Issue Number 72 March/April 1995 US$4.00

Beginning PLD

Small System Support
Playing With Micros
8048 Emulator Part 11
Small Tools
Real Computing
Support Groups
Dr. S-100
Moving Forth part 7.5
Centerfold - Rockwell R65F11

The Computer Corner

ISSN # 0748-9331 TCJ - For Having Fun With Any Computer!

COMPUTER HISTORY COLLECTION
FOR SALE:

Books from 1850-1003

Byte: 1976-1989 149 issues

Kllobaud: 1977-1980

Fred Gruenberger's Computing News: 1853-1958
Berkeley's Computers & Automation: 1952-1968

~ ACM Publications: Journal: 1856-1975 60 issues
Communications: 1958-1880 236 lesues
Computing Reviews. 1962-1880 117 lesues

Semiconductor Company Catalogs 1067-1981
UNIVAC and I1BM Publications

Computer Hardware Including: WW |l Sperry T-1-A analog
computer made by GM's AC Spark Plug division

1973 National Radio institute Model 832 Digital Computer

1977 intel intelec MDS 888 serial # CP 192

1977 intsl Prompt 48 serial # CH 198

IMSAI PCS-80/15 serial # 1360

SYM-1 88 new in box with manuals

TmMﬁn:WSOBraﬂac&CalmloComputwkmby
Sclence Material Center

Please send long seif addressed envelope with 55 cents
posiage 1o Randy Uebermann, 2874 South Abingdon St,
Apt. A, Arlington, VA 22206-1363 Tel: 703-824-9733

Peripheral Technology

Specials
486SLC 33MHZ Motherboard w/ CPU $119.00
486SLC/66MHZ IBM,VESA,CPU,Math$219.00
IBM board - Made in USA - 3YR warranty

PT68K4/68000/16MHZ /w 1MB $249.00
CDS/68020/25MHZ CPU ; $399.00

0S9/68000 Includes C Compiler $299.00
420MB Connor IDE Drive $215.00
540MB Connor IDE Drive $309.00
IDE/Floppy/Serial/Parallel $24.95
1.44MB TEAC Floppy $49.95
Panasonic Dual Speed CD ROM $159.00

VGA Card ET4000-1MB, 1280x1024 $99.00

VGA Monitor WEN .28mm 1024x768 $229.00
Free Catalog on Request

UPS Ground $7.00 on most items. Tower &

monitor $12.00.

1250 E Piedmont Rd. 404/973-2156

Marietta, GA 30062 FAX: 404/973-2170

CI'OS_S-ASSGmblerS as low as $50.00
Sll'l_\UlatOI'S as low as $100.00
Cross-Disassemblers : v 1000
Developer Packages

as low as $200.00(a $50.00 Saving

A New Project
Our line of macro Cross-assemblers are easy to use and full featured,
including conditional assembly and unlimited include files.
Get it To Market--FAST

Don't wait until the hardware is finished to debug your software. Our
Simulators can test your program logic before the hardware is built.

No Source!
Aminor glitch has shown up in the firmware, and you can't find the original
source program. Qur line of disassemblers can help you re-create the
original assembly language source.

Set To Go
Buy our developer package and the next time your boss says "Get to work.",
you'li be ready for anything.

Quality Solutions
PseudoCorp has been providing quality solutions for microprocessor
problems since 1985,
BROAD RANGE OF SUPPORT
e Currently we support the following microprocessor families (with
more in development):

intel 8048 RCA 1802,05 Intel 8051 Intel 8096
Motorola 6800 Motorola 6801 Motorola 68HC11 Motorola 6805
Hitachi 6301 Motorola 6808 MOS Tech 6502 WDC 65C02
Rockwell 65C02 intel 8080,85 Zilog 280 NSC 800

Hitachi HD64180 Motorola 68000,8 Motorola 68010 Intel 80C196
e Al products require an IBM PC or compatible.

So What Are You Waiting For? Call us:
PseudoCorp
Professional Development Products Group
921 Country Club Road, Suite 200
Eugene, OR 97401
(503) 683-9173 FAX: (503) 683-9186 BBS: (503) 683-9076

SAGE MICROSYSTEMS EAST

Selling and Supporting the Best in 8-Bit Software

Z3PLUS or NZCOM (now only $20 each)
ZSDOS/ZDDOS date stamping BDOS ($30)

ZCPR34 source code ($15)
BackGrounder-ii ($20)
ZMATE text editor ($20)
BDS C for Z-system (only $30)
DSD: Dynamic Screen Debugger ($50)
4DOS “zsystem" for MSDOS ($65)
ZMAC macro-assembler ($45 with printed manual)

Kaypro DSDD and MSDOS 360K FORMATS ONLY
Order by phone, mail, or modem and use
Check, VISA, or MasterCard. Please include
$3.00 Shipping and Handling for each order.

Sage Microsystems East
1435 Centre Street

Newton Centre MA 02159-2469
(617) 965-3552 (voice 7PM to 11PM)
(617) 965-7259 BBS

The Computer Journal

Founder
Art Carlson

Editor/Publisher
Bill D. Kibler

Technical Consultant
Chris McEwen

Contributing Editors
Herb Johnson
Charles Stafford
Brad Rodriguez
Ronald W. Anderson
Helmut Jungkunz
Ron Mitchell
Dave Baldwin
Frank Sergeant
JW Weaver
Richard Rodman
Jay Sage
Tilmann Reh

The Computer Journal is pub-
lished six times a year and mailed
from The Computer Joumnal, P. O.
Box 535, Lincoln, CA 95648, (916)
645-1670.

Opinions expressed in The Com-
puter Journal are those of the re-
spective authors and do not neces-
sarily reflect those of the editorial
staff or publisher.

Entire contents copyright © 1995
by The Computer Journal and re-
spective authors. All rights reserved.
Reproduction in any form prohibited
without express written permission of
the publisher.

Subscription rates within the
US: $24 one year (6 issues), $44
two years (12 issues). Send sub-
scription, renewals, address
changes, or advertising inquires to:
The Computer Journal, P.O. Box
535, Lincoin,CA 95648.

Registered Trademarks

It is easy to get in the habit of using company
trademarks as generic terms, but these trademarks are
!he pfoperty of the respecuve companies. It is important

rks as their property to
avoud their losmg the ngms and the term becoming pub-
lic property. The following frequently used trademarks
are acknowledged, and we apologize for any we have
overiooked.

Apple i, lI+, lic, lle, Lisa, Macintosh, ProDos;
Apple Computnr Company. CPM, DOT, ASM STAT,
PIP; Digital Research. DateStamper, BackGrounder ii,
Dos Disk; Plu*Perfect Systems. Clipper, Nantucket
Nantucket, Inc. dBase, dBASE !i, dBASE Ili, dBASE
Plus, dBASE IV; Ashton-Tate, Inc. MBASIC, MS-DOS,
Windows, Word; MicroSoft. WordStar, MicroPro Inter-
national. 1IBM-PC, XT, and AT, PC-DOS; IBM Corpora-
tion. Z80, 2280; Zitog Corporation. Turbo Pascal, Turbo
C, Paradox; Borland Intemational. HD64180; Hitachi
America, Ltd. SB180; Micromint, Inc.

Where these and other terms are used in The
Computer Journal, they are acknowledged to be the
property of the respective companies even if not specifi-
cally acknowledged in each occurrence.

Ic

The Computer Journal
Issue Number 72 March/April 1995

Editor’'s Comments T erennens eeneerens coneeees 2
Reader to Reader......ccccceceveeeeremnnnnnnne ceeereens eveeennres veeeeed
Dr. S-100......... ereereeeenteerereraratnsasesnsnrntnsnsasasnennererens ver. 10

Compupro 8080/8086.
By Herb R. Johnson.

Small System Supportcccvvecrrrineeresenercsscnneens. 14
C and assembly language tutorial.
By Ronaid W. Anderson.

Beginning PLD......c.cccriivirirercccrecnercnersrnnnseesecsanennes 20

The good and bad of using PLD's.
By Claude Paim.

Center Fold cersrsessenaneressenanessins reorennee ceronnsrennnes 25
Rockwell R65F11 Single Board Forth Computer

Support Groups for the Classics S 29
ZED-FEST at Trenton.

Real Computing.............. reeesreeseissiesannannans resnsennan cerree 32

Programming languages.
By Rick Rodman.

Small Tools venrseseesseeseannans ceerserncnnns ceesenen - ¥

Forth based tools for 68HC11.
By Calvin McCarthy.

Playing With MiCrosccccceciiiicncccnnrnneeessesrssnsess 36
Reviewing 5 micros to learn with.
By Bill Kibler.

8048 Emulator........... rererseresnenereann SR ()

A home built emulator.
By J. G. Owens.

Moving FOrth........coomirercrccciicccccccrcccreeeenenene ceersnssssanaens 44
Part 7.5: 8051 Camel Forth.
By Brad Rodriguez.

The Computer Corner veresrssnsssnnns creseseenanans veeeeea 50
By Bill Kibler.

EDITOR'S COMMENTS

~ Welcome to number 72 and a special on
embedded systems. Webring you a num-
ber of articles about embedded devices
and systems. Although not totally de-
voted to controllers, we have several
articles that may help you understand
what is happening in this field.

Starting this issue is the ever popular
Reader to Reader section. We have sev-
eral good letters and discussions that are
a must to read.

Dr. S-100, Herb Johnson, steps up next
with his letters bag and talk about a
Compupro 8/16 system. He is followed
by Ron Anderson and more straight talk
about programming. Ron adds a new
section on C programming so you can
sec what that is all about.

When we ran Claude Paim’s letter about
his IDE interface, some interest was
sparked about doing PLD designs.
Claude had indicated a willingness to
explain his experiences and thus an ar-
. ticle doing just that is called “Beginning
PLD”.

This issue’s centerfold is the Rockwell
R68F11 development board. We think
the device is no longer available, how-
ever it does show a good simple design,
complete with floppy controller.

Please read the section on Groups as it
announces the 1995 Trenton Computer
Fair and Zed-Fest. Jay Sage sent me the
information, and I was going to be there,
but due to family problems will have to
pass it up. Rick Rodman zips in words
on some 16 bit programming languages
after the groups directory.

Starting our slate of special articles is a
discussion of the group of tools for pro-
gramming the New Micro’s 68HC11 in
Forth. The review of tools is by Calvin
McCarthy of Canada, where he shows
you some of the problems and solutions

that arise when trying to interface to
Embedded controllers.

At this point I finally get to run my
Embedded Review article that helps you
understand what you get for your money.
I decided to do this article after my last
embedded trainer purchase turned out to
be rather different than I expected. I re-
view five system including this issue’s
centerfold.

Part three of J. G. Owens Monitor/Emu-
lator for the 8048 provides us with the
hardware portion of the design. I must
say I have never had a schematic quite
like his before. It is an IBM graphic font
file that runs about six feet long. It is all
there including some of his comments.

Speaking of parts, we finish Brad
Rodriguez’s code listing for his 8051
CamelForth. Brad and several other au-
thors are taking some time off to finish
school work and that leaves only my last
words of wisdom in the Computer Cor-
ner.

I conclude by pointing out a vendor of
old software that is still selling and some
PLC fodder for thought. For those want-
ing more PC/XT articles I make a re-
quest for help in my corner. Much like
the problem I faced with embedded ar-
ticles, all my PC/XT people are too busy
as well. So if you have some good ar-
ticles that explain and bridge the gap
between old and new send them in.

Business News.

Well TCJ is doing about the same as the
last two years. By that I means we have
some readers, but not enough. 1 have
been trying to get the word out, but earn-
ing my own living has been taking it’s
toll on the magazine and me. I am not
giving up on TCJ nor will I let it be sold
off to become a PC only rag. I am how-
ever looking for someone or group to
take up the slack and or take it over.

I currently spend 80% of my time doing
paper work. That is far too much in
relationship to what should be happen-
ing on the editorial side. I went from a
full time job to one that I could work
80%. That gave me one day a week to
work on the magazine and a 30% cut in
pay. The hope was that 7CJ might make
up the slack. One day a week is still not
enough and has not brought in more
readers or more money. It has allowed
me to do some catching up as you have
seen in a few old articles that finally
found the top of my desk.

I have been writing for 7CJ over ten
years. Several others have burned out
and faded away or just slipped far into
the background. I would rather produce
my corner and do the occasional article.
I seldom have time to do articles, espe-
cially those needing lots of research.

Two ways appear as options. The pre-
ferred way is for all readers to get a
friend to subscribe. Doubling our read-
ership would give me a little cash from
this work and push 7CJ enough into the
black that I might be able to hire some
occasional help. My other option is find-
ing a new publisher or buyer for 7CJ. 1
have grave concerns for this option as
once out of my hands it could be killed
far too easily. These ideas and options
are not new, I have been pondering and
looking for help for some time. The
dragging on and realization that I am
starting to exceed my limits (and my
families) is just taking it’s toll. I need
some feedback and soul searching on
your part as supporters of 7CJ to find an
answer.

The Computer Journal is the only regu-
lar magazine supporting all the old sys-
tems, so we need some fresh ideas and
help in getting the word out and thus
more readers hooked on us. I look for-
ward to hearing from you, soon.

Bill Kibler.

The Computer Journal / #72

READER to READER

Letters to theEdltor
All Readers
MINI Articles

Dear Bill,

Enclosed is the material for my ad in the
Market place section of The Computer
JournaL. I have included both 1x and 2x
scale artwork, two copies each. I have
also included two styles, one with a black
background at the top and bottom and
one with an all white background. Please
feel free to select the format that will
work best in your publication. I have
enclosed a check for $50.00 as payment
for the May/June and July/August 1995
issues. :

I enjoyed talking with you on Monday
and hearing your thoughts on my busi-
ness ideas. My reasons for starting my
own business are many. Having just
joined the ever growing number of un-
employed defense workers and not much
chance of new employment; I felt that
my 28 years in electronics was still worth
something. Driven by the need to eat
regular, I decided that my best bet was to
start my own business. I have studied the
competition very carefully and found a
wide variety of systems and prices. From
my own point of view most, if not all,
these systems all have something lack-
ing. For example; one vendor sells the
basic controller board, but without BA-
SIC or a debug monitor that costs extra.
It seems to me that one is useless with-
out the other. If you want some sort of I/
beyond that of the processor then that
costs extra also. The well-rounded sys-
tems that include everything are usually
out of the price range of the student or
hobbyist. What I felt was needed was
versatile, low cost, systems that come
with everything you need.

My first product is an 80C32 based sys-

tem on a small 4 by 6 inch double sided
PC board. The board comes with 8 chan-

The Computer Journal / #72

nels of 8-bit A/D, an 8 or 12-bit D/A, 24-
bits of parallel /O, real time clock, and
a parallel printer port. The board also
includes 32K of EPROM, with BASIC-
52, and 32K of RAM. The RAM and
real time clock are both battery-backed.
While the 8051/52 family of parts is not
as advanced as some of the newer Dallas
Semiconductor or Signetics parts, they
are well established and low cost. All of
the components used in the system are
readily available from a variety of sources
including JDR Microdevices, Jameco
Electronics and Digi-Key. The board will
be available fully assembled or as a kit,
yes I said KIT. Part of my motivation to
offer the board in kit form grows from
my own experience in kit building. It’s
been almost 28 years since I built my
first kit, a Heathkit Oscilloscope, but I
still remember the knowledge and expe-
rience that I gained. Another reason for
selling in kit form stems from an edito-
rial that appeared in the November 1992
issue of Elektor Electronics USA (now
out of publication in the US).

In that editorial the editor stated that,

“Americans are rapidly losing their abil-
ity to make things with their hands. The
number of helpless, hapless individuals
grows steadily with each new genera-
tion.”

I don’t think that’s completely true, but
if it is then were all in trouble. At any
rate, there’s a lot to be said for putting
something together with your hands and
watching it work for the first time. I said
earlier that hardware was useless with-
out software. All of the software used in
this project is public domain, including
the BASIC-52 interpreter, and can be
obtained from the Phillips/Signetics sup-
port BBS. Although modified to work

more efficiently with my hardware, this
BASIC is included at no charge (that’s
what public domain means). I have added
16 new commands to the BASIC plus a
simple debug monitor, the cost of which
is included in the price of the system.
The only commercial software package
that I used is an integrated development
environment program called “ARMA-
DILLO+™”, ARMADILLO, developed
by Life Force Technology, is a slick little
program that integrates all of the utili-
ties needed in microcontroller develop-
ment into a single package. At the heart
of the package is a terminal emulator
with full upload, download and screen
capture capabilities. 1 am in the process
of making arrangements with the folks
at Life Force Technology to include a
reduced function version with my sys-
tem. When I say reduced function, I
don’t mean cripple ware. The program
will look and work just like the full
commercial version except that it will
only work with one system, my system.
The exact details of this agreement have
yet to be worked out, but when finalized
I will be able to do what I set out to do;
provide a complete system for a reason-
able price. Oh, in case your wondering,
ARMADILLO stands for Asynchronous
Responsive Multi-Assembler Develop-
ment Integrated Link to Logical Opera-
tion. The Phillips/Signetics support BBS
phone number is 1-800-451-6644, 2400-
8-n-1. The address of Life Force Tech-
nology is 5477 Rutledge Rd., Virginia
Beach, VA 23464, Phone (804) 479-
0973. Well, if all this works I have a
couple of designs based on the Motorola
MC68HC11 in the works to expand my
product line.

Sincerely, Donald W. (Don) Coates
D. C. Micros

1843 Sumner Ct.
Las Cruces, NM 88001
Ph. (505) 524-4029

Thanks for the ad and this letter Donald.
Normally I do some sort of introduction
Jor new advertisers, but your letter ex-
plains it all. 1 am vary interested in
knowing how well you do and 1 think you
will do well, since your product and
direction seem to be well thought out. I
am interested in trying to get a small
article from you on the problems or steps
needed to use the BASIC-51. I may be
doing the same with it later this year.

1 too doubt that people in the USA are
losing their ability to build with their
hands, but unfortunately managers and
politicians do. TCJ is built on the idea
that people still do want to build things
and your kit idea fits right in with our
reader’s practices. I usually tell people
to just buy some old system to play with,
but kit based projects, generally are a
bit more positive (if the supplier has
enough how-to in the manuals.)

This issue has turned out to be a special
on embedded systems, so check out the
other articles and reviews of systems,
you fit right in with them. Thanks for
Jjoining TCJ, Donald. BDK.

Dear Mr. Kibler,

Enclosed is my check for another year’s
subscription. Thanks for an excellent
magazine! I have been a reader of this
magazine for a year, and every issue has
been a wealth of information. I find that
it takes me several days to digest the
information in each issue. Few other
magazines make me think so much.

One thing I would like to comment on is
the readership of this magazine. I am a
twenty-one year old college student. From
what I have read of the letters and ar-
ticles, most of the readers are consider-
able older than I. I suppose this is only
natural, given the computers that are
discussed here. Consider this: I was seven
years old when the IBM PC was intro-
duced. I suppose this makes me a child
of the computer age. When it comes to
computers, I have barely scratched the
surface.

This then, is why I enjoy this magazine
so much. It has given me numerous ideas
for small projects and experiments. Al-
though the only computer I own that
falls under the scope of this magazine is
an old Epson 8088, I am eagerly search-
ing for more machines to add to my
collection. In the past, I have seen older
computers at garage sales and auctions,
but I have been hesitant to buy them, not
knowing where to turn for assistance.
This magazine has given me that, and
more.

One thing I would like to see in The
Computer Journal is coverage of single
board computers. I have lately been ex-
amining several of these based on the
Motorola 6811. In one of my classes
(I’m a computer science major), we dealt
extensively with programming the 6811
EVB. For anyone not familiar with this,
it is a single board computer produced
by Motorola for evaluating the 6811.
You connect it to a PC for programming
and debugging. The only problem with
these boards, though, is their cost, about
$125. A much more attractive design
which I am looking at right now is the

Miniboard, developed at MIT. The

Miniboard is again based on the 6811,
and with a few other components, it fits
on a 2" by 2" board. With that, you get
something like 256 bytes of RAM and
1K of EEPROM, depending on the exact
chip you use. You program it through a
serial link with a PC, and it can com-
municate with other Miniboards, and
control 4 switches or two motors. Total
parts cost is about $50, including the
CPU. The good part is that Motorola
will give you samples of any of their
chips for free if you are a college stu-
dent. So, I already have the CPU, and
am in the process of procuring the rest of
the parts. I should have a very interest-
ing computer when I am through with it.

Anyway, 1 feel that these computers
should definitely be covered more here.
They’re inexpensive, easy to use, and
give you a real understanding of assem-
bly language and control applications
(at least in my experience). So, I hope to
see more. Do you feel that this is an
appropriate area for the magazine? If it
is, I would certainly be interested in

writing about it.

Well, those are just a few of my thoughts.
Again, thank you for an excellent maga-
zine. I can see now why back issues are
such a major source of revenue for you.
I know I will be ordering some in the
future, and reading all the issues to come.

Sincerely,
hollenb@selway.umt.edu

Philip

Philip, you should find this issue a super
bonus. It seems the embedded articles
all got done and are starting with this
issue. Actually we have always done
small systems like the 6811, it just been
some time since I or any of the regular
writers has had anytime to put out an
article.

You might look at what Don Coats (DC
Micro) has for you. He is planning a kit
version of the 68HC11 in the very near
Juture that might be in your price range.
Also some vendors sell their design as
bare boards, although often at too much
money for what they give you. So check
them out and the articles in this issue,
Jjust for you (well not really just for you).

As to collecting the older machines, just
start doing it before they get too expen-
sive for you. The old one’’s are just great
to really learn about full systems. The
little guys are great for understanding
the CPU design, but at some point you
have to understand the whole system. |
find the older, simpler CP/M (or similar
machines) the best for learning how the
hardware and software work together
(DOS, BIOS, Video, 170, etc..). Thanks
Jor the letter and start collecting, now.
Bill.

Hello Bill,

Thanks for sending the sample issue of
The Computer Journal. 1 got a pointer
to your magazine from Don Walterman,
who you published a letter from in this
issue.

Like Don, I’am an avid QL user. I've
been with Sinclair computers since 1981.
Let me tell you a little bit about the
newsletter that I put out. I've taken the

The Computer Journal / #72

following from a standard flyer/file I put
out.

The QL Hacker’s Journal (QHJ) is a
newsletter published as a service to the
Sinclair QL community. The QHJ is
aimed at QL programmers. The QfJ is
free to all QL programmers interested,
and can be freely distributed to all. The
" QHJ is distributed in hard copy and as a
text file via electronic mail (Internet and
Compuserve). All back issues are avail-
able on disk, via e-mail, or Anon-FTP
from garbo.uwasa.fi.

I've enclosed a copy of the current issue,
plus an index of all past issues and ar-
ticles.

Thanks for the offer of doing a swap of
publications. Since my newsletter is
smaller and published less often, I'm
sure I'd be the one getting the better
deal. But, I must decline the offer. I
would not feel right getting such a good
deal. You are welcome to be on my
mailing list, either hard copy or elec-
tronic, or both. Since the QHJ is free,
I’'m extending you the same offer I give
to all interested parties.

Of the listed Other Publications, I read
four of them. I get both computer history
magazines and both Sinclair magazines.
- I’ve written stuff for “Historically
Brewed”, IQLR, and UPDATE.

Besides being a QL enthusiast, I also
collect computers. I am up to about 53.
I like to specialize in the home comput-
ers of the late 70’s and 80’s. I don’t
collect too many of the S-100 or CP/M
systems. I like the non-standard ones. 1
have almost the complete Sinclair, TRS-
80, and Atari line. I have Commodores,
TI-99, Spectravideo, Mattel Aquarius,
etc. Most just sit in the closet, but I do
occasionally bring them out and play
with them.

I do have a few CP/M machines
(Osborne, SuperBrain, Advantage). I
know CP/M is still functional and can
still get the job done. I've done a few
term papers using WordStar.

Well, back to The Computer Journal, |
don’t know if I'm ready to subscribe just

The Computer Journal / #72

yet. Most of the articles are more hard-
ware related and I'm a software guy.
The most I do in hardware is built my
own serial cables. I've tried learning
about hardware, but never got past the
basics of electronic.

But, like Don, I would like to offer my
services if you are looking for Sinclair
related information. If you ever get a QL
I can provide you with lots of freeware.
I specialize in collecting freeware com-
pilers and interpreters for the QL.

From the computer collecting side, I've
a few books dealing with computer his-
tory (PC’s mostly) and would be more
than willing to look something up for
you.

I also keep tabs on various emulators for
classic computers. The QL has a ZX81
and Spectrum emulator for it. There are
emulators for the ZX81, Spectrum, CoCo,
Dragon, C64, and others for MS-DOS.
I've picked up a ZX81, Spectrum, and
QL emulator for the Atari ST. If you are
interested in any of these, let me know,
I’'m on the Internet and can download
them fairly easy.

Keep up the good work with TCJ. Please
let me know if you want to be added to
the QHJ mailing list. I would enjoy send-
ing it to you.

Happy Hacking,

Timothy Swenson

5615 Botkins Rd.

Huber Heights, OH 45424

(513) 233-2178
swensotc@ss2.sews.wpafb.af.mil
tswenson@dgis.dtic.dla. mil

QL Hacker’s Journal

#1 January 1991

Structured SuperBasic RatcliffObershelp Patten
Matching The Quebec Link

Pursuit of a Public Domain C Compiler Minix on
the QL

#2 February 1991
Find-c

diskinfo

C beautifier

#3 April 1991
Herb Schaafls Small-C Programs
File Comparison

Real Windows for SuperBasic
C Compiler Comparison

#4 July 1991

Rand ¢

Cellular Automata
Iterated Function Systems

#5 August 1991

News

The Dutch Connection

QHJ Print Formatter
QROFF Postscript Formatter
2D arrays in Small-C

#6 November 1991
Italian Software

Dutch Connection 11
RPN Calculator
Substring Searching in C
Levenstein Distance
QDOS Rights

Compiler Benchmarks

#7 January 1992

Core Wars

QLPatch

The German Connection
New QL

#8 March 1992

ASCII Dump

Check Bits for ASCII Files
Ansi Cto K&R C

Strip-c

#9 June 1992

New Public Domain/Freeware QL Software
Software Engineering and OOPS on the QL?
Random Dots Stereograms

Infix to Postfix

Fletcher’s Checksum

#10 September 1992
Programmer’s Bookshelf
Maus.sys.ql

PGM and PBM on the QL

#11 November 1992

C68 v3.03

Disk Eraser

LF/CR to LF in Editors
Random ASCII Stereograms
LZW Compression

Token Reconstruction

#12 January 1993

QL to 288 Data Transfers
MacPaint File Printing
Maze Solution with CA
QHJ Index

#13 April 1993

Text Editors

QL Languages

Proglog Interpreter

EFORTH Interpreter

Programmer’s Bookshelf Revisited Recent Ports
Byte Input in SuperBasic

FORTH Programming

#14 July 1993

More on Text Editors

Ten Commandments of C Programmers
Intemet Conciseness Contest

Another Look at Mazes

#15 October 1993
Hex Movement Library
Base Conversion
Computer Language Humor
" Internet Consiceness Programming Contest How
Do They Do That - Editors,.
Stochastic Indexing

#16 January 1994

Quill Reader

Dice Percentage

QL Anon-FTP Server

Prolog Interpreter: A Second Look QHJ Reader
Survey

#17 April 1994
Readership Survey
C Portability
Permutations
Prime Number

#18 August 1994

Complex Ascii Rotation
Approximate String Matching
Hello, World

Natural Language

#19 November 1994

Displaying TI Graphics Files Displaying QL Screens
in MS-DOS Recent Freeware Releases

Big Numbers

Dynamic Windows - Another Approach Soundex

Thanks Tim for the sample and list, and
yes send me your work by internet or
.CompuServe. I am interested to see the
eForth and MINIX articles, but then the
whole list of back issues looks pretty
good too. Yes I do need an article on
emulators, both specific and in general.
I was going to do one, but too little time
and too much to learn. Jay Sage is work-
ing on the CP/M emulators, but there
are plenty of Sinclair emulators to learn
about as well.

I have a copy of the latest IQLR and it
is rather impressive (PO BOX 3991,
Newport, RI 02840-0987, USA or IQLR
23 Ben Culey Dr., Thetford, Norfolk IP24
1QJ, Great Britain $20US,£25 per year).
A very good publication, I thought done
in England, but I see that was only be-
cause of all the British advertisers. Two
of those ads got me going, a IDE inter-
Jace for the QL (mostly because we are
doing one for Z80's) and the QL for a
PC/AT bus. Would like to know more
about both of these. The problem is the

cost of money exchange (forgetting no
time to play anymore with my collection
of - well enough machines) and too little
knowledge of QDOS(?) and other
Sinclair insides. 1 am interested in any-
thing based on 68K that is not Apple
(since Apple is a big world of it's own
and not really hacker oriented).

Actually one ad that got me interested
was the 5 QL’s for $35 each, from a
person in the USA (615-483-4153). Well
1 better stop thinking of QL's before I
get myself and all the readers too curi-
ous to read on. Thanks Tim and how
about a few articles? If you need any
help on SuperBrains, I got some sche-
matics of the QD. Bill.

Dear Bill,

I read about your interest in repairing
the Timex Sinclair keyboard in the 93
Sept/Oct issue of The Computer Journal
& thought you would like my solution to
the problems I experienced.

My first attempt was to re-cut the end
going into the pc board & then inserting
a foam spacer so the end would not get
bent & break off. This worked for 5
years & then it broke again.

Not having enough flex cable left to
work with, I tried soldering wires only to
vaporize the metal coating off, making
my problems worse. Then I came up
with what I thought was a great idea.
First cut and shape the end coming out
of the keyboard then unsolder the con-
nectors from the pc board then solder
some ribbon cable to them about 8-10
inches. Install the connectors on to the
flex from the keyboard & use hot melt
glue to secure the connectors to the top
case so that the flex cable has very little
to bend as any bending will eventually
break again. Then solder the ribbon cable
back to the pc board & you are done.
This makes it much easier to open up the
computer to work on & eliminated the
other problem of trying to reseat the flex
from the keyboard back to the pc board.

I used to experience white outs while
pressing the keyboard which was ex-
tremely frustrating having to start all
over again. I saw a lot of adds for

“cures” from overheated regulators to
poor ram connectors etc. I enlarged my
heat sink with no improvement, replaced
my CPU with a cmos version & applied
a dip chip heat sink to the custom chip
& still had lots of trouble.

I removed the CPU chip and looked very
carefully & found a metal shaving short-
ing 2 pins intermittently. I removed it &
it has worked fine ever since.

I had tape loading troubles & found out
what is required of the cassette recorder
which I have never seen in print. The
recorder needs to have an output
transformerless power amplifier & use
at least a 6 volt power source preferably
7.5 volts.

If this is too difficult to obtain a circuit
can be bought or built to boost the signal
to the 5 volt peak to peak signal required
for proper loading to occur. I modified a
circuit that appeared in Popular Elec-
tronics many years ago. Their circuit
used an opamp with a bi-polar 9 volt
external power supply which I modified
to a single ended power supply to oper-
ate directly from the 5 volt power inside
the computer. I also had to change the
opamp from the one they chose to a low
voltage version to operate properly, it
worked great.

There is a company that still sells soft-
ware & hardware for the Timex Sinclair
1000 & they have the fast load software
that works great & allows you to get a
directory of your tape contents.

My address is Jim Hathaway Il
3057 Scotland Dr.
Antelope, Ca. 95843

Your friend
Jim Hathaway II

Thanks Jim for that information. How
about that new circuit, as I am sure
there are a few readers interested in
how to make their tape work better. I am
aware of that keyboard problem, I re-
wired a keyboard that used ribbon cable
years ago. I am really NOT a fan of the
ribbon cable systems. Many of them use
painted on conductors which comes off
if removed from the socket, one shot

The Computer Journal / #72

items! I am glad you found that floating
piece of material, strange but that is
often more of a problem than people
think, good going! Thanks for the hands-
on report. BDK.

