile DATELET.ZEX
automatically substitutes the name of the
month corresponding to the contents of
register 2, so that the entry becomes
casier to recad. The only disadvantage of
the method used, is that you have to copy
your own address twelve times, once for
each month and to pass the right param-
eters to it. The ZEX commands
FALSECMD and ZEXMSG OFF fol-
lowed by QUIET shut off the talkative
output of ZEX running.

To add cosmetics, you can add tabs and
spaces into your address lines. It should
also be mentioned, that you have to use
IF.COM in order to check the contents
of your registers. To find out, when
IF.COM is necessary, I renamed IF.COM
to IFCOM.COM. That way, I find it
casier to use the right IF version.

This may seem a very small thing for
some people, especially for those, who
consider themselves cracks, but ‘‘Real
programmers don’t use Pascal ..”” and
soon. It wasa problem [wanted to solve
and I did, and that is what makes com-
puting interesting for me. It is the main
reason, I still stick to the 8 bits, because
things are understandable and happen in
a small box, where I can lay my silly
hands on mysclf without getting hurt or
hurting anybody. Shucks, I like to relax
while hacking about!

With these thoughts I'd like to encour-
age all the “‘movers in small paces’” to
come out with their small solutions and
everyday wonders. They should under-
stand that there is always someone who
gets new ideas out of theirs and that they
should send the spiral spinning. No

small things - no big things! I am not
the super-shiny brain in Z80-program-
ming, but I know I have initiated more
good programs than many others and
given very good ideas to lots of friends
, simply because I believe in communi-
cation.

By the way, I'm hunting for all sorts of
C-128 tools and programs. Why? Be-
cause the C-128 is one of the least sup-
ported computers here in Germany, all
of a sudden. Commodore not even care
to supply people with CP/M Plus system
disks, so many have to get copies of
system disks wherever they can. If you
want to help with your ideas you can
send mail to me via compuserve
100024,1545 (Helmut Jungkunz). I'd
be glad to answer as soon as possible.

cemeeeeeeen modified -------- DATELET.ZEX -- for
CP/M Plus ~—--eeeeen

[FALSECMD)|

[ZEXMSG OFF|

IQUIET]

ifcom 2 1

$1 82

<N Helmut Jungkunz

<N Zacherlstr. 14

<MAINAINNIW-8045 Ismaning

<
<M
Qe

else

ifcom 2 2
$1 82
<A Helmut Jungkunz
NN Zacherlstr. 14
<NAMNANNNTW-8045 Ismaning
<
<N
<"Qe

else
ifcom2 3
$1 82
<AMAMAM Helmut Jungkunz
<NNMN N Zacherlstr. 14
<NANMATNIW-8045 Ismaning
<
<A
<"Qe

else

ifcom 2 4
$1 %2
<NAMANNM I Helmut Jungkunz
<AMNNNN Zacherlstr. 14
<AMNNTNIW-8045 [smaning
<
<N
Qe

else

iftom 2 §
$1 82
<A THelmut Jungkunz
<NMNNMMMZacherlstr. 14
<M W-8045 Ismaning

Ismaning, $3. Januar 19$4

Ismaning, $3. Februar 1984

Ismaning, $3. M{rzr 1934

Ismaning, $3. April 1984

<
<N
Qe

else

ifcom 2 6
$1 %2
<A THelmut Jungkunz
<N Zacherlstr. 14
<NNNNMNNW-8045 Ismaning
<
<N
<"Qec

fi

fi

fi

fi

fi

fi

ifcom 2 7
$1 82
<MNAMANN Helmut Jungkunz
<NAANNIN Zacherlstr. 14
<ANNANNIW-8045 Ismaning
<
<M
<"Qc

else

ifcom 2 8
$1 %2
<M Helmut Jungkunz
<NAINMNNZ acherlstr. 14
<AMMMANNTW-8045 Ismaning
<
<IN
<MQe

else

ifcom 2 9
$1 %2
<M THelmut Jungkunz
<A Zacherlstr. 14
<MNNNNNIW-8045 Ismaning
<
<A
<"Qe¢

else

ifcom 2 10
3182
<M THelmut Jungkunz
NN Zacherlstr, 14
<ANATMNINTW-8045 Ismaning
<
<IN
<’\Qc

else

ifcom 2 11
$1 $2
<A THelmut Jungkunz
<ANAINMATM Zacherlstr, 14
<ANANINNW-8045 Ismaning
<
<IN
<AQc

else

ifcom 2 12
$1 82
<N Helmut Jungkunz
<N Zacherlstr. 14
AAMAANATW-8045 [smaning
<
<A
<NQe

fi

Ismaning, $3. Mai 1934

Ismaning, $3. Juni 19%4

Ismaning, $3. Juli 1984

Ismaning, $3. August 19$4

Ismaning, $3. September 1954

Ismaning, $3. Oktober 1934

Ismaning, $3. November 1984

Ismaning, $3. Dezember 1984

fi

fi

fi

fi

fi

SO —— remember - this is the European
version! -----

Where you see <*Qc you must use ZDE
to enter a real ~Q after the < to do the
trick ("P~Q). What it does, it sends the
cursor to the end of the file, at this time
right after your address header!

regards
Helmut Jungkunz
Germany

Thanks for sending me this message VIA

Compuserve. Well you covered lots of
ground in comments and thanks for the
ZCPR tips. Getting our writers to be less
“techno’’ has been a real problem. I
think we are starting to get a handle on
it, but expect it to take much more time.

I have noticed that one magazine has
taken our complaints to heart and has
added more beginner articles. I helped
show one prospective writer how to en-
hance their article with a more personal
and explanative approach and it is now
in that other magazine.

One main problem for the present is we
don’t pay for articles. I hope to change
this soon, but until I do, many writers
will go where there is money to be made.
That means we get good articles, but
can not solicit a know writer who has the
special skill it takes to explain some-
thing in ways that all readers can under-
stand. 1 am working on this, but just
don’t have the time it really takes.

I believe that many of the MicroC Kaypro
disks are C128 compatible but of course
not CP/M 3 utilities. Maybe some of our
readers can let me (or you) know of a
good source for what you need.

Thanks again for the comments, Bill.
Dear Mr. Kibler,

I tried calling but you were on vaction.
I don’t know about rate increases, but
rather than wait for the minute I am

enclosing a check for $32 for two years
renewal.

The Computer Journal / #60

It is great to sce Kayrpo support. Two of
my machines already have the relocated
reset button. I am in the process of up-
grading some Kaypros with Advent hard-
ware from Stafford and NZCOM from
Sage. There is alot of stuff on the
SIMTEL20 mirrors, so I am wondering
how useful the Micro Cornucopia disks
will be. Can you also get schematics? |
have one for the K10, but understand
that there are others. I am looing for-
ward to seeing the speed and power sup-
ply upgrades.

I also have an Intersystems S-100 sys-
tem I would like ot get back up. I have
my eye on a similar working system
which I might be able to use to diagnose
mine. Will anyone rework the IDE con-
troller for S-100; what needs to be put in
the BIOS? I’ve implemented the
IOBYTE, the public drive patch and
installed an Electrologics Q-Disk (RAM
disk), and therefore not quite as afraid to
mess up my system if it ever works again.

Yours truly,
Preston Bricker

Thanks Preston for the renewal and com-
ments. I am aware of the limited re-
sponse on the Kaypro Disk. I have only
sold 2 disks to date. 1 know very little
about SIMTEL20, but maybe our new
writer (JW Weaver) can comment on it
later for us. We do have some schemat-
ics and I'will be listing which ones later.

I am still trying to get an article out of
anybody that will explain the insides
and how to program to IDE drives. How-
ever they all says it is so simple no one
seems to want to write about it. After
reading some comments on compuserve,
1 can tell it is not very simple at all. It
is starting to look like I will have to do
it myself, and well that is just going to
take some time (currently having trouble
finding specifications on the actual in-
terface standard - if there is one). As for
using IDE on S-100, once we get a speci-
fication on it, I will be able then fo say
what needs to be done.

Thanks and let us know how the S-100
repair job goes, Bill Kibler.

The Computer Journal / #60

Dear Sir:

I am currently receiving vour trail
subscritptions. Enclosed is a check for
$44.00 for a two ycar subscription. My
thanks go to Frank Sergeant for recom-
mending your magazine.

My current interests include Forth, em-
bedded systems, the 8051 and 68HC11.
From what I’ve seen of your magazine,
it tends to provide more information on
software side of things. I would like to
see alittle more on hardware as well as
gutsy type topics on low level hardware/
software interfacing and processor/
protoypt start-up. There never has been
much published and it’s becoming some-
thing of a lost art.

In general your magazine fills a niche
that has been empty for far too long.
Keep up the good work.

Sincerely yours,
Mark. E. Bender

Thanks Mark. We are trying to change
the amount of hardware to software in
TCJ. Next issue has a 6809 project by
Brad Rodriguez that helps tie all his
Forth and assembler articles together. |
have added the center fold to help hard-
ware types find lost schematics. We are
getting a more even balance, but again,
change takes time. I have had other
articles promised, but the writers have
either found paying users, or just are too
busy to finish what they started for us.
Thanks again, Bill.

Gentlemen:

P’m returning my collection of TCJ’s to
you under separate cover. As you cna
see, I’'ve maintained my subscription for
a considerable time--always hoping that
a KEY would emerge which would be-
gin to make sense out of it all. Ypu may
be able to find a better home for the back
issues.

My letter to your predecessort appeared
in Issue 53. The response was not
particuarly reassuring. Let me quote that
response: ‘‘TCJ was never meant to be
light reading.”’

Your aimes as stated in [ssue 56 seemed
cordial enough--perhaps SOMEBODY
would fdinally attempt to anglicize an
article here and there and I'd find that
clusive key. Alas! It hasn’t happencd.
Never a sentence to be scen which lacks
some cryptic abbrevation or mnemonic
familiar to every insider but a guaran-
teed obfuscator for those of us that tend
to communicate in a spoken language.

[offer my sincere pity to your contribu-
tors. They’ll undrego a complete change
of attitude before they ever experience
the real high associated with providing
some willing and deserving soul with a
clear answer (o a legitimate question,

Yours very truly,
Earl Bryant.

Well Earl, I was sadden to see the back
issues, but it was not a surprise in retro-
spect. I have had others drop TCJ for
just the reason you mentioned. I must
say I am working on the problem, but
changing the habits of many years is no
easy problem to overcome. Yes we have
been heavy reading, but that is no ex-
cuse for not providing the resources to
lighten and expand the knowledge that
people like yourself need to understand
the subject. As a past part time Junior
College teacher, I saw many levels of
students. Unfornately there are always a
Sfew who never get it. One past instructor
would wash out 60% of his students us-
ing that premiss. I took the same course
and changed it to less than 20% didn’t
make it. So yes I see yvour position and
am working to change it. It takes time
however.

L'll keep your collection sitting on my
desk just to remind me that some of our
readers don 't want to be forgotten. BDK,

Next Ten Years Part Il

By Bill Kibler

In issue 56 1 laid out some thoughts on
where 7CJ would be going over the next
TEN YEARS. Since that issue, many
readers have sent in their comments, our
writers have had a chance to consider
the options, and I have pondered the
topic endlessly. What has distilled out of
those discussions and comments has been
minor changes in our direction and a
clarification of new options and possible
directions to follow. What I will try and
relate here, is those options and how
they might effect you, our readers.

The Options Before Us.

A number of options drifted to the sur-
face over the past few months. A major
driving force of those options has been
the economy. The results has been to
make sure the readers dollar gets them
something they can use right now. We
have seen our readership drop, not from
any changes we did, but simply because
so many readers have lost their jobs and
have been forced to do without items
once considered important.

The magazine world has not been doing
well either, with several publications
ceasing production. Elekfor magazine
stopped United States production because
of low returns on their investment. Sev-
eral smaller newsletters stopped due to
shortage of readership. The impact of
IBM clones continues to focus readers
away from alternatives in computer sys-
tems and thus alternative publications
like ours. I dare say the history of com-
puters for many users started with IBM
clones and they probably believe that
nothing existed before that.

Like any magazine The Computer Jour-
nal must carve out it’s own readership

and provide something of value to their
supporters. We never have been a clone
magazine and have no plans on support-
ing the current madness of bigger and
bigger is better philosophy. In fact our
philosophy would be just the opposite,
that smaller and simpler you can make
the product or project the better and more
efficient it will be.

That concept pretty much makes us a
non-clone magazine and it is at that
point which I can look around and see a
vast market of unsupported computers.
We have always supported S-100,
Kaypros, rolling your own systems (like
YASBEC), and general do-it-yourself
projects. Yes there are other magazines
doing that to, but they require an IBM
clone systems for their projects. Often
we find a clone an excellent system for
our work, but at TCJ the desire is to give
you alternatives if you chose a different
direction than the rest of the crowd.

Classic Market

I have tried to see if any magazine is
supporting the CLASSIC computers. |
quickly picked up one magazine that
had an article using *‘classic’” comput-
ers, only to find their concept of old or
classic was an XT clone (PC clones were
too old even for them). So I feel that we
can honestly say, that The Computer
Journal is the only magazine that has a
stated desire and interest in helping us-
ers keep their older “‘classic’’ systems
running.

There are many little newsletters that
support various special aspects of classic
computing,. I have someone that will be
providing a column that comments and
lists what is going on with those publi-
cations. I have had conversations with

two such newsletters and they have indi-
cated that they might stop their work in
the near future. Each has told me that
should they decide to do so, we can look
forward to their comments appearing
regularly in 7CJ.

For most of T7CJ’s life we have focused
our attentions on CP/M based systems.
Yes we have covered other systems, but
without much follow through. If we are
to support the unsupported classic user,
it means an opening up to other prod-
ucts. I subscribed for many years to 68Mi-
cro, a magazine that supported 6800
through 68000 systems. These were
GIMIX, SWTP, and Radio Shack
COCQOs, running such operating systems
as FLEX, and OS9. When the owner of
68Micro passed away, his sons and oth-
ers of the corporation had no desire to
continue the magazine. I have been talk-
ing with the corporation in hopes of
getting their user disk collections and
possible back issue rights. I expect this
to take some time and can only say that
TCJ will be supporting these items no
matter what the outcome of talks with
68Micro.

Are their other machines we could sup-
port. Sanyo MBC machines are non-
clone machines. These early MSDOS
based machines have a similar architec-
ture as a clone, but typically differ enough
that only the simplest of software will
run. Hardware compatible they are not
inany way except running an 8088 CPU.
Since CP/M was intended to run in a
small memory space, many of our topics
can certainly be applied to these classic
clone units. I think programs like FPC
Forth, MYZ80, and such, provide the
perfect avenue for those user of non-
clone systems to enhance their product.
QOur hardware articles certainly can add

The Computer Journal / #60

skills that the reader can use to make
hardware changes to these limited sys-
tems.

EDUCATION

One area which I think The Computer
Journal can excel without much compe-
" tition is in education. Now this is not
about educational computers, for those
are becoming large expensive clones, but
about affordable hardware and software
tinkering machines. To learn about com-
puters you must ‘‘tinker.”” What 1s tink-
ering, mostly being able to change some
aspect of your system and see the results.
Many of course will say that you can do
that on a clone machine, and of course
that is true if you don’t want to change
the BIOS, or disk formats, or /O opera-
tions, and forget about changing the
operating system. In short all you can
learn about on a clone machine is how to
put an expansion card in a slot and use
““C” programs to read and write to it.

Over the years I have enjoyed and learned
considerably more than is possible from
just playing with simple I/O. My most
educational experiences was involved in
making S-100 cards talk to each other
(helped me master concept of BUS data
transfers, hardware interfacing problems,
and design tradeoffs), adding new BIOS
features (how to program at the hard-
ware level, disk control problems and
disk format considerations), changing
4K memory devices to 16 and then 64K
devices (processor and memory timing
problems and signal line handshaking),
and hacking and more hacking to gain
knowledge.

To design todays glue logic requires
knowledge of past discrete logic design.
Yes, todays modern designs are based
on knowing how the old systems were
put together. So if you want to design
new and better products nothing can
replace understanding and changing clas-
sic computers. Is it an expensive task,
not at all! Classic computers typically
can be had for $50 (bought a Kaypro 2
with all manuals and programs for $50
last week-looked like brand new as well).
What happens if you do something wrong
and smoke your board. With a classic
system you might be out $50, but heaven

The Computer Journal / #60

help you if your using your 486 clone
with a $600 motherboard and you slip
and short out the main ASIC (does all
the things discrete logic did.)

Classic systems ar¢ by nature simple and
straight forward. All devices typically
were simple TTL logic devices. Their
cost are pennies and can be found on
scrap systems in your computer junk
collection. When making hardware
changes there is little fear of ‘‘shock-
ing”’ associated components, a common
problem with current CMOS devices
(TTL is rather static shock insensitive,
where as CMOS are very static sensitive
parts.) When I first did my S-100 work,
I used a slow 35SMHZ oscilloscope. For
10MHZ or greater troubleshooting, a
100MHZ scope is almost the minimum
necessary and with it comes a $1000 to
$2000 price tag. Scopes like that are not
often found in beginners workshops. Can
you work on high speed logic without a
logic analyzer, seldom these days. On
old 4MHZ Z80 systems, I repaired many
a problem using my slow scope that now
days (clones at 33MHZ) would require a
very good analyzer. All these items make
a big difference for the beginning or
learning hardware hacker.

For beginning programmers, finding
simple systems that minor changes will
NOT crash something else is a problem.
These classic computers have limited
software to get in the way of your project.
Many early systems have very good di-
agnostic ROMs that will allow you to
bring up the computer without a disk
operating system. If you want to learn
how to talk to hardware from your pro-
grams, and not have the BIOS turning
off your port when your not looking,
then try classic systems. Many of the
current clone BIOS’s will turn off your
ports in the middle of your program, not
a fun experience at all. Classic systems
were made with the programmer having
total control, not some ROM BIOS! You
can be pretty sure that if it doesn’t work
on a classic system, it is your own fault
and not the operating system trying to do
it for you.

Where Now

For the next TEN YEARS, TCJ will be

trying to bring all the above about. What
this means for our readers is better and
better articles. Most of the minor
refocusing is going to take some time to
implement. I have sent a few articles
back already to our writers for minor
enhancements, and overall the changes
scem to be working. What you can do to
help is spread the word about 7C.J and
send us your comments, storics, and
questions.

I have been trying to find and contact
vendors and service organization that
support classic systems. A few still do
exist, but will not last much longer on
just local traffic. Since their numbers is
getting ever smaller it is up to use to
support them, by telling others of their
services. If you know of some company
supporting classics, please turn them onto
TCJ and send me their name so 1 can
add them to our mailing list. I have
plans to provide several new reviews of
support persons and organizations. To
do this I need your input.

The contents of The Computer Journal
will stay much the same as it is now. The
number of hardware articles however has
been considerably lower than I would
like. Since new hardware projects are
based on clone designs, it will take you
the reader, who is using older systems to
send us your articles. The current writ-
ers are heavily overworked on their own
projects(some based on clones which is
why their overworked) and so new writ-
ers and projects are needed. Drop me a
note and let us talk about your projects.
Not all projects need be full articles, our
readers enjoy the short mini articles I
run in Reader-to-Reader.

Well that pretty much sums up the direc-
tions of 7CJ for the next ten years.

As always feel free to drop me a letter or
message, | am glad to hear from you.
Thanks for supporting 7CJ!

Bill Kibler
The Computer Journal
P.O. Box 535
Lincoln, CA 95648
GEnie = B.Kibler.
CompuServe = 71563,2243.

NEW Regular Féaidre 'SUPPORT GROUPS FOR THE CLASSICS

By J. Wm. Weaver

Classic Support

Group Reviews

If you are like me, it is quite a chore
to locate groups supporting my inter-
ests and/or systems. For one, I live in
a remote part of the California foot-
hills, with few if any support groups
located locally. So 1 have to travel to
one of the two nearest cities, Stockton
or Sacramento, approximately 60
miles to either one. Also, I have a
large assortment of classic computers,
from one of the first Altairs, to
TeleVideos, to Commodore 64, to
Osborne. With side assortments of
Altos, Corvus, Sun to ATT 3B2 sys-
tems. With language interest from
Assembly to BASIC to Forth, and
operating systems from CP/M to DOS
to 0S/2 to UNIX.

Finding groups that support these, or
any part of these interests, has been a
tedious task. I finally settled on two of
the many fine groups in the Sacra-
mento arca. More about them a little
later.

For the many users, new and sea-
soned, who are looking for groups to
contact, I will be creating a list, by
regions, of groups and the systems
supported, with names of people rep-
resenting these organizations, phone
numbers and/or addresses, to be con-
tacted.

So if your group would like to be
included, please send me a brief de-
scription of your group, systems sup-
ported, a little history, and if possible
newsletters, with permission to print
excerpts in TCJ.

10

Now to the two support groups in the
Sacramento Area.

Sacramento Komputer User’s Group

Meets the 3rd Thursday of each month,
7:30pm. Oakleigh Wedding Chapel
8452 Madison Ave, Fair Oaks, Cali-
fornia. Contact Person: Richard
Hughes Phone (916) 363-9198
Mailing Address: P.0.Box 214968,
Sacramento, CA 95821

This is a fairly small group, with at-
tendance fluctuating between 12 and
25 members, plus a few guest’s. In-
formal but friendly meetings. History:
This group began in the early days of
micro’s, to support the Kaypro com-
puters (thus the K™ in computers).
As time progressed, the interest
changed. Currently, the group’s inter-
est span several CP/M systems, MS-
DOS, 0S/2 and UNIX. Has a library
of Kaypro related software, and be-
tween its members, can usually find
software for about a dozen different
CP/M computers. Last year they got a
write up in the local paper for repair-
ing a Morrow computer after all the
repair shops were unable to help the
lady in distress.

Sacramento Forth Interest Group

Meets the 4th Wednesday of each
month, 7:30pm.SMUD Training
Building Room A, 1708 59th St., Sac-
ramento, Califorma. Contact Person:
Bob Nash Phone (916) 487-2044

This is a very informal group, with

attendance fluctuating between 4 and
18 members. History: This group was
founded to provide support for the
Forth Environment. Continues to sup-
port Forth, and has a wide range of
experience in the industrial, commer-
cial, and hobbyist applications. Al-
ways willing to help the neophyte.
Most members also belong to FIG
(Forth Interest Group) and each year
the group journeys to the San Fran-
cisco Bay area for FIG’s Forth Day
seminars and the fireside chat with
Chuck Moore.

Best wrap this up as I promised Bill
K. that I would keep this first article
to a minimum, and have it to him this
evening,.

To contact me (by snail mail) :

TCJ Group Support
c/o JW Weaver,
Drawer 180,
Volcano, CA 95689
Voice: (209) 295-3173
BBS: (916) 427-9038

I'want to welcome JW to our stable of
writers and supporters. JW is actu-
ally very skilled at fixing computers
(I beleive he fixed the poor ladies
computer last year) as well as writ-
ing, and with time I am sure that his
column will become one of your fa-
vorite focal points when looking for
classic support. BDK.

The Computer Journal / #60

The Z-System Corner
By Jay Sage

Regular Feature

ZCPR Support

Looking Back

Looking Back: Z-System and 7CJ

As T wrote in my last column, I had
originally planned a special project for
this issue: I was going to start from
scratch with one of my computers and
go through the process, as if I were a
beginner, of installing NZCOM or
Z3PLUS on it. As the first step of this
project I was to update all the utilities on
the distribution diskettes. From what I
learned going through the installation, [
expected to update the documentation,
to help people over rough spots I discov-
ered.

Well, owing to severe pressures at work,
there just has not been time to complete
this project. I did manage to update the
utilities, and I did fire up a Kaypro that
I extracted from the collection of old
machines stored in my basement, but I
have not had time to go through the
installation process.

While trying to get an idea for what else
I might write about for this special anni-
versary issue, I took out my whole col-
lection of 7CJs and started to look through
them, rereading some of my own and
others’ articles. This was a powerful
nostalgic experience and brought back a
lot of memories. Most of those memo-
ries were very sweet, because they re-
minded me of all the fun we’ve had and
all the interesting things we’ve done in
the Z community. [was amazed at how
good and enlightening so many of the
articles were. But some of the memories
were sad, because they reminded me of
people who are no longer active partici-
pants in the Z community.

It seemed quit appropriate at a major
anniversary like this one to look back

The Computer Journal / #60

and take stock, so that’s what I decided
to do. In issue #54 I reviewed the ten-
year history of ZCPR; this time I will
trace the history of Z-System’s relation-
ship with 7CJ.

The Earliest Days

My TCJ collection goes back to issue
#19, dated July/August, 1985, almost
eight years ago. That must be when my
first subscription started, since it corre-
sponds to an entry in my check register
showing a $12 check written to “‘The
Computer Journal’ on July 9, 1985,

I no longer remember how I first found
out about 7CJ, but something I do clearly
remember is being enormously surprised
that a magazine so along the lines of my
interests had been around for nearly four
years without my ever having heard of it.
Unfortunately, that situation probably
persists to this day: there must be hun-
dreds of people out there who would love
tobe reading TCJ if only they knew of its
existence.

When did a connection first develop
between 7CJ and Z-System? Well, in
looking through the issues just now, I
noticed that advertisements started to
appear in issue #20 for Echelon, a com-
pany created by Frank Gaudé to market
the Z-System. Frank published a news-
letter called ‘ “The Z Letter’” for custom-
ers of Echelon, and most likely it was a
brief reference there to 7C.J that got me
and a number of others started as 7CJ
subscribers. What a life-giving spark
that turned out to be!

It was not until issue #23 that anything
about Z-System actually appeared in a
TCJ article (though I did see a reference
to an article way back in issue #9 that

apparently compared RPM and ZCPR).
In issue #23 founding editor Art Carlson
started what was apparently to be a new
regular feature called *“The Z Column™’.
The second installment appeared in is-
sue #24.

Very early on I proposed to Art Carlson
that I write a regular column on Z-Sys-
tem topics. Art accepted my offer, and
my first column appeared in issue #25,
taking the place of his column. In those
days there was some friction between the
user community and Echelon over
Echelon’s understandable desire to exert
some control over the Z-System utilities
-- even the public-domain ones -- that it
included in its commercial distribution
packages. To avoid confusion and kecp
responsibilities clear, Bruce Morgen,
Richard Jacobson, and I formed an orga-
nization called ZSIG (ZCPR Systems
Interest Group) to promote new public-
domain Z-System software development.
My TCJ column appeared under the
auspices of ZSIG and was called simply
“ZSIG”.

The first column mainly announced the
formation of the new organization. Real
technical content began with issue #26,
where [talked about how to improve the
performance of Z-System on a computer
with only floppy disk drives. The ideas
there are still useful today and, in fact,
apply even to systems with hard disk
drives. And to software other than Z-
System.

With issue #27 there was a slight change
in the title of my column (why, I can’t
remember) to ““ZSIG Corner’. The
column dealt with command-line gen-
erators -- aliases and shells - two of Z-
System’s most powerful features and the
most important application of its mul-

1

tiple-command-line capability. The col-
umn in issue #28 covered an idea that
originated with a TCJ reader, Dreas
Nielsen, for implementing recursive
aliases. His idea was much better than
one of my own that I had described in an
earlier column. Rereading this brought
back the first sad memory: Dreas, like so

~many others, eventually moved on to
other things, and we have not heard from
him in many years.

