JanuarylFebruary 1995

Computing Hero of 1994

Small System Support
Power Supply Basics
Mr. Kaypro
Real Computing
Support Groilps
Dr. S-100 "
Moving Forth Part 7
Centerfold - Hayes 80-103A |

The Computer Corner

ICJ - For Having Fun With Any Computer!

, ftpkeral Technology
_ Specials
Motherboard w/ CPU $119.00

‘Made in USA - 3YR warranty -

$309.00
$24.95

$159.00
$99.00

or WEN .28mm 1024x768 $229.00

‘Catalog on Request

nd $7.00 on most items. Tower &

00. |

edmont Rd. 404/973-2156

MHZ IBM, VESA,CPU,Math$219.00|

00/16MHZ /w 1MB $249.00|

SMHZ CPU $399.00|
Includes C Compiler $299.00

$215.00|

$49.95|

- Hitachi 6301 Motorola 6809

Cross-Assemblers .siowas s
Simulators . iowessiwen
Cross-Disassemblers «owe 100w
Developer Packages

as low as $200.00(a $50.00 Savings

A New Project i
Our line of macro Cross-assemblers are easy to use and full featured,

including conditional assembly and unlimited inciude files.

Get It To Market--FAST
Don't wait until the hardware is finished to debug your software. Our
Simulators can test your program logic before the hardware is built. . -~ -

No Source!

Aminor giitch has shown up in the firmware, and you can't find tho'o}igind B

source program. Our line of disassembiers can help you re-create the
original assembly language source.

Set To Go

Buy our developer package and the next time your boss says "Get to work.”,
yoz"ll be roadypfgr gra\ytm%g. you ye

Quality Solutions i

PseudoCorp has been providing quality solutions for microprocessor -
problems s:enoe 19885, P 8 quallty opr

BROAD RANGE OF SUPPORT : -

e Currently we support the following microprocessor families (wit
- .more in development):
Intel 8048 RCA 1802,05 Intel 8051 intel 8096
Motorola 6800 Motorola 6801 lotorola 68HC1 1 env%rola 6805 -
MOS Tech 6502 65C02

Rockweil 65C02 intel 8080 og 280 - NSC %
Hitachi HD64180 Motorola 8 Motorola 68010 intel 196
e All products require an IBM PC or compatible.

So What Are You Waiting For? Call us:
PseudoCorp
Professional Development Products Group
921 Country Club Road, Suite 200
Eugene, OR 97401
(503) 683-9173 FAX: (503) 683-9186 BBS: (503) 683-9076

=

Y

GA 30062 FAX: 404/973-2170

ith s to discover the shortest path between
g problems and efficient solutions.

programming language is a model of simplicity:
offeracompletedevelopment systeminterms
or,andassembier, aswellasaninterpretivemode
iging, profiling, and tracing.

language, Forth lets you build new control-flow
other compiler-oriented extensions that closed

s is the magazine to help you along this |
ofthebenefits you receive asamemberofthe
Interest Group (FIG). Local chapters, the
dTable, andannual FORML conferencesare
byFIG. Toreceivea mail-order catalog of Forth
disks, call 510-89-FORTH or write to:
st Group, P.0..Box 2154, Oakland, CA 94621.
s begin at $40 for the U.S.A. and Canada.
s begin at $18 (with valid student LD.).

bf General Elgctfric.

SAGE MICROSYSTEMS EAST

Selling and Supporting the Best in 8-Bit Software

Z3PLUS or NZCOM (now only $20 each)
ZSDOS/ZDDOS date stamping BDOS ($30)

ZCPR34 source code ($15)
BackGrounder-ii ($20)
ZMATE text editor ($20)
BDS C for Z-system (only $30)
DSD: Dynamic Screen Debugger ($50)
4DOS "zsystem" for MSDOS ($65)
ZMAC macro-assembler ($45 with printed manual)

~ Kaypro DSDD and MSDOS 360K FORMATS ONLY

Order by phone, mail, or modem and use
Check, VISA, or MasterCard. Please include
$3.00 Shipping and Handling for each order.

Sage Microsystems East
1435 Centre Street

Newton Centre MA 02159-2469
(617) 965-3552 (voice 7PM to 11PM)
(617) 965-7259 BBS

The Computer Journal

Founder
Art Carison

Editor/Publisher
Bill D. Kibler

Technical Consultant
Chris McEwen

Contributing Editors
Herb Johnson
Charles Stafford
Brad Rodriguez
Ronald W. Anderson
Helmut Jungkunz
Ron Mitchell
Dave Baldwin
Frank Sergeant
JW Weaver
Richard Rodman
Jay Sage
Tilmann Reh

The Computer Journal is pub-
lished six times a year and mailed
from The Computer Journal, P. O.
Box 535, Lincoln, CA 95648, (916)
645-1670.

Opinions expressed in The Com-
puter Journal are those of the re-
spective authors and do not neces-
sarily reflect those of the editorial
staff or publisher.

Entire contents copyright © 1995
by The Computer Journal and re-
spective authors. All rights reserved.
Reproduction in any form prohibited
without express written permission of
the publisher.

Subscription rates within the
US: $24 one year (6 issues), $44
two years (12 issues). Send sub-
scription, renewals, address
changes, or advertising inquires to:
The Computer Journal, P.O. Box
535, Lincoln,CA 95648.

Registered Trademarks

It is easy to get in the habit of using company
trademarks as generic terms, but these trademarks are
the proper!y of the respectlvs companies. It is important

these ks as their property to
avond their Iosmg the rights and the term becoming pub-
lic property. The following frequently used trademarks
are acknowledged, and we apologize for any we have
overiooked.

Apple II, I+, lic, lle, Lisa, Macintosh, ProDos;
Apple Computer Company. CP/M, DDT, ASM, STAT,
PiP; Digital Research. DateStamper, BackGrounder ii,
Dos Disk; Plu*Perfect Systems. Clipper, Nantucket,
Nantucket, Inc. dBase, dBASE I, dBASE |ll, dBASE |li
Plus, dBASE IV, Ashton-Tate, Inc. MBASIC, MS-DOS,
Windows, Word; MicroSoft. WordStar; MicroPro inter-
national. IBM-PC, XT, and AT, PC-DOS; IBM Corpora-
tion. Z80, Z280; Zilog Corporation. Turbo Pascal, Turbo
C, Paradox; Borland International. HD64180; Hitachi
America, Ltd. SB180; Micromint, Inc.

Where these and other terms are used in The
Computer Journal, they are acknowledged to be the
property of the respective companies even if not specifi-
cally acknowledged in each occurrence.

T

The Computer Journal
Issue Number 71 January/February 1995

Editor's Commentsccceeceeeeciimiiniineireeirenenees ceeneren 2

Reader to Reader.....c.cccoirreecciremcrineeineeeiirnnnes S
Letters and mini articles.

Computing Heroof 1994ccccccauennnnnee. —

Our Un-sung Hero gets his due honors!

Real Computingcccieveinrinenmennnnnrsssssssennns . V.
What is TCP/IP addressing. By Rick Rodman.

Power Supply Basicscccccceerriiiiiiiccccnennnnnnnninisisne. 14
A beginners guide to power supplies. By Ken Smyth WAGHDZ.

Mr. Kaypro.....cocvccveermeniininnnnnsnnn, —
ROM options for the metal monster. By Charles Stafford.

Small System Supportcoovvicrnriiienen. cererneens 20
6809 assembly language tutorial. By Ronald W. Anderson.

Center Fold ... e corrrrsnnnnnes 25
Hayes 80-103A Data Communications Adapter.

Connecting IDE Drives..........ccovvvmmrrnreenisniinnninans venense 29

Generic IDE interface preview. By Timann Reh.

Dr. S-100.....cciiiieeeiiceeieceeecsssssnnnssssanesesesisnsannes veerenne 30
Generic IDE and Compupro 85/86. By Herb R. Johnson.

8048 Emulator........... reeeressrnnranes . .

A homebuilt emulator. By J. G. Owens.

DIVMOD and Kaypro Keyboard S 1
Two short articles By Walter Rottenkolber.

Moving Forth.......ccocoveiiiiiiiicccceinniieccinaes S
Part 7: 8051 kernel. By Brad Rodriguez.

Support Groups for the Classicsc..eeeninieneen. 45

Forth Day and support groups directory.

The Computer COrnerccccceecinicrnnsnenennmmnernimnesnes 50
By Bill Kibler.

EDITOR'S COMMENTS

Welcome to 1995 and the 20Th anniver-
sary of the Altair computer. We have a
special award to present in this issue to
a deserving person. There ar¢ many
‘Heroes” of the computer revolution,
most of which have been ignored. They
have spent many tireless nights fixing,
creating, and enhancing tools, games,
and programs that have spawned whole
industries of their own.

At TCJ we want to make sure that some
of those names that helped start the revo-
lution, are at least recognized by us for
what they started. In this issue you will
find, just after the ever popular Reader
to Reader section, our first “Computer
Hero Award”. As you will read, this
person credentials shows how orne per-
sons efforts can launch something that
becomes many times larger than their
original work. The question is, would it
have been so good without them? I doubt
it!

With our honors past us, we stop next at
Rick Rodman's Real Computing section
- for an update on TCP/IP addressing and
more. His last few words conclude at the
end of the next article, which is a review
by Ken Smyth on power supply funda-
mentals. You beginning hackers need to
read Ken’s work, as he fills you in on
what keeps those systems running.

Mr. Kaypro or Chuck Stafford follows
with a review and detailed accounting of
the ROM options and more, available to
enhance your Kaypro. If plain old as-
sembly language programming is where
you need help, Ron Anderson continues
his 6809 assembly “course.” If your new
to assembly this is a must read, even if
your CPU is not a 6809!

Our centerfold will compliment the
award this issue. The Hayes “80-103A
Data Communications Adapter” was the
main force that launched the communi-
cations side of using computers. You

can see just what it took and also learn a
little about talking to serial or COM
ports as well.

Speaking of trend setting projects, our
IDE interface is moving along with a
new possible variation. Tilmann Reh
gives us a one page report on his Generic
IDE interface project. If you place orders
now, you too can have an Z80 IDE inter-
face board. Herb Johnson gives us his
request for interested GIDE people in
the Dr. S-100 article. Herb talks about
the GIDE project and a free system he
has learned more about since his last
article.

I have been trying to get more embedded
project reports, and J. G. Owens offered
up his 8048 emulator information for
use as a article. Since it is rather long
and detailed, I am serializing it with the
first part in this issue. You will find his
comments most interesting as he points
out some problems I recently encoun-
tered myself when you attempt to pro-
gram the 8048 controller. I still ask, why
did they do that? For those who mostly
program Motorola CPU’s Mr. Owens
words will make sure you don’t change
to Intel!

I have been trying to catch up on the pile
of articles yet to see the light and this
issue two from Waiter Rottenkolber made
it to the surface. Walter explains his trip
down bad math lane as he shows why
Division can not always be as correct as
we think (sort of a different view of the
PS5 problem only having to do with pro-
gramming math operations.) Walter also
explains some Kaypro Keyboard consid-
erations using Forth.

Since trying to catch up is talking more
space than [have, Brad Rodriguez’s part
7 of Moving Forth only has half the
code. This is the 8051 version which
works wel! with our starting the 8048
emulator program, and my own current

work on 8051°s. By only printing half of
Brad’s code you will need to get it all
from GEnie (or FTP) if you can’t wait
till next issue. It also allows him to take
a little time off and focus on his studies.
But have no fear, we will see the other
parts of the project in later issues (6809
yet to come).

Our Group section is a little bigger as I
talk about the Forth Day meeting held in
November of last year (1994). I think
this is the only publication you will find
this information. 1 learned that FIG’s
own Forth Dimensions is already laid
out well into next year. Don’t worry
about that problem here, I am so busy
working and doing paper work at T7CJ to
never get farther ahead than the tortoise
in a race with the hare.

That leaves my Computer Corner the
remaining words of wisdom, as I talk
more about PLC’s and especially 8051
type controllers. Seems my work for
money is moving from the big boys of
PLC to the little ones that fly by the seat
of their pants. This is just the beginning
of several articles on embedded control-
lers. I have almost finished the first part
where I explain what you get when you
give your credit card number to the ven-
dor at hand. Having done so myself sev-
eral times, I have a number of systems to
compare. Rather interesting comparisons
in issue 72 coming your way.

Coming your way next issue will be
more of our regulars and a few specials
still drifting toward the top. I still have
quite a few letters backed up in the queue
as well. I hope also to get a series of
articles that comment on others who
might be good candidates for our “Com-
puting Hero” of 1995 award. Also on
tap should be some 20Th anniversary of
computing articles.

Bill Kibler.

The Computer Journal / #71

READER to READER

TO: Bill Kibler

Is it possible to subscribe (and order
back issue #69) by emailing you my credit
card number or would it be better to mail
you a check? What a great mag!

I had a long email conversation with
Herb Johnson a while back during which
I managed to slip in a word about the
PDP-11 simulator I've been working on
for the last year or so (I never miss an
opportunity to plug pet projects), and he
suggested that I submit an article on it to
TCJ. 1 objected on the grounds that it
definitely fits into the “pet project” cat-
egory and that no one who doesn’t share
my twisted values would want to hear
about it but he said yep, sounds like the
right kind of thing for TCJ. So I'd like
to ask, would you be at all interested in
an article about a PDP-11 simulator
written in assembly language for the IBM
PC? This would be a descriptive article,
I’m keeping the source code to myself
and besides there are 25K lines of it, a
bit much to list. Anyway if you think
you might be interested, please let me
know if you have any guidelines for
writing articles (I've never written one)
and what slant you think would be best.
I figure no one (in the 8-bit world any-
way) wants to hear about the particulars
of PDP-11 devices or memory mapping,
but it might be useful to cover each sub-
system (instruction interpretation, oper-
and fetching, memory mapping, inter-
rupts, delayed /O events, DMA) in a
general sort of way to show how they
can fit together and what tricks you need
to ensure compatibility w/o sacrificing
speed. The PDP-11 differs in all the
particulars from typical micros that oth-
ers might want to write simulators for,
but basic things like memory mapped I/
O and delayed I/O events and the fact

The Computer Journal / #71

that individual I/O devices have to have
their own state machines, should be use-
ful to everyone writing a system simula-
tor.

Re issue #70: it appears that you worked
this out but just to confirm it, WRT the
discussion of replacing 8" drives on p.
7, yes it’s the 5.25" AT-style drives which
can generally replace 8" drives. 8" drives
turn at 360 RPM and use a data rate of
500kHz (MFM, 250kHz FM), and have
77 cylinders; 5.25" drives in 1.2MB
mode (the default) have the same pa-
rameters except that they have 80 cylin-
ders, so they’re a good match. T use
them in my simulator to simulate 8"
disks and it works great, and if an 8"
drive were substituted (and arrangements
made for TG43 etc.) then the media
ought to interchange too (I'll know for
sure as soon as I get an 8" drive for my
CompatiCard IV) with the same pro-
gramming, Using an AT 1.2MB drive
to replace one of the old so-called “quad
density” drives (i.e. double density but
96tpi instead of 48tpi) is a little trickier
since minifloppies normally use 250kHz
(125kHz FM) data at 300 RPM. Some
1.2MB drives (particularly older ones)
have an “/RPM” line which slows the
motor down to 300RPM when grounded,
so if you modify your drive (or control-
ler, or cable) to ground this line then it
can replace a normal “QD” drive (such
as the Tandon TM100-4). Newer drives
may not honor the /RPM line since it’s
more common in PCs these days to speed
the controller up from 250kHz to 300kHz
instead of slowing it down from 360RPM
to 300RPM, it’s cheaper and runs faster
anyway (and the controllers shield the
difference from software).

1.44MB drives use a 500kHz data rate
and turn at 300RPM, which makes them

look like an 8" drive with 20% more bits
per track besides having 3 extra cylin-
ders like the 1.2MB drives do. Whether
this will work with an 8" system w/o
BIOS hacking depends... The main prob-
lem I can think of is with formatting.
Chips like the NEC uPD765 do format-
ting largely automatically (for better or
for worse), and will extend the final gap
as long as necessary until it sces an
index pulse. So they’ll work fine with
1.44MB drives that are programmed like
8" ones, they’ll just be a little slower and
there will be a lot of wasted space on the
end of each track. The WD179x chips
however, format using a “write track”
command which requires a byte of data
(or a token representing marks or CRCs)
for every byte (or byte pair anyway) on
the track. That means if the track con-
tains 20% more bits, the “write track”
buffer needs to have 20% more data, and
if the buffer doesn’t have that much (it’s
always a good idea to add an extra dozen
or so bytes of gap data at the end of the
track with these controllers to allow for
minor speed variations) then you’ll end
up writing a bunch of random memory
(some of which may be interpreted as
marks) on the end of the track until the
index pulse comes around and termi-
nates the write.

I'd like to second the endorsement of the
SMC FDC37C65C+LJP floppy control-
ler in Herb Johnson’s column. I used
one in an IDE/SCSI/FDC/RAM/COM*4
board I built for my old 8-bit IBM PC,
all it took (over the buffering and ad-
dress decoding that’s shared with the
other peripherals) was the SMC chip
and five 150 ohm resistors. The data
sheet warns that the chip is picky about
ground planes, since I haven’t made a
PCB for this board (yet) I stuck a piece
of pressure-sensitive copper foil to the

underside of the chip and soldered jump-
ers to the ground pins, before plugging
it into the PLCC socket. What makes
the chip cool is its support of 2.88MB
drives and the fact that the single den-
sity mode works correctly (unlike other
PC-oriented FDC chips, which either
blow off SD mode entirely or else re-

- quire external connections and/or com-
ponents). Unfortunately it doesn’t gen-
erate the TG43 signal required to write
most 8" drives correctly, even if you put
it in the mode where it generates the
equivalent signal (called /RWC for re-
“duced write current) it makes the switch
at the wrong track. That can be done in
software though if you add an output
port for it; it could be done in hardware
too but that would get a little baroque,
you’d need up/down counters to count
steps and clear on /TK0O, and some
comparator chips (all duplicated for each
8" drive of course).

Speaking of 8-bit IDE, I'll be very inter-
ested to see the IDE article in back issue
#69. 1 built an 8-bit IDE interface as
part of my PC multi-I/O card and rather
than use an LSI chip to handle the con-
version between bytes and words, I used
four TTL chips and one $1.19 PAL
(which could be easily replaced with a
handful of “glue” chips, 1 was tight for
board space and had access to a PAL
* bumner at the time). So I can definitely
understand people’s misgivings about
using a $40 gate array unless you're
paying for drill time on the PCB.

Keep up the great work! John Wilson
<wilsonj@rpi.edu>

Thanks John for filling us in a litile
better and checks are preferred as |
have a better paper trail to follow in
case of errors. Are you sure about 3 inch
drives being 300 RPM, seems I missed
that, sure thought it was 360, but then I
have been doing TCJ for a few years and
missing some of the finer points of hard-
ware. Problem with being an editor is I
only get to see what others are doing
and have little time to do it myself.

Which brings me to the article format
question for TCJ. I have gotten some
recent comments on how TCJ is “do-
ing” articles. So this seems like a good

time to review our FORMATS. I try to
have a regular stable of writers who
speak on a single topic in such a way
that they provide specific help, while
trying to enlighten all readers with help-
ful hints they can take to their own plat-
Jform of choice. The feature articles are
suppose to be from people like and I
look for a teaching form of discussion,
where the topic provides a forum for
laying the how and why of a project.

Your PDP-11 or building the I/O board
Jor the pc would make great articles.
You might think that an PDP-11 emula-
tor is stretching it a bit, but only if you
talked PDP11 and nothing else. But what
are you really doing, laying out how to
build emulators! That’s right, an emula-
tor on a PC platform with all their funny
hooks and design limits that must be
overcome to make it work. For people
working on such projects we tend to take
the problem as just another day of pro-
gramming. For most of TCJ readers,
they have little concept of what I mean
by “funny” design problems, let alone
where one would start on such a project.

So my article guidelines go something
like this, tell us why decided to do the
project, what the goals are and limits
will be, then lay out what has been done
and why it went that way or not, and in
Jact did it go the way you thought. You
must remember that programming and
hardware design are right side brain
projects, or creative endeavors and as
such we want to understand your “cre-
ative” experiences in hopes that some of
the experiences and skills can “rub-off”
on us by just reading about your work.

Sounds like a tall order I am placing
with you, but plenty of others have started
sending me articles and I haven 't found
a bad one yet. Just remember to keep in
mind my objectives for an article, and
then write it as if you were telling a good
[friend who knows little about computers
(or enough to get in trouble) what you
did and why. Or better yet, get a laptop,
visit your favorite pub, and make be-
lieve your with a friendly group of peers,
tipping a few and telling stories. That is
the formuia to being a number one wriler.

So looking to see why you did the PDP-

11 project and thanks for the drive in-
formation, John. Bill.

To B.Kibler

I'm the sysop of the CP/M RoundTable
and would like to inform you of a special
signup deal that GEnie is providing to
TCJ folks. GEnie is giving TCJ mem-
bers $50 of free usage your first month
for just trying the system out.

The CP/M RoundTable has several thou-
sand (5000 roughly) files for the CP/M
computers along with an extensive bul-
letin board covering support for many
of the different programs and computers
you encounter. We have weekly confer-
ences, and games that all the CP/M
people can play online. In addition to
myself, our staff includes Jay Sage, Jeff
Marraccini, Don Maslin, and Helmut
Jungkunz.

Helmut had these words about GEnie......

When the times are tough, the tough get
going. That’s the basic message at the
GEnie CP/M Roundtable. Meet the
unbelievable combination of university
people, real hackers, sysops, professional
internet users, specialists for rare hard-
and/or software - they are all there! Find
exactly the same people come together
not only for serious discussions of excit-
ing issues in the “small world” of 8-bit
computing, but to play games as well,
like the all-time favorite HANGMAN
word-guessing contest. Naturally, the
subjects relate to computing, and it’s
always great excitement and lots of fun!

Join us all at the GEnie CP/M
Roundtable! All you need is your regu-
lar equipment to log on and the good
will to communicate, even with a smile

CP/M RoundTable
(Page 685)

: Supporting all varieties of CP/M :
ZCPR3, ZSDOS and Z3PLUS

: BWMILLER Beery Miller Sysop
: JAY.SAGE Jay Sage Sysop

: Jeff-CPM Jeff Marraccini Sysop
CHFEMUT Helmut Jungkunz Sysop
- DON.MASLIN Don Maslin Sysop

Th

The Computer Journal / #71

RoundTable Conferences every
Wednesday Night at 9:00 pm EST. :
1st / 3rd Sunday 4:00 pm EST. :

Now, if that was enough to convince you
to join, here’s the rest of the informa-
tion you need to try the system out on a

If you are interested in joining GEnie,
have your credit card handy or you may
use your checking account number ($2.00
monthly fee for all checking accounts)
and load up your favorite Terminal
Emulator program for your modem at 8
data bits, no parity, 1 stop, half duplex.

Dial 1-800-638-8369 (1-800-387-8330
for Canada), and immediately enter HHH
as soon as you get the connect signal
from your modem.

At the U#= prompt, enter JOINGENIE
and then press <RETURN>

After a few seconds, you will be prompted
for your screen width followed by the
Key Code. You should enter MVC524
as the keycode.

Then follow the simple online instruc-
tions and within 48 hours, you should be
officially connected to GEnie.

For more information, you may call
GEnie Information Services at:

1-800-638-9636 or write: GEnie, c/o GE
Information Services, P.O. Box 6403
Rockville, MD 20850-1785.

From: BW MILLER

Thanks BW for the GEnie information
and special. I know that the internet is
very hot now, but for many the cost is
Just to high or too complex to get started.
1 know I like GEnie because it has just
enough services for my limited free time.
And yet I can get EMAIL from the
internet, in fact any user can by just
using the user’s GEnie name (like mine
B.KIBLER) Sfollowed by
@GEnie.geis.com. I even send out my
internet messages from there.

The Computer Journal / #71

So thanks for the good offer BW and see
you soon on the roundtable. Bill.

Dear Bill:

I received the number 68 of 7CJ and 1
am still reading it. I have a lot of reasons
to write this letter:

1) I am in the search for a Commodore
C64 or a C128 with a 3.5" Disk Drive,
aHard Disk, a mouse, compatible printer
and the GEOS system. I'm trying to
find these items but here in Mexico it’s
almost impossible; as you know, Mexico
started to import and even make com-
puters a few years ago and the preferred
computer was and is the PC, then the
Mac. Some months ago, I got a seller.
He gave me a 64C (but I really wanted a
C64). He said I could have it for a week,
you know, for testing and to convince
myself that it was a good deal. No, it
wasn’t. The Computer never worked.
When turned on, the screen was blank
and it changed to white when I removed
the Basic or the Kernal chip marked
901227 02. The computer had a “reset
button” which was a common momen-
tary-normaly open switch connecting the
reset contact (found in the card edge
connector called the ‘User Port’) to
ground; no diode protection, just two
wires and a switch attached to the case
through a hole made with a hot stick.
The 64 came with a tape recorder and
the manuals. The man wanted N$300.00
(almost $100.00 Dlls.) The box contents
label said the GEOS programs and the
last communications utility were included
but no track of either. So I decided to
return all.

Now I have an Atari 65XE (please don’t
laugh) and its tape corder (XC12) and I
want a disk drive. I want to know if
somebody can give me the original basic
handbook and a schematic. I will buy an
Atari 520ST if anybody can sell me one
at a good price. If you or any reader
have the 520ST please write to:

Aristarco Palacios
Hidalgo 116

Coatepec, Veracruz 91500
MEXICO

I have a good reprint of the 2 parts of a

Radio Electronics article for making a
RAM expansion board for the Timex/
Sinclair ZX81 if someone wants ‘em.

2) Talking about Commodore (RIP) and
ATARYI; in the #68 obituaries, you said
the C64 uses chips you see nowhere else.
I’'m holding the Jameco catalog No. 176
and in the page 9 there is a small list
under the title “Commodore Series Inte-
grated Circuits”. It includes 23 different
chips. You can contact Jameco at

Jameco Electronic Components
1355 Shoreway Road
Belmont, CA 94002-4100

‘Bout Atari, well I have an address but
without a street nor a PO Box number,
does anybody have the complete address?

3) You should to give a look at the
“XIIR5 and GNU”; “Nova NeXT”; and
“Sprite OS” CD ROMS from Walnut
Creek, It would be a good article.

Finally, I hope the readers will commu-
nicate with me. Sorry for using a Type-
writer “to do this letter (and the tons of
liquid paper), but when the printers fail,
they DO fail.

Very Truly Yours. Aristarco Palacios.
PS: Sorry for my bad English.

Ok Aristarco, hope printing this helps
you get the items you need. Yes, I have
seen a few vendors selling the older
chips for many of the machines. My fear
is that they are stripping old units of
parts, not an idea I really like, but then
I have done somewhat the same thing to
keep older units running.

1 did look at some of the other CD-
ROMs available, but since I am not a
Unix person right now, I have no use for
their contents. The LINUX CD-ROM set
is probably the best one out there as it
allows you to boot and run it from the
ROM. It is really pretty neat product,
one anyone interested in Unix operating
systems should have.

One last item is why TCJ is here, mainly
to make sure you learn enough about
system to tell when someone is selling
you something you probably would be

better off not buying. That looks like
what happened with the C64C you al-
most bought. Thanks for the letter and
best luck in your search. Bill.

Dear Bill,

1 read your comment about 4 years engi-
neering/beginners level/mechanics of
stepper motors in # 70. I not quite cer-
tain exactly what you were looking for
but see if this helps - if it doesn’t then
simply discard it. Suppose we have a
motor with a 5.84 inch diameter (2.92
Inch radius) pulley/shaft on which is
wound a wire and attached to the bottom
is a 20 Ibf weight. The motor is turning
at 9.0 rpm and thus the 20 Ibf weight is
being lifted at 2*pi*2.92/12%9 = 13.75f/
sec. Horsepower is defined as 33000 fiibf/
min or 550 fi.Ibf/sec = 745.7 Watts or
0.7457kW. Ft.Ibf means force applied
multiplied by the rate at which the force
is moving. An interesting work/power/
energy relationship which not too many
people seem to be aware of is that which
links Joule.seconds to Watts to work/
energy. The Joule is not only defined as
the work done by a power of one Watt
acting for one second i.e. one Watt.second
it is also the work done when a force of
one Newton acts through a distance of
one metre i.e. work of One metre.Newton
and not torque of One Newton.metre.
‘Since one foot = 0.3048 metre, one 1bf =
0. 45359237 kg and One kg = 9.80665
Newtons (All precise definitions - no
rounding off applied) then we can easily
work out that One horsepower = 55
ft.1bf/sec =
550*0.3048*0.45359237*9.80665 =
745.70 meter.Newtons/sec = 745.70
Joules/sec = 745.70 watts.

Our weight is being lifted at the rate of
13.75 ft/min with a force of 20 1bf ap-
plied at a radius of 2.92 inches. The
work being done is 13.75%20 =275 ft.1bf/
min = 275/33000 = 1/120 hp. We, got
the 275 from 2*pi*R*N*F = 275 i.e.
2*pi*(R*F)*N where F = force applied
(20 Ibf) and N = rpm (9). Look at the
quantity R*F it is force * radius and is,
in this case 20*2.92 = 58 .4 Ibf.inches =
934.4 oz.ins = 4.87 Ibf.ft which is the
quantity known as TORQUE i.e. twist-
ing or turning moment. Note that I use
Ibf.ft and not ft.Ibf as did your article in

#70. That is how we English distinguish
Torque (Ibf.ft) from work (ft.1bf) so, our
expression for horsepower was
2*pi*R*F*N/33000 - we could also write
this as HP = 2*pi*T*N where T is the
torque stated in units compatible with
feet and pounds (Ibf). This tells us then
that if we have given horsepower and
rpm (N) then only one value of torque
will complete the equation i.¢. Torque is
irrevocably tied to HP and N. That is
important - just last month I saw an
article in a popular journal which stated
the speed (rpm), horsepower and the
torque of an engine. I checked their math
and their figures were incompatible.
Note, given any two of HP, Nand T then
the third one is irrevocably fixed.

Suppose that we decided to either double
the diameter of the pulley/shaft of our 1/
120 hp motor OR to increase the weight
from 20 1bf to 40 Ibf. It is easy to see that
if speed (N) remains constant at 9 rpm
then we have doubled the horsepower
either by doubling the speed at which
the weight is rising OR by doubling the
force applied at the periphery of the
pulley/shaft. Depending upon the type
of motor being used it Is highly probable
that performing such an operation would
either burn out the motor or stall it.
What would we do if wanted to apply
this motor (With a max of 1/120 hp) to
lifting a 40 Ibf weight at 9 rpm ? We
have already said that if horsepower and
rpm are fixed then so is the torque. We
could also write that T = 33000*HP/
(2*pi*N) = 4.863 Ibfft and, since T =
R*F thenR = T/F = 4.863/40 = 0.12158
Ibf.ft = 1.46 Ibf.in. i.e. we have to halve
the diameter of the pulley which de-
creases the rate of lift from 13.75 ft/min
to 6.875 ft/min and maintains power
and torque at the correct values. At this
point it is probably worth noting what
happens if we use a gear box or other
reduction such as small and large pul-
leys etc i.e. if HP is fixed then the prod-
uct T*N has to remain constant so if we
put a fixed HP output through a 10:1
gear box then the rpm (N) would de-
crease by a factor of 10 hence the torque
would increase by a factor of 10 to main-
tain T*N constant.