To: B.KIBLER
Sub: 1802s, etc

"I am a new subscriber, however I or-
dered some back issues, and in issue #63
JW Weaver asked in his column for in-
formation on Quest Electronics/Super
ELF and the RCA 1802. I have the Su-
per ELF construction manual, a series of
construction articles from Popular Elec-
tronics on building a small SBC using
the 1802, and some misc. software ar-
ticles. Unfortunately I don’t have the
“Super Expansion Board” that Quest sold
for the Super ELF...if you ever get a
schematic I think it would make an
OUTSTANDING centerfold for your
magazine. Another company that was
into 1802°s was Netronics R&D in New
Milford, CT. Mountain View Press has
an assembly listing for 1802 fig-Forth
available, and Newark Electronics still
catalogs the chips, including a multiply/
divide unit.

Also I have a problem that hopefully
someone can help me with. I have a very
nice keyboard made by Cortron (model
#80-350181, US patent #3,035,253, se-
rial #462811) which I would like to hook
up to my Super ELF. However, I have no
documentation and the decoder chip is
missing. I —think— it used an 8748
which would be easy to get if I had a
copy of the on chip program...so I'm
hoping someone is familiar with this
keyboard.

Anyway, nice magazine:) Especially the
Scroungemaster II. I hope to be building
one soon, but mine will be a single pro-
cessor system (I think). Hey...maybe you
could talk Brad Rodriguez into design-
ing a new and improved “Super Ex-
pander Board” for 1802 systems, includ-
ing 4 cascaded 1855 M/DUs and Forth.

Sincerely, Ken Deboy
Glockr@delphi.com

Interesting request Ken, and thanks for
the letter. Well it has been some time

The Computer Journal / #72

since we have had an 1802 article. 1
think a long past contest winner was
using an 1802 CPU. Guess I'll have to
hunt it up in the back issues.

Till then, how about you writing on it?
They say that you learn more by trying
to explain something than by watching
or reading, how about it? As to key-
boards, well usually there is always an-
other one a bit closer to your needs if
you just look around for it. Although
programming your own 8748 would sure
teach you some good skills and make a
good article. Oh well, hope you hear
from someone, and thanks. Bill.

To: B.KIBLER
Sub: 7CJ

Hello,

Thank you very much for the sample
issue #70 of TCJ. Is it possible to sub-
scribe (and order back issue #69) by
emailing you my credit card number or
would it be better to mail you a check?
What a great mag!

I had a long email conversation with
Herb Johnson a while back during which
I managed to slip in a word about the
PDP-11 simulator I've been working on
for the last year or so (I never miss an
opportunity to plug pet projects), and he
suggested that I submit an article on it to
TCJ. 1 objected on the grounds that it
definitely fits into the “pet project” cat-
egory and that no one who doesn’t share
my twisted values would want to hear
about it but he said yep, sounds like the
right kind of thing for TCJ. So I'd like
to ask, would you be at all interested in
an article about a PDP-11 simulator
written in assembly language for the IBM
PC? This would be a descriptive article,
I’m keeping the source code to myself
and besides there are 25K lines of it, a
bit much to list. Anyway if you think
you might be interested, please let me
know if you have any guidelines for
writing articles (I’ve never written one)
and what slant you think would be best.
I figure no one (in the 8-bit world any-
way) wants to hear about the particulars
of PDP-11 devices or memory mapping,
but it might be useful to cover each sub-
system (instruction interpretation, oper-

and fetching, memory mapping, inter-
rupts, delayed /O events, DMA) in a
general sort of way to show how they
can fit together and what tricks you need
to ensure compatibility w/o sacrificing
speed. The PDP-11 differs in all the
particulars from typical micros that oth-
ers might want to write simulators for,
but basic things like memory mapped I/
O and delayed /O events and the fact
that individual I/O devices have to have
their own state machines, should be use-
ful to everyone writing a system simula-
tor. :

Reissue #70: it appears that you worked
this out but just to confirm it, WRT the
discussion of replacing 8" drives on p.
7, yes it’s the 5.25" AT-style drives which
can generally replace 8" drives. 8" drives
turn at 360 RPM and use a data rate of
500kHz (MFM, 250kHz FM), and have
77 cylinders; 5.25" drives in 1.2MB
mode (the default) have the same pa-
rameters except that they have 80 cylin-
ders, so they’re a good match. I use
them in my simulator to simulate 8"
disks and it works great, and if an 8"
drive were substituted (and arrangements
made for TG43 etc.) then the media
ought to interchange too (I'll know for
sure as soon as I get an 8" drive for my
CompatiCard 1V) with the same pro-
gramming. Using an AT 1.2MB drive
to replace one of the old so-called “quad
density” drives (i.e. double density but
96tpi instead of 48tpi) is a little trickier
since minifloppies normally use 250kHz
(125kHz FM) data at 300 RPM. Some
1.2MB drives (particularly older ones)
have an “/RPM” line which slows the
motor down to 300RPM when grounded,
so if you modify your drive (or control-
ler, or cable) to ground this line then it
can replace a normal “QD” drive (such
as the Tandon TM100-4). Newer drives
may not honor the /RPM line since it’s
more common in PCs these days to speed
the controller up from 250kHz to 300kHz
instead of slowing it down from 360RPM
to 300RPM, it’s cheaper and runs faster
anyway (and the controllers shield the
difference from software).

1.44MB drives use a 500kHz data rate
and turn at 300RPM, which makes them
look like an 8" drive with 20% more bits
per track besides having 3 extra cylin-

ders like the 1.2MB drives do. Whether
this will work with an 8" system w/o
BIOS hacking depends... The main prob-
lem I can think of is with formatting.
Chips like the NEC uPD765 do format-
ting largely automatically (for better or
for worse), and will extend the final gap
as long as necessary until it sees an
index pulse. So they’ll work fine with
1.44MB drives that are programmed like
8" ones, they’ll just be a little slower and
there will be a lot of wasted space on the
end of each track. The WD179x chips
however, format using a “write track”
command which requires a byte of data
(or a token representing marks or CRCs)
for every byte (or byte pair anyway) on
the track. That means if the track con-
tains 20% more bits, the “write track”
buffer needs to have 20% more data, and
if the buffer doesn’t have that much (it’s
always a good idea to add an extra dozen
or so bytes of gap data at the end of the
track with these controllers to allow for
minor speed variations) then you’ll end
up writing a bunch of random memory
(some of which may be interpreted as
marks) on the end of the track until the
index pulse comes around and termi-
nates the write.

I'd like to second the endorsement of the
SMC FDC37C65C+LJP floppy control-
ler in Herb Johnson’s column. I used
one in an IDE/SCSI/FDC/RAM/COM*4
board I built for my old 8-bit IBM PC,
all it took (over the buffering and ad-
dress decoding that’s shared with the
other peripherals) was the SMC chip
and five 150 ohm resistors. The data
sheet warns that the chip is picky about
ground planes, since I haven’t made a
PCB for this board (yet) I stuck a piece
of pressure-sensitive copper foil to the
underside of the chip and soldered jump-
ers to the ground pins, before plugging
it into the PLCC socket.. What makes
the chip cool is its support of 2.88MB
drives and the fact that the single den-
sity mode works correctly (unlike other
PC-oriented FDC chips, which either
blow off SD mode entirely or else re-
quire external connections and/or com-
ponents). Unfortunately it doesn’t gen-
erate the TG43 signal required to write
most 8" drives correctly, even if you put
it in the mode where it generates the
equivalent signal (called /RWC for re-

duced write current) it makes the switch
at the wrong track. That can be done in
software though if you add an output
port for it; it could be done in hardware
too but that would get a little baroque,
you'd need up/down counters to count
steps and clear on /TK0O, and some
comparator chips (all duplicated for each
8" drive of course).

Speaking of 8-bit IDE, I'll be very inter-
ested to see the IDE article in back issue
#69. 1 built an 8-bit IDE interface as
part of my PC multi-I/O card and rather
than use an LSI chip to handle the con-
version between bytes and words, I used
four TTL chips and one $1.19 PAL
(which could be easily replaced with a
handful of “glue” chips, I was tight for
board space and had access to a PAL
burner at the time). So I can definitely
understand people’s misgivings about
using a $40 gate array unless you're
paying for drill time on the PCB.

Keep up the great work! John Wilson
<wilsonj@rpi.edu>

Thanks John for that clarification on
drives. It seems everytime someone ex-
plains it, I find another fact I was not
sure about. I always thought the 3 “
drives were 360 RPM, or more accu-
rately 300 RPM in 720 mode and 360 in
1.44 mode. Or am I getting the 3 and 5
mixed again, oh well I am sure we will
hear more on this.

Like all of computing, there are many
ways to build the same design (with and
without PALs). That goes for chips too.
I haven't had to talk directly to a FDC
chip in some time now. Guess that is a
problem with being an editor and paper
pusher. Burning PALs really is a prob-
lem for the little guy. I found a Struc-
tured Design SD20/24 Pal burner for
310, but no manuals. Has a little 6802
in it, and a built in tape back up for files.
Will not read burned PALs however
which is what I wanted it for (just to
make copies before they die).

As to E-mailing credit card number, |
do get some that way, mostly Europe
people, and personally I would feel safer
if you did the check in the mail. 1t is far
too easy for someone to get messages

and take you number without yours or
my knowledge. So keep up the good work
and are you sure about those speeds?
Thanks again John. Bill.

cc: BKIBLER
Sub: Re: IDE /O chip

HJ, BK,

1 - JUST - got the latest 7CJ | Put me in
the pot for two (2) of those wee little
universal IDE boards.... It doesn’t make
much sense to buy just one. What price
7 How the hell would I know. Have you
purchased a reliable MFM drive lately ?
Now ask me again, how much an IDE
board is worth.

I have contacted MIX Software about
putting MIX-C for CPM back out, or as
Shareware, or PD... Waitting for them
to get back to me. I have used MIX-C for
the last 12 years, and except for the 10k
hemeroid (stdio/headr) that is linked with
each compliled program, its GREAT !
Any-way, thanks again for the opportu-
nity to vent my guts. What happened to
the Harris Z80H(25mhz) 7777

Later, PLogan

Subject: Last call for MIX-C compiler
for CPM-80
Bill,

Maria, at MIX Software (214/783-6001)
indicates that they have 7 sets of MIX-
C compiler for CPM-80. They will not
be generating any more copies. They
will not be releasing the compiler to
Shareware, or Public Domain.

Looks like I will be shopping for another
(supported) C compiler. Hate changing
boats now that the river is long and
wide.... Can’t be THAT hard to write a
compiler..... Maybe now is a good time
to switch to a different compiler alto-

Thanks, PLogan.

OK and thanks for the word on MIX-C.
You look at my Computer Corner ar-
ticle, 1 did find a place still selling CP/
M software, including ToolWorks C. Not
sure about support, but these folks have

The Computer Journal / #72

been selling it for a long time and prob-
ably have some ideas about problems
and such.

About the IDE board by Tilmann, got
this last message from him:

To: BKIBLER

_ Sub: GIDE Interest

Hi Bill,

You surely remember us placing a call-
for-interest message in the previous 7CJ
issue. Unfortunately, only one single
person has contacted me so far. I wonder
if there really is such little interest in a
theme which was discussed that exten-
sively before.

I am now thinking about a modification
which will hopefully increase public in-
terest. This modification will allow for
an optional real-time clock chip con-
tained on the interface board. Perhaps
you can place this information some-
where in the current issue and ask for
requests again. You could also note that
I don’t understand that behavior (first
discussing heavily, but then no real of-
fers)!

Greetings, Tilmann

. Well Tilmann and PLogan, I must agree.

Where is all the requests that should
follow the interest. 1 know I forgot to tell
Tilmann, I will take a couple of what-
ever he makes as standard procedure.
Now how about some you readers sup-
porting our efforts. Not much of a re-
quest or expense. Herb Johnson is work-
ing with Tilmann to do a group shipment
to him, and he will collect the money
and distribute them on this side of the
Atlantic.

1 have a few machines that still need the
old drives, so I keep an eye pealed at
swaps, and let me say, it is getting very
hard to find anything but IDE drives. So
if you run anything using the old drives,
you had better start making plans NOW
to upgrade to IDE while it can be an
easy change, and not after your drive
has died with all your programs (you do
back up - don’t you?).

The Computer Journal / #72

Well so much for the soap box, but re-
ally fans, please let the writers and
people like Tilmann and Herb know how
much you appreciate their work even if
you don’t need the card today, for you
will need it soon! Bill.

Dear Bill;

Please find enclosed my check for $24.00
to renew my TCJ subscription for an-
other year.

1 thank you for the “Support Wanted”
entry for my IMS International Model
518. The only reply that I received was
from your regular author Rick Rodman.

Neither of us had any manuals for this
thing, and he no longer had the IMS
computer. Rick remembered enough
about the IMS 5000 (NOT 518) to get
me up and running. It was running, but
there was no way in or out, except the
keyboard and a hot wired extra serial
port. That port, with printer attached,
printed everything that went to the ter-
minal screen, and nothing else.

I sent to him an 8" SSSD disk, holding
the files that I wanted for the IMS. The
most important, to me, of those files was
IMP245 to be used for computer to com-
puter RS-232 file transfer. In the selec-
tion of 50 overlays, there was only one
that I thought that I could use. That was
12H8-5 Heath/Zenith 89 (8250 w/
baudrate generator). I used that one on
my CCS S-100 rig. The IMS also has
the 8250 UART.

Rick sent to me a 5" 96tpi disk that
worked. The *.COM files all ran, the
READ-ME Ascii files all typed. In the
READ.ME file he included baudrate
instructions that were different from that
in the 12H8-5 overlay. Rick’s special
baudrate instructions worked, those in
the overlay did not. Thanks again to
Rick, I would not have thought of that
one! He also expressed his doubts about
the ability of the IMS 96tpi disk drive to
double step for a 48tpi disk.

I took a good look at UNIFORM on the
Epson QX-10. There I found “C DSDD
48 IMS 50007, wondering if the IMS
would double step, I formatted a disk

with this selection. I then loaded on
some files, and tried it on the IMS. The
IMS will double step, and read the 48tpi
disk, but it ABORTS out when I try to
write to it. The error message tells me
that the disk is Write Protected.

Thekey to Rick’s success was in the first
line on the last paragraph of the
READ.ME file, which read in part “and
the printer/modem port at 28H”. I did
not know the port address. Idid ° ..not
know that the DB-25 receptacle marked
PRINTER, is also the COMM port.

Many of Rick’s articles are over my head,
but he very graciously came down to my
level of understanding. UNIFORM and
22DISK do not support this IMS 96tpi
format. HATS OFF to Rick Rodman, a
very good show for no manuals!!

Sincerely yours, Robert L. Edgecombe
9546 Los Palos Road

Atascadero, CA 93422

(805) 466-1619

Robert, I am glad Rick could help. 1t is
one of the features our writers provide
that I think many readers overlook. But
then TCJ has a great staff of writers who
get no pay and too little recognition for
what they do. Guess they all may have fo
become “Hero’s of The Year” at this
rate. Thanks. BDK.

[Wanted PC/XT Articles \

Many of TCJ's new readers have
just purchased a PC/XT com-
puter and are looking for help

and advice at keeping these now
collectible computers running.

We are looking
for hardware oriented help that
has a general or platform
independent concept about them.
That means the material should .
have extra explanations for
beginners and for others relating
the information to non-PC/XT
platforms. TCJ's series on IDE
drives is a great example of a
cross platform article.
TCcs
PO Box 535

\ Lincoln, CA 95648)

Dr. S-100

By Herb R. Johnson

“Dr. S-100’s mid-Winter column” by
Herb Johnson (¢) Feb 1995
Internet: hjohnson@pluto.njcc.com

Introduction

While spring is in the air for my readers,
I'm in the basement with my papertape
reader/punch, and the system for the next
few columns, the Compupro 8/16! Af-
ter some correspondence and IDE
progress reports, I'll continue from last
column with my description of cards
and the startup of this system. Oh, and I
have some followup on last issue’s foldout
“star”.

Networking for IDE

Tilmann Reh, the TCJ “German corre-
spondent”, has written a series of ar-
ticles on his Z280 card and its IDE inter-
‘face, which has led to his latest design of
an IDE interface for any Z80 as a plug-
in into the Z80 socket. I've been corre-
sponding with him almost daily on de-
sign, construction, and import/export
issues.

1 encourage all my S-100 readers to read
and consider his announcement from the
last issue and (if it’s here) this issue.
Briefly, he needs to hear of your interest
and your idea of what a reasonable price
would be. With potential customers in
hand, he can then get some boards pro-
duced and make some kits! My last cor-
respondence with him suggests some
expanded capabilities may become avail-
able! Even those readers with 8085, 8088,
or other S-100 processors should be en-
couraged to respond, as Tilmann’s de-
sign can be ultimately adapted to those
processors. Contact myself or Tilmann
without delay.

10

Correspondence

Addresses and such are in the Refer-
ences at the end of this column.

Stephen Shaw of South Africa asks for
some Apple IIGS’s ;"I read about the
Trenton Computerfest in TCJ. May |
ask a favor - if you go next year could
you keep your eyes open for Apple IIGS
computers? We did not get many out
here before Apple pulled out of the coun-
try in 1986 due to our government’s
racial policies. I noticed you sold an
Apple 11+ at this year’s fair [TCJ #67
article]. I hope you will forgive me tak-
ing the liberty of writing to you like this,
but we are three very enthusiastic Apple
users who spend our spare time assisting
the local school for the mentally handi-
capped, whose inmates use Apple [I+ for
word processing and general commu-
nications with visitors....[W]e have had
dealings with other Apple II user groups
in the US. They seem to be expensive
and very profit oriented instead of trying
to keep the Apple II alive.”

“Itis a great pity that we Apple users do
not have a magazine that publishes cir-
cuits and other things to keep the Apple
hardware side alive. It is heartening to
see TCJ as it is a demcnstration that
some of us at least are determined to
keep the pioneer computers alive.”
[Stephen - TCJ is not adverse to being
an Apple Il support magazine also -
there are many articles in the old back
issues on Apples! BDK.]

While I can’t vouch for the writer per-
sonally, I can encourage interested people
to contact him for more information. See
the Reference section for an address.

Scott Barton of Dublin PA asks for
cassette-based systems help: “Any kind
of cassette controller, Tarbell, MITS, etc.
Any cassette software, manuals, docs, or
hardware. Also, any Altair, IMSAIL or
Xitan related items.” I"'ll send him my
list. Scott previously bought a Xitan from
me.” [t represents my primary interest in
the hobby.” Glad to help, Scott; even
though you bought an IMSAI out from
under me at the last Trenton
Computerfest.

Arthur Smith of Alexandria VA asks
about drive conversions: “There seems
to be a lot of traffic [on the Internet
comp.os.cpm area] regarding using 5-
inch High density floppy drives to re-
place 8-inch drives. I've tried this and
the results were lousy. Have you done
such a thing and did it work? What am
I doing wrong?” Arthur has a number of
Compupro systems, and is also looking
for “a small chassis to accommodate a
12-slot motherboard. I’'m going to go
out and buy a “mini-tower” and install a
S-100 motherboard. I really am tired of
lifting computers with large transform-
ers!” Arthur would also appreciate any
“late model” Compupro docs or soft-
ware.

I"d kinda be skeptical that a 250 watt or
300 watt switcher could handle several
Compupro cards, even with the 5-volt
regulators removed; and the ventilation
could be a problem too. But do the power
consumption arithmetic (watts = volts *
amps) and install a fan! As for the 5-
inch/8-inch conversion: I believe the is-
sues are rotational speed and media den-
sity, but in principle it should be doable
[watch Reader to Reader section for what
others are doing. BDK] Either of these
subjects are worth an article from Arthur!

The Computer Journal / #72

Id like to thank Bob Harbour of Albu-
querque NM. He sent me some impor-
tant info on Cromemco operation of CP/
M. I've corresponded with him via
Internet and he seems to be knowledge-
able about these systems.

Amin Ismail of Dayton OH has some
cards available: Konan serial and SMD
"hard disk controllers, IMS RAM cards,
and a TEI mainframe S-100 box. Con-
tact him for details.

Last issue’s foldout

The editor of TCJ, Bill Kibler has a
habit of running S-100 card schematics
as his “foldout”, usually independently
of my articles. Last issue (#71) had a
discussion of the Hayes 80-301A card, a
popular 300 baud modem. It happens I
have several of these, but no docs or
software. Bill, can you give me a copy of
the manual? [in the mail..BDK.] And, if
anyone is interested in a card, contact
me for terms.

Oldest continuous running system?

Paul D Willis of Coatesville PA takes
the “lead” from Ramon Gandia: “Allow
me to mention my IMSAI 8080 which 1
assembled in the fall of 1977. I was first
introduced to the S-100 computer at
‘college where we purchased an Altair
8800 in around 1975...When I gradu-
ated in 1977, I immediately purchased
my IMSALI to keep active in the personal
computing field. I originally used Pro-
cessor Tech CUTER and ALS-8 as my
operating systems, all cassette based of
course. I still keep a modified working
copy of ALS-8 to run for old times sake.”

“Around 1982, I upgraded to a Northstar
S-100 floppy disk controller and the NS
DOS operating system. [This is how
NorthStar got their start, producing sys-
tems for IMSAI and Altair computers.]
This lasted less than a year when I fi-
nally got my Morrow Designs disk con-
troller, two 8-inch drives, and CP/M.
Somewhat later, I upgraded to an IMS
Z-80 processor board which, with some
minor modifications, worked with the
IMSAI front panel. At this point, I was
able to run NZCOM. I still use my sys-
tem regularly for parts inventory and

The Computer Journal / #72

word processing. I also us it to produce
BAUDOT code and American Morse 1o
exercise my antique comumunications
equipment.”

“Any older systems still working out
there?” Who's next?

Compupro 8/16

As I said last time, I recently acquired a
Compupro S-100 system. The Compupro
8/16 was in part a reaction to the origi-
nal IBM PC and in fact is generally
superior to it. It “predicted” the avail-
ability of multifunction cards, and came
with a lot more memory than the old PC
or even XT! Here’s a short list of the
Compupro cards it has, not an unusual
set for the time:

CPU 85/88: 8085 processor and 8088
processor, clock switchable between 2 or
5MHz on-the-fly, good to 8MHz.

Disk 1 floppy disk controller with two
Qume 8-inch double-sided drives (also
supports 5-inch).

Boot ROM for CP/M 80 or CP/M 86.

System Support I for console and boot
support, serial, parallel, 4K ROM and/
or RAM, timers, interrupt controller
arithmetic chip, clock/calendar.

RAM 22: 128K by 16 bits, or 256K by
8 bits, static RAMs,

RAM 17(2¢a): 32K by 16 bits, or 64K
by 8 bits, static RAMs.

Interfacer 4: three serial ports, Centronic
printer port, parallel port.

And some graphics cards...

and, my Jade Bus Probe a S-100/IEEE
696 card which displays ALL of the
active bus lines, with a panel of LED’s
that extends above the cardcage.

Zenith fans may see in this configura-
tion a Z-100 (or Z-121) system which,
so I've been told, is a “clone” of the
Compupro system. I'd appreciate it if
someone looked hard to compare the
two systems!

Card descriptions

The RAM 17 supports “Extended ad-
dressing”, which is the IEEE-696 exten-
sion of the address bus to 24 bits; and
“phantom enable”, which disables the

RAM when the bus PHANTOM line is
active (such as for power-up boot, when
only a boot ROM is active on the bus). A
convenient feature of the RAM 17 is the
selective DISable of small blocks of
memory near the top 64K, typically to
permit ROM’s or memory-mapped cards
to operate. It is populated with 32 2K X
8 static RAM’s, 6116’s.

The RAM 22 has four times the memory
via the use of 32 8K X 8 static RAM’s,
6264’s; for a total of 256K bytes of
memory. As it only makes sense to use
in an extended memory system, there is
no “selective disable” features, only a
selection of the upper 6 (of 24) address
lines for the appropriate bank of memory.

Both RAM cards monitor the “SXTRQ*”
line on bus pin 58. When active, the
memory card is being asked if it will
support a 16-bit data access. The memory
card asserts the SIXTN* line back to the
processor card (or DMA card if it is bus
master) and makes 16 bits of data avail-
able on the two 8-bit data busses. If
SXTRQ* is not active, the memory card
uses the bus in the “original” fashion of
a pair of dedicated 8-bit output and input
data lines.

The CPU 85/88 is a dual 8085 and 8088
processor card. A convenient paddle
switch at the card edge allows changing
clock speeds between 2MHz and SMHz.
This and be convenient for testing slow
memory, or just to slow down programs
during debugging. Another reason for
2MHz operation is to support a IMSAI
front panel: there is a DIP socket for it,
and provision for disabling MWRITE
(the front panel supplies it). And, the
8088 processor runs at 6 MHz, faster
than the original PC at 4.77, so therel

The System Support 1 card is used here
as the console (terminal) interface. It
includes interval timers, the serial port,
and an arithmetic chip, the AM9511
(compatible with the Intel 8231 I think).
Unlike the 8087 coprocessor for the 8088,
this “coprocessor” is more like a “slave
processor chip” that is I/O mapped. You
feed data and computations to it, and
receive results from it, under control of
a program rather than a set of floating
point instructions. It never was a cheap

11

chip, usually (and still is) above $100!
There is also a “real time clock” calen-
dar chip, the National MSM5832, with
a connector to an optional battery to
keep the time of day.

The Interfacer 4, is Compupro’s scrial
card and parallel card. The three serial
ports operate via 2651 (8051) UART
chips. These are software programmable
UART’s, as opposed to the hardware
strap-selectable features of the older
8050/2650 UARTs. There is a parallel
port which is “Centronics compatible”,
namely it supports IBM-PC like parallel
port printers; and a general purpose par-
allel port.

All the above are documented in the
Compupro way, with signal descriptions,
schematics, parts lists, and even some
sample code!

The Jade Bus Probe did not come with
this system. Fred Hatfield an old friend
of 20 years, sent me this card last year
along with a bunch of Morrow cards.
Fred was an early supporter of personal
computing in the 70’s in Columbus OH,
helping me and others in the first com-
puter “club” in central Ohio. Today he
still collects old computers in his native
New Orleans and is active on the Fidonet
CPMTECH maillist. Anyway, the Bus
Probe is an “extended” S-100 card, with
an array of 100 LED’s extending inches
above the other cards to display address,
data, status, and other bus signals. In the
absence of an IMSALI front panel, it’s a
very convenient display of activity. Since
most S-100 processors operate at only a
few megaHertz, you can actually follow
the operation of a program. I'll refer to
this display throughout this series.

I turned down the owner’s original ter-
minal, in favor of using my own favor-
ite, the Heath/Zenith H-19 terminal. It
has a nice crisp character display, can be
programmed by simply putting it in lo-
cal mode and typing escape sequences
(good for changing baud rates!), and is
a familiar part of the Heath H-89 Z80
computer system. It is “VT52” compat-
ible, an old DEC terminal standard simi-
lar to V100 and ANSI standards
(ANSLSYS for your MS-DOS fans).

12

Awakenings

Last time I told how I got this system. It
was some months later that I got the
time and space to begin setting it up.
There was no great magic in connecting
it all together, but a few points are worth
mentioning here. (Similar information
can be found in my TCJ #S8 (Nov/Dec
1992) S-100 article on bringing up old
systems.)

It’s always a good idea to inspect each
cabinet, examining connections, and
powering up with the box open for view.
This system came (as most do) with the
S-100 bus in one box, and the dual 8-
inch floppies in another box. Before
powering up the S-100 system, I removed
the cover (Compupro’s come in covered
metal cabinets) and reseated each card
by pulling out the card, inspecting the
edge connector for corrosion and shorts,
and pushing the card back in. AsIpulled
out each card I also checked for loose
chips: over the years, they can actually
“wiggle out” of their sockets. Also, check
chips for corrosion at the pins - I've
seen it happen!

But be careful to note where all the
cables connect! It can be difficult to
read the docs and figure it out after you’ve
pulled all the cables out! Generally floppy
drives cables and connectors are not
polarized, but no damage will occur if
they are plugged in “backwards”. That
is, there is usually no “key” in the
flatcable connectors nor in the edge con-
nectors to keep you from connecting a
drive “upside down” to a controller.
However it is immediately noticeable on
power up of both drive and controller, as
the drive light IMMEDIATELY comes
on BOTH drives (or one if you hook up
a single drive). Just power down, reverse
the cable and try again. All floppies have
the odd-numbered pins grounded, and
as the drive selects are active LOW, a
reverse cable selects ALL DRIVES. This
happened to me on this system.

When you first power up the computer
or floppy drives, look for smoke and
listen for a “pop”! This sounds odd, but
tantalum capacitors, which are the small
polarized caps of 10uF to 100mF gener-
ally used to filter the five-volt power

lines to the chips, will sometimes short
out over several years of non-use and
actually catch fire! Or, they will POP!
like a breaking dry stick. This is actually
less dangerous than you might think,
and generally IF BRIEF causes no other
damage. You should power down, locate
the fried component and replace it, and
check all the fuses. Look for a charred
device or circuit board area. Or, of course,
for the source of smoke. Fortunately,
this system (initially) passed the “smoke
test”.

Terminal tests

After the power-up tests, I connected
terminal, drives and computer together.
The most troublesome part of testing
ANY “new” old computer is to figure
out how to connect the serial terminal. I
have a simple RS-232 “tester” which is
simply a number of LED’s in a small
package that plugs between the terminal
and the computer. You can watch the
lights blink to see if the terminal or the
computer is putting out a stream of char-
acters, and with some experience get an
idea of the baud rate (slow 300 or 1200
baud, fast 9600 baud). And, you want to
make sure the terminal and the com-
puter do not use the SAME line for
sending characters: if they do, putin a
cable or “null modem” that swaps the
appropriate transmit/receive line pair
(pins 2 and 3 on the standard DB-25
connector). Or...read the manuals, but
most of the time who has them? Serial
interfaces are very tolerant of this kind
of abuse.

Of course, make sure your terminal
works! The FIRST H19 terminal I tried
had a bad connection to the filament of
its CRT (picture tube, video tube) which
caused the display to fade out and return
only after beating the terminal severely.
While this is very satisfying activity, it is
not good computing practice. So I got
another H19 terminal from the “good”
pile and added this one to the “needs
repair” pile.

Boot up
The short story is that, with minimal

additional fuss, it booted up! I found the
appropriate diskette (any disk that says

The Computer Journal / #72

“MASTER” or “BOOT” usually will do,
try not to use the ORIGINAL copy from
Digital Research or, in this case,
Compupro). It booted up in CP/M-80:
the message read “64K CP/M-80 2.2m
Compupro”, which is the traditional boot
up message for most CP/M systems. It
says you have 64K of memory (less is
actually available for programs), the
version number (either 1.4 or 2.2), and
some idea of manufacturer version or
BIOS version (version m from
Compupro). The usual commands
worked: dir, stat, type, and so on. But,
drive B did not seem to work. On the
command “DIR B:”, the drive light would
come on (BIOS tells the computer to
access the B: drive), but no seeks of the
drive head mechanism were heard.

Hmmmmm.....Well, the drive was spin-
ning, so it had 110VAC (some 8-inch
drives use +24V DC for the drive mo-
tor); and the LED was lit, so it had +5
volts. Did it have all its other voltages:
well, the OTHER drive did! How could
that be the problem?