Explosive New Developments

With issue #29 there was a major change.
In my column in that issue I announced
the surprising news that Richard Conn,
the creator of ZCPR, had dropped out of
the Echelon development team and that
I had taken over responsibility for com-
mand-processor development. Moreover,
the column announced the official re-
lease of ZCPR33, on which I had been
working feverishly for several months
but about which I could previously speak
only in guarded terms, since nothing
was official at that point.

In recognition of this change in my sta-
tus, the title of my column was changed
to “ZCPR3 Corner’’. Art Carlson actu-
ally got so carried away that he changed
the affiliation listed for me from *‘ZSIG
Librarian’’ to ‘‘Echelon, Inc.”” He ap-
‘parently misunderstood what it meant to
be a ‘‘member of the Echelon Z-Team™.
It did not mean that I had become an
employee of Echelon. Both Echelon and
my real employer might have been a
little shocked at what they saw.

This had been an amazing period in my
life. After getting home from work, I
typicaily programmed until about four
o’clock in the morning. Then I got up
and got ready for work again at 6:30! At
first, I expected that I might be able to do
this for a few days, after which I would
collapse. To my amazement, I contin-
ued on that schedule for several months.
And felt terrific! It scemed that I really
didn’t need more than two or three hours
of sleep each day. I had once met some-
one who claimed to sleep only one hour
a night; now I could believe that this was
possible. I still get by on rather little

12

sleep --but it’s a lot more than two hours
a night!

Developments proceeded at a very rapid
pace during this period. The column in
issuc #30 mentioned a new product in
development: NZCOM. Two issues later
came the official announcement and full
description of this amazing implementa-
tion of the Z-System. The actual release
of NZCOM ended up being delayed while
some important additional features were
implemented, and it was not until issue
#34 that NZCOM could actually be pur-
chased.

My column in issue #31 provided the
first complete documentation of my alias
processing program ARUNZ, I still get
a chuckle out of how I introduced the
subject (J’accuse!), but you’ll have to
look at it yourself to find out why.
Writing that documentation led to a slew
of new ideas (teachers often learn more
than their students do from the lesson),
and two issues later 1 had to provide a
further set of documentation. ARUNZ
has been one of Z-System’s most popu-
lar and widely used programs, but it
probably also holds the world’s record
for the length of a beta-test period. I still
have not officially released it!

An important milestone in 7CJ’s cover-
age of Z-System came in issue #32, when
Bridger Mitchell’s column entitled ** Ad-
vanced CP/M” first appeared. This
became my favorite column and one from
which I always lcarned a great deal.

In its second installment, in issue #33,
Bridger announced and described an-
other blockbuster advance in the Z-Sys-
tem: Z3PLUS, the Z-System for CP/M-
Plus computers. Until then, the large
fraction of the CP/M community that
had computers (such as the Commodore
128 and Amstrads) running CP/M-Plus
had been excluded from the Z commu-

nity.

My column in issue #33 also covered
some particularly interesting material.
WordStar Release 4 had just come out.
It was the first (and is still the only)
program from a major software house
that was written to take advantage of Z-
System. Unfortunately, there were prob-

lems with the implementation. WS4
acted as a shell under Z-System, and this
turned out to cause a good bit of grief.
My column described a number of mis-
takes in WS4 and ways to fix some of
them, and it started an ongoing discus-
sion of ZCPR2- versus ZCPR3-style
shells.

My comments about shells provoked the
greatest controversy and volume of let-
ters of any of my columns in 7CJ. This
led me to take up the subject again -- in
greater detail and with greater force ~ in
issue #35. That column included some
extensive patches to WS4 for improving
its performance under Z-System. Deci-
phering code in overlay files is espe-
cially challenging, so this material might
be of interest to people working on pro-
grams other than WordStar.

The Demise of Echelon

During this period, the Z community
suffered a major loss. Frank Gaudé,
exhausted from his efforts to turn Z-
System into a viable commercial ven-
ture, decided to retire and fold Echelon.
I announced this in my column in issue
#36, but it must have been in the works
for quite a while. I had not noticed it at
the time, but in checking through my
TCJ collection now I see that Echelon’s
regular “°‘Z Sets You Free’’ advertise-
ments stopped after issue #32. This
meant that just as NZCOM and Z3PLUS
were ready for market, Echelon was no
longer there to market them.

Sadly, Frank Gaud€ ended his effort in
a state of great disappointment and dis-
couragement, even bitterness. He re-
tired to Lake Tahoe, and I don’t believe
anyone has heard from him since. He
has never, to my knowledge, signed onto
a Z-Node BBS since his retirement.
When he quit, he quit totally. Maybe
that’s the only way one can do it after
such intense devotion.

New TCJ Authors

Remarkably, during this same period
there was a blossoming in the number of
authors contributing Z-System-related
articies to 7CJ. In issue #35 Bruce
Morgen got things started with a series

The Computer Journal / #60

on modern assembly-language program-
ming based on relocatable libraries.

In issue #36 Rick Charnes joined the
roster. Rick just loved shells! In his first
column he talked about named shell
variables, a very powerful but rarely used
feature of Z-System. Starting with the
following issue, he actually named his
column ‘‘Shells’’, though that wasn’t
the only subject he covered. Rick con-
tinued to write through issue #39.
Though not originally a programmer, he
had an intensc passion for Z-System.
This eventually led him, if I remember
correctly, to change careers and become
a computer professional. Since his work
did not, of course, involve 8-bit comput-
ing, he eventually drifted away, and we
have not heard from him in several years.
I miss him.

Hal Bower contributed to four consecu-
tive issues starting with #37. In the first
two, jointly with Cam Cotrill he described
ZSDOS, their new BDOS replacement.
Hal and Cam always do things with utter
thoroughness, and ZSDOS is still the
state of the art in disk operating systems
for 8-bit computers [but ZSDOS2, a
banked version of ZSDOS, will soon
advance the art further]. In his next two
articles, Hal continued the theme started
by Bruce Morgen on advanced assem-
bly-language techniques with a discus-
sion of PRL (page-relocatable) files.

Cameo Appearances

Over the years there have been cameo
appearances in 7CJ by a number of well-
known personalities in the Z world.
Starting with issue #42, we had one in
nearly every issue. Dreas Nielsen, whom
I mentioned earlier, contributed an ar-
ticle on dynamic memory allocation for
that issue. For the next, Michael
Broschat, an ardent Z-System user, wrote
an article on the S-100 bus. Like Rick
Charnes, Michael ended up becoming a
computer professional (his area had been
Chinese!).

There was an especially exciting cameo
appearance in issue #43. Rob Friefeld,
who has authored some of the most val-
ued programs in the Z-System arsenal,

The Computer Journal / #60

described LSH, his exceptionally fine
history shell. Iuse many kinds of com-
puters in my work -- micros, minis, and
mainframes -- and [have never seen
another history shell that holds a candle
to LSH. Three of Rob’s other programs
-- SALIAS, SCOPY, and XOX -- are
also among the highest quality and most
popular Z-System tools.

For issue #44 Dan Mareck wrote a re-
view of Bridger Mitchell’s remarkable
DosDisk program, which allows CP/M
computers to work with MS-DOS DSDD
disks, even those with files in
subdirectories.

Issue #45 offered some really special
excitement. Many authors had described
Joe Wright’s brilliant work; in this issue
Joe appeared in person. His company,
Alpha Systems, had acquired from
Borland the right to market the 8-bit
version of Turbo Pascal. Naturally, Joe
was eager to make it Z-System compat-
ible. Joe’s agreement with Borland did
not allow him to make any changes to
the code, but in his usual clever way, Joe
figured out how some simple patches
and a toolbox of Pascal subroutines could
accomplish the goal.

It looked as though we skipped over
issue #46, but David Clarke, in his col-
umn on Modula 2, was just setting things
up for his follow-on in issue #47 that
told how to Z-ify Modula 2. Almost all
high-level languages were covered now.
Back in issue #38 I had announced an
update to BDS C that included full Z-
System support. Issuc #48 carried a
review of it by Carson Wilson, a major
figure in the Z world. Carson wrote the
Z80DOS disk operating system replace-
ment before he teamed up with Hal Bower
and Cam Cotrill to develop ZSDOS. He
also wrote the very popular ZDE (Z-
System Display Editor).

Stress Takes Its Toll

Even during that golden age of Z-Sys- -

tem, we suffered some major losses. Two
were particularly painful for me, because

these two people were a source of great
enjoyment in my Z-System work.

One was Richard Jacobson, whom I
mentioned carlier and who had had a
long, behind-the-scenes connection with
TCJ. Way back in issue #30 Art Carlson
announced that Richard’s Lilliput Z-
Node had become the official BBS for
TCJ. Although Lilliput was a pay sys-
tem, TCJ subscribers were offered free
access. To inaugurate the new service,
Richard wrote an article for that issue
describing Lilliput.

Richard had a wonderful sense of hu-
mor, and many Z-System aficionados
loved the discussions on Lilliput. He
attracted a strong following in the local
Chicago community, much the way Lee
Bradley has in Hartford in more recent
times. Inissue #38 I had the pleasure of
announcing that the Lilliput Z-Node had
become the new Z-Node Central, the
core node for the support of Z-System.

Unfortunately, soon thereafter Lilliput
was beset by a rash of major hardware
failures. In issue #42 I had the sad task
of announcing that Lilliput would not be
rebuilt. Al Hawley’s Ladera Z-Node in
Los Angeles became the new Z-Node
Central. With his own Z-System focus
lost, Richard’s presence, 00, was soon
absent.

The other deep loss for me personally
was that of Bridger Mitchell. Tssue #45
was the last one to carry the regular
column he had started back in #32. That
streak of 14 columns has been surpassed,
I believe, by only two other columnists (I
don’t count editor Art Carlson here). [
am one; this column is my 36th. Our
current editor, Bill Kibler, is the other. |
don’t know when he started writing for
TCJ, but 1 have never seen an issue
without his ‘*Computer Corner’’.

I missed Bridger’s contributions so badly
that I tried very hard to drag him back.
There was a hopeful sign when an “*Ad-
vanced CP/M’” column appeared in is-
suc #54, but there has been no follow-on.

Stress finally took its toll on publisher/

editor Art Carlson at about this same
time. Art had published 47 issues of

13

TCJ when Chris McEwen took over with
issue #48. This represented a more in-
timate connection between 7CJ and Z-
System, since Chris was a Z-System
person himself. He was the sysop of the
Socrates Z-Node in South Plainfield, NJ,
and had contributed an important article
in TCJ issue #42 entitled *“Using BYE
with NZCOM”’. I'm sure it helped a
number of people set up new remote
access computer systems (BBSs).

New Contributors

In that same issue #48 when Chris took
over, two new regular columnists joined
TCJ. My friend Clif Kinne, at my urg-
ing, started a column on macro pro-
gramming for the ZMATE/PMATE text
editor. These columns appeared through
issue #52. At that point, having gotten
little reader feedback, he did not know
where to go next.

The second new feature was Bill Tishey’s
¢‘Z-Best Software’’. This became one of
the most popular columns in 7CJ. Way
back in issue #36 I had spotlighted Bill
as a shining example of how a non-
programmer could contribute in an ex-
tremely valuable way to the develop-

ment of the Z-System community. Bill
had taken on the duty of librarian for
ZSUS, the Z-System Software Update
Service. This service made it possible
for people without ready access by mo-
dem to Z-Nodes to get the latest software
releases on diskette.

Bill scoured the Z-Nodes across the coun-
try for new programs and new releases
of old programs. But he didn’t just
collect the files; he also built up an ex-
tensive system of documentation. In his
columns he shared his knowledge of Z-
System software with 7CJ readers. The
columns continued through issue #53.
I’m not sure what happened then; I think
Bill just got too busy at his job. I tried
to contact him several times by phone
and letter, but I never got an answer.

What Does the Future Hold?

I can’t really answer that question, of
course. Z-System contributions to 7CJ
have gone through lots of ups and downs,
but the overall level of vitality seems
never to have scriously wavered. Some
authors have departed, but others have
come on the scene. We don’t have the

same volume of new software develop-
ments that we once did, but we’ve had
real surprises on the hardware front. Who
would have imagined that a burst of
articles would appear on new 8-bit com-
puters, but we’ve seen two new machines
-- the YASBEC and the CPU280 -- pre-
sented in the pages of 7CJ in the past
year and a half.

We seem to be in an especially difficult
period now. With the poor economic
climate, everyone -- all over the world --
has had to spend more and more time
trying to keep afloat at his/her real job.
This has cut deeply into the time avail-
able for hobby activitics, which is cer-
tainly what 8-bit computing is for all of
us.

1 feel the same pressures myself. It has

become a real struggle to find the time
for this column. I think it is partly fear
that keeps me going. In my chronicles
above, there haven’t been any cases of
people who just pulled back a little; once
they let go, they seemed to disappear
totally. I’'m not ready for that. There is
still a lot to talk about, and I hope to be
around well into the second decade of
The Computer Journal.

Subscription USA
1 Year Surface $24.00
1 year Air $34.00
2 year Surface $44.00
2 year Air $64.00

SUBSCRIPTION RATES for The Computer Journal

These rates are effective January 1, 1993. Foreign rates now reflect the actual charge of additional mailing
fees and have been set by adding those charges to current subscription fees. Sales tax is no longer needed
for California residents on mail order subscriptions, taxes are collected however on items purchased
by mail, such as back issues and floppy disk programs.

Canada/Mexico Europe/Other Countries
$32.00 $34.00
$34.00 $44.00
$60.00 $64.00
$64.00 $84.00

All US.A. shipping is third class bulk mail, except First class or air which cost an additional $10.00.
Foreign surface and Foreign Air Mail is currently shipped as printed matter and packaged in appropriate
mailing envelope. Current rates are calculated on average shipping weight of 6 ounces.

14

The Computer Journal / #60

Dr. S-100

By Herb R. Johnson

Regular Feature
Intermediate

Letters and Future

My apologies to my readers for a short
column, but my wife and I are house-
hunting. I can tell you, it’s as hard to
find a nice house as it can be to find a
good S-100 system. You can search long
and get a bargain, especially if you're
willing to fix it up; or you can grab
whatever comes across your path and
hope it works; or you can pay top dollar
-- and hope it works!

Letters & Correspondence

I got several notes of encouragement
and praise for my recent column on di-
agnosis and repair of my S-100 system
on the FidoNet CPMTech echo (BBS
message exchange), most notably from
Fred Hatfield, a friend of long standing
and (I believe) the Echo moderator for
the Shortwave echo.

I thought I'd share the stories I've re-
ceived about other people’s experiences
in repair, construction, and purchase.
For clarity and further wisdom, I have
added editorial comments in square
brackets.

David Drew of Newark, Delaware wrote:

“It was a delight to read your recent
feature in TCJ. I thought you might be
interested to know who some of your
audience are these days. My involve-
ment in S-100 systems has been a hobby
for learning how computer software and
hardware works.

*‘My first S-100 system was acquired in
1979. 1 built the SD systems SBC-100
CPU card, Versafloppy [[floppy disk]
controiler and ExpandoRAM memory
kits, starting with 32K RAM. A 2.5 MHZ

The Computer Journal / #60

Z80 |5 MHz clock] seemed plenty fast to
me. The disk drive was an 8 SSSD
Shugart 801 sitting on a shelf - no cabi-
net. The power supply was a kit by Sunny.
Cabinets were too expensive for me, so
a scrounged one-half of a bare 22-slot
motherboard that someone had neatly
cut in two [into an 11-slot motherboard!].
I mounted it in an open cardboard box
with a small fan blowing over it.

‘I found a dead Hazeltine 2000 termi-
nal that was to be scrapped, and repaired
it. The repair cost $50 for the service
manual, five evenings of my life in front
of an oscilloscope, and 79 cents for a
replacement IC from Radio Shack. I used
that system for about four years before 1
bought a second Shugart drive and built
a wooden cabinet for the two of them. 1
still kept the cardboard box, however. 1
spent those years learning 8080 assem-
bly language, writing some Ham [ama-
teur] radio programs to send and receive
Morse code and radio teletype (my ham
call is K3DX), and creating some ac-
counting programs for my church. Later
I installed ZCPR2, after disassembling
my BIOS. I reluctantly sold the Hazeltine
2000 at a flea market last year [1991]: it
still worked.

“In 1987 I bought my second S-100
system for $50 at another flea market.
Not only did this one have a cabinet, but
it had the 4MHz [Z80 SD Systems] SBC-
200 CPU card and the double density
Versafloppy I controller card. I was in
heaven! The $50 deal also included a
Hazeltine 1500 terminal, a
SummaGraphics [digitizing and mouse]
bit pad, a MicroAngelo graphics card
(very expensive in its day!), a mono-

chrome video monitor and a separate
keyboard. It was sold ‘‘as is’” because it
didn’t work. But it did work just fine
once | installed a fuse in the empty fuse
holder.

I think it was about this time I upgraded
to ZCPR3, disassembled the BIOS, and
added SSDD capability. I also wrote a
Turbo Pascal program to receive weather
FAX maps by shortwave radio and which
would display the maps using the
MicroAngelo graphics card.

In 1990, a friend who had upgraded to a
PC-AT clone gave me his S-100 system,
which had 3 Mitsubishi DSDD 8" [half
height] drives and a 256K *‘Light Speed
100" RAM disk made by Digital Re-
search Computers [not to be confused
with Digital Research Inc., who distrib-
uted CP/M!]. 1 now had 1.2 megs per
floppy -- what storage capacity! This
same friend also gave me his entire li-
brary of 70 DSDD 8" diskettes and 90
5.25" NorthStar diskettes. Last year
[1991], T acquired a NorthStar system
with a hard disk for $10 at a flea market.
That monstrous 18 Mbyte [8"] Winches-
ter is a big, heavy, noisy power hog. [
wonder if the old NorthStar controller
could work with any of today’s modern
hard drives? [Probably not -- the data
lines are not compatible -- HRJ.} 1 doubt
it, but so far I haven’t had the time to
research this,

Over the years I've also collected an
assortment of S-100 cards, most of them
working, some not. I'm sure you and
some of your rcaders remember them:
the ByteSaver [2708] PROM blasters by
Cromemco; a QT clock/calendar board,
so poorly done that it is surprising that
it actually sold for $100 at one time; a

15

1200 baud modem card, Mullen [S-100
bus] extension cards; and an 80-charac-
ter [by 24 lines? 12 lines?] video board
by Solid State Music (no manual, sigh)
[I have a manual!]. Miscellaneous cards
include serial, parallel, and 2708 EPROM
cards. My two prizes are a high-speed,
16-channel, 12-bit A/D converter card
by Techmar; and a Cromemco TU-ART
card which, in addition to having two
very flexible serial ports, has numerous
programmable and interrupt-driving in-
terval timers, A few of these boards, like
the TU-ART, don’t work, which explains
why they were given away! I have the
manual and hope to fix the TU-ART
card.

I'm intrigued by your idea to make a
hard disk controller board. I'd like to
toss out another idea: Is it possible to use
existing S-100 parallel I/O boards (with
appropriate software) as SCSI
interfaces[or IDE - BDK]? How many
lines does the SCSI interface require? Is
it TTL compatible? What would we do
for BIOS software? Where is the best
place to find documentation? Would a
mere 4MHz Z80 be fast enough to keep
up with the drive?

Sorry I didn’t send this to you by Email,
but I have access only to Internet. My net
address is
DrewD(@engg.dnet.dupont.com. I’ve
logged in to the Drexel Hill [Pennsylva-
nia] NorthStar BBS from time to time,
and just started to use the Philadelphia
Area Computer Society (PACS) BBS.
I’'m in Princeton a few times a year to
visit my inlaws, and of course there is
the annual Trenton Computer Festival
near you, Perhaps someday we can meet.

Regards, Dave Drew
PO Box 1050
Newark DE 19715

Thanks Dave for your detailed letter!
Most of his experiences are representa-
tive of the history of many S-100 own-
ers, recent and past. I'll address his ques-
tions about SCSI at a later time, but they
are right on the mark!

The other letter of note is from a long

term S-100 owner, John Haugh of
Shorewood W1, who maintains a flect of

16

Cromemco systems. For those of you
who think S-100 systems are ‘‘primi-
tive’’, read on:

I was happy to see your advertisement in
Nuts and Volts, since I had lost your
address after we did business the last
time, when I ordered about six or more
[Cromemco] 64FDC [floppy disk con-
trollers]. They were very satisfactory and
all are now in use.

Sometimes I think I must be the last
person on the planet still using
Cromemco systems but they serve me
well and I am still looking for sources of
supply. I have eight children and as of-
ten as one of them goes back to college
for a masters degree or PhD, I am able
to supply a free computer for producing
papers and research data. With sixteen
grandchildren, I hope to be in the old
computer supply business for a long time
to come.

[John describes some cards he’d like to
buy, and lists some he’d like to find. The
latter list is instructive of the kinds of
technology Cromemco has developed.]

CPU cards

XXU XMU XPU XMM 68010 CPU’s
& page demand controllers, UNIX
Memory cards

MCUX controllers for XXU systems
MCU controllers for DPU (Z80/
68000) and XPU

MSU 1024, MSU 2048

MSU 4096, MSU 8192 error correct-
ing memory needing controllers
8192KZ, 4096KZ,

2048KZ, 1024KZ

256KZ non-error correcting memory,
no controllers

64KZ for Z80 CROMIX, CDOS only
Disk controllers

ESDC for EDSI disk, SCSI tape
STDC for ST506 (MFM) 5" drives
SMDC for SMD drives

WDI II for obselete IMI 5" drive
64FDC for 8" and 5" floppy, double
density

16FDC for 8" and 5" floppy, Persci
4FDC for SSSD, convertable to DSSD
170 cards

OCTART 8 serial ports

IOPX XXU /O controller

10P XPU and DPU 1/O controller
CSP for 9-track tape drives

CNET network controller for IOP,
10PX

QUADART 4 serial for IOP
8PIO 8 parallel ports

4PIO 4 parallel ports

Analog I/0O

ADCI12, DAC12 A/D, D/A; 12-bits
D+7A A/D, D/A; 8-bit

GPIB HP-IB or IEEE-488 instrument

- bus

(Broadcast Studio) Video controllers
SVID Color video generator

SDMB DMA controller for 2-port
memory

SDMA earlier version of above
1024KTP, 256KTP 2-port video RAM
SDCM Color modulator

SFLSH Flash digitizer

SDD older digitizer

SALPH multi-plane blender

The systems I have at present include
one CS-400 tower with ZPU, XMM,
MCU, 4MBytes of memory, 2
OCTARTS, one 50MByte hard drive,
one 5" floppy, one 20MByte cartridge
drive, two Cromemco 3102 terminals
and a Diablo 630 [daisy wheel] printer
with dual bin page feeders. This system
runs both Cromix 167 [a UNIX work
alike] and UNIX System V. Software
includes C, Fortran, assembler, and a
relational database, and WordStar 4.0
which I have adapted to run under
Cromix. [John describes other systems
of equal capability.]

I mention these systems for your infor-
mation because I am willing to be a
knowledge base type resource to any of
your customers if it helps. I also have a
complete set of the Cromemco user group
publication ‘I/O News’” which has many
helpful pieces of information.

[John also has a few small floppy-based
systems he could sell, configured for
CDOS; and some non Cromemco S-100
cards and systems; and some S-100 boxes
(bus and power supplies).]

Yours very truly
John J Haugh M.D.
4205 N Newhall St
Shorewood WI 53211

The Computer Journal / #60

Like many current (and former) S-100
owners, John is very willing to help oth-
ers with their systems. One of my plea-
sures in this ‘‘business’’ is the conversa-
tions I have with people like John and
others. If you send a letter, consider
adding a note permitting me to publish
it in my column and you too may be a
- Doctor of S-100-ology!

Future columns

David Drew recently bought from me an
SD Systems Versaflopy I floppy disk
controller. I have many of these in stock.
Itis David’s hope to make his work with
his IMSAI 8080, which some of you
may remember originally included a
IMHz (not 10!) 8080 Intel processor
[was last months center fold BDK]. This
will be a challenge, but at least the BIOS
I rewrote for it is 8080-compatible! There
seems to be a minor bus compatibility
problem, not necessarily a speed prob-
lem, but we’ll both test the possibilities.
As floppy disk control is a design prob-
lem across all disk-based systems, I'll
probably devote a future column to it.

It’s hard to write about the future of S-
100 systems beyond saying the obvious:
there is none! They’re all obsolete! etc.
But this is either annoying, boring, or a
horrible lie (depending on your tastes),
* so I thought it through a bit further and
decided to write on....

The rise and fall of S-100 systems

In the beginning, owning a computer
was a dream only of engineers and pro-
grammers who had the rare and profit-
able privilege of using them at school or
work. A few ““techies’’ actually had them
in their basements, thanks to a surplus
sale, or auction, or just giveaway of an-
cient accounting machines or old uni-
versity instruments or industrial surplus.
The first personal computer market was
made of people like these.

The first Altairs were sold in 1975, with
1K of memory and a front panel of
switches and lights for $400. Not long
after came IMSAI and an ‘‘alphabet
soup’’ of other companies with S-100
products. Along with single board com-
puters like the Apple 11, KIM, and so on,

The Computer Journal / #60

there now existed a common ground of
several computers that people could trade
software, hardware, and information.
Computer clubs and garage companies
grew rapidly and sold thousands of units
to the hobbyists throughout the 1970’s.

Where the hobbyists led, the entrepre-
neurs followed. Early business systems
were developed, generally in BASIC, and
enjoyed various degrees of success. The
S-100 system was ideal for this market:
massive boxes and easy expandability
made such systems look ‘‘industrial’’.
In fact, S-100 competed well at the low
end with other industrial bus-based sys-
tems. Into the 1980’s, industrial, busi-
ness and software development systems
contained faster Z80’s, followed later by
8086, 68000 and 80286 processors run-
ning Turbodos, MS-DOS, Concurrent
DOS, and various forms of UNIX.

While the commercial and industrial
market continued into the mid-1980’s,
the personal S-100 market probably
peaked in the early 1980’s. Z-80 based
systems continued to be popular with
both hobbyists and small business, but it
was in the form of *“transportables’” like
the Osborne I and the Kaypro. Even
Apple II’s often had Z-80 cards, espe-
cially when Digital Research bundled
them with CP/M 3.0. An enormous (at
the time) quantity of software around the
Z80 and CP/M came into being at this
time. S-100 systems, even slimmed down
to a few slots, were too “‘clunky’” except
for the Sol and other ‘‘integrated’’ sys-
tems designed for the desktop. It was
about this time, incidentally, that the S-
100 manufacturers got together with the
IEEE and created the IEEE-696 bus stan-
dard, which established the computing
tradition of standards that are accepted
only after they are made obsolete.

It was clear by the mid 1980’s that the
IBM PC, and its 100% (not 60% or even
95%) compatible clones would be the
machines of ‘‘the future’’, along with
the totally CP/M incompatible Macin-
tosh. Such was the momentum of the Z-
80 (and Apple II) world, and the rela-
tively poor performance of the IBM PC
and Mac, that it took perhaps three years

after their introductions to become lead-
ing systems (in terms of sales and price/
performance).