A principal difference between an ordi-
nary electric motor and a stepping motor

is that if you try to turn the rotor of a
non-energized ordinary motor you will
feel little or no resistance to turning. If
however you try this with the motor
energized then it will turn and you would
have to apply the full rated torque to it to
stop it. If a stepper motor is energized in
the unchanged coil patten of the last
move it made then it will remain firmly
in one stationary position and you would
have to apply it’s full rated torque before
you could move it by hand. This because
the motor is manufactured more like a
multiple position solenoid than a motor
with a pattern of permanent magnets in
the rotor which do not exactly match the
pattern of coils around the motor stator.
Consequently if one changes the pattern
of energization of the coils i.c. some
with reverse current and others with for-
ward current then the rotor will take up
a fixed position. if you change the pat-
tern of energization to the next required
pattern then the rotor will attempt to
move either clockwise or counterclock-
wise to a new position and will thus
traverse the defined stepping angle.
When the rotor is stationary and the
stator energized it is being held In a
stationary position by the magnetic force
between the coils and the permanent
magnet rotor. Since this force is being
applied radially to the rotor then we can
measure it as a function of the actual
force and the radius of the rotor i.e.
Force*Radius or Torque as previously
defined. This force is known as the ‘hold-
ing torque’ and is analogous to the ‘Pull-
out Torque’ in an ordinary motor. Once
we change the pattern of coil energization
to an acceptable new pattern with a view
to moving the rotor by one defined step
(Angle) then the rotor is no longer being
held in place but is being pulled, with a
certain force toward a new position. This
is another value of torque i.e. the applied
torque. This may be different to the hold-
ing torque but, as far as I am aware
usually only the least of these two values
(Which is usually the applied torque) is
quoted for a particular motor.

Suppose then that our motor with the 20
1bf weight and the 5.84 inch dia shaft/
pulley i.e. a torque of 4.87 Ibf.ft, were a
stepper motor and the applied torque of
the motor was 4.0 Ibf.ft but the holding
torque was 5.0 Ibf ft then the motor would

The Computer Journal / #71

be able to hold the weight OK but would
be unable to move it. In the unlikely
event that the holding torque was 4.0 Ibf
and the applied torque 5.0 then the motor
would only be able to move the load and
not hold it. Which is, of course, highly
unlikely.

If we apply AC volts/current to a coil
then the rms current and power taken by
the coil are a function of both inductance
and coil resistance. If however we apply
DC to a coil then the final steady coil
current is a function of coil resistance
only. The effect of the inductance is to
limit the rate at which the current can
increase i.e. di = dV/dtL. An electro-
magnet becomes saturated at a certain
level of current (The ‘Knee’ of the B/H
curve) and increasing the current in a
saturated coil does not increase the mag-
netic field hence we make the reason-
able assumption that, since stepper mo-
tors are DC devices which may be re-
quired to hold steady DC coil currents
indefinitely then the manufacturer stated
coil current will be somewhere near the
most efficient value for production of a
magnetic field which does not overheat
the motor. If you have to apply 5 volts to
each of two coils In a stepper motor to
produce 1.0 amps in each then if the
motor is not moving you are still using
10 watts = 1/74.6 HP and not doing any
work then the efficiency is zero on the
other hand if the motor is working flat
out and continuously switching the 2
amps between various coils then you may
make the assumption that you are get-
ting maximum work out of the motor
and this will be something less than 10
watts of work (1/74.6 hp) from the mo-
tor. By the same token if you knew the
torque at which the motor was operating
(Which you would do if it was lifting a
20 Ibf or other weight) and you knew the
RPM (N) then you could work out how
much work the motor was doing from
HP = 2*pi*T*N/33000. - transforming
that to watts by multiplying by 746 would
then give you an indication of efficiency.

Best Wishes, I hope you find some of
this useful, Bill Brown.

Well Bill, that sure explains it, I just

hope others can understand it. What I
was getting at in the note was how many

The Computer Journal / #71

text books require many years of hands
on calculus just to see what they are
doing. What I like about Henry s testing
the motor with coins, is the ~implicity
and fact that any user could do the same
test, college degree or not.

Now don’t get me wrong, your letter is
not college only material, you do a good
Jjob of keeping the discussion simple and
without tons of math. What is missing is
the little tricks and rules of thumb. You
gave a few and I appreciate that, but |
think what we need in TCJ is a good
article on finding, sizing and using mo-
tors, since many of our readers want to
tinker with them.

So Bill, Thanks for this great start on
getting TCJ'’s readers into understand-
ing how motors are sized and why. I look
Jforward to more from you and others on
this topic of interest to our readers. Bill
Kibler.

Dear Bill,

I have been wanting to write for some
time now. So here it is. I love your
magazine, so keep up the good work.
Let me start out with a little bit about my
computer experience. I bought my first
computer in 1988. A Tandy 1000 SX.
Since thenI have added expansion up to
640 k, a 20 MB hard drive, a 2400 baud
modem, a second 5 1/2" disk drive, and
a serial card with a mouse. I feel like I
am fairly experienced with MS-DOS.
My programming skills lack somewhat
though. I am interested in learning
FORTH. 7CJ’s coverage of FORTH is
great. Well, I also have a Color Com-
puter with 4 k, a TRS-80 Model III with
16 k, and just this weckend I acquired
one possibly two TRS-80 model 4 com-
puters with 64 k. In perfect working
order. A friend of mine found them at
Michigan State University and they were
giving them away. What a find! My
Model I1I disks work in the Model 4, but
I am in search of Disks and manuals for
the Model 4. If anybody has these con-
tact me at the address below. I will
probably buy a CP/M upgrade for the
Model 4 from A.J. McGlone of the Z-
Letter some time in the future. I cur-
rently own exclusively Tandy computers
at the moment, but I am interested in all

classic computers. My resources make
me expanding my collection a little dif-
ficult at the moment. Well, That’s all
for now.

Mark J. Kingsbury

Battle Creck,MI

E-mail Mark-J_Kingsbury@fcl.glfn.org
Prodigy STHH95A

OK Mark, looks like you got some good
finds. Our aim at TCJ is keeping people
like you well informed on your new ven-
ture down computing memory lane. |
tend to push Forth because of the across
platform possibilities it offers, not to
mention rolling your own options, but
we don't want to be pushed or pushing
only one language, since most of your
machines run Tandy BASIC which
worked for many and in fact started the
Gates empire. By the way, did you get
your problem with the Z-19 terminal
fixed? I know you were looking for help
with it and hoping one of our reader
could help you out. Enjoy! Bill.

This letter got cut from last issue..BDK.
Dear Editor:

Enclosed is my check for $24 for a sub-
scription to The Computer Journal.

Yours is one of the last strongholds of
real personal computing. 1 got my start
building the SWTPC 6800 kit and now
use a PC with 1 Mbyte RAM and a 286.
People think that the old days are gone
forever, but that does not have to be so.
A few months ago I found an old Model-
15 Teletype from WW-2 in the garbage
and proceeded to put it in a plastic safety
cover so you could see the wheels go
round. Next I interfaced it to an old
Radio Shack Color Computer 3 (using
plastic optical fiber) and displayed it at
the local historical society show, held
yearly at the grammar school. It made
noise and attracted a lot of attention.
Kids loved it and adults remembered. I
have since inherited A lot of other old
Teletypes and have figured how to oper-
ate them safely using a standard +/- 12
Volt PC power supply. The whole thing
was a fun project and resulted in meet-
ing a lot of interesting people.

Since the Color Computer is no longer

made I decided to buy a single board
computer to run the TTY. I obtained a
free copy of Nuts and Volts magazine
(devoted to buying and selling electronic
equipment) and saw a computer in my
price range (less than $50). It used a
68HC11, which is part of the Motorola
family line and made programming
easier. I ended up doing extensive hard-
ware and software modifications and the
results exceeded my expectations. It is
obvious that other Motorola 8 bit proces-
sors could be substituted without much
effort. These are some of the most easily
understood and programmed processors
ever made, and Motorola has a whole
line of free cross compilers and other
software available. You could even sub-
stitute a Z80, since the board uses static
RAM and an external terminal. The idea
is to have a low cost bare bones board
with reasonable software that an experi-
menter could use without much care
about ruining anything. As a matter of
fact, I took a copy of the Ron Cain Small
C compiler (developed for the 8080) that
had been ported to the 6809 and ported
it to the 68HCI11 without burning too
much midnight oil. I assume that com-
patible forms of Basic and Forth are
similarly available. Just about any com-
puter could be used to communicate with
the board. I happen to like the PC be-
cause virtually all of them have high
speed serial data capability, allowing fast
data transfer. The board does not need
any special device for this, as even the
1.8 Mhz 6809 used in the Color Com-
puter 3 can operate its bit banger serial
port at a 57.6 Khz baud rate, although
you do need 2 stop bits.

The foregoing makes me wonder why
the small computer community has ap-
parently not come up with a “generic”
single board computer. Lots of experi-
menters and software hackers are still
around, so why let all that talent go to
waste? A basic, flexible design can go a
long way. Look at the PC, which is a
clone of the much older PDPS/E. IBM
did the right job at the right time and
ended up generating a mountain of busi-
ness. Now that the static RAM bottle-
neck has been removed it is infinitely
casier to make a small computer. Why
not design a set of “generic training
wheels” and keep on having fun?

One reason I like to use the board is that
I can run it from my PC through the
serial data port with almost no worries
about hurting anything. You can also go
a long distance with serial data. I have
the board across the room on a work-
bench. No looking behind the PC to
figure how to hook up things. You might
think that downloading programs and
data to the board is slow, but most PCs’
can use their serial ports at 57.6 Kbaud.
You do need 2 stop bits if you are going
to load programs into a bit banger port,
but that is still over 5,200 bytes per
second. In 15 seconds you could load a
64 Kbyte RAM, and most programs are
a lot shorter. Upload is the problem. To
avoid problems with PC interrupts the
serial port chip should be replaced with
one that has a larger buffer. It might be
a good idea to look into using the paral-
lel printer port for data transfer.

Yours: Frank Wilson.
Dear Editor:

I know you are very busy, so I hope this
latest letter is not too much of a bother.
The reason for this one is that Ronald
Anderson sent TCJ issue #64 as part of
some correspondence we have going. You
wrote an article entitled “Small-C?”, and
I noticed in the discussions that the slow
speed and size of Ron Cains original
version has carried on into the various
public domain offerings based on his
pioneering work. There may be hope.
Years ago a friend sent me a version of
Small C for FLEX that had been modi-
fied by John Byrns (17-JUN-80 and 14-
FEB-82). Ithink it is public domain, but
my friend does not remember where he
got the source. In changing it to work on
the HC11 I found that it turned out code
that was half the size and twice as fast as
that from #309 on the C Users Group
CD ROM which I also adapted for the
HC11. Even though Byrns version has
no extra bells and whistles it is darn fast,
and most of the speedup seems to be in
the code generation portion. I think it
may be possible to use his ideas to im-
prove other versions of Small C.

One of the reasons I am so anxious to
determiz if Mr. Byrns version is public
domain is due to an unfortunate experi-

ence with a file called MC141.ZIP from
a PC bulletin board. It was an excellent
small C evidently written from scratch.
One of the documents that came with it
indicated public domain use was allowed.
The compiler And documentation looked
very sophisticated and I was suspicious.
Further investigation proved the mate-
rial was NOT public domain and thus I
wasted considerable time seeing if it
would help us create a better small-C.

Anyway, neither the C Users Group or
Mr. Anderson have heard of John Byms.
If T can verify that his code is public
domain I will continue to work with it,
but on no account do I want to repeat my
experience with MC141.ZIP.

Yours: Frank Wilson.

Thanks for the notice and both letters,
Frank. I have been trying for the last
two years to build a Z180 based ISA
compatible (PC BUS) CPU card for the
exact idea you mentioned. A simpler
and more basic design which could be
used for practical learning projects.
Main focus was the cheap cards and
bare boards available. Since then how-
ever Z-World moved their Z180 product
to the PC/104 and now ISA Bus. The bad
point is they want $219 for it, but then
that was why I was having problems
building it, the cost would be a bit high
for hacking. Since they are very close to
our office, I will be talking with Z-World
to see how the product is going and if
anyone has ported ZCPR to it.

I am well aware of the problem of public
domain tags getting put on products when
in fact it is just a sample or demo ver-
sion. I am considering doing my own
TCJ-CDROM and would like to put many
programs that have no know owners at
present, big problem. Most of what I am
interested in is BIOS source code which
often had copyrights, but each vendor
treated completely different as to whether
it was free or cost to acquire.Finding
owners is also a big problem in Europe
where I understand the original writer
seldom put their name in it. That is truly
public since it contains no information
of origin. what is a person to do? Well
like you, check it out, seek more input,
give up if someone claims rights to it, or

The Computer Journal / #71

work on it if no one owns up.

What 1 find annoying is some people
still think you can take someone’s work,
make a few changes and then sell it as
your own. We can see by the major law
suits about look and feel, that the con-
cept is only valid as long as no one
catches you (or they don’t have a good
attorney). I am not sure, but you gave
the impression that even MC141 looked
like a version of small-C that had been
enhanced and packaged better? To me
that is not original work if that is the
case, and only original work can be
copyrighted and protected by law. So,
Thanks Frank for investigation and on
going project to find our readers a bet-
ter Small-C package, we appreciate your
efforts! Bill.

Dear Bill,

Since their delivery I have enjoyed the
back numbers of 7CJ along with the
regular issues. I want to complete the
collection with the back numbers listed
below and also to renew my subscription
for another year. Your reminder was
timely!

Mention of Gidding & Lewis in your
‘Computer Corner’ of #27 brought back
memories of nearly 20 years ago when |
worked at the G&L factory in Arbroath,
Scotland though not with the machine
tool product. Computers were the com-
ing thing then but were still inaccessible
to the ordinary engineers. They were
vastly interesting but as relevant to our
daily work as astronomy i.e. not a lot! So
I continued to be a looker-on when our
360-25 was installed. It became clear
that it couldn’t do anything useful for a
mechanical designer because the Cobol
writers weren’t engineers & tho’ willing
they were not too accessible either, in
their air-conditioned cells. There were
cultural hindrances too. People who had
traded internationally for decades may
yet have done so from the ‘sticks’ &
have toe prejudices that go with such
growth. IBM would hold ‘seminars’ to
tell everyone about this machine. Semi-
naries is where RC priests are trained (
tho’ basically any one can be taught at a
place so called!) Calvinists wouldn’t care
to attend a seminar, by association. To-

The Computer Journal / #71

day our vocabulary & minds are broader,
(Ulster excepted) & such thinking would
be classed as bigotry. Nevertheless sus-
picions about IBM lingered.

Then one day an NC Borer, complete
with Post Processor program was or-
dered by Rolls-Royce. We had supplied
R&R from spitfire days (arrogant b*rs!)
but we were ignorant about poet-proces-
sors. Because of my interest I was sent to
Fond du Lac (Wisconsin, USA) to find
out & to learn what had to be done. 1
bought back a reel of magnetic tape &
McCracken’s book on Fortran. The NEL
research place near Glasgow was the
only place in Scotland with a capable
computer at the time, but it used a differ-
ent (Univac) tape format. However, they
had spare capacity, were keen to help &
would train our programmer for next to
nothing.

The outcome was that R&R were pleased,
said it was the first one they’d had that
worked straight away, our new non-DP
programmer got a better offer, I moved
to another endeavor. That was my only
brush with machine tools. As time went
by the electrical dept. sprouted a subsid-
iary doing control systems & electronics
& had a teletype link with GEIS in USA.
I had about an hour hands-on with this
& early BASIC & then back to on-look-
ing for years elsewhere till I got a Z80
machine for book keeping & letters in
my 4 man special machines design ven-
ture.

Another visit to Wisconsin was to Gilman
Engineering at Janesville where I spent
an intensive 6 months studying their
automatic assembly machine product.
Your associate RW Anderson (Small
System Support #67 p20) may be aware
of them in the balancing machine mar-
ket. Among other things I was intro-
duced to the flow chart as a medium for
conveying the mechanical requirements
to the control designer. Thence it was an
easy step to have the mechanical man
draft the ladder diagram which the con-
trols man could asses & specify his com-
ponents. Solid state relays were the nov-
elty then but computers were not yet
trusted because they might lose their bit
in a factory & had to be re-programmed
every few seconds.

Wishing you a Merry Xmas & Happy
New Year! Sincerely HK Fraser.

P.S. I was particularly interested by B
Morgan’s REL-Style articles in #35, 36.
A third article was forseen in the latter,
but I don’t see it among the contents of
the back numbers. When did it happen?

While on assemblers I remember believ-
ing that a library file would be reason-
ably INCLUDED after a main program
file. I learned that AD2500’s macro as-
sembler would not do this for me. The
supplier suggest that I change them round
so that the program file was the one
INCLUDED. That worked well! is this
peculiar? What is normal?

Well Mr. Fraser, I am glad you are
enjoying all the back issues I sent you.
I never know if people feel the cost was
worth it or not. It seems it is for you,
even figuring the overseas mailing ex-
penses in the cost. 1 am working on a
better back issue listing that I hope can
be in next issue. It will be by topic and
author not issues which is the current
case.

The G&L factory was pretty neat place
to visit and see them actually using their
own machines to make new machines
with. Of course I went there to learn
about the computers that controlled their
machines. Seems they got rights from
Motorola to build the 6800 chip as a 16
bit TTL CPU on a separate board. Pretty
primitive by todays standards, but then
some of these machines are still running
and doing perfect jobs.

As to INCLUDE files, you are correct,
sounds pretty bad to me. I have however
run into some pre-macro processors that
will not let you do FORWARD refer-
ences and that might be your problem.
Normally includes are listed in the pro-
gram main file before any code or refer-
ences to them. If you did that and still
got errors, bad assembler! Just because
they sell it doesn’t mean it is good or
maybe you just found the unfixed bug.

Thanks for writing and reading TCJ!
Bill Kibler. End.

1994 COMPUTING HERO

By Bill Kibler

On this 20th anniversary of the Altair introduction (Jan 1975),
The Computer Journal has decided to start recognizing work
done in those early days. Most of the people who took an active
part back then, are still at it. At TCJ we feel some awards are
in order for a very select few individuals who are still produc-
ing. We call these people the “un-sung heroes” of computing.

The Computilig Hero Award

The requirements for this award are rather simple. First you
must have been involved in the early days of computing, about
fifteen years ago for a minimum. Next, you must still be
contributing to computing, preferably into public domain, or in
some way that rewards users more than yourself. Lastly you
must be somewhat unrecognized for your past and present
deeds.

The concept is simple, find those who have been giving their
all to computing for nothing but the normal self gratification
of a job well done. We think these people deserve to have their
name known beyond a few select circles.

- David L. Jaffe, TCJ’s 1994 Computing Hero

At the Sacramento Forth Meeting in November of 1994, the
guest speaker was David L. Jaffe of the Department of Veterans
Affairs Medical Center, Rehabilitation Research and Develop-
ment Center in Palo Alto, CA. I have been watching Dave and
his work for many years. While at the talk, I discovered that
Dave’s history started at the beginning. With a little research,
I determined that David L. Jaffe deserves our first Computing
Hero Award.

Dave was invited to talk with our small group and explain his
work with Ralph (Ralph stands for Robotic Alphabet). Ralph
is a mechanical fingerspelling hand for people who are deaf
and blind. Until this talk I was unaware of just how long Dave
has been into computing. He worked with Ward Christensen
and tested the first BBS in Chicago where he grew up. He wrote
BYE in assembly language back then and found Forth under
CP/M. He did this after the first S$100 Modem card came out
by Hayes (this issue’s Center Fold).

Dave got his EE degree in 1970, followed by a Master’s in Bio
Med Engineering in *73. When the January 1975 issue of

10

Popular Electronics gave us the Altair computer, Dave ordered
his $400 computer and has been hooked on computing ever
since. He told me it “changed his direction” which has been
from being an assistant chief of medical equipment in a Chi-
cago VA hospital to his current research work in Palo Alto. He
has been doing rehabilitation work for 15 years and using
computers for over 20 years.

The BYE program started out in BASIC and he did the assem-
bly language version. Dave was involved in the first mass
purchase of the Hayes modem boards so that he and other
members of the Chicago computing group could communicate
over the phone lines. At one point he got to meet one of the
design engineers from Hayes. Certainly some early hands on
work for Dave. You can check his work out on the new CPM
CDROM by finding the file DCHBYES55.ASM with a com-
ment by Ward that the code had been adapted from the original
work of David Jaffe, Jan 1979. With starting credentials like
those, that could make Dave the father of all BBS’s, and Ward
the midwife?

That gives us Dave’s past but what about his current work. To
me focusing your direction on using computers to help others
is choosing direction over money. Dave works on Rehabilita-
tion Research for the VA in Palo Alto, California. To quote
theorganizations letter of introduction “the Center is dedicated
to bringing science and technology to bear on the problems
faced by physically impaired veterans in their pursuit of living
independence.”

One of Dave’s projects (I found Dave’s name listed on 14
papers from the center’s yearly report) is Ralph (for Robotic
Alphabet) which is a fourth generation computer-controlled
electromechanical fingerspelling hand. “The device offers deaf-
blind individuals improved access to computers and communi-
cation devices in addition to person-to-person conversations”

The hand moves it’s fingers to perform “fingerspelling”. The
uscr places their hand over Ralph and feels the fingers move,
thus understanding the letter. Normally a live person is used,
but the hand’s advantage is the connection into computers and
telephone systems.

The concept started in 1978 in San Antonio with an all me-
chanical machine. Being all mechanical it had many limits.

The Computer Journal / #71

The entire unit was big, noisy, vibrated badly, and broke ofien.

Dave started on the Ralph project using students from Stanford.
Dave is a coach in the Stanford University’s Smart Product
Design course in the Mechanical Engineering Department.
The course ME218, has 2 instructors, 2 teaching assistants,
and 32(!) coaches. The object is to have the students develop
and package a product or gizmo all in one semester. This type
" of course has been featured on TV many times, and as Dave
said, it is challenging for both the students, coaches, and
teachers. That is why he helps, it takes more than one teacher
to help all the students get through the project.

In 1988 the student group went to servo motors, a Z80 STDBUS
system with an Epson laptop computer for input. The system
worked better, but had major problems with mechanics and
size. In 1989 Gallaudet University funded similar work with
heated metal instead of motors only to have too many failures.
Since then, he has moved from STDBUS to a Z-World Z180
computer (about 3 inches square), an I/O board with 9513
PWM drivers (Pulse Width Modulation - a technique for driv-
ing motors) on it. This all now fits into the base of the hand.

Fifteen years ago, Dave was introduced to an alternative lan-
guage, Forth for the Z80. He has been using the same program
ever since, and for Ralph. The hand’s ROM based Forth
software has improved with time, now being able to know what
letter was formed “last” and move the fingers so that the next
letter is a natural transition from the one currently being done.
The laptop has been replaced with a Palmbook (8086 running

RALPH the fingerspelling hand.

The Computer Journal / #71

DOS 5). Model airplane servo motors with feedback drive the
linked fingers that have also been greatly improved and sim-
plified. Original finger movement was as much as 1 1/2 inches,
now th~ "ew mechanical linkage permits the 1/2 inch displace-
ment of a control rod to operate the finger from fully extended
to flexed. The software also permits the finger positions to be
edited.

The hand is fun to watch, and it has been very interesting to
see the design improve over the years. Dave says there are from
20,000 to 40,000 deaf/blind people in the US, of which an
unknown percentage are potential users of a commercial ver-
sion of Ralph. Yet, to date no major money people have come
forward to take the project from research to daily use.

From a personal appreciation of what Dave has done, from
giving us BYE to the HAND, I want to thank him. There are
I am afraid many more programmers and engineers like Dave
whose contributions and work go unnoticed. Thus I would like
stop ignoring these “heroes” by giving David L. Jaffe, the first
of many Computing Hero awards.

If you would like to contact Dave or find out more about Ralph,
you can contact him at:

David L. Jaffe
Palo Alto VA Medical Center
3801 Miranda Ave., Mail Stop 153
Palo Alto, CA 94304
415/493-5000 ext 4480
jaffe@roses.stanford.edu

Next year

Since we want to make this an ongoing award, please drop
messages to TCJ of people you think deserve this honor. We
are considering a regular feature that chronicles people like
Dave and what they have contributed to your computing enjoy-
ment. Stories, personal recollections, and details are always
welcome as either letters or full article.

Bill Kibler, Editor, The Computer Journal.

The Manual Alphabet

S AL
SRR
K% L§l MS% N@‘@A
AFQ SE
A R

ZM

11

Real Computing

By Rick Rodman

House numbers in TCP/IP-land

Viewers of old television programs will
certainly recall a notable family which
resided at 1313 Mockingbird Lane.
Actually, there most probably is no such
address. It, like Hazard County of an-
other old TV show, is a fictitious ad-
dress.

What, you may ask, does this have to do
with TCP/IP? Because Tiny-TCP, al-
though a network for small computers,
is still TCP/IP for small computers, and
in the TCP/IP world, every computer
needs a unique IP address. In theory, all
computers in the world can be joined
together and communicate among each
other. In practice, of course, things are
a little shakier than that.

The Internet has three address classes.
‘People who have obtained addresses get
an address of class A, B or C depending
on how many machines they say they’ll
have. People with Class A address have
8 bits assigned, with 24 bits for their
16.7 million computers. People with
Class B addresses have 16 bits assigned,
with 16 bits for their 65,536 computers.
People with Class C addresses have 24
bits assigned, with 8 bits for their 256
computers. In any case, the IP address
is 32 bits.

Now here’s why the Internet can’t actu-
ally support 4 billion computers: Most
big companies have more than 256 com-
puters, but nowhere near 65,000; and 1
doubt any company or government has
anywhere near 16 million computers.
What you’re really assigned is an ad-
dress space, and what happens is that
you divide it up into subnets.

Let’s take a realistic example. Suppose

12

you have some machines on a Token-
Ring LAN, others on an Ethernet LAN,
and others which are running Tiny-TCP
and connected through SLIP. For sim-
plicity, we’ll suppose that only one ma-
chine is connected to both Token-Ring
and Ethernet, and all SLIP machines are
connected to it also. (I may make some
mistakes, so you network gurus be sure
to send in your corrections.)

We’'ll also suppose (for now) that you
are using the Class C address
192.9.200.X (more on this later). These
numbers separated by dots are in deci-
mal, ranging from 0 to 255. All Class C
addresses have 110 in the top 3 bits. So
you have an address range of 8 bits or,
actually, 1 to 254 (255 is a broadcast
address, and 0 means the network it-

self).

What we’ll do is break the 8-bit range
into four subnetworks by using the two
high bits of the last byte. Thus, 1 to 63
would be Token Ring, 64 to 127 on
Ethernet, 128 to 191 on SLIP, and 192
to 254 left unused. This means that your
subnet mask would be hex C0 or decimal
192, or, in total, 255.255.255.192. The
subnet mask is the value which, logi-
cally ANDed with the IP address, gives
the subnet number. For each machine
on a subnet, you assign an address in
that subnet’s range. One machine is
designated as the “gateway” for non-
subnet traffic. That machine would have
visibility of one or more other subnets.

Notice that message routing has to pro-
ceed through these gateways. Ifa subnet
were “broken”, with two gateway ma-
chines, there is no way to decide which
to send the message through. For this
reason, if you have multiple machines
using SLIP, you should either connect

them all to one machine, or make each
a subnet unto itself.

You can obtain a network address from
Internic, listed below. However, you
only need to do this if you’re connecting
to the real Internet. They’ll want to
know who you’re connecting through,
so that national routing tables can be
updated. This means that you’ll always
have to connect through that other per-
son, so you’d better have a pretty perma-
nent relationship with them. This is a
rather static design approach for what
has become a pretty fluid, dynamic net-
work; we can say the same for the tele-
phone companies with their geographi-
cal area codes. Besides, like area codes,
the way the network numbers are as-
signed leads to huge wastes of numbers
in some ranges and shortages in others.
There are some proposals for kludgy
solutions to these problems, such as
DHCP, but these are not universally ac-
cepted and, in any event, are probably
too complex for our little LANs.

For our purposes, as long as we’re not
connecting to the Internet, we can use
any network numbers we like. We do
need to follow the subnetworking scheme,
however, as it is fundamental to IP rout-

ing.

My Ethernet LAN uses the network
number mentioned above, 192.9.200.x.
This network number is suggested by
Internic and RFC 1597 as a number to
use for LANs not connected to the
Internet. Thus, this is a fake address,
much like 1313 Mockingbird Lane. It
has validity only within the confines of
my own LAN. There is potentially a
problem if any of these machines should
send messages through the gateway
machine, through Switched 56, to one of

The Computer Journal / #71

the client’s other machines.
there is little need for worry.

However,

The reason there’s no need for worry is
one of the great superiorities of TCP/IP
over other network protocols, like
Novell’s IPX. There is no broadcasting.

- In NetBIOS (aka NetBEUI) (and I mean
the protocol, not the API), machines are
assigned names. To “add your name to
the net”, it’s like walking into a room
and shouting “I’'m John Smith. Does
anybody object?” After you wait a few
minutes, and nobody objects, you can
use the name John Smith. This is a type
of broadcast. Microsoft’s LAN Man-
ager, NT Advanced Server, IBM’s LAN
Server, and many other packages are
built on top of NetBEUI and use this
approach.

As long as that room is not connected to
any others, that will work fairly well.
But now suppose that your room is con-
nected with many other rooms by speak-
erphone. It could take minutes for your
shout to propagate to other rooms where
there is already another John Smith. In
the middle, some people already know a
John Smith, so they don’t know who
gets John Smith’s messages now. Be-
sides, with everybody shouting, you
might have to wait a while to make your
own announcement, with the speaker-
phones constantly congested with broad-
casts.

IPX uses broadcasts too, except they’re
from servers out. It can be pictured as a
cocktail party in a living room where
there are several waiters and waitresses,
each shouting his or her name at the top
of his lungs every couple of minutes.

TCP/IP does away with broadcasts en-
tirely, except within a LAN (a network
segment), where a protocol called ARP
is used to define the relationship be-
tween IP addresses and hardware net-
work addresses. Since there are nobroad-
casts, you have to know the IP address of
a machine to which you’re addressing a
message. This is no hardship, though,
as you assign addresses yourself.

You can picture IP addresses as postal
addresses, with subnet numbers identi-

The Computer Journal / #71

fying streets and the lower part (masked
off by the subnet mask) as a house num-
ber. The subnet number gets your copy
TCJ to the right street, and the rest of the
address gets it to your house. No shout-
ing is necessary to get mail delivered
(usually).

In a larger network you may not need to
know another machine’s IP address; you
can look it up by name in a name server
(usually referred to as a Domain Name
Server or DNS).

Those of you who are setting up Tiny-
TCP LLANs should begin considering how
to structure your subnets. If you use
Tilmann Reh’s RS-485 bus, the machines
will all be on a single subnet; if you use
point-to-point SLIP, you may want to
connect all of your machines to a ma-
chine with lots of serial ports (such as an
S-100 machine). Tiny-TCP itself does
no routing; I plan to write a simple rout-
ing program.

Linux happenings

Linux news is now available using Mo-
saic, aka WWW, aka HTTP, a graphical
interface for the Internet. I haven’t ex-
perimented with Mosaic yet. It seems
that HTTP defines a file format which is
something like SGML (Standard Gener-
alized Mark-up Language) used in ISO
Open Document Architecture (ODA),
but, of course, different. (SGML is a
standardized file format for text and
graphics which, naturally, nobody uses.)
While HTTP is standardized and well-
documented, like everything else on the
Internet, the people who’ve written pro-
grams for viewing it have taken a nasty
commercial turn, and are all shareware
with no source code available.

One thing I've always liked about the
Internet and its related communities is
the freeness of everything. All technical
specifications, for example, are free for
the asking; software is all in source code
form, all free. The Linux world is like
that too: You get all the source. Not just
samples, not just drivers, all. As in
everything.

Here is the HTTP address for Linux news
(Washington, DC area):

http://zerosys.tsl.imssys.com/
dclinux.html

Littlenet hardware

Tilmann Reh and 1 have had further
discussions of the Littlenet hardware
design presented in 7CJ #69. One im-
portant feature is optical isolation of the
bus. However, some computers, such as
the Scroungemaster, have RS-485 ports
already, but without optical isolation.
Tilmann writes:

“Those people could:

a) use the non-isolated RS485. With
only one of those at a net, there will be
no problem if the YAWT is located
nearby. However, there might be a soft-
ware problem since then the ‘FF’ code
will be sent which isn’t the case with my
circuit (where the driver gets active *af-
ter* the start bit of the ‘FF’).

“b) use a standard RS-232 instead, and
connect to our isolated interface.

“c) isolate the RS-485 in a similar man-
ner like our interface. Thisis somewhat
difficult since they need some direction
information which is not delivered by
the interface itself (perhaps there are
additional handshake lines which might
serve that purpose).”