It turned out that EACH drive has its
own POWER SUPPLY! AHA! It must
be the +12V that powers the stepper

- motor that moves the head!. I replaced
the 12-volt regulator, confirmed that the
voltage was correct, and....no change!
HUH??17?7? Well, a false step. I changed
the drive selector jumpers on each drive,
and the B: drive, now the A: drive, still
did not work. I swapped the cable
connections....and it worked! NOW the
original A: drive didn’t work! How could
it be the CABLE CONNECTORS?
Hmmmm...what’s that GREEN STUFF
on a few of those pins??? Turns out to be
that corrosion problem I mentioned ear-
lier!

A couple of tricks I learned years ago
came into play: I took a rubber eraser,
cut it in half to make it thin, and used it
to rub out the corrosion. I also took some
very fine grade sandpaper, 600 grit,
and lightly inserted it in and out of the
cable connector to loosen the corrosion.
Short of replacing the connector or the
cable, these served to conveniently clean
out the problem. I reassembled the drives
and cables, and both drives operated
correctly.

The Computer Journal / #72

New Trouble!

Wouldn’t you know...while writing this
article I ran the system for testing. After
several minutes of operation, I couldn’t
get it to reboot! After trying a few differ-
ent disks while looking at the LED’s,
and while observing the behavior of the
floppy drives, that it was doing SOME-
THING. In fact, I could enter commands
and the drive light would come on each
time! After checking that the terminal
was working (by shorting pins 2 and 3,
transmit and receive, forcing it to echo
its own output), I noticed that the “-
18V” light on the Jade Bus Probe was
ouT!

I checked the power supply visually. Like
most S-100 systems, the Compupro sup-
ply consists of a transformer, diode rec-
tifier (2 diodes, four, or a “bridge” of
four in one package), and a HUGE elec-
trolytic capacitor. And, in this case, a
blown fuse! Fuses don’t die for a reason,
so after replacing it with a SLOW-BLO
fuse (a fuse that takes a few seconds to
activate), I powered up again while
WATCHING very closely. Sure enough,
the fuse went out, but not before I smelled
the familiar odor of burning capacitor!
Quickly I cut power and followed the
scent to the rear of the chassis.

I PULLED THE AC PLUG from the
back (very important), and pulled out
the back three cards. I smelled each card,
and found one that seemed to have the
scent. Since this was a SHORT (what
else would blow a fuse?), I got my volt-
meter and set it to “continuity”, where it
would make a beep upon reading a short.
I fetched an extender card which is
marked with all the $-100 pins and saw
that pin 52 was “-18 volts”. Measuring
each of the three cards from pin 52 to
ground, only the disk controller (DISK
1) had a short reading!!! I visually fol-
lowed the circuit trace to the first capaci-
tor - most tantalum capacitors look like
small colored gumdrops - desoldered it
out, and remeasured the resistance at
pin 52 to ground. The short was gone. A
new cap (actually, an old one from a
previously salvaged computer) and a new
fuse, and all was well.

Next issue

People tell me they really enjoy hearing
all these details about repairs and de-
bugging hardware and so on: let me
know if you’d rather see lines of code,
some schematic scribbles, or whatever. 1
PROMISE TI'll get serious next issue....if
nothing else needs fixing...if the base-
ment doesn’t leak...And, by the way, I'll
tell you a bit about the world of paper
tape. Be there, aloha.

Graphics or math? - help me out!

There were two graphics cards with this
box: One is a Microsprite card, sup-
porting a standard color video (TV)
monitor. The other, from Nluminated
Technologies, using a digital RGB moni-
tor. AND...an old Canon PJ-1080A color
printer as well! “But it probably needs a
new ink cartridge”, the previous owner
said. Anyone out there with paper, car-
tridges, or software for the Canon 1080A?
Or software for testing the 9511 math
processor? Or software for the graphics
cards? And any interesting programs for
the timers or MSM5832 clock chip?

References

Herb Johnson, CN 5256 #105, Princeton
NJ 08543. (609) 771-1503.

Tilmann Reh, tilmann.reh@hrz. uni-
siegen.d400.de

Stephen Shaw, PO Box 1404,
Randfontein, 1760, South Africa
phone +2711 (011) 414-1608; Internet
stephen.shaw@birdsnest.fast.iaccess. za
Fidonet 5:7107/22

Scott Barton, 113 Olde Pilgrim Rd,
Dublin PA 18917.

Bob Harbor, 6609 Barnhart NE,
Albuquerque, NM 87109-4106.

Frank J Wilson, PO Box 55,
Tomales CA 94971

Microfax, 5620 F Kendall Court,
Arvada CO 80002 (303) 467-1207 -
Dan Slayton, 1500 NE 40 PL,
QOakland Park FL 33334

Amin Ismail, 5640 Waterloo Rd,
Dayton, OH 45459, (513) 435-4476
Internet:
ISMAIL@udavxb.oca.udayton.edu

13

Small System Support
By Ronald W. Anderson

Progress in C

I mentioned a book last time that has good information on the
printer port and how to use it for other things. One of the things
I found out during the debug session today is that there is
another error in the book. It reports a 4 bit input port to be
found at address BASE+3. That is, if the port is at hex 378, the
input port is reported to be at hex 37B. After placing signals
on the input bits and not being able to read them, I thought I'd
try the only other possible address in that group, Hex 379
(BASE + 1). It then worked immediately.

Obviously I need a little more experience with this port and it’s
interface before I write any articles on how to do something
interesting with it. I promise to do that soon. Presently at work
I am running an LCD display interface and a keypad scanner
on one parallel printer port. These are all functions internal to
our computer box. I suspect we’ll have to get fancier and worry
about buffered inputs and outputs if we want to run signals
outside of our box (other than to a printer).

C

I'have the OK from Bill Kibler to present some material on the
C language here. I thought I might start with a few introduc-
tory comments. First of all, if you don’t know C, you will want
to start with the latest ANSI (American National Standards
Institute) version. It is far easier to use than the older and
original K&R version in my opinion. If you’ve dabbled in the
old version and then get into the new, you won’t think so at
first. Those #$%"&* standards committee folks have really
made it slower and more frustrating to use. You won’t believe
that for long, however. The older version leaves a lot of things
to the programmer. That is, the compiler doesn’t check a great
deal for dumb errors. The Ansi version is a lot better in that
respect.

Having said that however, I have to assume that most of you
will be using older computers like my old SWTPc 6809 system
on which I run Windrush McCosh C, which is an old style
version that complies with the old K&R standard. I'll concen-
trate primarily on the old style C and mention the places where
the ANSI version is different (and better).

It is fair to contrast C with Pascal because Pascal was the
language of favor a few years ago, before C really caught on.

14

I dabbled in programming for a long time in assembler and
BASIC, but when Pascal came along, I really learned a lot
about how to program. I resisted C for a long time, as a matter
of fact until a few years ago when it became plain that C was
to be the language of choice for the immediate future.

Pascal was developed by a computer science professor to teach
students how to program. Niklaus Wirth, the author of Pascal
made it very hard for a student to do something dumb. For
example if you want to add decimal 32 to an ASCII character
to convert it from upper to lower case, you can’t just mix types
in an expression. You must explicitly convert the character to
an ordinal (integer) value, add the integer 32 and convert the
result back to a character:

CH := CHR(ORD(CH)+32),

All this is in the name of keeping the programmer aware of
what he is doing. C was written by some scientists at Bell Labs
who wanted to have a language that was concise and conve-
nient to use to write operating systems (UNIX in particular). In
C the conversion is done simply by:

ch +=32;

Actually C has a library function called tolower(). You can
simply call that function:

ch = tolower(ch);

The price for this simpler approach is that you have to think
more. In this case you know what you want to do and Pascal
frustrates you by not letting you do it unless you tell the
compiler that you know exactly what you are doing. C, on the
other hand really has the philosophy “Good luck, you are on
your own!” To be sure automatic type conversions have
tripped up nearly all C programmers at one time or another, but
I think we would rather put up with discovering our own
stupidity now and then than to have to “cajole” the language
into doing what we want it to do!

ANSI C plugs more of the holes and keeps you from doing
REALLY stupid things most of the time. Believe it or not, C
is a very simple language. There are few constructs to learn,
and few symbols to memorize. What complicates C is the way
in which you can combine the simple elements to do complex

The Computer Journal / #72

things in one line. My favorite example is the one line loop that
can copy a whole file. Suppose you have opened a file to read,
and created a file to write, and that you want to copy the first
file to the second. In C, you can write the loop that reads
characters from the input file (infile) and writes them to the
output file (outfile) AND checks for the end of file, all in one
line:

~ while((ch = fgetc(infile)) '=EOF) fputc(outfile,ch);

This simple one line loop will work correctly even if the input
file is empty and the first read gets the EOF flag. In Pascal it
would look something like this. (No guarantees that my READ
and WRITE calls are correct, but the form is correct).

READ (INFILE,CH);

WHILE NOT EOF(INFILE) DO
BEGIN
WRITE(OUTFILE,CH);
READ(INFILE,CH);,
END;

You have to read a character from the input file before starting
the loop, just in case the file is empty and the first read sets the
end of file condition. Then you enter the loop that runs while
not end of file. Since you have already read a character, you
have to write it and then read another character, then go
around the loop again. Frequently a While loop will need to be
“primed” like this. C avoids that priming by allowing you to
include the reading in the test. I must admit the C version looks
more cryptic at first glance, but it is perfectly straightforward.
The whole assignment statement takes on the value that was
just assigned, so (ch = fgetc(infile)) takes on the value just

-assigned to ch. The only catch is that the assignment has lower
priority than the test, so you have to parenthesize it to “hold it
together”. C has some rather complicated precedence rules, but
you don’t have to memorize all of them at once, just remember
when in doubt to use parehtheses to insure proper order of
evaluation.

It has been said by at least one computer science type that he
was suspicious of any language that contained more punctua-
tion than words. C certainly looks as though it qualifies. Here
then is lesson 1 adapted from a quick course on C that I taught
at work.

C Class Notes (Introduction)

C has been described as “Pascal with it’s sleeves rolled up”.
The original C did very little error checking to keep the
programmer from doing himself in by making a dumb mistake.
Several years ago it was realized that C is a useful language
(probably by the realization that a lot of people were using it)
so a committee was established at the American National
Standards Institute (ANSI) to write some standards for the

language.

The Computer Journal / #72

Now we have a version of C called ANSI standard C that has
a few more checks on the programmer. It still, however is
primarily designed to let the programmer do anything he wants
to do (including shoot himself in the foot). Experienced pro-
grammers tired quickly of Pascal’s preventing them from do-
ing something that was perfectly logical. They spent all their
time “programming around” some built in protection in Pas-
cal. When C came along they felt a great freedom to program
concisely. I think this is the primary reason for the rapid
acceptance of C.

Let’s write our first C program, a simple one to print “Hi there”
on the screen. Here is the program:

/* First C program */
#include <stdio.h>
char message[] = {“Hi there”};

main()
{
puts(message);

}

The first line is enclosed by comment delimiters /* and */. The
compiler ignores all comments. They are for someone who
reads the program, not for the computer. The C language as
such has no facilities for input and output of information.
These facilities are included in what the authors called the
“standard library”. The standard library is a library of func-
tions (written in C) that are used to get information into and
out of a C program. One of the functions in the standard library
is “puts()” which will output a literal string or the contents of
an array of characters. Just how it does this is something we
will get into in more detail later. We can only use the function
puts() if we include a file called stdio.h in our program. (That
last statement is not strictly true, but in general the appropriate
file must be included in order to use a library function). Such
files are called “header” file and they declare functions so that
they are usable by the program. We will have a lot to say about
the standard library functions and various header files later.
The C compiler library function documentation always indi-
cates which header file or files must be included in your
program in order to use the function.

The third line of the program “declares” a variable called
“message([]”. The inclusion of the square brackets makes mes-
sage an array variable. The type “char” that precedes it make
it an array of type char (character). The message in quotes and
enclosed in curly braces is the “initializer” that sets the values
in the array of characters to the characters “Hi there”. The C
compiler automatically adds a NULL character to the end of a
string. a NULL is represented by the binary code 00000000. A
space is not the same as a NULL. The code for a space is
hexadecimal 20 or binary 00100000. When an array is initial-
ized with an initializer as this one is, the compiler figures out
how long the array is, and it doesn’t need a “dimension”. If the
array is not initialized you must supply a dimension that tells
the compiler how big the array needs to be. In other words, the

15

compiler need to know how many memory bytes to reserve for
the array. In that case, for example, you would simply declare
it as:

char message[20];

That would create space for an array of characters that could
hold 19 characters. (Remember that NULL that C adds will

" take up one character space). It does NOT define the contents
of the array. Uninitialized arrays may contain anything at all.
There are other ways to put information into an array than to
use an initializer. The standard library has string functions to
copy and join strings into a character array, and you can assign
values one character position at a time.

Moving to the next line, a C program MUST have a function
called main(). This is the place where the program execution
begins when you run it. The rest of our simple program is the
main function. The main function contains one “statement”
puts(message);. The word “message” is a “parameter”. Func-
tions may have one or several parameters “passed to them”
when they are “called”. The statement is bracketed by the begin
{ and the end } characters. A function must contain these
brackets to delimit it. Such begin - end pairs are used to delimit
(i.e. define the beginning and end of) compound statements
and loops as well. We could well write our own function to do
just what puts() does. Below is a simple one called printit().
Realize that puts() is not magic, but a simple function written
in C very much like the one given below. (The whole situation
here is analogous to our study of FLEX and our use of an
operating system call, and then later writing our own function
to replace it).)

printit(string)
char string[];
{
int n=0;,
while(string[n] != 0) putchar(string[n++]);
}

The second line identifies the type of the parameter “string”.
This is the “old style” parameter definition. New ANSI C
would do it this way:

printit(char string[])

That is, the type of the parameter is defined directly in the
function “declaration”.

Of course we haven’t eliminated the standard library here, just
pushed the interface or call to it down one level. We have used
the putchar() function of the standard library, which simply
outputs one character (passed to it as a parameter) each time
it is called. Then we’ve defined a loop that moves through the
array one character at a time and outputs it by using putchar().

We access or read the contents of the 10th location in the array
by using the array index. That is, since C calls the first location

16

0 and the last one 19, we would access the tenth item as
message[9]. In the above function the array index variable n
starts at 0 and is incremented until it finds the null or 0 that
C has put at the end of our string. A good practice would be to
stop printing the string either when a null is found or when the
string length is reached, i.e. in the case of dimension 20, we
could use:

while((string[n] != 0)&&(n < 20)) putchar(string{n++]);

The double ampersand (&&) is the logical AND symbol. The
statement says to output characters while the present character
is not null and while the count is less than 20. I ought to
mention here (so I won’t get letters from C programmers
telling me that I did something that was unnecessary) that a
value of zero or null is considered FALSE by C and anything
else is considered TRUE. Thus the “i= 0” part of the above is
unnecessary. a simple “while(string[n])” is sufficient. You
might think of the != 0 as being “implied”. I've included it in
this first example for clarity until I could explain it. You might
be puzzled by the [n++] notation. This is the last place in the
loop where n is used. n++ tells the compiler to use the current
value of n as the subscript for the string array reference and
then increment n (add 1 to it). It is shorthand for the inevitable
array index increment n=n+1; statement.

Let’s discuss briefly the “declaration” of printit(). The “param-
eter” init’s declaration is “char string[]”. This simply says that
the function printit() expects to have the location of a string
array given to it by the main program. In the main program we
would “call” the function with the statement “printit(message);”.
The name message is the name of an array and C therefore
“passed” the address of the array to the function “printit”. We
will of course get into this in a lot more detail a few sessions
down the line. As we continue you will find that there are
numerous ways of doing anything in C. It is very flexible. For
example the puts() function will accept a literal string:

puts(“Hi there”),

In other words we wouldn’t have had to define an array of
characters and initialize it to “Hi there” in the first place. Our
program could have been simply:

/* first program in C */
#include <stdio.h>
main()

{

puts(“Hi there”);

}

C doesn’t care about indentation or new lines. The program
would compile and run the same way if it were:

#include <stdio.h>
main() { puts(“Hi there™); }

There may be several statements on a line or a statement may

The Computer Journal / #72

extend over several lines. A statement is terminated by a
semicolon.

The #include directive must be on a line by itsclf because
everything after the filename is ignored or treated as a com-
ment. The main function, however can be all on one line. The
reason we use indentation and new lines is simply to make the
program more readable to a human reader.

" This has been a quick look at what a C program is like. In the

coming lessons we will look at each of the items here (and
many others) in much more detail. Learning C is much like
writing a program. If you try to do it all in one step it is a real
chore. If you build it a piece at a time it turns out to be a lot
of simple things put together.

I’ve been trying to learn C++, the object oriented version of C.
I found it overwhelming at first until I read and reread the
appropriate material enough so that the newly defined words
began to make some sense. Each time I read it I learn some-
thing else and wonder why I didn’t understand it the first time
through. Repetition helps as does actually writing and running
programs.

Assembler

Now we will continue our discussion of programming in 6809
assembler with lesson #4. Last time we read an integer number
asan ASCII string and printed its binary representation. Maybe
we ought to talk about disk files this time. At the assembler
code level, in order to do anything with a disk file you first have
to establish a data area of 320 bytes called a File Control Block
or FCB for short. A disk sector in 6809 FLEX is 256 bytes long.
The first four bytes contain housekeeping information and the

. next 252 contain data stored in the disk file.

The first 64 bytes of the FCB are used as the interface between
the user and the operating system. All references here start at
byte 0, i.e. asin C, the array index starts at zero, not 1. To open
a file for read, for example, you put the filename (8 characters)
into FCB locations 4 through 11. If the name is shorter than 8
characters you “left justify” them and fill the remainder of the
8 positions with zeros. Positions 12 to 14 are for the three
character extension of the filename. Again if the extension is
shorter than three characters you left justify them and fill with
zeros. Next you put the drive number ($00 to $03) in byte 3 of
the FCB. You put the “open for read” code ($01) at byte 0 of
the FCB and do a system call (JSR FMS). You don’t bother
clearing or initializing the rest of the FCB.

After the FMS call, if the operation was successful (i.e. the
system found the filename in the directory and opened the file)
the error code byte (position 1) of the FCB will contain a zero
and position 3 will contain the operation code (1). Generally
you don’t have to bother with the returned op code, just check
to see that the error code is zero. The most likely error on an
attempt to open a file for read is error $04, returned if the file
could not be found in the disk directory for the specified drive.

The Computer Journal / #72

The file is not there, you specified the wrong drive, or mis-
spelled the filename.

If the file opened successfully, FLEX changes the function
code byte 0 to zero. This tells you that a file open for read is
in the “read the next character” mode or if open for write is in
the “write the next character mode”.

Now you can read the file a byte at a time. You JSR FMS again
and the first sector of the file is read into the last 256 bytes of
the FCB, but FLEX takes care of more than that for you, the
first byte of the file is returned in ACCA. On successive read
operations (simply successive JSR FMS instructions) FLEX
maintains a pointer to the next byte in the FCB to be returned,
and feeds them to you one at a time. When the last byte of the
sector is given to you, the next call to read a byte results in the
next sector being read into the FCB. At the end of the file, an
attempt to read another byte results in an error code in position
1 of the FCB. The EOF error is 8. After each byte is read, your
program should test the error code for non zero. FLEX has
made that easy for us by setting the zero flag in the condition
code register to correspond with the error code. Rather than
having to test the second byte of the FCB you can do a simple
BNE ERROR.

The ERROR routine checks the error number and if it finds
error 8 it exits the read file loop and closes the file. That is, you
test for EOF and if it is found insert the Close code ($04) inbyte
0 of the FCB, and do one last JSR FMS to close the file. Again
check the error byte to see that the file closed successfully
(error code 0), and you are done.

Writing to a file is very similar. You put the filename in the
FCB along with the open for write code. Error codes are found
in byte 1 of the FCB if the file already exists or if it can’t be
opened because disk space is all used or there is a disk error of
some sort. Just as in reading a file, you feed the FCB a byte at
a time (LDA byte, JSR FMS) and it places each byte in

. successive locations in the FCB. When a sector’s worth of bytes

is reached, FLEX writes a sector and lets you fill it’s sector
buffer again. When you are done writing you put the close file
code 4 in byte 0 of the FCB and JSR FMS, then check the error
byte.

Flex, believe it or not, actually has file compression built-in for
text files only. It is rather simple as compression algorithms go,
but it is effective. FLEX counts successive spaces on writing a
text file to disk, and then writes a special two byte code to the
disk if more than two spaces are found. It writes a horizontal
tab character ($09) followed by the count of the number of
spaces. When FLEX reads a text file it sees the $09 and
interprets the next byte as a count of spaces to output to the user
program. Thus 12 space characters are encoded $09,$0C, tak-
ing only two bytes on the disk. This scheme, used in FLEX in
about 1978 is still beyond what MS-DOS does (exactly nothing
at all other than to accept TAB characters $09 which the
writing and reading program must interpret as the same num-
ber of spaces or the text format gets all fouled up). This

17

compression - expansion is entirely transparent to the user.
FLEX FMS (File Management System) handles it all.

There are two kinds of files in FLEX, the text file described
above and the binary file. A binary file is written and read
exactly as you pass the bytes to the FMS. Executable files are
always binary files and files containing text are treated as text
files. When you write and read files by means of an assembler
program you must set a “flag” byte in the FCB (byte 59) to $FF
to signal a binary file. The default is a text file. This flag must
be set AFTER the file is open but BEFORE any bytes are read
or written. The code would be:

LDX HFCB
LDA #SFF
STA 59X

FLEX has an easy way to specify a default extension if none is
specified. There is a system call SETEXT. You pass a code to
SETEXT in ACCA and if an extension is not found in the
FCB, SETEXT will set it according to the code. Setext must be
called when the filename is in place in the FCB but before the
file is opened. FLEX uses a number of default extensions. A
text file as in the one I am writing at this moment generally has
a default extension .TXT. The Assembler produces a file with
the default extension .BIN (binary). Flex commands generally
have the extension .CMD. A .CMD file is a binary file and you
can convert a .BIN to a .CMD simply by renaming it such.
BASIC uses .DAT for data files. Some programmers use .SRC
for assembler source files, though I generally stick with .TXT.
Any of these defaults can be overridden simply by using an
extension. EDIT FILE will edit a file called FILE. TXT. (as-
suming your editor command is EDIT.CMD). EDIT FILE.DAT
will edit a file called FILE.DAT.

Perhaps it is time to show some demo code. How about a
program that can read it’s own source file and dump it to your
terminal? If you are a bit apprehensive to start playing with
files, format a disk and edit this program file on that disk. Then
assemble the program and try to run it. If you have made an
error that could possibly damage the files on the disk, you’ll
only be out your work editing the file and assembling it. If you
want to protect yourself against that possibility, back up your
disk before you try to run the program. Actually opening a file
for read is pretty safe. These precautions may be overkill until
we get to the opening of an output file and writing to it.

* PROGRAM TO DUMP ITS OWN SOURCE TO YOUR TERMINAL

NAM SELFDUMP
PUTCHR EQU $CD18
WARMS EQU $CD03
RPTERR EQU SCD3F
FMS EQU $D406
FMSCLS EQU $D403
START LDX #FCB
LDA #1 OPEN FOR READ CODE
STA 0.X
JSR FMS
BNE ERROR FMS SETS NON-ZERO CONDITION
18

* ON ERROR

LOOP JSR FMS READ A CHARACTER
BNE ERROR
JSR PUTCHR WRITE IT TO SCREEN

CMPA #$0D ISIT ACR?

BNE CONTIN IF NOT, OK

LDA #S0A ELSE WRITE LF ALSO

JSR PUTCHR
CONTIN BRA LOOP GO AROUND AGAIN
ERROR LDB 1LX

CMPB #$08 IS IT EOF

BEQ DONE

JSR RPTERR TELL USER WHICH ERROR

JSR FMSCLS CLEAN UP BY CLOSING OPEN
. FILE ON ERROR

IMP WARMS

DONE LDA #3804 BRANCH HERE ON EOF

STA 0,X CLOSE THE FILE
JSR FMS
EXIT IMP WARMS

* THIS IS THE FILE CONTROL BLOCK NEEDED TO OPEN THE FILE
FCB FCB 0,0,0,1
FCC /SELFDUMPTXT/

RMB 305

END START

I don’t think there’s a whole lot new here. We haven’t dis-
cussed the FLEX error handler. RPTERR reports the error
number on the screen. If you have ERRORS.SYS on your
system disk, it also prints an error message. If the file is not
present you will get DISK ERROR 9, for example.

We finally have an example of full use of indexed addressing
with an offset here. We did a LDX #FCB at the beginning of
the program. Then we treat FCB like an array in BASIC.
Instead of using FCB(13) to access the 13th byte of the array,
we use 13,X. It amounts to about the same thing. The FMS
calls do not change the value in the X register, so you don’t
have to reload it after any or every FMS call.

One confusing spot might be the line that reads FCB FCB
0,0,0,1. The first FCB is a label for the File Control Block. The
second is the assembler Form Constant Byte directive. The 1
is the drive number. If your working drive is other than 1,
change this number to that of your working drive. Next time
we’ll show you how to default to the working drive. Next we
have the FCC (Form Constant Character) directive. Notice that
the period between the filename and extension is missing.
Remember that the separator is not used in placing the name
and extension in the File Control Block. The filename I chose
is 8 characters long so there need be no padding zeros between
filename and extension,

This is sort of cheating. Since this program is only going to
read one file (its own source file) I “hard wired” the filename
into the FCB. Take care not to call your program something
else, or if you do, make the appropriate changes in the FCC line
above. If you choose a filename that is not 8 characters long,
you have to fill the remaining bytes with Os. You might do that
as follows:

The Computer Journal / #72

FCB FCB 0,0,0,1
FNAME FCC /TEST/ FOUR CHARACTERS

FCB 0,0,0,0 PLUS FOUR 0’S FOR A TOTAL OF 8
FEXT FCC TXT/ PLUS EXTENSION

Had I not hard wired the name we might have hand coded:

LDA #S

STA 4.X

LDA #'E

STA 5.X

LDA #L

STA 6,X

LDA #'F

STA 7.X ETC. ETC.

FLEX stores text files with each line terminated only with a
CR. If you read such a file and write it to a terminal you will
have all of the lines of the file printed to the same line on the
terminal. Each CR needs to have an LF added so the cursor of
the terminal moves to the next line. The above code therefore
checks for CR ($0D) and adds LF ($0A) when one is detected.

1 have explained the JSR FMS, I think, but there is another
FMS routine called FMSCLS (FMS CLoSe) that is good to call
on an error exit. If there is an error closing a file, for example,
FMSCLS is supposed to close all open files and bail out. The
manual warns that it is not good practice to use this ‘cheat’ call
to close open files at the end of a program. It is better and safer
to close each file individually by using the $04 code.

I am not the world’s best program comment writer, but I think
1 do better than some. The comment shouldn’t just echo the
command. For example LDA #$0D doesn’t need the comment
“Load the Accumulator with CR”. The LDA says to load the
accumulator. The comment ought to say something about why
the instruction is being used.

Actually this program leaves something to be desired in that I
have used litteral constants rather than naming them. The
program becomes more readable and easier to change later if
we do the following to it:

* PROGRAM TO DUMP ITS OWN SOURCE TO YOUR TERMINAL
NAM SELFDUMP

PUTCHR EQU $CDI8
WARMS EQU $CD03
RPTERR EQU $CD3F
FMS EQU $D406
FMSCLS EQU $D403

* PROGRAM CONSTANTS
LF EQU SO0A
CR EQU $oD
FOPENR EQU $01
FCLOSE EQU $04
EOF EQU 508

OPEN FOR READ CODE
CLOSE FILE CODE

START LDX #FCB
LDA #FOPENR OPEN FOR READ CODE

STA 0,X

JSR FMS

BNE ERROR FMS SETS NON-ZERO CONDITION
* ON ERROR

The Computer Journal / #72

LOOP JSR FMS READ A CHARACTER
BNE ERROR
JSR PUTCHR WRITE IT TO SCREEN
CMPA #CR IS IT ACR?
BNE LOOP IF NOT, OK

LDA #LF ELSE WRITE LF ALSO
JSR PUTCHR

BRA LOOP GO AROUND AGAIN
ERROR LDB 1X

CMPB #EOF IS IT EOF

BEQ DONE

JSR RPTERR TELL USER WHICH ERROR

JSR FMSCLS CLEAN UP BY CLOSING OPEN FILE
. ON ERROR

IMP WARMS

DONE LDA #FCLOSE BRANCH HERE ON EOF
STA 0.X CLOSE THE FILE
JSR FMS

EXIT IMP WARMS

* THIS IS THE FILE CONTROL BLOCK NEEDED TO OPEN THE FILE
FCB FCB 0,0,0,1
FCC /SELFDUMPTXT/

RMB 305

END START

Notice how the naming of constants makes a few of the com-
ments redundant. Some of them could be removed without any
net loss of information. Using names such as these results in
what is called “self documenting code”.

Perhaps next time we will show how to read a filename from
the command line and put it into an FCB, then open the file
and write it to the screen, a LIST utility for text files. Later yet,
we will open a file for WRITE (scarry the first time) and write
some text to it.

Just a quick little note here. Anyone out there interested in
corresponding with me in Spanish? I know just enough to get
in trouble. (I know enough to ask a question but not enough
always to understand the answer). I spent one year so long ago
I don’t want to say, in high school Spanish, have been through
the Foreign Service Spanish tapes a couple of times, spent four
weeks in Mexico, went through the Foreign Service Portugese
tapes and spent three weeks in Brazil. I wish fervently that
there were a Spanish TV station in Detroit. I think an hour a
night would get me going pretty quickly. I need practice in
VOCABULARY!

I’m sorry, but I can’t resist a little silliness here. I had a case
of the Flu last week and got food poisoning on my mind. I
thought of a good name for a Dick Tracy mobster. How about
Sal Monella? Then there’s the new restaurant up the street,
Sam ‘n’ Ella’s Cafe. I know a Professor at the University of
Michigan, appropriately named Professor Learned. It is re-
ported that there is at least one dentist named Dr. Payne. (I
think I'd change my name to Comfort). With that, I’'ll stop
until next time.

19

Beginning PLD

By Claude Palm

When Claude sent me his IDE material, he indicated he had
some helpful words to say about developing PLD projects. |
indicated a strong interest and he returned this letter. So if
your considering PLD's in your next project, read on, else
enjoy the fact you don't have to learn PLD's. BDK.

Dear Bill,

Thank you for publishing the PT IDE802 specs in issue 70. In
response to you ‘arm twisting’ I put together the following
general requirements and pitfalls for PLD design. As you can
see there are many advantages, but also a few gotchas. And a
good system will set you back around $5000, but there are ways
around this.

But I'll begin with some response to your comments on the PT
IDES02.

(1) You do not need to write two bytes or use the hardware
handshake option. The example in the data sheet is only a
demonstration of it. If you address ports 2-3 instead, the hard-
ware handshake is disabled i.e. write the data once to CENT
DATA 2, then toggle the STB line via bit 0 in CENT CTRL
3 port.

(2) I wanted the interface to be 100% compatible with the
CAM (Common Access Method Committee) ATA (AT At-
tachment) standard, hence the separate CS pins so the address
space can be split into two a la IBM (1Fx/3Fx for CS0/CS1).
As the two signals are required by the IDE drive (if all features
are to be used) they may as well be used by the chip, rather than
bring in an extra address line for 16 consecutive addresses.

It may have been better to generate these CS signals internally
and then bring them out to the drive, but that would require
relinquishing a pin from interrupt or speaker output. I decided
they would be more useful, as an extra CS were in many cases
already available or could easily be provided. As the IDE drive
only uses two ports with CS1 is selected, the remaining ad-
dresses were utilized for the Centronics interface. But nothing
prevents me from providing another version of the chip with
internal CS0/1 generation and only two interrupt outputs. 1 CS
and 4 address inputs, CS0,1 and 3 address outputs.