So, the S-100 bus began to return to its
traditions of industrial control and hobby
development in the late 1980°s, As sys-
tems became obsolete, and as ‘‘obsolete
computing™’ itself became obsolete, S-
100 systems got cheaper and more avail-
able on the surplus market. However,
the IBM PC again competes with these
systems as the old XT’s and now AT’s
appear as surplus, thus setting a value
*““ceiling’’ with the phrase: ‘‘I can buy a
used ‘PC for that price!’’.

Today

S-100 systems are giveaway items, when
you can find someone to take them.
Without surplus shops, scrap dealers, or
a techie constituency a system literally
ends up in the dumpster more often than
not, or *“sold for the price of shipping, to
give it a good home.”” Docs are unavail-
able from anybody (almost!). 8" disks
and drives look ENORMOUS by today’s
standards. And vet... and yet my experi-
ence is that most of these giveaway,
neglected systems still work! They are
more-or-less decipherable, and actually
perform reasonably well at word pro-
cessing, control, and general knock-
around tinkering and self-education.
Software is still kicking around for pro-
gramming, desktop publishing, commu-
nications and BBS systems, and more,

Tomorrow

The big question is: what will become a
collector’s computer? What will be valu-
able to own, and what will be junk? I
have no clear response, but I do have
several experiences from buying and
selling S-100 systems;

1) IMSATI’s have great sentimental value.
To the people who learned program-
ming and electronics on them in the
1970’s, or whom built their businesses
on IMSATI’s, these systems are worth a
few hundred dollars, maybe more.

2) Altair’s were the ““first’” computer.

To people under the age of 35, these are
ancient history. They want one “‘in per-

17

fect condition’’ to blink lights on their
mantelpiece. But, only as a curiosity, so
they won’t pay very much.

3) REAL antique collectors have zero
interest in any computers. ‘ ‘No market”’
they say, i.¢. it’s not listed in Collector’s
Weekly or whatever journals they fol-
- low.

4) Apple I's are worth their weight in
gold. However, since no one can ever
find one, this hypothesis has not been
tested. (I know, an Apple I is not an S-
.100 computer. But I keep getting asked,

anyway.)

5) Many people who learned computers
before 1980 would rather not learn an-
other one, and so they will buy Kaypros
(or Osborne’s or NorthStar’s) forever.
This hypothesis may also apply to IBM
or Mac owners, but until those systems
become totally obsolete we’ll never know.
Anyway, these people will also buy and
play with S-100 systems for the same
reason.

6) There aren’t a lot of simple and cheap
NEW computers around. There are plenty
of single-board controllers, with no disk
drives); and IBM clones that are too
complicated and have no technical docs
anyway. Old CP/M transportables are
ok, but the hardware is rather inacces-
sible for SERIOUS tinkering. S-100 sys-
tems are cheap (free almost), well-docu-
mented (when you have docs), and are
easy to figure out (relative to ASIC-
packed PC’s). You can even REPAIR
them! and learn from the experience!

Alternative futures

That’s the future, as [see it. There are
other futures, of course. Clearly the cur-
rent generation of programmable logic
devices will be a tinker’s heaven; when
the tools are available for surface-mount-
ing chips in your bascment. When the
programmers for these devices cost less
than a °386-25 system. And, when the
software for programming them doesn’t
require a ‘486 system to run and can be
bought at Radio Shack for $99. All this
presumes, of course, that enough people
know which end of a soldering iron to

hold, and that they have some notion to
program hardware instead of * ‘building™’
C++ object libraries.

OR

When you can buy $10 or even $5
““Chicklet computers,”” each of which
will run a device, and you can string
them together like Christmas lights, and
program them all from your favorite
computer.

OR

We all become multimedia mavens and
send five-minute epics to ‘‘America’s
Funniest Home Media’ for a chance to
own the Altair Virtual Reality 8800, with
3-D simulated toggle switches and laser
lights that blink at 100 MHz.

OR

(Choose your own version of near-future

computing technology, and send it to

me. I’ll send S-100 cards to the best, and
publish the rest! Irony is required, and it
should have some hint of reality to it.
Don’t forget your bio.)

Herb's address is CN 5256 #105,
Princeton NJ 08543. Or call (609) 588-
5316 and ask for "Dr. S-100."

CLASSIFIED FOR SALE and WANTED

Amstrad (c) PCW SIG $9 for 6 bi-
monthly newsletters dealing with the
most popular CP/M machines still in
production. Learn where to buy 3"
discs, how to add 3.5 and 5.25 drives
and where to buy the 8 MHz Sprinter
board with room for 4 Meg of RAM.
Make checks out to Al Warsh, 2751
Reche Cyn Rd #93, Colton, CA 92324,

For Sale; GIMIX 6809 SS-50 floppy
disk controllers. Have six to sell at
$25 each plus shipping ($5). Bill at
TCJ (800) 424-8825.

WANTED: BOOT disk for Intertec
Data systems, Compustar model 40
Video processing unit. Write to Roger
Olson, 2304 West 4th, North Platte,
Nebraska 68101.

WANTED: Chess Programs. I am

trying to collect OLD chess programs
such as Microchess 1, Sargon 1, Mac

18

Hack 6, etc. Any computer, any format,
any language. Prefer with source. Mr.
Carey Boodworth.

WANTED: OLD K&R C complier with
'C' source code. Nothing fancy, plain
K&R, not ANSI C and NOT Small-C.
Carey Bloodworth.

WANTED: Forth written in portable 'C'.
I've heard that one exists, but I've never
found it. Prefered disk formats for all
three wanteds is: MSDOS 360K 5 1/4,
TRS-80 COCO RS-DOS or OS9. I can
not pay much more than postage, sorry.
Mr. Carey Boodworth, 1601 North Hills
Blvd., Van Buren, AR 72956.

WANTED: Person or group willing to
do small runs of PC boards for TCJ

projects. Double sided boards cost too
much from regular board houses when
runs are 10 to 20 a year. Current needs
arc for small Kaypro adapter boards.
Will pay for services, but amount is very
low. Contact Bill at 7CJ, or Chuck

Stafford at (916) 483-0312 (eves).

The Computer Journal classified sec-
tion is for items FOR SALE, The
price is based on Nuts & Volts rates.
If you currently have a Nuts & Volts
ad just send us a copy of the invoice
and we will print the ad for the same
price.

Classified ads are on a pre-paid basis
only. The rate is $.30 per word for
subscribers, and $.60 per word for
others. There is a minimum $4.50
charge per insertion,

Support wanted is a free service to our
readers who need to find old or miss-
ing documentation or software. Please
limit your requests to one type of sys-
tem. Call TCJ at (800) 424-8825 or
drop a card to 7CJ, P.O. Box 535,
Lincoln, CA 95648.

The Computer Journal / #60

Four for Forth

By Jack J. Woehr

Special FeatUre
Rochester Conference

Forth Microprocessors

The 1992 Rochester Forth Conference,
held at the University of Rochester, New
York, was the twelfth of its kind. Since
1980, experts in the application of Forth
to real world problems have been meet-
ing and presenting timely papers on re-
cent developments. This year’s assem-
bly, whose theme was Biomedical Ap-
plications, saw the announcement of four
new Forth-oriented microprocessors.
Two come from the United States, one
comes from Germany, and one from
Russia.

History of Forth Microprocessors

Forth is a language originally designed
for embedded systems programming
which has been ported to nearly every
computer platform, from tiny
microcontrollers to the IBM 370 and to
Cray supercomputers. Interesting Forth-
coded applications include:

- the hand-held gizmo carried by every
Federal Express delivery person;

- the air traffic control system at the
Riyadh airport in Saudi Arabia;

- IBM CAD

- VP Planner

- any number of space projects by NASA
including the NASA MPP (Massively
Parallel Processor);

- commerical satellite projects by Or-
bital Sciences Corporation.

Forth is modelled on a dual-stack archi-
tecture. Instead of possessing execution
frames like C and Pascal that mingle
arguments with return addresses, Forth
pushes subroutine arguments to the data
stack and return addresses to the return
stack.

The Forth virtual machine posits sub-
routines consisting of address lists of

The Computer Journal / #60

other subroutines, and so on, until the
lowest level at which machine-coded
primitives are reached and executed.
Excercises in Forth execution enhance-
ment take two distinct tacks: optimizing
the compiler for use on CISC or RISC
processors, and designing special mi-
croprocessors to execute Forth more ef-
ficiently. (This dual and opposite ap-
proach to virtual machine efficiency has
also been seen in LISP.)

Early in the 1980’s, Rockwell issued the
65F11 with the Forth kernel in mask
ROM. This processor had no special
Forth-oriented instructions, but was very
popular as a control development plat-
form and stimulated interest in micro-
processors designed specifically for Forth.

In 1985, Zilog began producing the Su-
per8 which had microcode instructions
supporting the Forth virtual machine
(ENTER EXIT NEXT). There was no
special support, however, for dual stacks:
the overall architecture remained Z8-
like CISC.

The first true dual-stack Forth micropro-
cessor was the Novix NC4000 (1986),
designed by a team headed by Forth in-
ventor Charles Moore. The chip was
produced in sample quantities, and the
design eventually sold to Harris Semi-
conductor, where it became the core of
the RTX2000 family (1988). The
RTX2000 was fast to the tunc of about
ten (10) FIPS (10 million Forth Instruc-
tions Per Second) at a 10 MHz clock.
Harris marketed the RTX2000
agressively for a few years as the answer
to execution-intensive integer control
algorithms, but during an organizational
retrenchment two years ago discontin-
ued the marketing, though not the pro-
duction, of the RTX2000.

1986 also saw the design of the WISC,
Inc. CPU-16, a dual-stack writeable in-
struction set CPU designed in discreet
logic.

From 1979 onward, a team at Johns
Hopkins Applied Physics Lab were en-
gaged in design efforts centered on effi-
cient Forth execution in custom micro-
processors for the various projects con-
nected with the space program. Starting
with the AMD2900 bit-slice engine, and
progressing to custom silicon, their ef-
fort culminated in 1988 in the FRISC-3
(Forth Reduced Instruction Set Com-
puter), a dual-stack RISC chip marketed
as the SC32 by Silicon Composers of
Palo Alto, California and henceforth
referred to by the latter name.

Other designs have been proposed and
have reached varying stages of fruition
(MISC M17, Chuck Moore’s SHBOOM
and uP20, etc.), but the above are the
most notable of the first generation of
Forth-oriented microprocessor designs.
Now we will proceed to the new an-
nouncements made at the Rochester
Forth Conference.

FRP 1600

Klaus Schliesick-Kern is a tall, thin,
graying, fortyish imp who wore a
headband with feathers and a bemused
smile throughout the entire conference.
He was a significant and unmistakeable
voice in the late-night political debates
in the dormitory lounge between the
Americans, Canadians, English, Ger-
mans, Russians and others, fascinating
conversations which sometimes lasted
until after dawn.

Herr Schleisiek-Kern is a principal of
DELTA t GmbH in Hamburg, Germany,

19

who attended the Rochester Forth Con-
ference to present a paper on the FRP
1600 Forth RISC Processor. The FRP
1600 is being marketed as a micropro-
cessor optimized for high performance
in realtime control applications.

The FRP 1600 was originally designed
for inhouse use at E-T-A GmbH, a Ger-
man company whose primary concern is
the manufacture of circuit breakers.
Optical quality monitoring on produc-
tion machinery designed inhouse had
become a critical concern by the time the
design team met in 1988. Members of
the team included Mr. Schliesick-Kern,
Gerhard Erbacher and Norbert
Schumann.

The initial design criteria for the FRP
1600 were the following:

16-bit processor with a Forth architec-
ture.

Memory bus and interrupt structure com-
patible with the Motorola 68K family.

Dual stacks residing in external memory
Jor fast context switching (compared with
the totally on-chip stack of the RTX2000,
which must be copied out to external
RAM during a task switch).

Minimal pin count.

Hardware support for image processing
applications.

The design criteria were met by a 1-
micron CMOS sea-of-gates design run-
ning at 15MHz. Every instruction ex-
ecutes in one clock cycle, with the ex-
ception of fetch, store and long literals,
which take two clocks. The address of
the next instruction is placed on the bus
while arithmetic operations take place.

The FRP 1600 has a 20-bit address bus
and a 16-bit data bus. All addresses are
word addresses which allow 16 64Kword
pages of memory. Programs may only
reside on the zero page, but stacks may
reside anywhere in memory.

The FRP 1600 uses a familiar instruc-

tion decoding trick used by several Forth
microprocessors and introduced by the

20

Novix of using the most significant bit of
the word-length instruction to differen-
tiate between subroutine references and
other instructions. When bit 15 is zero
(0), the instruction is actually a subrou-
tine address shifted right one position
(meaning that all subroutines must com-
mence on an even address boundary: the
address is left shifted one place by the
instruction decoder). If bit 15 is a one
(1), an ALU or other machine instruc-
tion follows in the lower 15 bits. This
allows a flattening of the classic Forth
virtual machine from lists of addresses
pointing lists of machine instructions
into lists of interleaved addresses and
machine instructions.

Interrupt logic includes RESET, NMI,
INT (maskable) and IACK (Interrupt
Acknowledge) signals. Interrupts are
serviced after at most three (3) cycles.

A single Eurocard prototyping board is
available with an optimizing Forth-83
system featuring a pre-emptive, priori-
tizing multitasker. A development envi-
ronment by MicroProcessor Engincer-
ing, Ltd., of Hampstead, England is also
available. The producers are committed
to ANS Forth when that proposed stan-
dard is approved.

FRP 1600 Contact Information;
DELTA t GmbH

Uhlenhorster Weg 3

D 2000 Hamburg 76

Germany

email: delta@cix.compulink.co.uk

FOREX 1620/1624

Pre Boris Katsev and fils Sergei Katsev
held the record at the Rochester Forth
Conference for distance travelled to at-
tend, arriving from St. Petersburg in the
Russian Republic. There they are the
proprictors of FOREX, a private enter-
prise dedicated to exporting for sale the
current product of one of the few do-
mains of technology wherein the former
Soviet Union kept fairly close upon the
heels of the West, that of chips, board
and software. FOREX is particularly
interested in Forth, which provides rapid
prototyping in a difficult economic and
work environment wherein if anything

good is to happen, it had better happen
right quickly.

Sergei speaks very good English; his
father, Boris, speaks almost none. Both
are cultured, well educated, and speak
Russian with a precise and mellifluous
accent to make the average high school
Russian teacher weep with envy. [asked
Sergei, who is about my age, what his
college years in the Brezhnev era had
been like. *‘For me and for my friends in
the university, the 1970’s were like the
sort of dream where you struggle to wake
up, but keep falling back asleep, help-
lessly,”” he told me.

The FOREX 1620/1624 is a pair of dual-
stack Forth-oriented microprocessor de-
signs in search of a market, possibly a
patron. Somewhat resembling the Novix/
RTX i1n overall architecture, the 1620
addresses 1Mbyte of memory and the
1624, 8 Mbytes, with byte as well as
word addressing, Each microprocessor
has eight (8) gencral-purposc registers
and seven (7) system registers (stack
pointers, segment registers).

The instruction set contains four classes
of command: CALL/RETURN, 8
branching, instructions, Read/Write in-
structions for 8/16 bits, and ALU in-
structions (16 arithmetic-logical, 8 shifts,
8 compares). Most instructions are 1 or
2 cycles, multiplication is a 16-cycle
instruction. There is one external INT
line and one internal, non-maskabie in-
terrupt from the on-chip timer.

The FOREX 1620 comes in a 48-pin
DIP package and the 1624 in a 52-pin
PLCC. Both CMOS, they are being
marketed for embedded control applica-
tions. FOREX suggests that reserved
instructions may be used to extend the
instruction architecture for custom de-
signs based on the 1620/1624.

In addition to presenting at the Roches-
ter Conference a prototyping board based
on an already well-known Russian clone
of the original Novix, complete with MS-
DOS based cross-development environ-
ment, the Katsevs showed us chip-on-
board printed wire boards that were ex-
tremely attractive and well-done. Exam-
ining closely one of the boards, I asked

The Computer Journal / #60

Sergei, ““This is all hand work, isn’t
it?”’

*“Yes,”” he replied. ‘It is a process suit-
able for automation, we think.”’

There seems to be a gap between layers
of technology in Russia. FOREX engi-

- neers lay out printed wire boards in ad-
vanced CAD software, but the board
house doesn’t have tools which can read
the file formats output by CAD pack-
ages. Instead, designs are plotted and
films re-created from the plots by tech-
nicians at the board house using older,
more labor-intensive methods.

Most difficult to explain for the Katsevs
were the nature and the scope of their
marketing plans. They are at present in
the exploratory stage, and could benefit
from guidance from potential customers
abroad. In one particularly confusing
exchange in the cafeteria line, I was
unable to extract the information I
wanted from a willing but puzzled Sergei.
Sensing an obstacle rooted somewhere
other than in the small language barrier,
I turned for assistance to Boris
Nashanchik, president of Amics Enter-
prises, Inc., Rochester, New York, who
was in attendance at the Rochester Forth
Conference.

““What I’'m trying to ask him,”’ I ex-
plained to the patient Mr. Nashanchik,
“is how they compute their cost-of-
goods-sold.”

Mr. Nashanchik pursed his lips in a wry
smile. *“They don’t,”” he replied. ““They
have no idea.”’

‘I can imagine what they teach doctors
in medical school in Russia. But what do
they teach people in accouting school
over there?”’ I asked.

*“How to count! How to count other
people’s money,”’ he answered, laugh-
ing.

In addition to Forth microprocessors,
FOREX also has available a number of
software packages seeking marketing
outlets and distributors in the West, in-
cluding a very high level MS-DOS hosted
8051 software emulator.

The Computer Journal / #60

FOREX 1620/1624 Contact Information:

FOREX

59, Bolshoi Pr., P. S.
St-Petersburg, 197101
Russia

email: root@forthi.spb.su

WISC CPU-16/CPU-32

You can probably have more fun with
the Writeable Instruction Set Computer
CPU-32 than with any other processor
mentioned in this article. Afterwards.
you may wonder whither you have
strayed, but the trip is probably worth it.

I explored the WISC CPU-16 in a Dr.
Dobb’s Journal article (see Bibliography
at end of article), a 16-bit discreet-logic
microcoded central processing unit de-
signed as a drop-in card for the PC/AT
bus offering a dual stack architecture
and a completely writeable microcode
cache. WISC Technologies (now a divi-
sion of Epsilon Lyra) used about half the
microcode pages to implement Forth,
which left half the pages for play. I used
the empty pages to implement a model
PROLOG engine.

Dr. Glen B. Haydon, a retired medical
doctor and well-known Forth theoreti-
cian and pedagogue, is president of Ep-
silon Lyra. He describes his foray into
microprocessor design as ‘less expen-
sive for a retiree than a country-club
membership’’, and had two bits of news
to dispense at the Rochester Forth Con-
ference Firstly, with the assistance of
Rick van Norman (formerly of Harris
Semiconductor) the CPU-16 is ready for
silicon. Secondly, the CPU-32, some-
what redesigned from its original model
expressed in discrete logic as befitted its
intended incarnation as the Harris RTX-
4000 (Harris demurred, and the CPU-32
is back in the hands of Epsilon Lyra), is
in silicon sampies.

Every university teaching computer in-
struction architecture should probably
have its very own 32-bit writeable in-
struction set dual-stack Forth engine.
Although about three-quarters of the
microcode instruction pages in the sili-
con CPU-32 are now mask ROM sup-
porting Forth, about one-quarter of the

512 pages are RAM and writeable on the
fly. The CPU-32 also supports single-
stepping microcode as well as reading
and writing all major registers from the
data bus during testing,

The CPU-32 executes Forth at about the
same speed as the RTX-2000, but takes
only onc-half of the instruction fetch
memory cycles. Very large memory
space, high execution speed and the
ability to enhance execution via custom-
ized instructions make the CPU-32 a
unique solution to unique embedded
control projects.

My current interest as an embedded sys-
tems designer in the CPU-32 is the
possibility of using the CPU-32 to model
custom fuzzy-logic microcontrollers.
Since the CPU-32 has limited 1/0 facili-
ties, and certainly no on-chip A/D or
DAC, this would require memory-map-
ping the required hardware devices for
testing, but what a prototype engine for
a fuzzy instruction set this would make!

CPU-16/CPU-32 Contact Information:
Dr. Glen Haydon

Epsilon Lyra, Inc.

19500 Skyline Boulevard

Box 429 Star Route 2

La Honda, CA 94020-9726

(415) 7470760

FRISC-4

This is Big Bertha. This is glorious, devil-
may-care overkill in speed, size and
beauty of architecture. This is the one
that proves Forth-oriented microproces-
sor design is still surging into the future.

FRISC-4 is lineal descendant of the
SC32, the orthogonal 32-bit dual-stack
Forth Reduced Instruction Set Computer
mentioned earlier in this article. The
Johns Hopkins University Applicd Phys-
ics Lab team of John Hayes, Marty
Fraeman, Robert Williams and Robert
Henshaw have by no means been resting
on their laurels since embedding the
SC32 in a magnetometer built for the
Swedish satellite Freja. Modest success,
in space and in the marketplace, has
enabled them to winkle out enough fund-
ing to continue the saga.

21

Like its antecedent, the FRISC-4 has

- a simple 32-bit non-multiplexed ad-
dress and data bus;
- a one-clock-cycle subroutine call;
- zero-cycle possible subroutine return;
- two parallel 16-register circular stack
caches;
"- programmer-transparent stack over-
flow/underflow shift to/from main
memory;
- register access to top four stack ele-
ments of both stacks;
- support for mixed-speed memory sub-
‘systems.

The FRISC-4 is, however, different from
the FRISC-3 is several important re-
spects. The changes have come as a re-
sult of feedback from users of the part,
and are, in my view, positive changes for
the better.

First of all, the FRISC-4 address units
are bytes, not longwords as on the FRISC-
3. This means that overall the FRISC-4
can address one-quarter the memory of
the FRISC-3, but not to worry: 512 Mbyte
maximum code space and 4 Gbyte maxi-
mum data space are probably enough for
the average embedded systems design,
don’t you think? The payoff is that char-
acter-oriented applications are either
algorithmically simpler than before, or
cost less for SRAM (7 nS SRAM isn’t
penny candy), or both.

Four general purpose global registers,
(useful for shuffling operands while burst-
ing the bounds of the Forth stack meta-
phor), and a barrel shifter which en-
hances the speed and range of shift in-
structions have been added to the origi-
nal hardware design .

New instruction set features include
leading zero detect for floating point
normalization, a 59-cycle floating-point
add and a 67-cycle floating point multi-

ply.

Best of all for the embedded systems
programmer is the on-chip interrupt
controller, with INTO* through INT6*
and an INTACK line. It is gratifying
that the designers of both the FRP 1600
and the FRISC-4 have expended the ef-
fort to deal in a professional fashion

22

with that which was the bane of early
Forth chips, interrupt service.

You know now how big and how beau-
tiful. How fast? Marty is sure of 33MHz
and is crossing his fingers for a 50MHz
part. Do you understand what 50 million
32-bit Forth instructions per second
means? This will surpass the 32-bit in-
teger performance of a SOMHz 80486 by
a wide margin.

As noted, memory fast enough for this
kind of part is expensive. To bring de-
sign-in costs down from outer space and
into the earthly realtime control market-
place, the FRISC-4 will have an on-chip
cache sufficient to keep performance high
while allowing the use of slower, more
economical memory devices.

FRISC-4 Contact Information:

Martin Fraeman

Johns Hopkins University / Applied
Physics Laboratory

Laurel, MD

phone: (301) 953-6000 x8360

email: mefi@glinda jhuapl.edu

Incidentally, the FRISC-4 is not to be
confused with a Micron Technologies
microprocessor optimized for floating
point also called FRISC. JHU/APL has
been calling their Forth chip designs
FRISC since 1986, but as we said, these
chips have been marketed as the SC32,
so no conflict has ever emerged in the
marketplace.

Bibiliography

Footsteps in an Empty Valley, Dr. C. H.
Ting, 1988, Offete Enterprises, 1302
South B Street, San Mateo, CA 94402,
Tel. (415) 574-8250. The definitive work
on the Novix 4000.

““Forth Machines’’, Jack Woehr, Em-
bedded Systems Programming Vol. 3,
No. 11, November, 1990. A survey of
Forth engines.

*‘Forth stirs passion among its follow-
ers’’, Robert Bellinger, Electronic Engi-
neering Times, July 6, 1992. Contains
chart of recent very-high-end Forth
projects, noteably in spacecraft. This
article has helped stimulate the already-

noticeable renaissance of interest in Forth
in the general embedded control field.
Overall well-written and fair, the article
contains what is destined to be a long-
remembered blooper, informing the
reader that Forth words obtain input from
the parameter stack and leave behind the
results of an operation on the return stack.
Well, we’ve all coded words like that at
least once!

More on Forth Engines, Vols. I - XIV,
Dr. C. H. Ting, Editor, Offete Enter-
prises. Periodical sampler of code and
happenings in the world of Forth en-
gines.

The Silicon Palimpsest by Charles
Johnsen and David L. Fox, 1991 Pro-
ceedings of the SIG Forth of the ACM.
Describes a ““Mutable Instruction Set
Computer’”.

““‘Space Application of SC32 Forth
Chip”’, Silicon Composers, FORTH
Dimensions XIV/1, May-June 1992. 11-
lustrates high-end design-in of the high-
est-end Forth chip currently commer-
cially available.

Stack Machines: the New Wave by Philip
Koopman, Ph.D., John Wiley, 1990,
ISBN 0470214678. Theory of the dual-
stack CPU architecture inspired by Forth
written by the then- Senior Research
Scientist of the Harris Semiconductor
RTX2000 project.

‘“Writeable Instruction Set Computers™,
Jack Woehr, Dr. Dobb’s Journal #184,
January, 1992. Describes the WISC
Technologies CPU-16 with illustrative
code example.

To reach Jack, use his Real Time BBS at
(303) 278-0364. He is also a regular on
GEnie's Forth Roundtable.

Thanks Jack, this was a great review of
Forth Engines. Really makes me wonder
why people keep pushing the xx86 CPU's.
We can also see how much fun and
excitment the Forth Conference was.
Wish I had been there! Bill Kibler.

The Computer Journal / #60

Real Computing

By Rick Rodman

~ 32-Bit Systems
All Readers

Introduction to UNIX

Introduction to Unix, Minix, Coher-
ent, and others

The operating system Unix began life as
a single user word processing system
inspired by Multics. Multics is the pio-
neer secure multi-user operating system,
still in use in some installations. Unix
was a spare time hack of Ken Thompson
and Dennis Ritchie at AT&T Bell Labs.
Dennis Ritchie invented the C language
as a portable form of PDP-11 assembiler,
with concepts borrowed from PL/I and
miscellaneous other languages, to allow
Unix to be ported to other available
minicomputers.

All of this happened about the same time
as the development of CP/M in the mid-
seventies. But while CP/M was made
available commercially and became the
basic software of most microcomputers,
Unix was distributed to universities as
an operating system concepts teaching
vehicle. When commercial versions
became available, they were horrendously
expensive.

Originally, Unix was small and simple,
but once released into academia, layers
accreted on it in profusion. These addi-
tional masses of code caused various
“‘versions”’ to diverge from one another,
most notably the Berkeley version and
the “‘true”’ AT&T version, more or less
tolerated by AT&T for years before they
started claiming they knew what they
were doing all along.