So there you have it. If you decide to
bus-connect a lot of RS-485 ports on
existing computers, remember that you’re
sharing signal grounds between them
and creating a potentially threatening
noise path. I’ve read about people using
interfaces like this to connect to weather
sensing boards in their attic; 1 guess
these people never have lightning strikes
nearby.

As far as the bus itself, after discussing
many, many options, we’ve settled on
using twisted-pair ribbon cable with p-
pin mini connectors (DB-9P) connected
every so often. This cable usually has a
one-inch straight section every foot or so
for crimping. This way, you can discon-
nect computers in the middle without
affecting the bus. The bus will be pow-
ered by a wall transformer (YAWT) at

Continued on page 16

13

pecial Feature

Power Supply Basics

by Ken Smyth WA6HDZ

Power supplies are a boring part of a
computer, there’s no nanoseconds,
megahertz’s or three-letter acronyms
(TLA’s) involved; and the latest soft-
ware may run perfectly fine with one
made three years ago. Obviously not a
topic you'll see in a mainstream com-
puter magazine that plugs expensive
goodies! But your computer stops cold
when that power supply dies or misbe-
haves, so a simple lesson, with a little
history, about what’s in that box with all
the wires coming out is useful.

A power supply is in the computer to do
two things: first, to reduce the relatively
high voltage AC from the power line to
a low DC voltage that can be used by the
computer components; and second, to
isolate the computer (and computer op-
erator) from any transients or noise on
the power line that could interfere with
. proper operation. The isolation function
seems a little trivial for hobbyists, but
remember that messing up just a few bits
at the wrong time will trash quite a lot of
data. (This possibility is very worrisome
to financial and accounting users, and
the makers of add-on “surge-suppres-
sors” and similar products do quite a
good business.) Ideally, a power supply
should convert the voltage without los-
ing any energy in the process; or, in
other words, be 100% efficient. All but
a tiny bit of the AC going into your
computer is turned into heat, someplace,
and we want that energy to go towards
doing something useful instead of being
wasted along the way. This isn’t just
ecology, its practical engineering: en-
ergy lost becomes heat, which must be
gotten rid of, and the best way to get rid
of it is to not produce it at all. Although
modern integrated circuits consume less
power for a given function than those

14

designed ten years ago, there are more
functions on a given area of silicon, and
these are running at higher speeds, and
as a result computers today require more
DC power. This evolution pushes power
supplies to become increasingly efficient
and continually smaller in size for a
given power output.

You’ll hear the terms linear and switch-
ing used in describing power supply cir-
cuitry. Early microcomputers used lin-
ear power supplies, the term “linear”
referring to a transformer-rectifier-filter
circuit topology. A transformer is a
device with two (or more) windings made
up of wire wrapped around a core of
magnetically conducting material, such
as iron or steel. The principle of opera-
tion of a transformer is very simple; the
alternating current (AC) in the primary
winding induces an alternating mag-
netic flux in the core which in turn in-
duces a current in the secondary wind-
ing. The two currents will be electrically
isolated from one another, and the ratio
of the primary and secondary voltages
will be equal to the ratio of the number
of turns of wire on the two windings.
For example: to make a transformer step
from 110 volts to 10 volts, the trans-
former needs a turns ratio of 11:1 from
primary to secondary, that is to say, 11
times as many turns on the primary (110
volt) side as there are on the secondary
(10 volt) side. Current will be trans-
formed, too, but in the opposite direc-
tion. In the example, if we draw 5 amps
from the 10 volt output, the input side
will draw 5/11 amps from the line. These
linear relations give this topology its
name! Since a transformer cannot pro-
vide any power gain, the product of volt-
age and current,V times I, is equal for
both primary and secondary circuits; in
this case, 50 watts. A transformer is the

electrical equivalent of a lever, but it
will only work with alternating currents.
Additional voltages may be obtained by
adding more secondary windings, in
which case the total primary power is
equal to the sum of all secondary pow-
ers. All of this assumes 100% efficiency,
but small transformers actually do oper-
ate in the 80% range, and the BIG ones
on power poles can operate at nearly
100%. As the current requirements for
a transformer increase, the winding wire
size and the size of the core also both
increase, which means additional size
and weight: two prominent features of
linear supplies which are found in many
“classic” computers. Except for the volt-
age regulator, you could change some
component values and voltages;, swap
the silicon rectifiers for vacuum tubes,
and find the basic circuit in your 1957
(or '37")Radio Amateur’s Handbook.

The output of the transformer will go to
a rectifier to turn the AC into a “pulsing
DC” waveform, be shunted by a large
capacitor to smooth out the waveform,
and finally pass through a regulator to
hold the DC output voltage constant over
a range of load demands. These output
stages, especially the regulator, are where
the inefficiencies in linear supplies start
to become significant. A rectifier drops
at least 0.7 volts, and most linear regu-
lators, almost all of those found in old
computer supplies, require at least a 2.5
to 3 volt “headroom” difference between
input and output voltage to operate reli-
ably. For a 5 volt/10 amp supply run-
ning at maximum rating, this would
mean that for 50 (5 x 10) watts output
you need to put 82 watts ((3.2 x 10) +
50) into the rectifier, and wili consume
100 watts off the AC line. This is only
50% efficient, but the overall approach
is straightforward, and can be built

The Computer Journal / #71

cheaply with very generic parts. The
low cost of parts makes linear power
supplies still the most cost effective
choice for many low power applications,
Those small “AC Adapter” black cubes
that plug into wall sockets are good ex-
amples of bare-bones linear supplies.

-S100 bus computers used a variation on
linear design: rather than have a large
regulator to handle the maximum cur-
rent that a box filled with cards might
need, the main power supply provided
unregulated DC at nominal levels of 8
and 16 volts, positive and negative. Each
plug-in card then had its own small regu-
lators on board to feed the circuitry on
that card alone. These computers were
designed before fast CMOS logic was
available: the circuits used TTL family
logic IC’s and NMOS memories and
often required two or three amps of +5
VDC per card, along with other volt-
ages. TTL IC’s have a relatively con-
stant current drain regardless of clock
speed so even at 2 MHz a machine needed
alot of current. (The CMOS logic preva-
lent today draws current roughly
proportional to the clock rate, so a de-
vice on a 2 MHz clock will draw about
a tenth the current of the same device on
a 20 MHz clock.) Cards were also quite
expensive, so you were not likely to stuff
your box with (gasp!) 64K of memory
unless you were quite well financed.
Putting the regulators on the cards was
a cheap way for the system manufactur-
ers to get around designing costly high
current regulators, and also allowed the
heat generated by the linear regulation
scheme be spread more or less around
the cabinet rather than be concentrated
in one spot, probably a good idea; but it
meant that considerably more of this
heat was generated than would be with
a different scheme. The cards them-
selves almost always used the “three-
terminal” fixed regulator IC’s (LM340-
XX or uA78xx series) which are good for
about one amp output each if, a big if,
mounted with a heat sink or other means
to keep the temperature within safe lim-
its. These regulators had abuilt in “ther-
mal shutdown” function which would
turn the output “off” when the regulator
got too hot, resulting in one of the clas-
sic “sometimes it works, sometimes it
doesn’t” problems with S100 systems.

The Computer Journal / #71

Cards requiring more current had more
regulators, so you could easily run out of
space for regulators on a card before you
ran out of space for functional IC’s.
Meaning, of course, that you needed more
cards in your computer to do anything!
A single packed S100 card could require
25 watts all by itself, with 10 watts of
that being burned off by the linear regu-
lators; so a simple computer by today’s
standards with a CPU, disk controller,
parallel and serial ports, ROM card and
four 16K memory cards could draw 200
watts, not including the disk drive itself.

For S100 computers to give way to the
“all-on-one-board” (examples: Xerox
820, Kaypro 1I) variety, power supplies
had to get smaller and more efficient, so
designers looked to “switching” tech-
nology. Switching supplies achieve high
efficiency, low weight and small size at
the expense of circuit complexity by us-
ing a transistor to turn the input current
on and off at a rate much faster than the
60 Hz line frequency so that energy can
be stored as magnetic flux in a relatively
small inductor. The charge and dis-
charge of this inductor is controlled by
regulator circuitry to give the correct
output voltage under a predetermined
range of load current requirements. A
switching supply running off the AC
power line usually has some sort of trans-
former to provide isolation, but due to
the high switching frequency this is a
much smaller and lighter part than the
60 Hz transformer needed in a linear
supply, and it may also function as the
switching inductor. Switching supplies
may also be designed to run off of straight
DC which makes them the obvious choice
for battery powered equipment. This
approach is very “manufacturable” in
large quantities because the complex
analog circuitry that controls all of this
can be placed on one or two IC’s. All
the switching and inductive discharge
creates more electrical noise than a lin-
ear supply. This is not a problem for
computers or other digital circuitry but
it means that extra filtering is needed
when switching supplies are used for
critical analog applications, negating
many of the size and cost advantages.
The added circuit complexity makes
switchers less economical for low power
applications, but the improved efficiency

and smallcr size compared to linear sup-
plies has made them the predominant
technology for medium and high power
applications in computers. As practical
switching speeds increase with better
transistors and control schemes, the
magnetic components needed for a given
power level shrink and so the size of
these supplies gets smaller. The reduc-
tion in size of supply components and
the increase in DC current requirements
for PC and Macintosh style computers
have roughly balanced themselves out,
so the 250 watt supply in a Pentium
machine fits into the same or less physi-
cal space as that 63 watter in the old
IBM-PC. This simplifies replacement
and upgrading. The improving technol-
ogy is also constantly making older parts
obsolete, so finding a replacement for
that ten-year-old IC or transistor that
went bad can often be a problem. With
new supplies selling for around thirty
dollars, its often more practical to dis-
card a defective one rather than pay some-
one to fix it.

PC clone supplies are often spec’ed in
terms of watts, like “150 watt supply” or
“220 watt supply”. This is a handy way
to express the total output power avail-
able if all the various voltage outputs
(for PC clones: +5,-5, +12, and -12 voits)
are delivering their maximum rated cur-
rent, but it doesn’t say anything about
how much AC line power it actually
consumes to produce that output, or how
that power is distributed between the
output voltages. Modern logic IC’s used
in today’s PC’s are designed to run off of
+ 5 VDC supplies exclusively, with a
few also requiring +12 VDC, but earlier
devices often required -5 and -12 volts.
Special interface cards for controlling or
monitoring external devices and disk or
tape drives may also require more cur-
rent on different voltage lines. All of
this complicates the process of replacing
a power supply on an old/weird com-
puter, so in those cases; it is best to
ignore the “watts” label and make sure
that the new supply provides at least as
much current on all voltage outputs as
the old one did. Replacing the supply in
a PC clone or Macintosh computer is
mostly a matter of being certain that the
new supply fits in the old box and has at
least the same “wattage”, fortunately the

15

power supply case sizes for PC’s are
standardized to the point where this is
not a big concern. Replacing a supply in
an old or non-standard computer is more
of a problem. In these cases, look for a
new supply that has the same voltage
outputs, and the same or higher maxi-
mum current on each voltage. If you’ve

. added a lot of things on to your com-
puter, allow extra current for them; many
early computers had very little margin
left in the hardware design by the time
the accounting department got through
-with it!

~ Testing a suspect supply requires a large
resistor to simulate the load of the com-
puter, and a voltmeter. (Good voltme-
ters can be had for about $30 to $50 at
Radio Shack if you don’t have one on
hand. For this use, the exact type isn’t
important.) The load resistor is impor-
tant since many switching supplies re-
quire a certain load on the “primary”
(one providing the most current) output
for the regulator to work properly: with-
out a minimal load a 5 volt output may
go up to 15 volts or more! Use Ohm’s
law to pick a resistor that will draw

about 20-40% of the rated current on the
5 volt output, and not overheat with the
power you are dissipating. Remember
the formulas: R=V=I and P=VxI. To
draw 5 amps at 5 volts, for example, you
will need a 1 ohm resistor rated at 25
watts. (If you don’t have a power resis-
tor available, housechold incandescent
light bulbs will work. A 100 watt bulb
is around 10 ohms when cold. I haven’t
tried it, but a non-halogen auto headlamp
should work as a good power supply
load. Just remember that light bulbs
greatly increase in resistance as they heat
up!) Connect the load across the output,
and plug the thing in. If you hear a loud
buzzing or humming sound, unplug it
IMMEDIATELY and check the connec-
tions again. Measure the voltage across
the resistor terminals, and between the
other voltage outputs and the common
(“ground”) terminal. If the outputs are
all within 10% of the rated voltage, your
supply is probably good. Switching sup-
plies often have a small glass fuse buried
inside; if the supply is totally dead (fan
not running) that’s worth checking first.
Replacement fuses are also a Radio Shack
item, just be sure to get the same amper-

age rating as the old one. If the supply
“went down in flames” (you’ll know what
I mcan when you open one of these!) its
time for a ncw one. Switching supplies
are not casy to repair, for reasons ex-
plained previously, but sometimes the
probiem is something obvious. Linear
supplies, on the other hand, are pretty
easy to diagnose if you have some knowl-
edge of how they work.

For more information, you can look up
the application notes in the Motorola,
National, or TI handbooks on voltage
regulator IC’s. Radio Shack has a small
book titled Building Power Supplies
which also contains good basic informa-
tion, as well as circuits for building small
supplies using Radio Shack parts. Cur-
rent editions (not the 1957) of the afore-
mentioned Radio Amatuer’s Handbook
have chapters on power supply theory
and construction; check out your local
public library or ham radio store for this
one. Knowing a little about how a power
supply works can save you a little time,
frustration, and sanity; especially when
its 10:30 PM and things suddenly go
pfft.

Real Computing
Continued from page 13

one end, supplying unregulated power;
. each interface will have a small regula-
tor (78L05).

The pinout will tentatively be like this:

Signal: DB-9 pin: Wire number:
GND 1 1
GND 6 2
Note: Pins 1 & 2 are a pair
GND 2 3 3&4,
vee 7 4 5 & 6 etc.
A 3 5
B 8 6
GND 4 7
vCC 9 8
GND 5 9
10 N/C

Of course, you can still use SLIP using
point-to-point links if you like. Tiny-
TCP will not see any difference. Using
the bus, you will receive messages that
are intended for other machines; these
are easy to ignore. Any hex FF byte
which may come in between messages is
easy to ignore.

16

Next time

Sun used to have a slogan, “The Net-
work is the Computer.” How do you
exploit synergies of multiple computers
working together? We’ll examine some
approaches for keeping all of our tireless
workers busy. Plus, some news relating
to JPEG, the International JPEG Group,
and the unnecessary evil of software pat-
ents.

Where to call or write

Real Computing BBS or Fax: +1 703
330 9049

E-mail: rickr@aib.com

Mail: 8329 Ivy Glen Court, Manassas
VA 22110

IP addresses: hostmaster@internic.net
Network Solutions, InterNIC Registra-
tion Services

505 Huntmar Park Drive, Herndon VA
22070. Fax: +1 703 742 4811

(" LINUX $57.95)
Slackware Pro 2.1

New Release
Includes 2 CD-ROMs
and a 600+ page Manual
A ready-to-run multitasking UNIX
clone for 386 and higher PC compatibles.
TCP/IP, C, C++, X Window, complete
Source Code, and much, much more!

JUST COMPUTERS!
(800)800-1648 (707)769-1648 Int’l
FAX (707)765-2447
P.O.Box 751414 Petaluma, CA 94975-1414
E-Mail: sales@justcomp.com
Visa/MC/Int’] Orders Gladly Accepted
For a catalog, scnd c-mail to: info@justcomp.com

Include “help” on a single lme in message.)

The Computer Journal / #71

Mr. Kaypro

By Charles B. Stafford

RegUIar?'Fé’éthire
Kaypro Su:pportl .
Product Options

In The Meantime...

Much has happened since last we met,
the price of new processors has been
dropping steadily, electronics manufac-
turing has increased its migration back
to the U.S., and the American Populace
has spoken. This is still being written on
a K-28, a model only manufactured here
at Bullmoose Ironworks &
Woodbutchers. Judging by the mail, there
are several new readers who are still in
the dark about Kaypro models and modi-
fication possibilities and difficulties. We
will therefore pause in our continuing
series of transmogrification construction
projects and address the subject of what
can be done, cost effectiveness and dif-
ficulty.

While Back at the Ranch...

‘As of last issue, the Personality/Decoder
Board project was for the most part fin-
ished. Since then BI&W has built two
more and it gets easier each time. Mod-
¢ls have been done with both direct plug-
in and ribbon cable connections, and
perform equally well. For those who do
not require a hard drive, but would like
the option of multiple high capacity
floppy drives, the decoder for the
MicroCornucopia Rom is planned for
the near future, in two versions, one on
the mother-board and one outboard like
the last project. BI&W would also like to
hear from those who are either in
progress, or who have finished the last
project, especially if you have sugges-
tions on how to make it easier. A side
note, the prototype board and all the
components for the Personality/Decoder
board project were procured from HSC
Electronics here in Sacramento. There
must be other suppliers, but if there is

The Computer Journal / #71

enough demand, BI&W will package
and ship “project parts kits”.

When a Kaypro is not a Kaypreo...

When the Kaypro was originally con-
ceived, it was intended for technicians,
who, it was thought, would take it into
the “field” and would most probably want
to modify it for their own special pur-
poses. Thus it was born with the alumi-
num case, which has become a hallmark
of sorts. There have been, over the years,
basically three models; the “I/IV”, a
two floppy configuration; the “10”, a
hard drive version and the “16/16II”, an
MS-DOS (gasp) variation. Within these
basic groups, there have several varia-
tions, mostly designated by year and/or
the letter “x”. All of the with the excep-
tion of the very early “KayComp” and
the very early”K-II"’s use a standard IEC
power cord, and all except the “Robie”
and the “K-4x” use standard double sided
double density diskettes. The K-IIs how-
ever only wrote on one side of the dis-
kette.

The early 2 floppy models, usually des-
ignated as 83sran at 2.5 MHz, while the
later ones (84s) run at 4.0MHz, thus
suggesting a possible hardware “up-
grade”. The fourth model issued,(after
the KayComp, the K-II, and the K-IV,)
was the K-10, which had a 10 Mb hard
drive, but with the exception of the hard
drive interface, essentially the same
motherboard, and processor, thus sug-
gesting another hardware “upgrade”.
Wonder of wonders, this same model
also included rudimentary
“graphics”(perhaps another hardware
“upgrade” ?7) Then came the age of
“Standardization” and several attempts
at the “Universal” motherboard using

which, any model could be built. Most
of the 84 serics is based on this concept,
which explains the unused outlines and
solder pads in many of your machines.
There were also several attempts at a
“universal” BIOS, resulting in CP/M
2.2d.£,2 versions of g,h, and u. There is
an easy way to “standardize” if you have
multiple machines of the same year,
however.

More on that later.

Meanwhile back at the firmware ranch,
things were not standing still. Several
very ingenious and talented people had
discovered what they considered short-
comings in the original BIOS and were
busily concocting, producing, and mar-
keting new firmware (i.e. new EPROMs).
Among these were Advent Products,
MicroCornucopia, and Barry Cole to
mention but a few. They issued “new
and improved” versions of both the
“monitor rom” and the “character rom”.
Perhaps the first was the
MicroCornucopia character rom for the
early K-IIs. The early computers, Kaypro
included, had character sets thar lacked
“true descenders”, you know, those little
tails on the lower case “y”, “p”, & “g”.
As issued, the entire character was “above
the line” and this new rom fixed that.
The Kaypro “as issued” also had a Greek
character set in the character rom for
scientific purposes, and the next new
rom, as “screen blanking” became popu-
lar, substituted blank spaces which were
called, to become a quick easy way to
handle that little chore.

As you can see, the possibilities are lim-

ited only by your own ingenuity, and/or
your pocketbook and are generally di-

17

vided into three categories; hardware,
firmware, and software.

Hardware:
Reset button and brightness control

The most basic and easiest changes are

. to relocate the “reset” button and the
brightness control to the front panel for
easy access. Neither change requires
any real electronics expertise, exceptional
manual dexterity, or significant amount
of money. The main ingredients are 1.
a way to make a 3/8" hole, 2. a small
‘amount of small stranded insulated wire
(for the brightness control), 3. some duct
tape to capture the metal shavings, and
4. a modicum of care.

K-II to K-IV conversion

The 83 K-IIs “as issued” stored data on
single sided doudle density diskettes
(190kb nominally 200kb hence the 11
designation), while the K-IV, essentially
the same machine, used double sided
double density diskettes (390kb nomi-
nally 400kb, hence the IV). It didn’t
take long to figure out that with dis-
kettes at $1.00 each, a II to IV conver-
sion would pay for itself in short order,
if it could be done easily. Again
MicroCornucopia to the rescue. This
.conversion has been further refined and
is discussed at length with detailed in-
structions in Issue 63 of TCJ.

Again, no real expertise is needed, just a
few IC sockets, some wire or Radio Shack
test clips, and a K-IV monitor rom or
suitable substitute (MicroCornupia,
TurboRom, Barry Cole, etc).

Quad density drives

There are always those who can’t get
enough, and for them Quad density drives
were invented. They mount in the same
space as a 390kb half height drive and
have a 794kb capacity. They also use
about 1/3rd the power that the original
390kb full-height do, and four of the
will fit into the same space as two of the
originals, increasing the on-line storage
capacity by a factor of four to 3.2mb and
decreasing the power demand by 1/3rd.

18

If it sounds like a great modification,
that’s because it is. Physical installation
is easy, just measure carefully, use the
duct tape, and make 8 small holes in the
drive enclosure. Then add two more
connectors to your drive ribbon cable
(they’re available from Radio Shack, if
you have nowhere else to turn) and use
2 %Y cables for the power. YOU WILL
NEED A NEW MONITOR ROM AND
A DECODER BOARD OR MODIFI-
CATION to use these drives, however.
The original BIOS in the monitor rom
does not know about Quad density and
there are only two drive select lincs
implemented in the Kaypro design. The
new rom takes care of the former, and
the decoder board or modification takes
care of the latter.

Hard-drive Conversion

When the K-10 was issued with a 10mb
hard drive (more power!), the more com-
petitive folks with IIs and IVs started
looking for ways to keep up with the
Jonses, without throwing away their pre-
vious investment. Fortunately, there were
several respondents to this need. Among
them were MicroSphere in Oregon,
Advent in southern California, SMT in
Texas to mention just a few. One solu-
tion involved an outboard drive and en-
closure with separate power supply that
connected to the parallel port and al-
lowed your printer to be connected as
well. The Advent and MicroSphere so-
lutions involve a “daughter” board which
plugs in between the Z-80 and its origi-
nal socket. These solutions allow you to
keep the machine “portable” (luggable
7) as a single unit. The MicroSphere
Winchester Connection, and the Advent
Host Interface board are still currently
available in limited quantities. Both re-
quire use of a Western Digital 1002-05
or 1002-HDO hard drive controller, also
available in limited quantities. The Ad-
vent has a Real Time Clock option, the
MicroSphere does not. Both allow boot-
ing from the hard drive if the monitor
rom has that capability. The
MicroSphere comes with drivers that
allow booting from a floppy using the
stock Kaypro rom, installing the drivers,
and then accessing the hard drive. The
Advent Host Interface board requires use

of the Advent TurboRom. Installation is
straight forward, the mother-board is
removed to allow physical mounting of
the controller to the side of the drive
housing. A “Y” cable is used to split the
power from one of the floppy drives for
the controller, and another is used to
power the hard drive itself. The hard
drive is usually mounted in the space left
empty when the original full-height flop-
pies are removed and half-height drives
installed.

Speed-ups

As other machines entered the market,
and tinkerers became familiar with the
inside of the Kaypro, there was a cry for
“More Speed”. Both Legacy and Ad-
vent responded with add-in boards and
so did folks at MicroCornucopia. The
products from Advent and Legacy, while
elegant, were pricey. The modification
designed by MicroCornucopia, in sev-
eral variations, was fairly easy and cost
practically nothing. It appeared in
4.0MHz, 5.0MHZ, and 7.0MHZ ver-
sions, and the 5.0MHZ has been re-cn-
gineercd for ease of construction and
installation and was published in TCJ
issue 61.

External Monitors

When demonstrations of software and
hardware modifications are conducted
at User’s Group meetings, or other gath-
erings, the Kaypro’s screen size and lo-
cation become very inconvenient. The
ideal solution would be a large external
monitor. There were commercial solu-
tions, not now available.
MicroCornucopia came through, how-
ever, and their solution is being exam-
ined for future re-engineering and pub-
lication.

Firmware:

This is an interesting term, used to de-
scribe software captured in permanent
or scmi-permanent memory (i.e. read-
only memory, erasable read-only
memory, or some variation thereof, in-
cludes GALs and PALs, etc. for you
purists). Currently available options
include the MicroConucopia Pro-8 Moni-

The Computer Journal / #71

tor Rom, Pro-884, Pro-884 Max, and the
Advent TurboRom in ’83 and ’84 ver-
sions.

MicroCornucopia
Pro-8 Monitor Rom

As you might guess, this rom allows use
of Quad density drives, as well as blink-
ing block cursor, user-definable screen
dump character, selectable slow or fast
step rate for each drive, automatically
figures out what kind of drive you're
using, ignores nulls on the command
line, allows use of 1-4 drives of 191k,
390k, 784k in any combination. Use of
3 or 4 drives requires the 4-drive de-
coder board or modification.

Pro-884 Monitor Rom

All of the above, but for the 84 ma-
chines.

Pro-884 Max Monitor Rom

All of the above, for 84 machines, with
ZCPR1 in rom to allow warm boots with-
out a bootable disk mounted.

Advent TurboRom

This is the only one of these four that is
“hard drive aware”. It will find and boot
from a hard drive if there is onc in-
stalled. It will also allow cursor configu-
ration, blinking or steady, line (varying
widths) or block, user selectable screen-
dump character, keyboard type ahead
buffer and keyclick disable/enable, cur-
rent hour and minute display on the
25th line if there is a clock installed,
supports the Kaypro clock as well as
others, drive deselect timing method and
interval selection, automatic execution
of preselected programs on boot (such as
NZCOM, see software, below), select-
able boot drive other than a:, and use of
1-4 drives of any capacity from 191k
through 784k in any combination as well
as a hard drive. NOTE use of 3 or 4
floppy drives requires the Advent Per-

The Computer Journal / #71

sonality/Decoder board. (Construction
project in the previous two issues of TCJ).

A note on standardization

All of the "84 Kaypros (except the Robie
and 4x) will run CP/M 2.2f with the
TurboBios when the TurboRom is in-
stalled. This is an easy way to standard-
ize operating systems if you have mul-
tiple Kaypros.

All of these roms are compatible with
both the MicroSphere and Advent hard
drive installations, but only the
TurboRom will boot from either instal-
lation. All of these roms allow up to 4
floppy drives of various capacities, and
all will run at 4.0MHz or 5.0MHz.

Selection of firmware will depend on
previous sclections of hardware. If all
you want is increased floppy capacity,
the “biggest bang for the buck”, is to use
2 or 3 quad density drives, I double
density drive (for data interchange capa-
bility), one of the MicroCornucopia roms
and the 4-drive decoder board or modi-
fication. On the other hand, if you have
or want a hard drive installed, the Ad-
vent TurboRom is the way to go.

Software:

On the operating system front, unlike
Bill Gates’ minions Digital Research was
firmly in control of CP/M 2.2 (courtesy
of our copyright laws) and emphatically
wasn’t doing anything in the way of
improvements. Fortunately, hackers
being hackers, a fellow named Richard
Conn came up with ZCPR (Z-80 Com-
mand Processor Replacement) and re-
leased the source code into the “Public
Domain” which meant anyone could
have it and use it for free. The first
version was ZCPR, later dubbed ZCPR1,
when ZCPR2 was relcased. ZCPR made
the “user” command in CP/M obselete,
moving between user areas was accom-
plished by issuing a command in the
form “du:” return, where “d” is the drive
letter, and “u” is the user number such
as “b12:” return. ZCPR2 added addi-
tional embedded commands, and con-
tinued to evolve until, courtesy of Joe
Wright and Jay Sage, the current ver-

sion is NZCOM. The best part is that
although previously the user had to edit
source code and complie and overlay the
CCP, it is now self-installing, and a lead-
pipe cinch to customize.

NZCOM is available from Sage Systems
East whose advertisement is in this issue
and most others at a nominal cost and is
without a doubt the most cost effective,
best single upgrade available.

For those of you who are interested, the
BI&W K-28 runs at 5.0MHz, sports 2
784k drives, 1 390k drive, and a 20mb
hard drive, and runs NZCOM with
named directories on boot. It also has
provision for an external monitor for
club demonstrations and an amber CRT.

Preview of Coming Attractions

As previously mentioned, next issue will
resume the construction projects. In fu-
ture issues, you will see both *83 and "64
external monitor connections and the
MicroCornucopia decoder board and al-
ternative mother-board modification.
Another planned project is “The Begin-
ners Guide to Trouble-shooting the
Kaypro”, which will probably be pub-
lished one chapter at a time.

end..

WANTED

TCJ Needs an FTP site with
1 Gig or more space to
collect OLD BIOS source files
for possible CD-ROM.
Accessing same file space by regular
BBS is also very dersirable!
If you have the facilities and
would like to help continue
the computer restoration of
older systems, please contact:

Bill Kibler
Editor
The Computer Journal
PO Box 535
Lincoln CA 95648
B.Kibler@GEnic.geis.com

19

Regular Feature

- 68xx/68xxx Support

. *“_f‘:;,s_?QQ?Assembly & Flex

Small System Support
By Ronald W. Anderson

My Progress in C

A couple of times ago I mentioned that I was beginning to
“become more comfortable with C, and able to get my programs
to work much more quickly, having avoided the really dumb
errors a beginner makes in C. What it took was not a transla-
tion of a program in another language, but starting from
scratch on a significant program (presently 31 pages of source
listing plus some from scratch font bitmap libraries). Starting
from scratch you feel free to experiment more. I've learned
most of the features of C including the use of Structures and
Unions, and further, I feel comfortable using them. I don’t
have to run to a reference book to look up the syntax of every
little thing I want to do.

Assembler Part 3

This time I would like to use a few more of the instructions of
the 6809. It is about time we got to look at a loop and some
branching instructions. I thought perhaps we could allow the
user to input a number (of course as ascii digits from the
keyboard) and output a binary representation to the screen. Le.
input 100 and the output will be 0000 0000 0110 0100, Hexa-
decimal 0064, which is the same as decimal 100. 64 + 32 + 4.

The algorithm for this is somewhat as follows:

RESULT = $0000
CH = GETCHAR
WHILE CH IS A VALID ASCII 0 THROUGH 9 DO

BEGIN
CH = CH AND $0F (BITWISE AND)
MULTIPLY RESULT BY 10
ADD CH TO RESULT
CH = GETCHAR
END
PRINT CRLF
FORN=1TO 16
BEGIN
IF RESULT AND $8000 NOT ZERO PUTCHAR ASCII 1
ELSE PUTCHAR ASCII 0
ARITHMETIC SHIFT RESULT 1 BIT POSITION LEFT
END
PRINT CRLF

We won’t check (at least for our first try) to see that the input
number is less than 32768. We'll rely on the user to do that for
now.

20

Here is the program source listing with comments, followed by
the assembler output listing. First a comment describing the
program

* PROGRAM TO INPUT AN ASCII NUMBER LESS THAN 32767
* AND CONVERT TO BINARY.

An assembler directive to put the name ASCTOBIN on each
page if we use the page option of the asscmbler.

NAM ASCTOBIN

Here is a new assembler directive. FDB means Form Double
Byte. We could use RMB 2 here to reserve a 16 bit variable
storage space, but FDB allows us to INITIALIZE the value in
NUMBER, in this case to zero. It saves us three instructions
that would be required to store zero at that location (CLRA,
CLRB, STD NUMBER).

NUMBER FDB 0
TEMP RMB 1

Another new Assembler directive is FCC (Form Constant
Character(s)). A character string may be delimited by quotes or
any other punctuation character not included in the string. 1
frequently use slash / or backslash \. The 4 is the string
terminator used by FLEX. The assembler allows a string of
bytes outside of the delimiters. Frequently one would use $0D,
$0A, $04 to add a crlf to the string.

PROMPT FCC “INPUT AN INTEGER < 32767 “ 4
* FLEX EQUATES

GETCHR EQU $CD15

PUTCHR EQU 3CDI18

PSTRNG EQU $CDIE

PCRLF EQU $CD24

WARMS EQU $CDO03

Pstrng wants X pointing at the string in memory. It outputs a
CRLF and then the string.