Incidentally, if the CS1 pin is tied high the chip mimics the
WD1000/1001/1002 HDO controller board interface except for

20

DMA Acknowledge pin which is handled differently by the
IDE or not at all. That pin was seldom used with those boards.
At least I never saw one. A PT IDE802, 4 resistors and
decoupling caps are the only components required to produce
a WD100x replacement board. Existing software will normally
work as is. Provided it loads all task file registers before each
sector I/0O and does not rely on previous data in these registers
(the IDE drive maintains the task file differently). I did run the
chip on a TRS-80 to test it, and it worked o.k. with existing
software.

(3) The timing constraint (CSO - IOCS16 - RD/WR) did stem
from the IDE drive which does not advise if the next data [/O
is to be 8 or 16 bits until some time after the data port has been
selected. The chip of course needs to know this when a read/
write commences so that it can decide whether or not to issue
any RD/WR pulse to the drive, and how to gate the appropriate
data. The only time the IDE performs 8-bit data I/O is in the
read/write LONG command, for the 4 ECC (Error Checking
and Correction) bytes transferred after the sector. But again I
wanted 100% compatibility.

I have already relaxed these timings to the detriment of the RD/
WR LONG command, but I felt that the benefits outweigh this,
as the LONG instructions are seldom used. The main timing
constraints are now due to the IDE drive itself. If in doubt,
check the manufacturers specs, or the general ATA specs for
the three different speed modes and the specs are available
from CAM.

Someone also suggested a 6502 like interface which may have
possibilities (a single RD/WR* pin in conjunction with an
enable). Problem is that you have to make these decisions when
designing anything: To do it one way or the other. At least with
PLDs you only have to revise the software to make the changes,
so expect a few different revisions to become available. Other
possibilities include an I/O device rather than Centronics i.e.
an 8-bit bidirectional, 8-bit input, and a 4-bit output port, with
the IDE also usable as a straight 16-bit I/O port. If anyone
contacts me with a specific request, and I think it useful, I am
willing to supply that version at no extra cost.

Developing the PT IDEs

As for developing the chip, it worked first try, not counting dry
runs on the simulator, but then the various modules had been

The Computer Journal / #72

tried and tested before. I did a couple of changes from the
prototype to improve the speaker output (could only be set and
toggled before) and also to allow all task file registers to be
accessed without upsetting the sequencer.

When developing the original IDE engine I had a misunder-
standing of the IDE drive, and ended up with 511 byte sectors,
but these things happens in the best of families. I also had a
more serious instability problem that was hardware related:

“The chip supplied incorrect data at certain patterns. That took

some finding, but was tracked down to the IDE drive not yet
driving the data inputs while the chip was starting to drive the
$100 bus. Due to heavy loading on the data out pins by the bus,
with still floating IDE inputs, the chip started to oscillate until
the IDE asserted the data inputs. This only occurred on certain
data patterns, causing the chip to issue the odd extra read pulse
to the drive which acted on it, and promptly produced the next
word of data while the S100 bus was still busy reading the
previous byte. The pull-up resistors on the IDE socket in the
Hardboard was the resulting cure.

Designing with PLDs in general

Many years ago I made the decision to start using PALSs (the
bipolar versions) when I read about the new EPLD chips by
ALTERA. After some investigation I got hold of the INTEL
5C032 (I think) and did some experimenting. They came out
rather well, and after I obtained some of the larger SCO60 chips
I was hooked, even if they were still rather slow devices in
those days. They were also expensive, but like all chips the
prices fell before long. I scrapped my plans for PAL chips and
started using EPLDs instead, and have never looked back
since.

I normally do not design for, or use discrete logic. That is much
too time consuming and require either high cost or large
volume runs to recoup design costs (designers have to eat t00).
When appropriate, I do slip in the occasional SSI/MSI chip in
a design - there is a 7T4ACT138 in the CPUZ180, but that is all.
So if there is a ready made chip available, I use it.

A prototype circuit can be used for many different projects with
little or no hardware changes. For example, the IDE engine
was developed on an S100 card containing only the one chip.
The Centronics I/F was developed on the same card but with
a printer attached to the output socket rather than an IDE drive.
I use windowed EPLDs for this as they can be erased and
recycled as something else.

Actual development on the larger PLDs is done in similar
fashion to general software - one module at a time. When a
module is working you save it and start on the next. Eventually
they are combined into a single program (chip). Most of the
testing is done by a simulator.

In a tight fit (such as the PT IDE802) it takes considerable

juggling to fit the final results into the available macrocells,
especially as there are different types of cells in the *18xx. This

The Computer Journal / #72

is similar as to squeezing computer code into limited memory.

To convert a PLD design into discrete TTL (working) would
take a lot more time and effort than to do the original design.
The available functions differ completely. TTL has a large
number of different macro functions while PLDs use basically
sum of products and little else. There are of course registers
and flip flops, but in most cases they are too limited in their
function to use.

Similar, to convert an existing TTL design into a PLD is also
difficult. The result is always much better when designed from
ground up for either TTL or PLD. It is like writing a program
in BASIC then converting into C or vice versa. It can be done,
but it is not practical.

For that reason I do have a bone to pick with you about
requesting equivalent TTL (assume working) circuits for any
PLD design submitted. It can be done with small chips using
only a few gates, but not with larger ones. For example: in the
PT IDE100, each S100 DI pin (8 of them) uses a buffer, an 8-
input OR gate driven by 8 AND gates having 26 inverted and
15 non-inverted inputs. That is 328 inputs with 208 inverters
to 64 AND gates just for the DI bus! - and there are another 3
data busses.

Only one data bit was actually designed in that case , the rest
were generated internally by a compiler. The result is that each
bit has its own decoding circuitry. Such waste would never do
in a TTL circuit, but is common practice with PLDs. It both
reduces delays and makes timing calculations straight forward.
That way a signal will only pass through a single macrocell.

Inside the PLD

First a caveat - I won’t attempt to describe PLD architecture in
detail. I (think I) can recall an earlier article in TCJ describing
the basic macrocell and sum of products logic. I will assume
the reader has some familiarity with this and with Boolean
algebra in general. Detailed description of that is well beyond
the scope of this article.

Suffice to say, the PLD contains a number of macrocells of
similar (but in most chips not exactly same) construction.
These can be thought of as discrete TTL chips. The cells are
configured to their desired functions and are wired together to
form the entire design. The output from a cell can go to a pin,
or if “buried’ just to other cells. Some cells have more than one
output. Some pins are input only while others are configurable
as inputs or outputs or both.

The main part of the cell is the AND/OR (sum of products)
array. In the EP18xx each of the 48 cells have 10x88-input
AND gates driven from the pins and other cells. Half of the
inputs are inverted. 8 of these gates (product lines) feed an 8-
input OR gate which can also be configured as a NOR gate.
One feeds the output enable for a buffer to a pin. The last feeds
a reset input to a register that can be positioned between the OR

21

gate (sum) and buffer. The signal can be tapped at one or two
points, brought to other cells, or back to its own cell as a
feedback. If the register is used it can be clocked from one of
the AND gates or a dedicated clock pin. It can be configured
as a D, JK or T flip flop. The EP18xx has about 48,500
connections that can be on or off.

As the AND/OR array can be inverted at either/both ends, it
"can become a OR/AND array as per DeMorgans theorem. The
array output can be brought back to an input, inverted if
necessary, so transparent latches, RS flip flops can be con-
structed in the cell. These can take on some rather weird input
schemes to suit your design. XOR gates are also constructed
from the array.

The smallest PLDs (20 pin EP330 or GAL 16V8) contain 8
macrocells with 8 /O pins and 10 input pins, with more
limited configurations. As you can see, the whole thing is
rather flexible.

Design Process

The design process begins the same way as a discrete TTL
design. First the specifications (what should the design do?).
Then a simplified block diagram. Each block is broken down
into smaller blocks and finally into discrete Boolean equations.
When satisfied, these equations are minimized, manually or by
a logic minimization program. Next stage is to maximize the
result into available functions. Here the discrete TTL and PLD
design split.

To maximize for TTL you try to squeeze the design into the
minimum number of chips (can-count) or you will be left with
a large number of partly utilized ICs. This take considerable
knowledge of available chips, each with different timing char-
acteristics, so timing calculations become difficult. A signal
normally has to pass through several chips before reaching a
destination. Signals are tapped halfway through functions (to
minimize can-count), while still more are tapped further down
the line. If a desired signal is available somewhere, it is
normally used rather then regenerated. This means a wide
variation in delay paths which can easily lead to troubles. As
several chips are used sequentially with delays specified as
min/max the final delay can be difficult to calculate with any
accuracy.

PLD design is much simpler. There are only a few functions
available, making maximization easier. This is done by soft-
ware that is aware of the chip’s internal architecture. That
program is probably the same that performed the minimization
in the first place so you feed in your original equations and take
out sum of products equations ready for a PLD macro cell.

Most of the time you enter Boolean functions, but sometimes
it is easier to describe a function in state machine lingo. That
looks even more similar to a computer program. You define all
possible states and what events will cause change from one
state to another. Such a description is more difficult to translate

22

into TTL chips, but present little problem to the PLD compiler.

Yet another way to enter a PLD function is to use a truth table,
but this becomes tedious with more than a few inputs. In most
designs you use a combination of these methods, whichever is
the easiest for the particular part you are working on. The
compiler recognizes and differentiates between a Boolean equa-
tion, state machine code and a truthtable, and still works out
a sum of products equation.

Multiple similar functions can be vectored to simplify design.
This is like a FOR-NEXT loop i.e. design a function then order
it repeated for a number of times. That is what I talked about
carlier by designing one data bit in a bus, then letting the
compiler take care of the rest.

Similar to computer programming, you have macros and sub-
routines rather then defining similar functions over again.
Larger functions can reside in separate files that are brought in
as needed, and you may also have a collection of library files
with useful functions.

The final *fitting’ (to place these equations into the PLD and
not run out of pins or macrocells) can cause considerable
problems resulting in a lot of juggling before it all fits. Soft-
ware to do this is aptly called a “fitter’. Like a compiler/linker
for computer programs they work well when there is plenty of
space, but in a tight fit they cannot beat human intervention.
Thus when the PLD compiler comes out with a ‘Can’t Fit’
message you can either use a larger or several chips or do your
own juggling. If the latter, you can still use much of the
compiler’s output, it may only need a little massaging.

As you can see, the whole process is much more like writing
a software program in a high level language than designing
hardware. You actually tend to forget about chips and gates.
You use a normal text editor to enter your design, but you must
of course learn a new syntax. This varies widely with the
various languages available, but the principles are the same.
You have PALASM, CUPL, ABEL etc. but an AND function
is still an AND function even if it is entered as a different
character. If you are familiar with CUPL you could still read
and understand a PALASM file. They are not that different,
nor can I say that onc language is better than another, just a bit
different.

Most compiler’s understand a superset of the original language
- new functions that make the design process easier. Similar to
new functions appearing in computer programming languages.

In most design programs once you have the ASCII text file(s)
containing your design, the minimize, maximize, compile and
fit sequence can be performed without user intervention and
will only halt on a fatal error. As in the more familiar compile
and link process.

A PLD compiler generates a JEDEC file as its final output.
Youare also provided with other files that report on utilization,

The Computer Journal / #72

simulation results, etc. The JEDEC file is what it is all about.
That is equivalent to the COM or EXE file in a computer.

Design programs for PLDs normally come with a simulator, so
you can test your design before committing it into hardware.
The test files are frequently larger than the original design file.
You specify as many input conditions you can come up with
and feed them through the simulator. You can then view the
resulting output as if it had come from the chip. Most bugs are
caught that way, but as with all programs, it is only as good as
your input file. Fortunately these simulators accept a variety of
input schemes (such as FOR-NEXT loops) so you don’t have
to set every input pin to every possible combination. On a
complex design, writing and viewing simulation data is time-
consuming, but still beats doing it in the real world. You can
also access points internal to the chip that may be impossible
without a simulator.

There are many PLD design programs on the market, from a
few hundred to many thousands of dollars. The more expensive
ones also accepts TTL designs in graphic form and convert
them for PLDs. For most people this would be an overkill. As
long as the software contains the functions I have described,
and it supports a reasonable assortment of PLDs you should be
able to design them efficiently.

The PLD compiler needs to know the architecture of the chip
itis working with, but does not need to know it intimately. That
is very important to understand. Over time the PLD chips do
change: new revisions come out, old ones are discontinued. As
long as the basic architecture remains the same the compiler
will still work as the JEDEC file requirement is basically
unchanged for a particular family of chips. Unless something
entirely new comes out, your compiler will still be usable for
years tocome. As an example we have talked about the EP18xx
" chips. EP1800 was the original version and has been discon-
tinued. EP1810 supersedes it and EP1830 is a later parallel
version, quite different internally, yet they are all JEDEC code
compatible. As code assembled for an 8080 can still be used for
the Z80 or even Z380 chip.

One program I have used, worth mentioning here, is Intel’s
PLDSHELL. It is low cost and suitable for beginners, but still
quite powerful. It has a list price in the $200 region, but I have
seen it discounted here (Australia) for well under $100. Yet it
covers all the essentials including the simulator, and covers a
variety of chips. Runs on MS DOS as a shell (as the name
implies), and comes with a well written manual and lots of
design examples. Definitely recommended. It does not ap-
proach the more professional programs as ALTERA’s but then
it’s not kilobucks either. It is PALASM compatible.

Hardware - the difficult part
The real problem for the beginner and the occasional PLD
designer is the hardware. Not just the machine itself which is

complex enough, but the software that runs it too. Especially
if it is to support a variety of chips.

The Computer Journal / #72

The machine accept’s JEDEC file data and will burn the chip
from that. This file is basically a collection of ASCII 0 or 1 but
lots of them. The position in the file denotes the function, with
0 for on / 1 for off. The programmer will translate these into
the correct voltages and timing pulses to the correct pins on the
chip. Some fancier programmers can also exercise the pro-
grammed chip to check that it actually performs as expected.
It takes only a second to program and verify a small chip, and
up to 5 seconds for the largest.

The real problem is that most chips undergo some revision
every couple of years. The more different chips you use the
more revisions you have to contend with. Frequently a new
revision will require programmer software changes to cope
with it. As the JEDEC code stays the same, it may refer to
different locations in the new chip, and would produce an
entirely different result if the machine was not set up with
software for the new revision. The voltages and timing specs
tend to alter with new revisions, and if not heeded, may cause
insufficient programming (the chip will forget what it was
supposed to do after some time).

In many cases the revision is not marked on the chip but must
be determined by the machine, and the programming algo-
rithm adjusted accordingly. To confuse matters, I will give you
an example: the EP1810 is marked EP1810. The EP1830 also
marked EP1810, but is completely different both soft and
hardware wise. A speed rating of 35 or more is an 1810 while
30 or less is an 1830. If the machine can’t distinguish between
the two versions it will mis-program the chip (destroy it). And
if your programmer only supports the EP1800 or 5C180 it will
actually program a chip marked EP1810 with a speed rating
>30ns (at least in some fashion, data retention may not be up
to scratch). It will however mis-program an EP1810 with a
speed rating <30ns. The same problem also applies to other
chips. Sometimes I wonder why these complications.

The upshot of all this is if you bought your programmer and the
company went out of business later, you only have an expen-
sive door stop when the next revision of the chips come out.
Similar with the cheap second hand machine. The chip manu-
facturers can often supply programmers, somewhat expensive
and may only be set up for their own chips, but at least reliable.
The Intel PLDSHELL program mentioned does interface with
an Intel programmer, but I have no idea about its cost, but I
believe it is very versatile. Other manufactures do recommend
third party machines that can normally be relied on. Just
remember that it is imperative that you are supplied with
software updates and that your vendor/manufacturer can keep
up with them. Caveat emptor.

Note however that as the JEDEC file remains the same, your
old design will still program a new chip version correctly, so
your files remain current. It is only the software that runs the
programming machine itself that is changed.

Here at Palmtech I use a programmer designed in house and I
request programming specs from the chip manufacturers when

23

new revisions come out. As soon as the machine sees a chip
and does not recognize the internal rev data it objects. That
happened to the last lot of EP330’s I got. This method would
probably not suit the majority of readers.

You could of course buy a programmer that handles only a

couple of similar chip types, 20-24 pin GALs for example

would probably be the cheapest option. But that is a serious
" limitation considering the plethora of PLDs on the market.

There is another solution to the problem: Most supply houses
will program your chips for you for a modest fee (probably
around a dollar, or less for quantity) if you supply them with
your JEDEC file. With the simulator, you can be fairly sure
your design will work, and you won’t be stuck with an obsolete
machine or pay kilo-bucks for one that has guaranteed support.
And, as I said before, a reasonable design program won’t set
you back too far, and will stay current for a long time. So, by
buying pre-programmed chips you can get into PLDs and also
be able to take advantage of the full range available.

Which PLD family?

The next question is ‘What type of PLD to use?’. There are two
main types: EPLDs and GALs. They are both CMOS and are
roughly similar in architecture but quite different electrically.
Either type is available from several sources, often under
different part numbers i.e. EP610 = iPLD610 = 85C060 =
PALC610. The two types or not code, pin, or even functionally
compatible.

The EPLD was originated by ALTERA and comprises of
EPROM cells. They come in windowed ceramic packs that are
“ultra violet light erasable for trial and error, or plastic one-time
programmable which are much cheaper. Electrically, 1/O is
similar to the 74ACT chips.

GALs came originally from LATTICE and uses EEPROM
cells, that is they can be erased and reprogrammed in the
machine (some can even be programmed by a serial interface
obviating the need for a programmer). They are therefore much
easier to use for developing purposes. Their /O is closer to the
74HCT series.

Some other pros and cons are:

* GALs are rather power hungry. The smallest 20-pin GAL
(16V8) draws 75mA compared to 40mA for a comparable
EP330 (the 68-pin EP1810 EPLD draws only 100mA). EPLDs
are also available with a standby current consumption of a few
micro Amps. There are low-power GALs available with power
consumption comparable to EPLDs but they are a lot slower.
* GALS provide considerable less drive current at the output
pins and are asymmetric. The GAL 16V8 will source 3 mA at
TTL levels, compared to 20mA for the EP330. That makes
GAL devices unsuitable for bus-drivers.

* Data retention (how long does the device remember its
function) is specified at 10 or 20 years in GALs, but this is

24

reduced at elevated temperatures. EPLD manufacturers talk
about >100,000 years. This makes GALS shaky for some
commercial applications, as you sometimes don’t know at what
temperature your design will be used at.

* GALs are about 25% faster then EPLDs in their respective
top speed versions.

* Pricing is similar between comparable devices.

* EPLDs are more demanding on programming hardware, and
are non-erasable or must be erased externally.

* Both types are available in many different sizes and pack-
ages, with the EPLD having a considerable greater variety of
architectures. Packages come from 20 to 250 pin.

In short, GAL:s are easier to program for the beginner but place
severe restrictions on the design. For example, there is no
suitable GAL device for the PT IDE100 or 802. The nearest is
the 84 pin pLSI1032 but it cannot drive the S100 bus and drive
current would be marginal for a Centronics port. It does con-
tain a lot more internal functions but at more than twice the
cost of the EP1810.

A nice feature of the later EPLDs is that the programming
margin (how well the cell is programmed or erased, not just if
a cell is on or off) can be determined by the machine. That way
you are certain the chip will remember its tasks long term.

There are a couple of other types worth mentioning: PALs were
the original programmable devices, but are becoming obsolete.
They are bipolar technology and rely on fusible links for
programming, same as PROM memory chips. They are only
available in the smaller packages, and require special pro-
gramming hardware. They are very low cost, and most are pin
and JEDEC code compatible with GALs. It is common to
replace GALs with PALs in a production version to reduce
cost.

At the other end there are FLEX PLDs (Static RAM cells) that
are loaded from an external EPROM or such at power on. They
are only available in larger versions and are rather expensive,
and I have never tried them. Maybe one day when the need
arises. And of course, they don’t need a programmer, but you
have to include the EPROM in your circuit.

To gain further insight into the PLD chips I suggest you obtain
some data books from the various manufacturers: ALTERA,
AMD, CYPRESS, INTEL, LATTICE, NSC, PHILIPS, SGS-
THOMSON.

I hope this has given the reader some food for thought. But if
you do designs I don’t think you can afford not to go in for
PLDs. As with anything else, start with the smaller devices to
familiarize yourself. They are inexpensive so no real harm if
you damage a few. If you go in for EPLDs, get a few windowed
devices and an EPROM eraser to experiment with, then use
plastic chips for actual work.

The Computer Journal / #72

TCJ Center Fold

This center fold was prompted by the Embedded report and
hopes that some interest in this product might stir Rockwell to
make some of the chips avaialable. I fear however that all
production and documentation of this device has long since
been lost.

I have had this development package since shortly after it was
produced. When Allen Bradley purchased Rockwell 1 had
hopes of seeing this device used in place of the Basic modules
which have become so popular in PLC systems (industrial
controllers). I did see some products using it in the late *80s at
a WesCon show. There were two vendors of small embedded
systems selling boards with the F11 chip. I look back now and
see that these vendors were proably a few years ahead of their
time. Products like this now sell well, while back then were just
starting to be considered for use.

The major feature of this implemetation is the use of a disk
controller and thus disk drive to hold your program. Most
embedded system relie on the Host development platform for
this use. As you will see in later articles, there are advantages
" and handycaps for either concept. I used this platform with
drive many times for testing and learning. I found it adequate
but problemmatic. A friend tried it and became a NON-Forth
user. There are a number of bugs that an inexperienced user
will not understand. These bugs will just frustrate you, since
your inexperience will not give you the skill to understand the
bug is in the ROM and not your code. This is unfortunate but
a very common situatuion with beginners and complex sys-
tems.

There is nothing special about the design, in fact it is a very
good example of a minimal system. The use of ROM for

SOFTWARE CONSIDERATIONS

When the R65F11 is reset due to power up or reset, several
variables assume default values which may need to be changed
by the user. One of these is the top of memory pointer used by
the disk interface. Reset assumes the presence of 8K of RAM from
$0300-$1FFF. In the example given here, only 6K of memory is
available ($0300-$17FF). In order for the disk buffers to work, the
top of the memory must be set to 6K. The following commands
will perform this function:

HEX 1800 MEMTOP DECIMAL [RETURN]

The R65F11 has been designed with vectored /O so that user writ-
ten I/0 routines may be used as an alternative to the internal ones.
The console input and output is vectored through the locations
UKEY ($0044) and UEMIT ($0046) and the disk is vectored
through UR/W ($30A). As an example of using these vectors,
Listing 1 shows a method of patching UEMIT to direct the console
output to a parallel printer port. This listing also shows a method
of using the headerless code generation to create words and then
forget the heads (only) of those words which will not be used again.

Listing 1. Implementing a Printer Driver

SCR #10

0 (CENTRONICS DRIVER FOR RSC FORTH DEVELOPMENT
BOARD)

1 (FILTER OUT FORM FEEDS) BASE @ HEX

2 LATEST DP @ 100 + HIC

3 CODE STB-PRT 10 3 RMB, 0 2 RMB, 0 2 SMB, RTS, END-CODE

4

5 CODE ACK-WT BEGIN, 11 3 BITSET UNTIL, RTS, END-CODE

6

7 CODE HOUT 1 STA, OA # CMP, O = NOT IF, ’ STB-PRT CFA

@ JSR,
8 " ACKWT CFA @ JSR, THEN, RTS, END-CODE
9 OHEADERLESS!

10 :P-ON['HOUT CFA @] LITERAL 0046 ! ;

address decoding was very popular until the use of PALs 1
replaced them. Few of the newer ROM programmers can 12 :P-OFF F5EF 0046 ! ;
program these long forgotten devices. The use of the disk 13 :FORM-FEED OC EMIT ;
controller and corresponding code in the ROM actually added :g ' SP'ON LFA ! BASE !
little to the design. The design shows how any device can be '
added to a basic design. Typical additions in a minmal design
like this might be for more serial or parallel ports. The board
does come with a printer port, making it totally self contained.
The use of a terminal is all that is needed to do development.

The Computer Journal / #72 Center Fold Section

25

Application Note

Low-Cost Development Module for R65F11

R65F11 » R65F12
Application Note

A LOW-COST DEVELOPMENT MODULE
FOR THE R65F11 FORTH MICROCOMPUTER

3
V
#*g

oc

26

by Joseph W. Hance
Rockwell International, Semiconductor Products Division, Newport Beach, California

1

N.O. $PST

PUSHBUTTON

10 L1459

[1 0 A
ht] 0 A
he sl = 1 A7
hs 13] @ h2 AS
ha 1w 3 hs ae
& 7 « 8 AlQ
h2 1w > |19 AN

1 1 Al

" zol 10 i

3.3

ag
remlan®
0984 11 N
i}_{

la— &

2.2
R24

1.8K
R2S

oo__1

+5
1s
] 2
1
. CA2
1458
1.8¢
4 u VA L1
’ RI7 2 iNots
R CR4
T

{AHOWIN NId B2} L0

® s

D1_12

[| 1e
03

+
|
AS 1 e FBC
a7 7 {EN:]
AS 3 2 o8
A9 4] o 1t (]
ae_s]1 & o MEWD
. AN 17| :S 0 MEM2
A12 " = 7 MEM
1.9¢ S RS ‘“3—:: _§ NEW
~ 18
oot 4SS ot 4
v
10
B +5
241
MEMO —1—7 E] AMEMD
”
Moy — 2 " ANER
menz —-2 (KTV
»‘ I—
RMEMD
]
vems — ot un Dt L]
7 reLsa2
* Set Video Display Terminal for: 7 Data,

No Parity, 2 Stop @ 1200 Baud.

Center Fold Section

bs 17 AN 0 D1
Dg_ 18 ju_02
o7_19|] 13 D3
Rw +5_1] AW n s o4
ki :?—m S o3 .;.:_2‘
9
a| 5] o
12 11 a3 7] o @ S (8 a0
ame| 3| an 3 7 [T A
Al ° R s
A |s_A
S §l2 Flam
A 8| < £ |2as
h + 2 As
L ‘:"“ ; 1 A7
2] D As
L 22 A
Jis a0
20 OF
lu

The Computer Journal / #72

Application Note

Low-Cost Development Module for R65F11

w5 s
’|’ Ris RIS A20 RZ1
+5
" E: e NELorr
. TROO 150 1 F]
R29
470K 2 e »
HLT 3 15 BX s
E} ufs. 40}
- L [\ 17 18 oIR 3ot 18
1efocnl RZ8 F 15 STEP 1ol 2
@ |10x3 01 MO 2% WG U s 2
] [Reaill F] o=
2 28 4 n wo 5ot 2
. 4w ~ gt »
crr 07 14 s s
0.01 g g-:% oo 18 ""m_lg 1"1' 2 i€ 2
- 2 oan ot 3 2 Yo 080 10
& o0l - Lo
1 6 0319 o2 13| 18 30504 081 12
o3 w _fw v s '\\/.c . sz 14
<
3 o _1els ;'\w,c [} 053 [
~N ~
3 D5 14 E | 15 11 0y 10 MOTOR 16
g o7 43| T
000
r._

wy

|

0.1 uF BYPASS CAPACITORS

c12
c13
s c14
b3 s 00 cis
e o1 c1e
11 p2 c1?
1303 ce
Da [DATABUS
jS__os
[s__oe
c pr_or
3 A0
g 2 A;
b]
z (s
=
] As) ADDAESS BUS
2 ‘—‘ A7 PA2 (U1.28) 1 lstef2
T B re0 (U138 ___ 3 lor
224 re1 (U137 ____ 5 oy
,m2UL3) 2 o2
Lo SIUAR IS) L -
. PB4 (U1-34) e N2
PBS (U133 Nos |14
me{uazt _ 18ne N84
WL _ a1jny e
PA3 (UL} _n.ﬂn_<

J4— PRINTER

The Computer Journal / #72

P8O (U1-38)

P82 (U1-28)}

T

P84 (U134}
P88 (U1-32)
PCO (U4
PC2 {U1-8)

- [| (o e =

rca (U8
PCS (U1-10}
D0 (U1-19)

PO2 (U117}
PO4 (U118}
PDS (U113}
RES

PAS (UL-24)
N

PAY (UY29)
PAZ {UY-2T)
PA4 (U1-28)
us1

(-1

J3 — EXPANSION

cn
o 100uF

Center Fold Section

+5 raLs240

|3 08 % batasus

P81 {U1-37)
P83 (U1.35)
s {U1.33)
a7 (U131
PCT (U1-5)
3 (U.D)
PCS (U1-9)
PC7 (UN1)
PO1 (Ut-18)
PO3 (UY-16)
POS (U114}
PO7 (U112}
”

PAT {UY-23)
PAO {U1-30)
PA2 (U1.29)
Asw

uso

usz |

PAS (V1-25)

Application Note Order No. 2162

Document No. 29651N65

Rev. 1, October, 1983

27

Table 2. Jumper Selection Table 1. Decode PROM (US) Coding

Socket Port Type Jumper Poeition at Pin The folowing confgursiion is sssumed:
Funct Address Space Code Signal Sochet
v »27 p20 FOC = $0100-5013F = 7F « FOC = U2
S RAM1 = « FT = MEMI « U0
" x 8 AAM e AAMZ = SONOO-SOFFE = FB = MEMZ = U9
2784 PROM RAM3 = $1000-517FF = FD = MEM) = U8
732 PROM +5 MEMOQ ROM = S2000-83FFF = FE = MEMO = UT
NotUsed = S1800-S1FFF « FF = No Chip Selcied
Page 2ero = $0000-S0O0FF « FF o No Chip Selected
us pI7 P23 p20 Page One (ex FDC) = $0140-S01FF = FF = No Chip Selecied
o % 8 PAM AW AN AMEML
2K x 8 AAM AW AW AMEMI
2784 PROM +8 AN MEMY
2 PAOM o8 AN MEMI
bl Vs .8 e mabisb ¢ 1 P RS s 8 7 & 9 A B C D E F
° FFFF FF FF Y FF FF FF FT FT F1 FT F1 FT FT F7
1 FT FT FT FT FT FT FT F F1 FT FT F1 F? F7 FT FY
v st o1 2 F8 FB FB FB FB FB FB FB FB FB F8 FB F8 F8 FB FB
— 3 FA FB8 FB fB F8 FB FB FB FB FB F8 FB FB FB F8 FB
2« 8RAM AW AWEMZ 4 FO FO FO FD FDO FO FD FDO FD FO fO FO FO FD FD FD
2 PROM an WEWE s FD FO FD FO FD FD FD FD FD FD FD FD FO FD FD FD
e Vs WEwE . FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
PAOM 7 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
s FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE
e o1 pis . FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE
_ A FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE
2K x 8 PAM AW AWEMS 8 FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE
W 2732 PROM 5 WEVS < FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE
218 PROM o5 WEWS 4 FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE
€ FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE
F FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE
U1 ResFu
For 2 MHz duvice (FASFITAP), install Jumper 81 Pin 1 10 Ground; and st VOT for 2400
Savd.
2 worrss
For test, insiall jumper st Pin 22 10 Ground.
Enable (1) or Disabie (0) Precomoensation st Pin 1 Der ik drive wendor recOmMendation.
Note:
hmdma‘mm.ummw.