Still, because most college-educated pro-
grammers worked with variants of Unix,
most educational operating systems look
like clones of Unix. Unix included some
concepts which were revolutionary at the
time, most notably a single vision of files

The Computer Journal / #60

and devices as being streams of bytes.
I’m not sure this concept originated in
Unix, however, because CP/M has the
same concept embodied, most visibly, in
the PIP program, although not in the OS
itself.

The institutional bias of teaching gen-
crations of programmers with Unix has
resulted in the ossification of its crudi-
ties such as /s, mv and cp, and its terrible
case-sensitivity. Also, the C language
has been frozen, warts and all. Dennis
Ritchie did some things right - for ex-
ample, the concept of everything being
functions; but some things are really bad,
like the awful C preprocessor, ternary
operators, and other syntactical nasti-
ness. In their favor it has to be argued
they had no idea that people would still
be using these tools sixteen years later.
They had a job to do; they weren’t De-
signing for the Ages.

Enough historical background. Any full
version of Unix today is far too bloated
to use for any educational purpose, so
various versions have been written to
replace it in this role. These serve vari-
ous different markets, as it were.

Minix is still the best for those who want
to work on the internals of the operating
system itself. Andy Tanenbaum’s book
is very well-written and describes most
of the concepts used in Minix, although
it deals very sparingly with concepts not
used. It also includes all of the source
code of Minix version 1.1. The Minix
1.5 distribution includes installation in-
structions, user manuals, and complete
source for Minix 1.5.10. Minix is a full-
featured operating system. Version 1.6
may be released sometime soon; the
Amoeba networking stuff included in

version 1.5 is being deleted. Minix is
available for the PC, the Mac, the Amiga,
and the Atari ST. Since you get source,
you can port it to any other random
collection of hardware. That’s how it
came to be the OS used on the PC-532.

Coherent is Mark Williams” vision of a
smaller, cleaner Unix. It’s a mature,
stable operating system which was origi-
nally offered for Z-8000-based S-100
systems sold by Ithaca Intersystems.
From there, it moved to the PC. You
don’t get any source code, but if your
goal is to use the system rather than
tinker with it, Coherent will give you
good performance at a lower price.

Linux is Linus Torvalds’ clone of Unix
for the 386 processor. Other CPUs need
not apply. Getting a copy of the source
is difficult; while the OS is apparently
fairly stable at this point, this is
experimenter’s territory. Another OS
not for the faint of heart is BSD386.
This is a version of Unix from Berkeley
with AT&T-copyrighted code expunged.
Again, it only works on a 386. From
what I've heard, this code is not very
stable yet.

Another interesting Unix clone is
Microware’s OS/9, which runs on vari-
ous 6809 and 68000-based platforms. It
packs most of the features of Unix into
a computer as small as Radio Shack’s
Color Computer. The problem with OS/
9 ig its unbundling into various high-
priced packages - for example, no C
compiler is included with it - so it’s too
expensive for most experimenters.

You can get various versions of real Unix

for the PC, like Esix, Solaris, and so on.
These cost more than you can afford,

23

require a bigger hard disk and more
RAM than you have, and don’t work
with your hard disk controller or any of
the peripherals you have. If you want X
Window, it doesn’t work with your video
board, monitor, or mouse. Once you've
bought a whole new computer to run it,
you’ll spend most of your time either
trying to get the printer to work (ulti-
mately unsuccessfully), adding another
terminal, or fixing trashed filesystems.
When the system is working, you can
build your sense of achievement with
trivial programs to convert the third let-
ter of each word in a file to uppercase.
Running Unix with Motif or Open Look
is the most direct and expensive way to
take a 40 MIPS RISC and make it per-
form like a Commodore 64.

The future of all of these products is
unclear, including Unix itself. But that
can be said of any computer product.
Pick what makes sense for you, and keep
your files in a form you can casily con-
vert, such as MS-DOS 720K. My pref-
erence is Minix, because it supports sev-
eral systems and includes source code.
Your mileage may vary.

Ideally, I'd like a simpler, smaller, more
portable OS than Unix. I'd like some-
thing that I could embed in a little Z-80
SBC to control my X-10 modules. But
it has to use a language with expressive
power and readability comparable to C,
and allowing for heavy commenting -
because after all, the writing of com-
ments is the primary activity of a pro-
grammer.

Unix and C went quite a ways, but there’s
still a longer ways to go. The essence of
clean design is the elimination of special
cases. For this reason, operating sys-
tems and languages of the future will be
less complex than Unix and C, not more
complex.

CD-ROMs

Imagine that you are a collector of old
coins. Every once in a while you have
found an old dime in your change, or
been able to scrimp and save to buy an
old quarter or half dollar. Then, one
day, you come across a man at a yard
sale with a shoebox full of Franklin and

24

Walking Liberty halves, silver dimes,
and rare nickels and pennies. I mean,
it’s packed right to the top - it would
take months just to examine each one.
You look up at the man, pointing at the
box, and he says: ““You can’t buy just
that one, you have to take all fen. And 1
want two dollars for the lot.”

That’s about the way I felt when I first
started looking through the Source CD-
ROM from Walnut Creek CD-ROM.
This disk contains, for example, all of
volumes 1 to 27 of Usenet’s
comp.sources.misc archive; volumes 2,
8, and 89 to 91 of comp.sources.amiga,
volumes 1 to 5 and 90 of
comp.sources.atari_st, plus tons of Unix,
Sun and MS-DOS code. There is so
much source, it boggles the mind. Graph-
ics - languages - BBSs - editors - you
name it. MGR is here. MINT is here.
Snobol. Several LISPs. Assemblers.
PBM. Why, it’s too much to assimilate!
Arghh!

The price is about $30. If you arc a
software nut, or just a collector, and you
have access to a CD-ROM drive, it’s
time to run and not walk.

What do we mean by ‘‘Real Comput-
ing”’?

On this auspicious occasion of 7CJ's
Tenth Anniversary, it was deemed ap-
propriate that we finally define exactly
what we mean by “‘Real Computing™.
This is a very nebulous phrase, and ev-
ery computer-person probably has his
own personal feeling about it. Origi-
nally I intended the phrase “‘real com-
puting’’ to be computing in a similar
sense to what we software folks refer to
as ‘‘real programming’’. But that, too,
is fairly loosely defined.

When you think about it, it isn’t the
computer that makes the computing real.
The computing is what is done on the
computer. So, what would make the
computing ‘‘real’” is the difficulty of the
computation, such as number-crunching,
Fast Fourier Transforms, flow analysis,
et al.; or the constraints under which the
computing is performed, such as time
limitations or reliability requircments.
Going beyond that, there’s a complexity

requirement. People who have pro-
grammed video games have impressed
me with the stringent time constraints
under which they have to perform fairly
significant manipulations.

In addition to all of this, it seems to me
that a computer that is only able to do
one thing at a time is just not being used
efficiently. Real Computing means get-
ting every ounce of performance out of
the machine, and that just can’t be done
in single-tasking interactive mode. So,
I have to conclude that a minimum plat-
form for Real Computing is a machine
with a multitasking operating system.

When you sit down at a multitasking
machine, a different mindset slowly seeps
in. You don’t have to wait for format-
ting or copying to finish. You can con-
tinue editing while the compiles progress.
This is a work environment that fully
utilizes the machine and the human be-
ing as well.

Where can one find a multitasking envi-
ronment for doing some real comput-
ing? Many are available. Some repre-
sentative multitasking OSs for micros
include AmigaDOS, Minix, Coherent,
Unix itself, Concurrent DOS, and the
venerable MP/M. Computer power is
becoming very inexpensive. What a trag-
edy to hobble a 486 with a tricycle OS
like MS-DOS.

As I said, these thoughts may help you
to formulate in your own mind just what
Real Computing means to you. 7CJ is,
after all, the magazine for people who
want to get extra value out of their hard-
ware - the maximum °‘‘bang for the
buck’’ - doing more with less. Tighten-
ing and optimizing code is itself one of
the purest forms of Real Programming
and, yes, Real Computing.

This column started with the NS32 CPU
series and soon moved to the most popu-
lar end-user NS32 computer system, the
PC-532, which runs Minix and uses SCSI
for I/O. From there we’ve broadened to
cover many topics related to Minix, SCSI,
and the NS32. Today Minix is on the
large side of what an experimenter’s OS
should be, and perhaps this is too broad
a focus for a single column. I still hope

Continued on page 29

The Computer Journal / #60

TCJ Center Fold

 Special Feature
AllUsers

The IMSAI CPA is the control panel assembly used on IMSAI’s
early computers to control and enter data by hand. These units
.are the prize of many collectors. For S-100 debugging and
initial system work, the CPA unit has no equal.

Using boards designed for the front panel, may not work
properly when installed in systems without front panels. The
MPU-A board presented in issue #59 showed changes to re-
place the MWRT signal. The front panel normally provides the
MWRT signal (Memory Write) and a few select pullup devices
(resistors to 5V that guarantee correct operation).

The Front panel provides single stepping options, the ability to
enter data into memory locations by entering the data on the

Pwi !

v 2 / 4
DE PosT 2, '

sout
FRO® WS-

toggle switches, and monitoring overall operation through the
display of status, data, and address signals with LED’s.

The last drawing (on page 28 of the center fold) is an example
of the active portion of the S-100 bus. Higher quality mother
boards will have active termination of the BUS signals. Active
termination means a separate circuit and power supply which
is used to provide a control voltage to the BUS lines.
Unterminated BUS signals will have excessive noise and cause
false operations. Higher speed operation is not possible without
proper termination of BUS signals.

CP-A FRONT PANEL FOR REVISIONS 3 & 4
FOR USE WITH NON-IMSAI MEMORY BOARDS

This modification should be made to your front panel
board using two additional sections of the 7400 that is

February 3, 1976

The Computer Journal / #60

located directly above $-2 and S-3. This will keep your
unit from writing into memory during an output.

Center Fold Section 25

CPA

=
2 30%%

[TX

26

nse

uzs

(44 cin
: oo,
‘o . 7 5)
—" t]
. - 0 o
' L..L.AM_ Y 1
k] LR
A
s ‘
3 .
1. | A2 '\ l’ F I [3 -]
¥ L s [, v e g BATA G
. .
DEFOSIT| SInp 1 *
i | Vo w1 » vz 7 "
. s z vt
LS ° 3 N iy
Y Ra 0 k) <
:)L' >V ‘.l" 5V :
a e
, osv -
Tyofron ,! 1y 04 L) ' ' " n
—o
> fospmert] o o T o1 ue s D.
3 DLPOSIT NERT B . n : 4
(3] 2 o =)] v
— .
J -
b
-y “I-"-k-’/vv—'n = " z ors 3
s L
€] Lt wn
b 3
L
r N 3 A
l! 4+ t Q EAQ ‘
g, T 1d un Gava o _
) & Exos Xt s ~ba [s aacysd
3 1 é_—']
vie
2
H Al
It &) v Tn
P 1) e e ettt e
3 ato P Al
2 3V !
EXAMIimE MEXT v 3 €Al All
tAAMINg] @
1 Omp- A AT
13
34 L.QM—uv ue
X0 . N a0 ALY
* ¥
x —
wr At
ab
k1)
3
u, ° [pry Sl
L 1+
. L vt Py 1
=1 ¢ o F—
al 1 1]y) g el
[. n = s
¥
| , : TP '8 - Do
" o = BE ‘ 1] I -
1 As
* ”
H—
of
1 as
2]
=1 »?
i
v EAL)
»
b an1
o
=1 A2
»
P at13
” -
1 a1
"
1 als
-
L1
YN ’ 4 4] u
15
(
1
03 . ,. » "" Pyg CiLALS
s . T
Iwo »
. ! ”
0
m poy EEALL
[“- pry ELISL)
r1e —q pog ELIM
' v *z,c \
1M1
7 " v, | ur =4 "
3 S R aun sine
N 4"
o2 3708 s Jnun suEue
|H} BN « L\ -
—WA— +5Y D
L3R !
bos) it
4 1 & 18 pu
. . "ioa
w v hid
9 { nié reasy
11 ——
T
—
—

Center Fold Section

The Computer Journal / #60

}' noor Ll >y 2 1 1 106
1 [y
LI 1 .4
sat
: { 1 N [
: SAT
iy L [3)) 3 s anf w
o 3a3
11 3.2
! ot 0/1.‘“ e
N (7Y o
As
NG — .
LAD V I
" ' 3 s
, . a1
ve
o " ()
”N $A10
e a1 k
) '
" 2 I ‘
4 I
v SATY
by Sy |
Sald y
'[,\" "% i
e L Tars r
{
sfoese j
) . V [
L] 1
4 e ;
;{:,;, ;
<« N
i josw
§
!I,\‘ * os i s o . a2 o
,[”:‘ . L7 o1 y . (¥ o
1 us
'N 22 Ng e 1
. 7
L} Iy 3} uiNy s it
ae NG o4 v 10 nse 0e
Lae
: ' 2 o |[\L 037 | _ias
(1] LAt v V '
: 4 3 4 (1t ass Los
YY) a2 VN o8 u
» \ i : L2l 13 13 asy Ler
i bl [T} . v
———— noor
az A
A L 2] s| 3] g dadn
) R
‘._m__“:‘. swn 2 on hraugh on
: " Juo
. R LAY .
eV g 0ADD " us
= an N sT8
W bt) [
] L3 2] Las e
Smmemm et 1 BYT 05 °O' wrengh o8
-—;3——.“24 1213 4]] o] va] o5 1] v’ 3y
2 I|llll
2333323353080
._.Mp_"i‘; 233232 %535%:3:
a2 J .
e k3 (XXX
o HERERERE
sy _
ul‘li
! L3 18058 ouT .
ase o e 5t J: L] l
Ll
R ay 131 1) e S et threeps P
P
— B I I
Lal ad
ass et L l
>
R Y
Ll
)
2 ay b38
»
aee
oy 86
a4 RS
bl 3
|) L
A O L3l rea
nas ;;
="lll)
) ey N/
nse bl
oy LWY
v »t
n
ARA. Ag L2
%

The Computer Journal / #60

Center Fold Section

S§£6S

o
w
w DATA HEADER SOCKET
w [
-
ws] TeLmoe
w rosw
w0 2004
it usw
n2 410
uis
e] Y
us, U25 400
uiss 7
un
v wmn
I
vt
ute o
wm
wt 7430
24 "™
It
@
o I Y
ce
o
CHl vwu Q27
a
-

] =
) fimF
)
10] Bk
o e
L0O sy LO7
LAD oy LAS
LDO gww LD7
LE0 wwv LS?
e uos
LMY
‘L
vt
R~ oKW

A
"
™
N
"o Kxw
m
13 9 R15
neo]
- 2
~
as
ot o
»
M2 3
16 ey Pe® uw

IMS Asocureshe

SCHEMATIC IIAGRAM

CPA REV 4 2/76

2/27]76

27

REVISIONS

M W W W ﬂ H .F TYmCAL, 10 PLACES
b3 S & $ s
¢ < < T 9 e <
1 2 3 4 (] (] 1] L "
TYPICAL S5X PLACES
1\, 81} CB-CH e mn
v

.
§

7§

e e

Y see-n

Hivec-

.88 BUTA

LTR DESCRIPTION DATE APPROVED
u a1 TIP 32
7805
U2 * SEE NOTE Qz 2N3906
us* a3 2N3904
7812
(1) CR1
us* 7806 CR2 1N4002
us 7474 CR3
u7 7400 CR4
1N914
C1-C8* SEE NOTE CRB
ct
c2 J1 8 PIN CONNECTOR
3 J2 10p
220F N CONNECTOR

c4 RY A7 2W
cs R2 82 %W
cs | R3 220 %W
c7 33 uF R4

— 47 %W
cs A5 .
co -
€2 |guF
c14 i R? 2.2K %W
c16
cis | Re
0] *NOTE: .
cn FOR PCS 80/16: REGULATORS U2, US CAPS C3, C5
c13 01 uF FOR PCS 80/30, 34:
o186 ul REGULATORS U2, U3, US CAPS C2, C3, C5, C8
c1? FOR PCS 80/35:
c10 ALL REGULATORS AND 2.2 uF CAPACITORS

-
©—— SIFIAS SvE SUS CONMECTION

Do ZALOwIO $108 oum Lumey AR

YOLERANCES UNLESS
OTHEARWISE SPECIALD
FRACTHIONS DEC. ANGLES

WMSAl MFG. CORP.
SAN LEANDRO, CA.
ALL RIGHTS RESERVED WORLDWIODE MADE IN US.A.

< o

EXP 10 REV. 2.2
SCHEMATIC

SCALE SIZE [ORAWING NO.

DO NOT SCALE DRAWING | sueer

28

to get enough nuts-and-bolts coverage to
help you to understand, port, or even
write your own operating system. In
their own way, Real Computing and 7CJ
are chronicles of dreams too - highly
individual and esoteric dreams, perhaps
- but lofty and worthy ones nonetheless.

‘Next time

Next time we’ll have a report on the
emerging JPEG graphics standard and
the International JPEG Group frec JPEG
source code. Keep your cards and letters
coming. Tell your friends - 7CJ is the
magazine to maximize your MIPS!

Places to read more

Regarding the history and development
of Unix: The Bell System Technical
Journal, vol. 57, number 6, part 2, July/
August 1978; to a lesser degree, AT&T

fktopics, please contact TCJ. J)

Bell Laboratories Technical Journal, vol.
63 number 8 part 2, October 1984.

Operating Systems Design and Imple-
mentation, Andrew S. Tanenbaum,
Prentice-Hall, 1987.

Minix 1.5, software and reference
manual, Andrew S. Tanenbaum,
Prentice-Hall, 1991.

Where to call or write
BBS: +1 703 330 9049 (eves)

Walnut Creek CD-ROM +1 800 786
9907 or +1 510 947 5996

1547 Palos Verdes, Suite 260

Walnut Creek, CA 94596-2228

Mircoware Systems Corporation
1900 N.W. 114th Street

Des Moings, 1A 50322

(515) 224-1929

7

Comming Next Issues

A new column on CP/M and
other operating systems for
cight bit systems.

The first set of articles will
review CP/M organization and
begining. The next articles will

cover the utilities and their

operation. Later articles will
describe the BIOS and BDOS
functions, leading to projects
that add and change current
BIOS functionality.

Later articles will cover other
operating system such as:
FLEX, SKDOS, 0S-9, RP/M,
CP/M68K and CPMS86.

The first few articles are currently
nearing completion. If you would
like to cover one or more of the later

x

Send your articles and letters of inquiry to:

Sending Articles to 7CJ

The Computer Journal
P.O. Box 535
Lincoln, CA 95648

The editorial policy is to seck articles that can enhance and educate our readers. Letters of interest will be printed in our Reader
To Reader section on a space and topic consideration. Material is typically printed ‘‘as is’’, however TCJ does reserve the right
to reject or modify (by omitting) portions of letters or articles deemed unfit for publication. Any letters received by 7CJ or
it’s technical editors may be printed or included within an article unless YOU indicate otherwise. Your name and city/state
only will be used unless YOU indicate that you desire to have your full name and address included in references or letters
printed.

Major letters and minor articles are accepted on floppy disk or by network services and will aid in getting your letter published
““as is.”” TCJ does NOT return disks and material unless suitable and appropriate return mailers and postage is provided.

Floppy disk and word processing formats support by 7CJ, are 3.5, 5.25, and 8 inch disk formats. Several CP/M to PCDOS
conversion programs are used to transfer data for editing under WordStar with final output under PageMaker 4. Please do
not use embedded punctuations in file names which can prevent reading by transfer programs. WordStar 7 can read and
convert most other word processing programs output, but providing at least one ASCII file is recommended. Use of GENIE
(as B.Kibler) and CompuServe (ID: 71563,2243) is the preferred method of sending information and articles to 7CJ. Please
ZIP files with a READ ME, your article and an ASCII text version included.

TCJ is currently looking for articles that show our readers how you are still using older systems. Those systems can be anything
except PC clone machines (machines like MBC 550 which are NOT 100% compatible are OK!). Your article should be written
as if you are talking among friends and recounting your experiences. Please make it clear that *“'YOU™" did this, and ““I"" had
these problems, which “‘I"” was able to resolve using these steps and techniques. The readers level of knowledge ranges from
beginner to advanced. All references should provide a brief review of information to assist readers in determining the
importance of the reference in relation to their own needs.

The Computer Journal / #60

29

~ Special Feature
‘ _'Programrhin-g

o FORTH Support

Debugging Forth

by Walter J. Rottenkolber

So you got Forth on your system, figured
out how the editor worked, and finally
wrote your first long Forth program. And
now, instead of a hoped for ‘ok’, your
screen dissolved into fireworks, the key-
board froze, or you got a cryptic error
message. What do you do?

KISS

Debugging codec is a part of program-
ming life. Forth can make the process
less painful, but to do so, the debugging
process must start when you write the
source code. The trick, as all the Forth
experts keep repeating, is to make Forth
words short. Aim for no more than three
lines of code. The use of screens at least
reminds you of a 16 line maximum, but
the habits learned coding in other lan-
guages die hard. Even after working with
Forth for a while, I need to remind myself
to keep it small and simple.

With Forth, the best method is to com-
pile each screen, or even each Word, as
it is written, and then test it. Ideally, by
the time you reach the end of coding, the
program should be debugged and ready
to run, And you can do all this without
first compiling the entire program, set-
ting breakpoints, or using a complicated
debugger that needs a workstation to
run.

Charles Moore invented Forth not as a
language, but as a productivity tool, a
program development environment.

Ina recent article on Shellsort (TCJ #57),
I wrote the following code as a sort en-
gine:

: SHELL (--)
SETGAP BEGIN DECGAP

30

ITEMS @ GAP @ DO
1DUP S@ SV !
BEGIN
DUP GAP @ - DUP 0< NOT SWAP
S@ SV @ > AND
WHILE
DUP GAP @ - TUCK S@ SWAP S!
REPEAT
SV @ SWAP S! LOOP

GAP @ 2 <UNTIL ;

1 was rather proud to have squeezed it
into a single screen.

Today 1 would have written this code as:

: SHLMATCH? (i--i1f) \f=true = no match
DUP GAP @ - DUP 0< NOT
\ Check if within array
SWAP S@ SV @ > AND ;
\ Compare array values

: SHLGETNXT (i-1i’)
DUP GAP @ - TUCK S@ SWAP S! ;

: SHLCOMPARE (i-1’) \ i = array index
BEGIN SHLMATCH?
WHILE SHLGETNXT REPEAT ;

: PICKUPITEM (i--) S@SV !,
- INSERTITEM (i--) SV @ SWAPS!;

: SHLSHUTTLE (--)
ITEMS @ GAP @ DO
1DUP PICKUPITEM SHLCOMPARE
INSERTITEM LOOP;

: ENDGAP? (~f) GAP @2 <;

: SHELLSORT (--)
SETGAP
BEGIN DECGAP
SHLSHUTTLE ENDGAP?
UNTIL ;

Ok, I'll admit that it is a bit extreme and
doesn’t look simpler, but that’s just be-
cause of unfamiliarity. The first example
is Forth written like Pascal or *C’. Here
you take the pseudocode that outlines
the functions and then transform it into
a giant blob of working code. It is typical

of the code you write before the big
‘Aha!’, when you finally understand what
Charles Moore is driving at as the Forth
Way. In Forth, the pseudocode becomes
the Forth Words. These Words are then
fleshed out in Forth ‘one liners’. This
begins the road to easy debugging.

For one thing you can more easily check
if each little Word does what it is sup-
posed to do beforc adding it to the next,
more inclusive Word. This means more
than just having the code compile, but
discovering the conditions that may crash
it. Because Words are self contained,
you can probe them interactively or put
them into test programs. By feeding
SHLMATCH? with a wide range of in-
dex values you can discover the point at
which it returns erroneous values or flags,

Conversely, it is easier to localize a prob-
lem to a specific bit of code if the Word
is small. Consider how much easier it
would be to find an error in the code of
SHLMATCH? than the same code in the
original version of SHELL.

Lastly, by choosing names that describe
the function, the code becomes self-docu-
menting.

You will also find it easier to understand
what the code is supposed to do, because
like food, code is casier to swallow in
bitesize chunks.

Stack Gymnastics

One of Charles Moore’s commandments
is ‘“Thou shalt not PICK and ROLL’.
This is another way of saying that stack
manipulation should be limited to the
top three elements as PICK and ROLL

The Computer Journal / #60

enable you to copy and move stack cle-
ments deeper than three.

The purpose of the stack is to feed argu-
ments (data) to operators (Words) in the
Forth CPU. The stack represents a form
of relative addressing rather than the
absolutc addressing common to most
- CPU’s. If you examine the opcodes for
the Z80 CPU they all take three or less
arguments. Ditto with Forth.

I’'ve written Words in which the stack
has jumped through hoops, and done
backflips and cartwheels. Today it would
challenge anyone, including myself, to
explain what the stack is doing. Code
maintenance is a good reason for an
uncomplicated stack.

Complicated stack manipulation is also
a sure sign that the Word is trying to do
too much, is too large. Such a Word
needs rethinking and breaking up into
smaller Words.

Procedures in other languages tend tobe
large and have long parameter lists. They
can’t be converted literally into Forth or
you will end up with a complicated Word.
Instead, you must abstract and translate
the idea and spirit of the procedure.

I’'m not saying that the stack must be
limited to three elements, but that any
excess should be considered temporary
storage. Loading the stack so that the
data is in the proper order often elimi-
nates the need for manipulating below
three elements. Ifa Word needs to draw
on a large amount of data, it’s usually
better to write a set of variables or an
array to hold them. This will make it
easier to track the data for debugging
and will also result in a simpler, more
intuitive Word.

If you absolutely, positively have to
manipulate more than three elements on
the stack, then write a set of well de-
fined, well behaved, and well docu-
mented primitive stack operators to do
the job. Don’t try to stuff all the code
into one Word.

Sintax, Speling, and the Ubiquitous?

Whenever the compiler finds a word it

The Computer Journal / #60

doesn’t recognize, the standard error
response is to repeat the word (or under-
line it) and end with a question mark.
Sometimes it enters the editor with the
cursor placed after the offending word.

In the beginning, correct obvious syntax
and spelling errors as you write. De-
pending on the Loader to detect bad
spelling is a time waster. The errors may
not be of your making. Printed source
code often contains errors. Smart word
processors act as though they have a
mind of their own.

Dropped spaces are common. Unlike
BASIC, Forth requires Words, numbers
and strings 1o be separated by spaces for
the parser to recognize them. With expe-
rience you will spot the more obvious
errors. The top line of many screens is
a comment line for the index Word. So
if you see something like -- \Shell#3 --
you will know that it should be -- \
Shell#3.

More subtle is the invisible lost space. In
the Forth screen, lines are a construct,
not a physical reality in memory. The
last column of a line is actually adjacent
to the first column of the next line. So if
you write code to the end of one line, and
then start a colon definition on the next
line, the space to the left of the colon will
not be there. It’s rather startling and
puzzling to see the compiler choke on
the colon Word. This became such an
annoying problem for me that I modified
my editor so that the last column of a
line is always a space.

A similar problem is losing the semico-
lon of a definition so that the parser runs
into the next colon word. This becomes
more tricky if the missing semicolon
belongs to the last word definition on the
previous screen. If the first Word defini-
tion crashes at Colon, always check the
previous screen.