START LDX #PROMPT
JSR PSTRNG

Now we start a loop to get characters from the user.

LOOP JSR GETCHR
CMPA #0

if the code is less than the ascii zero code $30, or if it is greater

The Computer Journal / #71

than the ascii 9 code $39, it is not a valid digit and we are done
inputting the number to be converted.

BM1 DONE if it is less than zero we are done
CMPA #9
BGT DONE ifit is greater than 9 we are done

If it was a valid digit we got past the branch instructions. Now
we “AND off” the high order nybble and what is left is the
binary code for O through 9.

ANDA #S$0F
Tuck it away for later.
STA TEMP

This seems like a funny place to multiply by ten since we have
just gotten the first digit and NUMBER must be 0 at this point,
but it makes the loop regular, and it belongs here for successive
input digits. MULTEN is our first example of a subroutine. It
multiplies the value of NUMBER by ten and stores the result
back in NUMBER.

BSR MULTEN

When I first wrote this test program I got some nonsense
results so I put in a couple of lines to output the value of
NUMBER each time through the loop. I quickly discovered
that I had forgotten the ANDA #8$0F instruction above. I left
the instructions in place and commented them out so you could
see the technique.

* THE FOLLOWING TWO LINES WERE USED TO SEE HOW THE
* MULTEN SUBROUTINE HANDLED SUCCESSIVE DIGITS

* JSR PCRLF

* BSR OUTBIN

Now we get our digit that we tucked away before the subroutine
call. This is a good place to point out the necessity of “saving
registers” sometimes before a subroutine call. You will notice
that MULTEN uses both the A and B accumulators for the
multiply operation so anything left in those registers would be
lost.

LDB TEMP

Temp is always a small number 0 thru 9 so it fits the B
accumulator. Before we add it to NUMBER, however, we have
to clear A so we don’t add garbage to it. NUMBER is a 16 bit
number so we must do a 16 bit add and using D is the easiest
way to acomplish that.

CLRA
ADDD NUMBER
STD NUMBER

Now we have the first use of a loop in our assembler programs
so far. We branch back to the label LOOP unconditionally. We
get out of this loop when a non digit is detected, at which point
we jump to the instruction past BRA LOOP

BRA LOOP

The Computer Journal / #71

Here is the destination of the branch out of the get input loop.
This starts the last phase of the program. We have input digits
and in the process converted them to a binary number. Now we
output the number as a string of 0’s and 1’s. We do this by a
BSR OUTBIN subroutine. When we return from the output
routine we return to FLEX.

DONE BSR OUTBIN

JMP WARMS

Here are the two subroutines we used. Previously we had used
only JSR’s to FLEX routines. This time we have written two
of our own. We have the binary representation of our input
number in the variable NUMBER. Here we analyze it one bit
at a time starting at the highest order, and output an ascii 1 or
0 depending on the value of the bit. This code seems a little
redundant. We have coded it in line essentially duplicating the
first loop which outputs the high order byte of NUMBER to
output the second byte. It would be possible at the cost of
increased complexity to keep track of which byte we are out-
putting, and to run through the same loop twice. The point of
this program is not the ultimate compactness, but understand-
ability.

* OUTPUT BINARY NUMBER SUBROUTINE

We're going to use X for a counter to tell us when we’ve output
8 bits from the high order byte, so we preload it with the value
8

OUTBIN LDX #$0008

ACCB is an 8 bit register. When we load it with NUMBER we
get only the high order byte. We would have to load D to get
the whole number. We’ll use ACCB for this so we can use
ACCA to output an ascii 0 or 1.

LDB NUMBER HIGH ORDER BYTE ONLY

The BITB instruction does a mental “AND” of the imediate
value with the value in B and sets the appropriate flags in the
condition code register, i.e. zero and negative if applicable. I
this case we simply want to test the bit for non-zero since if it
is not zero it has to be 1. The first time through the loop we are
testing the highest order bit of NUMBER.

LOOP2 BITB #880

If it is not a zero we want to output a 1 so we branch to label
OUT1

BNE OUTI1

If it was a zero we didn’t branch so we LDA #°0 and output i,
skipping the code to load a ‘1 into ACCA.

LDA #0
BRA SHIFT

OUTI1 LDA #1

If we branched to OUT1 and did the LDA #’1 we simply “fall
through” to this point. If we loaded a ‘0 we branch to this point.

21

SHIFT JSR PUTCHR

Now we’ve output the character that represents a bit of NUM-
BER. We shift the binary representation of NUMBER left one
place, so the second highest bit is now in the high order
position.

ASLB #1

- Decrement our loop count in X, and go around again if X
hasn’t reached zero. We’ll talk more about the LEAX instruc-
tion later. It literally means “Load Effective Address”. The
argument -1,X means to load X with one less than it’s present
value, or to decrement it by 1. The 6800 had the instruction
DEX which the 6809 assembler would accept, but it would
_generate the code for LEAX -1,X. This instruction is more
flexible than DEX because we can LEAX -5,X or increment it
with LEAX 5,X just as well.

LEAX -1,X
BNE LOOP2

After we have output 8 bits, we fall through to here and first
print a space to separate the two bytes of the number.

LDA #820 SPACE
JSR PUTCHR

The assembler allows us to do some limited arithmetic with our
operands. In this case we LDB with the byte AFTER the label
NUMBER, the low order byte of number.

LDB NUMBER+1 LOW ORDER BYTE

Now we do the same loop as above.

LDX #8$0008
BITB #8830
BNE OUT2
LDA #0
BRA SHIFTI
OUT2 LDA #1
SHIFT1 JSR PUTCHR
ASLB #1
LEAX -1,X
BNE LOOP3
JSR PCRLF
RTS

LOOP3

As I said before, this is redundant code and not very efficient,
but easy to understand. Later we’ll talk about what 1 call
“telescoping” the code a bit. To do so we have to have another
variable to tell us whether we are going through the loop for
the first or second time, since at the end of the loop we do
different things depending on the pass.

Now comes the difficult one. The code is small but the opera-
tion is a bit complex. This is essentially an integer multiply
routine hard coded so that one of the operands is decimal ten,
binary 1010. First we move NUMBER into ACCD and shift it
left twice. Recall that there is no ASLD instrution. It may look
like we are shifting in the wrong order, but if you study the
instruction set you will see that this works. ASLB shifts the low
order byte of NUMBER left one position. On an ASL instruc-

22

tion the leftmost bit overflows or rotates into the carry bit of the
processor. ROLA (ROtate Left A) picks up the carry bit and
shifts it into it’s LOWEST order bit. The ASLA instruction
does NOT do this, but simply shifts a zero into the low order
bit. To use ASLA rather than ROLB would be an error and the
routine wouldn’t work properly. Anyway, the combination
ASLB ROLA shifts D one place to the left, effectively multi-
plying NUMBER by 2. We do it again, which multiplies
NUMBER by 4. Then we ADD NUMBER to D again, resulting
in 5 times number. Finally we shift the whole thing left once
more, resulting in 10 times NUMBER, and store NUMBER
back where we got it.

* MULTIPLY BY 10 SUBROUTINE

MULTEN LDD NUMBER
ASLB
ROLA
ASLB X4
ROLA
ADDD NUMBER X5
ASLB X10
ROLA
STD NUMBER
RTS

MULT BY 2

END START

Notice as I said above, that MULTEN wipes out the contents
of both the A and the B accumulators. It was necessary to save
the contents of B before calling this subroutine, and to restore
them after the return.

Neither of these subroutines is called more than once (except
during my debug session). You may then well ask why we
would set them apart as subroutines. Actually we do that for
debug purposes. MULTEN is rather self standing and if we had
a problem with it (I did) we could look at it’s result back in
NUMBER after each call to it. I used that technique and
quickly found my dumb error. (Murphy’s law number 234,
“There is no such thing as a smart error’.)

The output routine worked first try so it didn’t need debug, but
it is a nice self contained module. A better question than why
these are subroutines would be to ask why the first part of the
program isn’t a subroutine “GETCON” for Get values and
Convert them. We could even separate those two functions by
getting the ASCII value string into memory and then convert-
ing it to binary. That would be less efficient but perhaps even
easier to understand.

Let’s take a second pass at the program:

* PROGRAM TO INPUT AN ASCII NUMBER LESS THAN 32767
* AND CONVERT TO BINARY.

NAM ASCTOBIN
NUMBER FDB 0
TEMP RMB1
COUNT FCBO

PROMPT FCC “INPUT AN INTEGER < 32767 “,4

The Computer Journal / #71

* FLEX EQUATES

GETCHR EQU $CDI15
PUTCHR EQU $CDI8
PSTRNG EQU S$CDIE
PCRLF EQU $CD24
WARMS EQU $CDO3

* THIS IS THE “MAIN PROGRAM”

START LDX #PROMPT
JSR PSTRNG
BSR GETCON
BSR OUTBIN
JMP WARMS

* GETCON SUBROUTINE, GETS ASCII STRING NUMBER AND
* CONVERTS TO BINARY STORED IN NUMBER

GETCON EQU *

LOOP JSR GETCHR RETURNS CHAR in ACCA
CMPA #0
BMI DONE IF < ‘0 IT IS NOT A DIGIT
CMPA #°9
BGT DONE IF > ‘9 IT IS NOT A DIGIT
ANDA #$0F IT’S A DIGIT, MAKE IT THE BINARY
VALUE OF DIGIT
STA TEMP SAVE IT

BSR MULTEN MULTIPLY RESULT BY
10 (0 ON FIRST PASS)
LDB TEMP ADD DIGIT TO NUMBER
CLRA

ADDD NUMBER
STD NUMBER
BRA LOOP

DONE RTS

STORE BACK IN NUMBER
GO AGAIN UNTIL NOT A DIGIT

* QUTPUT BINARY NUMBER SUBROUTINE

OUTBIN LDX #$0008
TST COUNT PRESET TO 0
BNE PASS2
LDB NUMBER HIGH ORDER BYTE ONLY IF PASS 1
BRA LOOP2

PASS2 LDB NUMBER+1
LOOP2 BITB #$80
BNE OUTI
LDA #0
BRA SHIFT
OUTI1 LDA #1
SHIFT JSR PUTCHR
ASLB #1
LEAX -1.X
BNE LOOP2
TST COUNT
BNE DONOUT
LDA #820
JSR PUTCHR
INC COUNT
BRA OUTBIN
DONOUT JSR PCRLF
RTS

TEST HIGH ORDER BIT
OUTPUT EITHER 1 OR 0

SPACE

* MULTIPLY BY 10 SUBROUTINE

MULTEN LDD NUMBER

ASLB MULT BY 2
ROLA

ASLB X4

ROLA

ADDD NUMBER X5

ASLB X10

The Computer Journal / #71

ROLA
STD NUMBER
RTS

END START

All I've done here is to make GETCON a subroutine as
mentioned above, making the main program five lines long. It
separates the functions a bit more and makes the program more
modular. I decided to “telescope” OUTBIN by using the vari-
able COUNT to determine which byte of NUMBER to load into
ACCB and then to use it to detmine when we’re done output-
ting. It works identically to the first version. Making GETCON
a subroutine added a BSR and an RTS instruction, and with all
the added code to handle COUNT in OUTBIN, removing the
redundant code made the program three bytes shorter than the
original, at 130 bytes total. If you study OUTBIN in the new
version you will certainly agree that it is a lot harder to
understand than the first version. The program flow is con-
torted.

Just in case you haven’t realized it by now, the subroutine
GETCON is basically doing what INDEC did in the previous
part of this. That is, INDEC grabbed a number as an ASCII
string on the command line of our ADD program and con-
verted it to binary for us. This program prompts for the number
to be input and GETCON does just what INDEC did in the way
of conversion. I mentioned last time that programs tend to be
shorter if you can make use of operating system calls. We could
extend this present program or use all but OUTBIN and make
it a loop to input and sum numbers, in which case it would be
pretty much what we did last time but using our own supplied
routines rather than FLEX calls. Part of my reason for doing
this is to show you that there is nothing difficult or magic about
the built-in FLEX calls. In fact most of them are subroutines
that were needed by the operating system itself. The authors
were kind enough to allow us access to their code and to
document that access for us in the programmer’s guide.

This time I won’t waste space with the assembler output
listing. if you are following this, you can type it in and as-
semble it for yourself.

What have we added to our list of useful instructions? First we
have the two new assembler directives FCC (Form Constant
Character), FDB (Form Double Byte) and it’s smaller version
used for COUNT in the revision of the program FCB (Form
Constant Byte). These are useful for assembling a constant
value or a string value in a program as we have used them here.
FCB and FDB support a list of bytes or words (16 bit values)
separated by commas, or a single value as we have used them.

We’ve used the X register as a counter for a loop.

We’ve introduced loops by means of branch instructions. We
need to discuss the branch instructions a bit. If you have the
folding Motorola instruction set card that SWTPc supplied
with their computers you can look at it and find out which
condition flags are set as a result of each instruction. A com-

23

parison such as CMPA #'9 sets the condition code flags. If the
comparison is equal, i.e. if ACCA contained the code for ascii
9, the zero flag is set. If they are not equal, and ACCA
contained a value smaller than ‘9, the minus flag is set. If
ACCA value was greater than ‘9 neither the minus flag nor the
zero flag is set.

The Motorola card indicates which flags are set and which

-don’t change as a result of each instruction. LEAX -1,X for

example sets the zero flag when X contains zero (or our code
above wouldn’t work).

The various branch instructions test the condition code flags to
decide what to do. BNE branches if the zero flag is not set.
BEQ branches if the zero flag IS set. BGT branches if the
comparison result is greater than zero, i.e. register number was
larger than that to which it was compared. BLT branches Less
Than. BLE branches less than or equal. BGE branches greater
than or equal. BLO and BHI branch if the value is lower or
higher respectively treating the value as UNSIGNED. I have a
hard time remembering which instructions treat values as
signed and which as unsigned so I'll include a table here.

Signed Branch Instructions

BGT Branch Greater Than
BGE Branch Greater or Equal
BEQ Branch if EQual

BLE Branch if Less or Equal
BLT Branch if Less Than
BNE Branch if Not Equal

Unsigned Branch Instructions

BHI Branch if Higher

BHS Branch if Higher or Same

BEQ (works same for signed and unsigned)
BLS Branch if Lower or Same

BLO Branch if LOwer than

BNE (works same for signed and unsigned)

We’ve noted that we can use arithmetic with operands (LDA
NUMBER+1). There is another operand supported by the
assembler. I used it to define the label GETCON at the same
address as the label LOOP. The operand “*” means literally
“this address”. LABEL EQU * assigns the label to the present
program counter location without incrementing it, so the label
at the next line has the same value. In the case of the above,
GETCON is a sensible name for the subroutine, and LOOP is
more meaningful within the routine.

We’ve used the ASL and the ROL instructions. If you have the
Motorola card, these are diagrammed there indicating the
presence of the carry bit in the picture for both instructions.
There is an LSL instruction (Logical Shift Left) which does
exactly the same thing as the ASL (Arithmetic Shift Left).
There are the analogous Right Shift instructions ASR and LSR
which DON’T do the same things. LSR shifts a zero into the
high order bit of the operand while ASR propagates the leftmost
bit to the right. That is, it can divide a signed integer by 2
preserving the negative sign, and it is valuable for that opera-
tion,

24

This example is undoubtedly far from the absolute optimum
program in terms of speed or size. However it is quite small,
you will have to admit, occupying only one disk sector with
about half of it to spare. As long as it converts numbers faster
than you can type them, it is acceptably fast.

1 probably ought to mention something that is obvious once you
understand it and not obvious otherwise. This assembler does
not support what are known as local labels. That is every label
in the program must be unique or the assembler will complain
“MULTIPLY DEFINED SYMBOL”. I used “LOOP” so the
second time I had to use “LOOP2” (or LOOPA or whatever to
make it unique). This assembler also limits labels to six char-
acters so they necessarily become cryptic at times.

If there is anything particularly puzzling about any of this
program I'd be happy to reply to questions directly or in a later
column, or more likely, both. I'll answer your questions and
collect all that might be of general interest and answer them all
in a later column.

Flash

I’ve just found a good reference that outlines the use of a
standard PC printer port for other purposes. It turns out that
there is an 8 bit parallel port that is used to output to the
printer, but it can also be used as an input port. Then there is
a 4 bit output port (5th bit used to enable/disable the interrupt
for the port), and a 4 bit input port.

The book is “Interfacing to the IBM Personal Computer” by
Lewis C Eggbrecht, published v Howard W. Sams & Com-
pany, (C) 1990, The printer port portion starts on page 229. It
is followed by a couple pages on interfacing with the Game
Port. Instructions are explicit enough so you can make use of
these ports easily.

At work I've successfully connected an LCD display controller
to the printer port with enough hardware left over to scan an
8 by 4 membrane switch array. This replaces a $200 “indus-
trial” parallel port board with a $12 “multi-I/O card” that has
two serial ports and a game port as well.

This has just been done, so [am not quite used to the idea of
such an inexpensive I/O. I will be coming up with some
projects using this port. One idea 1 have is “Let’s Build a
Programmable Logic Controller”. The Allen Bradley version
is called a PLC. If you are not familiar with them, these devices
are used in machine control systems to replace a lot of me-
chanical relays. Inputs read switch positions, logic levels from
other devices such as solid state proximity switches, etc. They
perform logic based on the states of the inputs and decide
which output signals (relays) to turn on or off on the basis of
the logic. For example, you want to run a motor using a
“momentary” start button and stop button. The controller sees

1 finish Ron's work on the last column of my Computer Corner,
since I want you to see my comments on a PLC projects.

The Computer Journal / #71

TCJ Center Fold

Special Feature
All Users
Hayes 80-103A Modem

For this issue of The Computer Journal, 1 felt it appropriate to
feature the Hayes S-100 Modem card. Since David Jaffe our
Computer Hero of the year started by turning this card into a
remote system through BYE, it seems only fitting that we
should show you what he had to start with.

As a reader you must remember that the idea that a normal
person could own a modem to talk with their computer to other
computers was a bit of a new thing. We are talking 1977, just
when S-100 was almost the only show in town. I need also
point out that legally you were suppose to RENT a DAA or
Data Access Arrangement which was the phone companics
hardware interface to their equipment. It seems that MA-Bell
was worried you might blow up their master equipment with
your computer system.,

Reading the manual for this card is quite a trip down memory
lane. As a broadcast technician of the day, I often interfaced to
these old DAA’s when doing remote broadcasts. Now days
everyone has FCC approved transformer coupled systems that
are a part of the modem.

The S-100 card can be interfaced as I/O or memory. The /O
is preferred as the memory used up 1024 bytes of addressing.
The interface is rather software simple with only four registers
to deal with. The main device is the TI 6011 UART (or
TR1602, AY5-1013, S1883) and a Motorola MC14412P mo-
dem chip. 300 Baud is the maximum speed.

The major work horse in this unit is the analog separation
system. The system is composed of filters (resistors and capaci-
tors) and analog amps. Since what you get on the phone line
is an audio signal composed of a mark and space tone separated
by 200Hz, the analog devices must be able to see a difference
between these two tones. The seeing of one tone says it is a
mark or one, the other tone a space or zero. For duplex
operation (sending and receiving at the same time) two sets of
frequencies are used (1070 space and 1270 mark for originat-
ing modem, with 2025 space and 2225HZ mark for the answer-
ing modem.) These conversions are still going on today, but
using similar filters all on one chip, and in cases of the very
high baud rates, digital filtering using a DSP system (Digital
Signal Processing).

You can sec and say that it all started here, both for modeming
in general and the Hayes Modems in specific. Since the use of

The Computer Journal / #71

modems was new, Hayes provided sample programing ex-
amples to help you get started. The example in assembly was
a complete terminal program in 1024 bytes for use on your
Altair system (also provided in HEX format for directly enter-
ing the program without an assembler). The assembly lan-
guage program is in 8080 mnemonics, but any processor could
have been used, since nothing on the card is CPU dependent.

The basic use of the card, involves setting the control ports for
the Baud rate, number of characters, number of stop bits. Once
done you load data into the transmit buffer, monitor the control
or status register till the character has been sent, then start
again by inputting the next character. To receive the character
we monitor the status port or register till a flag says a character
is ready to be removed. The read from the data port clears the
flag and we again wait till the next character is received. This
information was provided in the programmable register chart
of the manual. These steps are the same today, whether doing
300 Baud with the old Hayes modem, or 19200 Baud on the
latest modems available.

Real efficient programmers learned about interrupt handling
when they tried to use the optional interrupt control signals of
the board. In the above, our program simply loops and checks
for either empty transmit or full receive registers. Not finding
either causes it to skip over the needed steps, only to recheck
the register on the next pass. Interrupt handling says, we
perform some other operation in the foreground (such as pro-
cessing your last command) while in the background nothing
happens till an actual character is received. Then the processor
stops what it is doing, gets the character, sticks it in a buffer,
flags that the buffer has a new character, and returns the
processor to the previous task as if nothing had happened.
Interrupts can get tricky and few early systems used them, but
this product would support them if ycu wanted to try.

Many of the early companies provided incentives for users to
start using their product. Dave Jaffe got a special treat from
Hayes when he went to visit them. They sent an engineer out
to the airport to meet him. This was due to Dave’s work on a
group buy of cards for the Chicago users group. The object was
getting your hardware to be the main product supported by
software, in this case Christensen’s Modem program and Dave’s
BYE. As we know now, these people did for Modems what
Popular Electronics did for the Altair and S-100 systems,
created a whole new industry.

Center Fold Section 25

h -
115 -2i008) 2
=Zi r
[308 54 o
NOILD3S TViISI0 VvEOI-08 H2Q| oMl ¥10-
prva famo
BLIOE VD TINVY sal
vess ¥0R 0 ¢ O frmnol . 2899 +
L2161 $%42HDQ (5)1HO14A40D ez
= AHMS +
100
o2
LI RIF) 00
982
o+ -1 + soa
- voo
I‘ﬁl 2y virs] T
Xv 3K 5 - €00
Tonn v
! 040
82 Bl v
3XL4+ H
Ad] OFNZAﬁ H 100
298X Sl + z ITE) B i
Laz 29 sHe + § 0oa
4NOTON —ap—rf OXL xob= Tum | 251 I3
SCl 202
Dxrx - axy FRylel thi jl. nﬂ}“
e 4 urenIns +
B
= (o%) omiS +
22 (oL)NI80d +
62 —
TR
AG 4+
3 [o
51 ¢ —m osn
B o9 LNOS +
ONIH - ‘l.wﬂ
9N
ﬂ;L {La)ume-
E
118 (g0 13 8
210 te6) A0¥d (22) zOsiv 2\
§10 (26) HNMJ
B val
hﬂ - € wHE + »id {16} (o8 prv IV
1
gia (2w ﬁm.:NJ
2ig (19 tont e SY
- Ho tve))
010 (56) wonvtt
$01 N ()
< x._oxH: Juex9l + m Y EV
k) [X:1]
vl ox}= axy + m_ 9]
ozn ue gy v
IHRZ
(6¥) %2012~ - (o8 ¥
oN R'E)
149
T L1
svz S H1D1X3 - —_ ! 6L} ov
8s-¢f Wo ‘aow wv3Ne| ¢ ¥~ (661 04~ o o B
IRL 580 6av] ¢ Z
uve| e HOLLIIYIEIT janusy
BNOIBIAIN
» i - T ~ T .

The Computer Journal / #71

Center Fold Section

26

|

2 w0 2 50
215-21008 _ﬁ pas =
NOIL23S DOI¥YNY VEOI-08 HIQ! owa
v QO owo
St vO viNvIY g o caro
wooxow 04 % Vv $3heHDg ar

4161 S8AdhDQ @ LHOIHAdOD

osl

AZi-
_OH ,Lv [

M
AN 126) ADI-
a0

\%\ ZeIvNI

Lo 1o Lo o
Amﬁ Aﬂﬁ

“Bzs
L

T
Te»

AS+

392
HNIEYD

vai
i304Y)
el
LnOMIT
6.-€| HO WIS AJH
L 4-4|HO0| BS 3X1°00K|123
auva| e NOlLenDs30 anss4
SNOIBIABY

H
pev Nl
(15
L]
ANA——D 1 Z2) AL+

ot

c¥?
W %22
cu
e L
o T
10
-
L1 4
o
E1+] LT
€ 2
oo 00
iz wo
Z-ir
v t
vor Gors
ST e 0oLv
) b——A—— 1ncaon on
068 on ¢ = 0%t
olu = N 00T
- [oot
»9'¢ v 1 0082
oow
oy 0002
0021
X
00%1 22
0011 1.
000t o
AP 2y | P 1na 110
(BAT) HIMOd LINX

27

Center Fold Section

The Computer Journal / #71

INPUT REGISTERS

BBHHBBBBBBBBBBBBJJJ)J)J)]]’JJJ)J
o~
[2
©
<
FB7JEA62095.1C8bOFB7JEA620951CBb0m
_ 3
W o
I
[%2] g
4
=
clelelecjete|o|lele|o|eiolo|oto|o|ociojolo|oleololotolo >
sleislels|sia|gig|alatala|3[8l2|gigig|s|sl2ig|gf{gisis|8]lgig|g|el &
OUBCOMBCOQBCOUHcouecouacouecouaco
88889999‘AAABBBBCCCCDDDDEEEEFFFFM
o
x =
(o] ©
< -
w
o
m
o <
I I N A I A A R AT I R S N T N N N N N Y Y N N N
o
w
[
Al vul=x|wlo|olonfn w2l njufj<|wln]fojoe| v «]o]lonl2lo
n >
olo|o|e|elo|o|o|je|elo|lo|ojojo]lo|o]lo|lo|lojo|lolojo|lolelo]o
Slelslsls|siclelele|a|alalalalatalefs|g|leletaleialgig|aia|alals
oflFRjvic|aiDdjv[OoO}lF IOl O|2]DlL|ol 2| D]O|o|{Flo|O|lotrjw]lOjol 2| O
O000111122223333bbuh555566667777c
o
S Q
b
TIv|vjw]ln{o|v|v|v] oD vlw|w|lvjo|olojo|lojolojlo|ojo|ojo|lojolo| e
o
[i2]
«
z
<4
alale~l v|wl <l Ql | || |otaminnl |||l vjO]ln| N ~|]O|lo]iar|o] E
<
— o
= 2
S
» .]
Iy
&
<
olod|o|e] | &R &< <|<|a|®|=a|ajo|d|o|{o|lajaa wlajwjaldld|a|a] 5
-
x -
o w
8 2
<
-
ovlojolofle|loju|uv]o]o|lojo|lo|o|o|lofalalala|a|a|2|2ja)js|2]|s]2]|2]2]2
o
w
slmfe]lnwl <|olw]a]lo|w «foflols]o]a|lalc]m|ul<]o|afale|n]lojo|lsio] U
(2] "
olalojuvlo|l2im]{o]lol2imluvloja]|o|v]o|2|e{v|ela|lxe|lole|zin|ulela|wlo
0000111122223333kbbb555566667777H
= o
14 "
a.

RECEIVER REGISTER 7 6 5 4 3 2 1 0
ADDRESS = BASE DATA { DATA | DATA | DATA | DATA | DATA | DATA | DATA
STATUS REGISTER 7 6 4 3 2 1 0
ADDRESS = BASE +1 Rt cD OE FE PE TRE | RRF
RRF RECEIVER REG. FULL 1 = CHARACTER IN REG.
TRE TRANSMITTER REG. EMPTY 1 = REGISTER EMPYY
PE PARITY ERROR 1 = PARITY ERROR
FE FRAMING ERROR 1 = FRAMING ERRCR
QE OVERFLOW ERROR 1 = OVERFLOW ERROR
CcD CARRIER DETECT 1 = CARRIER DETECTED
Rl NOT RING INDICATOR 0 = PHONE RINGING
OUTPUT REGISTERS
TRANSMIT REGISTER 7 6 5 4 3 2 1 9
ADDRESS = BASE DATA | DATA | DATA | DATA | DATA | DATA | DATA | DATA
CONTROL REG. 1 4 3 2 1 [
ADDRESS = BASE +1 Pl = LS2 181 EPE

EPE EVEN PARITY ENABLE 1 = EVEN PARITY
1.51-1LS2 LENGTH SELECT BITS 00 = 5BITS
01 = 6BITS
10 = 7BITS
11 = 8 BITS
SBS STOP BIT SELECT 0 = 1STOPBIT
Pl PARITY INHIBIT 1 = NO PARITY
&
CONTROL REG. 2 7 5 4 3 2 1 9
ADDRESS = BASE +2 OH RID ST BK MS TXE 8RS
BRS BIT RATE SELECT 1 = 300 BAUD
TXE TRANSMITTER ENABLE 1 = CARRIERON
MS MODE SELECT 1 = ORIGINATE
BK BREAK 1 = EXCHANGE MARK & SPACE
ST SELF TEST 1 = SELF TEST MODE
RID RING INDICATOR DISABLE 1 = DISABLE
OH OFF HOOK 0 = HANG UP PHONE

80-103A PROGRAMMABLE REGISTERS

DCHayes Associates, Inc.

FIGURE 4.1

The Computer Journal / #71

Center Fold Section

28

CONNECTING IDE DRIVES

by Tilmann Reh

S_pecia:[f‘Fféatur

Intermediiafé

Generic Z80 IDE Interface
(plus a few words about the LittleNet interface)

Discussions about connecting IDE devices like hard disks or even-
tually CD-ROM have grown during the last months. Seemingly we
triggered something with the articles about the interface basics and
my interface board for the ECB-Bus. Another actual development
was the single-chip IDE interface by Claude Palm (of Palmtech in
Australia) who also offered an S-100 board draft containing his chip.

This in turn started a discussion between TCJ columnist “Dr. S-100”
(Herb Johnson), Johnathan Taylor from England (with whom I dis-
cussed Wayne Sung’s interface version for the QX-10 before), and
me. Our main theme was how to reduce the total cost of an IDE
interface so it will be of more general interest than the relatively
expensive S-100 board.

I finally made a circuit and PCB draft for an interface which will
directly connect to a Z80 processor. This has two great advantages:
First, the board is very small, thus PCB prices will be much lower
than for an S-100 board. Second, the direct connection to the Z80
processor socket opens the way to ALL Z80 computers, not only
those based on the S-100 bus (or ECB-Bus, like my interface de-
scribed earlier in 7CJ). Sc we might get a larger volume, further
‘reducing PCB costs. Of course, it also has a disadvantageous side:
the mechanical construction is left to the end user.

However, it has to be made clear that this is only a draft yet. We are
now trying to determine if there is cnough interest in this generic
interface to build a prototype and produce a run after it really works.
But before we go further on this, here are some technical details:

The new interface (I call it GIDE, for Generic IDE) consists of a GAL
chip (Generic Array Logic, a smaller programmable logic device)
and a few TTLs. Its size is about 60 x 70 mm (2.4 x 2.8 in), including
all connectors. It plugs directly into the Z80 socket via two pin strips,
or onto a cable which plugs into the Z80 socket. The processor itself
will normally be plugged in the appropriate socket on the interface
board. The interface is 'O mapped, with user selectable base ad-
dress (in increments of 10h). The IDE drive will be connected via flat
cable. This cable and of course the hard disk drive will not be
included with the interface.

Quoting Herb (from a message he placed in the nets): “It would be
encouraging to all involved with this design to know who would buy
it, what they would require for support, and how much they would
pay for it. Clearly, this is not a very “commercial” venture: there are
too few Z80 systems around, and few Z80 or CP/M vendors for
“reselling” for a commercial effort.

The Computer Journal / #71

But, to avoid losing money and to get a reasonable quantity pro-
duced, we need to set a fair and acceptable price. Too cheap a price
will make it unreasonable to make; too large, unreasonable to buy.
Please use your honest judgment and suggest what YOU would
spend, and what you would expect.”

Meanwhile, Herb and Johnathan started lists of interested people
who responded to their messages in the nets. We also discussed how
to handle further support like board testing (for those who would like
a kit) and driver software (example routines, test programs etc.). But
before we spend more time and money on this topic, we really should
know if there is enough interest to justify all those expenses. So all
you who are interested, please contact one of us (see addresses
below) with the above requested information. We really would be
glad to make this board! If there is interest, I could also offer to
describe this new interface in another article here in TCJ.