Parts List
Description J Part Number (Vendor) Description Part Number (Vendor)
R65F11 Development Board
u RE5F11 (Rockwell) R4 33 K Ohm
U2 74LS3ITI (4) RS, R6, R8, R17, R25-R27 18 K Ohm
U3, u20 TALSO4 (4) R7 300 Ohm
U4 74LS10 (4) R4 10 K Ohm
U5, u21 555 R15, R16, R28 10 K Ohm
us T4S4T1 (6309) (4} R18-R21 150 Ohm (AW)
u7 RBSFR1 (Rockwell) R22 10 K Ohm POT (Bourns 3008P-1-103)
us 28-Pin Memory R23 50 K Ohm POT (Bourns 3009-1-503)
us 24-Pin Memory R24 22K Ohm
U0 24-Pin Memory R29 470 K Ohm
Ui 74.532 (4) CR1-CR4 1N914 or eq
U2 WDZ2793 (Western Digital) Cy, C12-C19 0.1 4F
U3 741520 (4) C2, C26, C27 001 4F
U TALS240 (4) C3,C6s 0.22 yF
uis 74LS273 (4} C4,C5 10 pF
U8 ICL7880 (Intersif) c7 10-100 pF variable
u7 LM1458 {Sprague GKF70000)
Ug, U9 7406 cs Optional
N 34 pin (3M #3431-2002) Cs, C10 10 uF electrotytic
J2 DB25 (AMP 2065-84-2) n 100 uF electrolytic
J3. 40 pin (3M #3432-2002) C19-25 Not Used
J4 20 pin (3M #3428-2002) Ca8 15 4F
TB1 0.2" center terminal strip St N.O. Pushbution
(Buchanan #SSB404) (Chicago Switch EIA50)
R1, R2 10 M Ohm Y1 2.000 MHz Crystal
R3, R9-R13 4.7 K Ohm
R65F12 Adsptor Board
vaz R65F12 (Rockwell) C2 100 4F electrolytic
va3 Wire Wrap Pins (40 ea.) J6 34 pin (3M #3431-2002)
Notes: 3. All ICs should be socketed: 40, 28, and 24 pin — 2 each; 20 and
8 pin — 4 each; 14 pin — 7 each.
1. All resistors are % W, 10% carbon unless otherwise noted. 4. 74LS devices should be purchased 10 Texas Instruments specifica-
2. All capacitors are 16 V ceramic disks uniess otherwise noted. tions or equivalent.
tumished by F " Corporation is believed to be accurate and relisble. However, no responsibility is assumed

and
by Rocmll International for its use, nor any mlnngomonl of patents or other rights of third parties which may result from its use. No license is granted by
ummWwaWMsdmﬂlmmmm"ummmn & Rockwell product. Rockwell international
reserves the right 1o change circuitry at any time without notice. This document is subject to change without notice.

€ Rockwaell International Corporstion 1983
Al Rights Reserved

28 Center Fold Section The Computer Journal / #72

SUPPORT GROUPS FOR THE CLASSICS ﬁ?'3’?Re9d'é.;;;iF‘%

Trenton Zed-Fest Announcement

I am happy to announce that there will be a Zed-Fest 95 during
the weekend of the Trenton Computer Festival. The official
announcement follows. Please help by spreading it around
wherever you can — to bulletin boards, CompuServe, GEnie,
user groups, newsletters, etc.

The Trenton Zed-Fest 1995

The Zed-Fest in connection with the 1995 Trenton Computer
Festival (TCF) will take place again this year at the Stage
Depot Motel over the weekend of April 21-23. The motel is
undergoing extensive changes since new management took
over just before last year’s Zed-Fest, so we don’t know for sure
which meeting rooms we will have, but we have been promised
a room for both Friday and Saturday evenings for informal get-
together. No technical presentations are planned, but I am
hoping to conduct a live GEnie Real Time Conference (RTC)
session right from the meeting rooms.

I do not yet have an extensive list of those attending, but I can
report the very exciting news that Helmut Jungkunz will be
. coming all the way from Munich, Germany, to be with us. I
hope this will be a big extra incentive for you to join us as well.

There will again be an “All-Day CP/M Conference” on Satur-
day as part of the Trenton Computer Festival at Mercer County
Community College. Hal Bower is the only presenter I know
of who is scheduled at the moment. He will be describing
Cheap-LAN, a simple local area network.

After the TCF session winds down on Saturday, we expect to
adjourn to a local pizza parlor to stage the annual Anchovy-
Pizza-Eating Contest. Lee Bradley and I could definitely use
some competition this year. There’s still plenty of time before
the meeting, so start training now!

Lodging Information

The Stage Depot Motel provides not only convenient but also
low-cost lodging. Things get busy in the area around the time
of the Trenton Computer Festival, so I urge you to make

reservations just as soon as you can.

Here is the information about the motel. Please don’t forget to
mention that you are with the Zed-Fest when you place your

The Computer Journal / #72

reservations. If enough of us register, we will not have to pay
for the meeting rooms. Also note that, at least in past years,
the registration lobby closed at 11 PM. If you will be arriving
later than that, special arrangements should be made (for
example, have one of us pick up your keys for you). The room
rates below are tentative and do not include taxes. Because of
the renovations, the rates for some rooms may increase a few
dollars. Ask the management when you place your reserva-
tion.

Stage Depot Motel

Route 31

Pennington, NJ 08534
609-466-2000

800-93 STAGE
(800-937-8243)

larger rooms (2 double beds)

1 person $44
2 people 47
smaller rooms (1 dbl, 1 sgl bed)
1 person $37
2 people $44

for suites or other arrangements, inquire with the management

At a later time I will post a message with an ASCII map
showing how to find the motel and the TCF site. For those who
wish to try locating them on a road map, the motel is on Route
31 north of the city of Trenton and, I would guess, about 5
miles north of 1295. Mercer County Community College is on
Route 535 east of the city of Trenton and east of 1295, in or near
the town of Mercerville.

If you are planning to come, please let me know by any of the
following means:

Internet mail to:
GEnie mail to:
a message on my Z-Node:

SAGE@LL.MIT EDU
JAY SAGE
617-965-7046 (v.32bis)
617-965-7785 (v.fast)
617-965-7259 (2400 bps)
617-981-5328
1435 Centre Street
Newton, MA 02159-2469

a FAX to me at work:
real postal mail to:

Hope to sce lots of you there!
Jay Sage

29

TCJ Staff Contacts

TCJ Editor: Bill D. Kibler, PO Box 535, Lincoln, CA 95648, (916)645-
1670, GEnie: B.Kibler, CompuServe: 71563,2243, E-mail:
B.XKibler@Genie.geis.com.

Z-System Support: Jay Sage,1435 Centre St. Newton Centre, MA
02159-2469, (617)965-3552, BBS: (617)965-7259; E-mail:
Sage@ll.mit.edu. Also sells Z-System software.

32Bit Support: Rick Rodman, BBS:(703)330-9049 (eves), E-mail:
rickr@virtech.vti.com.

Kaypro Support: Charles Stafford, 4000 Norris Ave., Sacramento,
CA 95821, (916)483-0312 (eves). Also sells Kaypro upgrades, see
ad inside back cover. CompuServe 73664,2470 (73664.2470@cis).

S-100 Support: Herb Johnson, CN 5256 #105, Princeton, NJ 08543,
(609)771-1503. Also sells used S-100 boards and systems, see inside
back cover. E-mail: hjohnson@pluto.njcc.com.

6800/6809 Support: Ronald Anderson, 3540 Sturbridge Ct., Ann
Arbor, MI 48105.

Regular Contributors:

Dave Baldwin, Voice/FAX (916)722-3877, or DIBs BBS (916) 722-
5799 (use "computer”, "journal”, pswd "subscriber” as log on),
Internet dibald@netcom.com, CompuServe 704032444,

Brad Rodriguez,Box 77, McMaster Univ., 1280 Main St. West,
Hamilton, ONT, L8S 1C0, Canada, Genie: B.Rodriguez2, E-mail:
b.rodriguez2@genie.geis.com.

Frank Sergeant, 809 W. San Antonio St., San Marcos, TX 78666, E-
mail: fs07675@academia.swt.edu.

Tilmann Reh, Germany, E-mail: tilmann.reh@hrz.uni-siegen.d400.de.
Has many programs for CP/M+ and is active with Z180/280 ECB
bus/Modular/Embedded computers. Microcontrollers (8051).

Helmut Jungkunz, Munich, Germany, ZNODE #51, 8N1, 300-14.4,
+49.89.961 45 75, or CompuServe 100024,1545.

Ron Mitchell, Apt 1107, 210 Gloucester St., Ottawa Ontario, Canada,
K2P 2K4. GEnie as R.Mitchell31, or CompuServe 70323,2267.

USER GROUPS

Connecticut CP/M Users Group, contact Stephen Griswold, PO Box
74, Canton CT 06019-0074, BBS: (203)665-1100. Sponsors East
Coast Z-fests.

Sacramento Microcomputer Users Group, PO Box 161513, Sacra-
mento, CA 95816-1513, BBS: (916)372-3646. Publishes newsletter,
$15.00 membership, meetings at SMUD 6201 S st., Sacramento CA.

CAPDUG: The Capital Area Public Domain Users Group, Newslet-
ter $20, Al Siegel Associates, Inc., PO Box 34667, Betherda MD
20827. BBS (301) 292-7955.

NOVAOUG: The Northern Virginia Osborne Users Group, Newslet-

ter $12, Robert L. Crities, 7512 Fairwood Lane, Falls Church, VA
22046. Info (703) 534-1186, BBS use CAPDUGS.

30

The Windsor Bulletin Board Users' Group: England, Contact Rodney
Hannis, 34 Falmouth Road, Reading, RG2 8QR, or Mark Minting,
94 Undley Common, Lakenheath, Brandon, Suffolk, IP27 9BZ, Phone
0842-860469 (also sells NZCOM/Z3PLUS).

LIS.T.: Long Island Sinclair and Timex support group, contact
Harvey Rait, 5 Peri Lane, Valley Stream, NY 11581,

ADAM-Link User’s Group, Salt Lake City, Utah, BBS: (801)484-
5114. Supporting Coleco ADAM machines, with Newsletter and
BBS.

Adam International Media, Adam’s House, Route 2, Box 2756,
1829-1 County Rd. 130, Pearland TX 77581-9503, (713)482-5040.
Contact Terry R. Fowler for information.

AUGER, Emerald Coast ADAM Users Group, PO Box 4934, Fort
Walton Beach FL 32549-4934, (904)244-1516. Contact Norman J.
Deere, treasurer and editor for pricing and newsletter information.

MOAUG, Metro Orlando Adam Users Group, Contact James Poulin,
1146 Manatee Dr. Rockledge FL 32955, (407)631-0958.

Metro Toronto Adam Group, Box 165, 260 Adelaide St. E., Toronto,
ONT MS5A 1INO, Canada, (416)424-1352.

Omaha ADAM Users Club, Contact Norman R. Castro, 809 W. 33rd
Ave. Bellevue NE 68005, (402)291-4405. Suppose to be oldest
ADAM group.

Vancouver Island Senior ADAMphiles, ADVISA newsletter by David
Cobley, 17885 Berwick Rd. Qualicum Beach, B.C., Canada V9K
IN7, (604)752-1984.

Northern Illiana ADAMS User's Group, 9389 Bay Colony Dr. #3E,
Des Plaines IL 60016, (708)296-0675.

San Diego O0S-9 Users Group, Contact Warren Hrach (619)221-
8246, BBS: (619)224-4878.

ACCESS, PO Box 1354, Sacramento, CA 95812, Contact Bob Drews
(916)423-1573. Meets first Thurdays at SMUD 59Th St. (ed. bldg.).

Forth Interest Group, PO Box 2154, Oakland CA 94621 510-89-
FORTH. International support of the Forth language. Contact for list

of local chapters.

The Pacific Northwest Heath Users Group, contact Jim Moore, PO
Box 9223, Seattle, WA 98109-0223.

The SNO-KING Kaypro User Group, contact Donald Anderson,
13227 2nd Ave South, Burien, WA 98168-2637.

SeaFOG (Seattle FOG User's Group, Formerly Osborme Users Group)
PO Box 12214, Seattle, WA 98102-0214.

OTHER PUBLICATIONS

The Z-Letter, supporting Z-System and CP/M users. David A.J.
McGlone, Lambda Software Publishing, 149 West Hillard Lane,
Eugene, OR 97404-3057, (503)688-3563. Bi-Monthly user oriented
newsletter (20 pages+). Also sells CP/M Boot disks, software.

The Analytical Engine, by the Computer History Association of

The Computer Journal / #72

California, 1001 Eim Ct. El Cerrito, CA 94530-2602. A ASCII text
file distributed by Internet, issuc #1 was July 1993 E-mail:
kerosby@crayola.win.net.

Z-100 LifeLine, Steven W. Vagts, 2409 Riddick Rd. Elizabeth City,
NC 27909, (919)338-8302. Publication for Z-100 (a S-100 machinc).

The Staunch 8/89'er, Kirk L. Thompson editor, PO Box 548, West
Branch TA 52358, (319)643-7136. $15/yr(US) publication for -8/

'89s.

The SEBHC Journal, Leonard Geisler, 895 Starwick Dr., Ann Arbor
MI 48105, (313)662-0750. Magazine of the Socicly of Eight-Bit
Heath computerists, 11-8 and H-89 support.

Sanyo PC Hackers Newsletter, Victor R. Frank editor, 12450 Skyline
Blvd. Woodside, CA 940624541, (415)851-7031. Support for or-
phaned Sanyo computers and sofiware.

the world of 68" micros, by FARNA Systems, PO Box 321, Warner
Robins, GA 31099-0321. E-mail: dsrtfox@delphi.com. New maga-
zine for support of old CoCo’s and other 68xx(x) systems.

Amstrad PCW SIG, newsletter by Al Warsh, 2751 Reche Cyn Rd.
#93, Colton, CA 92324. $9 for 6 bi-monthly newsletters on Amstrad
CP/M machines.

Historically Brewed, A publication of the Historical Computer Soci-
ety. Bimonthly at $18 a year. HCS, 2962 Park Street #1, Jackson-
ville, FL 32205. Editor David Grecelish. Computer History and more.

IQLR (International QL Report), contact Bob Dyl, 15 Kilburn Ct.
Newport, RI 02840. Subscription is $20 per year.

QL Hacker's Journal (QHJ), Timothy Swenson, 5615 Botkins Rd.,
Huber Heights, OH 45424, (513) 233-2178, sent mail & E-mail,
swensotc@ss2.sews.wpalb.af.mil. Free to programmers of QL's.

Update Magazine, PO Box 1095, Peru, IN 46970, Subs $18 per year,
supports Sinclair, Timex, and Cambridge computers.

Other Support Businecsses

Hal Bower writes, sclls, and supports B/PBios for Ampro, SB180,
and YASBEC. $69.95. Hal Bower, 7914 Redglobe Ct., Severn MD
21144-1048, (410)551-5922.

Sydex, PO Box 5700, Eugene OR 97405, (503)683-6033. Sclls
several CP/M programs for use with PC Clones (22Disk' format/
copies CP/M disks using PC files system).

Elliam Associates, PO Box 2664, Atascadero CA 93423, (805)466-
8440. Sclls CP/M user group disks and Amstrad PCW products. See
ad inside back cover.

Discus Distribution Services, Inc. sells CP/M for $150, CBASIC
$600, Fortran-77 $350, Pascal/MT+ $600. 8020 San Migucl Canyon
Rd., Salinas CA 93907, (408)663-6966.

Microcomputer Mail-Order Library of books, manuals, and periodi-
cals in general and H/Zenith in particular. Borrow items for small
fees. Contact Lee Hart, 4209 France Ave. North, Robbinsdale MN
55422, (612)533-3226.

The Computer Journal / #72

Star-K Software Systems Corp. PO Box 209, Mt. Kisco, NY 10549,
(914)241-0287, BBS: (914)241-3307. 6809/68000 operating system
and soflware. Some educational products, call for catalog.

Peripheral Technology, 1250 E. Piedmont Rd., Marictta, GA 30067,
(404)973-2156. 6809/68000 single board system. 68K ISA bus com-
patible system. Sce inside front cover.

Hazelwood Computers, RR#1, Box 36, Hwy 94@Bluffion, Rhineland,
MO 65069, (314)236-4372. Somc SS-50 6809 boards and new
68000 systems.

AAA Chicago Computers, Jerry Koppel, (708)681-3782. SS-50 6809
boards and systems. Very limited quanity, call for information.

MicroSolutions Computer Products, 132 W. Lincoln Hwy, DeKalb,
IL 60115, (815)756-3411. Make disk copying program for CP/M
systems, that runs on CP/M sytems, UNIFROM Format-translation.
Also PC/Z80 CompatiCard and UniDos products.

GIMIX/O8-9, GMX, 3223 Arnold lLane, Northbrook, II. 60062,
(800)559-0909, (708)559-0909, FAX (708)559-0942. Repair and
support of new and old 6800/6809/68K/SS-50 systems.

n/SYSTEMS, Terry Hazen, 21460 Bear Creck Rd, Los Gatos CA
95030-9429, (408)354-7188, sclls and supports the MDISK add-on
RAM disk for the Ampro LB. PCB $29, assembled PCB $129,
includes driver sofiware, manual.

Corvatek, 561 N.W. Van Buren St. Corvallis OR 97330, (503)752-
4833. PC style to scrial keyboard adapter for Xerox, Kaypros, Franklin,
Apples, $129. Other models supported.

Morgan, Thielmann & Associates services NON-PC compatible
computers including CP/M as well as clones. Call Jerry Davis for
more information (408) 972-1965.

Jim S. Thale Jr., 1150 Somerset Ave., Deerfield IL 60015-2944,
(708)948-5731. Sells VO board for YASBEC. Adds HD drives, 2
serial, 2 parallel ports. Partial kit $150, complete kit $210.

Trio Company of Checktowaga, Ltd., PO Box 594, Cheektowaga NY
14225, (716)892-9630. Sclls CP/M (& PC) packages: InfoStar 1.5
($160); SuperSort 1.6 (3130). and WordStar 4.0 ($130).

Parts is Parts, Mike Zinkow, 137 Barkley Ave., Clifton NJ 07011-
3244, (201)340-7333. Supports Zenith Z-100 with parts and service.

DYNACOMP, 178 Phillips Rd. Webster, NY 14580, (800)828-

6772. Supplying versions of CP/M, TRS80, Apple, CoCo, Atari, PC/
XT, software for older 8/16 bit systems. Call for older catalog.

31

Real Computing

By Rick Rodman

Programming languages

I've said before that object-oriented pro-
gramming is merely a notational con-
vention to enforce modularity. Let me
add to this the following principle: Pro-
gramming is the notation of an algo-
rithm for two purposes - first, to commu-
nicate an algorithm to a machine, and
second, to communicate an algorithm to
a human reader. And it is this second
function which is most important.

The sole convention for evaluating a
language processor is its efficiency in
communicating an algorithm to a ma-
chine. The sole convention for evaluat-
ing a language itself is its efficiency in
communicating the algorithm to a hu-
man reader.

We can point to several programming
languages each of which is based on a
single unifying concept. If you can grasp
the underlying concept, learning the lan-
guage is simple; if not, it’s impossible.
I’ll refer to these as “pure” languages.

Well-known are Forth, whose underly-
ing concept is the stack, and Lisp, whose
underlying concept is the list, as used in
something called a “lambda arithmetic”.
Smalltalk, with its opaque syntax, is
based on a message model. APL is based
on an array model. When using a pure
language, you have to formulate your
problems into its underlying model (some
might use the verb “shoechorn”), then
use tools of the language to solve your
problem. In a pure language, language
processing can be very efficient - I once
saw a laptop, made in the mid-1970s,
with an APL interpreter running on an
8008.

32

By contrast, our more “conventional”
languages, such as Pascal and C, offer a
variety of data structures combined with
a variety of functions and features of-
fered with no single organizing model.
They can be viewed as being composed
of a number of “sublanguages” - for
example, the stream /O sublanguage,
the printf/scanf sublanguage, and so on.
Each of the unrelated sublanguages must
be learned to become proficient in the
language itself. The sublanguages are
not independent, but “layered” in semi-
overlapping ways; so, the ways in which
the layers interact must be learned as
well. I refer to these languages as “lay-
ered” languages.

The king of layered languages is, of
course, PL/I. In PL/I the same verbs,
such as SUBSTR, addition, etc., are used
in each of the widely disparate
sublanguages, such as that pertaining to
bit strings. This confusing technique
became known as “operator overload-

(1]

ing”.

Now consider C++, in which a thick
crust of Byzantine notation has been
layered atop C. To become proficient in
C++ is to learn, not only this new layer,
but to peck into each of its many inter-
actions and interdependencies with all
of the foregoing sublanguages beneath.

Since one has to learn a language either
to write it or to read it, the increasingly
complex languages used in programming
today are exacting an ever higher cost in
human energy while doing an ever poorer
job at communicating algorithms. I like
C, and program in it all the time - in
fact, I like a lot of the ANSI extensions
- but C++ is just too complicated. What

we really need is C—: something like
Small-C, but with structures and effi-
cient code generation.

I disagree with Ed Yourdon when he
says that 20% of a programmer’s skills
become obsolete each year. The core
concepts are actually not changing at
all, yet hard-learned lessons of the past
are discarded like flinging away last
year’s fashions. Take a look at the sample
code Microsoft delivers with their com-
pilers. What do you sce? Global vari-
ables laying around everywhere. Vague,
nondescriptive or even “cutesy” variable
and function names. Most damning;
Poor commenting - or none at all. These
people have not learned the lessons of
the last 50 years of programming. And
they're the very same people who tell
you that C++ will make your code bet-
ter! All of this, by way of introducing
you to...

Linda

In SQL, a new technique was developed
for explicitly layering a sublanguage
within a language, by means of a
precompiler. Some computer scientists
at Yale University have invented a lan-
guage called Linda for distributed pro-
gramming. Rather than being a special
new language, like Occam, they’ve de-
scribed a few functions which make up
Linda as a layered sublanguage. This is
smart, because Occam failed precisely
because it was a new language.

Linda is intended to hide all of the imple-
mentation details of parallel program-
ming, allowing the programmer to con-
centrate on his application. It consists
of only six statements which manipulate
a bunch of shared data objects called

The Computer Journal / #72

“tuples”. What is a tuple? It is a data
object with a publicly known structure
and name. All of these tuples are stored
in an amorphous, undefined area called
“tuple space”. (Obviously this space
must be somewhere, but you don’t need
to be concerned about it.)

The six Linda statements are: OUT, to
put a tuple into the space; IN, to wait for
a matching tuple to show up in the space,
and delete it from the space when it’s
found; RD, which is similar but copies
without deleting; INP and RDP, which
don’t wait but only ‘poll’ the space; and
EVAL, which puts a unit of work into
the space for someone to perform.

Linda is a pure language with a simple
model: the ‘single shared tuple space.’
1t layers itself atop whatever other lan-
guage you like to use (C, Pascal, etc.);
you use a preprocessor to process the
Linda statements, followed by a com-
piler for your base language. Linda’s
big pitfall is, in fact, that ‘single shared
tuple space’. Implicit in it (and any-
where you see the word ‘single’) is a
master/slave situation, and the series of
attendant problems that always go with
it (starting with the infamous “server
down”).

More down to earth than Linda, and
hence more visibly complicated, is RPC
API (Remote Procedure Call). Rather
than a large public “tuple space”, RPC is
designed around cross-network transac-
tions between specific entities. While it
appears daunting, it’s actually much
cleaner than programming directly at
the socket level. A master/slave archi-
tecture is just a special case of a more
general peer-to-peer design.

Distributed computing .

Thus having deftly (?) moved from pro-
gramming languages to network pro-
gramming, I’ll now deftly move on to
distributed computing. Now that so-
called “client/server computing” seems
to be the most accepted way to do things,
people have started to notice that it has
a number of drawbacks. In the classic
client/server model, a client processor
handles the user interface, and a server
does the data manipulation. While the

The Computer Journal / #72

primary problem of client/server is the
waywardness of the client, the iceberg
looming below is the good old master/
slave problem again.

Novell Netware is a classic master/slave
design: If the server goes down, all com-
puting ceases. You can use redundant
disk arrays; you can put in fault-tolerant
power supplies; you can use €rror-cor-
recting memory; you can have environ-
mental controls for temperature and
humidity; you can have multiple CPUs
processing the same instructions and
checking each other’s results; you can
do all of these and more - people have!
Yet, inevitably, the server will go down.
The server must go down.

To benefit from this lesson, we need to
design our distributed computing sys-
tems in such a manner that tasks are
redundantly distributed among a com-
mittee of peers; ideally, transparently so,
so that, should any machine go down,
another can pick up its duties with little
disruption. For example, the Internet
can survive any machine going down or
coming up, simply because its design
does not assume that any particular
machine must be up. System design
properly starts with the system as func-
tioning, then secondarily addresses ini-
tialization issues and, thirdly,
deinitialization issues.

“Well, that’s a lot of generalities,” you
say. “Let’s see some specifics.” I'm
afraid specifics will have to wait for next
issue, as I'm running short of space.

Submarine patents

Unisys Corp., present owner of a patent
on Terry Welch’s “W™ contribution to
the commonly-used Lempel-Ziv-Welch
(LZW) compression algorithm, has be-
gun to demand royalties on use of that
patent. Compuserve has been receiving
most of the community approbation,
because their GIF image format is the
most widely known use of LZW, but
they are not the bad guys.

The bad guys are selfish, greedy people
who exploit the dull stupidity of U. S.
Patent Office workers to make end-runs
around the law and get patents on math-

ematical algorithms.

Some people cry: “Foul! How can they
start demanding money for use of a patent
which they have let people freely use for
almost 30 years?”” They can. Unlike
copyright law, patent law is tailor-made
for such abuses, and the so-called “sub-
marine patent” is a typical scam. And
individual inventors virtually never ben-
efit from this lousy system.

The response of the International JPEG
Group is typical of most public-spirited
programmers: Remove GIF and/or LZW
support from their software. Those of
you who have disks full of GIF pictures,
convert them to another format while
you still can. Compuserve is working on
a new format which will probably use
JPEG compression.

So who benefits from this? As in nearly
every case in which the legal system
impinges on humanity, humanity loses.

Next time

We shrug our shoulders and get back to
work on the Littlenet circuit and soft-
ware, and try to make more than one
computer do something useful. Winter’s
the best season for hobby computing.
Hope to get snowed in!

Where to call or write

Real Computing BBS or Fax: +1 703
330 9049, E-mail: rickr@aib.com
Mail: 8329 Ivy Glen Court,

Manassas VA 22110

(" LINUX $57.95)
Slackware Pro 2.1

New Release
Includes 2 CD-ROMs
and a 600+ page Manual
A ready-to-run multitasking UNIX
clone for 386 and higher PC compatibles.

TCPAP, C, C++, X Window, complete
Source Code, and much, much more!

JUST COMPUTERS!
(300)800-1648 (707)769-1648 Int’!
FAX (707)765-2447
P.O.Box 751414 Petaluma, CA 94975-1414
Visa/MC/Int’l Orders Gladly Accepted
For a catalog, send e-mail to: info@justcomp.com
k Include “help” on a single line in message.)

33

Small Tools

By Calvin McCarthy

Development Tools for the F68HC11 Microcontroller

A modern microcontroller contains a microprocessor surrounded
by a collection of interface capabilities within a single package.
When a high level language is added to this foundation the
result can be very easy to use. As an example the Motorola
M68HC11 provides a modified version of the M6809 processor
with digital I/0 ports, A/D converters, a timer, easy to use
interrupts, and synchronous and asynchronous serial ports.
Add a high level language like Forth and you gain a monitor
which provides full access to all chip capabilities with the
power of programmability.

I am a Forth affectionado and a Motorola microprocessor
enthusiast. When I saw the advertisement for the New Micros
Inc. F68HC11 with its embedded Max-Forth I coveted it as a
great solution for some of my embedded controller ideas. On
purchasing a F68HC11 based single board computer I discov-
ered, to my delight, that it was even more professional and easy
to use than I had expected. This has been confirmed as I have
continued to work with it and learn more about its secrets.

You only need an RS232 interface and a 9600 baud terminal
program to start using the New Micros Inc. single board
computer. This will allow you to immediately execute the
embedded Forth words from the keyboard and allow you to
create colon definitions and add them to the dictionary. On
trying this you will immediately recognize the limitations in
this direct method of creating words and will see the advan-
tages of using a PC or equivalent as a development platform.
The PC can provide an editor, disk storage, and code download
capabilities.

Your code development sequence could be something like this.
Write the code in your favorite text editor and save it to disk.
Leave the editor, enter the terminal, then download the code.
While using the terminal, exercise the words downloaded,
discovering their elegance or their bugs. Leave the terminal
and return to the editor to continue coding. This sequence is
inevitable when working with simple tools, although the switch
between terminal and editor can be tedious.

The F68HC11 manual says that the terminal program used to
download Forth code text files must have a wait-for-echoed-
character capability and a wait-at-end-of-line capability. As
each character is sent it is echoed, then at the end of each line,

34

when the CR is sent, the terminal must wait for the returned
Line Feed before it begins to send the next line of code. I did
not have such a terminal when I received the NMI single board
computer so I was stuck. What to do? Forth was available on
my Atari ST so I cobbled together a one block terminal pro-
gram. Another two blocks of code and I could download blocks
of Forth code created in the Atari Forth block editor. I was
winning. Now I had the terminal, could save the code, and
download to the F68HC11.

Time passed and I bought a PC. I put out a request on the
Amateur Radio packet network for an implementation of Forth
for this new machine. Brad Rodriguez replied and generously
sent me a copy of Frank Sergeant’s Pygmy Forth. On trying it
I was overjoyed. The source code was there, it had an easy to
use editor, and there was lots of extra functions available. Now
how should I use it? My first priority was to port my F68HC11
tools over to Pygmy Forth, Thanks to Brad Rodriguez serial
port code found in the BRADTOOL.SCR file in the Pygtools
distribution files the attempt was successful.

The tools I created for F68HC11 software development have
made my code, download, test, code cycles almost painless (Of
course, it will never be absolutely painless). They provide the
following functions:

1. Terminal program

2. Forth block code editor in Pygmy Forth

3. Forth code download from Pygmy blocks

4. Forth code download from ASCII text files

5. Binary code download using the M68HC11 bootstrap mode
6. Download of Motorola format S19 encoded binary files to
RAM or EEPROM

All of these functions are available without leaving the Pygmy
Forth environment. The development cycle goes something
like this. You create the Max-Forth code in the Pygmy editor.
Hitting ESC takes you out of the editor to the Pygmy Forth “ok”
prompt. You execute the word “T9600” to start the terminal
and a CR will bring up the “OK” prompt of Max-Forth. You
can now exercise the F68HCI11. Hitting ESC returns you to
Pygmy Forth where you will again see the “ok” prompt. Enter
the editor again or do anything else available in Pygmy. Down-
load blocks of code by executing the word “>SBC”. You will
be prompted for the block numbers then the download will
begin. The code will be echoed so you can watch (sometimes

The Computer Journal / #72

I do something wrong and the download fails. It would never
happen to you). With the download finished you are left in the
terminal function at the “OK” prompt where you can try out the
code you have just added. There is no awkward closing the
editor to switch to the terminal application.

Using the Tools:

"The tools are found in the executable Pygmy Forth program

T9600.COM and my source code accompanying this article.
My tools use COM1.

T9600

1. Type “T9600” to use the terminal program.

2. Type CR - the Max-Forth “OK” prompt will appear. You
continue as though you are using any other terminal program.
3. Hit ESC to return to the Pygmy “ok” prompt.

>SBC

1. Type “>SBC” to download Forth code you have in open files
in Pygmy.

2. Enter start block number.

3. Enter end block number. The download will proceed.

4. (Optional) Hit ESC to interrupt the download and return to
the Pygmy “ok” prompt.

5. Hit CR to sec the Max-Forth “OK” prompt. You are in the
terminal program. You can exercise the added words.

FILE>SBC

It is possible to download three different types of files to the

F68HC11 from disk with the word FILE>SBC or the word

SBC-INCLUDE: Forth code; Binary code in Motorola S19
format; and pure binary code.