Some Forths are case sensitive so that
CR, cr, Cr, and cR are interpreted as
different Words. Give me a break! I can
never remember all the possible versions
of the same Word name. The Laxen and
Perry Forth83 has the variable CAPS,
which, when set ON, makes the inter-
preter case insensitive so that all four

versions of CR are treated as the same.
Pve set it ON. Real programming lan-
guages are case insensitive.

Always keep in mind this fact, the prob-
lem may not be in the word or the defi-
nition at which the compiler stopped.

Spelling errors are usually obvious. Less
so is changing the name of the function
and forgetting to search forward to
change the name where it is used. Break-
ing large programs into smaller more
self-contained modules makes it easier
to find the Word you want,

Remember that Forth has a one pass
compiler. Words must be defined before
they can be used.

The Word may not be in the vocabulary(s)
in the scan list. This is especially true if
your system uses ONLY/ALSO. First
check on the vocabularies being used by
running ORDER. Ifyou know the Word
exists, there is nothing for it but to use
VOCS 1o list the vocabularies and search
through them. Switch to the vocabulary
by just naming it. Though you can use
WORDS, I prefer SEE as it is quicker.
You add the vocabulary to the search
either by just naming the Vocname, or
adding it to the list by Vocname ALSO.

Less obvious is the changing Vocabu-
lary or number base. It isn’t that the
compiler has failed, but when an error
pops you out of the compiler, it stops at
the last vocabulary or number base used.

I1like to stay in Decimal mode, but some-
times switch to Hex if I have a compli-
cated address or 1/0 code problem. If the
error happens while in Hex mode, it
stays there. However, you may not be
aware of it, and so if you switch to an-
other screen that requires decimal, the
parser gets lost.

One tipoff of a number base change are
the line numbers at the edge of the screen
display. If you see letters, you're in hex.

The same happens if the vocabulary
search order gets changed and no longer
searches the one with the Word in it
Run ORDER to check this.

31

I had enough problems with this that I
now have the status line in the editor
display the number base and current
vocabulary.

The Stack

Another error is for the compiler to stop
- after the definition of a word with the
error message ‘‘Stack Changed’’ or
““Conditionals Wrong’’. This often oc-
curs in definitions with branches, loops
and case statements when you leave out
one of the Words in the definitions.

Most commonly it occurs in nested IF
THEN or IF ELSE THEN constructs
when you have too few THEN’s. If I get
carried away with such a branching mess,
I now count IFs and make certain that
they are balanced with an equal number
of THENS. Better still, use the CASE
statement if a single value selects one of
many branches.

“‘Stack Underflow’’ is an obvious error.
Somewhere a Word either didn’t leave a
value on the data stack or took off one
too many.

More subtle is having too many items on
the stack after the Word has run. I now
make the effort after testing a Word to
~use Show Stack (.S) to detect this prob-
"Jem. Some Forths give a **Stack Over-
flow”’ message if a runaway loop fills up
the data stack.

The Forgotten @

Most procedural languages provide the
value of a variable simply by naming it.
Data is stored in the variable by the
assignment method introduced in For-
tran and formalized in Algol 60. This is
written like an algebraic equation that
reads backwards, from right to left.

The paradigm for Forth, however, is
assembler, so the movement of data gen-
erally makes explicit use of pointers (ad-
dresses of data). The exception is con-
stant which fetches a value simply by
naming it. Between that and the ingrained
habits from other languages, forgetting
to fetch (@) data from a variable is a
commonplace error. This can lead to

32

interesting times, but there are clues that
point to this.

If a variable value doesn’t change as it
should or does so erratically, check first
for a Forgotten (@ before tearing up oth-
erwise good code.

The addresses of variables are usually
larger than most index values. In a DO
LOOP this can cause either premature
shut off or loop runaway depending on
the index (initial or limit) effected.

Addresses of variables don’t change and
are non-zero, so a variable that holds a
flag will always appear True. Finding IF
ELSE THEN branches that don’t ELSE
is a good sign that the flag value is not
being used. The same goes for BEGIN
UNTIL loops that loop only once, and
BEGIN WHILE REPEAT loops that
never stop and lock up the computer.

DO +LOOPs

DO LOOPs that run the the positive
direction stop at one less than the limit
index. Since Forth generally has stan-
dardized counts as beginning with zero,
the count comes out correctly. However,
if you do a +LOOP with a negative num-
ber in order to count down, the loop
stops AT the limit index, that is, one
more than the positive direction. Always
double check +LOOPs going in a nega-
tive direction for the proper count, and
adjust the indexes accordingly.

>R and R>

Using the return stack to temporarily
hold data can solve a sticky parameter
stack problem. But, whenever you see a
>R, begin the search for the R>. It must
occur before the Semicolon or an EXIT.
The return stack holds the address Next
will return to when the present word is
done. An extra value on the return stack
will most likely cause a system crash.
Removal of an address will cause Next
to prematurely exit the calling Word.

If you store a value on the return stack
inside a DO LOOP be certain that the
value is returned to the data stack before
you reach LOOP or LEAVE. DO LOOPs
store the index values on the return stack

and take them off to process them. So an
extraneous value on the return stack will
cause the DO LOOP to do strange things.
This also goes for fetching an index value
within the loop, eg. >R I R> will
crash.

Dangerous too is code like:

BEGIN >R (code) WHILE R> (more-code)
REPEAT

as this runs just fine until you leave the
loop. If there is no R> before the semi-
colon, the Word will crash.

Snapshots

One method to discover what happening
is to open up the code by inserting Snap-
shots. These are Words that will display
the stack or variables as the code runs.
I’ve used Words such as .S, ?, or the
various PEEKS (see screens). By arrang-
ing judicious CR’s, data from within
loops can be displayed in a neat line
format. If the display moves too fast,
inserting a WAITKEY or PAUSEKEY
will halt the Word so you can read the
data. I write these Words in lowercase
to distinguish them from the uppercase
program code. Try to place them at the
end of the line where they can be more
casily seen and removed.

Dummy Words

If you test Words interactively, Words
that activate disk or port input and out-
put could inadvertantly crash the sys-
tem. So set up a screen of dummy Words
in which DISKWRT is a NOOP, and
PORTs /O data to a variable. This will
let you simulate a working program and
check out every Word except the few
hardware dependent ones.

Deep Probe

So far, just looking at the code or think-
ing about how the program fails can
provide a clue as to what the problem
might be. But eventually you may need
to probe deeper.

Most Forths have utility programs that
provide tools for debugging.

The Computer Journal / #60

The standard tools in the Laxen & Perry
Forth 83 are VIEW, SEE, DUMP, DU
and DEBUG.

In my system, I've replaced the standard
screen editor with a modified version of
F. van Duinen’s excellent PDE v2.02.
This editor allows you to work with

~ screens as handily as a text editor does
text. I highly recommend it even though
I had to spend time replacing some
IBMpc code with Kaypro compatible
code.

It also contains a single-step debugger
that works on uncompiled source code
within the editor. It displays the stack
similar to DEBUG. However, it cannot
work with compiler words, such as IF
THEN, or Words that change the return
stack, so it is limited. I use it for a quick
check of stack behavior.

VIEW allows you to automatically look
up the source screen of the desired Word,
provided the source file is online. You
can check the stack comment or make
certain the Word does what you want it
to.

Use as -- VIEW wordname.

View screens are accessed by an integer
in the Word header which points to the
filename pointer in the VIEW-FILES
array, and gives the number of the screen
in which the Word is defined. To enter
a file into the View system do:

n VIEWS filename

Where n is the view file location in the
pointer array to the viewfile FCB. This
should be done in screen #1 before the
rest of the file is loaded. Up to 16 files
can be put into the View array. In the
Laxen and Perry Forth 83, locations one
through four are taken by the Forth ker-
nel and extensions. My system has n=0
left free for temporary View files, prima-
rily files of work in progress.

The only downside to VIEW is that us-
ing it closes the file you are working on,
and you have to OPEN it again. Another
advantage of PDE is that you can tag the
working file so that a few key strokes
will restore it.

The Computer Journal / #60

The FCB of the source file contains the
view number which is then incorporated
into the Word header. If the drive origi-
nally compiled into the FCB is not con-
venient, it can be changed without
recompiling by VIEW-CHGDRYV (see
screens).

SEE is a high level disassembler. If the
View files are not accessible, it will pro-
vide a clue as to the function of a Word.
Since the Words are compiled, the result
is not the same as source, particularly
the appearance of branches and loops.
With a little practice comparing source
with disassembled code, you should be
able to interpret it.

Use as -- SEE wordname,

DUMP is a memory dump similar in
appearance to that found in your typical
debugger. Sixteen bytes in Hex are dis-
played in a line on the left with printable
characters displayed on the right.

Use as -- start-addr #bytes DUMP.

DU is a short dump which displays 64
bytes.

Use as -- start-addr DU.

DU leaves the next starting address on
the stack, so that to see the next 64 bytes
just type DU. (It also means that you
have to drop the address when done).

The starting address of a Word or array
may be found by using Tick (°).

Remember that the Z80 uses the ‘little
endian’ method of storing 16-bit inte-
gers. This means that the least signifi-
cant byte is stored in memory lower than
the most significant byte. For example,
A067 will be seen in Dump as 67 A0.
When searching memory for data you
must know its size and location in the
Forth Word. You will need a knowledge
of Forth dictionary structure. That means
an investment in the appropriate Forth
reference texts and some study.

DEBUG is a powerful debugging tool.
You set it up by typing;

DEBUG wordname

After you press Enter, nothing will seem
to have happened. However, if the Word
to debug is run, the debugger is entered.
Each word in the parameter field is then
displayed along with the contents of the
stack. Pressing the spacebar or Enter
will single step through the Word.

The actions of the Words also occurs. So
if messages are typed, the screen quickly
becomes cluttered. If the cursor is moved,
the stack display will shift aiso. When
KEY input is required, you must do so
just as if the program were running nor-
mally. With practice you will be able to
follow the debugging process though it
is confusing at first.

By pressing ‘C’ the debugger will run
continuously and allow you to fast for-
ward through the word. Pressing any
key puts you back into single step mode.

Pressing ‘F’ puts you into the Forth com-
mand line. You won’t see an ‘ok’ until
some action is taken, so at first nothing
secems to be happening. This lets you
change the stack contents, run another
Word, or check a variable. Typing RE-
SUME puts you back into the debugger
at the point you left, but be certain that
the stack is correct or you will crash. Use
.S to check.

To quit the debugger press ‘Q’. This
unbugs the Word too and must be done
before the debugger leaves the Word.

When you’re in DEBUG, the extra code
it uses will noticeably slow your system.
This is normal.

T usually start debugging at the top, unless
the behavior of the program provides a
clue to the defective code section. Writ-
ing small Forth Words will let you fol-
low the trail of offending Forth Words
rapidly. (Keep the Reset button closeby).
If the code were all like that in SHELL,
dredging through it would be real work.

The debugging process in Forth consists
primarily of checking that the stack has
the correct values in the proper order,
and that the Words provide the function
you expected. If you don’t know, VIEW
is there.

33

For example, in Forth83 NOT is the
one’s complement and not the same as
0=. So I need to be aware that while
TRUE (-1) will NOT to FALSE (0),
other non-zero values won’t and I must
use 0=

Converting figForth to Forth&3 provides
the ultimate object lesson in obscure code
behavior.

I've learned that any hint of doubt must
be double checked. VIEW and SEE pro-
vide valuable information at your finger-
tips. Forth’s interactive mode makes it
easy to try Words out. Use it.

Fuzzy Logic

Not for the first time have I written code
like --

APPLE DUP @ (more code) !

and discovered the program to go astray.
The debugger will quickly show you that
the stack holds -- (var-addr value -).
However, Store (!) requires the address
on top, so when SWAP is added before
Store, all is well.

Then take the case of --

A) B/BUF TXTPTR @ < IF WRITE-BUF ...
B) B/BUF TXTPTR @ > IF WRITE-BUF ...

C) None of the above

A) will store one byte past the end of the
buffer. You lose one byte each write, and
have a possible crash at the next Word in
memory. B) will crash. So, C) is the
answer.

You need something like:
B/BUF TXTPTR @ <= IF.

Confusing the scope of a count with that
of an offset is the cause of this error.
Counts go from 1 to n. Offsets go from
0 to n-1. As a result, when TXTPTR
equals B/BUF, the pointer is actually
one byte past the end of the buffer.

The problems caused by fuzzy logic are
the most difficult to debug. Nothing is
more frustrating than code that com-
piles, and then almost works. Taking the

34

time to test Words with critical values is
the only way to ensure correct function.
Sorry to say, but at this point, having
made mistakes (aka experience) is the
best means to learn what fuzzy logic will
do.

Writer learn by writing, programmers
learn by programming.

Wrapping up

As you write larger programs, a few
tricks help to make it casier.

Try to divide the program into func-
tional modules. Then extract from them
any primitive Words and data structures
that are used globally. The remaining
data and Words will then form
selfcontained modules. The global code
now provides a base on which the mod-
ules can rest. This means that you can
work on one module without having to
load the other modules.

If you are continuing work on a base of
completed code, compile what is fin-
ished. Then add a dummy word such as
TASK or use the Word MARK to mark
the top of the dictionary. Save the system
under a single letter file name. When
you need to hit the reset button after the
inevitable (for me anyway) crash, run-
ning the saved program will put you
back to square one without having to
reload the entire program. In addition,
FORGETting TASK will only dump the
latest work Ieaving the rest intact.

Homebrew Tools

Because Forth is so open, making simple
but effective debugging tools is not only
possible but encouraged.

PATCH redirects code accessing one
Word to use that of another Word. This
allows you to try modified Words with-
out a complete reloading of code.
UNPATCH restores the last Patched
Word to its previous state.

TO> allows you to change the value of
a constant without recompiling. Ordi-
narily it’s bad form to change the value
of a constant in running programs, but

when debugging it may furnish the vital
clue.

Use as -- n TO> const-name

.VIEW will list the files in the viewfile
array so you know which positions are
still open for use.

VIEW-CHGDRY will change the active
drive of a view file if it has been com-
piled with a drive inconvenient for you.
Though .VIEW shows the drive as a
letter, in CP/M, the drive is actually
designated by a number in the first byte
of the FCB. A ‘0’ means the default
drive,a ‘1’ isthe ‘A’ drive, and so on up
to ‘16’ for drive ‘P’. So you’ll have to
convert the drive letter to the number to
use VIEW-CNGDRYV. The filename
position can be found by running . VIEW,
Run SAVE-SYSTEM to make the
changes permanent.

The next two Words repeat Forth Words
from the interpreter command line. They
complement the MANY, TIMES, and ::
Words found in the Utility.blk. These
Words ailow for quickie tests on Words
interactively.

RUNAGN Continuously repeats the
interpreter command line code. Pause
by pressing a key. Leave the loop by
pressing Escape.

Use as -- command-line-code RUNAGN

STEPAGN Single-step repeat of inter-
preter command line code. Repeat by
pressing a key. Leave the loop by press-
ing Escape.

Use as -- command-line-code STEPAGN
Conclusion

Obviously, no debugging tool will sub-
stitute for clear, reasoned thought. These
tools only provide raw data. To interpret
the data you need an awareness of how
the program should behave, and what
the data values should be. You can’t
detect abnormal behavior in code with-
out first knowing the normal. Practice
debugging on working code and follow
the flow of data on and off the stack. The
Forth source itself is a goldmine of code
examples and ideas.

The Computer Journal / #60

My best learning experiences come from
modifying code to make it ‘work better’.
Wending your way through working code
makes you think through the logic of the
program, shows you how Words are
linked to make it work, and encourages
you to read your references on program-
ming.

I’ve presented some of the methods and
reasoning that I use to take the kinks out
of my programs. As long as you use
copies of code and have a reset button
handy, making a mistake is no problem.
If you have the time, set up code with
deliberate errors. See what happens.
Remember it for the time you have to
deal with the real thing.

Accept the challenge and have fun.

-- THE END --- CODE FOIIOWS --

\ Debugging Forth Screens WJR230CT92
Debugging Forth

Walter J. Rottenkolber

Oct 1992

\PATCH WJR250CT92

2VARIABLE SAVPATCH1
VARIABLE SAVPATCH2

: SAVEPATCH (n-)
DUP 2@ SAVPATCH1 2{ SAVPATCH2 ! ;

:PATCH (-) (S newword oldword)
‘rour@ll:@=
IF >BODY DUP DUP SAVEPATCH -ROT |
[1EXIT SWAP 2+ |
ELSE ." Patch Error” ABORT THEN ;

\ Redirects calls from oldword to newword

: UNPATCH (--) \ Undoes the last Patch
SAVPATCH1 2@ SAVPATCH2 @ 2! ;
\ Change View Drive ~ WJR250CT92
: VIEWFILE (ai--)
DUP2 R"=" 22+ @DUPIF
>BODY .FILE
ELSE DROP .” No Fife” THEN ;

. VIEW (.-) \Lists Files & Positions in View-File Array

VIEW-FILES 16 0 DO
DUP | CR VIEWFILE
LOOP DROP CR ;

: VIEW-CHGDRV (drv# vwpos# --)
2* VIEW-FILES + @ >BODY C! ;
\ Changes drive for viewfile search.
\drvi# 0= deftt, 1=A, etc.; vwpost# is position of file.

\ Snapshot Tools WJR240CT92

1 BINARY (--) 2BASE!;

PEEK (n--n) DUP

CUPEEK (u-—-u) DUPU.;

:HPEEK (u--u) HEXDUP U. DECIMAL ;
:BPEEK (u--u) BINARY DUP U. DECIMAL ;

: WAITKEY (--) KEY DROP;
: PAUSEKEY (-} KEY? IF WAITKEY WAITKEY THEN ;

The Computer Journal / #60

\ RUNAGN STEPAGN WJIR04NOVE2

(?ESC (-f) KEY 27 =;

- RUNAGN ()
KEY? IF 2ESC IF EXIT ELSE
7ESC IF EXIT THEN THEN THEN >IN OFF ;

\ Repeats Command Line. Pauses on key press.
\ ESCape exits.

: STEPAGN ()
?ESC IF EXIT THEN >IN OFF ;
\ Repeats Command Line when key is pressed.
\ ESCape exits.
\ TO= WJRO4NOVI2
:TO> {n --) (S constant-name)
*>BODY!;

\ Screen 0
\ Screen to Text Files
\S

WJR04NOV92

Screen to Text Files
Walter J. Rottenkolber
Nov. 1992
A utility to convert screen blocks to text files.
Places screen number above line 0. Can be set up to
remove all blank lines within screen or only multiple
lines. A blank line separates screens.

\ Screen 1

\ Screen to Text Files WJIROSNOVI2
ONLY FORTH ALSO FORTH DEFINITIONS

DECIMAL

29 THRU

\ Screen 2
\ Screen to Text Files WJR280CT92
\ 1024 CONSTANT B/BUF \Uncomment if needed
\ 64 CONSTANT CiL
\ 16 CONSTANT L/SCR

VARIABLE TXTBLK#

VARIABLE TXTPTR
:PAD2 (--a) PAD 100 +;
:PAD3 (--a) PAD2B/BUF + 10+ ;
JINITS>T (--) O TXTPTR | O TXTBLK#! ;
CWRTXT ()

1 MORE PAD3 TXTBLK# @ BUFFER

B/BUF MOVE UPDATE ;

\ Screen 3
\ Screen to Text Files
- "WRT-TBUF (--)

B/BUF TXTPTR @ <= IF WRTXT

1 TXTBLK# +! 0 TXTPTR | THEN ;
:>TBUF (c-)

PWRT-TBUF PAD3 TXTPTR @ + C! 1 TXTPTR +!;
:NEWLINE (--) 13>TBUF 10>TBUF;
: EOFMARK (--) CONTROL Z >TBUF ;

WJIROSNOVG2

\ Screen 4

\ Screen to Text Files WJR280CT92
VARIABLE OLINE? DEFER ?BL-LINE

:7BL-LINE1 (al--alf)
OLINE? @ OVER OR 0<> OVER 0<> OLINE? ! ;

: 7BL-LINEO (al--aif) DUPO<>;

((PUTLINE) (al-)
0?00 DUP C@ >TBUF 1+ LOOP DROP;

:PUTLINE (al--)
2BL-LINE IF (PUTLINE) NEWLINE ELSE
2DROP THEN ;
\ Screen 5
\ Screen to Text Files WJROSNOVO2
. .SCR¥ ()

“\ Screen " (PUTLINE)
SCR @ (U) (PUTLINE) ;
1 OLINE (--) OLINE? @ IF NEWLINE THEN ;
: OLINSTUF (ecnt--)
IF OLINE THEN .SCR# NEWLINE ;
\ Adds newline if previous line #15 and present line #0
\ contain text. Then prints Screen number before line #0.

\ Screen 6
\ Screen to Text Files
. GETLINE (fline#--al')
C/L * PAD2 + C/L -TRAILING ;
. 7ABORT (--)
KEY? IF KEY 27 = ABORT" Program Aborted” THEN ;
S (SCR>TXT) (-)
0 GETLINE DUP OLINSTUF PUTLINE
\ Zero-line routine
L/SCR 1 DO | GETLINE
PUTLINE ?ABORT LOOP ;
- GETSCRBLK (blk# --) IN-BLOCK PAD2
B/BUF MOVE ,;

WJROSNOVS2

\ Rest of screen

\ Screen 7

\ Screen to Text Files WJR280OCT92

- IN-CAPACITY (--n)

IN-FILE @ [DOS] MAXREC# @ 1+ 08 UM/MOD NIP ;

LT (nn-)
INITS>T DO | DUP SCR | GETSCRBLK
(SCR>TXT) LOOP
EOFMARK WRTXT FLUSH :

. ?S>TALL ([nn]--nn)
DEPTH 2 < IF IN-CAPACITY 0 ELSE
1+ SWAP THEN ;

\ Screen 8
\ Screen to Text Files WJR04NOV92
: FILE:FROM-TO (--) (S from-filename to-filename }

[DOS] FCB2 DUP IFCB FILE !

FCB1 DUP IFCB DUP DELETE DROP

\ Deletes existing to-file
DUP MAKE-FILE IN-FILE !
OPEN-FILE SWITCH OPEN-FILE ;

: S>T { [from to) --) (S scr-filename tet-filename)
FILE:FROM-TO ?S>TALL (S>T);

\S Use as -

from-scrit to-sci# S>T scr-filename txt-filename (or)

5>T scrfilename txt-filename \ Converts entire scrfile
Press ESCape to abort program.

\ Screen 9
\ Screen to Text Files WJRO3NOVI2
:1BL-LINE (--) \ Removes multiple blank lines

1 ?BL-LINE1 IS ?BL-LINE OLINE? OFF ;

1 OBL-LINE {--) \ Removes all blank lines between text
[] 7BL-LINEQ IS ?BL-LINE OLINE? ON ;
OBL-LINE \ Default is no blank lines
.(Screen to Text screens loaded)

35

Regular Feature Mr. Kaypro
~ Kaypro Support By Charles B. Stafford
- ROM Modifications
SIR KAYPRO There were two early non-harddrive able also, but the display is the limiting

Wherein we wave the magic wand, and
turn a mouse into a LION.

RESPONSES FROM READERS

Boy, am I HAPPY, not only did I get
mail, but I now know what at least one
reader wants to hear about !!!!

When, in the last TCJ, I asked for Reader
response, I hoped for perhaps a single
letter. I do like feedback, but was not too
optimistic. My wildest hopes were real-
ized, when I received not one but THREE
letters, all with very useful information.
One, in particular, has caused me to
deviate from my original plan for this
column. The gist of the letter was, that
a pristine Kaypro II had been purchased
for a song by one new to computers who
had sung the song himself, was reason-
‘ably happy with the present capabilities
of his prize, but had heard through the
“‘grapevine’’ that certain ‘“‘enhance-
ments’’ could be performed by a begin-
ner with basic manual dexterity. He had
high hopes that he could be shown a
relatively simple path to implement this
“wizardry™’.

THE VISION

Based on this plea, it appeared that a
step back was called for, to lay out the
possibilities. Those of you that remem-
ber ““Micro Cornucopia’ from a prior
lifetime, will recall that the subject was
discussed in that publication at some
length, and a great deal of what follows
is loosely based on that research and
those designs.

BEGINNINGS

In the beginning,...

36

Kaypros, the Kaypro II and the Kaypro
IV. The difference was that the II had
only single sided double density drives
(190k) but the IV had double sided double
density drives (390k). Ong¢ very interest-
ing quirk was that, if you put a II boot
disk in a IV and either powered-up or
used the reset button to reboot, the 1V
would agree with you that it was only a
II and would read only SSDD diskettes.
Booted up as a IV, however, it could still
read II diskettes as well as its own. It
turns out that a II can be converted to a
IV rather easily, and if that step is per-
formed first, all the other projects we
discuss would be applicable to either
machine. My first choice, then, for an
upgrade would be the IT to IV conver-
sion.

CHOICES

Eenie Meenie Mynie Mo.......

After the II to IV conversion, come sev-
eral choices. The original floppy drive
only machines ran at 2Mhz. For com-
parison, the IBM PC-XT runs at
4.77Mhz. The Kaypros seem as fast be-
cause they are character based, and don’t
have the video overhead (extra operat-
ing system software) to run cach time
they display a character. The system clock
(oscillator), however, runs much faster
and the frequency is “‘divided’ to pro-
duce the 2Mhz signal for the processor.
Both 4Mhz and 5Mhz signals are avail-
able on the motherboard though, and
substituting one of those for the 2Mhz
signal makes the Kaypro much more
responsive, aithough my daughter says
that LADDERS becomes ‘‘real tough™’.
There are both 4Mhz modifications and
5Mhz modifications as well as one with
a switch to slow down to stock again.
Actually, there is a 7Mhz signal avail-

factor, and since it cannot ‘‘keep up’’,
the processor running at 7Mhz has to
wait for it, so there isn’t any real reason
to use 7Mhz.

So much for the speed freaks. For those
who value memory above all else, 256k
of ram can be installed. Only the first
64k can be used by applications pro-
grams, but there are drivers to use the
remaining room as a print spooler or a
“ram disk’’. This is a little more ad-
vanced as projects go, but anyone who is
relatively competent at soldering can
handle it IF they are careful.

For those who value disk drive space, up
to 4 floppy drives can be installed as
large as 800k each. This modification
requires a new monitor ROM and the
addition of drive select decoding hard-
ware (another IC) but is not difficult. 1
suppose | should mention that the drives
must be procured as well, either at a
swap meet, a used computer store, or
new,

For those who REALLY value disk drive
space, up to TWO 55MB hard-drives
can be installed. Again not difficult, but
rather more expensive than the other
modifications already mentioned.

For those for whom convenience is para-
mount, moving the reset button, as dis-
cussed two issues back, and likewise
moving the brightness control can be
done by careful beginners at very little
expense.

THE RESULT
The end result, could very well be a

Kaypro with 256k of RAM, 4 floppy
drives ranging from 390K to 800k, both

The Computer Journal / #60

3.5" and 5.25", and 110 megabytes of
harddrive space all running at 5 Mhz,
and all packed in the same aluminum
case it came in.

