January/February 1996

t

cesessanesssnesnnesssasssssssesasssasssssessasesses IREPAIN

cssesssssscsssssessses FOrth Day 1995

0748-9331 Hands-on Hardware and Soﬁ;rare

lators..bw.smm

Jisassemblers .ovs -

etog”er Packages
low 00(a $50.00 Savings

_A-New Prqect
eas !ouscandfllfeatrd
Y mmuyand untimited include tles. e
~“Get t-To Market—-FAST
the-hardware is_finished to debug
mwm program-logic before the har
i et
n the ware, and you can't find the original
nn:p of di biers’ car¥° help yot: [a?eg'the

re is built.

source.
- “Set To-Go
aad(agc andthe nexttime yourboss says Get towork.",

Ounmy Solutions
prov(dmg quality solutions for - microprocessor

BROAD RANGE OF SUPPORT
HGA1802 05

tel 8096
Mowrola éao 7 Moc;grola 68HC11 Motovolaco 6805

> uowosa

,[aqmro an 1BM PC' or compatible

What Are You Waiting For? Call us:

' PseudoCorp

ssional Development Products Group
921 Country Club Road, Suite 200
Eugene, OR 97401

FAX (803) 683-9186 BBS: (503) 683-9076

mr software. Our.

suppon the ‘following ‘microprocessor families (with

og Z80 ,
Motoro!assom :meu%we ;

Her
2 Serving the

ttlal Electronics Community
~since 1978

Specializing In
“Hardware Design and
Software Programming

Previous Projects include:

er. programming (15,000 lines)

8051 Remote 1/0 using MODBUS
805 Instrumentation Controller

‘Real Time Embedded Operations

10S programming and Debugging -

rth Projects and Development

ML Design and programming

g, Training, and Documentation

Bill Kibler
Kibler Electronics

.. P.O. Box 535.
;mcoln CA 95648-0535
(916) 645-1670

e-mail: kibler@psyber.com
tp://www.psyber.com/~kibler

J

IR
Electronics ||

Hiding in Plam $lght...

Some of the most interesting, challengmg
progmmmmg is being done outside the -

revailing paradigms. It’s been this way for ;
yeats, and some companies regard its SPEED, |
COMPACTNESS, EFFICIENCY and VERSATILITY
as their private trade-secret weapon. -

It has penetrated most of the FORTUNE 500, -
it’s a veteran in AEROSPACE, it’s in SPARC ,
WORKSTATIONS, and it’s how “plug and play”
is nnplemented in the newest Power PCs.

In fact, it’s lurking around a lot of comers.

I's Form. Surprised? Call nowtosub- o
scribe* and learn more about today’s Forth.

Forth Dimensions S
510-89-FORTH Fax: 510-535-1295

*Ask for your free copy of "10 Whys to Simplify ngmmmmg"

VSAGE MICROSYSTEMS EAST_L :

-~ Selling and Supporting the Best in 8-Bit Soﬂware

Z3PLUS or NZCOM (now only $20 each)
ZSDOS/ZDDOS date stamping BDOS ($30)
ZCPR34 source code ($15)

BackGrounder-ii ($20)
ZMATE text editor ($20) -
BDS C for Z-system (only $30) .~ -
DSD: Dynamic Screen Debugger ($50)
4DOS "zsystem" for MSDOS ($65)
ZMAC macro-assembler ($45 with printed manual)

Kaypro DSDD and MSDOS 360K FORMATS ONLY
Order by phone, mail, or modeny and use
Check, VISA, or MasterCard. Please include
$3.00 shipping and Handling for each order.

Sage Microsystems East
1435 Centre Street

Newton Centre MA 02159-2469
- (817) 965-3552 (voice 7PM to 11PM)
(617) 965-7046 BBS :

The Computer Journal

Founder
Art Carlson

Previous Publishers
Bill D. Kibler
Chris McEwen

Editor/Publisher
Dave Baldwin

Technical Consultant
Bill D. Kibler

Contributing Editors
Herb Johnson
Charles Stafford
Brad Rodriguez
Ronald W. Anderson
Helmut Jungkunz
Frank Sergeant
Richard Rodman
Tilmann Reh

The Computer Journal is pub-
lished six times a year and mailed
from The Computer Journal, P. O.
Box 3900, Citrus Heights, CA 95611,
(916) 722-4970.

Opinions expressed in The Com-
puter Journal are those of the re-
spective authors and do not neces-
sarily reflect those of the editorial
staff or publisher.