For those who are already active in getting used and/or cheap hard
disks, here is an advice: I strongly recommend Conner drives, since
those drives have the lowest power consumption and also generate
the least noise. Some other makers like Quantum and Sony are
comparable in noise emissions. Scagate drives are horrible in both
terms, and additionally have slightly different timing specifications
which sometimes may lead to problems. So if you have the choice,
try to get Conner drives.

Actual state of the LittleNet development:

Since my circuit draft for the isolated RS-485 interface converter was
printed in 7CJ #69 (in the column of Rick Rodman), we further
discussed some technical details of this interface. Soon I will finish
a PCB draft which probably will be single-sided, so the PCB will be
easy to make in home cellars. The parts costs will also be very low.
We will surely inform you about further results and also print the
PCB artwork in TCJ. If any of you have some suggestions or ques-
tions, please contact Rick or me as soon as possible, so we can
consider your thoughts in PCB layout and/or software details.

Contacts:

Tilmann Reh, Am Rueckelchen 5a, 57078 Siegen, Germany
InterNet: tilmann.reh@hrz.uni-siegen.d400.de

Fax (at work): +49 271 484520

Herbert R. Johnson, CN5256 #1035, Princeton, NJ 08543, USA
InterNet: hjohnson@pluto.njcc.com

Voice/FAX +1 609 771 1503 (8am-11pm EDT)

Johnathan Taylor, UK

Internet: jet@centron.com, Fidonet: 2:2501/307.9

Rick Rodman, USA

InterNet: rickr@aib.com

29

Dr. S-100

By Herb R. Johnson

“Dr. §-100°s Winter column” by Herb
Johnson (¢) Dec 1994
Internet: hjohnson@pluto.njcc.com

Introduction

Hope you all had a good holiday, and the
best for 1995. It’s “back to basics” for
me after noodling around with IDE stuff.
My next columns will be pure S-100...or
IEEE-696 if you insist. But just to finish
off the subject....

Networking for IDE

In recent issues of 7CJ I discussed an
IDE interface for the S-100 bus, as de-
signed by Claude Palm of Palmtech, and
I included his design announcement.
Unfortunately, the costs of the Palmtech
PAL (programmed logic device) and the
S-100 card brought the projected priced
‘well above $100. I received letters and
messages of interest, but not enough to
justify the costs of producing the printed
circuit cards. Those still interested in
the Palmtech product should contact Mr.
Palm as he can provide the

chip and other information.

Following that effort, most of my time in
December was in Internet correspon-
dence with Tilmann Reh, who has writ-
ten a series of articles on his Z280 card
and its IDE interface. As I received only
a small response to the Palmtech S-100
IDE interface, I hoped to encourage
Tilmann to modify his interface design
to accept Z80 control and data signals.
As it turns out, others were also encour-
aging him in this direction. His report in
this issue will announce a daughter card
which is designed to plug into the Z80
chip socket to provide an IDE interface.
1 encourage all my S-100 readers to read
and consider his announcement. Even

30

those readers with 8085, 8088, or other
S-100 processors should be encouraged
to respond, as Tilmann’s design can be

- adapted to those processors.

Once again, a show of interest and a
willingness to pay a good price for such
a product will encourage its small pro-
duction. As the Tilmann GIDE is smaller
and cheaper it should stimulate a good
response. Contact myself or Tilmann
without delay.

Compupro 8/16

I recently acquired a Compupro S-100
system. Well, actually ANOTHER
Compupro...but this one has some unique
hardware and software, and it represents
one of the classic S-100 and Compupro
systems of the early 1980’s. The
Compupro 8/16 was in part a reaction to
the IBM PC and in fact generally supe-
rior to it. Although the PC’s - thanks to
the clone makers - overwhelmed the
market, it was a real race for a few years.
After I've written a few articles about
other people’s computers and IDE inter-
faces, [wanted to get “back to basics” in
my column, and this “new” ten-year-old
system will be the basis of my next se-
ries.

A few months ago I got a call from Jim
Briggs of Mt Laurel, NJ. He had read
some of my work here and there on S-
100 systems, and asked if I would be
interested in yet another system. It was
the oft-repeated story: he was a software
developer in the CP/M days, then had
moved on to MS-DOS, but never gave
up his old system (to support customers,
or just because it worked so well!). Afier
sitting idle for some years, he needed the
space...NOW!. T usually show some level
of interest at this point, depending mostly

on the sheer WEIGHT and volume of
stuff, and what it will cost to ship. So I
asked what he had...and he caught my
interest.

Jim described his system as “a Compupro
8/16, with two 64K memory cards and
one 128K memory card”. So far, this is
a modest system with a dual processor
card, namely the 8085 and the 8088,
either of which can run. (Zenith fans
will recognize this as the same configu-
ration in the Z-100 (or Z-121) system
which, in fact, is a “clone” of the
Compupro card.) The memory cards as
described would provide plenty of
memory for running CP/M 80 or CP/M
86. And the 8088 processor runs at 6
MHz, faster than the original PC at 4.77,
so there!

Drives and 1/0

Jim went on to note two 8-inch double-
sided drives and a Disk 1 controller. I
was a little disappointed by the control-
ler: the Disk 1 A is more recent and more
desirable, but the Disk 1 is certainly a
good controller for 8-inch drives. Double-
sided double density 8-inch disks, like
the smaller 5-1/4 inch and 3-1/2 disks
on IBM-PC’s, will hold over a megabyte
of programs and data, and transfer it at
comparable datarates. In the CP/M envi-
ronment, that will hold a lot more pro-
grams than in the MS-DOS world! None-
theless, this was pretty typical of most
Compupro systems. In fact, I don’t re-
member any 5-1/4 inch drives in use on
any Compupro 8/16 system I've heard
of.

The I/O on Jim’s system was also typi-
cal: The System Support 1 card is ofien
used as the console interface. It includes
parallel ports, timers, the serial port,

The Computer Journal / #71

-

and a socket for a arithmetic chip, the
AMO9511. Unlike the 8087 coprocessor
for the 8088, this is more of a “slave
processor chip” that you feed data and
computations to, and receive results from,
under control of a program. It never was
a cheap chip, usually above $100, and I
didn’t think to ask if he used it. There
. was also an Interfacer 4, which is
Compupro’s 4-port serial card using 8051
chips. These are software programmable
UART’s, as opposed to the hardware
strap-selectable features of the older 8050
UART.

“Graphics?

So far, this Compupro system was kinda
typical. But Jim had more to say. He
proceeded to tell me about the TWO
graphics cards installed on this system
and THAT peaked my interest! He said
both cards supported color, and one was
particularly good with graphics (although
not to today’s VGA level).

Now, for those of us who remember the
early days of the introduction of the IBM
PC, you will remember the original PC
display was either monochrome with
graphics characters; or color with what
amounted to a color TV. IBM called the
former MGA, and the latter CGA. All
this was terribly expensive, a few thou-
- sands of dollars. As IBM had yet to
dominate the MS-DOS or CP/M market,
and thanks to the BIOS interface in both
operating systems that separated hard-
ware from software, programs had to
run in very “plain” fashion to support
ANY output device, or had to be
configurable to any device by the user.
These were the days of “percent compat-
ibility”. It was acceptable for a time to be
“60%"” or “%80 compatible” and in fact
to run quite a lot of software.

What about Jim’s cards? One was called
Microsprite, and it supported a stan-
dard color video (TV) monitor which he
would include. The other, from Illumi-
nated Technologies, used a special digi-
tal RGB monitor, which he ALSO had
available. AND...he had an old Canon
color printer as well! “But it probably
needs a new ink cartridge”, he said.

The Computer Journal / #71

“Do I want it?”

Even with all the above, I hesitated. I
describe that I couldn’t offer much for
the system as these things come and go
often enough. Jim knew they were not
worth much in general, but more to the
point it was “either give it away or throw
it away” NOW! I asked when I could
schedule to pick it up, and I was sur-
prised to hear he could DROP IT OFF at
my door step! He was THAT eager to
pass it along, (presumably before my
wife found out and canceled the whole
deal). How could I refuse. I DID have
the presence of mind to refuse the NEC
Spinwriter which, while a great full-
character impact printer and workhorse,
is very heavy and less convenient to use
than an HP Laserjet. Likewise, I refused
the Televideo terminal: I do have some
discretion!

In a few hours, as Jim lives only a half-
hour drive from me, he was at my door-
step. All the equipment was in original
boxes, clean as new. We chatted about
his work of the era and he went back
home, his former system stacked in my
basement. A large paper bag of data
books, a box of manuals, another box of
8-inch diskettes, and other piles of equip-
ment including a small Epson printer he
forgot to mention. With the cold of win-
ter still a few months away, I delayed
playing with it: it wasn’t going any-
where.

Well....I DID set up the color printer.
It’s a Canon 1080A printer, with a single
cartridge for green, yellow, cyan, and
black. A few days of calls found Canon
as a source for cartridges for about $20
each, and $12/roll for its special paper
for best color transfer.

Next issue

I’ll talk about how I brought up the
system and made the usual minor re-
pairs that any system needs after sitting
in a box for five years or so. And, you’ll
hear about the little surprises I got when
I looked at the cards. Graphics will prob-
ably be an article in itself, but not imme-
diately. Correspondence will resume in
the next issue!

Calls for support

I have docs for the Compupro stuff.
Anyone out there with paper, cartridges,
or software for the Canon 1080A? Or
software [can test the 9511 math pro-
cessor on (yes, it had one!).

WANTED

TCJ needs your embedded
story or project!

Our readers are waiting to hear from
you about how you developed that
embedded project using 8051 or 6805.
Used Forth, "C", BASIC, or assembler
any language is fine, just tell us what
happened, how you did it,and how it
ended up. No project too small!

Send those Ideas to:

The Computer Journal
P.O. Box 535
Lincoln, CA 95648-0535

CLASSIFIED RATES!
$5.00 PER LISTING!

TCJ Classified ads are on a prepaid basis
only. The cost is $5.00 per ad entry.
Support wanted is a free service to sub-
scribers who need to find old or missing
documentation or software. Please limit
your requests to one type of system.

Commercial Advertising Rates:

Size Once 4+

Full $120 $90
1/2 Page $75 $60
1/3 Page $60 $45
1/4 Page $50 $40

Market Place $25 $100/yr
Send your items to:
The Computer Journal

P.O. Box 535
Lincoln, CA 95648-0535

31

Regular Feature

,‘Editorial Comment

~ Building 8048 Systems

8048 Emulator
By J. G. Owens

THE STORY OF AN 8048 ETC.
EMULATOR

The name “MON48” I borrow from the
amazing MONSO, I believe it was called,
authored by the inscrutable Jeff
Moscowitz, to whom 1 was frequently
unforgivably rude in my ill-spent early
middle years. (Moscowitz is only slightly
better-known these days for Pascal Z,
the star software product of Ithaca
Intersystems wherein we toiled in those
ancient days.) MON80 was a little 8080
machine-language monitor that, if I re-
call correctly, had the then-amazing
property of being able to run at any lo-
cation! Since then I've been naming
various feverish hacks “MON” this and
“MON?” that in honor of whatwas prob-
ably the first piece of interesting soft-
ware 1 encountered in my life.

INTRODUCTION

This is the story of the various compo-
nents of an 8048 emulator I built about
8 years ago, and used now and then
since I wrote it. The components of this
system are;

1. A 25-or-so-IC 8048 emulation card.
2. The source for the software that runs
in that card.

3. The source for an IBM-style PC pro-
gram that “hosts” the emulator card
through an RS-232 link. (Turbo C 2.0)
4. Free Free Free MA48 8048 macro
assembler and linker and source.

Also required to do useful work is an
8048 EPROM burner. I don’t know who
sells those these days or how much they
cost. Mine is 10 years old and is no
longer available.

All four elements will be covered in this

32

document (the assembler’s mostly in
another ZIP file), and so much more. It

- is a long and convoluted story; it began

long ago and far away (oh well at least
a small distance) on a two-diskette
Kaypro IV computer. Designing/build-
ing the emulator was fun, exciting, and
extremely complicated; I had to buy a
better scope just to debug it (my NRI 6
mHz job just didn’t do any good, so 1
graudated to a Hitachi 40! mHz job).
The emulator still runs today!

HOW DID THE 8048 EMULATOR
START?

I now remember why I built this in the
first place. I was convinced my employer
needed a low-rent proprietary bar-code
reader, and I proceeded to build such a
thing — i.e. to read simple bar codes
that could be printed cheaply. I devel-
oped and tested the system with a record-
player (obsolete technology itself now!)
which I’d use to move the test bar codes
before my sensor. I believe somewhere
in the middle of this I became convinced
that I should have an emulator, and some-
how that led to the 8048 emulator. 1
know the bar code project existed;
whether [ever actually got to the point
where I debugged it with the resulting

DO YOU REALLY NEED THIS?
The short answer is NO.

I use this emulator to build things when
I want to; as recently as November 1993
I built a simple-minded little MIDI (Mu-
sical Instrument Digital Interface) gad-
get: it emitted a do-nothing MIDI code
every 2 seconds or so, so a Casio key-
board I’'m fond-of wouldn’t keep putting
itself to sleep.

But if I didn’t have this support equip-
ment already-built, I'd probably find
something else, i.e. like the Basic Stamp
I’ve seen advertised. (But note that, for
instance, emitting MIDI is something
you almost *have* to do in assembly
language, Basic Stamp or not, and/or
use an external UART, which of course
is what we’re usually trying to avoid.)

SO WHY ARE YOU READING
THIS?

There are two plausible reasons for dis-
tributing this material I can think of:

1. Existing 8048 “orphan” projects may
get resurrected. This isn’t as obscure as
it might appear; the 8048 is *every-
where*, or at least relatives and descen-
dants are. Kaypro keyboards had them I
think, and of course the IBM keyboard
started that way....

2. You’re curious about emulation in
general. Heaven knows, there’s precious
little data on the topic, and this may be
useful in that regard. But see “The Death
of Emulation” below.

ONE REALLY NICE THING
ABOUT THE 8048

P10..P17 and P20..P27 are what Intel
calls “quasi-bidirectional” ports; later
they became ashamed of the practice
and moved on to better things, but the
way they work is you'd output a 1 to a bit
(they comeg-up at reset that way), and
then you could input from that port!
Momentarily while switching to high, a
relatively low impedance of around 5K
ohm is switched in, but normally a high
output is held high through 50K ohms
— which is still enough to pull-up most
TTL inputs, which essentially float high

The Computer Journal / #71

unless they’re pulled low. But also casy
to drive low; you sec, this was a “cheap”
way to get bidirectionality.

But additionally, as inputs they had the
handy feature of being pulled-up. This
works wonderfully for things like key-
board scanning; normally you have to
add resistors to pull-up the inputs in
such a circuit, but the 8048 thoughtfully
does it for you! One is normally not in a
hurry with keyboard scanning anyway,
and I've found the built-in pull-ups per-
fectly useful, for instance, for my AGO
(American Guild of Organists) standard
32-note pedal board MIDI gadget. In
hand-wired projects, which of course is
what I'm doing, those resistors can be
very annoying.

There. Is that a feature, or is that a
feature?

THE DEATH OF EMULATION

As I explained in one of my incredibly
excellent letters to Electrical Engineer-
ing Times, all emulation technology
depends on the fundamental difference
between current microprocessor technol-
ogy and current *digital* technology:
the idea is to “fake out” a microproces-
sor chip by running rings around it with
much faster TTL chips or whatever.

The 8048 emulator described here defi-
nitely does that; it uses average TTL (or
HCT or etc.) technology to trap various
events the 8048 target does in its normal
processing. *If* the TTL/HCT technol-
ogy wasn’t *fast enough* to catch those
events, *it wouldn’t work*.

So you see children, today the micropro-
cessors are becoming the fastest most-
current technology; they aren’t step~chil-
dren anymore. So the old trap-em and
catch-em techniques won’t work. To
compensate, some modern processors are
developed with built-in debugging fea-
tures which can be accessed with appro-
priately-knowledgeable software. And [
approve — but the problem that I sus-
pect will assert itself anyway is that
manufacturers will refuse to build-in
utterly-most-recent-hi-tech features into
the debug suite, because normally they’re
trying to hide them from others. Indeed,

The Computer Journal / #71

in the old days, manufacturers were typi-
cally hostile to emulator manufacturers
for the same reason.

THE 8048 SINGLE-CHIP MICRO-
COMPUTER

The 8048 is a very common — i,
rcadily available, cheap, and therefore
obsolete — single-chip microcomputer
originally released by Intel but now avail-
able from many sources. It was/is? typi-
cally used as a micro-controller to pro-
vide intelligence for keyboards (IBM PC
keyboards are based on this architec-
ture), printers, microwave ovens, etc. The
8748 — a 2K, EPROM version of the
part — goes for as low as $8 retail.

8048 VERSIONS

EPROM ROM RAM(bytes)
8048: 1K 64
8049: 2k 128
8748: 1K 64
8749: 2K 128
8035: no eprom/rom 64
8039: no eprom/rom 128

Of course these were versions available
around 1981....

Developing programs for the 8048 fam-
ily, even with MA48 or some other as-
sembler, isn’t much fun without devel-
opment equipment like the 8048 emula-
tor described here. Also, an 8748/49
EPROM burner is necessary — unless
you plan to have someone manufacture
the things in quantity and burn the ROMs
on 8048/49 parts; I don’t know how you
go about doing that.

But it’s probably feasible to write simple
programs for the 8748 without debug-
ging equipment like the 8048 emulator
described herein, providing intelligence

for small quantity applications with a

start-up cost equal to an appropriate
EPROM burner. (Honestly, I haven’t
done it; I used the 8048 emulator de-
scribed here on a few projects. I'm not
sure I'd like to try an 8048 project with-
out an emulator.)

The ROMiless 8035 and 8039 parts are
intended to be used with external ROM.
This probably makes no sense; the exter-
nal memory bus uses-up many of the

parts pins, and the 8048 family’s al-
ready so obsolete and quirky that the
only excusable reason for using it is to
get the microcomputer-on-a-chip feature
and all the pins. I believe you can actu-
ally usc the emulator to debug such de-
signs, simply by not using the I/O pins
that are normally devoted to the bus; but
I’'m not sure you’d want to.

DOCUMENTATION

Documentation for the 8048 should start
with the Intel book, which of course is
almost certainly unavailable. Computer
and Ham shows are the logical place to
look for such material.

FEATURES

Here’s some 8748 features as hyped on
page 6-8, “MCS-48 Family of Single
Chip Microcomputers User’s Manual”,
Intel, 1981:

1. 8-bit CPU, ROM, RAM, I/O in single
package
2. Single 5V Supply
3. 2.5 usec and 5.0 usec cycle versions.
All instructions 1 or 2 cycles.
4. Over 90 instructions: 70% Single Byte
5. 1K x 8 ROM/EPROM [8749 2k]

64 x 8 RAM [8749 128]

27 /O Lines
6. Inteval Timer/Event Counter
7. Easily Expandable Memory and I/O
8. Compatible with 8080/8085 Series
Peripherals
9. Single Level Interrupt

I don’t even know what #9 refers to; I’'m
pretty sure there’s more than one inter-
rupt source. #7 may still be true; they're
probably referring to the 8243 expan-
sion gadget, two of which are actually
used in the emulator.

SOME NOTES ON 8048 SOFT-
WARE, INSTRUCTIONS

I’'m not going to try and explain the

8048 here, but suffice it to say it’s an
extremely simple-minded 8-bit proces-
sor, onc “virtue” of working with the
part is to see just how awful things can
be, i.e. when you find yourself getting
annoyed at segment registers or some-
thing. The processor, for instance, has

33

no subtract instruction!

And then there are the “page-relative”
conditional jmp instructions. You can
“jc destination” to somewhere within the
current 256-byte page, i.e. any address
which differs from the current one only
in the last 2 hex digits; too bad you don’t
find out if that’s valid or not until *af-
ter* you assemble and link! You can’t
imagine how annoying it is....

There’s another stupid jump mode that
allows execution outside the basic 2K
space built into the instruction set, the
SEL MBI1 / MBI instructions, but with
any luck you'll never encounter that one.
However, the vast and amazing emula-
tor software itself uses the instruction,
but apparently only in emulation, which
makes sense I suppose (i.e, to *emu-
late* it).

There is a little set of low-memory vec-
tors:

:VECTORS:
org 0
Jjmp begin
org 3
jmp dointerrupt
org 7

jmp dotimer

Those I believe are all the vectors; as
indicated, the external interrupt pin vec-
tors to location 3, and the timer to loca-
tion 7.

I own a lovely 8 x 10 plastic card which
is your basic cheat-sheet for the 8048
etc. instruction set: “8048 & RELA-
TIVES” Copyright 1981, Micro Logic
Corp., POB 174, Hackensack, NJ 07602,
and for all I know they’re still around
somewhere. You'd still need an Intel
book or something like it to design a
hardware system, but the cheat sheet
may be adequate for writing or modi-
fying software.

THE EMULATION CARD

FILES: DB8039.A “IBM?” -

ASCII schematic.

The document DB8039.A is the sche-
matic of the 8048 emulator card. This

34

document was originally created in
WordStar on a *Kaypro IV*. It was a
heavily-hacked WordStar into which |
had insinuated a sct of graphics charac-
ters.

DB8039.A is a translation of that filc,
using the more-or-less standard 1BM
graphics characters. If your printer can
print characters like this “E” cross char-
acter, then it may be able to print the
schematic. (If you can’t *scc* the cross
character, then probably the rest of this
file looks a little strange, and you need a

- different text editor/viewer: I use the

excellent shareware QEDIT program; the
EDIT that came with DOS 5.0 works
t00.)

Please forgive me for the OR and AND
gates in the ASClI-old schematic; but
fixing them would be difficult, and I
believe the rendition contains adcquate
information.

DB8039.A is the basic source document
for the hardware; 1 will comment on it
here, but note that it’s filled with its own
comments, and even timing diagrams,
parts lists including where 1 bought the
parts, and who knows what else. I've
mostly resisted the temptation to edit the
DB8039.A material much beyond con-
verting it to the pseudo-ASCII form,
because it constitutes a record of work-
in-progress while the emulator was built,
and I figure whatever’s in there may be
useful. (Note that the translation process
apparently is less-than-perfect, an an
occasional odd character may be left-in,
although I’m getting rid of them as 1
notice.)

I can’t swear that my existing emulator
precisely corresponds to this schematic;
however it *definitely* is the only work-
ing document that *ever* existed for
this emulator, and it is what I wired it
from.

OVERVIEW AND HISTORY OF
DESIGN

Originally the design was to be a “simu-
lator”: Ul, an 8039, would contain the
MONITOR program to control the sys-
tem, and U22, another 8039, would simu-

latc a proposecd TARGET design. 1 just
figured the designs would be extended-
bus designs, because 1 didn’t sec any
other way to download the test code —
that is, without an extended bus con-
nected to RAM, how would I get the test
code into the chip?

Remember those terms: the MONITOR
is the controlling 8039; it always runs
the same program, the monitor program.
The TARGET is the test 8039, which
exccutes out of the RAM in U19 and
u2t.

So I built all that, apparently, including
break-point, single-step, and a mecha-
nism for forcing the target 8039 to do
what I told it now and then (“FORCE
INSTRUCTIONS INTO TARGET” in
the schematic), and then apparently it
occurred to me it was easy enough to
convert the result into an emulator, so I
added U30, the EMULATOR socket, into
which is plugged a big cable, the other
end of which gets plugged into a real
target card I'd’ve concocted. I really don’t
remember how 1 did it, but perhaps we’ll
find-out as we go along....

(The big cable is a part probably avail-
able from Digikey; you gotta make sure
you get a 1-to-1, some reverse the pins
and things... I actually have the *parts
list* for this thing still, and it says <6"
40-PIN R8136-6-ND 4.65> which was
the Digikey part number and price in
1985. I didn’t include this stuff because
I assume most of it’s obsolete.)

PARTS PLACEMENT

I mounted most analog components on
headers, which is feasible in a digital
circuit; that is the meaning of things like
“H1” nearby Ul and U11,; it’s just docu-
menting where X1, C1, C3, C2, and R4
are mounted. And I just walked over and
looked at the emulator, and they *are*
mounted there.

Next issue we will continue on with "Limi-
tations of Emulation”, schematics, and
later still software and more. BDK.

The Computer Journal / #71

DIVMOD and More

by Walter Rothenkolber

Special Feature
Intermediate Users

Two Shorts from Walter

Pitfalls in Signed Integer Divide & Modulo
by Walter J. Rottenkolber

If you are like me, most of the integer divide and modulo in my
programs use positive integers. As a result I hadn’t paid much
attention to what happens when you use signed integers. While
working on developing some Forth mixed integer operators, 1
learned that Forth-83 uses floored instead of the symmetric
integer division common to other languages. (Other Forths, eg.
figForth, use symmetric integer division).

Floored division rounds toward negative infinity. As a result,
zero applies only to a positive quotient. The sign of the quotient
follows a rule similar to that of multiplication, ie. positive if the
signs of the dividend and divisor are the same, and negative if
not the same. The sign of the remainder follows that of the
divisor. The modulus cycles through the same values as the
dividend passes from a positive to negative value.

In symmetric division, the quotient is rounded toward zero.
This leads to a discontinuity in which there are both positive
and negative zero quotients. The remainder inverts its cycling

~ as the dividend passes from a positive to negative value. The
sign of the quotient follows the same rule as in floored division,
but the remainder tracks the sign of the dividend.

To compare the two integer division methods, I wrote test
programs in Forth-83 (Laxen & Perry, v2.1.0), Basic-80
(Microsoft, v5.21), Turbo Pascal (Borland, v3.01a), and C/80
(Software Toolworks, v3.10). These cycle a simple integer
divide and modulo routine through the zero point. There are
two lists per language, one with a positive divisor and the other
with a negative divisor.

The calculation is:

dividend /MOD divisor = quotient modulo
and the check for accuracy is:

dividend = (quotient * divisor) + modulo.

Comparing the lists for Forth-83 and Basic will give you a
good idea of the differences between floored and symmetric
division. It’s obvious that symmetric division has extra zeros
as the dividend slides from positive to negative. Any device
using the quotient for control would have a ‘bobble’ at that
point. Also, the modulus inverts so that any device using it
would, in effect, work backwards after passing the zero point.

The Computer Journal / #71

Since Forth-83 is widely used in embedded systems, a smooth
and consistent transition through the zero point was consid-
ered valuable in programming such things as plotters and robot
arms.

Knuth makes a distinction between floored and ceilinged con-
version of real numbers to integers. A floored number is
rounded to the greatest integer less than or equal to the num-
ber. A ccilinged number is the least integer greater than or
cqual to the number. Forth division is consistently floored.
Symmetric division is floored above zero, and ceilinged below
zZero.

Wirth distinguishes between Eulerian (or symmetric) arith-
metic and modulus (or congruent) arithmetic. In symmetric
arithmetic, a given dividend and divisor will result in the same
quotient and remainder (ignoring the sign).

Ada, the official language of the Department of Defence (DOD),
is designed for both general and embedded system program-
ming. It has both a remainder (REM) and modulo (MOD)
function. REM returns the symmetric value, while MOD re-
turns a floored value.

In a recent development, the newly approved ANS-Forth stan-
dard has both floored and symmetric integer division primi-
tives, though it favors floored division.

Both Forth and Ada recognize the difference between the
arithmetic remainder and the mathematical modulus operator.

For positive divisors, you can convert a Remainder (symmetric
MOD) to a (floored) Modulus as follows:

(@) k:=mREMn ; ifk<Othenk =k +n;
(®) k= ((mREM n) + n) REM n) ;

Or the Modulus to a Remainder:

(@ k:=mMODn; if m<0 then
ifk<>0thenk =k -n;

I left the discussion of the Turbo Pascal and C/80 data until last
because each has a serious bug in the Modulus function.
Compare the two with that of Basic. The bug shows up when
a negative dividend or divisor (or both) are used. I’ve marked

35

the erroneous MOD operations with an asterix (*). Asyoucan MBasic Microsoft
see, the absolute values of the remainder are okay but the sign

may be inaccurate. Since most Modulo functions are with 6 /MOD 3= 2 0 6/MOD -3=-2 0
positive integers, you might not have stumbled onto this prob- 5/MOD 3= 1 2 5/MOD -3 =-1 2
lem. The integer Divide function appears intact. 4/MOD 3=11 4/MOD -3 =-1 1
3/MOD 3=10 3/MOD -3=-10

You can rely on the MOD function of Turbo Pascalonly when 2 /MOD 3= 0 2 2/MOD -3=0 2
using positive integers. With C/80, all non-zero MOD’s with 1/MOD 3= 01 1/MOD 3= 0 1
. a negative divisor are erroneous. I find this disappointing 0/MOD 3= 0 0 0/MOD-3=0 0
because both compilers are mature products that I like. -1/MOD 3= 0-1 -1/MOD -3 = 0 -1
-2 /MOD 3= 0-2 22/MOD-3=0-2

In C/80, the error is in the ¢.div function of CLIBRARY.ASM. -3/MOD 3=-10 3/MOD-3=10
However, any attempt at a fix that increased the size of the -4 /MOD 3 = -1 -1 -4/MOD -3=1-1
library resulted in code that compiled, but crashed when run. -5 /MOD 3 =-1 -2 S/MOD-3=1-2
(Why?). -6/MOD 3=-2 0 6/MOD-3=20

When translating programs from other languages to Forth-83
(or vis versa), you should be aware that not all signed integer ~ Turbo Pascal Borland
divisions are the same. Moreover, even mature programs can

have subtle bugs. To avoid surprises, tests of computed data 6 /MOD 3= 2 0 6/MOD-3=-2 0
should be compared to expected values. A lesson most pro- 5/MOD 3= 1 2 5/MOD -3 =-]-2*
grammers soon learn is to distrust and verify. 4/MOD 3=1 1 4/MOD -3=-1-1*
3/MOD 3=10 3/MOD-3=-10
References: 2/MO0D 3= 0 2 2/MOD-3= 0 2
1/MOD 3=01 1/MOD -3=0 1
Robert Berkey:”Positive-Divisor Floored Division”, ForthDi- 0/MOD 3= 0 0 0/MOD-3=100
mension, Vol. XII, Num. 1, May/June 1990, p. 14. -1/MOD 3=01* -1/ MOD-3=10 1*
2/MOD 3=02* -2/MOD-3= 0 2*
Donald E. Knuth:”The Art of Computer Programming”, Vol. -3/MOD 3=-1 0 -3/MOD-3=10
1, 2nd Ed., Addison-Wesley, 1973, p. 37. 4/MOD 3=-1-1 -4/MOD-3=11*%
-5/MOD 3=-1-2 -S/MOD-3=1 2*
Robert L. Smith:”Signed Integer Division”, Dr. Dobb’s Jour- -6/MOD 3=-2 0 -6/MOD-3=2 0

nal, Num. 83, Sept. 1983, p. 86-88.

“Niklaus Wirth:” Algorithms & Data Structures”, Prentice-Hall, C/80 Software Toolworks
1986, p.25.