Forth text files:

You may write Forth code using any text editor you have (you
may not like the block editor of Pygmy). eg. you could down-
load a file called “SREC.4TH”.

1. Execute 9600-BAUD 4TH “ SREC.4TH” FILE>SBC
2.Alternately Execute 9600-BAUD 4TH SBC-INCLUDE
SREC4TH

S19 format binary code:

You may create M68HC11 code using assembler or C. The
assembler will save the result to disk in the Motorola S19
format. If you have an S19 code loader in the microcontroller
you download with the following:

1. Execute 9600-BAUD S19 “ FILENAME.S19” FILE>SBC.
2.Alternately Execute 9600-BAUD 4TH SBC-INCLUDE
FILENAME.S19

The Computer Journal / #72

Binary files:

The F68HC11 has a bootstrap mode. You can load a bootstrap
mode S19 code loader program at 1200 baud into the first 256
bytes of RAM. (See the F68HC11 rescue for details of use)

1. Execute 1200-BAUD BIN “ BOOT6811.BIN” FILE>SBC
2. Alternately Execute 9600-BAUD 4TH SBC-
INCLUDEBOOT6811.BIN

USING THE TOOLS
Rescuing the F68HC11:

Sometimes you can get yourself into deep trouble with the
F68HC11. You can put an autostart jump vector into the
$B600-$B603 internal EEPROM memory location which points
to buggy code. Every time you reset the machine it jumps to
the buggy code and it is impossible to regain control. Because
the code is in non-volatile memory even turning off the power
does not help. There goes $30.00.

The machine looks in $B600-$B601 for a $A44A or $AS55A
flag. If the flag is found it uses the address found in $B602-
$B603 as the jump address pointing to the autostart code. To
rescue the machine you must change the $A44A or $A55A to
anything else. The following procedure will save you $30.00
every time you use it.

1. Set the F68HC11 to Bootstrap mode.

2. Reset the F68HC11.

3. Load the binary file BOOT6811.BIN into the F68HC11.
4. Execute the terminal program T9600.

5. Enter repeated CR until the curser moves to the left margin.
6. Enter the character “I” <CR>(this points the bootloader
program to internal EEPROM. “X”<CR> points to external
EEPROM)

7. Enter the following string: “S104B600FF88 S9”. This clears
$B600 to $FF.

8. Set the F68HC11 to the operating mode, either single chip
or external memory.

9. Reset the F68HC11. It will respond with the Max-Forth
sign-on prompt and you are saved.

(This same procedure can be used to download any S19 file.
Load the S19 downloader, then for step 7 use File>SBC to
download the S19 file.)

The BOOT6811.BIN code came from the Motorola Applica-
tion Note AN1010, “MC68HC1 1 EEPROM Programming from
a Personal Computer” and the file has been included with the
code submitted with this article. As well, a Hexadecimal listing
is included for those who can create the file for themselves.

Continued on page 39
Source files on DIBs BBS, GEnie, and in next issue.

35

Playing with Micros

By Bill Kibler

Learning Embedded Controllers

For some time now, I have wanted to provide you with a review
of what you get when buying one of the many embedded
controller learning systems. The manufacturers call these sys-
tem by many names: development systems, evaluation prod-
ucts, and prototype design systems to just name a few.

The first such system I came accross was the RSC-Forth system
by Rockwell International. The system was based on the
Rockwell R65F11 and R65F12 chips. These are 6501s with
Forth in ROM. The date here is 1983 time frame and the
product did fairly well for some time. The current status of the
chips is being researched and more about them in a later issue.

The product was typical of what one obtained at the time. For
your purchase (so long ago I do not remember how much) you
got a development board, ready to run after adding power (five
volts) and a serial port. For documentation you got the RSC-
Forth User’s Manual (Doc #29651N51, Order #2148 of Octo-
ber 1983) and a number of standard product hand outs.

This early product had some rather advanced things going for
it. The development board could talk directly to a disk drive
and thus save your work directly on disk. A companion board
plugged into the main CPU socket so you could use the newer
version of the chip (F12). All of this is covered in the User’s
manual. I do remember using the system and all worked fine
except for a bug in the clock words. You can work around this
bug, but the learner might give up before understanding why
things don’t work correctly.

Since then the world of embedded controllers has progressed
considerably. I consider Motorola the learder in the area of
providing new users with excellent learning systems. Recently
Siemens and many others have also considered these inexpen-
sive learning tools as good marketing tools and joined in the
excitment.

I say excitment because you have little idea of what you will get
when you order up one of these systems. I will review 5 such
systems and hopefully make your testing one of these products
more of a wonderful experience, than a poor surprise. Lets start
with price.

Motorola and now others have typically set price in relation-

36

ship to the device. That means a 68000 device might be $68 for
a system. Motorola also typically uses a contest introduction of
a new product to sell their newest chip design. The gimic here
is a slightly higher price with an offfer of a rebate when you
enter a completed design project using their system. There will
also be some wining prize if your desgin is choosen best
overall. Basically they sell the systems at or below their cost.
What they gain is experienced user, good exposure, and prod-
uct market leverage. The user gets a system for less than
normal cost, usually a training manual that teaches you how to
develope a product, some free software, and many nights of
fun,

In studying the ones I have, I found also a new slant, support
software. In the past you got only the minimum needed to
develop a running project, typically an assembler and loader.
Now days selling C compliers, Fuzzy logic, and Macro assem-
blers for embedded systems is big business. So now these
systems come with running sample versions of real products,
including full Real Time Excutives so you can have more than
one task running in your demo system. Beware however that
some of these products have been crippled and will only run
limited amounts of I/O, or use a reduced set of libraies. Still you
should be able to learn how they work and whehter or not to
buy.

I have listed the facts in separate side bars to let you consider
each option. I plan on doing a bit more on each product at a
later date, and solict your comments and experiences with
them. This is by no means a complete sampling, but a current
assesment of what can be acquired if you act qucikly on seeing
one of these promos. The fine print on the 80166 said their
$166 price was only good during the four day run of the
conference the handouts were given away at.

That brings up the next topic is how does one hear about these
specials. Most major magazines that are supported heavily by
these companies will run the sales promos. Going to confer-
ences and visiting only the vendors section (usually Free or $25
charge for the day) will find plenty of good promos. If you deal
with one of the larger distributors or sales reps, they can often
inform you .of these specials and see that you get yours. You
must act quickly as Motorola contest boards are normally
limited to low thousands (thats one to ten thousand units
produced) and often these get sold within the first few days of
their release. I remember one offer that went over so well,

The Computer Journal / #72

Motorola did a second run of the systems.

The next question is, can you learn from these systems. I say
yes! Some are better than others at learning. Take Motorolas
68HC16 DSP promo. The contest board was a DSP (Digital
Signal Processor) add on to their regular evaluation board. A
fairly good book explaining how to do DSP programming was
their main tool for teaching. I felt it was a very good introduc-

" tion and start for people learning how DSP worked. These are

not for the novice engineer however, you will need to have
done some programming and know something about electron-
ics. I feel that almost all of the systems require that you have
played around in the area before.

Can you do real work with these systems? In all cases these
units could be used as standalone systems. They were not
designed as such, as they usually contain RS232 interfaces and
tools that might not be needed in a final product. You certainly
can test your program and any hardware interfacing you might

(Rockwell 65F11/F12)

This 1983 Product was an early design built for devel-
oping total systems for later production. It came with:

1) System Board with R65F11 (IMHZ), WDC2793
(FDC), 6K RAM, 8K ROM with V1.8 of RSC-FORTH,
on a 5.5" by 8.0" board. 34 pin Floppy port, DB25 for
serial, 40 pins of expansion port, centronics printer port,
and reset pushbutton.

2) RSC-FORTH User’s Manual, Doc #29651N51, order
#2148, Oct. 1983. An excellent manual with plenty of
samples, glossary, and technical explanations.

3) Application Note #2162, “A low-cost development
module for the R65F11 Forth Microcomputer”. This is
a must as it contains the schematic and PC board silk
screens so you could make your own boards. Also has
the program for the one PROM used for address decod-
ing.

4) Product Description #2145, “R6501Q One-Chip mi-
croprocessor”, this is the CPU description used as the
basis for the FORTH CPU. It contains the hardware and
instruction set information.

5) Other documents sometimes shipped with this prod-
uct. 29650N30, order #202 “R6500 programming
Manual”; 29650N31 order #201 “R6500 Hardware
Manual”; 29651N49 order #2146 “RF65F11 and R65F12
Forth based Microcomputer Product description”;
29651NS59 order #2156 “RSC-FORTH Reference Card”.

Rockwell product availablity currently under research.

_ J

The Computer Journal / #72

need before going on to the final design. For one up jobs they
often can be more expensive than other methods until you
consider all the free sofiware and built in tools you get.

Lastly is there a better way to learn and develop new products,
for these chips I think not. That is my bottom line, cheapest and
fastest way to develope both skills and products in the embed-
ded world. Now if the question is can I learn about general
purpose computer hardware with these units, rather unlikely.
They tend to be narrowly designed and thus have an embedded
only slant. For general purpose and beginners, old Kaypros or
S-100s are still my choice. If you are after embedded knowl-
edge then give them a try the next time they are on sale!

4)
Motorola 68HCO0S

The 68HC705 is an EPROM based version of the 6805
CPU. The chip contains a bootstrap loader and the sup-
plied board is used mostly for programming the CPU.
Sales promo in 1989, cost $68.

1) The M68HCO5PGMR is the 4.25" by 6.5" program-
ming and evaluation board. Contains mostly sockets for
the CPU (two types supported) and the EPROM socket
that can contain a program for copying to the CPU.
RS232 drivers, switches and LEDS, plus one output header
for evaluation of I/O capabilities.

2) “M68HCO5 Microcontroller Applications Guide™, 1989.
This manual covers how the chip works and is pro-
grammed. They use a thermostat example as the training
project. Somewhat beginner oriented, but covers funda-
mentals quickly and really intended for engineers and
programmers without embedded experience. Enough in-
formation and schematic detail is provided to actually
build and use the thermostat project.

3) M6868HCOSPGMR2/D1, “Programmer Board User’s
Manual #2". I believe the #2 refers to the second version
of the programmer board, which is covered in detail
(schematic but no silk screen).

4) “M68HCOS Instruction Set”. Instruction by instruction
explanation.

5) MC68HC705C8 CPU chip was included with docu-
ment BR594/D which is the product summary literature
and technical specifications.

6) One MSDOS 360K floppy with PC interface program
(modem program) and “FREEWARE” programs to as-
semble 6805 code.

Evaluation and Contest boards avaialble from your local
Motorola distributor.

\. J

37

s

Siemens/Rigel 80C166 Promo/Evaluation System

You will find a surprise in this package, as the evaluation
board is made by Rigel of Florida. The price is a little steep
at $199, but if you catch them at a show, it proably will be
$166. I have yet to use all the software, so I am not sure how
“crippled” it is. Most programs are “DEMO”, but full func-
tional versions. Comes in two book boxes, one with Rigel
CPU, other literature and disks. The Rigel price for the
RMB-166 is normally $180 plus shipping, so all the DEMO
software is free so to speak.

1) Rigel Corp RMB-166 V1.1, This 4" by 6" board has the
CPU, 2 32K RAM chip (HI & LO), spots for two EPROMs,
2 PALS, and RS232 driver device. Host and AUX serial
ports, system bus strip, I/O port strip, and jumpers and
switches for the various modes and operations possible.
Unlike Motorola PCB, this CPU chip is surface mounted
and not in a socket.

2) READS166 Demo V1.00, Rigels Embedded Applications
Development System.

3) RMB-166 User’s Guide, v1.1 January 1994.

4) Sales Literature by Siemens 80C166/83C166/88C166.
5) Product Guide for 166/167/165

\.

6) Siemens ‘166 Family Applications Notes.

7) Errata Sheet 6/16/93 release 1.2.

8) Product Information SAB 80C166/83C166.

9) Fuzzy Tech from Inform Software Corp. V3.1 MCU-166
Explorer Edition (fuzzy logic software package).

10) HCR166 80C166 Asmbler/Downloader V1.0 (Hill Coun-
try Research).

11) CMX Real-Time Multitasking OS Evaluation Package
Version BSO66E1-3.40.

12) Rigel Corp. RMB-166 schematic.

13) RTXC Eval Kit BSO/Tasking C V4.0 (DEMO).

14) Siemens User’s Manual SAB 80C166/83C166.

15) Addendum to User’s Manual.

16) Data Sheet 3.90 80C166.

17) TK1963 166 Eval Package C Compiler, Assembler,
Monitor for PCDOS, V4.0 1-28-94, BSO/Tasking.

Siemens evaluation kit available from your local Siemens
distributor. Rigel board available directly from Rigel Corpo-
ration, PO Box 90040, Gainesville, F1 32607, (904) 373-
4629. I will review the software supplied and AMR’s Forth
for this board in a later issue.

J/

38

(- Motorola 68HC16 DSP Contest Board

You get two rather large flat boxes of items. One contains the
regular M68HC16 evaluation products, the other has the
DSP adapter board and DSP training books. A mid 1992
push to sell the new 68HC16 product and push it’s DSP
(digitial signal processing) abilties. Has more tools and yet
still cost $68 afier rebate ($136 before rebate) if you sent in
the contest sheets.

1) M68HC16Z1EVB evaluation board, with 68HC16Z1,
RAM, ROM, I/O headers, and a development area. CPU
chip is socketed for replacement.

2) DSP DEMO board which can be used to do 5 band Audio
Spectrum Analyzing when hooked to the EVB board.

3) M68HC16Z1EVB/D User’s manual rev 1. Explains not
only how to use the board, but some of the software included
as well.

4) “Digital Signal Processing and the Microcontroller” by
Motorola. Good intro and explanation of using embedded
type controllers for DSP work.

5) HC16 Frequency Analyzer Project Manual.

6) Analog-to-Digital converter 8/10 ADC spec sheet.

7) M68HC16 Toolkit Project Software.

8) MAX274 8th order Active filter specifications.

9) MC14489 LED Driver spec sheet.

10) M68HC16 CPU16 Reference manual.

11) Queded Serial Module Reference manual(QSMRM/AD).
12) MC68331 User’s Manual(covers the SIM and SRAM

\Modules).

~N

13) General Purpose Timer Reference Manual(GPTRM/
AD).

14) Evaluation Product Flyer and HC16 Contest Rebate
instructions.

15) Toolware M68HC16 Macro Assembler Ver 4.1
MASM16 and Manual.

16) M68HC16 C Complier & Source Level Debugger by
Intermetrics Microsystems Software Inc. Demo Kit by
Whitesmiths.

17) M68HC16Z1 Tech Summary of 16 bit Microcontroller.
18) How to use the FREEWARE BBS by John Dumas,
Motorola, Apr. 1991.

19) M68HC16Z1 Device Information Rev B.

20) Memory Map specificiations sheet.

21) M68HCI6EVB/AN1 Application Note: Software ven-
dors list.

22) M68HC16Z1EVB/PKG parts list and schematic dia-
grams.

23) A. T. Barrett MCX-16 Real Time Kernel for 68HC16.
24) U.S. Software GO FAST Floating Point Software Pack-
age.

25) Quickstart Demo Disk and Guide.

26) EVBI16 Disk by P&E Micro Computing Systems Inc.
27) Filter Design & Analysis System for HC16 Ver 1.0 and
Disk.

Evaluation and Contest boards avaialble from your local
Motorola distributor.

J

The Computer Journal / #72

(" AMR 8051 Development System)

AMR is one of 7CJ’s advertisers and produces many
small systems. I borrowed their AMR51LC to demo for
my current employer. The basic board prices start at $99
for one complete board, or $199 for a low-cost develop-
ment package. Full developer’s package is around $400.
You get more hardware options and accessories as you
go up in price. The full package has a keypad, small LCD
display, cables, power transformer, more memory, and
the full Forth deviopment package with plenty of samples
and utilities already done for you. I liked AMR’s con-
struction better than Riegel’s which I thought was a little
sloppy. The demo package I have is the “Low Cost
System” and would normaly cost $199.

1) AMRSILC mother board with 8K RAM & ROM,
serial port devices, lithium battery, socketed
SC87C51CCL44 CPU. This 4" by 6" board has a 2.5"
square prototyping area (bed of holes) and two header
strip sockets for stacking or /O output. All devices are
in sockets.

2) AMRForth and Hardware User’s Manual. This 300+
pages of manual contains all you need to know to use the
Forth development system and work with the hardware
platform. While others give you the manuals separately,
all devices used in all varations of AMR’s boards (com-
plete with schematics) are presented in this one book.
Although not a beginners guide, it does provide enough
samples to get a novice user up and running applications
quickly.

3) AMRS8051 FORTH software disk. This contains the
source screens and utilties used to run the “tethered”
Forth. A small kernel of Forth is inside the system that
talks to a running Forth on your PC Clone. You can
download and run your application quickly and get re-
sults of operations on the PC while the code is running
on the target system.

4) F-PC V3.56, the PC Forth program, on which
AMRForth runs and cross complies for downloading to
the platform. This is a full system with wordprocessing,
file management, debugger, windows like presentation,
and multitasking operation. Currently the most popular
sharewhare Forth system in use today.

5) 1 Amp wall transformer to power the system.

6) Adapter and cable for 9 pin AT serial port to 6
conductor RJ flat (phone type) ribbon cable, that plugs
into the board’s serial port.

Auvailable from : AMR 4600 Hidden Oaks Lane, Loomis,
CA 95650-9479, (916) 652-7472. I will cover this prod-

_ uct and tethered Forth operation in a later issue.)

The Computer Journal / #72

Tools from page 35.
Building the T9600.COM program:

Block 11 of T9600.SCR is the load block for the tools. It
depends on block 1 of BRADTOOL.SCR to load some prelimi-
nary words needed by the serial port words. First copy Block
12 of T9600.SCR to block 1 of BRADTOOL.SCR. This con-
figures this block properly.

1. Start with PYGMY.COM as the foundation of the tools.
2. Execute RESET-FILES to close all files in Pygmy.

3. Open T9600.SCR by executing “ T9600.SCR” 5 OPEN.
4. Load block 11 of T9600.SCR by executing 5011 LOAD
5. (Optional) Execute RESET-FILES to close all files in Pygmy.
6. Save the executable program with SAVE T9600.COM (or
any other name you chose to give it)

Tool Extension:

Forth supports software reuse. Many functions are available for
immediate use without any programming at all. The appropri-
ate Forth word is invoked, the word is executed, and the result
is returned. If you want to accomplish something more com-
plex, then you can use the available words in new combinations
to create additional words. This would suggest that you can
create more tools with the Pygmy Forth capabilities. I started
with the terminal, then created >SBC. Later, out of desperation
I created the code to rescue the F68HCI11 from the errant
autostart. From that came the code to download Forth text and
S19 files. So far, I have not needed more tools but you do not
have to stop here. The endless possibilities of Forth are at your
fingertips.

Resources:

Calvin McCarthy
12 Wedgewood Cr.
Gloucester, Ontario, Canada K1B 4B4

Pygmy Forth v. 1.4
Frank C. Sergeant

809 W. San Antonio St.
San Marcos, TX 78666

PYGTOOLS v1.2a

Lyle Greg Lisle

2160 Foxhunter Ct.

Winston-Salem, NC 27106

GEnie Mail: L.SQUARED

Internet: L.SQUARED@GENIE.GEIS.COM

New Micros Inc.
1601 Chalk Hill Road,
Dallas, Texas 75212, US.A.

Motorola Literature Distribution
P.O. Box 20912, ‘
Phoenix, Arizona 85036, U.S.A.

39

8048 Emulator
By J. G. Owens

THE STORY OF AN 8048 ETC.
EMULATOR Part two.

LIMITATIONS OF THE EMULATION

If this is your first real-world lesson in
emulation, be advised that *all* emula-
tors have limitations; they *never* be-
have exactly the same as the real thing.
They will *say* they do, but they’re
lying.

This 8048 emulator can probably only
emulate 8748 and 8749 designs with 6
mHz clocks. I btelieve a late-breaking
1984 development in the 8048 world
introduced 12 mHz clocks, but they were
and probably still are more expensive, so
I wasn’t interested.

Also, P20, P21, P22, and P23 must be
specified in hardware as to their inputs
“and outputs. A real 8048, in single-chip
mode, allows you to use these pins as
input or output, and change their orien-
tation during program execution. In this
emulator, you use H3 and a 16-pin header
wired-up as you desire, to select the in-
put/outputness of the things, and you’re
stuck with ‘em; a third signal path is
used when you want to emulate them
attached to an external 8243 (I'm not
convined that’d actually work...). See
the schematic nearby H3 for example
headers. (The technical problem is the
8048’s dual usage of P20-P23 as I/O
pins and as external addresses; since the
target is “faked” into executing from
external memory, the emulator design
emulates the lost I/O pins by some cun-
ning scheme, but it wasn’t *that* cun-
ning.)

Also, the OUTL instruction *can’t* be

used in an *emulating* program, but
should be used in a running program.

40

This is handled in your source with a
macro like this:

emulate equ false;adjust things for emu-
lator; probably only movx instead of
outl.

bus_a macro
if emulate
movx (r0),a
endif
if lemulate
outl bus,a
endif
endm

Note the encouraging certainty in the
comment! I can be reasonably certain
also that the emulated OUTL timing is
different than the real thing.

UL:THE MAIN 8039 MONITOR

Ul executes the monitor program from
an EPROM in U4 using the external bus
mode of the 8039 (the 8039 is an 8048
family member with no internal ROM).
Two 8243 extender chips are used to get
some more I/O; these are parts sold by
Intel specifically for this purpose, and
the 8048 has special signal timings just
for them.

The 8048 uses the familiar ALE strobe
(i.e. 8085, 8088, and onwards ad
infinitum) to convert a short moment of
the data bus into external address lines
A0..A7 (U7).

U22:THE TARGET 8039

U22 looks a lot like Ul, which is of
course the charm of the whole thing; it
really would’ve made more sense for the
Ul MONITOR to have been a more
powerful processor, but in those glorious

days I had a real “bootstrap” attitude.

HOW DOES THE MONITOR CON-
TROL THE TARGET?

The TARGET U22 normally reads pro-
gram code from two RAMS, U19 and
U21. But note the circuitry around U15,
U16, known as OPREG2 and OPREG3.
The general idea is that when the MONI-
TOR wants to, it can force the TARGET
to read a single instruction from one or
both (two-byte instruction) of these reg-
isters *instead* of RAM. So the general
scheme is that the MONITOR labori-
ously deludes the TARGET into execut-
ing various little sequences in single-
step mode, to produce whatever results
the monitor wants.

HOW DO BREAKPOINTS WORK?

One important feature of an emulator is
the ability to run code at full speed but
stop at a breakpoint. Actually, this is the
most important feature.

The breakpoint circuitry’s around U9,
and works fairly predictably: the MONI-
TOR sets-up a desired break address on
brkA8-brkAll and mP10..17 and en-
ables the three comparators, which’ll
bang the TARGET into single-step mode
when they compare correctly. Naturally
there are various timing issues which
have been handled flawlessly I'm sure as
the accompanying diagram surely dem-
onstrates.

DO BREAKPOINTS ALWAYS WORK
CORRECTLY?

No. I was *so* disappointed when I found
out that code like

ASBR: .. do something..

The Computer Journal / #72

RET
ANOTHER:
.. do something else ..

would erroneously breakpoint at the RET
when I had specified a breakpoint at
ANOTHER. That is, the 8048 appar-
ently emits the next instruction address
during a RET, thus triggering the
breakpoint. But it was a problem I could
live with.

Then years later I had a *real* emulator
costing many dollars, *and it did the
same thing*; with a different proces-

HOW DOES THE MONITOR TELL
WHAT ADDRESS THE TARGET
STOPPED AT?

The emulator can free run, and then be
stopped at any time (the single-step mode
is asserted without the help of the com-
parators). When this happens, the MONI-
TOR software figures-out where the
TARGET stopped by turning-on the
comparators and trying every single pos-
sible address, one after another. Moral:
Software is often simple *and* stupid.

HOW DOES THE EMULATOR
SOCKET WORK?

Moving on to the page of material near
the EMULATOR socket U30 in the sche-
matic document DB8039. A, basically all
I can write is that various aspects of
known 8048 timing are used to fake-up
the single-chip interface, and it has defi-
nitely worked more than once. And the
aspects I thought were important when 1
was fighting with it are documented in
the DB8039.A text.

HEADER H3

As noted elsewhere, the OUTL instruc-
tion must be emulated in to-be-emulated
source as “MOVX (R0),A”; the little
forest of parts around U24 and U27 pro-
vide the hardware side to this kluge by
various arcane means. The restrictions
noted regarding P20..23 /O are imple-
mented via U26, H3, and U25.

The idea of an “8243” header, a sample
of which is shown in nearby H3, is when

The Computer Journal / #72

you'd emulate the Intel 8243 port-ex-
pansion gadget; you’d hook one up, and
use that header for H3; the note says
“don’t mix with input/output” which
simply means if you try and conduct
input/output on that port it won’t work,
which’d normally be the case anyway
(you can’t use an 8243 on an I/O port; it
was intended to be used with an ex-
tended bus where P20..23 were used as
address bits).

HEADER H4 AND WHERE ARE
THOSE PARTS?

On my emulator, the H4 header is not
installed. The part is in a little plastic
box, constructed as described, but it isn’t
installed. The 100k SIP on H4 pins 9 to
14 would be used to simulate the input
pull-ups on a real P2X pins. But the H4
C8 and R2 potentiometer! I must've been
planning to delay a strobe somehow, but
it looks like I gave-up on the project, but
forgot to note it. Bad bad....

I just checked the circuit, and it is as |
surmised; the 100K pull-ups are wired,
and should probably be used as appro-
priate, i.e. when/if P20-23 are used as
inputs (to simulate the “quasi-
bidrectional” nature of those ports; see
discussion somewhere above), but the
C8 and R2 part are unused; no wiring is
connected to those positions on H4. So 1
forgot them; perhaps someday I'll a note
in some Kaypro diskette as to what I
thought I was doing with them. I can
almost remember now — but not
quite....

POWER; RS-232

I have what looks like one of those won-
derful digital surplus Commodore sup-
plies in there, with the 12 volts or some-
thing attached to RG1.

RS-232 voltages are supplied in a vague
way, the schematic shows what I call
“+7V” and “-?V” supplied, using the
input to the 5 volt regulator for +?7V —
usually around 8 volts or so— and a -5
volt supply for -7V.

Since then I've learned you can usually
communicate with a PC’s serial port
without these voltages, using simpler

means, i.e. you can use diode limiting or
a 1489 RS-232 translator for input, asin
the emulator schematic (the 1489 trans-
lates -/+ 12 volts to TTL levels using
only ground and 5 volts) and then use a
high-current TTL inverter as output to
the PC’s RS-232 input; this may work
OK, or at least it has several times for
me; the average PC card apparently sees
ground as low and 5 volts as high....
Your mileage may vary....

THE MONITOR SOURCE

FILES: XCOM.LB Common
constants for monitor source.

X1.MAC Source.

X2.MAC Source.

X.MAK Mazke file (Borland MAKE 3.57).
X.HEX Hex image.

X.BIN Binary image.

X.MAK works with Borland Make 3.5
but probably with earlier versions of the
Borland make programs, or perhaps other
make programs. If you don’t have a make
program, X.MAK is so simple it should
be easy-enough to figure out. I mean,
we're talking about the least of your
problems.

Next time we will continue with dis-
cussion of the monitor source code.
The next pages are the schematics and
parts list for the emulation hardware
used. BDK.

The source and schematic files are on
Genie and DIBs BBS.

41

2ozt =3 Laneeece =3f .Sz=
ge3E E¥E SSELRESE EEESLESS
l R 'H
! ‘-"8%."2352‘-‘-’
[l
i o5
-t - Z¥- = 5%
§ : =c=c. _E;;n] 2 =22, . E2=2=""
sl o) i ST
=2 J """"" i.l i..
Iy £ l§§1=551 :
. =TI S i
l=m 1 E -;;,
z .. ====(== '-:7 iz~2 'g
£ : =TT 38 E 2 2 x3zz
i N i
| s =2 = .- - e -
Ll g2 1133
§ s | 23| 232 ;¢
- LTI :
: SEEETTTTr L. E¥s| s 4 =
E TTzTT'l"l'l‘ ‘:‘E:TT 'fl = = -1 §E
g. I l in = X SIS EE
2 225533 T J T ililllll ! s
i B g 2~ -]) 111711171
2 5 : CRER- g SRR .
2 3 - I £ - s
§7 1= : . TTT T 11 1] ‘HH
T 17 S£E zzozres: SEEE o: gEs=_
[F=1 1 14110 1111 ST 1 1]
2 i 2: &
Ix :
T M T I
. § = — : ==
: ; s |
IS — L
£ 33 s g ITTTET \TTT
1801 1) B e — L_hl
5 gz ! sifEzEEr _ f s33ddfEd 5 Ez:

4 The Computer Journal / #72

321} 60 1570 SIDCLE STEP — BREAR — AT SPECITIED ARBRESS ((((

) FORCE LUSTRUCTIONS IMTO TARGET (¢(

TBI9 RAS GOT TO BR DONE OBLY 1P SLSSLE STEP.
- 1B our: 123 DE3/TARCIN —
oPIE w—han | o B WKCI H
BN) A —— 1\
"o it L1 LH U V1 T [t te—e\tl '\ DML (11}
1o —th ../ e &) i w
— —_— tr—1a/1y ni l A
i — 0 —n ::::_—nm nn (LY 131 86 /1N
3 '] —tn —in My
P || N M —n Com—byn nick wiwr—lym e et
[T \ 3 —tn
i —ly o ‘ s—Jecsii wn rm
. T " e
[EI —[—snmaremsin [
[UIR)]
o 3} " e LRSI (86,11}
(915,21} 0 flje—— - [—drAmarcny
118 1] v e R3S} (Ui,4) e
FLES LU TETN A I 111111 I A I R— '
TARC e e b Y n: oot —brkmaTCan)
m — i i e tor—asr wr| e (1,3 "
’ blo—s|s___/ RicH—4:8/) Asd/é nen—u2 s
- Lor—{nap s e W——"{Tee/14
o—tinn
PR TPFRIT) W —ayts N/ —ti? 110 I
W—{Ay1) Ny —etie L e — L) vH e
0PREGY Ws—111/11 Mt (stort)
t—{i 0/ —ari it
woos— S—{ree/it cI/I1 .
11— VIV 2ARCHS
w1 uu-———I
13—
T
\ oo
E R | S
1 o
[I, 1403 /1N o —fan JUTHERY
neA—{h:b3 ke
CLBforce0PRESI—)/11 ;i pe—- Lo¥—i0a (MR
L) 08 /1 o m————0{0
61—t ___tefo—s — W-—ns 01—t
110 U1bf - th—qaln Bip—rn
R w—{um - wia—en
m to—{a/10 0/ —arnd
Bone W—{reesté 612/81-61
VIHARCES
AStorcest T
(¥11,29) o
[0 ore wser
RIGA——{0/12 e
1L
tAL—{/11 [" et
rmn g
[T T T A 31 TR T T
° U /0BT [beld ia
{ single !
[LITAM] 1 e T ——
AtorceRl® l s e o
’ 1
Storcen2® [
L8]] MR e v
/
D)) PORCE TINING <C(C (1) 00 STOP CAF BZ AIGN ALL TA YAY THROUGH START. TRE TANGET WILL BIECUTE
. O3 TASTAOCTION AND THED STOP AGAIE. |F STOP 1SE'T NIGH, TNEN TRR TARGE?
(—1ad op byte —) \ \ \ YILL CONTIROE.
____________________________ / ! !
tRSER® v ___d \ \ v _.d \
- S [A— I
(111 B \ \ N R W / \
! / / .
\ \ \ Jus ealatio:
[T T | / f
Aeld in \ \ \ back in single w 0101 9191 8101 0101
single i i 1 steps wonitor 1] 011 0011 0811 011
______________ step ——) \ \ \ con vplate EReNRLATCE 9000 1111 4000 1541
1 \ / f o / [| hateb(es), do EleALEYL 0000 0000 1011 L111
\ \ \ disee, _—
/ / | force OF' U2V 0101 0000 050% D00
brado | \ N / \ anolher L O TR T T IRT]
/ / { clock. oot
ASforces® | \ \ \
[!] Al
ASlorceli® | (W] \ \
! ! ! w
0UTIVT SIABLES: \ \ \
/. b ! SrertLATCE
L] | VA | S / \
I / N SreALE)
O | \ \ - \
! / 1 '
s1on { \ \ \
/ ! i o
o0PREGE | \ \ vt \
_________________________ [} i !
troeey vt L \ \ \

The diagran shovs tvo-op-code instractions.
For 4 one op-code baslraction, load OPRECY, and
briag ASforce®2* dowa wsd thea wp. The little
shiit-regicler oill alwsyn evestesliy allor
sorsal program reads. The poinl of this ar-
congeaent Qs oo thet the largel processor can
do page reads -- reads of Ity own progras
space. ASforced® fu just o sechoaise for in
itielization and 2ight not be aecessary.