Entire contents copyright © 1996
by The Computer Journal and re-
spective authors. All rights reserved.
Reproduction in any form prohibited
without express written permission of
the publisher.

Subscription rates within the
US: $24 one year (6 issues), $44
two years (12 issues). Send sub-
scription, renewals, address
changes, or advertising inquires to:
The Computer Journal, P.O. Box
3900, Citrus Heights, CA 95611-
3900.

Registered Trademarks

It is easy to get in the habit of using company
trademarks as generic terms, but these trademarks are
the property of the respective companies. It is important
to acknowledge these trademarks as their property o
avoid their Iosmg tho rights lnd the term beeommg pub-
lic property. The ft g freq y used
are acknowl dged, and we apologize for any we have
overiooked.

Apple i, II+, lic, lle, Lisa, Macintosh, ProDos;
Apple Computer Company. CPM, DOT, ASM, STAT,
PIP; Digital Research. DateStamper, BackGrounder ii,
Dos Disk; Plu*Perfect Systems. Clipper, Nantucket,
Nantucket, Inc. dBase, dBASE i, dBASE Ill, dBASE Il
Plus dBASE 1V, Ashbn Tate, Inc. MBAS|C MS-DOS,

dows, Word; ft. WordStar;, MicroPro Inter-
nanonal IBMPC XT, and AT, PC-DOS; IBM Corpora-
tlon 280, Z280; Zilog Corporauon Turbo Pascal, Turbo
C, dox; Borland | tional. HDB4180; Hitachi
Amenca Ltd. SB180; Micromint, Inc.

Where these and other terms are used in The
Computer Journal, they are acknowledged to be the
property of the respective companies even if not specifi-
cally ach viedged in each ce.

TC

The Computer Journal
Issue Number 77, January/February 1996

Editor's Column.........cceeu........ eereerrensnnes enreermesenns . .
And in this issue...

Reader to Reader............ccccecucu.... S ceerreceenennurnnsinn 3
GIDE news.

Real Computing.........cccccuuuueee. SO §

OS reviews, INTERLNK, and the Pocket Programmer
By Rick Rodman.

Mr. Kaypro........ccccoviiinnnmecmcccccnns S corerennnsnnnenesd
The last of the external video mods.
By Charles B. Stafford

The European Beat tirsseeseessssennnnnessssssnssssensenans § @
GIDE on the KC-85.
By Helmut Jungkunz.

Hands on with PLD's.......ccccecceirmenenan ceereneesnnas . I

Clock generator and Memory Decoder
By Robert Brown

Dr. S-100......cerrveriirrrceernanes cerensansneeaes censeneennenssness 20

$-100 Memory Management
By Herb Johnson.

Center Fold S cererenerenn .1
Tilmann Reh's CPU280

The First TRS-80........ccccoeremnrvrnnnnne SR, |
The Model 1 and BASIC.

By Gary Ratiiff.

Small System Support sessssssssssssnssnnsssssnnnnssenes 34

Prime Numbers in C.
By Ronald W. Anderson.

Program This! - *
The 280 SIO
By Dave Baldwin

Morrow MD-3P Repaircocccecmemeemenenneccceeerenenneennnnc 43
MD-3P repair details
By Jay Huddleston

Support Groups for the Classicsc..eeeeireeeeee... 46
Back Issues........... reesnertressssnnnnnnanens SRR | .
The Computer Cormnerccceeeeeereevennnenn S)
Forth Day 1995.

By Bill Kibler.

Editor's Column

And in this issue...

On my first issue, I'm little bit late. I decided that it was
better to try to get a good issue out rather than a quick one.
I'm sure you'll let me know if I did or didn't. Add that to
some project deadlines that occured at the same time and
here we are.

And since I'm rushing to get this to the printer tomorrow,
I can't find my editor's soapbox. So all I have this time is
SOme News.

The one thing this issue is missing is a Forth article. I
hope our Forth authors will send me at least one for the
next issue.

I was hoping to have an article by David McGlone of the Z-
Letter in this issue. The story of what it took to make some
of the CP/M software available should be interesting. Un-
fortunately, he was just too busy.

Herb Johnson may be taking a breather after #78 for the
same reason, too much work to do. We'll see articles from
him when he has time.

Also because Herb has become real busy, it looks like TCJ
will become the US distributor for Tilmann Reh's GIDE
board. There will be more about this in #78 because the
details aren't finalized yet.

Dave Baldwin
TCJ Editor
Events

Trenton Computer Festival is scheduled for the weekend
of April 20-21. It has a CP/M and Z-System conference.