6/MOD 3=20 6/MOD -3=-2 0
=== THE END === 5/MOD 3=1 2 5/MOD -3=-1-2*%
4/MOD 3=11 4/MOD 3 =-1-1*
Integer Divide and Modulo 3MOD 3=10 3/MOD -3=-10
2/MOD 3= 0 2 2/MOD -3= 0-2*
Forth-83 Laxen & Perry 1/MOD 3=10 1 1/MOD -3=0-1%*
0/MOD 3=00 0/MOD-3=100
6/MOD 3=20 6/MOD -3=-2 0 -1/ MOD 3= 0-1 -1/MOD-3=0 1*
5/MOD 3=1 2 5/MOD -3 =-2 -1 2/MOD 3=0-2 -2/MOD-3= 0 2*
4/MOD 3=11 4 /MQD -3=-2-2 -3/MOD 3=-10 -3/MOD-3=10
3MOD 3=10 3/MOD-3=-10 -4/MOD 3=-1-1 -4/MOD-3=1 1%
2/MOD 3= 0 2 2 /MOD -3 =-1-1 -S/MOD 3=-1-2 -5/MOD-3=1 2%
1/MOD 3= 01 1/MOD -3=-1-2 6/MOD 3=-20 -6/MOD-3=20
0O/MOD 3=0 0 0/MOD-3=00
-1/MOD 3=-1 2 -1/MOD -3 = 0-1 == END ==
2/MOD 3=-11 -2/MOD -3 = 0-2
-3/MOD 3=-10 -3/MOD-3=10 Source Code for Test List
-4/MQOD 3=-2 2 -4/MOD -3 =1 -1 of Integer Divide and Modulo
-5/MOD 3=-21 -5/MOD -3 = 1 -2
6/MOD 3=-2 0 -6/MOD-3=2 0

Forth-83 Laxen & Perry

36 The Computer Journal / #71

\ Forth Integer Divide and Modulo WJR21JUN94
: .FMOD (dividend divisor)

2DUP SWAP 3 .R.” /MOD”

3R =*/MOD 3R 3.R;

: FMOD2

66DO CR I3.FMOD " *

-3 .FMOD -1 +LOOP ;

Basic Microsoft

10 REM Test of Integer Divide and Modulo
20 B=3:D=-3

30 PRINT

40 FORA=6TO-6 STEP -1

50 PRINT A" /MOD “B” = "A\B A MOD B;

60 PRINT®*

70 PRINT A" /MOD “D" = “A\D AMOD D
80 NEXTA

90 END

Turbo Pascal Borland

PROGRAM Tmod2 ;

VAR

a, b, ¢ : Integer ;

BEGIN

b:=3;

c:=-3;

FOR a :=6 DOWNTO -6 DO

BEGIN

Wirite(a,’ /MOD ‘b, ="', adivb,’ ', amodb);
Write(" '),

Wiriteln(a,' /MOD ',c,’ =, adive, ', amodc);
END

END.

C/80 Software Toolworks

I* test /mod list */
#include “printf.c”
main()

{
staticinta, b=3,d=-3;
for(a=6,a>=-6—a)

{

printf(*%d /mod %d = %d %d”’, a, b, a/ b, a % b);
printf(* ~ *);

printf(*%d /mod %d = %d %d\n’, a, d, a/ d, a % d),

}
==== END ===

Accessing the Kaypro Keyboard
by Walter J. Rottenkolber

There are times when the standard keys are not the ones you
need. Two common methods of remapping the keyboard are to
use the configuration option in CP/M, or to use a high memory
key capture program.

There is a third. Tap into the keyboard directly. If you roll your

The Computer Journal / #71

own programs, portability is not an issue, and you climinate
the need for multiple copics of CP/M, or the hassle of reloading
other programs when you reboot.

[use the direct key method in my Forth screen editor as it
allows me to remap the keyboard, including the cursor and
keypad keys, to whatever edit functions I desire. When out of
the editor and in the Forth interpreter, the standard CP/M
functions apply.

The Kaypro keyboard connects to the computer via a serial
line. It uses channel B of the same serial chip that outputs the
modem port (channel A). Routines similar to those used to
access the modem port will work for the keyboard. Since key
entry is slow, a simple polling method is more than adequate.

Small systems commonly use two methods to access hardware.
The first is to connect the hardware directly to the address lines
and treat the port as a memory read/write. The 6502 and 6809
CPU’s can only use this method. In the days of 16KByte
DRAM, computers based on these CPU’s used only 48 KBytes
for RAM. The upper 16 KBytes of address space were reserved
for accessing ROM code and hardware ports. Only later, when
64 KByte DRAM chips became popular, did bank switching
allow 16 KBytes of RAM to be available in this location.

The 8080 and Z80 chips can be used this way too, and the
Kaypro does just that with the lower 16 KBytes of memory to
deal with ROM and Video routines. But, these CPU’s also have
an internal bankswitch that allows you to separate hardware
ports from main RAM. The IN and OUT assembly instructions
select this alternate pathway. Only the lower eight address
lines are used for port access, so only 256 addresses are avail-
able, more than enough for most small systems. To avoid
confusion, port addresses are often called port numbers.

High level languages adapted to 8080 and Z80 computers have
keywords for the 1/O Ports.

Forth83 uses PC@ (p# - b) to fetch data from a port, and PC!
(b p#) to output data, where p#= 8-bit port#, and b= data byte.
The comments in the parenthesis are the stack picture, which
shows the before and after state of the data stack. To fetch data,
for example, the Port# is first placed on the data stack, and
after PC@ runs, it leaves the data-byte on the stack. Forth83
also uses P@ and P! to deal with the 16-bit data access allowed
in the IBMpc’s. {(Adding to the confusion, fig-Forth uses P@
and P! to access 8-bit data).

Microsoft’s MBasic does port access with: b= INP (p#), and
OUT p#,b. In both, ‘b’ is a variable to which the data is

assigned.

Borland’s TurboPascal uses assignment to access ports: b :=
Port[p#] for input, and Port[p#] := b for output.

The Kaypro keyboard has two port addresses: 05 for Data, and
07 for Control/Status. Though Control/Status has several reg-

37

isters, only #0 (the default) is required. Receive Ready (data
buffer has data) is indicated by bit0 of the Status byte being
set(1). This bit can be isolated from the other bits by ANDing
the byte with 01. Tranmit Ready (data buffer empty) is indi-
cated by bit2 set(1). This is isolated by ANDing the Status byte
with 04,

Screen 11 shows Forth Words to directly access the keyboard.

. The Words in the angle brackets are the primitives. For DKEY
to be useful, it must wait for data to appear in the input buffer.
So <DKEY?> is placed in a BEGIN UNTIL loop which exits
only when <DKEY?> returns TRUE, indicating that new data
exists for <DKEY> to fetch.

‘The Kaypro Il floppy disk drive motor off delay is determined
by a timing loop in the BIOS routine for CP/M Console status,
KEY?. The direct key status, DKEY?, bypasses this and so
requires DRV-OFF to turn off drive after DDLY time. Code
for the delay routine is in screen 10. To reset the delay count
when a drive is turned on requires tapping into the Read/Write
routines in Forth.

A simpler way is shown in screen 12. VKEY is a hybrid that
combines the CP/M Console Status, KEY?, with the direct data
fetch, <DKEY>.

Direct key input will enable you to reconfigure the cursor and
keypad keys with a simple CASE statement. All of these keys
have the high bit set (80 hex or higher). A list of the key codes
is in Table 1. A branch statement will separate them from the
standard ASCII codes.

Some early Kaypro keyboards have extra keyswitches covered
by the case top, but they will need keycaps replaced and other
‘work to use. I find that just recycling the standard keys is good
enough.

As an aside, the drive off routine can be handy if you write a
program that does floppy disk access, but doesn’t check con-
sole status often. The drives would just stay on. The Kaypro
uses a parallel port 1/O chip as a system bit controller, at port#
1C. Bit#7 turns the drives OFF when it is Set(1). The mask for
bit#7 is 40h (64d). The bits in the data byte determine the
status and control for a number of functions. When changing
a control bit, it is important not to tamper with the other bits.
That is why in DRIVE-OFF, the byte is first read in, an OR
with the mask scts only bit#7, and the modified byte then
written back to the port. Checking drive status, DRV-ON?, is
similar in method to <DKEY?7>.

Screen 13 shows what to do if all you need is the indication
(flag) of a keypress. The DUP is needed in Forth to provide one
flag for the IF branch, and another for output. You need to
fetch and drop the keyed data. If you don’t, the data from a
keypress will remain in the input buffer of the ZSIO only to
emerge later in the program as corrupt data.

Although most attention gets focused on getting data from the

38

keyboard, you can also send data TO the keyboard. The Kaypro
has its speaker in the keyboard, and it is activated by sending
a code-byte to the keyboard. This byte selects Bells of two
different durations (long and short), and the presence of the
key- click. The short bell sounds about half the time of the long.
The pitch is preset and cannot be changed.

Screen 14 has the Words to control the Bell. <KEMIT?> and
KEMIT? check status for ready to send. It does not tell you the
status of the Bell, ic. whether it’s sounding. <KEMIT> and
KEMIT send the Bell-code to the keyboard. The choices are
limited and are listed in the screen. Don’t use other values, as
they will behave erratically and may even return meaningless
data.

In a program you might consider separating the codes into a
Beep- code (0, 2, 4), and a Click-code (0=on and 8=of), then
adding the two to output as the Bell-code. The bell-code must
be sent each time the bell is to be sounded. The Click status
remains set until changed by a new bell-code.

\ Screen 10

\ Disk Drive Motor OFF — Kaypro It WJR06JULY4
VARIABLE DDLY 10000 DDLY ! \ @ 7 secs., 1333= 1 sec.
VARIABLE DTIME DDLY @ DTIME |

HEX

: DRIVE-OFF 1C PC@ 40 OR 1C PC! ; \ Set bit 7 in controlport
:DRV-ON? 1CPC@ 40 ANDO=; \Drv-onifbit7 =0.
DECIMAL

: SETDOFFDLY DDLY @ DTIME ! ; \ Place in blk R/W routine
: DRV-OFF DRV-ON? IF -1 DTIME +! DTIME @ 0= IF
DRIVE-OFF DOLY @ DTIME ! THEN THEN ;

\ Screen 11

: <DKEY?> (-f) 7PC@ 1 AND 0<> ; \ Status Kaypro Il key-port
:<DKEY> (-b) 5§ PC@ ;\Read Kaypro Il key-port direct
:DKEY? (-f) <DKEY?> ;

:DKEY (- b) BEGIN DRV-OFF <DKEY?> UNTIL <DKEY> ;

\ Screen 12
:VKEY? (-f) KEY?; \ Use CP/M drive off.
:VKEY (-b) BEGIN KEY? UNTIL <DKEY> ;

\ Screen 13

: KEYPRESS? (-f) VKEY? DUP IF VKEY DROP THEN ;
\ Screen 14

L <KEMIT?> (-f) 7 PC@ 4 AND 0<> ;

: <KEMIT> (bell-code) 5 PC! ;

KEMIT? (-f) <KEMIT?> ;

:KEMIT (bell-code) BEGIN <KEMIT?> UNTIL <KEMIT> ;
\S

Code Bell Click

o] No ON

2 Short ON

4 Long ON

8 No OFF

10 Short OFF

12 Long OFF

Function Keys (Kaypro Il Keypad/Cursor Keys)

Keypad

Code Key Code Key

B1=0 B2=.

co=1 Ct1=2

Cc2=3 C3 = Enter

D0O=4 Dt=5

D2=6 D3=,

E1=7 E2=8

E3=9 Ed4=-

Cursor Keys

F1=Upcursor F2= Down cursor
F3 = Left cursor F4 = Right cursor
Tabile 1.

=== END ===

The Computer Journal / #71

Moving Forth
by Brad Rodriguez

Special Feature
Intermediate Users

Part 7: 8051 Kemel

MOVING FORTH
Part 7: CamelForth for the 8051
by Brad Rodriguez

Under the prodding of Our Esteemed Editor, I present
CamelForth for the 8051, CamelForth for the 6809 will follow
soon! This 8051 Forth occupies about 6K of program memory.
Alas, the full source listing would take 16 pages of 7CJ, so this
article includes only the significantly changed portions of the
kernel. These should illustrate how the high-level code is
modified for the 8051 assembler, and for subroutine threading.
The full source code is available in the Forth Roundtable on
GEnie as file CAMELS51.Z1P, and the freeware 8051 assembler
as file A51.ZIP. But first...

7380 ERRATA

In the file CAMELSOH.AZM, the definition of DO is given as
{1 xdo ,BRANCH . ..
It should be
[l xdo XT ...
This is of no consequence on the Z80 (where ,BRANCH and
" XT are identical), but it became embarassingly obvious on the
8051.

Also, in the words S” and (S”), the word ALIGN should really
be ALIGNED. On the Z80 — and the 8051 — both are no-
ops, so this mistake didn’t make itself evident.

8051 CAMELFORTH MODEL

In issue #60 1 summarized the design decisions for an 8051
Forth. To recap: the 8051’s retarded memory addressing
practically demands the use of subroutine threading. This
means the hardware stack (in the 80351 register file) is the
Return Stack. The Parameter Stack (a.k.a. Data Stack) is in
256 bytes of external RAM, using RO as the stack pointer.
Since that article, I've discovered that it’s better to keep the
Top Of Stack item (TOS) in DPTR than in R3:R2. Thus:

reg 8051 Forth

adrs name usage

0 RO low byte of PSP (Parameter Stack Pointer)
1-5 R1-R5 scratch registers for Forth

6-7 R6-R7 loop index

The Computer Journal / #71

8 high byte of PSP and UP (also output on P2)
9-7Fh 119 bytes of return stack (more on 8052s!)

81h SP low byte of RSP (Return Stack Pointer)
82-83h DPTR Top-Of-Stack item
EO,FOh A,B scratch registers for Forth

This incorporates an idea from Charles Curley [CUR93]. On
a register-rich machine like the 8051, we can keep the inner-
most loop index in registers. This makes LOOP and +LOOP
much faster. DO must still push two values on the Return
Stack: the old loop index, and the new loop limit! UNLOOP
must of course restore the loop index from the Return Stack —
kudos to the ANSI team for making UNLOOP a distinct word!
Note that R6:R7 are not the topmost Return Stack item, merely
the innermost loop index.

Port 2 (P2) contains the high byte of the Parameter Stack
Pointer (allowing RO to address external memory), which is
also the high byte of the User Pointer — the low byte of UP is
assumed to be 00. Ilearned the hard way that P2 can’t be read
while executing from external ROM, so I keep a copy of the P2
byte in register 8.

I have a novel implementation of BRANCH and 7BRANCH.
Since the 8051 model is subroutine-threaded, high-level Forth
is compiled as true machine code. So BRANCH can be
implemented with an SJMP (or AJMP or LJMP) instruction.
7BRANCH can be implemented with a JZ instruction, if the
zero/nonzero status of the top-of-stack is put in the accumula-
tor (A register). The subroutine ZEROSENSE does this. So,
BRANCH and 7BRANCH become

BRANCH: SIMP dest

7BRANCH: LCALL ZEROSENSE JZ dest

Similar routines LOOPSENSE and PLUSLOOPSENSE allow
a JZ instruction to be used for LOOP and +LOOP. For these,
a call to UNLOOP must appear after the JZ, to clean up the
Return Stack when the program “falls out” of the loop.

In the assembly language source file I have manually replaced
the sequence

LCALL word RET
with the shorter and faster

LIMP word
in many places [CUR93]. This works as long as “word” isn’t
a return-stack operator (such as R>or >R). LCALL and LIMP
have also been replaced with ACALL and AJMP where pos-

39

sible. The CamelForth compiler does not attempt these opti-
mizations.

I'wrote the 8051 kernel to use “Intel” byte order (low byte first).
Then I discovered that the address compiled into an LIMP or
LCALL is stored high byte first. Rather than rewrite the entire
kernel, 1 included a byte-swap in those words which compile
LCALLs: COMPILE, !CF and ,CF (all in the Dependency
. word set).

Listing 1 gives the 8051 assembly language “primitives”, and
Listing 2 gives the Dependency word set.

HARVARD ARCHITECTURES

“ The 8051 uses a “Harvard” architecture: program and data are
kept in separate memories. In embedded systems, these are
typically ROM and RAM, respectively. ANS Forth is the first
Forth standard to address the restrictions of a Harvard archi-
tecture. Briefly, ANS Forth says that a) application programs
can only access Data memory, and b) all of the operators used
to access memory and build data structures must operate in
Data space. (Ref. section 3.3.3 of the ANS document [ANS94].)
This includes the Forth words

@ ! Ca C! DP HERE ALLOT, C,

COUNT TYPE WORD (§8”) S” CMOVE

Yet the Forth compiler still needs to access Program space
(also called Code or Instruction space). And Forth needs to
maintain a dictionary pointer for Program space as well as
Data space. So I've added these new words (shown in Listing
3):

1@ I! IC@ IC! IDP THERE IALLOT 1, IC,
“ICOUNT ITYPE IWORD (IS”) IS” D->I I->D

The “I” prefix stands for “Instruction” (since “P” and “C” have
other meanings in Forth). ICOUNT and ITYPE are needed to
display strings which have been compiled into ROM. IWORD
copies the string left by WORD from Data space to Code space
— needed to build Forth word headers and ROMmed strings.
D->I and I->D are equivalents of CMOVE, which copy to and
from Code space.

VARIABLESs must have addresses in Data space. So they can’t
use the traditional practice of putting the data immediately
after the Code field. Instead, the Data space address of the
data is stored after the Code field. In essence, a VARIABLE
is a CONSTANT whose value is the Data space address. (Note
that the traditional CONSTANT is still valid.)

CREATEd words, and words built with CREATE... DOES>,
must work the same way. Here’s how they look in Program

space:

CODE word: ...header... 8051 machine code
high-level: ...header... 8051 machine code
CONSTANT: ..header... LCALL-DOCON value

40

VARIABLE:
CREATEd:

..header... LCALL-DOCON Data-adrs
.header... LCALL-DOCON Data-adrs

Note that CONSTANT must replace the value stored by CRE-
ATE, and : must “un-allot” both this value and the LCALL
DOCON.

S” presents special problems. Strings defined with §” (“text
literals™) must reside in Data space, where they can be used by
such words as TYPE and EVALUATE. But we expect those
strings to be part of a definition, and to exist in ROM in a ROM
forth environment. We could store the string in Program
space, and copy it to HERE when referenced, but the ANS
document does not allow text literals to exist in this “transicnt”
storage region (ref. sections 3.3.3.4 and 3.3.3.6 [ANS93]).
Also, if WORD returns its string at HERE — as in CamelForth
— text literals must not alter this transient region.

My solution is to have S” store the string in Code space, but
permanently reserve space for it in Data space, and copy it from
Code to Data when referenced. ANS Forth does not yet fully
address the problems of Harvard processors, something like
C’s “initialized data” region may eventually be required.

Since .” strings can never be accessed by the programmer, they
can be stored in Code space, using the words (IS”) and IS”.
(These are the “old” (S”) and S”.) This adds two words to the
kernel, but saves quite a bit of Data space. I plan to move the
string-literal words into either the Dependency word set, or a
new “Harvard” word set.

WRITING TO PROGRAM SPACE

The 8051 can’t actually write to Program memory. There’s no
hardware signal for this, and no machine instruction. Under
these circumstances, the CamelForth interpreter will work, but
new words can’t be compiled. You can get around this by
causing some memory to appear in both Program and Data
space. Figure 1 shows the modification to my board, an
MCB8031 from Blue Ridge Micros (2505 Plymouth Road,
Johnson City, TN, 37601, USA, telephone 615-335-6696, fax
615-929-3164). UlA and UIB create a new read strobe which
is active for either a Program or Data fetch. EPROM is
selected only when A1S5 is low (lower 32K), and RAM when
A15 is high (upper 32K). You still can’t write to EPROM, of
course, but you can execute programs out of RAM! One
disadvantage: this makes @ and 1@ equivalent, so it’s not
immediately obvious if the wrong one was used somewhere.

NEXT ISSUE...

These modifications to the CamelForth high-level code are
intended to be portable to either Harvard or non-Harvard (“von
Neumann”) machines. For the latter, the new Program-space
words are simply equated to their Data-space equivalents, e.g.
on the Z80,

IFETCH EQU FETCH

The Computer Journal / #71

ISTORE EQU STORE
ITYPE EQU TYPE
etc.
In the next installment I shall modify
the 8051 source code to work on the
6809...thus approaching a truly portable
model by successive approximation.

-REFERENCES

[ANS93] dpANS-6 draft proposed
American National Standard for Infor-
mation Systems - Programming Lan-
guages - Forth, June 30, 1993. “It is

distributed solely for the purpose of re-

view and comment and should not be
used as a design document. It is inap-
propriate to claim compatibility with this
draft standard.” Nevertheless, for the
last 16 months it’s all we’ve had to go
by.

[CUR93] Curley, Charles, Optimization
Considerations, Forth Dimensions XIV:5
(Jan/Feb 1993), pp. 6-12.

.command -ai ; output Intel hex format

; CamelForth for the Intel 8051

; (¢) 1994 Bradford J. Rodriguez

, Permission is granted to freely copy, modify,

, and distribute this program for personal or

; educational use. Commercial inquiries should
; be directed to the author at 221 King St. E,

; #32 Hamiiton, Ontario L8N 1B5S Canada

CAMEL51 ASM: Code Primitives
H Source code is for the A51 assembler.
; Forth words are documented as follows:
X NAME stack — stack description
H where x=C for ANS Forth Core words, X for
X ANS Extensions, Z for internal or private
words.

, Subroutine-Threaded Forth model for Intel 8051
; 16 bit cell, 8 bit char, 8 bit (byte) adrs unit
spm Code & Data spaces
H 8051 PC = Forth IP Interpreter Pointer
N SP = RSP Return Stack Pointer low
; RSP high byte =0
; RO= PSP Parameter Stack Ptr low
; PSP high = UP
. teg 08 = P2 = UP User area Pointer high
: (and PSP high), UP low = 0
; DPTR= TOS (top Param. Stack item)
; ABR1-RS5= temporaries
. (no W register is defined)
N R6,R7 = loop index

, reg 09-7F = return stack

; REVISION HISTORY
;v1.0 alpha test version, 12 Dec 94

; Forth linkage
.set link,0
.equ IMMED,1 ; flag for immediate word
, 8051 EQUATES
.equ dr2,h'02 , r2-r5 accessed as
.equ dr3,h'03 , direct registers;
.equ dr4,h’'04 , required for PUSH and
.equ dr5,h'05 ; POP instructions
.equ dr§,h'06 . Assumes register bank 0

The Computer Journal / #71

.equ dr7,h’'Q7
.equ UP,h'08

; is selected.

; FORTH MEMORY MAP EQUATES

Memory map:
regs 8-7Fh Return stack, 120 bytes, grows up
0000h Forth kernel

H 8000h Forth dictionary (user RAM)

R UAREA=FEOOh User area, 128 bytes

B UAREA+80h Parameter stack,

; 1288, grows down

UAREA+100h HOLD area,

40 bytes, grows down
UAREA+128h PAD buffer, 88 bytes
UAREA+180h Terminal Input Buffer,

128 bytes
; See also the definitions of UQ, S0, and RO
; in the “system variables & constants” area.

; A task w/o terminal input requires 200h bytes.
; Double all except TIB and PAD for 32-bit CPUs.

; Initial RAM & ROM pointers for CamelForth.
.equ romdict,h'0e000 ; where new code goes
.equ ramdict,h'Of000 ; where data goes
.equ UPHI,h'FE ; Uarea at FEQO hex

, RESET AND INTERRUPT VECTORS

.org 0
ljmp reset
limp ie0
ie0: reti
rsd
ljmp tf0
0: reti
rs4
limp iet
iel: reti
1s 4
fimp 1
#1: reti
rsé
ljmp riti
riti: reti
rsé
limp tf2
tf2: reti

reset: mov ie,#0 , disable all irpts
mov pcon, #0 . T1 baudrate not doubled
mov tmod,#h'20 ; T1 mode 2, TO mode O

mov th1,#h'fd ; 9600 baud @ 11.0592
MHz
setb tcon.6 . enable timer 1
mov scon#h'S2 ; UART mode 1 (8-bit)
mov UP,#UPHI
mov p2,UP ; user area at FEOO,
mov r0,#h'ff ; param stack at FEFF
mov sp,#h'8 ; ret stack at bottom
ljmp COLD ; enter Forth interpreter
; SERIAL 110
;CEMIT C— output character to console
.drw link
.set link,*+1
.db 0,4"EMIT"
EMIT: jnb scon.1 EMIT ; await Tx interrupt flag
clr scon.1 , clear flag
mov sbuf dp! ; output TOS char to UART
ajmp poptos ; pop new TOS
;C KEY —c get character from keyboard
.drw link
.set link *+1
.db 0,3,"KEY”
KEY: jnb scon.0,KEY ; await Rx interrupt flag
clrscon.0
dec r0 ; push old TOS
mov a,dph
movx @r0,a
dec 10
mov a,dpl
movx @r0,a
mov dpl, sbuf . get new char in TOS
mov dph #0
ret
; ?KEY —f return true if char waiting
.drw link
.set link,"+1
.db 0,4,"?KEY"
QUERYKEY: dec 0 : push old TOS
mov a,dph
movx @r0,a

dec rQ

mov a,dpt

movx @r0,a

mov a,scon ; get ix flag in carry

rmca

ajmp cyprop ; propagate that thru TOS

; INTERPRETER LOGIC

; NEXT and ENTER are not needed for Subroutine
. Threading. EXIT may be used in high level code.

;CEXIT —
.drw link
.set link,*+1
.db 0,4EXIT"

EXIT: dec sp ; discard ret adrs in calier
dec sp
ret , return to caller's caller

exit a colon definition

ZuUT —X fetch inline literal to stack
.drw link
.set link,*+1
.db 0,3, LT

LIT: dec /0 . push old TOS
mov a,dph
movx @r0,a
dec 10
mov a,dpl
movx @r0,a
pop dph ; get return address
pop dpt
movx a,@dptr
inc dptr
mov r2,a
movx a,@dptr
inc dptr
push dpl
push dph
mov dph,a ; put literal in TOS
mov dpl,r2
ret

, get literal low byte

; get literal high byte

; restore updated ret adr

;C EXECUTE i*x xt — j*x execute Forth word
C at'xt’
.drw link
.set link,*+1
.db 0,7,"EXECUTE"
EXECUTE: pushdpl ; push addr onto r.stack,
push dph ; then pop new TOS->DPTR
; 'ret’ in poptos will then execute
; desired word; its ‘ret’ will return
; to EXECUTE's caller.

ajmp poptos

, DEFINING WORDS

C VARIABLE — define a Forth VARIABLE
CREATE CELL ALLOT;
Actlon of ROMable variable is that of CONSTANT;
; the constant holds the RAM address.
.drw link
.set link,*+1
.db 0,8,"VARIABLE"
VARIABLE: icalt CREATE
acall CELL
limp ALLOT

;C CONSTANT — define a Forth constant
CREATE CELL NEGATE !ALLOT |, Harvard mode!
B DOES> (machine code fragment)
; Note that the constant is stored in Code space.
.drw link
.set fink,*+1
.db 0,8,"CONSTANT"
CONSTANT: icall CREATE
Icall CELL
Icall NEGATE
Icatl IALLOT
lcalt ICOMMA
Icalt XDOES
; DOCON, code action of CONSTANT,
. entered by CALL DOCON

docon: ;=X exec action of constant
dovar: ; — a-addr exec action of ROMable var
docreate: , — a-addr exec action of Harv. CREATE

decr0 ; push old TOS

mov a,dph

movx @r0,a

dec r0

mov a,dpl

movx @r0,a

pop dph . get addr of param field

pop dp! ;(in Code memory!)

41

ajmp IFETCH ; go fetch its contents
;Z USER n— define user variable 'n’
' CONSTANT DOES> (machine code fragment)
; Note that this version allows a full 16-bit
; offset from the user pointer.
.drw link
.set link,*+1
.db 0,4,"USER"
USER: acall CONSTANT
Icall XDOES
; DOUSER, code action of USER,
; entered by CALL DOUSER
douser: acall pushtos ; push old TOS
pop dph ; get addr of param field
popdpl (in Code memory!)
acall IFETCH . go fetch its contents
add a,UP ; add UP.00 to offset
mov dph,a ; NB. IFETCH leaves A=DPH
ret

.; DOCREATE's action is for a table in RAM.
: DOROM is the code action for a table in ROM;
. : it retumns the address of the parameter field.

. Entered by CALL DOROM

dorom: acall pushtos ; push old TOS
pop dph ; param field adrs -> TOS
pop dpl
ret

. DODOES, code action of DOES> clause
; (internal code fragment, not a Forth word)
, entered by LCALL fragment

' address of data

N tragment: LCALL DODOES
; high-level thread
; Enters high-level thread with address of
; data on top of stack. HARVARD MODEL: the data
. (in Data space) does NOT follow LCALL fragment
; (in Code space); instead, the address of the
; data is appended after LCALL fragment.
dodoes: . — a-addr support routine for DOES>
dec 10 ; push old TOS
mov a,dph
movx @r0,a
dec 0
mov a,dpl
movx @r0,a
pop drS ; addr of DOES> clause
pop drd H Forth code
pop dph ; addr of defined word's
pop dpl : Param. field
push drd ; restore Forth code addr
push dr5
ajmp IFETCH ; fetch adrs from P field
. & go do the DOES> code

. STACK OPERATIONS

,cDbuUP X—XX
.drw link
.set link,*+1

.db 0,3,"DUP"

duplicate top of stack

DUP:

pushtos: dec r0
mov a,dph
movx @r0,a
dec 10 ; push lo byte of TOS
mov a,dp!
movx @r0,a
ret

; push hi byte of TOS

;C 7DUP x — 0| xx DUP if nonzero
.drw link
.set link,*+1
.db 0,4,"?2DUP”
QDUP: mov a,dph
orl a,dpl
jnz pushtos
ret

CDROP x—
.drw link
.set link,*+1
.db 0,4,"DROP"

drop top of stack

DROP:

poptos: movx a,@r0
mov dpl,a
inc 10
movx a,@r0
mov dph,a
inc 10
ret

, pop lo byte -> TOS

. pop hi byte -> TOS

42

x1x2 —x2x1
.drw link

.set link,*+1

.db 0,4, "SWAP"
movx a,@r0
mov r2,a

incr0

movx a,@r0
mov 3,2

;inc 0

; dec 10

mov a,dph

movx @r0,a

dec 10 ; push lo byte of TOS
mov a,dpl
movx @r0,a
mov dph,r3
mov dpl,r2
ret

,C SWAP swap top two items

SWOP: ; pop lo byte -> X

; pop hi byte -> X

; push hi byte of TOS
halfover:

; old 2nd item -> TOS

:COVER x1x2—x1x2x1 per stack diagram
.drw link
_set link,*+1
.db 0,4 OVER"
OVER: movx a,@r0
mov r2,a
inc 10
movx a,@r0
mov r3,a
dec 0 , restore stack pointer
dec 10 ; predecrement for ‘halfover’
sjimp halfover ; push TOS, then copy X to

; pop lo byte -> X

. pop hi byte -> X

TOS
iCROT x1 x2 x3 — x2 x3 x1 per stack diagram
.drw link
.set link,*+1
.db 0,3"ROT"
ROT: ; x3isin TOS
movx a,@r0
mov r4,a
inc 0
movx a,@r0
movr5,a
inc rQ
movx a,@r0
mov r2,a
inc rQ
movx a,@r0
mov r3,a
;inc 10
; dec r0
mov a,rs
movx @r0,a
dec 0
mov a,ré
movx @r0,a
dec 10 , predecr. for 'halfover’
sjmp halfover ; push x3 (TOS), then
. copy x1 to TOS

; pop X2 -> 15:r4

; pop x1 -> r3:r2

. push x2

;C>R X— Ri—Xx
.drw link
setlink,*+1
.db 0,2,>R"

TOR: pop dr3
pop dr2
push dp!
push dph
push dr2
push dr3
sjmp poptos ; pop new TOS

:* NB. stored lo:hi in regs because SP increments

push to return stack

. save ret addr in r3:r2

, push lo byte*
; push hi byte”
; restore ret addr

,CR> —X
drw link
set link,*+1
.db 0,2)R>"
RFROM: dec 10
mov a,dph
movx @r0,a
dec 0
mov a,dpl
movx @r0,a
pop dr3
pop dr2
pop dph
pop dpl
push dr2
push dr3
ret

R: x — pop from return stack

; push old TOS

; save ret addr in r3:r2

. pop hi byte
. pop io byte
; restore return address

CR@ —x R: x—x fetch from rtn stack
.drw link
_set link,*+1
.db 0,2R@"

RFETCH: dec r0
mov a,dph
movx @r0,a
dec r0
mov a,dpl
movx @r0,a
mov rt,sp ; get copy of SP
dec rt . skip return address
decr1
mov dph,@r1
dec 1
mov dpl,@r1
ret

. push old TOS

; fetch 2nd return stack item

L SP@ — a-addr get data stack pointer
.drw link
.set link,*+1
.db 0,3"SP@"
SPFETCH: dec 0
mov a,dph
movx @r0,a
dec 0
mov a,dpl
movx @r0,a
mov dph,UP
mov dpl,rf0
ret

; push old TOS

, 16-bit pointer P2:R0

;Z SP! a-addr — set data stack pointer
: Note: only the low 8 bits are affected!
.drw link
.set link,*+1
.db 0,3,"SP!"
SPSTORE: mov r0,dpl
ajmp poptos

; set stack pointer
. get new TOS
JZRP@ — a-addr get return stack pointer
.drw link
_set link,*+1
.db 0,3"RP@"
RPFETCH: decr0
mov a,dph
movx @r0,a
dec r0
mov a,dpl
movx @r0,a
mov dph #0
mov dpl,sp
ret

; push old TOS

; 16-bit pointer 00:SP

,ZRPL a-addr — set return stack pointer
: Note: only the low 8 bits are significant!
.drw link
.set link,*+1
.db 0,3,"RP!"
RPSTORE: pop dr3
pop dr2
mov sp,dpl
push dr2
push dr3
ajmp poptos

: save ret addr in r3:r2

; set new stack pointer
; restore ret addr

, get new TOS

X NIP x1 x2 — x2 per stack diagram
drw link
.set link,*+1
.db 0,3"NIP"
NiP: acall SWOP
ajmp DROP
X TUCK x1x2 —x2 x1x2 per stack diagram
.drw link
set link,*+1
db 0,4,"TUCK"
TUCK: acall SWOP
ajmp OVER

. MEMORY OPERATIONS

Ct x a-addr — store cell in Data mem
. Byte order is lo,hi
.drw link
set link,"+1
db 0,1,
STORE: movx a,@r0
inc 0
movx @dptr,a
inc dptr
movx a,@r0
inc 10
movx @dptr,a
ajmp poptos

; low byte of X

. high byte of X

, pop new TOS
.CCl ¢ c-addr — store char in Data mem

.drw link
.set link,*+1

The Computer Journal / #71

CSTORE:

ce

.db 0,2"CI*

movx a,@r0 ; low byte is char
inc 0

movx @dptr.a

inc r0 ; skip high byte
ajmp poptos , pop new TOS

a-addr — x fetch cell from Data mem

; Byte order is lo,hi.