TODAY’S PROJECT

Since moving the reset button,(our least
risky and most cost effective project)
was covered two issues back (#58) We’ll
proceed to the logical successor, the II to
IV conversion. See page 39 for a draw-
ing of the jumpers and parts discussed.

Before we start, we need to ascertain
whether the patient is really a K-II or a
K-IV in K-II clothing. Remove the hood
by removing the 10 screws holding it on,
and lift it off. Please disconnect the power
FIRST. If U-47 is identified as an 81-
149, the patient is a real K-, if U-47 is
identified as an 81-232, you have a K-IV
in K-II clothing. If U-47 is not identi-
fied, look for a mother board assembly
number on the right corner closest the
front of the computer. an assembly num-
ber of 81-240 indicates a K-IV masquer-
ading as a K-H. If you have a real K-II
then proceed, if it’s actually a K-IV in
“‘drag’’ skip to the replacement of the
drives.

There are two parts to this conversion,
first the board needs to be modified to
use a 2732 EPROM instead of the 2716
that was stock. This is to allow the extra
code for side select. Then, second, the
side select line must be physically con-
nected to the floppy drive cable. The
cleanest way to do this is with extra
sockets for those ICs that are socketed.
You’ll need 5 IC sockets, 1 24 pin, 1 16
pin, 1 14 pin, 1 20 pin, and 1 40 pin. By
using these sockets we can avoid solder-
ing on the board itself, and still produce
a neat workmanlike result.

THE EPROM MOD

Remove U47 using a very small screw-
driver to pry it out.

Bend pin 21 of the 24 pin socket out so
that it will not go into the U47 socket
when inserted like an EPROM.

At this point, a small digression is nec-
essary. Those of you who are already

The Computer Journal / #60

certified as WIZARDs can skip this,
but for those of us who are not, a small
review may prevent a large error. The
pins on an IC are numbered
COUNTER-CLOCKWISE from the
notch or dimple, when viewed from the
top. For those who grew up with digital
watches, if you look at an IC, (right side
up, of course) with the notch/dimple on
the left, pin 1 will also be on the left, on
the side closest to you. '

Solder one end of a two inch jumper
wire to this bent out pin.

Solder the other end of the jumper to pin
2 of the 20 pin socket.

Bend out pin 1 on the 16 pin socket so
that it will not go into the U 60 socket
when inserted like an IC.

Solder one end of a one inch jumper to
pin 1 of the 16 pin socket and the other
end of the jumper to pin 8 of the 16 pin
socket.

NOW

Remove U 59, and U 60, using the screw-
driver as above, and:

1. Insert the 24 pin socket into the socket
at U47, keep pin 21 bent out

2. Insert the 20 pin socket into the socket
at U 59, all the pins must go into the
socket

3. Insert the 16 pin socket into the socket
at U 60, pin 1 must remain bent out

What we’ve done is to add a select cir-
cuit to pick up the extra 2k in the larger
ROM, and connect address line All to
pin 21 of the larger ROM. The original
ROM will NOT work now, but an origi-
nal Kaypro-IV ROM or one of the after-
market ROMs will.

THE SELECT LINE

““This will be much simpler than the last
procedure” he said with an evil grin.

Remove U 72 the PIO and U 73 from

their sockets using that same screw-
driver.

Bend out pin 13 on the 40 pin socket and
pins 5 & 6 on the remaining 14 pin
socket.

Solder one end of a two inch jumper
wire to pin 13 of the 40 pin socket and
the other end of the jumper to pin 5 of
the 14 pin socket.

Solder one end of a four inch jumper to
pin 6 of the 14 pin socket.

NEXT

1. Insert the 40 pin socket into the socket
at U 72, keeping pin 13 bent out.

2. Insert the 14 pin socket into the socket
at U 73, keeping pins 5 & 6 bent out.

3. Solder the free end of the jumper
attached to pin 6 of the 14 pin socket, to
the base of pin 32 of J 6, the floppy
drive cable. OPTION 1 Instead of this
Jjumper you could use a four inch piece
of test lead with a microclip on it and
just clip it to J 6. Such test leads are
available at Radio Shack for $3.95 a
pair. They are small enough to
avoid interfering with the floppy drive
cable connector.

OPTION 2 For those of you brave (or
experienced) enough, the jumper could
be installed on the underside of the
motherboard direct from pin 6 of U 73 to
pin 32 of J 6.

4. Insert all the ICs back into their re-
spective sockets with the exception of U
47, where you’ll need a new EPROM, an
U 73. The 74LS04 that was there is too
slow, so it must be replaced with a 74504,
which is faster and more powerful.

For U 47, you’ll need either an 81-232
EPROM (stock K-4) or one of the after
market EPROMs, ADVENT, Micro
Cornucopia, or what have you.

There is one more stage to this project,
replacing the floppy drives, and since
the motherboard is already out, this is a
good time to do it. Double-sided double-
density drives are also known in the

37

IBM PC/ Clone world as 360k drives
and should be readily available locally at
about $55 each NEW. There are also
usually several good ones at any given
swap meet. A HINT ... TEAC drives
are some of the best around, very reli-
able, almost bullet-proof and in fact my
favorites, BUT the card edge connector
on the back of these beauties is exactly
reversed from that on the original
TANDONS, so keep an eye on the red
stripe and the slot. If you look, you will
be able to find a couple of full-height
drives, and then replacement is just a
matter of 4 1/8th inch allen screws (6-32
by 5/16ths), two power connectors, a
couple of ground clips and the ribbon
cable. If half-height drives are all that
are available, they’ll do just fine. In fact
they will use less power than the full
height stock ones. You will have to drill
some extra mounting holes in the drive
cage, but measure carefully, use a center
punch, and you’ll be all right. Fortu-
nately the drive cage comes out easily if
you remove the four screws from the
bottom of the case.

THE NECESSARY STUFF LIST

1 #2 Phillips screwdriver (to remove
the case and motherboard)
1 SMALL (15 watt) soldering iron

miscellaneous wire, solder, flux

BITES
Benefits, Ideas, Techniques, Experiences
& Serendipities

Several people have mentioned °‘screen
shrinkage’”” when the drives start rotat-
ing. It is caused by a momentary fluc-
tuation in the unregulated 12v coming
from the power supply. I fixed mine by
installing a larger power supply, but Lee
Hart wrote and described a really unique
rather elegant solution. He procured a
12v dc 2 amp plug-in transformer power
supply like those that come with re-
chargeable calculators or small tape re-
corders. He then cut the 12v and ground
wires going from the real power supply
to the video board (under the CRT) and
spliced them to the wires from the new
transformer supply. He then cut the
socket end and about a foot of wire from
an extension cord, plugged in the trans-
former and connected the wires to the
switch on the back of the Kaypro. The
video now has its own power supply, and

of others such as Osbourne, Epson QX-
10, Otrona, Morrow, etc.

At that time, since “‘we’’ were the only
ones brave (stupid) enough to jump in
with both feet, we were, as George Mor-
row said in ‘‘Thoughts of Chairman
George’’, the “‘cognicenti’’,
the’literati”” of society. We did our job
so well, preaching the gospel, that we
worked ourselves right into Oblivion.
Now everybody who is anybody, or who
fancies themselves to be somebody, has
more computer than they’ll ever need,
and is reasonably facile with it and their
software.

Old habits die hard, however, and there
will always be curiousbeginners, and
that’s where you’ll find us and our *‘Clas-
sic’” computers. This btw, is being writ-
ten on my trusty 83 K-1V, bought new,
(and they’ll have to pry it from my cold
dead hands), and now equipped with 2-
800k floppies, 1-400k floppy, a 20 meg
harddrive, an external composite moni-
tor adapter (for software demos to clubs),
100 watt power supply, fan, and internal
modem, all running at 5 Mhz.

Parts Sockets :
1 14 pin dip no more ‘‘screen shrmkage.” NEXT TIME ...
1 16 pin dip
1 20 pin dip THE MARCH OF TIME The promised, and long awaited *‘speed-
! 24 pin dip) up’’. So..Keep those cards and letters
1 40 pin dip Those who read and memorize every coming
ICs word have undoubtedly realized that not '
i I_f:ggzo IV EPROM (2732) only is this Issue # 60, but since tl}ere ¢ Thanks for the article Chuck, and BTW
Drives 6 Issues a year, 1t 1s also TCJ s 10th 0nns by the way.” Chuck forgot to
2 Double-sided Double-density anniversary. Cmfl‘mdent'al’l’y, itisalso 10 0ntion that he sells the upgrade ROMs
Tools years since the ““Classic™ CP/M com- ¢y can't find a local source. Send
1 small screwdriver pqters became w1de1¥ available, the your request for help (or to order ROMs)
prime examples of which are the K-Il ;.. cpuck Stafford, 4000 Norris Ave.,
and the K-IV, not to mention a plethora ¢;ram ento, CA 95821. BDK.
Advertising Rates For The Computer Journal
Size 1 Insertion 2-3 Insertions 4+Insertions
Full $400 $360 $320
1/2 Page $240 $215 $195
1/3 Page $195 $160 $145
1/4 Page $160 $120 $100

SPECIAL ANNIVERSARY ADVERTISING RATES

For the NEXT THREE ISSUES TCJ Advertising Rates will fall back to 1982/3 AMOUNTS!
That is HALF the ABOVE PRICES or get TWO ISSUES for the price of ONE.

38

The Computer Journal / #60

39

SUOHBIYIPOIAL AT 01 IJ oadAeyy
sned ano 4Nag - .wT

5204 son ndd HOYN 8 ONd on
€641 q 8087 q=°" 2¢22 d
T IT TTRI W
Ty
7.
29n 190
aoapnonn * Dma
JBOO'HN.OQD nﬂ.n 66N
. BEISTIbL CLESTVL
_ % Q on 260
P o> m o wn e - o v s enmg
»
Hhega
-]]

=]
It
ofn z
[IKIET =
=
3
Bid P82 q zuin =
3
i
(=}
g
Q
S
]
=

‘Special Feature
Intermediate Users

Forth Kernel Design

MOVING FORTH

by Brad Rodriguez

Part 2: Benchmarks and Case Studies of Forth Kernels

In the last issue of TCJ, Brad covered the theoretical aspect

" of kernel design. Considerations were presented on variations
due to different CPU selections. This time Brad shows actual
examples of several CPU implementations. BDK.

BENCHMARKS

By now it must scem that the answer to every design question
I presented in Part 1 is ““code it and see.”” Obviously you don’t
want to write the entire Forth kernel several different ways just
to evaluate different schemes. Fortunately, you can get quite
a good ‘‘feel’” with just a small subset of the Forth kernel.

Guy Kelly [KEL92] examines the following code samples for
19 different IBM PC Forths:

NEXT ...the ‘‘inner interpreter’’ that chains from one Forth
word to another in the ‘‘thread’’. This is used at the end of
every CODE definition, and is one of the most important
factors in speed of Forth execution. You’ve already seen the

+ pseudo-code for this in ITC and DTC; in STC it’s just CALL/
RETURN.

ENTER ...also called DOCOL or DOCOLON,; the Code Field
action that causes a high level ‘‘colon’ definition to be ex-
ecuted. This, too, is crucial for speed; it is used at the start of
every colon definition. Not needed in STC.

EXIT ...called ;S in fig-Forth; the code that ends the execution
of a colon definition. This is essentially the high-level subrou-
tine return, and appears at the end of every colon definition.
This is just a machine code RETURN in STC.

NEXT, ENTER, and EXIT indicate the performance of the
threading mechanism. These should be coded to evaluate ITC
vs. DTC vs, STC. They also reflect the quality of your register
assignments for IP, W, and RSP.

DOVAR ..aka. ‘‘variable’’; the machine code fragment that
is the Code Field action for all Forth VARIABLE:s.

DOCON ...ak.a. “‘constant’’; the machine code fragment that
is the Code Field action for all Forth CONSTANTS.

40

DOCON and DOVAR, along with ENTER, show how effi-
ciently you can obtain the Parameter Field address of a word
being executed. This reflects your choice for the W register.
In a DTC Forth, this also indicates whether to put a JUMP or
CALL in the Code Field.

LIT ..aka. “literal”’; is a Forth word that fetches a cell value
from the high-level thread. Several words use such in-line
parameters, and this is a good indicator of their performance.
It reflects your choice for the IP register.

@ ...the Forth memory-fetch operator, shows how quickly
memory can be accessed from high-level Forth. This word
usually benefits from TOS in stack.

! ...the Forth memory-store operator, is another indicator of
memory access. This consumes two items from the stack, and
illustrates efficiency of Parameter Stack access. It’s a good
indicator of the TOS-in-memory vs. TOS-in-register tradeoff.

+ ...the addition operator, is a representative example of all the
Forth arithmetic and logical operators. Like the ! word, this
benchmarks stack access, and it’s a clear demonstration of any
TOS-in-register benefit.

This is an excellent set of code samples. Thave a few additional
favorites:

DODOES ..is the Code Field action for words built with
DOES>. This doesn’t yield any new benchmark comparisons,
although it does reflect the usefulness of W, IP, and RSP. |
include it because it’s the most convoluted code in the Forth
kernel. If you can code the logic of DODOES, everything ¢lse
is a snap. The intricacies of DODOES will be described in a
subsequent article.

SWAP ...a simple stack operator, but still educational.

OVER ...a more complex stack operator. This gives a good
idea of how easily you can access the Parameter Stack.

ROT ...a still more complex stack operator, and the one most
likely to need an extra temporary register. If you can code ROT
without needing an “X’’ register, you probably don’t need an
“X” register for anything.

The Computer Journal / #60

0= ...one of the few unary arithmetic operators, and one of the
most likely to benefit from TOS-in-register.

+! ...a most illustrative operator, combining stack access, arith-
metic, memory fetch and store. This is one of my favorite
benchmarks, although it is less frequently used than the other
words in this list.

_ These are among the most-used words in the Forth kernel. It
pays to optimize them. I’ll show examples of all of these,
including pseudo-code, for the 6809. For the other CPUs, I'll
use selected examples to illustrate specific decisions.

CASE STUDY 1: THE 6809

In the world of 8-bit CPUs, the 6809 is the Forth programmer’s
dream machine. It supports two stacks! It also has two other
address registers, and a wealth of orthogonal addressing modes
second only to the PDP-11. (*‘Orthogonal’” means they work
the same way and have the same options for all address regis-
ters.) The two 8-bit accumulators can be treated as a single 16-
bit accumulator, and there are many 16-bit operations.

The programmer’s model of the 6809 is [MOT83]:

A - 8 bit accumulator

B - 8 bit accumulator
Most arithmetic operations use an accumulator as the destina-
tion. These can be concatenated and treated as a single 16-bit
accumulator D (A high byte, B low).

X - 16 bit index register

Y - 16 bit index register

S - 16 bit stack pointer

U - 16 bit stack pointer
All addressing modes for X and Y can also be used with the
'S and U registers.

PC - 16 bit program counter

CC - 8 bit Condition Code register

DP - 8 bit Direct Page register
The 6800 family’s Direct addressing mode uses an 8-bit ad-
dress to reach any location in memory page zero. The 6809
allows any page to be Direct-addressed; this register provides
the high 8 bits of address.

Those two stack pointers are crying out for Forth use. They are
equivalent, except that S is used for subroutine calls and
interrupts. Let’s be consistent and use S for return addresses,
leaving U for the Parameter Stack.

W and IP both need to be address registers, so these are the
logical use for X and Y. X and Y are equivalent, so let’s
arbitrarily assign X=W, and Y=IP.

Now a threading model can be chosen. I'll scratch STC and
TTC, to make this a ‘‘conventional’ Forth. The limiting
factor in performance is then the NEXT routine. Let’s look at
this in both ITC and DTC:

ITC-NEXT: LDX ,Y++ (8) (IP)->W, increment IP

The Computer Journal / #60

JMP [.X] (6) (W)->temp, jump to adrs in temp

DTC-NEXT: JMP [,Y++] (9) (IP)->temp, increment IP,

jump to adrs in temp

(“‘temp’’ is internal to the 6809)

NEXT is one instruction in a DTC 6809! This means you can
code it in-line in two bytes, making it both smaller and faster
than JMP NEXT. For comparison, look at the ‘“NEXT"’ logic
for subroutine threading;

RTS (5) ...at the end of one CODE word
JSR nextword (8) ...in the ‘‘thread”

...start of the next CODE word

STC takes 13 clocks to thread to the next word, compared with
9 clocks for DTC. This is because subroutine threading has to
pop and push a return address, while simple DTC or ITC
threading between CODE words do¢s not.

Given the choice of DTC, you have to decide: does a high-level
word have a Jump or Call in its Code Field? The driving
consideration is how quickly can vou obtain the address of the
parameter field which follows? Let’s look at the code to
ENTER a colon definition, using symbolic Forth register names,
to see this illustrated:

using a JSR (Call):

JSR ENTER ®

ENTER: PULS W (7) get address following JSR into W reg
PSHS IP (7) save the old IP on the Retum Stack
TFR W,IP (6) Parameter Field address -> IP
NEXT (9) assembler macro for JMP [Y++]

37 cycles total

using a JMP:
JMP ENTER “

ENTER: PSHS IP (7) save the old IP on the Return Stack
LDX -2,IP (6) re-fetch the Code Field address
LEAY 3,X (5) add 3 and put into IP (Y) register
NEXT 9)

31 cycles total

(CPU cycle counts are in parentheses.)

The DTC 6809 NEXT doesn’t use the W register, because the
6809 addressing modes allow an extra level of indirection
automatically. The JMP version of ENTER has to re-fetch the
Code Field address -- NEXT didn’t leave it in any register --
and then add 3 to get the Parameter Field address. The JSR
version can get the Parameter Field address directly by popping
the return stack. Even so, the JMP version is faster. (Exercise
for the student: try coding the JSR ENTER with S=PSP and
U=RSP.)

Either way, the code for EXIT is the same:

EXIT: PULS IP

NEXT

pop ‘‘saved’’ IP from return stack
continue Forth interpretation

41

Some registers remain to allocate. You could keep the User
Pointer in memory, and this Forth would still be pretty fast.
But the DP register would go to waste, and there’s not much
else it can do. Let’s use the ““trick”’ described above, and hold
the high byte of UP in the DP register. (The low byte of UP
is implied to be zero).

One 16-bit register is left: D. Most arithmetic operations need

. this register. Should it be left free as a scratch register, or used
as the Top-Of-Stack? 6809 instructions use memory as one
operand, so a second working register may be unnecessary.
And if a scratch register is needed, it’s easy to push and pop
D. Let’s write the benchmark primitives both ways, and see
which is faster.

" NEXT, ENTER, and EXIT don’t use the stack, and thus have
identical code either way.

DOVAR, DOCON, LIT, and OVER require the same number
of CPU cycles either way. These illustrate the earlier comment
that putting TOS in register often just changes where the push
or pop takes place:

TOSin D TOS in memory.. .pseudo-code
DOVAR: PSHU TOS LDD -2,IP address of CF -> D
LDD -2,IP ADDD #3 address of PF -> D
ADDD #3 PSHU D push D onto stack
NEXT NEXT
DOCON: PSHU TOS LDX -2,IP address of CF -> W
LDX -2,IP LDD 3,X contents of PF -> D
LDD 3X PSHU D push D onto stack
NEXT NEXT
LIT: PSHU TOS LDD ,IP++ (IP) > D, increment
. IP
' LDD ,IP++ PSHU D push D onto stack
NEXT NEXT
OVER: PSHUD LDD 2,PSP 2nd on stack -> D
DD 2,PSP PSHU D push D onto stack
NEXT NEXT

SWAP, ROT, 0=, (@, and especially + are all faster with TOS
in register;

TOS in D TOS in memory...pseudo-code

FALSE:LDD #0

BEQ TRUE

NEXT FALSE:LDD #0 no...put 0 in TOS
TRUE: LDD #-1 STD ,PSP
NEXT NEXT
TRUE: LDD #-1 yes...put -1 in TOS
STD ,PSP
NEXT
@: TFR TOS,W (6) LDD [,PSP] (8) fetch D using TOS adrs
LDD ,W (5) STD PSP (5) D -> TOS
NEXT NEXT
+ ADDD ,U++ PULUD pop TOS into D
NEXT ADDD ,PSP add new TOS into D
STD ,PSP store D into TOS
NEXT

! and +! are slower with TOS in register:

TOS in D TOS in memory...pseudo-code

SWAP: LDX ,PSP (5) LDD ,PSP (5) TOS > D
STD ,PSP (5) LDX 2,PSP (6) 2nd on stack -> X
TFR X.D (6) STD 2,PSP (6) D -> 2nd on stack
NEXT STX ,PSP (5) X ->TOS
NEXT
ROT: LDX ,PSP (5) LDX ,PSP (5) TOS -> X
STD PSP (5) LDD 2,PSP (6) 2nd on stack -> D
LDD 2,PSP (6) STX 2,PSP (6) X -> 2nd on stack
STX 2,PSP (6) LDX 4,PSP (6) 3rd on stack -> X
NEXT STD 4,PSP (6) D ->3rd on stack
STX ,PSP (5) X ->TOS
NEXT
0= CMPD #0 LDD ,PSP TOS->D
BEQ TRUE CMPD #0 does D equal zero?

42

It TFR TOS,W (6) PULUW (7) pop adrs into W
PULUD (7) PULUD (7) pop data into D
STD W (5) STD ,W (5) store data to adrs
PULU TOS (7) NEXT
NEXT

+: TFR TOS,W (6) PULUW (7) pop adrs into W
PULU TOS (7) PULUD (7) pop data into D
ADDD W (6) ADDD ,W (6) add memory into D
STD W (5) STD W (5) store D to memory
PULU TOS (7) NEXT
NEXT

The reason these words are slower is that most Forth memory-
reference words expect the address on the top of stack, so an
extra TFR instruction is needed. This is why it’s a help for the
TOS register to be an address register. Unfortunately, all the
6809 address registers are spoken for..and it’s much more
important for W, IP, PSP, and RSP to be in address registers
than TOS. The TOS-in-register penalty for ! and +! should be
outweighed by the gains in the many arithmetic and stack
opcrations.

CASE STUDY 2: THE 8051

If the 6809 is the Forthwright’s dream machine, the 8051 is the
nightmare. It has only one general-purpose address register,
and one addressing mode, which always uses the one 8-bit
accumulator.

All of the arithmetic operations, and many of the logical, must
use the accumulator. The only 16-bit operation is INC DPTR.
The hardware stack must use the 128-byte on-chip register file.
[SIG92] Such a CPU could give ulcers.

Some 8051 Forths have been written that implement a full 16-
bit model, e.g. [PAY90], but they are too slow for my taste.
Let’s make some tradeoffs and make a faster 8051 Forth.

Our foremost reality is the availability of only one address

register. So let’s use the 8051°s Program Counter as IP -- i.e,,
let’s make a subroutine-threaded Forth. If the compiler uses 2-

The Computer Journal / #60

byte ACALLs instead of 3-byte LCALLs whenever possible,
most of the STC code will be as small as ITC or DTC code.

Subroutine threading implies that the Return Stack Pointer is
the hardware stack pointer. There are 64 cells of space in the
on-chip register file, not enough room for multiple task stacks.
At this point you can

a) restrict this Forth to single-task;

b) code all of the Forth definitions so that upon entry they move
their return address to a software stack in external RAM; or

¢) do task switches by swapping the entire Return Stack to and
from external RAM.

Option (b) is slow! Moving 128 bytes on every task switch is
faster than moving 2 bytes on every Forth word. For now I
choose option (a), leaving the door open for (c) at some future
date.

The one-and-only “‘real’” address register, DPTR, will have to
do multiple duty. It becomes W, the multi-purpose working
register.

In truth, there are two other registers that can address external
memory: RO and R1. They provide only an 8-bit address; the
high 8 bits are explicitly output on port 2. But this is a tolerable
restriction for stacks, since they can be limited to a 256-byte
space. So let’s use RO as the PSP.

This same 256-byte space can be used for user data. This
makes P2 (port 2) the high byte of the User Pointer, and, like
the 6809, the low byte will be implied to be zero.

What is the programmer’s model of the 8051 so far?

reg 8051 Forth
adrs pame usage
0 RO low byte of PSP
1 Rl
2 R2
3 R3
4 R4
5 RS
6 Ro6
7 R7
8-7Fh 120 bytes of return stack
8§ih SP low byte of RSP (high byte=00)
82-83h DPTR W register
AOh P2 high byte of UP and PSP
EOh A
FOh B

Note that this uses only register bank 0. The additional three
register banks from 08h to 1Fh, and the bit-addressable region
from 20h to 2Fh, are of no use to Forth. Using bank 0 leaves

The Computer Journal / #60

the largest contiguous space for the return stack. Later the
return stack can be shrunk, if desired.

The NEXT, ENTER, and EXIT routines aren’t needed in a
subroutine threaded Forth.

What about the top of stack? There are plenty of registers, and
memory operations on the 8051 are expensive. Let’s put TOS
in R3:R2 (with R3 as the high byte, in Intel fashion). Note that
B:A can’t be used -- the A register is the funnel through which
all memory references must move!

Harvard architectures

The 8051 uses a “‘Harvard’’ architecture: program and data are
kept in separate memories. (The Z8 and TMS320 are two other
examples.) The 8051 is a degenerate case: there is physically
no means to write to the program memory! This means that
a Forthwright can do one of two things:

a) cross-compile everything, including the application, and
give up all hope of putting an interactive Forth compiler on the
8051; or

b) cause some or all of the program memory to also appear in
the data space. The easiest way is to make the two spaces
completely overlap, by logically ORing the active-low PSEN*
and RD* strobes with an external AND gate.

The Z8 and TMS320C25 are more civilized; they allow write
access to program memory. The implications for the design of
the Forth kernel will be discussed in subsequent articles.

CASE STUDY 3: THE 780

The Z80 is instructive because it is an extreme example of a
non-orthogonal CPU. It has four different kinds of address
registers! Some operations use A as destination, some any 8-
bit register, some HL, some any 16-bit register, and so on.
Many operations (such as EX DE,HL) are only defined for one
combination of registers.

In a CPU such as the Z80 (or 8086!), the assignment of Forth
functions must be carefully matched to the capabilities of the
CPU registers. Many more tradeoffs need to be evaluated, and
often the only way is to write sample code for a number of
different assignments. Rather than burden this article down
endless permutations of Forth code, I'll present one register
assignment based on many Z80 code experiments. It turns out
that these choices can be rationalized in terms of the general
principles outlined earlier.

1 want a ‘“‘conventional’’ Forth, although I will use direct

threading. All of the ‘‘classical’’ virtual registers will be
needed.

43

Ignoring the alternate register sct, the Z80 has six address
registers, with the following capabilities:

BC,DE - LD A indirect, INC, DEC
also exchange DE/HL

HL - LD r indirect, ALU indirect, INC, DEC, ADD, ADC,
SBC, exchange w/TOS, JP indirect

IX,1Y - LD rindexed, ALU indexed, INC, DEC, ADD, ADC,
SBC, exchange w/TOS, JP indirect (all slow)

SP - PUSH/POP 16-bit, ADD/ADC/SUB to HL/IX/TY

BC, DE, and HL can also be manipulated in 8-bit pieces.

The 8-bit register A must be left as a scratch register, since it’s
the destination for so many ALU and memory reference opera-
tions.