1996 Rochester Forth Conference will be held June 19-22
in Toronto at Ryerson Polytechnic University. Conference
info available on the Web at "http://maccs.dcss.mcmaster.ca/
~ns/96roch.html" or from Elliott Chapin at 416-921-9560.

TCJ Phones and Internet Addresses

The Computer Journal

(800) 424-8825 or (916) 722-4970

Email: tcj@psyber.com

BBS: (916) 722-5799

FAX: (916) 722-7480

Dave Baldwin: dibald@netcom.com

WWW Home page: “http://www.psyber.com/~tcj”

This issue includes the first of the TCJ Reference Cards.
This time it's the Z80/180 instruction set. It's put inside
the Center Fold with a single staple and intended to pulled
out and used. Each issue will include a TCJ Reference
Card related to one or more of the articles in that issue.

There's been a lot of activity with GIDE since the last
issue. Reader to Reader is filled GIDE news and Helmut
has some more in in The European Beat.

The Center Fold this is Tilmann Reh's CPU280. I wanted
this to be an example of a modern CP/M system. However,
now it's 'obselete’ because Zilog decided to stop making the
Z280 CPU. We finally publish the schematic for it along
with the code for the PLD's.

Speaking of PLD's, Robert Brown (of Alta Engineering)
wrote Hands on with PLD's for this issue. He gives
examples of a clock generator and a memory decoder for a
Z80. He shows how easy it is to decode odd size memory
regions with a PLD. He has also uploaded files for build-
ing the Alta Engineering PLD programmer, a digital stor-
age scope, and a Logic Analyzer with the PLD source files
to the TCJ/DIBs BBS.

A new feature in this issue is Program This! This column
will focus on a specific chip or device and provide enough
info for you make it work. This time, I'm writing about the
Z80 SIQ. The article provides code samples for both
polled and interrupt mode operation and complete source
code for two different programs will be available on the
TCJ Web and TCJ/DIBs BBS.

Gary Ratliff has an article about The First TRS-80, the
Model 1 and tells about programming it in two different
versions of Basic.

Chuck Stafford, Mr. Kaypro, is back with the last of the
external video mods for the Kaypros and schematics for
three different versions.

Our other regulars are here too. Rick Rodman has OS and
programmer reviews in Real Computing. Ronald Ander-
son shows methods in 'C' for finding prime numbers in
Small System Support. And Herb Johnson, Dr. S-100,
talks about S-100 memory management.

In The Next Issue:

Number 78 will include articles about a homebuilt TTL
processor, a DIY 6502 circuit, and the 8031 along with all
the regulars.

The Computer Journal / #77

READER to READER

Letters and Ne

The letters this time are more like the
GIDE News column. Read Helmut's
article for even more. We also have a
message about a new programmer's
organization for CP/M software and a
couple of help requests.

Hello Dave,

After having read the current TCJ is-
sue #76, I have (as usual) some com-
ments. But before I start commenting,
there is another actual theme to talk
about. Thanks very much for your
message indicating that the Z280 is
going out of production. When I pre-
viously asked my distributor, they al-
ways told me they’d inform me when
any product I’ve ever bought there is
cancelled. However, they didn’t tell
me, and still they can’t explain how
_this could happen. But, fortunately,
they have a current order which they
will get in spring, and I can have some
of those “last Z280 chips”. Now I
already ordered a few, to have spares
for the CPU280 systems which are
already in use. But I also would like
to note that this is about the last pos-
sibility for getting a CPU280 system!
If there is anybody out there who wants
to take this chance, please leave me a
note. If there are some orders, I will
try to get more Z280’s - however,
they’re too expensive to put many of
them on stock just in case anyone wants
a CPU280 later.

Now on to the comments on
TCJ #76. In his column about XT’s,
Frank Sergeant also covers modern
hard drives. Because there still are
some questions, let me shortly explain
the “difference” between IDE and the
so-called EIDE. The truth is, there is
no difference! If that sounds sur-
prising, please think of the following
details. As described earlier in my IDE
article series, IDE uses an 8-bit sector

The Computer Journal / #77

number register and a 16-bit cylinder
register, while the head is contained
in the lower four bits of the SDH reg-
ister. This gives a maximum capacity
of 65536 cylinders by 16 heads by 256
sectors by 512 bytes, aka 128
Gigabytes!