FETCH:

cce

.CFETCH:

ci

.drw link

.set link,*+1
db 01"@"
movx a,@dptr
mov r2,a

inc dptr

movx a,@dptr
mov dpl,r2
mov dph,a
ret

; low byte
; ..lemporary stash

; high byte
. copy to TOS (DPTR)

c-addr — ¢ fetch char from Data mem
.drw link

.set link,"+1

db 0,2C@"

movx a,@dptr

mov dpl,a

mov dph,#0

ret

x a-addr — store cell in Code mem

; On 8051, the only way to store to Code memory
; is to have it also appear in Data space.
; So, Il is identical to |, and IC! to C.

ISTORE:

;CIct

.drw link

.set link,*+1
.db 0,271
sjmp STORE

¢ c-addr — store char in Code mem
.drw link

.set link,*+1

.db 0,31CH

ICSTORE: sjmp CSTORE

ze

a-addr — x fetch cell from Code mem

; Byte order is lo,hi.

IFETCH:

zZiee

ICFETCH:

.drw link

.set link,*+1

db 0,271@"

cira

movc a,@a+dptr ; low byte

mov 12,a ; ..temporary stash
mov a,#1

movce a,@a+dptr ; high byte

mov dpl,r2 ; copy to TOS (DPTR)
mov dph,a

. ret
* . Notel USER expects IFETCH to leave A=DPH!

a-addr — x fetch char from Code mem
.drw link

.set link,*+1

.db 0,2,"1C@"

clra

movc a,@a+dptr ; low byte

mov dpl,a

mov dph #0

ret

; ARITHMETIC AND LOGICAL OPERATIONS

PLUS:

Z M+

MPLUS:

nt/ul n2/u2 — n3/u3 add n1+n2
drw link
.set link,*+1
.db 0,1,%+"
movx a,@r0
in¢ rQ

add a,dpl
mov dpl,a
movx a,@r0
inc r0

addc a,dph
mov dph,a
ret

; low byte

; high byte

dn-—d add single to double
.drw link
.set link,*+1
.db 0,2,"M+"
movx a,@r0
mov r2,a

inc r0

movx a,@r0
mov r3,a

inc 0

, pop d.high -> r3:r2

The Computer Journal / #71

MINUS:

\C AND

AND:

,COR

OR:

,C XOR

XOR:

\C INVERT

INVERT:

,C NEGATE

NEGATE:

ONEPLUS:

movx a,@r0
add a,dpl
movx @r0,a
inc r0

movx a,@r0
addc a,dph
movx @r0,a
dec r0

clra

addc a,r2
mov dpl,a
cra

addc a,r3
mov dph,a
ret

; d.low, low byte

. d.low, high byte

. d.high, low byte

: d.high, high byte

n1/ul n2/u2 — n3/u3 subtract n1-n2
.drw link
.set link,*+1
.db 0,1,
movx a,@r0
inc 0

clrc

subb a,dpt
mov dpl,a
movx a,@r0
inc rQ

subb a,dph
mov dph,a
ret

; low byte

; high byte

x1 x2 — x3 logical AND
.drw link

.set link,*+1
.db 0,3,"AND"
movx a,@r0
inc 0

ant a,dpl

mov dpl,a
movx a,@r0
inc 0

anl a,dph

mov dph,a

ret

; low byte

; high byte

x1 x2 — x3 logical OR
.drw link

.set link,*+1
.db 0,2"0R"
movx a,@r0
inc 0

or a,dpl
mov dpl,a
movx a,@r0
inc rQ

orl a,dph
mov dph,a
ret

; low byte

; high byte

x1 X2 — x3 logical XOR
.drw link

.set link,*+1
.db 0,3,"XOR"
movx a,@r0
inc r0

xrl a,dpt

mov dpl,a
movx a,@r0
inc 0

xri a,dph

mov dph,a

ret

; low byte

; high byte

x1 —x2 bitwise inversion
.drw link

.set link,*+1

.db 0,6 INVERT"

xrl dpl #h'ff

xrl dph, #h'ff

ret

x1 —x2 two's complement
.drw link

.set link,*+1

.db 0,6,"NEGATE"

xrl dpt #h'tf

xrl dph #h'ff

inc dptr

ret

nt/ul —n2u2 add 1to TOS
.drw link

.set link,*+1

.db 0,2,"1+"

inc dptr

ret

C1- n1ful — n2/u2

.drw link

_set link,*+1

.db 0,21
ONEMINUS: mov a,dpl

jnz dphok

dec dph
dphok: dec dpl

ret

subtract 1 from TOS

, if dpl=0, decr. affects dph

Z>< x1 —x2 swap bytes (not ANSI)

.drw link
.set link,*+1
.db 0,2,"><"

swapbytes: mov a,dpi
mov dpl,dph
mov dph,a
ret

c2r x1 —x2 arithmetic left shift

.drw link
.set link,*+1
.db 0,2,°2*"
TWOSTAR: mov a,dp!
add a,dp!
mov dpl,a
mov a,dph
rca
mov dph,a
ret

; lo byte, left shift

. hi byte, left rot w/cy

Ko/) x1—x2 arithmetic right shift

.drw link

.set link,*+1

.db 02,°2/
TWOSLASH: mov a,dph

fdca

mov a,dph

ca

mov dph.,a

mov a,dpl

rnca

mov dpl,a

ret

; get msb of TOS into cy

, high byte, right rotate

; low byte, right rotate

JCLSHIFT x1u—>x2 logical left shift

.drw link
.set link,*+1

.db 0,8,"LSHIFT"

LSHIFT: mov r4,dpt
movx a,@r0
mov dpl.a
inc r0
movx a,@r0
mov dph,a
inc 10
inc r4
sjmp Ishtest

Ishioop: mov a,dpl
add a,dp!
mov dpl.a
mov a,dph
rca
mov dph,a

Ishtest: djnz r4,ishloop
ret

; 14 = loop counter
; pop x1 > DPTR

; test for r4=0 case

, shift left

JCRSHIFT x1u—x2 logical right shift

.drw link
.set link,*+1

.db 0,6,"RSHIFT"

RSHIFT: mov r4,dpl
movx a,@r0
mov dpl,a
inc 0
movx a,@r0
mov dph,a
inc 10
inc r4
sjmp rshtest

rshloop: clrc
mov a,dph
nca
mov dph,a
mov a,dp!
mca
mov dpl,a

rshtest: djnz r4 rshloop
ret

C#+ n/u a-addr —
.drw link
.set link,*+1
.db 0,2,"+1"
PLUSSTORE: movx a,@r0

; 4 = loop counter
; pop x1 -> DPTR

; test for r4=0 case

; clear carry
; shift right

add cell to Data mem

; low byte of n

43

44

incr0 .db 0,1,7<" xch a,dph ; DPH=new TOS hi, A=old DPH
movr2,a LESS: acall MiNUS ;n1-n2in TOS, A=DPH, orl a,dpl ; A=0 if old TOS was zero
movx a,@dptr ; low byte of memory ; CY and OV valid mov dpl,r2 ; new TOS lo in DPL
add a,r2 , if result negative (MSB=1) & not OV, n1<n2 ret
movx @dptr,a ; neg. & OV => n1 +ve, n2 -ve, result -ve, n1>n2
inc dptr ; if result positive (MSB=0) & not OV, n1>=n2 ; LOOP and +LOOP are done with jz, using the
movx a,@r0 ; high byte of n ; pos. & OV => n1 -ve, n2 +ve, result +ve, ni<n2 ; following routines which leave a value in A.
inc 10 ; thus OV reverses the sense of the sign bit ; If the loop terminates, (index crosses 8000h),
mov r2,a jnb psw.2,msbok ; jump if overflow clear ; a nonzero value is left in A. A=0 to loop.
movx a,@dptr ; high byte of memory cpla . OV set invert msb X Typical use:
addc a,r2 msbok: rca ; put msb (sign) in cy Icall loopsense, jz destadr, icall unioop
movx @dptr.a sjmp cyprop ; & propagate thru TOS LEAVE may exit loop by branching *-here
ajmp poptos ; pop new TOS ; The topmost loop index is in regs r7:r6.
. C> nt n2 —flag test n1>n2, signed
; COMPARISON OPERATIONS .drw fink .drw link
.set link,*+1 .set link,*+1
.db 0,1,>" .db 0,6,"(LOOP)"
X <> x1 x2 —flag test not equal GREATER: acall SWOP xioop:
.drw link sjmp LESS loopsense: ;— leave Oin A if 'loop’
.set link,*+1 mov a,8 ;add 1 to loop index
.db 0,2,°<>" add a#1 ; ..leaves OV flag set if
NOTEQUAL: acall EQUAL CU< ul u2—fiag test n1<n2, unsigned movrB,a ; loop terminates
sjmp ZEROEQUAL .drw link mov a,r7?
.set link,*+1 addc a,#0
-;C0= nfu — flag retumn true if TOS=0 .db 0,2"U<* mov r7,a
.drw link ULESS: acall MINUS ; TOS=u1-u2, cy set if ut<u2 jb psw.2 termloop ; jump if OV set
.set link,*+1 sjmp cyprop ; propagate cy thru TOS takeloop: clra , OV clear, make A zero
.db 0,2,°0=" ret R to take loop branch
ZEROEQUAL: mov a,dph X U> ul u2 —flag test u1>u2, unsigned
zequt: ort a,dpi . A=z ornz, per DPTR .drw link .drw link
cre .set link,*+1 _set link,*+1
subb a,#1 ;cysetif Awas 0 .db 0,2"U>" .db 0,7,"(+LOOP)"
cyprop: subb a,acc -1ifAwas 0, else 0 UGREATER: acall SWOP xplusioop:
mov dph,a sjmp ULESS plustoopsense: . n— leave O in A if '+ioop’
mov dpl,a mov a8 ; add TOS to loop index
ret ; NBI A=0 iff TOS=0 . LOOP AND BRANCH OPERATIONS add a, dpl ; ..leaves OV fiag set if
=========z==z==zzz==z movr6,a ; loop terminates
C o< n—flag true if TOS negative mov a,r?
.drw link ; branch and ?branch are done with sjmp and jz, addc a,dph
.set link,*+1 ; respectively, using the following routines mov r7,a
.db 0,2,°0<" whlch leave a value in A. Typical use: movx a,@r0 ; pop new TOS, OV unaffected
ZEROLESS: mov a,dph H Icali zerosense; jz destadr mov dpl,.a
rc a ; cy set if A negative lcall ioopsense, jz destadr, icall unioop inc 10
sjmp cyprop ; propagate cy thru TOS LEAVE may exit loop by branching A—here movx a,@r0
mov dph,a
C= x1x2 — flag test x1=x2 .drw link inc 10
.drw link .set link,*+1 inb psw.2 takeloop ; jump if OV clear
.set link,*+1 .db 0,7, "?BRANCH" termloop: cira ;. OV set, make A nonzero
.db 0,1,=" qbranch: cpla ; to force loop termination
EQUAL. acall MINUS x1-x2 in TOS, A=DPH zerosense: ; h —leave zero in A if TOS=0 ret
sjmp zequi movx a,@r0 ;new TOS in a:r2
mov 2,a
C< nin2—flag testni<n2 signed ine 10 We \yﬂl continue vylth the listing in tpe
rwlink movk 3,@10 next issue, otherwise the full source is
K ink,*+ inc .
. on GEnie. BDK.
CUT THESE TRACES e e —————————— -
PSENN -— 3¢ 22 OFE \
; 21250
AV'4 20: EPROM
i N CE\ ;
Ry 7a 22 OEN :
oo §2256 :
N = H RAM :
4 A\ CE\ ;
AlS o
EITHER PSENN OR RDN WILL
READ RAM OR EPROM, SO
uin uiB PROGRAMS MAY BE STORED IN RAM
1 4
3 [LOWER 322K IS EPROM,
S UPPER 32K IS RAM.
41500 74LS00
Uic Uibp
9 12
8 11
10 413 |
4LS00 74L500
SPARE
T—RECURSIVE YTECHNOLOGY
Hamilton, Ontarjio
[Title
HODS 1O BLUE RIDGE MCBOO31L BOARD
i TeePocumant Nowber
Flgure L I a * I ° BLUERIDG . SCH l
ate ece -r rril I of X
The Computer Journal / #71

SUPPORT GROUPS FOR THE CLASSICS Reg

On November 18th, 1994, the Forth Interest Group (FIG) had
their annual Forth Day meeting in the San Francisco Bay Area.
At one time this had been an international event, but the last
few years the organization has down played the meeting, and
~ thus only a few local people attend.

The last several Forth Day’s as did this one, started at 10AM
with a list of speakers. George Nichols of Silicon Composers
started the talks by updating the group on his Formula 1 (Indy
Racing car class) computer. The computer is used to monitor
and control various parameters in the racing car. He is using
his SC32, a 32 bit Forth engine. 1t is called the “Formula Data
Logger 32 (tm)”. It runs SC32 a 32 bit version of F83.

Next up was Robert Kylberg of Mosaic Industries with a report
on their QED board. It uses a 68HC11 with up to 8Megs of
RAM. He explained their page switch concept and why so
much RAM was needed. The reasoning was a complete system
with all math functions on board (floating point and all). Their
idea was not to collect data for later analysis, but do all the
analysis on line with 160us Floating point transcendentals.

Albert Mitchell of AMR brought his AMR166LC single board
system. AMR makes a full line of embedded systems, and the
- 166 is their latest 16 bit product. They use a tethered Forth with
a small kernel on the board, and all other functions on a PC
running their version of FPC. AMR tested many options in the
16 bit world before deciding to settle on the Siemens 80C166
CPU. It provides better speed and many instructions that are
Forth like. It is suppose to be 3 times faster than the 68332.

Dr. Ting stepped up next and talked about the MuP21. This is
Chuck Moore’s latest single chip CPU that he has designed on
his own CAD system. A more detailed review follows later.

Talks continued with John Carpenter explaining how Post
Script Forth engines can be done. Leonard Morgenstern re-
viewed his latest work on “Brute Forth” search algorithms.
Tom Zimmer talked about his latest work and gave out sample
disks of it. The “it” is a Windows version of FPC, the “why”
being a port of a current product to Windows NT. It currently
has 5000 words!

Next was my favorite presenter David Jaffe and his talking
hand. He came to our local club meeting the following month
and you need to read our 1994 Computer Hero article. Another
favorite was Chuck Moore who presented some hardware talk

The Computer Journal / #71

about his MuP21. Chuck explained his design style or lack
there of. It scems he has decided that documenting his work
locks him into a design strategy that might not always be the
best, so he does it “freec form™ so to speak.

John Rible presented information on the OPEN BOOT project
and how it will use Forth programmers. The Open Boot project
is the basis behind the new PCI interface in PC’s. The plug in
board has a Forth in ROM that contains all the diagnostic and
boot software for the system to bring up and install the card.
SUN’s have been doing this for sometime now and it works so
well that the PC manufacturers decided they needed some way
for users to easily install accessory cards, PCI is it. For more
information get IEEE draft report P1275.

At this point Lunch was held and then we started with more
talks. It seemed the meeting was a little sleepy after lunch or
maybe it was the great food that slowed everyone down. My
notes say that Skip Carter talked about ANSI Standard Forth
Library project. He indicated that a ANSI group is getting
standard libraries together and many have been collected to
date.

Wil Baden talked about macro processing in Forth and his
ThisForth program. Andrew McKewan talked about some
reasons to consider C, especially the C built Forth’s, like Wil
Baden’s ThisForth, Dirk Zoeller’s PFE or TIMBRE by Rob
Chapman. Another Forth version presented was LibForth which
contains a built in B-Tree sort of words in the dictionaries. The
sort gives very fast and more detailed definitions all without
documentation.

Glen Haydon concluded the talks with some comments of
Forth philosophy. Some of his points were; Keep it short and
simple, use a forth appropriate to the task, get beginners started
with simple versions. From this point we left the meeting and
went to dinner with Chuck Moore as feature speaker.

Chuck has always presented a “Fireside Chat” that gets one
thinking. In fact this chat was just that, about thinking and
using the right and left sides of the brain. Most consider the
right side of the brain the side that does creative work. Chuck
pointed out that real programmers use the right side of their
brain, that being good programs come from creative activities.

Chuck moved on to discuss the idea of what computing should

and can do for us. He moved past the normal ideas and centered
more on the concept of thinking machines. Can a machine

45

actually think for itself? Chuck didn’t answer that, but he did
give everyone many interesting ideas to consider and ponder
over. If you have never attended one of Chuck’s fireside chats,
my notes probably have little impact on you. For those of us
lucky enough to sit and listen, he has never failed to stir the
thinking juices and then some of those present. I recommend
him highly.

" MPU21

I received a rather long E-Mail with information on the MPU21.
Space does not permit me to print it in this issue, so I will do
the new device next time. BDK.

- TCJ Staff Contacts

TCJ Editor: Bill D. Kibler, PO Box 535, Lincoln, CA 95648, (916)645-
1670, GEnie: B.Kibler, CompuServe: 71563,2243, E-mail:
B.Kibler@Genie.geis.com.

Z-System Support: Jay Sage, 1435 Centre St. Newton Centre, MA
02159-2469, (617)965-3552, BBS: (617)965-7259; E-mail:
Sage@ll.mit.edu. Also sells Z-System software.

32Bit Support: Rick Rodman, BBS:(703)330-9049 (eves), E-mail:
rickr@virtech. vti.com.

Kaypro Support: Charles Stafford, 4000 Norris Ave., Sacramento,
CA 95821, (916)483-0312 (eves). Also sells Kaypro upgrades, see
ad inside back cover. CompuServe 73664,2470 (73664.2470@cis).

S-100 Support: Herb Johnson, CN 5256 #105, Princeton, NJ 08543,
(609)771-1503. Also sells used S-100 boards and systems, see inside
back cover.

- 6800/6809 Support: Ronald Anderson, 3540 Sturbridge Ct., Ann
Arbor, MI 48105.

Regular Contributors:
Dave Baldwin, Voice/FAX (916)722-3877, or DIBs BBS (916) 722-

5799 (use "computer”, "journal", pswd "subscriber" as log on),
Internet dibald@netcom.com, CompuServe 70403,2444.

Brad Rodriguez,Box 77, McMaster Univ., 1280 Main St. West,
Hamilton, ONT, 1.8S 1C0, Canada, Genie: B.Rodriguez2, E-mail:
b.rodriguez2@genie.geis.com.

Frank Sergeant, 809 W. San Antonio St., San Marcos, TX 78666, E-
mail: fs07675@academia.swt.edu.

Tilmann Reh, Germany, E-mail: tilmann.reh@hrz.uni-siegen.d400.de.
Has many programs for CP/M+ and is active with Z180/280 ECB
bus/Modular/Embedded computers. USA contact Jay Sage.

Helmut Jungkunz, Munich, Germany, ZNODE #51, 8N1, 300-14.4,
+49.89.9614574, or CompuServe 100024,1545.

Ron Mitchell, Apt 1107, 210 Gloucester St., Ottawa Ontario, Canada,
K2P 2K4. GEnie as R.Mitchell31, or CompuServe 70323,2267.

USER GROUPS

46

Connecticut CP/M Users Group, contact Stephen Griswold, PO Box
74, Canton CT 06019-0074, BBS: (203)665-1100. Sponsors East
Coast Z-fests.

Sacramento Microcomputer Users Group, PO Box 161513, Sacra-
mento, CA 95816-1513, BBS: (916)372-3646. Publishes newsletter,
$15.00 membership, meetings at SMUD 6201 S st., Sacramento CA.

CAPDUG: The Capital Area Public Domain Users Group, Newslet-
ter $20, Al Siegel Associates, Inc., PO Box 34667, Betherda MD
20827. BBS (301) 292-7955.

NOVAOUG: The Northern Virginia Osborne Users Group, Newslet-
ter $12, Robert L. Crities, 7512 Fairwood Lane, Falls Church, VA
22046. Info (703) 534-1186, BBS use CAPDUG'.

The Windsor Bulletin Board Users' Group: England, Contact Rodney
Hannis, 34 Falmouth Road, Reading, RG2 8QR, or Mark Minting,
94 Undley Common, Lakenheath, Brandon, Suffolk, IP27 9BZ, Phone
0842-860469 (also sells NZCOM/Z3PLUS).

LIS.T.: Long Island Sinclair and Timex support group, contact
Harvey Rait, 5 Peri Lane, Valley Stream, NY 11581.

ADAM:-Link User’s Group, Salt Lake City, Utah, BBS: (801)484-
5114. Supporting Coleco ADAM machines, with Newsletter and
BBS.

Adam International Media, Adam’s House, Route 2, Box 2756,
1829-1 County Rd. 130, Pearland TX 77581-9503, (713)482-5040.
Contact Terry R. Fowler for information.

AUGER, Emerald Coast ADAM Users Group, PO Box 4934, Fort
Walton Beach FL 32549-4934, (904)244-1516. Contact Norman J.
Deere, treasurer and editor for pricing and newsletter information.

MOAUG, Metro Orlando Adam Users Group, Contact James Poulin,
1146 Manatee Dr. Rockledge FL 32955, (407)631-0958.

Metro Toronto Adam Group, Box 165, 260 Adelaide St. E., Toronto,
ONT MS5A INO, Canada, (416)424-1352.

Omaha ADAM Users Club, Contact Norman R. Castro, 809 W. 33rd
Ave. Bellevue NE 68005, (402)291-4405. Suppose to be oldest
ADAM group.

Vancouver Island Senior ADAMphiles, ADVISA newsletter by David
Cobley, 17885 Berwick Rd. Qualicum Beach, B.C., Canada V9K
IN7, (604)752-1984.

Northern Illiana ADAMS User's Group, 9389 Bay Colony Dr. #3E,
Des Plaines IL 60016, (708)296-0675.

San Diego OS-9 Users Group, Contact Warren Hrach (619)221-
8246, BBS: (619)224-4878.

ACCESS, PO Box 1354, Sacramento, CA 95812, Contact Bob Drews
(916)423-1573. Meets first Thurdays at SMUD 59Th St. (ed. bldg.).

Forth Interest Group, PO Box 2154, Oakland CA 94621 510-89-
FORTH. International support of the Forth language. Contact for list

of local chapters.

The Pacific Northwest Heath Users Group, contact Jim Moore, PO

The Computer Journal / #71

Box 9223, Seattle, WA 98109-0223.

The SNO-KING Kaypro User Group, contact Donald Anderson,
13227 2nd Ave South, Burien, WA 98168-2637.

SeaFOG (Seattle FOG User's Group, Formerly Osborne Users Group)
PO Box 12214, Seattle, WA 98102-0214.

OTHER PUBLICATIONS

The Z-Letter, supporting Z-System and CP/M users. David A.J.

McGlone, Lambda Software Publishing, 149 West Hillard Lane,
Eugene, OR 97404-3057, (503)688-3563. Bi-Monthly user oriented
newsletter (20 pages+). Also sells CP/M Boot disks, software.

The Analytical Engine, by the Computer History Association of
California, 1001 Elm Ct. El Cerrito, CA 94530-2602. A ASCII text
file distributed by Internet, issue #1 was July 1993. E-mail:
kcrosby@crayola.win.net.

Z-100 LifeLine, Steven W. Vagts, 2409 Riddick Rd. Elizabeth City,
NC 27909, (919)338-8302. Publication for Z-100 (a S-100 machine).

The Staunch 8/89’er, Kirk L. Thompson editor, PO Box 548, West
Branch IA 52358, (319)643-7136. $15/yr(US) publication for H-8/
89s.

The SEBHC Journal Leonard Geisler, 895 Starwick Dr., Ann Arbor
MI 48105, (313)662-0750. Magazine of the Society of Eight-Bit
Heath computerists, H-8 and H-89 support.

Sanyo PC Hackers Newsletter, Victor R. Frank editor, 12450 Skyline
Blvd. Woodside, CA 94062-4541, (415)851-7031. Support for or-
phaned Sanyo computers and software.

the world of 68’ micros, by FARNA Systems, PO Box 321, Wamer
Robins, GA 31099-0321. E-mail: dsrtfox@delphi.com. New maga-
zine for support of old CoCo’s and other 68xx(x) systems.

Amstrad PCW SIG, newsletter by Al Warsh, 2751 Reche Cyn Rd.
#93, Colton, CA 92324. $9 for 6 bi-monthly newsletters on Amstrad
CP/M machines.

Historically Brewed, A publication of the Historical Computer Soci-
ety. Bimonthly at $18 a year. HCS, 2962 Park Street #1, Jackson-
ville, FL 32205. Editor David Greelish. Computer History and more.

IQLR (International QL Report), contact Bob Dyl, 15 Kilburn Ct.
Newport, RI 02840. Subscription is $20 per year.

Update Magazine, PO Box 1095, Peru, IN 46970, Subs $18 per year,
supports Sinclair, Timex, and Cambridge computers.

Other Support Businesses

Hal Bower writes, sells, and supports B/PBios for Ampro, SB180,
and YASBEC. $69.95. Hal Bower, 7914 Redglobe Ct., Severn MD
21144-1048, (410)551-5922.

Sydex, PO Box 5700, Eugene OR 97405, (503)683-6033. Sells
several CP/M programs for use with PC Clones (22Disk' format/
copies CP/M disks using PC files system).

Elliam Associates, PO Box 2664, Atascadero CA 93423, (805)466-

The Computer Journal / #71

8440. Sells CP/M user group disks and Amstrad PCW products. See
ad inside back cover.

Discus Distribution Services, Inc. sells CP/M for $150, CBASIC
$600, Fortran-77 $350, Pascal/MT+ $600. 8020 San Miguel Canyon
Rd., Salinas CA 93907, (408)663-6966.

Microcomputer Mail-Order Library of books, manuals, and periodi-
cals in general and H/Zenith in particular. Borrow items for small
fees. Contact Lee Hart, 4209 France Ave. North, Robbinsdale MN
55422, (612)533-3226.

Star-K Software Systems Corp. PO Box 209, Mt. Kisco, NY 10549,
(914)241-0287, BBS: (914)241-3307. 6809/68000 operating system
and software. Some educational products, call for catalog.

Peripheral Technology, 1250 E. Piedmont Rd., Marietta, GA 30067,
(404)973-2156. 6809/68000 single board system. 68K ISA bus com-
patible system. See inside front cover.

Hazelwood Computers, RR#1, Box 36, Hwy 94@Bluffton, Rhineland,
MO 65069, (314)236-4372. Some SS-50 6809 boards and new
68000 systems.

AAA Chicago Computers, Jerry Koppel, (708)681-3782. SS-50 6809
boards and systems. Very limited quanity, call for information.

MicroSolutions Computer Products, 132 W. Lincoin Hwy, DeKalb,
IL 60115, (815)756-3411. Make disk copying program for CP/M
systems, that runs on CP/M sytems, UNIFROM Format-translation.
Also PC/Z80 CompatiCard and UniDos products.

GIMIX/0S-9, GMX, 3223 Amold Lane, Northbrook, IL 60062,
(800)559-0909, (708)559-0909, FAX (708)559-0942. Repair and
support of new and old 6800/6809/68K/SS-50 systems.

n/SYSTEMS, Terry Hazen, 21460 Bear Creek Rd, Los Gatos CA
95030-9429, (408)354-7188, sells and supports the MDISK add-on
RAM disk for the Ampro LB. PCB $29, assembled PCB $129,
includes driver software, manual.

Corvatek, 561 N.W. Van Buren St. Corvallis OR 97330, (503)752-
4833. PC style to serial keyboard adapter for Xerox, Kaypros, Franklin,
Apples, $129. Other models supported.

Morgan, Thielmann & Associates services NON-PC compatible
computers including CP/M as well as clones. Call Jerry Davis for
more information (408) 972-1965.

Jim S. Thale Jr., 1150 Somerset Ave., Deerfield IL 60015-2944,
(708)948-5731. Sells /O board for YASBEC. Adds HD drives, 2
serial, 2 parallel ports. Partial kit $150, complete kit $210.

Trio Comapny of Cheektowaga, Ltd., PO Box 594, Cheektowaga NY
14225, (716)892-9630. Sells CPM (& PC) packages: InfoStar 1.5
($160); SuperSort 1.6 ($130), and WordStar 4.0 ($130).

Parts is Parts, Mike Zinkow, 137 Barkley Ave., Clifton NJ 07011-
3244, (201)340-7333. Supports Zenith Z-100 with parts and service.

47

The Computer Journal

Back Issues

Sales limited to supplies in stock.

Yolume Number t;

clasues 108

+ Serlal interfacing and Modem transfers

« Moppy disk formats, Print spooler.
W‘r Math Chip, Fiber optics

+$-100 ES graphics.

s Controlling DC moton, Muiti-user

ocolumn.

+ VIC-20 EPROM Programmer, CPM 3.0.
+ CPM user functions and integration.

Yolume Nymber 2

«lasues 10 1o 19

.+ Forth tutorial and Write Your Own.

+ §8008 CPU for $-100.

« RPM vs CP/M, BIOS Enhancements.
« Poor Man's Distributed Processing.
« Controlling Apple Stepper Motors.

+ Facsimile Pictures on a Micro.

* Memory Mapped /O on a ZX81.

« Build an S-100 Floppy Disk Controiler:
WD2797 Controller for CP/M 68K

+ Extending Turbo Pascal: series

* Unsoldering: The Arcane Art

. Annlog Data Acquisition & Control:

Your Computer to the Real
Wotld
-pmmnmimmaosssec
* NEW-DOS: series

-Vuhbﬁym\hoBDSCShndardlemry
* The SCS! interface: series
* Using Turbo Pascal ISAM Files
* The Ampro Little Board Column: series
+ C Column: series
* The Z Column: series
= The SCS! Interface: introduction to SCSI
» Editing the CPM Operating System
. rtEXER Turbo Pascal Program to Create

M&mm.symm
Introduction to Assembie Code for CP/M

Ampro &Column

> » ZTime-1: AR.dTumClockfonheAmpco

Z-50 Little Board

Cuch

UungmosmeanrmoCbck
The SCS! Interface: Software for the SCS!