The Computer Journal / #72

Moving Forth

by Brad Rodriguez

MOVING FORTH
Part 7.5: CamelForth for the 8051
by Brad Rodriguez

Under the prodding of Our Esteemed
Editor, I present CamelForth for the
8051, second part. The first part ap-
peared in the last issue #71.

; LOOP AND BRANCH OPERATIONS

Nmehmd?bnnehnndomwnhqmpmdu
ol the followi

,MluvonvduolnA Typualuu

H icall zerosense, jz destadr

' Icall loopsense, jz destadr, icail unioop
+ LEAVE may exit loop by branching A—here

.drw link
st link,*+1
.db 0,7,"?BRANCH"
qbranch:
Zefosense ; n—leave Zero in A if TOS=0
movx 8,@r0 . new TOS in a:r2
mov r2,e
inc 10
movx 8,10
inc 0
xch a,dph ; DPH=new TOS hi, A=old DPH
orl a,dpl . A=0 if old TOS was zero
mov dpl,r2 ; new TOS lo in DPL
ret

; LOOP and +LOOP are done with jz, using the
; following routines which leave a value in A,
; i the loop terminates, (index crosses 8000h),
; & nonzero value is left in A. A=0 to loop.
'Typialm
icall loopsense, jz destadr, icail uniocop
LEAVE may exit loop by branching A-here
. The topmost loop index is in regs 17.18.

.drw link
.set link,*+1
.db 0,6,"(LOOP)"

xloop:

loopsense: ;— leave Oin A if ‘loop’
mova,S ; add 1 to loop index
add a¥#1 ; ..leaves OV fiag setif
movG,a ; loop terminates
mov 8,7
addc a,#0
movi7,a
b pew.2,termloop ; jump if OV set

takeloop: cira ; OV ciear, make A zero
ret : to take loop branch
.drw link
.set link,*+1
.db 0,7,"(+LOOP)"

xplusioop:

plusioopsense: . n—— loave O in A if ‘+loop’
mova,8 ; add TOS to loop index
sdd a,dpl ; ..leaves OV flag setif
movréa ; loop terminates
mov a,17
addc a,dph
movi7.a

44

termicop:

:Z (do)

movx 8,810 ; pop new TOS, OV unaffected
mov dpl,a

inc 10

movx 3,@r0

mov dph,a

inc 10

jnb psw.2,takeloop ; jump i OV clear

cira ; OV set, make A nonzero

cpla ; 1o force loop termination

ret

ntjul n2ju2 — R: - sys1 sys2
run-time code for DO

Z

; '83 and ANSI standard loops terminate when the
, boundary of limit-1 and limit is crossed, in

, either direction. This can be conveniently

; implemented by making the limit 8000h, so that
; arithmetic overflow logic can detect crossing.

; | learned this trick from Laxen & Perry F83.

; fudge factor = 8000h-limit, to be added o

; the start value.

.drw link

.set link,*+1
.db 0,4,"(DO)"
; limit index —
pop dr3

pop dr2

push dr§ ; push previous index
push dr7

movx a,@r0 ; get {-limit) + 8000h
inc 10 ;= (~limit) + 8001h
cpla ;in iS4

add a,#01
mov r4,a
movx a,@r0
inc 10

cpla

addc a,#h'80
mov 15,8
push dr4
push drS
mov a,/4
add a,dpl
mov 6,a
mov a,/5
addc a,dph
movil.a
push dr2
push dr3
ajmp poptos

—n R: sys1 sys2 — sys1 sys2
get the innermost loop index

.drw link

set link,*+1

db 01,7

dec 0 ; push old TOS
mov a,dph

; got return adrs in r3:r2

; push this fudge factor
; fudge+index -> 7.6

, restore retum addr

1 go pop new TOS

; get copy of SP
dec r ; skip retumn address

dec rt ; skip hi byte of fudge
; index-fudge = true index

; leaves true index on TOS

CJ —n R: 4'sys — 4°sys
.c get the second loop index
.drw link
.set link,*+1
.db 0,1,"J°
JJ: dec 10
mov a,dph
movx @r0,a
dec 10
mov a,dpt
movx @r0,a
mov rt,sp ; get copy of SP
decrnl , skip return address
dec 1
dec r1 ; skip inner fudge factor
dec r
mov dr3,@ri
dec r1
mov dr2,@r1
decrt
mov b,@r1
dec 1
cre
mov 8,12
subb a,@r1
mov dpl,a
mov a3
subb a,b
mov dph,a
ret

; push old TOS

, outer index hi
. outer index lo

, outer fudge hi

; index-fudge = true index

; leaves true index on TOS

:C UNLOOP —

.drw link
set link,*+1
.db 0,6,"UNLOOP"

pop dr3 ; get raturn adrs in r3:r2
pop dr2
dec sp
dec sp
pop di7
pop dré
push dr2
push dr3
ret

R: sys1 sys2 — drop loop parms

UNLOOP:
; discard fudge factor
; restore previous loop index

; restore retum addr

; MULTIPLY AND DIVIDE

;CUM* ul u2 —ud
.drw link

.set link,*+1
.db 0,3,"UM*"
movx a,@r0
movria

inc 10 ; Ul Hiin meml

unsigned 16x16->32 mult.

UMSTAR: ;utloinr

mov a,rl Jutltu2l > BA > 32
mov b,dpl

mul ab

movir2a

mov 13,b

mov a,r2 ;ull*u2H > BA
mov b,dph . addinto rd:r3
mul ab

add a,r3

movr3,a

clra

addc a,b

mov d.a

movx 3,10
mov b,dpi
mul ab

add 2,13
mov r3,a

; UiHu2L > BA
; 8dd into r4:r3

The Computer Journal / #72

movasé

addc a,b

mov 14,a

cra ; wipossible cy->r5
addc a,M0

mov 15,2

s UTH'U2H -> B:A
; add into r5:rd4

movx 2,@r0
mov b,dph
mul ab

add a,r4
mov rd,a
mov a,15
addc a,b
mov dph,a
mov dpl,r4
mov a,rid
movx @r0,a
dec 0

mov a,r2
movx @r0,a
ret

; result in dph:rd:r3:r2

;:CUMMOD ud ut —u2u3
.drw link
.set link,*+1
.db 0,8,"UM/MOD"

UMSLASHMOD: , DPH:DPL = divisor
movx 8,@r0 5 12:03:r4:05 = dividend
mov3,a , note stack order:
inc 10 ;A 000
movx a,@r0 7] 00
mov r2,s ; high hi byte \ low
inc 10 ; adrs lo byte / cell

movx &,Qr0 ; hibyte\high

mov S,a ; RO—> lo byte / cell
inc 10 ; on——

unsigned 32/16->16

movx a,Qr0 . entry
mov r4,a .
mov rt M7 ; loop counter
circ
sjmp div2

divt: ; division loop
mov a,r3
Aca
mov 3a
mov a,r2
dca
mov r2,a
jnc div3
; here cy=1, cy:r2:13 is a 17 bit value,
;. we know we can subtract divisor
cec
movar
subb a,dpl
mov r3,a
mov a,r2
subb a,dph
mov r2,a
crc
sjmp divd

div3: ; here cy=0, r2:r3 is a 16 bit value
cre
mov a,3
subb a,dpl
mov r3,a
mov a,r2
subb a,dph
mov r2,a
jnc divd
, borrow occurred — undo the subtract
mov a,r3
add a,dpl
mov 3,a
mov a,r2
addc a,dph
mov r2,a
setb ¢

divé; ; here cy=0 if subtracted, cy=1 if not
cpic

div2: mov a,rs
dca
mov 15,a
mov a,r4
fca
movrd,a
djnz r1,divl
mov dpl,r5
mov dph,r4
mov a,r2
movx @r0,a
dec 10
mov a,r3
movx @10,
ret

. put quotient in TOS

. push remainder on stack

The Computer Journal / #72

. BLOCK AND STRING OPERATIONS

FILL:

c-addr u char — fill Data mem wichar
drw link

.set link,*+1
.db 0,4°FILL"
mow rd,dpl
movx 8,0
mov r2,a

inc 10

movx a,@r0
mov 3,a

inc 10

movx a,@r0
mov dpl,a

inc r0

movx 3,0
mov dph,a
inc 0

mov a,r4 ;getcharin A

inc 13 ; adjust 3,2 for djnz loop
inc r2

sjmp filltest

; stash char temporarily
. get count in r3:r2

; get addr in DPTR

fillloop: movx @dptr,a

inc dptr

filltest: djnz r2,fillloop

Z>D

dinz r3 fillloop
ajmp poptos

c-addrt c-addr2 u — move Code->Data

; pop new TOS

; Block move from Code space to Data space.

TOD:

itod2:

;2 D>l

?DUP IF

OVER + SWAP DO
DUPIC@IC! 1+
LOOP DUP
THEN 2DROP ;
.drw link

.set link,*+1

.db 0,41->D"
acall QDUP
acall zerosense
iz itod2

acall OVER
acall PLUS
acall SWOP
acall XDO

acall DUP

acall ICFETCH
acaltll

acall CSTORE
acall ONEPLUS
acall loopsense
jz itod1

acall UNLOOP
acall DUP

acall DROP
ajmp DROP

c-addrt c-addr2 u — move Data->Code

; Block move from Data space to Code space.
; On the 8051 this is identical to CMOVE.

DTO!:

.drw tink

.set link,*+1
.db 0,4"°D>F
sjmp CMOVE

X CMOVE c-addr c-addr2 u — move from bottom
. as defined in the ANSI optional String word set

. On byte machines, CMOVE and CMOVE> are logical
; factors of MOVE. They are easy to implement on

CMOVE:

, CPUs which have a block-move instruction.

UPIF

OVER + SWAP DO
DUPCQICI 1+
LOOP DUP
THEN 2DROP ;
.drw link

.set link,*+1

.db 0,5,"CMOVE"
acall QDUP
acall zerosense
jz cmove2

acall OVER
acall PLUS
acall SWOP
acali XDO

acall DUP

acall CFETCH
acall it

acall CSTORE
acall ONEPLUS
acall loopsense
i cmove1

acall UNLOOP
acall DUP

acall DROP
ajmp DROP

cmove:

;X CMOVE> c-addr c-addr2 u — move from top
; as defined in the ANSI optional String word set
; ?DUP F
: 1- ROTOVER + \addr2 u-1 addri+u-1
; ROT ROT OVER + \ addri+u-1 addr2 addr2+u-1
; 00
; DUPC@ICI1-
; -1 +LOOP DUP
; THEN 2DROP ;
.drw link
.set link,*+1
.db 0,6,"CMOVE>"
CMOVEUP: acall QDUP
acail zerosense

jz emovu2

acall ONEMINUS
acall ROT

acall OVER

acall PLUS

acall ROT

acall ROT

acall OVER

acall PLUS

acall XDO

acall DUP

acall CFETCH
acaltll

acall CSTORE
acall ONEMINUS
acall UT

.drw -1

acall plusicopsense
jz cmowvut

acall UNLOOP
acall DUP

acall DROP
ajmp DROP

cmovu2:

c-addr u ¢ — c-addr '
; skip matching chars
; Although SKIP, SCAN, and S= are perhaps not the
; ideal factors of WORD and FIND, they closely
; follow the string operations available on many
; CPUs, and so are easy to implement and fast.
.drw link
.set link,*+1
.db 0,4,"SKIP”
SKIP: mov rd,dpl
movx 2,0
mov 12,
inc 10
movx a,Qr0
mov r3,a
inc r0
movx a,@10
mov dpl,a
inc 0
movx a,@r0
mov dph,a
incr3 . adj 13,12 for djnz loop
incr2
simp skiptest
movx a,dptr
xri a,rd
jnz skipmis
inc dptr
kiptest djnz r2,skipioop
djnz 3, skiploop
, count exhausted; r3:r2=0000,
. adrs points past last char
; either mismatch, or count exhausted
mov a,dph ; push updated addr
movx @r0,a

Z SKIP

; stash char temporarily
; got count in r3:12

. got addr in DPTR

skiploop: . get char
; compare with desired
; exit if mismatch

skipmis:

mov dph,r3 ; put in TOS,
mov dpl,r2
inc dptr
ret

. adjust for extra decr

c-addr u ¢ — c-addr’ u'
4 find matching char
.drw link

.set link,*+1

.db 0,4,"SCAN"
mov r4,dpl
movx a,@r0
mov r2,a

inc 10

movx 8,0

SCAN: . stash char temporarily

; got count in r3:r2

45

. got addr in DPTR

scanioop:
scantest djnz r2,scanloop
scanmis:

dec 12 ; adjust 13,12 back
dec 3 ; to & normal count,
mov dph,r3 . putin TOS,

inc dptr ; adjust for extra decr

Z8= o-addr! ¢-addr2 u — n string compare
Z n<0: s1<82, n=0: 81z82, n>0: 51>82
; Omitted in 8051 version.

Z N= c-addrt c-addr2 u — n string:name cmp

Z n<(: 81«82, n=0: 31282, n>0: 81>82

H WUP IF

5 OVER + SWAP DO

N DUPCQIICO -

N F0UP IF NIP UNLOOP EXIT THEN

; 1+ LOOP DUP

H THEN 20ROP 0 ;

. Harvard model: o-.ddn»D.h c-addr2=>Code.
.dew link
.set link,*+1
.db 0,2,"N=*

NEQUAL: push di7
push dré
mov r2,dpl ; count
mov 13, dph
mowvx 2,810
mov rd,a
inc 10
movx 8,@r0
mov r5,a
inc 10
movx &, @0
mov S.a
inc 10
movx a,8r0
mov 17,8
inc 0
inc 3 ; adjust for djnz loop
inc r2
sjmp Nequtest

, got Code addr in r5:r4

; ot Data addr in 17:16

; get Code char

mov dph,r3 ; strings match, r3=0,
mov dpl,r3 ; 80 make TOS=0

-f1fcyset Oifcir
mov dph,a ; (Data<Code) (Data>Code)
od s, 1 ; TOS = FFFF or 0001

; CameiForth for the Intel 8051
; (c) 1984 Bradford J. Rodriguez
; Permission is granted to treely copy, modﬂy
.nd‘ ibute this program for p

ional use. C ial inquirk d\ould
umwnm-mummwas
mmmommowmsc.m

CAMEl.51DAZM CPU and Mode! Dependencies
Source code is for the AS51 assembler.
Forth words are documented as follows:
A NAME stack — stack description
Word names in upper case are from the ANS
Forth Core word set. Names in lower case

Submmmmdod Forth model for Intel 8051
celi size is 108 bits (2 bytes)
char size is 8 bits (1 byte)
address unit is 8 bits (1 byte), i.e.,
addresses are byte-aligned.

“internal” implementation words & extensions.

; ALIGNMENT AND PORTABILITY OPERATORS
BEEZIIITZER

» Many of these are synonyms for other words,

. and so are defined as CODE words.

CALIGN — align HERE
.drw link
.set link,*+1
.db 0,5"ALIGN"

ALIGN: ret ; noop!

JC ALIGNED addr — s-addr
.drw link
.ot link,*+1
.db 0,7,°ALIGNED"
ALIGNED: ret + noopl

align given addr

ZCELL —-n size of one cell
.drw link
.set link,*+1
.db 0,4 °CELL"
CELL: acall DOCON
.drw 2

JCCELL+ s-addri —a-addr2 add ceil size
; 2+,

.drw link

.set link,*+1

.db 0,5 "CELL+"
CELLPLUS: inc dptr

inc dptr

ret

CCELLS nt—n2 celils->adrs units
.drw link
st link,*+1
.db 0,5,"CELLS"

CELLS: ajmp twostar

JCCHAR+ c-addri —c-addr2 add char size
drw link
.setlink,*+1
.db 0,5, °CHAR+"
CHARPLUS: inc dptr
ret

(CCHARS n1—n2 chars->adrs units
.diw link
.sat link,*+1
.db 0,5,"CHARS"”

CHARS: ret

;C>BODY xt — a-addr adrs of param field
. 3+; 280 (3 byte CALL)
.drw link
.sot link,*+1
.db 0,5,>800Y"
TOBOODY: inc dptr
inc dptr
inc dptr
ret

. Note that i@ and |l use lo,hi byte order (same

. as 8086 and Z80), but the 83051 LCALL and LIMP
; addresses are stored hilo. This difference

; is encapsulated within XT ICF and ,CF .

X COMPILE, xt — append execution token
; | called this word ,XT before | discovered that
; itis defined in the ANSI standard as COMPILE,.

. On & DTC Forth this simply appends xt (like ,)
but on an STC Forth this must append 'CALL xt'.
R 0121C, >< |, ; 12h = 8051 Lcall instruction
.drw fink
sat link,*+1
.db 0,8"COMPILE,"
COMMAXT: acall LIT
drw h'12
Icall ICCOMMA
acall SWAPBYTES
{jmp ICOMMA

ZICF adre cfa — set code action of a word
. 012 OVER ICI store ‘'LCALL adrs’ instr
s 1+ SWAP >< SWAP I} . 8051
HINIfd VERSION
; Depending on the implementation this could
; append CALL adrs or JUMP adrs.
.drw link
.set link,*+1
.db 0,3,"ICF"
STORECF: acall LIT
drw h'12
acall OVER
acall ICSTORE
acall ONEPLUS
acall SWOP
acall SWAPBYTES
acall SWOP
ajmp ISTORE

2 ,CF adrs — append a code field
; 0121C, ><, ; 8051 Harvard
VERSION
.drw link
et link,*+1
.db 0,3,",CF
COMMACEF: sjmp COMMAXT

'Z ICOLON — change code field to docolon
-5 IALLOT ; 8051 Harvard VERSION
Thn should be used immediatetly after CREATE.
. This is made a distinct word, because on an STC
; Forth, colon definitions have no code field.
.drw link
.set link,*+1
.db 0,6,"ICOLON"
STORCOLON: acall LIT
.drw S
ljmp IALLOT
; e
; This is approximately the end of the first 2K

; block. CALLs and JMPs crossing this boundary
; must use the Long form.

'Z EXIT - append hi-level EXIT action
c21C,; 8051 VERSION
Thunmndendumnctword because on an STC
; Forth, it appends a RET instruction, not an xt.
.drw link
.set link,*+1
.db 0,5,"EXIT"
CEXIT: fealt LIT
drw h'22
ljimp ICCOMMA

, CONTROL STRUCTURES

, These words allow Forth control structure words
; to be defined portably.

:Z BRANCH xt — d a branch instructi
nnﬁ\ebmnchopemtovtouu ®.g. gbranch
; of (loop). it does NOT append the destination
addmc On the 8051 this compiles
LCALL® 2
unlou xt=0 in which case the LCALL is omitted
lnd an 'sjmp’ instruction is compiled.
R ?DUP IF XT 060 ELSE 080 THENIC, ;
.drw link
.set link,*+1
.db 0,7,° BRANCH®
COMMABRANCH: kcall QDUP
lcall zerosense
jz combrt
Icall COMMAXT
lcall LIT
.drw h'60 ; iz opcode
ajmp ICCOMMA
combrt: icall LIT
.drw h'80 ; sjmp opcode
ajmp ICCOMMA

; LCALL sense-routine

; high level code may use 'branch’ as an argument

The Computer Journal / #72

; to ,BRANCH:
.equ branch,0
Z DEST dest— append a branch uddms
. This appends the given destinati dd
; the branch instruction. On the 8051 umna
; one-byte relative address.
R IHERE 1+ -1C, ;
.drw link
.set link,*+1
.db 0,5,",DEST"
COMMADEST: Icall IHERE
Icalt ONEPLUS
icall MINUS
ajmp ICCOMMA
,Z \DEST dutndu change a branch destn
; Changes the desti dd found at ‘adrs’
lothegmn ‘dest. On the 8051 this is a
, one-byte relative address.
H TUCK 1+ - SWAP [ICI ;
.drw fink
set link,*+1
.db 0,5,"IDEST"
STOREDEST: icall TUCK
lcall ONEPLUS
Icall MINUS
icall SWOP
limp ICSTORE
\Z UNLOOP — append an UNloop instruction

. Used after a LOOP or +LOOP is compiled.
; Required on the 8051 because the loop branch
; must be followed by UNLOOP. No-op on Z80.
H [1 UNLOOP XT;

drw link

.set link,*+1

.db 0,7, UNLOOP"
COMMAUNLOOP: icall LIT

.drw UNLOOP

lijmp COMMAXT

; HEADER STRUCTURE

; The structure of the Forth dictionary headers
; (name, link, i diate flag, and “ dge” bit)
; does not necessarily differ across CPUs. This
stmduro is not easily flctotod into distinct
bie” words; i d, it is implicit in
the definitions of FIND -nd CREATE, and also in
. NFA>LFA, NFA>CFA, IMMED?, IMMEDIATE, HIDE, and
; REVEAL. These words must be (substantially)
; rewritten if either the header structure or its

; inherent assumptions are changed.
ZI1DP — a-addr ROM dictionary pointer
v 20 USER IDP
.drw link
.set link,*+1
.db 0,3,710F"
IDP: call douser
.drw 20
'Z(lS‘) ~— c-addr u run-time code for S°

R> ICOUNT 20UP + ALIGNED >R ;
Hamrdmodel wmng stored in Code space
; 0.g. as used by ."

.drw link

et link,*+1

.db 0,5,"(S" W22,

XISQUOTE: lcall RFROM

acall COUNT

acall TWODUP

icall PLUS

; lcall ALIGNED

lcall TOR ; do NOT ljmp TOR!

ret

Z(S7) — c-addr u run-time code for S*
H RG 1@ geot Data address
B R> CELL+ DUP IC@ CHAR+ — Dadr
Radr+2 n+1
H 2DUP + ALIGNED >R — Dadr ladr n+1
H >R OVER R> I>D — Dadr
; COUNT ;
Hanmd model, for string stored in Code space
. which is copied to Data space.
drw link
.set link,*+1
.db 0,4,°(S"h227"
XSQUOTE: icall RFETCH
icall IFETCH
leail RFROM
lcalt CELLPLUS
lcali DUP
lcall ICFETCH

The Computer Journal / #72

Icall CHARPLUS
acall TWODUP
Icall PLUS

; lcall ALIGNED
icall TOR

icall TOR

Icall OVER

lcail RFROM
Icall ITOD

ajmp COUNT

cis” — compile in-line string
| COMPILE (S") [HEX]
22 WORD
IC@ 1+ ALIGNED IALLOT ; IMMEDIATE
Hamrd model: string is stored in Codo space
.drw link
.set link,*+1
.db IMMED,3,18",h'22
ISQUOTE: Icall LIT
.drw XISQUOTE
Icall COMMAXT
Icall UT
drw h'22
acall WORD
Icall ICFETCH
Icall ONEPLUS
, Icall ALIGNED
ajmp IALLOT

;C s* compile in-line string
: COMPILE (S [HEX]
N HERE|, data address
: 22 IWORD
. IC@ 1+ ALIGNED
. DUP ALLOT IALLOT ; IMMEDIATE
,Hamrdmodol string is stored in Code space
.drw link
.get link,*+1
.db IMMED,2,"S" h'22
SQUOTE: |call LIT
.drw XSQUOTE
Icall COMMAXT
acall HERE
acall ICOMMA
icall UT
drw h'22
acall WORD
Icail ICFETCH
icalt ONEPLUS
; lcall ALIGNED
\call DUP
acall ALLOT
ajmp IALLOT

'C A - compile string to print
POSTPONE IS POSTPONE ITYPE ;
IMMEDIATE
.drw link
.set link,*+1
.db IMMED,2," " h'22
DOTQUOTE: acall ISQUOTE
icall LIT
.drw ITYPE
fjimp COMMAXT

Z ICOUNT c-addrl — c-addr2 u counted->adrfien
\ DUP CHAR+ SWAP IC@ ; from Code
space
.drw link
.set link,*+1
.db 0,6,COUNT"
ICOUNT: Icall DUP
Icall CHARPLUS
Icait SWOP
limp ICFETCH

ZITYPE c-addr +n — type line to term't
N ?DUP IF from Code space
B OVER + SWAP DO | IC@ EMIT LOOP
R ELSE DROP THEN ;

.drw link

.set link,*+1

.db 0,5,"TYPE"
ITYPE: lcall QDUP

Icail zerosense

ZITYP4

icall OVER

icall PLUS

icall SWOP

icali XDO
TYP3: Icall #

Icall ICFETCH

Icall EMIT

icall loopsense

2 ImYpP3

Icall UNLOOP

simp ITYPS
MYP4; Icall DROP
mYPS: ret

;Z IWORD ¢ — c-addr WORD to Code space
WORD

DUP IHERE OVER C@Q CHAR+ D> ;
.drw link

set link,*+1

.db 0,5,"WORD"

Icall WORD

Icall DUP

acall IHERE

lcall OVER

icall CFETCH

icall CHARPLUS

limp DTOI

IWORD:

; The following additional words support the
; “Harvard® model, with separate address spaces
; for instructions (Code) and Data. ANSI
nquanthan.gomDahlp.eo soa
y Pointer, 1DP,
uaddodwmanmmo(:odosp.eo Also added:
H @ icg i iICl (in the primitives)
IHERE IALLOT §, IC,
ITYPE ICOUNT WORD>|
nduouldbopocublotocomonmﬂnmrd
. imp toa bined-code-and-data
; system, by equating these words to their
;Dah-spacocountorpam.

ZHERE — addr

: 0P @ ;
.drw link
.set link,*+1
.db 0,5, IHERE"

IHERE: acall IDP
{jmp FETCH

return Code dictionary ptr

ZIALLOT n— sllocate n bytes in Code dict
1DP +1;

.drw link

.set link,*+1

.db 0,8,1ALLOT"

acall IDP

ljmp PLUSSTORE

IALLOT:

Z, X — append cell to Code dict
IHERE It 1 CELLS IALLOT;
drw link
.set link,*+1
.db 0,21,"
ICOMMA: acall IHERE
Icall ISTORE
Icall lit
drw 2
sjmp IALLOT

ZIC, x— append char to Code dict
H IHERE IC! 1 CHARS IALLOT ;
.drw link
.set link,*+1
.db 0,3,7C,°
ICCOMMA: acall IHERE
icall ICSTORE
icail lit
.drw 1
sjmp IALLOT

47

The Computer Journal

Back Issues

Sales limited to supplies in stock.

Yolume Number 1;

clssues 109

 Serial interfacing and Modem transfers

+ Floppy disk formats, Print spooler.
. » Adding 8087 Math Chip, Fiber optics

+ $-100 HI-RES graphics.

* Controlling DC motors, Muiti-user
column.

* VIC-20 EPROM Programmer, CP/M 3.0.

« CP/M user functions and integration.

Yolume Number 2.

+issues 10 to 19

* Forth tutorial and Write Your Own.

* 68008 CPU for $-100.

+ RPM vs CP/M, BIOS Enhancements.
+ Poor Man's Distributed Processing.
« Controiling Apple Stepper Motors.

+ Facsimiie Pictures on a Micro.

* Memory Mapped /O on a ZX81.

Yolume Number 3;

*issues 20 to 28

« Designing an 8035 SBC

+ Using Apple Graphics from CP/M

« Soldering & Other Strange Tales

* Build an S-100 Floppy Disk Controller:
WD2797 Controller for CP/M 88K

« Extending Turbo Pascal: series

* Unsoldering: The Arcane Art

* Analog Data Acquisition & Control:
Connecting Your Computer to the Real
Wi

« Programming the 8035 SBC

* NEW-DOS: series

« Variability in the BDS C Standard Library

* The SCSl Interface: series

* Using Turbo Pascal ISAM Files

« The Ampro Little Board Column: series

« C Column: series

« The Z Column: series

« The SCSI Interface: introduction to SCS!

« Editing the CP/M Operating System

« INDEXER: Turbo Pascal Program to Create
an Index

+ Selecting & Building a System

* Introduction to Assemble Code for CP/M

* Ampro 188 Column

« ZTime-1: A Real Time Clock for the Ampro
Z-80 Little Board

Yolyme Number 4:

* Issues 26 to 31

* Bus Systems: Selecting a System Bus

* Using the SB180 Real Time Clock

* The SCSI Interface: Software for the SCSIt
Adapter

« Inside Ampro Computers

« NEW-DOS: The CCP Commands
{continued)

* ZSIG Corner

« Affordable C Compilers

* Concurrent Multitasking: A Review of
DoubleDOS

* 68000 TinyGiant Hawthorne's Low Cost
16-bit SBC and Operating System

* The Art of Source Code Generation:
Disassembling Z-80 Software

» Fesdback Control System Analysis: Using
Root Locus Analysis & Feedback Loop
Compensation

« The C Column: A Graphics Primitive
Package

« The Hitachi HD84180: New Life for 8-bit
Systems

« ZSIG Comer. Command Line Generators
and Aliases

* A Tutor Program in Forth: Writing a Forth
Tutor in Forth

«» Disk Parameters: Modifying the CP/M Disk
Parameter Block for Foreign Disk Formats

« Starting Your Own BBS

+» Build an A/D Converter for the Ampro Littie
Board

« HDB4180: Setting the Wait States & RAM
Refresh using PRT & DMA

+ Using SCS! for Rea! Time Control

« Open Letter to STD Bus Manufacturers

« Patching Turbo Pascal

* Choosing a Language for Machine Control

» Better Software Filter Design

48

* MDISK: Adding a 1 Meg RAM Disk to
Ampro Little Board, Part 1
* Using the ﬂitachi hd64180: Embedded

Processor Design

« 68000: Why use a new OS and the 880007
« Detecting the 8087 Math Chip

« Floppy Disk Track Structure

* Double Density Floppy Controller

* ZCPRS3 IOP for the Ampro Little Board

« 3200 Hackers' Language

* MDISK: Adding a 1 Meg RAM Disk to
Ampro Little Board, Part 2

* Non-Preemptive Multitasking

« Software Timers for the 68000

« Lilliput Z-Node

* Using SCSI for Generalized /O

« Communicating with Floppy Disks: Disk
Parameters & their variations

* XBIOS: A Replacement BIOS for the
$B180

* K-OS ONE and the SAGE: Demystifying

Operating Systems

* Remote: Designing a Remote System
Program

« The ZCPR3 Corner: ARUNZ
Documentation

Issue Number 32:
- 15 copies now available -

issue Number 33:

* Data File Conversion: Writing a Filter to
Convert Foreign File Formats

* Advanced CP/M: ZCPR3PLUS & How to
Write Self Relocating Code

« DataBase: The First in a Series on Data
Bases and Information Processing

* SCSI for the S-100 Bus: Another Example
of SCSI's Versatility

* A Mouse on any Hardware: Implementing
the Mouse on a Z80 System

« Systematic Elimination of MS-DOS Files:
Part 2, Subdirectories & Extended DOS
Services

* 2ZCPR3 Corner: ARUNZ Shells & Patching
WordStar 4.0

Issue Number 34:

« Developing a File Encryption System.