HL is undoubtedly the most versatile register, and at one time
or another it is tempting to use it for each of the Forth virtual
registers. However, because of its versatility -- and because it
is the only register which can be fetched byte-wise and used in
an indirect jump -- HL should be used for W, Forth’s all-
purpose working register.

IX and TY might be considered for the Forth stack pointers,
because of their indexed addressing mode, which can be used
in ALU operations. But there are two problems with this; it
leaves SP without a job; and, IX/IY are too slow! Most of the
operations on either stack involve pushing or popping 16-bit
quantitics. This is one instruction using SP, but it requires four
using IX or IY. One of the Forth stacks should use SP. And
this should be the Parameter Stack, since it is used more
heavily than the Return Stack.

What about Forth’s IP? Mostly, IP fetches from memory and
autoincrements, so there’s no programming advantage (o using
IX/TY over BC/DE. But speed is of the essence with IP, and
BC/DE are faster. Let’s put IP in DE: it has the advantage of
being able to swap with HL, which adds versatility.

A second Z80 register pair (other than W) will be needed for
16-bit arithmetic. Only BC is left, and it can be used for
addressing or for ALU operations with A. But should BC be
a second working register “*X’’, or the top-of-stack? Only code
will tell; for now, let’s optimistically assume that BC=TOS.

This leaves the RSP and UP functions, and the IX and IY
registers unused. IX and IY are equivalent, so let’s assign
IX=RSP, and 1Y=UP.

Thus the Z80 Forth register assignments are:

BC = TOS IX = RSP
DE = IP IY =UP
HL=W SP = PSP

Now look at NEXT for the DTC Forth:

44

DTC-NEXT: LD A(DE) (7) (IP)->W, increment 1P

LD LA 4)
INC DE (6)
LD A,(DE))
LD HA 4
INC DE (6)
JP (HL) (4) jump to address in W

alternate version (same number of clock cycles)
DTC-NEXT: EX DE HL (4) (IP)->W, increment IP

NEXT-HL: LD E,(HL) N
INC HL. ©)
LD D,(HL) @)
INC HL ©)
EX DE,HL 4
JP (HL) (4) jump to address in W

Note that cells are stored low-byte first in memory. Also,
although it might seem advantageous to keep IP in HL,, it really
isn’t. This is because the Z80 can’t JP (DE). The NEXT-HL
entry point will be used shortly.

Just for comparison, let’s look at an ITC NEXT. The pseudo-
code given previously requires another temporary register X,
whose contents can be used for an indirect jump. Let DE=X,
and BC=IP. TOS will have to be kept in memory.

ITC-NEXT: LD A(BC) (7) (IP)->W, increment IP

LD LA (4)

INC BC (6)

LD A,(BC) N

LD HA (4)

INC BC (6)

LD E,(HL) (7) (W)->X

INC HL 6)

LD D,(HL) 7N

EX DE.HL (4) jump to address in X

JP (HL) (4)

This leaves ““W’’ incremented by one, and in the DE register.
As long as this is done consistently, there’s no problem -- code
needing the contents of W knows where to find it, and how
much to adjust it.

The ITC NEXT is 11 instructions, as compared to 7 for DTC.
And ITC on the Z80 loses the ability to keep TOS in a register.
My choice is DTC.

If coded in-line, DTC NEXT would require seven bytes in
every CODE word. A jump to a common NEXT routine would
only use three bytes, but would add 10 clock cycles. This is
another of the tradeoff decisions in designing a Forth kemel,
This example is a close call; let’s opt for speed with an in-line
NEXT. But sometimes NEXT is so huge, or memory is so
tight, that the prudent decision is to use a JMP NEXT.

Now let’s look at the code for ENTER. Using a CALL, the
hardware stack is popped to get the Parameter Field address:

CALL ENTER 17

ENTER: DEC IX (10) push the old IP on the retum stack

The Computer Journal / #60

LD (IX+0),D (19)
DEC IX (10)
LD (IX+0),E (19)
POP DE (10) Parameter Field address -> IP

NEXT (38) assembler macro for 7 instructions

Actually it’s faster to POP HL, and then use the last six
instructions of NEXT (omitting the EX DE,HL):

CALL ENTER a7

ENTER: DEC IX (10) push the old IP on the return stack

LD (IX+0),D (19)
DEC IX (10)
LD (IX+0).E (19)
POP HL (10) Parameter Field address -> HL

NEXT-HL (34) see DTC NEXT code, above

119 cycles total

When a JP is used, the W register (HL) is left pointing to the
Code Field. The Parameter Field is 3 bytes after:

JP ENTER(10)
ENTER: DEC IX (10) push the old IP on the return stack

LD (IX+0),D (19)

DEC IX (10)

LD (IX+0),E (19)

INC HL (6) Parameter Field address -> IP

INC HL (6)

INC HL (6)

NEXT-HL (34

120 cycles total

Again, because of the alternate entry point for NEXT, the new
value for IP doesn’t actually have to be put into the DE register
pair.

The CALL version is one cycle faster. On an embedded Z80,
a one-byte RST instruction could be used to gain speed and
save space. This option is not available on many Z80-based
personal computers.

CASE STUDY 4: THE 8086
The 8086 is another instructive CPU. Rather than go through
the design process, let’s look at one of the newer shareware

Forths for the IBM PC: Pygmy Forth [SER90].

Pygmy is a direct-threaded Forth with the top-of-stack kept in
register. The 8086 register assignments are:

AX=W DI = scratch
BX =TOS SI=1P

CX =scratch BP =RSP
DX =scratch SP = PSP

Most 8086 Forths use the SI register for IP, so that NEXT can
be written with the LODSW instruction. In Pygmy the DTC
NEXT is:

The Computer Journal / #60

NEXT: LODSW

IMP AX
This is short enough to include in-line in every CODE word.

High-level and ““defined’’ Forth words use a IMP (relative) to
their machine code. The ENTER routine (called ‘docol’ in
Pygmy) must therefore get the Parameter Field address from
W:

ENTER: XCHG SP,BP
PUSH 81
XCHG SP,BP
ADD AX,3
MOV SLAX
NEXT

Parameter Field address -> [P

Note the use of XCHG to swap the two stack pointers. This
allows the use of PUSH and POP instructions for both stacks,
which is faster than using indirect access on BP.

EXIT: XCHG SpP,BP

POP 8I
XCHG §P,BP
NEXT

Segment model

Pygmy Forth is a single-segment Forth; all code and data are
contained within a single 64 Kbyte segment. (This is the “‘tiny
mode!l”’ in Turbo C lingo.) All of the Forth standards issued
to date assume that everything is contained in a single memory
space, accessible with the same fetch and store operators.

Nevertheless, IBM PC Forths are beginning to appear that use
multiple segments for up to five different kinds of data
[KEL92,SEY89]. These are:

CODE ...machine code

LIST ...high-level Forth threads (a.k.a. THREADS)
HEAD ...headers of all Forth words

STACK ...parameter and return stacks

DATA ...variables and user-defined data

This allows PC Forths to break the 64K limit, without going
to the expense of implementing a 32-bit Forth on a 16-bit CPU.
Implementation of a multi-segment model, and the ramifica-
tions for the Forth kernel, are beyond the scope of this article.

STILL TO COME...

Subsequent articles will look at:

- design tradeoffs in the Forth header and dictionary search
- the logic of CONSTANTSs, VARIABLESs, and other data
structures

- the defining word mechanisms, CREATE...;CODE and
CREATE.. DOES>

- the assembler vs. metacompiler question- the assembler and
high-level code that comprises a Forth kernel

- multitasking modifications to the kernel

45

REFERENCES

[CUR93a] Curley, Charles, ‘‘Life in the FastForth Lane,”
awaiting publication in Forth Dimensions. Description of a
68000 subroutine-threaded Forth.

[CUR93b] Curley, Charles, “‘Optimizing in a BSR/JSR
. Threaded Forth,”” awaiting publication in Forth Dimensions.
Single-pass code optimization for FastForth, in only five screens
of code! Includes listing.

[KEL92] Kelly, Guy M., “‘Forth Systems Comparisons,’’
Forth Dimensions XIII:6 (Mar/Apr 1992). Also published in
_ the 1991 FORML Conference Proceedings. Both available
from the Forth Interest Group, P.O. Box 2154, Oakland, CA
94621. Illustrates design tradeoffs of many 8086 Forths with
code fragments and benchmarks -- highly recommended!

[KOG82] Kogge, Peter M., ““An Architectural Trail to
Threaded-Code Systems,’” IEEE Computer, vol. 15 no. 3 (Mar
1982). Remains the definitive description of various threading
techniques.

[MOT83] Motorola Inc., 8-Bit Microprocessor and Peripheral
Data, Motorola data book (1983).

[ROD91] Rodriguez, B.J., ““B.Y.O. Assembler,”” Part 1, The
Computer Journal #52 (Sep/Oct 1991). General principles of
writing Forth assemblers.

[ROD92] Rodriguez, B.J., “*B.Y.O. Assembler,”” Part 2, The
Computer Journal #54 (Jan/Feb 1992). A 6809 assembler in
Forth.

[SCO89] Scott, Andrew, ‘‘An Extensible Optimizer for Com-
piling Forth,”” 1989 FORML Conference Proceedings, Forth
Interest Group, P.O. Box 2154, Oakland, CA 94621. Good
description of a 68000 optimizer; no code provided.

[SIG92] Signetics Inc., 830C51-Based 8-Bit Microcontrollers
Signetics data book (1992).

Forth Implementations

[CURS6] Curley, Charles, real-Forth for the 68000, privately
distributed (1986).

[JAM80] James, John S, fig-Forth for the PDP-11, Forth
Interest Group (1980).

[KUN81] Kuntze, Robert E., MVP-Forth for the Apple 11,
Mountain View Press (1981).

[LAX84] Laxen, H. and Perry, M., F83 for the IBM PC,
version 2.1.0 (1984). Distributed by the authors, available
from the Forth Interest Group or GEnie.

[LOES81} Loeliger, R. G., Threaded Interpretive Languages
BYTE Publications (1981), ISBN 0-07-038360-X. May be the
only book ever written on the subject of creating a Forth-like
kernel (the example used is the Z80). Worth it if you can find
a copy.

[MPE92] MicroProcessor Engineering Ltd., MPE Z8/Super8
PowerForth Target, MPE Ltd., 133 Hill Lane, Shirley,
Southampton, SO1 5AF, UK. (Junec 1992). A commercial
product.

[PAY90] Payne, William H., Embedded Controller FORTH
for the 8051 Family, Academic Press (1990), ISBN 0-12-
547570-5. This is a complete *‘kit’’ for a 8051 Forth, includ-
ing a metacompiler for the IBM PC. Hardcopy only; files can
be downloaded from GEnie. Not for the novice!

[SER90] Sergeant, Frank, Pygmy Forth for the IBM PC,
version 1.3 (1990). Distributed by the author, available from
the Forth Interest Group. Version 1.4 is now available on
GEnie, and worth the extra effort to obtain.

[SEY89] Seywerd, H., Elehew, W. R., and Caven, P., LOVE-
83Forth for the IBM PC, version 1.20 (1989). A shareware
Forth using a five-segment model. Contact Seywerd Associ-
ates, 265 Scarboro Cres., Scarborough, Ontario MIM 2J7
Canada.

[TAL80] Talbot, R. J., fig-Forth for the 6809, Forth Interest
Group (1980).

AUTHOR'’S BIOGRAPHY

After twelve years of designing and programming embedded
systems, Brad Rodriguez decided he didn’t know everything,
and went back to school. He is now working full time toward
aPh.D. in Computer Engineering, focusing on real-time appli-
cations of artificial intelligence. He still does a little work “‘on
the side’” as T-Recursive Technology, and can be contacted as
bradford@maccs.dcss. memaster.ca on the Internet, or more
promptly as B.RODRIGUEZ2 on GEnie. The
telecommunicationally disadvantaged can write to him at Box
77, McMaster University, 1280 Main St. West, Hamilton,
Ontario L8S 1C0 Canada.

COMING IN ISSUE #61

Multiprocessing For The Impoverished
by Brad Rodriguez

Part 1. a 6809 Uniprocessor
Brad builds a 6809 single board computer

using junk box parts. Theory and Schematics
provided for your hardware pleasure.

The Computer Journal / #60

The Computer Journal - Micro Cornucopia Kaypro Disks

K-42

PASCAL RUNOFF—GRAPHICS

42-DISK DOC 2k p3c 10¢ 3k DRAN I0C 12k
CRC coM 3k DD-DEMO BQR 1k DRAW PQ8 1lk
CURSBOR COM Sk DDRAN-20 COM 26k ORBIT COM 1Tk
_CURSOR PBQS 2k DDRAW-20 PQ8 5k ORBIT IQC 3k
D cox 3k DDRANZ DQC 8k ORBIT PQB Sk
D-DEMO DAT 3k DDRSUBS2 PQS 16k ORBITHLP IQC 4k
D3A 10¢ 8k DRAW cow 31k usg com 2k
D38 19¢ 10k DRAN pgc 4k

For you 84 Kaypro owners here are the best of the graphics programs
submitted in our Pascal Runoff.

DRAW andDDRAW Both of these programs take full advantage of the
Kaypro's block graphics to edit, rotate, merge, etc. any object you draw
on the screen.

ORBIT This was one of our favorites. Sit back and watch a comet or
planet zip around the screen.

CURSOR Set block or underline, blink or no-blink, and fast or slow blink
rate.

K-43
PASCAL RUNOFF—GAMES

43-DISK DOCe 2k GENERAL TXT+ 1k PLAYING INCe 2k
ALPHABET IQXe 4k GURSSUP INCe 2k QUITS INCe 1k

BREP INCs 1k HELP Imce 1k RANDOM IQXe 5k
c4 coMe 12k INSTRUCT QQQ* 5k SCREENUP INCe 2k
cd PQ8e 5k KAYPRO+ TXT+ 1k SETTEST INCe 1k
CHANWOLI IQCe 1lk LANDER COMe 21k SETUP ImMce 2k
CHOOSCRT INCe 2k LANDER DOCe 2k SWAPSETS IQCe 2k
CLEANUP INCe 1k LANDER IQCe 13k TGAME coM 13k
CLEARBCX INCe 1k LANDER PQBe 3k TCAME Pgs 8k
CRC code 3k LANDER 8COe 1k UPDATE IQCe 2k
CRCKLIST CRCe 2k LANDER TYP* 1k UsQ coMe 2k
DICE COMe 14k MAP COMe 24k VIEWLIST INCe 1k
DICE PQ8e 8k MAP PQ8e 5k WORDLIST DTA» 1k
DOMENU INCe 2k MENU Qe 1k WORDLIST QQQ+ 2k
DRIVERS INCe 1k MODREC o 2k

EDITOR INCe 2k PIAY QQQe 1k

Five games from our Pascal Runoff competition.

K-44

PASCAL RUNOFF—PRINTER UTILITIES
44-DISK DOC 2k ITAIOKI CHR 2k ROMANOKI CER 2k
CRC co 3k LX80 co 12k SYM1OKX CHR 2k
CRCKLIST CRC 2k 1.X80 Q8 5k BYM20KI CHR 2k
FANFOLD COM 15k OKIUP AZM 4k usQ oo 2k
FANTOLD DOC 2k OKIUP cou 1k XPRINT coM 10k
FANFOLD PQ8 13k OKIUTL DQC 19k XPRINT BT 2k
rxio00 coM 12k OKIUTL12 coM 21k XPRINT Q8 5k
X100 PQS 4k OKIUTL12 PQS S5k XPRINTDB COM 12k
QOTHOKI CHR 2k OKU12I1 PRQ8 7 XPRINTDB PQS ik
ITALICS CHR 2k OKU1212 PQS 8k

FANFOLD Print on both sides of the paper with this slick program.
FX100 and LX80 Configure anything that can be configured on these two
Epson printers.

OKIUTL12 In addition to normal printer configuration, OKIUTL allows
you to edit your own custom character set on Okidata 92 and 93 printers.
XPRINT Spreadsheets and wide documents look great printed sideways.
Written for the Epson MX-80 with Graftrax.

XPRINTDB Create and edit fonts for XPRINT. One character set is
included.

K-45

PASCAL RUNOFF—UTILITIES

45-DISK DOC 2k BORTLINE COM 14k D8 pe (o] 9k
CRC oM 3k SORTLINE PAS 6k TDES INC 14k
CRCKLIST CRC 1k BRT DOC Tk TDTRAP INC 2k

The Computer Journal / #60

CYFER coM 12k SR PAS8 14k DU me 3k
CYTER Q8 Tk ™ coM 14k UBQ coMd 2k
NFILELST COM 14k ™ poc 23k
EFILELST DOC 15k ™ PA8 6k
NYILELST PQ8 10k TDR mc Sk

We received a numbet of general utilities as entries in our Turbo Pascal
Runoff. This disk contains four of the best.

K-46

PASCAL RUNOFF—TURBO UTILITIES

46-DISK Doc 2k IMLINE DoC 3k TRUNIC COM 10k
cuDmo cox 11k INLINE PAS 6k TRUNC PAS Sk
CLIDEMO PAS 6k KAYPROSA BOX 2k TRUNS COM 10k
ClOCKB4 BOX 6k BCREEN CoM 17k TRUN3 PAS 4k
e coM 3k BCREEN DOC 4k VIDDEMO COM 9k
CRCKLIST CRC 2k GCREEN PAS 19k VIDDEMO PAS 2k
GRAFIX BOX 4k BETCLOCK CoM Sk VIDEOB4 BOX 4k
caromeo COM 11k TRON DOC 8k

GRIDEMO PAS Sk TRUN28 CoM 10k

INLINE CoM 10k TRUN28 PAS 5k

84TOOLBOX This group of files demonstrates how to control the video
and real time clock capabilities of the 84 series Kaypros.

INLINE creates an inline statement using the PRN file generated by
cither the ZBOMR or ASM assembler.

SCREEN With SCREEN's editor you can fiddle with a menu until it’s
just what you want, then hit ESC and a procedure to print the menu is
created.

TRUN allows execution of chain files (no run time library).

K-47

256K SOFTWARE

47-pIsk Doc 4k KAY256 1BR S8k RAMINIT COM 1k
256KrIX Doc 1k MT256 com 1k RAMINIT 380 1k
cBIOSR DoC 6k B2 coM & UsQ coM 2k
ce1osR EEX 2k R4-10 COM 2k I3BIOBAG DOC Zk
CBIOSR 180 13k RAMDRIVE COM 2k 33BIOSAG 280 24k
e coM 3k RAMDRIVE DoC 1k

CRCKLIST CRC 1k

These programs support the 256K RAM upgrades published in Micro C
issues #30 (for 83 Kaypros) and #34 (for 84 Kaypros).

K-48

C CONTEST WINNERS—I

48-DISK DocC 2k CITIES WRD 1k MOVE € &k
arUzsLE 1k cxc coM 3k MOVEGEN c@ 13k
) C 33k CROKLIST CR¢ 1k SCREEN CQ 10k

BKG coM 38k EVAL cQ 8k usQ coM 2k
BKG DOC 32k IBMUTILS C 5k WORDSRCE C 16k
BKG 3 2k KAYUTILS C 4k WORDSRCH DOC 7k

Our C programming contest attracted a number of games. The two on
this disk (Backgammon and Wordsearch) were among the winners.
Wordsearch comes in source only—Q/C compiler required for
execution.

K-49

C CONTEST WINNERS—II

49~DISK DOC 2k PP coM 2%k PP6 cQ 4k
CRC coM 3k PP DEC 25k PR7 [+ 4k
CRCKLIST CRC 1k ‘PP B 11k PP8 cQ 10k
CTYPE C 1k PPl cQ 13k PPBANNER C 1k
CTYPE H 1k PP2 cQ 13k SETCLK COoM 4k
106 coM 10k pe3 cQ 13k SETCLK cQ &
10G cQ 13k PP4 cQ 9k UsqQ coN 2k
106G DOC 7k PR5 cQ 3k

Two very useful CP/M utilities from our C programming contest reside
on this disk—a C preprocessor and a file time and date stamper.

47

The Computer Journal

Back Issues

Sales limited to supplies in stock.

Issues 1 to 19 are currently QUT
of print. To assist those who want
a full collection of TCJ issues we
are preparing photo-copied sets.
The sets will be {ssue 1 t0 9 and
10 to 19. Each set will be bound
with a plastic protective cover.

The price for bound volumes is
$20 plus shipping . Expect TWO
to THREE weeks for delivery after
payment received at TCJ. Some
single copies available, contact
TCJ before ordering.

Issue Number 20:

- Designing an 8035 SBC

- Using Apple Graphics from CP/M: Turbo
Pascal Controls Apple Graphics

- Soldering & Other Strange Tales

- Build an S-100 Floppy Disk Controller:
WD2797 Controller for CP/M 68K

Issue Number 21:

 Extending Turbo Pascal: Customize with
Procedures & Functions

- Unsoldering: The Arcane Ant

- Analog Data Acquisition & Control:
Connecting Your Computer to the Real
World

+ Programming the 8035 SBC

Issue Number 22:

- NEW-DOS: Write Your Own Operating
System

‘Variability in the BDS C Standard Library

- The SCSt interface: Introductory Column

- Using Turbo Pascal ISAM Files

- The Ampro Little Board Column

, issue Number 23:

- C Column: Flow Control & Program
Structure

- The Z Column: Getting Started with
Directories & User Areas

- The SCSl Interface: Introduction to SCSI

- NEW-DOS: The Console Command
Processor

- Editing the CP/M Operating System

- INDEXER: Turbo Pascal Program to Create
an index

- The Ampro Little Board Column

issue Number 24:

- Selecting & Building a System

- The SCSI Interface: SCS! Command
Protocol

- introduction to Assemble Code for CP/M

- The C Column: Software Text Filters

- Ampro 186 Column: Installing MS-DOS
Software

- The Z-Column

- NEW-DOS: The CCP Internal Commands

- ZTime-1: A Real Time Clock for the Ampro
Z-80 Little Board

Issue Number 26

- Bus Systems: Selecting a System Bus
- Using the SB180 Real Time Clock
- The SCSI Interface: Software for the SCSI
Adapter
- Inside Ampro Computers
NEW-DOS: The CCP Commands
(continued)
- ZSIG Corner
- Affordable C Compilers
- Concurrent Multitasking: A Review of
DoubleDOS

48

Issue Number 27:

68000 TinyGiant. Hawthorne's Low Cost
16-bit SBC and Operating System
- The Art of Source Code Generation:
Disassembling Z-80 Software
- Feedback Control System Analysis: Using
Root Locus Analysis & Feedback Loop

Compensation

- The C Column: A Graphics Primitive
Package

- The Hitachi HD64180: New Life for 8-bit
Systems

- ZSIG Corner: Command Line Generators
and Aliases

- A Tutor Program in Forth: Writing a Forth
Tutor in Forth

- Disk Parameters: Modifying the CP/M Disk
Parameter Block for Foreign Disk Formats

lssue Number 28:

Starting Your Own BBS
- Build an A/D Converter for the Ampro Little
Board
- HD64180: Setting the Wait States & RAM
Refresh using PRT & DMA
- Using SCSI for Real Time Control
- Open Letter to STD Bus Manufacturers
- Patching Turbo Pascal
- Choosing a Language for Machine Control

Issue Number 29:

- Better Software Filter Design

- MDISK: Adding a 1 Meg RAM Disk to
Ampro Littte Board, Part 1

- Using the Hitachi hd64180: Embedded
Processor Design

- 68000: Why use a new OS and the 680007
- Detecting the 8087 Math Chip

- Floppy Disk Track Structure

- The ZCPR3 Corner

Issue Number 30:

- Double Density Floppy Controller

- ZCPR3 IOP for the Ampro Little Board

- 3200 Hackers' Language

- MDISK: Adding a 1 Meg RAM Disk to
Ampro Little Board, Part 2

- Non-Preemptive Multitasking

- Software Timers for the 68000

- Litliput Z-Node

- The ZCPR3 Corner

- The CP/M Corner

Issue Number 31:

- Using SCSI for Generalized I/O

- Communicating with Floppy Disks: Disk
Parameters & their variations

- XBIOS: A Replacement BIOS for the SB180
- K-OS ONE and the SAGE: Demystifying
Operating Systems

- Remote: Designing a Remote System
Program

- The ZCPR3 Corner. ARUNZ Documentation

Issue Number 32:

Language Development. Automatic
Generation of Parsers for Interactive
Systems
- Designing Operating Systems: A ROM
based OS for the Z81
- Advanced CP/M: Boosting Performance
- Systematic Elimination of MS-DOS Files:
Part 1, Deleting Root Directories & an In-
Depth Look at the FCB
- WordStar 4.0 on Generic MS-DOS
Systems: Patching for ASCIl Terminal Based
Systems
- K-OS ONE and the SAGE: System Layout
and Hardware Configuration
- The ZCPR3 Comer. NZCOM and ZCPR34

Issue Number 33:
- Data Fite Conversion: Writing a Filter to
Convert Foreign File Formats

- Advanced CP/M: ZCPR3PLUS & How to
Wirite Self Relocating Code

+ DataBase: The First in a Series on Data
Bases and Information Processing

- 8CSI for the S-100 Bus: Another Example
of SCSI's Versatility

- A Mouse on any Hardware: implementing
the Mouse on a Z80 System

- Systematic Elimination of MS-DOS Files:
Part 2, Subdirectories & Extended DOS
Services

- ZCPR3 Corner. ARUNZ Shells & Patching
WordStar 4.0

Issue Number 34:

- Developing a File Encryption System.

- Database: A continuation of the data base
primer series.

- A Simple Multitasking Executive: Designing
an embedded controlier muititasking
executive.

- ZCPR3. Relocatable code, PRL files,
ZCPR34, and Type 4 programs.

- New Microcontrollers Have Smarts: Chips
with BASIC or Forth in ROM are easy to
program.

- Advanced CP/M: Operating system
extensions to BDOS and BIOS, RSXs for CP/
M22.

- Macintosh Data File Conversion in Turbo
Pascal.

- The Computer Corner

Issue Number 35:

- All This & Modula-2: A Pascal-like
alternative with scope and parameter
passing.

- A Short Course in Source Code
Generation: Disassembling 8088 software to
produce modifiable assem. source code.

- Real Computing: The NS32032.

- 8-100: EPROM Burner project for S-100
hardware hackers.

- Advanced CP/M: An up-to-date DOS, plus
details on file structure and formats.

- REL-Style Assembly Language for CP/M
and Z-System. Part 1. Selecting your
assembler, linker and debugger.

- The Computer Corner

Issue Number 36:

- Information Engineering: Introduction.

- Modula-2: A list of reference books.

- Temperature Measurement & Controt:
Agricultural computer application.

- 2CPR3 Corner: Z-Nodes, Z-Plan, Amstrand
computer, and ZFILE.

- Real Computing: NS32032 hardware for
experimenter, CPUs in series, software
options.

- SPRINT: A review.

- REL-Style Assembly Language for CP/M
& ZSystems, part 2.

- Advanced CP/M:
programming.

+ The Computer Corner

Environmental

Issue Number 37:

- C Pointers, Arrays & Structures Made
Easier: Part 1, Pointers.

- ZCPR3 Corner: Z-Nodes, patching for
NZCOM, ZFILER

- Information Engineering: Basic Concepts:
fields, field definition, client worksheets.

- Shells: Using ZCPR3 named shell
variables to store date variabies.