Bus

« Ingide Ampro

« NEW-DOS: The CCP Commands
{conk

* ZSIG Comer

* Affordeble C Compilers

* G t Multitasking: A Revi of
DoubleDOS

16-bit SBC and
* The Art of Source Code Generation:
Dissssemnbling Z-80 Software

» Feedback Controt Analysis: Using
Root Locus Analysis & Feedback Loop

« 88000 TinyGiant Hawthome's Low Cost
Operating

Compensation
* The C Column: A Graphics Primitive
* The Hitachi HDG4180: New Life for 8-bit

Systerns

« ZSIG Comer. C
and Aliases

« A Tutor Program in Forth: Writing a Forth
Tutor in Forth

« Disk Parameters: Modifying the CPM Disk
Parameter Block for Foreign Disk Formats

« Starting Your Own 88S

« Build an A/D Converter for the Ampro Littie
Board

* HDB4180: Setting the Wait States & RAM
Refresh using PRT & DMA

« Using SCS! for Real Time Control

« Open Letter to STD Bus Manufacturers

Control

d Line G t

* MDISK: Adding a 1 Meg RAM Disk to
Ampro Little Board, Part 1

* Using the Hitachi hd84180: Embedded
Processor Design

« 88000: Why use a new OS and the 880007
« Detecting the 8087 Math Chip

« Floppy Disk Track Structure

« Double Density Floppy Controlier

« ZCPRS3 |OP for the Ampro Littie Board

« 3200 Hackers' Language

+ MDISK: Adding a 1 Meg RAM Disk to
Ampro Little Board, Part 2

* Non-Preemptive Multitasking

« Software Timers for the 68000

« Lilliput Z-Node

* Using SCSI for Generalized 11O

* Communicating with Floppy Disks: Disk
P: ters & their vari

« XBIOS: A Replacement BIOS for the
$8180

» K-OS ONE and the SAGE: Demystifying
Operating Systems

* Remote: Designing a Remote System

Program
- The ZCPR3
Documentation

| mber
- 15 copies now available -

Issye Number 33;

« Data File Conversion: Writing a Filter to
Convert Foreign File Formats

« Advanced CPM: ZCPR3PLUS & How to
Write Self Relocating Code

* DataBase: The First in a Series on Data
Bases and Information Processing

« SCS! for the S-100 Bus: Another Example
of SCSI's Versatility

« A Mouse on any Hardware: implementing
the Mouse on a Z80 System

= Systematic Elimination of MS-DOS Files:
Part 2, Subdirectories & Extended DOS

Corner: ARUNZ

Services
* ZCPR3 Comner: ARUNZ Shells & Patching
WordStar 4.0

issue Number 34:

« Developing a File Encryption System.

» Database: A continuation of the data base
primer series.

« A Simple Multitasking Executive: Designing
an embedded controller muiltitasking
executive.

« ZCPR3: Relocatable code, PRL files,
ZCPR34, and Type 4 programs.

* New Microcontrollers Have Smarts: Chips
with BASIC or Forth in ROM are easy to
program.

« Advanced CP/M: Operating system
extensions to BDOS and BIOS, RSXs for CP/
M22.

* Macintosh Data File Conversion in Turbo
Pascal.

Issue Number 35:

« All This & Modula-2: A Pascal-like
alternative with scope and parameter passmg
. A Short Coufse in Code G

* SPRINT: A review.
» REL-Style Assembly Language for CP/M
& ZSystems, part 2.

* Advanced CP/M: Environmentai
programming.
Issue Number 37;

+ C Pointers, Arrays & Structures Made
Easier: Part 1, Pointers.

+ ZCPR3 Corner: Z-Nodes, patching for
NZCOM, ZFILER.

* Information Engineering: Basic Concepts:
fields, field definition, client worksheets.

* Shelis: Using ZCPR3 named shell
variables to store date variables.

* Resident Programs: A detailed ook at
TSRs & how they can lead to chaos.

+ Advanced CP/M: Raw and cooked console
1O.

* Real Computing: The NS 32000.

« ZSDOS: Anatomy of an Operating System:
Part 1.

issue Number 38:

* C Math: Handling Dollars and Cents With
[o%

« Advanced CP/M: Batch Processing and a
New ZEX.

* C Pointers, Arrays & Structures Made
Easier: Part 2, Arrays.

* The Z-System Corner. Sheils and ZEX,
new Z-Node Central, system security under
Z-Systems.

+» Information Engineering: The portable
Information Age.

« Computer Aided Publishing: introduction to
publishing and Desk Top Publishing.

* Shells: ZEX and hard disk backups.

« Real Computing: The National
Semiconductor NS320XX.

+ ZSDOS: Anatomy of an Operating System,
Part 2.

Issue Number 39:

* Programming for Performance: Assembly
Language techniques.

« Computer Aided Publishing: The Hewlett
Packard LaserJet.

*« The Z-System Corner: System
enhancements with NZCOM.

« Generating LaserJet Fonts: A review of
Digi-Fonts.

» Advanced CP/M:. Making old programs Z-
System aware.

« C Pointers, Arrays & Structures Made
Easier. Part 3: Structures.

+ Shells: Using ARUNZ alias with ZCAL.

*« Real Computing: The National
Semiconductor NS320XX.

issue Number 40:

« Programming the LaserJet. Using the
escape codes.

* Beginning Forth Column: Introduction.

* Ady d Forth Column: Variant Records

nbling 8088 software to produce
modnﬁab&e assem. source code.
* Real Computing: The NS32032.
» $-100: EPROM Burner project for S-100
hardware hackers.
= Advanced CPM: An up-to-date DOS, plus
details on file structure and formats.
« REL-Style Assembly Language for CP/M
and Z-System. Part 1: Selecting your
assembier, linker and debugger.

Issue Number 36:

« Inf tion Engi I "

* Modula-2: A||stofrelerence books.
« Temperature Measurement & Control:
Agricultural computer application.
+ ZCPR3 Comer: 2-Nodes, Z-Plan, Amstrand
computer, and ZFILE.
« Real Computing: NS32032 hardware for
experimenter, CPUs in series, software
options.

and Modules.

* LINKPRL: Generating the bit maps for PRL
files from a REL file.

* WordTech's dBXL: Writing your own
custom designed business program.

* Advanced CP/M: ZEX 5.0xThe machine
and the language.

» Programming for Performance: Assembly
language techniques.

* Programming Input/Qutput With C:
Keyboard and screen functions.

* The Z-System Corner. Remote access
systems and BDS C.

* Real Computing: The NS320XX

Issue Number 43:

« Forth Column: ADTs, Object Oriented
Concepts.

«+ Improving the Ampro LB: Overcoming the
88Mb hard drive limit.

» How to add Data Structures in Forth

* Advanced CP/M: CP/M is hacker's haven,

and Z-System Command Scheduler.

« The Z-System Corner. Extended Multipie
Command Line, and aliases.

* Programming disk and printer functions
with C.

+ LINKPRL.: Making RSXes easy.

* SCOPY: Copying a series of unrelated
files.

Issue Number 42;

« Dynamic Memory Allocation: Allocating
memory at runtime with examples in Forth.

« Using BYE with NZCOM.

+ C and the MS-DOS Screen Character
Attributes.

« Forth Column: Lists and object oriented
Forth.

* The Z-System Corner. Genie, BDS Z and
Z-System Fundamentals.

+ 88705 Embedded Controller Application:
An example of a single-chip microcontroller
application.

* Advanced CP/M: PluPerfect Writer and
using BDS C with REL files.

* Real Computing: The NS 32000.

issue Number 43:

« Standardize Your Floppy Disk Drives.

« A New History Shell for ZSystem.

* Heath's HDOS, Then and Now.

« The ZSystem Corner: Software update
service, and customizing NZCOM.

» Graphics Programming With C: Graphics
routines for the IBM PC, and the Turbo C
graphics library.

» Lazy Evaluation: End the evaluation as
soon as the result is known.

* S-100: There's still life in the old bus.

« Advanced CP/M: Passing parameters, and
complex error recovery.

* Real Computing: The NS32000.

issue Number 44:

« Animation with Turbo C Part 1: The Basic
Tools.

+ Multitasking in Forth: New Micros F88FC11
and Max Forth.

» Mysteries of PC Floppy Disks Revealed:
FM, MFM, and the twisted cable.

+ DosDisk: MS-DOS disk format emulator for
CP/M.

+ Advanced CP/M: ZMATE and using lookup
and dispatch for passing parameters.

« Real Computing: The NS32000.

+ Forth Column: Handiing Strings.

+ Z-Systern Corner: MEX and telecommuni-
cations.

Issue Number 45:

* Embedded Systems for the Tenderfoot:
Getting started with the 8031.

« The Z-System Corner: Using scripts with
MEX.

« The Z-System and Turbo Pascai: Patching
TURBO.COM to access the Z- System

* Embedded Ap : Designing a 280
RS-232 commumcabons gateway, part 1.

* Advanced CP/M: String searches and
tuning Jetfind.

» Animation with Turbo C: Part 2, screen
interactions.

« Real Computing: The NS32000.

Issue Number 46:

+ Build a Long Distance Printer Driver.

* Using the 8031's built-in UART for serial
communications.

 Foundational Modules in Modula 2.

* The Z-System Corner: Patching The Word
Plus spell checker, and the ZMATE macro
text editor.

« Animation with Turbo C: Text in the
graphics mode.

» 280 Communications Gateway:
Prototyping, Counter/Timers, and using the
Z80 CTC.

Issue Number 47:

« Controlling Stepper Motors with the
B68HC11F

« Z-System Corner. ZMATE Macro Language
« Using 8031 Interrupts

= T-1: What it is & Why You Need to Know

= ZCPR3 & Modula, Too

« Tips on Using LCDs: Interfacing to the
68HC705

» Real Computing: Debugging, NS32 Multi-
tasking & Distributed Systems

The Computer Journal / #71

« Long Distance Printer Driver: correction
+ ROBO-SOG 90

issue Number 48:

« Fast Math Using Logarithms

« Forth and Forth Assembler

+ Modula-2 and the TCAP

» Adding a Bernoulli Drive to a CP/M
Computer (Building a SCS! Interface)

« Review of BDS “Z"

* PMATE/ZMATE Macros, Pt. 1

* Real Computing

» Z-System Comer: Patching MEX-Pius and
TheWord, Using ZEX

" ssue Number 49;

« Computer Network Power Protection

« Floppy Disk Alignment w/RTXEB, Pt. 1

* Motor Control with the FBBHC11

= Controiling Home Heating & Lighting, Pt. 1
» Getting Started in Assembly Language

* LAN Basics

» PMATE/ZMATE Macros, Pt. 2

+ Real Computing

« Z-System Corner/ Z-Best Software

ssue Number S0:

« Officad a System CPU with the 2181

« Floppy Disk Alignment w/RTXEB, Pt. 2

* Motor Control with the F8HC11

« Modula-2 and the Command Line

« Controlling Home Heating & Lighting, Pt. 2
« Getting Started in Assembly Language Pt 2
« Local Area Networks

» Using the ZCPR3 IOP

« PMATE/ZMATE Macros, Pt. 3

« Z-System Corner, PCED/ Z-Best Software
+ Real Computing, 32FX18, Caches

Issue Number 51:

* Introducing the YASBEC

* Floppy Disk Alignment w/RTXEB, Pt 3

« High Speed Modems on Eight Bit Systems
* A Z8 Talker and Host

» Local Area Networks—Ethernet

« UNIX Connectivity on the Cheap

« PC Hard Disk Partition Table

« A Short Introduction to Forth

The Computer Journal Back Issues

Issue Number 83:

- The CPU280

- Locat Area Networks

- Am Arbitrary Waveform Generator

- Real Computing

- Zed Fest'91

- Z-System Corner

- Getting Started in Assembly Language
- The NZCOM I10P

- Z-BEST Software

Issue Number 34:

- Z-System Corner

- B.Y.O. Assembler

- Local Area Networks

- Advanced CP/M

- ZCPR on a 16-Bit Intel Platform

- Real Computing

- Interrupts and the 280

- 8 MHZ on a Ampro

- Hardware Heavenn

- What Zilog never told you about the Super8
- An Arbitary Waveform Generator
- The Development of TDOS

issue Number 38:

- Fuzzilogy 101

- The Cyclic Redundancy Check in Forth
- The Internetwork Protocol (1P)

- Z-System Comner

- Hardware Heaven

- Real Computing

- Remapping Disk Drives through the Virtuai
BIOS

- The Bumbling Mathmatician

- YASMEM

- Z-BEST Software

Issue Number $6:

- TCJ - The Next Ten Years

- Input Expansion for 8031

- Connecting IDE Drives to 8-Bit Systems
- Real Computing

- 8 Queens in Forth

- 2-System Corner

- Mr. Kaypro
- DR. 8-100

Issue Number 59:

- Moving Forth

- Center Fold IMSAI MPU-A

- Developing Forth Applicaticns
- Real Computing

- Z-System Corner

- Mr. Kaypro Review

- DR. 8-100

Issue Number 60:
- Moving Forth Part il

- Center Fold IMSAI CPA

- Four for Forth

- Reat Computing

- Debugging Forth

- Support Groups for Classics
- Z-System Corner

- Mr. Kaypro Review

- DR. $-100

Issue Number 61:

- Multiprocessing 6809 part |

- Center Fold XEROX 820

- Quality Control

- Real Computing

- Support Groups for Classics
- Z-System Corner

- Operating Systems - CP/M

- Mr. Kaypro SMHZ

Issue Number 62:
- SCSI EPROM Programmer

- Center Fold XEROX 820
-DR 8-100

- Real Computing

- Moving Forth part Il

- Z-System Comer

- Programming the 6526 CIA
- Reminiscing and Musings

- Modem Scripts

Issue Number 63:

Issue Number 65;

- Small System Support
- Center Fold ZX80/81

- DR $-100

- Real Computing

- European Beat

- PCIXT Comer

- Little Circuits

- Levels of Forth

- Sinclair ZX81

Issue Number 66:

- Small System Support

- Center Fold: Advent Decoder
- DR $-100

- Real Computing

- Connecting IDE Drives

- PC/XT Comer

- Littie Circuits

- Multiprocessing Part ill

- Z-System Corner

Issue Number 67;

- Small System Support

- Center Fold: SS-50/SS-30
- DR $-100

- Real Computing

- Serial Kaypro Interrupts

- Little Circuits

- Moving Forth Part 5

- European Beat

Issue Number 68:

- Small System Support

- Center Fold: Pertec/Mits 4PIO
- Z-System Comer |l

- Real Computing

- PC/IXT Corner

- Little Circuits

- Multiprocessing Forth Part 4

- Mr. Kaypro

Issue Number 69:
- Small System Support
- Center Fold: S-100 IDE

1year {6 issues)
2 years (12 issues)
Back Issues (CA tax)

$24.00 $32.00 $34.00 $3400 $44.00
$44.00 $60.00 $64.00 $64.00 $84.00)
add these shipping costs for each issue ordered

Bound Volumes $20.00 ea
#20 thru #43 are $3.00 ea.

+$3.00 +$350 +$6.50 +$4.00 +$17.00
+$1.00 +$1.00 +$1.25 +$150 +$250
#44andup are $4.00ea. +$1.25 +$1.25 +$1.75 +$2.00 +$350 OCreditCard #

* Stepped Inference in Embedded Control . : ; - SCS| EPROM Programmer part 1 - Z-System Corner If
+ Real Compuing, the 32CG160, Swordfish, ~ cayPro-84 Diect File Transfers - Conter Fold XEROX 820 - Real Computing
+ PMATE/ZMATE Macros nalog Signal Generation - DR 100 - PCIXT Comer
« Z-System Corner, The Trenton Festival - Real Computin: - DR. $-100
.7 Issue Number 57: " puting .
2Z-Best Software, the Z3HELP System THore Automation with X10 Multiprocessing Part I + Moving Forth Part 6
Issue Number 52: - File Transfer Protocols . ga“?!“oep";rgz::;ystems Mr. Kaypro
* YASBEC, The Hardware gDIISéoat 8 MHZ. - Reminiscing and Musings issue Number 69;
+ An Arbitrary Waveform Generator, Pt. 1 eal Computing . IDE Drives Part it ~Small System Support
_+B.Y.O. Assembler...in Forth - Shell Sort in Forth - Center Fy:lcr Ju ite‘r)oACE
"« Getting Started in Assembly Language, Pt. 3~ Z-System Comer Issue Number 64: - Z-System Cbrn:r Il
* The NZCOM IoP) ggod;%gn to Forth Tsmalc? - Real Computing
* Servos and the FE8HC11 \ "7 AT Last - Center Fold last XEROX 820 - PCIXT Cormner: Stepper Motors
» Z-System Corner, Programming for ast! . DR S-100 . DR. S-100
Compatibility - Real Computi ti i
. . puting - Multiprocessing Part §
Z-Best Software N ssue Number 38 Moving Forth Part IV - European Beat
« Real Computing, X10 Revisited ultitasking Fo - Z-System Cormer
« PMATE/ZMATE Macros - Computing Timer Values - Small Systems
« Controlling Home Heating & Lighting, Pt. 3 - Affordable Development Tools M. Kaypro SPECIAL DISCOUNT
* The CPU280, A High Performance Single- 'gesa' ?miétgmﬂ . IDE Drives Part Iil 15% on cost of Back Issues when
< L lem fner .
Board Computer ys buying from 1 to Current issue.
10% on 10 or more issues.
4 u.s. Canada/Mexico Europe/Other \
Subscriptions (CA not taxable) (Surface) (Air) (Surface) (Air) Name:

Address:

- - exp /

Payment is accepted by check, money order, or Credit Card (M/C,

tems:

VISA, CarteBlanche, Diners Club). Checks must be in US funds,
drawn on a US bank. Credit Card orders can call 1(800) 424-8825.

Back Issues Total

Shipping _ Total ’ Cj_Ihe_C;o;mputeL.laumal

California state Residents add 7.25% Sales TAX .
Subscription Total P.C. Box 535, Lincoln, CA 95648-0635
L Total Enclosed Phone {816) 645-1670

The Computer Journat / +

The Computer Corner

By Bill Kibler

Over the past few issues I have talked
about using PLCs. At work I have been

- programming them for door control.
Currently I am moving on to another
form of PLC, mainly embedded control-
lers. These are 8051 based small con-
trollers that do door control just the same
as the larger PLC.

I surmise that plenty of companies are
using their own or many of the off the
shelf products for PLC like operations.
In the past PLCs required that you buy
them from large corporations, spend big
amounts of money getting set up, and
spend even more money when trying to
upgrade either size or features.

Lately the PLC industry has changed
with smaller, cheaper, and direct sales
operations. I have one such direct sales

. system and will be testing and playing

" with it later this year. Our normal method
of determining cost is per point. By that
we mean what was the overall cost di-
vided by the number of points available.
This gets hard to figure since there is
typically a base cost that remains the
same regardless of points, type of points
vary (AC vs DC), and expansions be-
yond base size adds extra cost.

Lets do a simple cost breakdown to see
how it might compare to doing 8051
alternatives. PLC Direct (1-800-633-
0405) is currently the bottom line sys-
tem and anyone with a credit card can
get them. Lets do a simple system of 16
doors. That means we have 16 input
switch, 16 output lights or LED’s, 16
DC outputs to control relays, and 16
inputs to see if the door is open. This is
a very small system, but typical of the
design requirements.

From PLC Direct we have three choices,

50

bottom line would provide little expan-
sion options, middle size might handle

- twice the design, and larger systems that

could handle considerably more. Now
their base unit cost is only a little lower
that other vendors, but their /O mod-
ules run about half everyone else’s cost.
When figuring on a per point base, the
small units cost around $7, mid is $10,
and large is $14. Regular vendors price
might be $12 for small, $17 for mid, and
$19 for large systems.

These I/O units can be either transistor,
where you drive the device (typically a
relay directly), optoisolator devices to
drive other transistor circuits, or relays
of the 12, 24, or 110 volt variety. If
Large currents are to be controlled, you
must use the small relay to drive a big
relay or contactor (a REALLY big relay
assembly). All these variations have a
different pricing per point.

One cost that must be figured in is soft-
ware (to download your program) or a
hand programmers (to entry to program
steps one at a time). PLC Direct’s soft-
ware is $495 and handles all of their
modules. Other vendors will hit you
somewhat the same, but might require a
different package for each size used.
When adding the software cost, small
becomes $15 per point, mid is $18, and
large $22. Remember that it is a one
time charge, so it is high for a single job,
but low if you use it many times. Hand
programmers (calculator like device for
entering program steps one at a time)
can run from same price as software to
half and in some cases even more.

8051 PLC

Now some of these PLC designs do use
8051°s (and Z80s) inside. But what I am

talking about here, is buying a small
development system based on the 8051
chip. Since I have AMR’s sales litera-
ture (see ad inside back cover) at hand,
I'll do cost figures based on it. Now the
first problem I encounter is figuring
which product to get. Since I am inter-
ested in /O points, I look for the number
of in and out ports available.

In AMR’s last flyer, they list the boards
based on types of 8051 used. That canbe
a 80C51, 80C451, 80C751, 80C652, or
80CE558 (and more). Only in one place
do I see 7 I/O ports as a feature, so |
would guess it would be closes to my
needs (64 /O points). The 7 8bit ports
are on the 80C451 module and I see two
cost to start with, $275 for hardware
only, or $595 for an entire development
package that includes everything I need
to get started. The regular single board
price is $109. Now remember I am using
AMR pricing simply because it is at
hand, there are many other vendors all
with pricing and systems that are about
the same (features and options vary, but
pricing will following the differences
t00).

So what is the cost per point, about $2
for single boards, $5 for hardware devel-
opment system, and $10 for the full de-
velopment package. Keep in mind the
cost is based on 56 points not 64. So if
we were to actually do 64, some multi-
plexing and latching would be needed.
We could add those to the wire wrap-
ping area available on each board, or for
more runs build a daughter board. In
either case we add some more cost to
each board to get more points, but if we
compare the base cost and our added
circuitry, $3 per point might be pushing
it. The nearest PLC cost is $7 per point,
and most were considerably higher.

The Computer Journal / #71

Of course we will have the same design
problem of deciding on which 1/O cir-
cuits are needed. The I/O on the 8051 is
TTL non-isolated outputs. For real world
use, we will need optoisolators, possibly
driver circuits to operate relays, screw
terminals to connect to wires (you can
get a PLCs that have screw terminals on
their I/O cards). Don’t forget to order
extra power supplies to run the output
and input circuits on, different from that
driving the 8051 (some PLC’s provide
24 volts for that use).

As you can see with the hardware side of
doing PLC operations, you will need
other devices that are usually part of the
cost in getting a PLC. There are compa-
nies that sell just the interface cards that
can be driven by your TTL computer,
but expect to add five dollars a point (or
more) for the extra cards.

Alternatives

For one up projects, an old classic sys-
tem or PC clone might work great. Any
parallel port can be multiplexed to pro-
vide more outputs. Serial links to serial
to parallel converters is possible. Even
serial to 8051s could be done. Lets take
a Kaypro from a local swap meet, say
$50 (prices are going up on these not
down). We add multiplex expander on
the centronics port, using a handful of
TTL chips, wire wrapped (or soldered-
my choice) on perf board which adds $5.
I would do a 4 bit decode that maps the
lower 4 data bits, for a total of 64 points
(4bits * 16 addresses), add some driver
transistors like Henry did in issue 70’s
Etch-A-Sketch project ($10- his total cost
for 8 points was $4).

Now the cost is over $2 per point in the
above example. If the machine was just
sitting around, your cost might be $.20
per point and some time. I talked to
some people that were doing security
systems using used CoCo’s. They were
buying them at garage sales, making it
is easily to see why they could under bid
any competitor using real PLCs. Say we
got them at $10 each, added new cases
($10), some expanding circuitry ($5),
and a few other items to make the total
cost $32, that means $.50 a point. I dare

The Computer Journal / #71

any PLC vendor to match that.
Software

The next big problem however is how do
you program these cheaper machines.
Basically PLC’s are the simplest to pro-
gram. All you do is enter labels or an
address for the switch inputs and coil
outputs. The programming is very
straight forward and could be learned by
almost anyone with a fundamental
knowledge of electricity and relay op-
erations.

Programming 8051’s is not quite the
same. You must write your own pro-
gram from scratch. I provided some Forth
PLC code ideas some time back. The
idea was to provide a method where
tables might be used to contain the points
and a simple series of routines would
read through the table performing op-
erations. The normal method is to do
straight line coding for reading points
and turning on relays. This mean any
change in design would require changes
in coding. Table operation changes do
not effect the code, just the processing of
the table, which is pretty much how
PLC’s do it. In PLC design, you really
just add information into tables that are
scanned, computations made (results
placed on stack) and outputs performed
(top of stack 1 then do relay ON).

Can we come up with some simple pro-
gramming procedures to create our own
PLC in Forth or Basic, I think so. What
features do we need? Well primarily it
must be able to read single input points
and turn on or off single output points.
That is if we want to do a normal PLC
ladder type of program. If we know that
things happen in groups, then word ori-
ented programming is possible. What-
ever the design, it will have to wait till
next time and after [get some comments
from you.

Till later, keep hacking.
L]
From Small System Support, his final
words and more ideas on PLCs...

the start button and turns the output on
and leaves it on until you press the stop
button. Of course you can do much more

complex logic with one of these devices.
Some of them support dozens if not
hundreds of outputs and inputs. If any-
one out there is interested, I'll devote
part of this column for a while to such a
project. Of course you can run one of
these ports, and thus the project, using
an antique PC XT so such an article will
qualify for publication in 7CJ.

By the way, anyone out there have a
copy of Microsoft C/C++ version 6.0
that you want to sell? I want and need a
copy for a project and would gladly buy
one, but Microsoft doesn’t sell it any-
more. The new version is “Visual C” or
something like that, has all kinds of
(ugh) Windows support, and takes many
megabytes of hard disk space. I am not
asking for a bootleg copy. I would expect
to receive original disks and manuals for
a valid serial numbered copy. I'm only
interested if you’ve moved on to bigger
or different and more interesting things
and have a copy you don’t use anymore.

I feel the same way about Borland. I
have Turbo C++ 1.0 at home and 3.0 at
work. We recently upgraded to Borland
C++ 4.0 (I think) and found that it does
nothing more than 3.0 except that you
HAVE TO run it under Windows. Per-
haps it has a lot of Windows support in
the way of library functions, but we are
writing DOS applications so that is all
just excess baggage.

I guess as more and more of our people
come on line to write DOS applications
we will have to appeal like this, to find
old copies of 3.0 to buy, write to Borland
(who MIGHT be going bankrupt soon)
or MicroSoft and BEG them to sell us
copies of their old sofiware or let us
make copies of what we have for a li-
cense fee of some sort. I have a feeling
that there are many embedded systems
companies around who are in the same
boat. The sofiware suppliers have to come
up with bigger and BIGGER packages
1o entice people to buy “upgrades”. I'd
like to give a good try to doing it the
honest way. If we can no longer buy the
nicer simpler compiler and the suppliers
won’t negotiate licences, we’ll simply be
forced to make extra copies for our pro-
grammers.

51

TCJ CLASSIFIED

CLASSIFIED RATES!
$5.00 PER LISTING!

TCJ Classified ads are on a prepaid basis
only. The cost is $5.00 per ad entry.
Support wanted is a free service to sub-
scribers who need to find old or missing
documentation or software. Please limit
your requests to one type of system.

Commercial Advertising Rates:

Size Once 4+

Full $120 $90
1/2 Page $75 $60
1/3 Page $60 $45
1/4 Page $50 $40

Market Place $25 $100/yr
Send your items to:
The Computer Journal
P.O. Box 535
Lincoln, CA 956480535

Historically Brewed. The magazine of
the Historical Computer Society. Read
“about the people and machines which
" changed our world. Buy, sell and trade
"antique” computers. Subscriptions $18,
or try an issue for $3. HCS, 2962 Park
Street #1, Jacksonville, FL 32205

Wanted: Good complete floating-point
package (IEEE single and/or double pre-
cision) for the 8051 Micro. Should be
public domain, but commercial better
than nothing. Send info to tilmann.reh@
hrz.uni-siegen.d400.de.

Wanted: TURBO Pascal for CP/M-86,
and a communications program for CP/
M-86; also looking for other languages
(esp. Forth with file interface) and utili-
ties for CP/M-86. Address correspon-
dence to: Douglas P. Beattie, Jr.; P.O.
Box 47, Oak Harbor, WA 98277-0047.

Notice: Historically Brewed has moved.
The new address is : 2962 Park Street
#1, Jacksonville, FL. 32205.

52

f TCJ ADS WORK! \

Classified ads in TCJ
get results, FAST!

Need to sell that special older
system - TRY TCJ.
World Wide Coverage
with Readers interested in what
YOU have to sell.
Provide a support service,
our readers are looking for
assistance with their older
systems - all the time.
The best deal in magzines,
TCJ Classified
it works!

\ J

For Sale: Kaypro 2X, P.N. 81-025, looks
like a small suitcase. Has 2 disk drives,
keyboard, monitor. Has previous owner's
social security number on it. Appearance
is nice, lights up, no guarantee. Want or
trade Ham equipment, grid dip meter,
noise bridge, SWR meter, old transmit-
ter crystals, 4 pin tubes, what have you?
$60.00 including UPS to lower 48 states.
Roger Grosser, RFD 1, Sutton, Vermont
05867.

WANTED

TCJ Needs an FTP site with
1 Gig or more space to
collect OLD BIOS source files
for possible CD-ROM.

Accessing same file space by regular

BBS is also very dersirable!

If you have the facilities and

would like to help continue

the computer restoration of
older systems, please contact:

Bill Kibler
Editor
The Computer Journal
PO Box 535
Lincoln CA 95648
B Kibler@GEnie.geis.com

SUPPORT
OUR
ADVERTISERS
TELL THEM
"I SAW IT IN
TCJ"

Electronic
Design

6619 Westbrook Dr.

Dave Baldwin

Citrus Heights, CA 95621

Voice/Fax (916) 722-3877
DiBs BBS (916) 722-5799

The Computer Journal / #71

TC ’ The Computer goumﬂ

Di_scover

tter is the only publication
CP/M and the Z Sysiem.

Advent Kaypro Upgrades
TurboROM. Allows flexible
configuration of your entire

system, read/write additional
formats and more, only $35.

Replacement Floppy drives and
Hard Drive Conversion Kits. Call
or write for availability & pricing.

Call (916)483-0312
eves, weekends or write

Chuck Stafford P.O. Box 538
4000 Norris Ave. Lincoln, CA 98648-0836
Sacramento, CA 95821 \)

(" TCJ MARKET PLACE)
Advertising for smalil business
First Insertion: $25
Reinsertion: $20
Full Six issues $100
Rates include typesetting.
Payment must accompany order.
VISA, MasterCard, Diner's Club,

Carte Blanche accepted. ,
Checks, money orders must be
US funds. Resetting of ad
consitutes a new advertisement
at first time insertion rates.
Mail ad or contact
The Computer Journal

‘Disk Copying, including AMSTRAD. Send self addressed,
d envelope for free Flyer, Catalog $1.00

Elliam Associates
Box 2664
Atascadero, CA 93423
805-466-8440

0/1€€€E-696
;-IMSHI Altair

669) 771-1503

THE FORTH SOURCE

Hardware & Software

MOUNTAIN VIEW
PRESS

Glen B. Haydon, M.D.

Route 2 Box 429
La Honda, CA 94020

(415) 747 0760

6811 and 8¢

Hardware & Sof

Supporting over thirty versions
with a highly integrated
development environment..

Our powerful, easy to use
FORTH runs on both the PC
host and Target SBC with very
low overhead

Low cost SBC's from
$84 thru developers systems.
For brochure or applications:

AM Research
4600 Hidden Oaks Lane
Loomis, CA 95650
1(800)947-8051
soﬁa@netcom.com

PCR's in Minutes

From LaserPrint!*

81/2°x11" * Or Photocopier
Sheets Use household
100% MBG

Pf.ALC - Pof
5SS
1. LaserPrint luu:‘n
2. lron-On |
3. Pesl-Off ! Sodt-Oﬂ w/ Woter
4. €ch 4.
fAn €xtra Layer of Resist Tmfsfus Laser or
for Super Fine Traces Copler Toner os_@;sls_tv]

205h$30/405h$50/1 005h$ 100 Blus/liet (No Mix)
Sample Pack S Shts Bius + 5 Shts Wet $20
VISA/MC/POICKIMO $4 S&H - 2nd Doy Mail

Techniks Inc. P.O. Box 443 Ringoss NJ) 08551

(908)788-8249