» Database: A continuation of the data base
primer series.

« A Simple Multitasking Executive: Designing
an embedded controiler multitasking
executive.

« ZCPR3: Relocatable code, PRL files,
ZCPR34, and Type 4 programs.

* New Microcontrollers Have Smarts: Chips
with BASIC or Forth in ROM are easy to
program.

« Advanced CP/M: Operating system
extensions to BDOS and BIOS, RSXs for CP/
M22

* Macintosh Data File Conversion in Turbo
Pascal.

Issue Number 35:

« All This & Modula-2: A Pascal-like
alternative with scope and parameter passing.
+ A Short Course in Source Code Generation:
Disassembling 8088 software to produce
modifiable assem. source code.

* Real Computing: The NS32032.

+ S-100: EPROM Burner project for S-100
hardware hackers.

» Advanced CP/M: An up-to-date DOS, plus
details on file structure and formats.

* REL-Style Assembly Language for CP/M
and Z-System. Part 1: Seilecting your
assembler, linker and debugger.

Issue Number 36:

* Information Engineering: Introduction.

* Modula-2: A list of reference books.

* Temperature Measurement & Control:
Agricultural computer application.

+ ZCPR3 Corner: Z-Nodes, Z-Plan, Amstrand
computer, and ZFILE.

» Real Computing: NS32032 hardware for
experimenter, CPUs in series, software
options.

* SPRINT: A review.

* REL-Style Assembly Language for CP/M
& ZSystems, part 2,

* Advanced CP/M:
programming.

Issue Number 37:

* C Pointers, Arrays & Structures Made
Easier: Part 1, Pointers.

« ZCPR3 Corner: Z-Nodes, patching for
NZCOM, ZFILER.

* Information Engineering. Basic Concepts:
fields, field definition, client worksheets.

* Shells: Using ZCPR3 named shell
variables to store date variables.

« Resident Programs: A detailed look at
TSRs & how they can lead to chaos.

* Advanced CP/M: Raw and cooked console
YO.

* Reat Computing: The NS 32000.

« ZSDOS: Anatomy of an Operating System:
Part 1.

Environmental

Issue Number 38:

* C Math: Handling Dollars and Cents With
C.

* Advanced CP/M: Batch Processing and a
New ZEX.

* C Pointers, Arrays & Structures Made
Easier: Part 2, Arrays.

* The Z-System Corner: Shelis and ZEX,
new Z-Node Central, system security under
Z-Systems.

* Information Engineering: The portable
Information Age.

« Computer Aided Publishing: Introduction to
publishing and Desk Top Publishing.

* Shelis: 2ZEX and hard disk backups.

* Real Computing: The National
Semiconductor NS320XX.

* ZSDOS: Anatomy of an Operating System,
Part 2.

Issue Number 39:

+ Programming for Performance: Assembly
tanguage techniques.

» Computer Aided Publishing: The Hewlett
Packard LaserJet.

« The 2-System Corner:
enhancements with NZCOM.

« Generating LaserJet Fonts: A review of
Digi-Fonts.

* Advanced CP/M: Making old programs 2-
System aware,

* C Pointers, Arrays & Structures Made
Easier: Part 3: Structures.

+ Shelis: Using ARUNZ alias with ZCAL.

+« Rea! Computing: The National
Semiconductor NS320XX.

tssue Number 40:

* Programming the LaserJet. Using the
escape codes.

« Beginning Forth Column: Introduction.

» Advanced Forth Column: Variant Records
and Modules.

« LINKPRL: Generating the bit maps for PRL
files from a REL file.

* WordTech's dBXL: Writing your own
custom designed business program.

* Advanced CP/M: ZEX 5.0xThe machine
and the Janguage.

* Programming for Performance: Assembly
language techniques.

» Programming input/Output With C:
Keyboard and screen functions.

* The Z-System Corner: Remote access
systems and BDS C.

* Real Computing: The NS320XX

System

issue Number 41:

* Forth Column: ADTs, Object Oriented
Concepts.

* Improving the Ampro LB: Overcoming the
88Mb hard drive limit.

* How to add Data Structures in Forth

« Advanced CP/M: CP/M is hackers haven,

and Z-System Command Scheduler.

» The Z-System Comner. Extended Multiple
Command Line, and aliases.

* Programming disk and printer functions
with C.

* LINKPRL: Making RSXes easy.

* SCOPY: Copying a series of unrelated
files.

Issue Number 42;

« Dynamic Memory Allocation: Allocating
memory at runtime with examples in Forth.

* Using BYE with NZCOM.

+ C and the MS-DOS Screen Character
Attributes.

* Forth Column: Lists and object oriented
Forth.

« The Z-System Comer. Genie, BDS Z and
Z-System Fundamentals.

* 88705 Embedded Controlier Application:
An example of a single-chip microcontrolier
application.

* Advanced CP/M: PluPerfect Writer and
using BDS C with REL files.

« Reai Computing: The NS 32000.

Issue Number 43:

Standardize Your Floppy Disk Drives.

A New History Shell for ZSystem.

Heath's HDOS, Then and Now.

The ZSystem Corner: Software update
service, and customizing NZCOM.

« Graphics Programming With C. Graphics
routines for the IBM PC, and the Turbo C
graphics library.

« Lazy Evaluation: End the evaluation as
soon as the result is known.

* $-100: There's still life in the old bus.

+ Advanced CP/M: Passing parameters, and
complex error recovery.

+ Real Computing: The NS32000.

Issue Number 44:

+ Animation with Turbo C Part 1. The Basic
Tools.

« Multitasking in Forth: New Micros F68FC11
and Max Forth.

* Mysteries of PC Floppy Disks Revealed:
FM, MFM, and the twisted cable.

« DosDisk: MS-DOS disk format emulator for
CPM.

* Advanced CP/M: ZMATE and using lookup
and dispatch for passing parameters.

« Real Computing: The NS32000.

* Forth Column: Handling Strings.

« 2-System Corner. MEX and telecommuni-
cations.

Issue Number 45:

* Embedded Systems for the Tenderfoot:
Getting started with the 8031.

* The Z-System Corner. Using scripts with
MEX.

* The Z-System and Turbo Pascal: Patching
TURBO.COM to access the Z-System.

* Embedded Applications: Designing a 280
RS-232 communications gateway, part 1.

* Advanced CP/M: String searches and
tuning Jetfind.

« Animation with Turbo C: Part 2, screen
interactions.

« Real Computing: The NS32000.

Issue Number 46:

= Build a Long Distance Printer Driver.

¢ Using the 8031's built-in UART for serial
communications.

« Foundational Modules in Modula 2.

* The Z-System Corner: Patching The Word
Plus spell checker, and the ZMATE macro
text editor.

« Animation with Turbo C: Text in the
graphics mode.

« Z80 Communications Gateway:
Prototyping, Counter/Timers, and using the
Z80 CTC.

issue Number 47:

+ Controlling Stepper Motors with the
B8HC11F

» 2-System Corner. ZMATE Macro Language
* Using 8031 interrupts

* T-1: What it is & Why You Need to Know

+ ZCPR3 & Modula, Too

» Tips on Using LCDs: interfacing to the
B68HC705

* Real Computing: Debugging, NS32 Multi-
tasking & Distributed Systems

The Computer Journal / #72

« Long Distance Printer Driver: correction
* ROBO-SOG 90

Iss r 48:

» Fast Math Using Logarithms

* Forth and Forth Assembler

* Modula-2 and the TCAP

« Adding a Bernoulli Drive to a CP/M
Computer (Building a SCSI Interface)

* Review of BDS 2"

* PMATE/ZMATE Macros, Pt. 1

« Real Computing

+ 2-System Corner: Patching MEX-Plus and

. TheWord, Using ZEX

ssue Number 49:

« Computer Network Power Protection

« Floppy Disk Alignment w/RTXEB, Pt. 1

* Motor Control with the F68HC 11

« Controlling Home Heating & Lighting, Pt. 1
* Getting Started in Assembly Language

* LAN Basics

* PMATE/ZMATE Macros, Pt. 2

* Real Computing

'« Z-System Cormer/ Z-Best Software

ssue Number 30;

« Offioad a System CPU with the 2181

* Floppy Disk Alignment w/RTXEB, Pt. 2

* Motor Control with the F68HC 11

* Modula-2 and the Command Line

* Controlling Home Heating & Lighting, Pt 2
* Getting Started in Assembly Language Pt 2
* Local Area Networks

« Using the ZCPR3 IOP

* PMATE/ZMATE Macros, Pt. 3

« Z-System Corner, PCED/ Z-Best Software
« Real Computing, 32FX16, Caches

Issue Number 81:

« Introducing the YASBEC

* Floppy Disk Alignment w/RTXEB, Pt 3

* High Speed Modems on Eight Bit Systems
« A Z8 Talker and Host

* Local Area Networks—Ethernet

* UNIX Connectivity on the Cheap

* PC Hard Disk Partition Table

* A Short Introduction to Forth

« Stepped Inference in Embedded Control

* Real Computing, the 32CG160, Swordfish,
« PMATE/ZMATE Macros

» 2-System Corner, The Trenton Festival

+ Z-Best Software, the Z3HELP System

Issue Number 52:

* YASBEC, The Hardware

* An Arbitrary Waveform Generator, Pt. 1

= B.Y.O. Assembler...in Forth

* Getting Started in Assembly Language, Pt 3
* The NZCOM IOP

The Computer Journal Back Issues

Issue Number $53:
- The CPU280
- Local Area Networks
- Am Arbitrary Waveform Generator
- Real Computing
- Zed Fest '91
- Getting Started in Assembly Language
- The NZCOM IOP
- Z-BEST Software

Issue Number 54;

- B.Y.O. Assembler

- Local Area Networks

- Advanced CP/M

- ZCPR on a 16-Bit Intel Platform

- Real Computing

- Interrupts and the Z80

- 8 MHZ on a Ampro

- Hardware Heavenn

* What Zilog never told you about the Super8
- An Arbitary Waveform Generator
+ The Development of TDOS

issue Number 55;
- Fuzzilogy 101

* The Cyclic Redundancy Check in Forth
- The Internetwork Protocol (IP)

- Hardware Heaven

- Real Computing

- Remapping Disk Drives through the Virtual
8I0S

- The Bumbling Mathmatician

- YASMEM

- Z-BEST Software

Issue Number 56:

- TCJ - The Next Ten Years

- Input Expansion for 8031

- Connecting IDE Drives to 8-Bit Systems
- Real Computing

- 8 Queens in Forth

- Kaypro-84 Direct File Transfers

- Analog Signal Generation

lssue Number §7:

- Home Automation with X10
- File Transfer Protocols

- MDISK at 8 MHZ.

- Real Computing

- Shell Sort in Forth

- Introduction to Forth

- DR. 8-100

- Z AT Last!

Issue Number 58:
- Multitasking Forth

- Developing Forth Appilications
- Real Computing

- Mr. Kaypro Review

- DR. $-100

Issue Number 69:

- Moving Forth Part i

- Center Fold IMSAI CPA

- Four for Forth

- Real Computing

- Debugging Forth

- Support Groups for Classics
- Mr. Kaypro Review

- DR. §-100

Issue Number 61:

- Multiprocessing 6809 part |

- Center Fold XEROX 820

- Quality Control

- Real Computing

- Support Groups for Classics
-‘Operating Systems - CP/M

- Mr. Kaypro SMHZ

issue Number 62:

- 8CSI EPROM Programmer
- Center Fold XEROX 820

- DR $-100

- Real Computing

- Moving Forth part ill

- Programming the 6526 CIA
- Reminiscing and Musings

- Modem Scripts

Issue Number 63;

- SCSt EPROM Programmer part Il

- Center Fold XEROX 820

- DR 8-100

- Real Computing

- Muitiprocessing Part I

- 6809 Operating Systems
+ Reminiscing and Musings
- IDE Drives Part Il

Issue Number €4
- Smail-C?

- Center Foid last XEROX 820
- DR S-100

- Real Computing

- Moving Forth Part IV

Small Systems

- Mr. Kaypro

- IDE Drives Part lll

Issue Number 65:
- Small System Support

- Smal! System Support

- Center Fold: Advent Decoder
- DR $-100

- Real Computing

- Connecting IDE Drives

- PCIXT Cormner

- Little Circuits

- Multiprocessing Part il

- Z-System Corner

Issue Number 67:
- Small System Support

- Center Fold: SS-50/SS-30
- DR $-100

- Real Computing

- Serial Kaypro Interrupts

- Litthe Circuits

- Moving Forth Part 5

- European Beat

Issue Number 68:

- Small System Support

- Center Fold: Pertec/Mits 4PIO
- Z-System Corner il

- Real Computing

- PC/XT Corner

- Little Circuits

- Multiprocessing Forth Part 4

- Mr. Kaypro

Issue Number 69:

- Small System Support
- Center Fold: S-100 IDE
- Z-System Comer Ii

- Real Computing

- PCIXT Corner

- DR. $-100

- Moving Forth Part 6

- Mr. Kaypro

Issue Number 70:

- Small System Support

- Center Fold: Jupiter ACE

- Z-System Corner Il

- Real Computing

- PC/XT Corner: Stepper Motors
- DR. 8-100

- Multiprocessing Part 5

- European Beat

Issue Number 79:

- Computing Hero of 1994

- Small System Support

- Center Fold: Hayes 80-103A

- Power Supply Basics

- Real Computing

- PC/XT Corner. Stepper Motors
- DR. $-100

- Moving Forth Part 7

- Mr. Kaypro

SPECIAL DISCOUNT

15% on cost of Back Issues when
buying from 1 to Current Issue.

10% on 10 or more issues.

tems:

\

Back Issues Total
Shipping Total

California state Residents add 7.25% Sales TAX

Subscription Total
Total Enclosed

\

+ Servos and the FGBHC 11 - Computing Timer Values - Center Fold ZX80/81
» Z-System Corner, Programming for ° Affordable Development Tools - DR §-100
Compatibility - Real Computing - Real Computing
* Z-Best Software - Mr. Kaypro - European Beat
* Real Computing, X10 Revisited -DR.$-100 - PC/IXT Corner
 PMATE/ZMATE Macros - Littie Circuits
» Controlling Home Heating & Lighting, Pt. 3 Issue Number 59: - Levels of Forth
» The CPU280, A High Performance Single- ' Moving Forth - Sinclair 2X81
Board Computer - Center Fold IMSAI MPU-A
Issue Number 66:
u.s. Canada/Mexico Europe/Other
Subscriptions (CA not taxable) (Surface) (Air) (Surface) (Air) Name:
1year (6 issues) $24.00 $32.00 $34.00 $34.00 $44.00 Address:
2 years (12 issues) $44.00 $60.00 $64.00 $64.00 $84.00
Back Issues (CAtax) add these shipping costs for each issue ordered
Bound Volumes $20.00 ea +$3.00 +3$350 +$6.50 +$4.00 +$17.00
#20 thru #43 are $3.00ea. +$1.00 +$1.00 +$1.25 +$1.50 +$2.50
#44andup are$4.00ea. +3$1.25 +$1.25 +$1.75 +$200 +$3.50 Credit Card #

y - exp____/

Payment is accepted by check, money order, or Credit Card (M/C,
VISA, CarteBlanche, Diners Club). Checks must be in US funds,
drawn on a US bank. Credit Card orders can call 1(800) 424-8825.

TC.J-1he Computer Journal

P.O. Box 535, Lincoln, CA 95648-0535
Phone (916) 645-1670

The Computer Journal / #72

49

Ré‘vg;ylér Featuré
 Editorial Comment

> or PCIXT?

The Computer Corner

By Bill Kibler

As I was going through my old mail, I
came across a couple of catalogs from
DYNACOMP. They had been sent to
me some time back, one with a note on
it saying “your readers might like to
know that all the programs in this cata-
log are still available.”

So I went through the catalog #29 and
the newer one #38. The old one did have
lots of CP/M, NorthStar, Apple, Atari,
TRS80, and just about anything (even
8") listed. The newest was mostly
MSDOS and MAC, plus a few Apple
programs. I noticed they carry the
Toolworks C/80 Version 3.1 for $49.95.
That got me curious if this was true and
so I called the 800-828-6772 number
and asked. Sure enough they are still
able and willing to pull out anything
from the warehouse and ship, including
NorthStar. The person said he still uses
his Altair. I quickly sent them a comple-
mentary copy with ad rates and figured
everyone should call them and get one of
their old catalogs.

Now some of the old programs are pub-
lic domain, but they also have many of
their own items as well. They may be
one of the few remaining original deal-
ers still selling programs. They do have
a little bit of everything and so if your
looking for programs to run on the old
machines here they are. I also noticed
they have the CP/M collections, but what
was unusual was the Atari, Antic, C64,
and Piconet libraries. I am not sure any-
body else is still offering those collec-
tions. What a find.

PLC Hacking
I have been testing PLC transfers and

operations, mainly with a GE 90-30.
This is their small end unit and works

50

ok. I say ok, since their performance at
moving data into and out of their ladder

area is a bit slow. What our application

needs is to be able to move a fairly large
amount of data into the ladder from a
non-standard remote platform.

Now all PLC vendors have some method
or other for doing this. We used the
Omron version, and have looked at the
PLC-Direct as well. My analysis so far is
the “Basic” expansion cards all seems to
have the same problem, slow. What the
problem appears to be is the way in
which they talk to the regular ladders
memory.

I assume the designers wanted a pretty
secure and crash proof design and as
such have chosen to usc some form of
serial communications on the back plane
to transfer data. If the back plane was
memory mapped and thus any applica-
tion could read or write the memory
location, errant programs might turn all
outputs on and thus cause major prob-
lems. A slower more difficult process
probably seemed safer and easier to limit.

Those limits also make applications like
ours almost impossible. A number of
Standard Bus vendors have PLC expan-
sion cards that do sit on the memory Bus
and from what I gather they don’t seem
to have any problems. Understand that
these applications have several CPU’s
with each running their own program.
Having one of the CPU’s go astray is
possible, but would normally be found in
the startup and development stage.

To me the problem is more of the propri-
etary concept that many vendors have
about their products. If too much about
how it works is known, others would
make cards and products that might fit

into and on their product. The idea is
lost sales, but in our case that design
limit might mean we look elsewhere for
the complete system.

PC Invasion

What | am starting to see is the invasion
of the PC based systems into the PLC
market. No longer is a manufacturer
wanting just a standalone PLC, instead
they want PLC functions in a member of
the entire computing network of ma-
chines. The idea is being pushed by just
in time production, where only what is
needed is made and shipped as requested.
The tying of machines together helps
sales requests become actual PLC ladder
changes. But that requires PLCs to talk
and understand accounting data.

The answer has been putting PL.C adapter
cards into PC machines all talking over
a common RAM area. A network based
program talks to the accounting pro-
gram and puts requests into the PLC’s
RAM area. The ladder sees these re-
quests and knows to produce ten RED
widgets next as they were just ordered. If
the PLC was controlling the paint robot
all is well, if the PLC was actually a
machining station then you got prob-
lems.

All humor aside, the idea is not new, but
just that the hardware is catching up to
the desires of the companies. The power
of PC’s and cost of interfacing is dropped
so that very powerful and cost effective
solutions are now possible. Refinement
and perfection of the software is what is
needed next. Our application in fact
might be helped by these larger pushes.
Since our clients are a few years behind
cutting edge, our options are limited.
The more they see others having suc-

The Computer Journal / #72

cessful projects, the better our chances
are for using other designs, like PC based
PC104’s.

PC104

PC104 format is really starting to take
off. I haven’t had a chance to talk to Z-
" World and see how their Z180 based
PC104 product is doing, but I hope well
for them and us. The PC104 is a small
square card that has the PC bus ISA
standard interface on it, in the form of a
header strip. Thus it is a mini PC clone
on a very small card. All designs, pro-
gramming and concepts of usage can be
tested and developed using regular PC
clone boxes. Then when the project is
ready, it gets moved to only the type and
amount of very small hardware needed
to run the project.

What you gain is lowered development
cost and smaller overall hardware cost.
The packaging can be very small and yet
the power of a 486 machines is possible
in a four inch cube. For me, the idea is
to use the PC104 Z180 platform for some
8085 projects. I should be able to move
the base code from the STD BUS plat-
form, to the PC104 with little to no
program changes. A few I/O addresses
and some interrupt labels would need
changing, but mostly the code would not
be effected. If at some later time, the
Z180 is too slow, I replace it with a 386
CPU and run my code through a 8080 to
8086 converter and try again. I suppose
you could use one of the Z80 emulators
on a 486, but then for a single applica-
tion, code conversion seems more ap-
propriate.

The Hooks

What this boils down to is making sure
you have a well rounded understanding
of PC’s and platforms in general. As the
next few years start to unfold, we are
going to find a larger mix of platforms
in use, not less. We are seeing clients
who want to upgrade, but have limited
funds. In years past, you might just have
thrown several programmers at the
project and produced a new version on a
new platform.

Now the user wants just some speed

The Computer Journal / #72

assist or the number of units increased,
maybe several units tied in one network.
The code, platforms, and interfaces of
old often took a long time to develop,
programmers are gone who knew how it
worked, as well as fixing the old hard-
ware platforms is a major problem. That
is where I see Z-World hooking in with
their PC104 Z180s. They can save the
code mostly intact and yet put it on a
new hardware platform that will be
around for some time.

For programmers and hardware hack-
ers, it means having skills and knowl-
edge about these old systems and de-
signs, as well as understanding the new
ones. I work often now with, STD BUS,
talking to embedded 8051’s, talking to
PLC’s that may be feeding summary data
to PC’s on a network. When a problem
develops you need skills and understand-
ing of all the processes in the system. No
longer can a technician or programmer
just know one programming language
or hardware platform. My last work in-
volved Tandem mainframes, talking to
PC’s over a LAN, that passed data to
68000’s on an PC expansion bus run-
ning assembly language.

READ ON

For readers of TCJ I see what we are
doing as vital to you and your projects.
If you look at what other magazines are
doing, they have staked out some small
part of the market. We on the other hand
try and focus on giving you the skills to
fix any problems that might arise on any
platform. I am seeing the “platform in-
dependent” term everywhere these days
and feel good that we were pushing it
before it became the in thing.

However we look at things, one point
does surface, knowledge of PC based
designs is getting very important. My
PC/XT person, Frank Sergeant, has been
very busy paying bills and finishing his
master’s studies. He needs help! So Iam
again soliciting more articles on PC/XT
projects. One project in the works is an
article on “watch dog timer.” The author
is doing some polishing up that I sug-
gested (mainly a little explanation of
what and why you need a watch dog

timer) and should be available in a later
issue,

Now again I must belay all fears that
TCJ will become a PC only magazine.
This of course will happen if everybody
drops their subscription, but assuming
our readers continue paying, I have plenty
of articles on small systems to keep us
reading. Like this issu¢ on embedded
systems, I would like to have a few spe-
cials that do fill in the gaps about how
PC/XT’s work and can be used for other
projects. To do this however I need your
articles. Please consider however when
sending articles to me that my time is
very limited and I often fall very far
behind in catching up with you. Things
can sometimes sit for several months
before I can send you a note. Please be
patient with me.

Lastly on the topic of articles, a few
words about what I want and hopefully
what you are looking for in an article
from 7CJ. A main feature of T7CJ ar-
ticles is platform specific and indepen-
dence. To explain that last sentence is to
say that our readers are interested in
learning about the platform (or software)
in greater detail, but they also want to
see how that knowledge can be used on
their own platform. A good example of
this has been our series on the IDE drives.
Here we have talked about how it is
implemented on the PC/XT platform and
what the protocol is all about. Then we
presented hardware for interfacing to Z80
machines which allowed others to adapt
for non-Z80 machines. So it goes like
this: history, theory, details, and adaption
of the project.

Last Word

It seems I haven’t done a “what is hap-
pening” in computers column for some-
time, so this was it. To review would be
to say, look for sales of bigger machines
to slack off as people tend to keep what
they have, more inter-hooking to de-
velop, and some big vendors to step into
the only growing part of computers -
embedded control where 8051°’s and
68HC11’s will fight it out for domi-
nance. As usual time will tell if I am
near or far from the market. Till then
however, keep hacking. BDK.

51

TCJ CLASSIFIED

CLASSIFIED RATES!
$5.00 PER LISTING!

TCJ Classified ads are on a prepaid basis
only. The cost is $5.00 per ad entry.
Support wanted is a free service to sub-
scribers who need to find old or missing
documentation or software. Please limit

your requests to one type of system.

Commercial Advertising Rates:

Size Once 4+

Full $120 $90
172 Page $75 $60
1/3 Page $60 $45
1/4 Page $50 $40

Market Place $25 $100/yr
Send your items to:
The Computer Journal
P.O. Box 535
Lincoln, CA 95648-0535

Historically Brewed. The magazine of
the Historical Computer Society. Read
about the people and machines which
changed our world. Buy, sell and trade
"antique" computers. Subscriptions $18,
or try an issue for $3. HCS, 2962 Park
Street #1, Jacksonville, FL 32205

HELP! Looking for someone to install
SPELL-CHECK in my obsolete but func-
tional (16 bit?) Televideo 806H (?)
wordprocessor running CP/M86. It's
presently configured for WordStar Ver.
3.30, 1979. Please call Bob at (916) 791-
1914, Granite Bay (Roseville) CA.

Wanted. Books/Manuals/Info on a Struc-
tured Design SD20/24 PAL development
system. Has built in monitor, but unable
to read pre-programmed PALs. Anyone
know if these people still in business?
Contact Bill at TCJ (800)424-8825.

f TCJ ADS WORK! \

Classified ads in TCJ
get results, FAST!

Need to sell that special older
system - TRY TCJ.
World Wide Coverage
with Readers interested in what
YOU have to sell.
Provide a support service,
our readers are looking for
assistance with their older
systems - all the time.
The best deal in magzines,
TCJ Classified
it works!

\ J

| I i

Electronic
Design

languages do not.

GEnie is a trademark of General Electric.

Joumey with us to discover the shortest path between
programming problems and efficient solutions.

The Forth programming language is a model of simplicity:
Inabout 16K, it canofferacomplete development systeminterms
of compiler, editor,and assembler, aswell asaninterpretive mode
to enhance debugging, profiling, and tracing.

As an “open” language, Forth lets you build new control-flow
structures, and other compiler-oriented extensions that closed

Forth Dimensions is the magazine to help you along this
journey. Itisone of the benefits you receive asamember of the
non-profit Forth Interest Group (FIG). Local chapters, the
GEnie™ForthRoundTable,andannual FORML conferencesare
alsosupported byFIG. Toreceive amail-order catalog of Forth 8,%’,’,""?’5"%2",,‘3,:532“%’"";‘.‘;’0
literature and disks, call 510-89-FORTH or write to:

Forth Interest Group, P.0. Box 2154, Oakland, CA 94621.
Membership dues begin at $40 for the U.S.A. and Canada.
Student rates begin at $18 (with valid student L.D.).

Dave Baldwin

6619 Westbrook Dr.
Citrus Heights, CA 95621

Voice/Fax (916) 722-3877
DIBs BBS (916) 722-5799

year, has’

52

Th 8032 firs!
senes of versats;gd smgle board -

gg}g? famil

contmllers The an
DC8032-2, g;gﬂable fater this

ovide most, if not al? of the %"pﬂ

nctions requir
dedi ted controller. Standard
features include 32K of RAM

OM, A/D & D/A i
olock 36 dlgnal {Ile] !lnes watch ;
and a centronics . [!

[‘)on Extended

Bg?aud pnnter

\ I‘R\ ATIHLE 80(J’ BASE l)

n af
the |l

designed 1o &5 B8

eal &lme

dditional

1843 \UMNI 5\ or

LAS CRUCH S NM 8801 PHohlh v24 4024

The Computer Journal / #72

TC ’ The Computer Journal

Discover
The Z-Letter
The Z-letter is the only publication
exclusively for CP/M and the Z-System.
Eagle computers and Spellbinder support.
Licensed CP/M distributor.

Subscriptions: $18 US, $22 Canada and
Mexico, $36 Overseas. Write or call for
free sample.

The Z-Letter
Lambda Software Publishing
149 West Hilliard Lane
Eugene, OR 97404-3057

(503) 688-3563

Advent Kaypro Upgrades

TurboROM. Allows flexible
configuration of your entire
system, read/write additional
formats and more, only $35.

Replacement Floppy drives and
Hard Drive Conversion Kits. Call
or write for availability & pricing.

Call (916)483-0312
eves, weekends or write
Chuck Stafford
4000 Norris Ave.

Sacramento, CA 95821

(" TCJ MARKET PLACE)
Advertising for small business
First Insertion: $25
Reinsertion: $20
Full Six issues $100
Rates include typesetting.
Payment must accompany order.
VISA, MasterCard, Diner's Club,
Carte Blanche accepted.
Checks, money orders must be
US funds. Resetting of ad
consitutes a new advertisement
at first time insertion rates.
Mail ad or contact
The Computer Journal
P.O. Box 538
Lincoln, CA 95648-0538

CP/M SOFTWARE

100 page Public Domain Catalog, $8.50 plus $1.50 shipping
and handling. New Digital Research CP/M 2.2 manual, $19.95
| plus $3.00 shipping and handling. Also, MS/PC-DOS Soft-
| ware. Disk Copying, including AMSTRAD. Send self addressed,
stamped envelope for free Flyer, Catalog $1.00

Elliam Associates
Box 2664
Atascadero, CA 93423
805-466-8440

S-100/1€€€-696

IMSAl Altair
Compupro Morrow

Cromemco

and morel

SHETES IS CRERN OB ERLTELRELLE LR DI 01000080 00D DR R EEE LB

Cards. Docs «Systems

Dl.‘. S'IOO

Herb Johnson,

CN 5256 #1065,
Princeton, NJ 08543
(609) 771-1503
hjohnson@pluto.njcc.com

THE FORTH SOURCE

Hardware & Software

MOUNTAIN VIEW
PRESS

Glen B. Haydon, M.D.

Route 2 Box 429
La Honda, CA 94020

(415) 747 0760

6811 and 8051
Hardware & Software
Supporting over thirty versions
with a highly integrated

development environment..

Our powerful, easy to use
FORTH runs on both the PC
host and Target SBC with very
low overhead

Low cost SBC's from
$84 thru developers systems.
For brochure or applications:

AM Research

4600 Hidden Oaks Lane

Loomis, CA 95650

1(800)947-8051

sofia@netcom.com

PCR's in Minutes
From LaserPrint!*

81/2"x 11"
Sheets
100% MBG

* Or Photocopier
Use household
iron to apply.

NPT
{
PaP BLUE ~ PnP WET
For High Precision €asy Hobby
Professional PCB Layouts Ouoll:‘ PCB's
1. LaserPrint 1. lase
2. lron-On . 2. lron-On
3. Pesl-Off 3. Soak-Off w/ Woter
4. €ich 4. Exch
An €xtra Layer of Resist Transfers Laser or
for Super Fine Traces Copier Toner as Resist

205h$30/405h$50/1005h$100 Blue/Wet (No Mix)|
Sample Pack 5 Shts Biue + 5 Shts Wet $20
VISA/MC/PO/CK/MO $4 S&H -- 2nd Day Mail

Techniks Inc. P.O. Box 463 Ringoss NJ 08551

(908)788-8249