- Resident Programs: A detailed look at
TSRs & how they ¢an lead to ¢haos.

- Advanced CP/M: Raw and cooked console
0.

- Real Computing: The NS 32000.

- 28D0OS: Anatomy of an Operating System:
Part 1.

- The Computer Corner.

Issue Number 38:

C Math: Handling Dollars and Cents With
C.
- Advanced CP/M: Batch Processing and a
New ZEX.
- C Pointers, Arrays & Structures Made
Easier: Part 2, Arrays.
- The Z-System Corner. Shells and ZEX,
new Z-Node Central, system security under
Z-Systems.
- Information Engineering: The portable
Information Age.
- Computer Aided Publishing: introduction to
publishing and Desk Top Publishing.
- Shells: ZEX and hard disk backups.
- Real Computing: The National
Semiconductor NS320XX.
- Z8SDOS: Anatomy of an Operating System,
Part 2.

Issue Number 39:

- Programming for Performance: Assembly
Language techniques.

- Computer Aided Publishing: The Hewlett
Packard LaserJet.

- The Z-System Corner:
enhancements with NZCOM.

- Generating LaserJet Fonts: A review of
Digi-Fonts.

- Advanced CP/M: Making old programs Z-
System aware.

- C Pointers, Arrays & Structures Made
Easier: Part 3. Structures.

- Shells: Using ARUNZ alias with ZCAL.

- Real Computing: The National
Semiconductor NS320XX.

- The Computer Corner.

System

Issue Number 40:

- Programming the LaserJet: Using the
escape codes.
- Beginning Forth Column: Introduction.
Advanced Forth Column: Variant Records
and Modules.
- LINKPRL: Generating the bit maps for PRL
files from a REL file.
- WordTech's dBXL. Writing your own
custom designed business program.
- Advanced CP/M: ZEX 5.0xThe machine
and the language.
- Programming for Performance: Assembly
language techniques.
- Programming Input/Output With C:
Keyboard and screen functions.
The Z-System Corner. Remote access
systems and BDS C.
Real Computing: The NS320XX
- The Computer Comer,

Issue Number 41:

- Forth Column: ADTs, Object Oriented
Concepts.
- Improving the Ampro LB: Overcoming the
88Mb hard drive limit.

How to add Data Structures in Forth
- Advanced CP/M: CP/M is hacker's haven,
and Z-System Command Scheduler.
- The Z-System Corner. Extended Multiple
Command Line, and aliases.
- Programming disk and printer functions
with C.

LINKPRL: Making RSXes easy.
- SCOPY: Copying a series of unrelated
files.
- The Computer Corner.

Issue Number 42:

- Dynamic Memory Allocation: Allocating
memory at runtime with examples in Forth.

- Using BYE with NZCOM.

- C and the MS-DOS Screen Character
Attributes.

The Computer Journal / #60

- Forth Column: Lists and object oriented
Forth.

- The Z-System Corner. Genie, BDS Z and
Z-System Fundamentals.

- 68705 Embedded Controller Application:
An example of a single-chip microcontroller
application.

- Advanced CP/M: PluPerfect Writer and
using BDS C with REL files.

- Real Computing: The NS 32000,

- The Computer Corner

Issue Number 43:

- Standardize Your Floppy Disk Drives.
- A New History Shell for ZSystem.
- Heath’s HDOS, Then and Now.
- The ZSystem Corner: Software update
service, and customizing NZCOM.
- Graphics Programming With C: Graphics
routines for the IBM PC, and the Turbo C
graphics library.
- Lazy Evaluation: End the evaluation as
soon as the result is known.
- $-100: There's still life in the old bus.
- Advanced CP/M: Passing parameters, and
complex error recovery.
- Real Computing: The NS32000.

The Computer Corner.

Issue Number 44:

- Animation with Turbo C Part 1: The Basic
Tools.

+ Muttitasking in Forth: New Micros F68FC11
and Max Forth.

- Mysteries of PC Floppy Disks Revealed:
FM, MFM, and the twisted cable.

- DosDisk: MS-DOS disk format emulator for
CP/M.

- Advanced CP/M: ZMATE and using lookup
and dispatch for passing parameters.

- Real Computing: The NS32000.

- Forth Column: Handling Strings.

- 2-System Comer. MEX and telecommuni-
cations.

+ The Computer Corner

Issue Number 45:

The Computer Journal Back Issues

- Animation with Turbo C: Text in the
graphics mode.

- 780 Communications Gateway:
Prototyping, Counter/Timers, and using the
Z80 CTC.

Issue Number 47:

- Controlling Stepper Motors with the
68HC11F

- Z-System Corner. ZMATE Macro Language
- Using 8031 Interrupts

 T-1: What it is & Why You Need to Know

- 2CPR3 & Modula, Too

- Tips on Using LCDs: Inteffacing to the
B8HC705

- Real Computing: Debugging, NS32 Multi-
tasking & Distributed Systems

- Long Distance Printer Driver: correction

- ROBO-S0G 90

- The Computer Comner

Issue Number 48:

- Fast Math Using Logarithms

- Forth and Forth Assembler

- Modula-2 and the TCAP

- Adding a Bernoulli Drive to a CP/M
Computer (Building a SCS! interface)

- Review of BDS 2"

- PMATE/ZMATE Macros, Pt. 1

- Real Computing

- Z-System Corner: Patching MEX-Pius and
TheWord, Using ZEX

- Z-Best Software

- The Computer Corner

Issue Number 49:

- Computer Network Power Protection

- Floppy Disk Alignment w/RTXEB, Pt. 1

- Motor Control with the F68HC11

- Controlling Home Heating & Lighting, Pt. 1
- Getting Started in Assembly Language

- LAN Basics

- PMATE/ZMATE Macros, Pt. 2

- Real Computing

- Embedded Systems for the Tenderfoot: * Z-System Cotner
Getting started with the 8031. - Z-Best Software
- The Z-System Comer: Using scripts with - The Computer Corner
MEX. Issue Number 50:

- The Z-System and Turbo Pascal: Patching
TURBO.COM to access the Z-System.

- Embedded Applications: Designing a Z80
RS-232 communications gateway, part 1.

- Advanced CP/M. String searches and
tuning Jetfind.

- Animation with Turbo C: Part 2, screen
interactions.

- Real Computing: The NS32000.

- The Computer Comer.

issue Number 46:

- Build a Long Distance Printer Driver.

Using the 8031's built-in UART for serial
communications.
- Foundational Modules in Modula 2.
- The Z-System Corner. Patching The Word
Plus spell checker, and the ZMATE macro
text editor.

- Offload a System CPU with the Z181

- Floppy Disk Alignment w/RTXEB, Pt. 2

- Motor Control with the F68HC11

- Modula-2 and the Command Line

- Controlling Home Heating & Lighting, Pt. 2
- Getting Started in Assembly Language Pt 2
- Local Area Networks

- Using the ZCPR3 IOP

- PMATE/ZMATE Macros, Pt. 3

- Z-System Corner, PCED

- 2-Best Software

- Real Computing, 32FX16, Caches

- The Computer Corner

Issue Number 51:

- Introducing the YASBEC
- Floppy Disk Alignment w/RTXEB, Pt 3
- High Speed Modems on Eight Bit Systems

+ A Z8 Talker and Host

- Local Area Networks--Ethernet

- UNIX Connectivity on the Cheap

- PC Hard Disk Partition Table

- A Short Introduction to Forth

- Stepped Inference as a Technique for
intelligent Real-Time Embedded Control

- Real Computing, the 32CG160, Swordfish,
DOS Command Processor

- PMATE/ZMATE Macros

- Z-System Corner, The Trenton Festival

- Z-Best Software, the Z3HELP System

- The Computer Corner

Issue Number 52

- YASBEC, The Hardware

- An Arbitrary Waveform Generator, Pt. 1

- B.Y.O. Assembiler...in Forth

- Getting Started in Assembly Language, Pt. 3
* The NZCOM IOP

- Servos and the F68HC11

- Z-System Corner, Programming for
Compatibility

- Z-Best Software

- Real Computing, X10 Revisited

- PMATE/ZZMATE Macros

- Controlling Home Heating & Lighting, Pt. 3

- The CPU280, A High Performance Single-
Board Computer

- The Computer Corner

Issue Number 53:
- The CPU280
- Local Area Networks
- Am Arbitrary Waveform Generator
- Real Computing
- Zed Fest'91
- Z-System Comer
- Getting Started in Assembly Language
- The NZCOM 10P
- Z-BEST Software
- The Computer Corner

Issue Number 54:

» Z-System Corner

- B.Y.O. Assembler

- Local Area Networks

- Advanced CP/M

- ZCPR on a 16-Bit Intel Platform

- Real Computing

- Interrupts and the 280

- 8 MHZ on a Ampro

- Hardware Heavenn

- What Zilog never told you about the Super8
- An Arbitary Waveform Generator
- The Development of TDOS

- The Computer Corner

Issue Number 55:
- Fuzzilogy 101

- The Cyclic Redundancy Check in Forth

- The internetwork Protocol ({P)

- Z-System Corner

- Hardware Heaven

- Real Computing

- Remapping Disk Drives through the Virtual

BIOS

- The Bumbling Mathmatician
- YASMEM

- Z-BEST Software

- The Computer Corner

Issue Number 56:

- TCJ - The Next Ten Years

- Input Expansion for 8031

- Connecting IDE Drives to 8-Bit Systems
- Real Computing

- 8 Queens in Forth

- Z-System Corner

- Kaypro-84 Direct File Transfers

- Analog Signal Generation

+ The Computer Corner

Issue Number 57:

- Home Automation with X10
- File Transfer Protocols
- MDISK at 8 MHZ.

- Real Computing

- Shell Sort in Forth

- Z-System Corner

- Introduction to Forth

- DR. 8-100

- Z AT Last!

- The Computer Corner

Issue Number 58:

- Multitasking Forth

- Computing Timer Values

- Affordable Development Tools
- Real Computing

- Z-System Corner

* Mr. Kaypro

-DR. S-100

- The Computer Corner

Issue Number §9:

* Moving Forth

- Center Fold IMSAI MPU-A

- Developing Forth Applications
- Real Computing

- Z-System Corner

- Mr. Kaypro Review

-DR. 8100

- The Computer Corner

SPECIAL DISCOUNT

15% on cost of Back Issues
when buying from 1 to Current
Issue.

10% on cost of Back Issues
when buying 20 or more
issues.

Maximum Cost for shipping is
$25.00 for U.S.A. and $45.00
for all other Countries.

4 U.s.

Subscriptions (CA not taxable)
1year (6 issues)

2 years (12 issues)
Back Issues (CA tax)

Canada/Mexico
(Surface) (Air)

Europe/Other
(Surface) (Air)
$24.00 $32.00 $3400 $34.00
$4400 $60.00 $64.00 $64.00 $84.00
add these shipping costs for each issue ordered

Software Disks (CA tax) add these shipping costs for groups of 3 disks ordered

Name:

$44.00 Address:

- - exp__ /

Bound Volumes $20.00 ea +$3.00 +$350 +$650 +$4.00 +$17.00
#20 thru #43 are $3.00ea. +$1.00 +$1.00 +$1.25 +$1.50 +$2.50
#4dandup are $4.00ea. +$1.25 +$1.25 +$1.75 +$200 +§3.50 CreditCard # ¥

Payment is accepted by check, money order, or Credit Card.
Checks must be in US funds, drawn on a US bank. Credit Card

MicroC Disks are $6.00ea +$1.00 +$1.00 +8$1.25 +$1.50 +$250 , ders can call 1(800) 424-8825.
ltems: Back Issues Total
MicroG Disks Tota] Cj_theﬁomputeuaumal
California state Residents add 7.25% Sales TAX .
Subscription Total P.O. BO):’f]isr;eL(lg‘fg)l2’4(5:369750648-0535
k Total Enclosed

The Computer Journal / #60

49

The Computer Journal - Micro Cornucopia Kaypro Disks

K1
MODEM PROGRAMS

K2
CP/M UTILITIES

-K3
GAMES

K4
ADVENTURE

K5

'MX80/GEM 10X GRAPHICS

K6
TEXT UTILITIES

K7
SMALL C VER 2

K8
SOURCE OF SMALL C

K9
GENERAL UTILITIES

K10
Z80 AND LINKING ASSEM

K11
CHECKBOOK PROGRAM &

K12
'KAYPRO FORTH

K13
SOURCE OF FIG-FORTH

K14
SMARTMODEM PROGRAMS

K15
HARD DISK UTILITIES

K16
PASCAL COMPILER

K17
Z80 TOOLS

K18
SYSTEM DIAGNOSTICS

K19
PROWRITER GRAPHICS

K20
MICROSHERE’S COLOR
GRAPHICS BOARD

K21
SBASIC & SCREEN DUMP

K22
ZCPR

K23
FAST TERMINAL &
RCPM UTILITIES

K24
KEYBOARD TRANSLATOR &
MBASIC GAMES

K25
Z80 MACRO ASSEMBLER

K26
EPROM PROGRAMMER/TOOLS

K27
TYPING TUTORIAL

K28
MODEM 730 SOURCE

K29
TURBO PASCAL GAMES 1

K30
TURBO PASCAL GAMES II

K31
TURBO BULLETIN BOARD

K32
FORTH-83

K33
UTILITIES

K34
GAMES

K35
SMALL C VER 2.1

K36
SMALL C LIBRARY

K37
UTILITIES PRIMER

K38
PASCAL RUNOFF WINNERS
FIRST - THIRD

K39
PASCAL RUNOFF WINNERS
FORTH & FIFTH

K40
PASCAL RUNOFF WINNERS
SIXTH PLACE

K41
EXPRESS 1.01 TEXT EDIT

K42
PASCAL RUNOFF-GRAPHICS

K43
PASCAL RUNOFF-GAMES

K44
PASCAL RUNOFF-PRINTERS

K45
PASCAL RUNOFF-UTILITIES

K46
PASCAL RUNOFF-TURBO UTILS

K47
256K RAM SOFTWARE

K48
C CONTEST WINNERS 1

K49
C CONTEST WINNERS II

TCI_IheCampumL.laumal

P.O. Box 535, Lincoin, CA 95648-0535
Phone (916) 645-1670

Shipping Cost to

Added these costs

Micro C Disks are $6.00 each plus shipping costs.

Canada/Mexico Europe/Other
Surface Air Surface Air
$1.00 $1.25 $1.50 $2.50

Shipping costs are for GROUPS of 1 to 3 disks.

The Computer Journal / #60

Computer Corner

By Bill Kibler

.,R:egulf' rFeature

- Ediﬁtdriél_ Com_m_e:nt o

For this 60th issue, or Tenth Year spe-
cial, I thought it would be appropriate to
respond to several letters with one spe-
cial Corner. Since taking over TCJ the
most common request of new readers is
what and where to find books on CP/M.

That idea prompted me to check my
book shelves for CP/M books. Well I
found more than just CP/M books and
decided that my review should help all
readers by commenting on some of my
favorite books. The problem is availabil-
ity, many are out of print. So to find
some of these gems, you will need to
search out swap meets or old book sales.
In fact a few of these were found at swap
meets for very little as well.

CP/M BOOKS

My recent purchase of a Kaypro for $50
included a full set of CP/M user manu-
als. They looked like new and contained
most of the information a user needs.
Since these were actually books by Digi-
tal Research Inc., any vendor of CP/M
produced the same manuals with their
own cover. So if you are looking for
simple operational instructions, you usu-
ally can find a set or two at any computer
swap meet that has old systems for sale
(PC clone computer sales seldom have
CP/M products or information - after all
CP/M was in use before many of these
people were born...).

For programming I found ‘‘The
Programmer’s CP/M Handbook’” by
Andy Johnson-Laird to be the best. This
was an Osborne/McGraw-Hill publica-
tion (ISBN 0-88134-103-7) that I paid
$21.95 for new in 1983. The best part of
this book is the fact that it is written for
people trying to put together their own
system. It contains a sample BIOS and

The Computer Journal / #60

assembly code for writing to the BDOS.
There is plenty of trouble shooting and
system configuration help which should
get first time hackers through that initial
system port.

For those interested in the insides of CP/
M or ““how it really works’’, I suggest
RP/M by Jack Denton of Oregon. This is
a complete CP/M replacement that comes
with source code. That is right, complete
source of the entire system. Availability
is in question at present, but since Jack
is still a reader of The Computer Jour-
nal, 1 will be contacting him about get-
ting it for our readers.

S-100 and Hardware

To be able to do hardware hacking on S-
100 systems, requires some fundamental
digital understanding. If you find your
basic electronic skills a bit lacking you
might look at *‘Electricity and Electron-
ics”” by Howard H. Gerrish and William
E. Dugger from The Goodheart-Willcox
Company (ISBN 0-87006-685-4). My
college used scveral other books for our
Introduction to Electronic course and fi-
nally settled on this one. It is fairly
modern and gives a good overview of the
electronic field. This is by no means a
complete study but will get you started in
the right direction. You might try your
local Junior College book store, but be
prepared for a $40 price tag.

For a cheaper introduction you might try
the Sams Understanding Series and their
“Understanding Electricity and Elec-
tronic Principles”’. These are by Train-
ing and Retraining Inc., a group that
produces manuals for industrial train-
ing. This is Sams #27601 or ISBN 0-
672-27061-7 and usually go for $18.
There is a whole series of these introduc-

tion books, and in fact I like there Data
Communications book for use as a desk
reference. It contains many of the inter-
face pinouts and standards described in
a brief concise manner.

For those starting to get into S-100 you
will need ‘“The S-100 BUS Handbook™’
by Dave Bursky that was published by
Hayden Book Company (ISBN 0-8104-
0897-X). It cost $13 in 1980 and con-
tains schematics of IMSAI power sup-
ply, CPU board, Front Panel logic,
PROM board, UCRI, MIO, IFM, PIC-8.
Also included are many Pertec boards,
CPU, Front panel, memory, 2510, 4PIO,
Disk Controller, AD/DA, and Process
control interface. The book has more
than schematics, there is a good intro to
logic fundamentals, some review of cir-
cuits, interfaces, and programming con-
cepts. This is a must have book for first
time S-100 people. It should also be very
hard to find, as most user will not give
it up if still alive.

One intro book I believe still in print is
the ‘“Basic Microprocessors and the
6800’ by Ron Bishop. For those who
have little knowledge of how CPU’s
work, this book will answer it all. It uses
the 6800 family of devices to explain
how microprocessors talk and do their
“stuff>’. It often has the Motorola name
on it and can be found in their library
(ISBN 0-8104-0758-2) or at any swap
meet worth going to.

For interfacing to S-100 or any real sys-
tem the best book is *‘Interfacing to S-
100/IEEE 696 Microcomputers’” by Sol
Libes and Mark Garetz. This was still
being published by M&T press, but when
I called two months ago they said they
no longer are stocking it. Originally it
was an Osborne/McGraw-Hill book and

51

like the S-100 handbook most readers
will hang on to this to the very end. It is
worth whatever you have to pay to get
one, but I am afraid it will only be found
in libraries and estate sales.

Speciality Hardware

A book I found last year by Sybex is
““Mastering Digital Device Control’” by
William G. Houghton. This $24.95
(ISBN 0-89588-346-5) book has plenty
of examples and code for those interfac-
ing 8048, 8051, or 6805 systems. There
is a section on every type of interface
problem you will encounter in designing
and programming embedded systems.
You will need to have at least a good
understanding of how computer compo-
nents work and fit together before read-
ing this book, else some of the concepts
may be a little hard to follow.

The old standby for getting fundamental
logic information is the series of books
by Don Lancaster. His series of work is
still valid and covers TTL devices, CRT/
TV typewriters, CMOS, RTL, Filters
Design and most titles are appended with
“COOKBOOK’’. Whichever one you
get, you can expect a good book that
covers the topic in detail and provides
many sample schematics and pinouts.

FORTH

If your using any of the current Forth
products, books by C.H. Ting are a must.
He personally sells his books through
Offete Enterprises, Inc. at 1306 South
“B’" Street, San Mateo, CA 94402 (415-
574-8260). He has all the FPC manuals,
as well as F83, Novix, and many more.
Give him a call.

Also with a good set of publications is
the Forth Interest Group listed on the
inside cover of this issue. Every issue of
their magazine/newsletter (called Forth
Dimensions) has a listing of the current
popular books and journals available
from them on Forth. Joining FIG is a
must do for any Forth programmer (tell
them TCJ sent you.)

Another place with several books and a

version of Forth popular for several years
(and has no know bugs) is Mountain

52

View Press. It just changed hands (back
to the starter of MVP, Glen Haydon, and
writer of some good books on the subject
as well) and as such runs as a Division
of Epsilon Lyra Inc. 19500 Skyline Blvd.,
Box 429, Route 2, La Honda, CA 94020,
(415) 747-0760. Give Glen a call and he
will send you his latest list of publica-
tions.

The best book on Forth is ‘“Thinking
Forth” by Leo Brodie who wrote the
standard introduction ‘*Starting Forth™’.
This follow on book is not just on Forth
but on programming in general. There
are some really great topics presented in
such a way that any programmer can see
the advantages of changing the way they
currently produce programs. Factoring
is where you pull out sections of code
that occur as small bits in many parts of
your program. When factored properly,
programs get smaller, faster and easier
to maintain. Those concepts are all cov-
ered in this book (ISBN 0-13-917568-
7). I recommend this book strongly.

For an inside look at Forth try **Threaded
Interpretive Languages’” by R.G.
Loeliger (ISBN 0-07-038360-X). This
book is available through FIG and cov-
ers a non-standard Z80 based forth sys-
tem in assembly.

68000

For those working on 68000 systems I
found a good book on doing assembly
language that needs to be mentioned.
The book is ‘68000 Assembly Language
Programming’’ by Gerry Kane, Doug
Hawkins, and Lance Leventhal. What I
like about this book is their complete-
ness on the subject. They explain how to
do assembly, tips and hints, tricks, and
what it is you are doing to begin with. A
good beginners book that has samples
and covers the support chips as well. It
is by McGraw-Hill as ISBN 0-07-
931062-1 and I have the first printing in
1981, but I believe there is a more cur-
rent printing available.

FUN!
Lastly are three books of interest and fun

thinking. By fun thinking I mean a book
that tickles the brain into doing things

differently. I attended a meeting many
years ago in which the guest speaker was
Roger von Oech. It was fun and great for
getting you going into many new direc-
tions. His books **A whack on the side
of the Head™’ and *‘ A Kick in the Seat of
the Pants’’ are just great. He says ‘“The
human body has two ends on it: one to
create with and one to sit on. Sometimes
people get their ends reversed.”” These
are must read books if you do anything
creative at all.

My last book has a personal aspect to it.
My old high school buddy is Joseph
Killian, who if you remember your
IMSAI history designed the first IMSAI
8080 systems. I worked with Joe for
awhile at MicroPro (the WordStar
people) when they were building the
MBP 1000 (I drew the schematics and
supported the designer.) While there 1
learned that Joe was suing Bill Millard
the starter of IMSAI and owner of
Computerland for stock in
Computerland. Seems Millard gave Joe
interest in IMSAI as payment for his
work in making the original IMSAI. But
what happened was that Millard then
started Computerland as the suit says
and wasted IMSAT and made the stock
worthless in the process.

Last month I saw the book ‘‘Once Upon
A time In Computerland’’ by Johanthan
Littman (ISBN 0-671-69392-1), it was a
$14.95 paperback on sale for $2.88. It
had Joe’s picture in it as well as telling
the story of the court cases involved. So
I picked it up to find out what happened
to my friend. The surprise was the qual-
ity of the book. It reads like a best selling
““who done it”’, only you have to remind
yourself regularly that these are true sto-
ries based on court records and deposi-
tions. If you have ever wondered what
went on in those early days of comput-
ing, here it is. In fact it is still going on
as of 1990 when all sides were going to
appeal the court results. It is great read-
ing and a must for anybody who wants
to know about EST and Computerland.

That’s All..
Well those are my selections on books,

how about yours? Till next time.. . Bill.

The Computer Journal / #60

) TC ’ The Computer Journal

Discover Advent Kaypro Upgrades 4 LA MARKET PLA,CE)
The Z-Letter TurboROM. Allows flexible Advertising for small busin ™
The Z-letter is the only monthly configuration of your entire R:inse:tsiz,r,;wn' $35
publication for CP/M and Z-System. system, read/write additional
Eagle computers and Spellbinder support. formats and more, only $35. Rates include typesetting.
Licensed CP/M distributor. Personality Decoder Boards Payment must accompany order.
Run more than two drives when VISA, MasterCard, Discover,
Subscriptions: $18 US, $22 Canada and using TurboROM, $25. Diner's Club, Carte Blanche,
|| Mexico. $36 Overseas. Write or call for Hard Drive Conversion Kits. Call JCB, EuroCard accepted.
> . A - Checks, money orders must be
free sample. or write for availability & pricing. US funds. Resetting of ad
The Z-Letter consitutes a new advertisement
Lambda Software Publishing Call (916)483-0312 at fihrﬂstltin;e insertiton rates.
- eves, weekends or write ail ad or contact ,
149 West Hilliard Lane Chuck Stafford The Computer Journal
Eugene, OR 97404-3057 4000 Norri P.O. Box 535
orris Ave. .
(503) 688-3563 Sacramento, CA 95821 \ Lincoln, CA 96648-0635

| CP/M SOFTWARE 8 BITS and Change

CLOSING OUT SALE!

and handling. New Digital Research CP/M 2.2 manual, $19.95 All 12 Back Issues

plus $3.00 shipping and handling. Also, MS/PC-DOS Soft-

' l ware. Disk Copying, including AMSTRAD. Send self addressed, for only $40
|

100 page Public Domain Catalog, $8.50 plus $1.50 shipping
stamped envelope for free Flyer, Catalog $1.00
Send check to

Elliam Associates Lee Bradley

Box 2664 24 East Cedar Street

Atascadero, CA 93423 Newington, CT 06111
(203) 666-3139 voi

805-466-8440 (203) 665-1100 m:d(::n

. _ New from '
S-100/1€€€E-696 M&T Books! Zio.SEIDtUiE?S
Clock S s to 10 MHz

Forth: 1 Mbyte On-board Memory

increase your system performance and reliability
The New M()del while reducing your costs by replacing three of the
Ar 4

Compupro
Cromemco

IMSAI
and more!

SN R BB RO

Cards+Docs - Systems

roprsmnu's Husdhak existing cards in your system with one
Superintegrated Z80 Card from Zwick Systems.

A Superintegrated Card in your system protects your
software investment, requiting only minor changes to
your mature Z80 code. You can increase your

processing performance by up to 300 percent in a
matter of days!
Approximatly 35 percent of each Superintegrated
Jack Woehs Card has been reserved for custom /O functions
) of -Ioo including A/D, D/A, Industrial VO, Parallel Ports, Serial
L '] Ports, Fax and Data Modems or almost any other
form of 1/O that you are currently using.
" 1-55851-277-2 Call or Fax today for complete information on this
Herb JOhnson, exciting new line of Superintegrated Cards and
CN 525 6 #-I 05 upgrade your system the easy way!
. .
. Available at bookstores
Princeton, NJ 08543 = everywhere ZWICK SYSTEMS INC.
Technical Books for Tel (613) 726-1377, Fax (613) 726-1902

(609) 588‘53] 6 Technical Times or call 1-800-688-3987

RGJ3