Now let’s look at how PC’s
do hard disk accesses. Their ROM-
BIOS masks the cylinder number to 10
bits and the sector number to 6 bits,
since the very first hard disk control-
ler was limited to those values. The
resulting accessable capacity then is
1024 cylinders by 16 heads by 64 sec-
tors by 512 bytes, which is 512 Mega-
bytes. Now does this value sound fa-
miliar to you? Right, it’s the so-called
“IDE capacity limit”, but it is not
caused by the interface or the drive,
it’s just because the PCs ROM-BIOSs
never stopped masking off those higher
bits!

When it became obvious that
512 MB were not enough, the manufac-
turers simply blamed the drives and
their interfaces, and created a “new”
standard which would remove this re-
striction: EIDE. In fact, physically and
logically EIDE is identical to IDE. The
only thing that was changed was the

" bit-masking in the ROM-BIOS: so-

called EIDE controllers (or capable
PCs) simply don’t mask off any bits
from cylinder and sector registers. This
is confirmed by the fact that you can
mix-up either type of drive and “con-
trotler”: it will always work perfectly.
Just the old PC with its “IDE-control-
ler” will be unable to access anything
beyond the 1024x16x64 limit. It’s only
a question of software. For those
“older” PCs there are drivers which
replace the ROM-BIOS driver and
don’t mask any bits off, and with such
a driver it’s perfectly possible to com-
pletely use so-called EIDE drives on
an old so-called IDE controller. (BTW,
there are many older IDE drives which

have more than 1024 cylinders, and
the drives itself were never limited to
this value.)

This is just another case of
willing disinformation in the PC busi-
ness! (There are some more, like dis-
kette capacities which are far less than
would be (legally) possible, just be-
cause of IBM’s thumbness!)

Another detail mentioned by
Frank is LBA. LBA stands for “Logi-
cal Block Address(ing). Its meaning is
rather simple: the sector number, cyl-
inder, and head registers are logically
combined to form a 28-bit absolute
sector number. With LBA, you don’t
have to care about any drive’s geom-
etry, just access the sectors by their
absolute number. Drives which are
capable of LBA, indicate this by a sta-
tus bit in the “Identify Drive” result.
For each command, the desired mode
(LBA or CHS, for Cylinder Head Sec-
tor) must be explicitly set.

I think LBA is an attempt to
eliminate all those geometry emula-
tions which were caused by some
unflexible BIOSs (see? again a PC
software problem), and it also provides
similar access as with SCSI drives (the
main competitor of IDE). But for com-
patibility reasons, all PCs will surely
continue to support CHS addressing
for many more years...

I have some more comments
on TCJ #76: In his column, Herb
Johnson partly confused the history of
the GIDE development. My first IDE
interface was a board for the ECB bus,
accompanying the CPU280. This board
was described in TCJ #56, more than
three years ago. My circuit was used
by Wayne Sung as a base for his devel-
opment, a smaller interface for the
Epson QX-10, which used an EPROM
state machine instead of my GAL ap-
proach. About the same time, Claude
Palm seemingly started developing the
single-chip IDE controller PLD for use

in his Z180 SBC. However, I don’t
know if he was also inspired by my
article in TCJ, or if we just had the
same idea at the same time. In further
discussion of his PLD chip, Herb
Johnson, Bill Kibler, and I came to the
conclusion that there was a need for a
small and cheap interface which would
connect to as many different comput-
ers as possible, so that was the start of
the GIDE development.

The story of Claude Palm
fighting his spurious FDC error is very
interesting. Because of troubles like
this, I always decode /IORQ with one
of /RD or /WR to get valid select sig-
nals. This way, /M1 is not needed for
the decoder at all. A very good design
rule to prevent such problems is: Al-
ways use signals which are *active* to
generate select signals, and never use
inactive signals for this! In this case,
never use “/M1 inactive” as a qualifier
for 1/0 selection, but use “/RD or /WR
active” for this purpose. This is a gen-
eral rule which is a great help in many
cases.

When Claude writes about his
“18 MHz Z180”, I assume this is not
the real working frequency of the Z180.
More probably, it is the frequency of
the crystal which is devided by two to
form the CPU clock. To my knowl-
edge, the fastest Z180 chip available is
the 12.5 MHz version. We should al-
ways use the real CPU clock, not the
crystal frequency, when talking about
" clock frequencies anyway.

Regarding Bill Kibler’s com-
ments on CD-ROM access for CP/M:
We are currently checking the possi-
bilities for connecting a CD-ROM drive
to GIDE. In my opinion, the best
method will be a file transfer shell
which allows you to navigate through
the hierarchical file system of the CD-
ROM and transfer selected files to the
CP/M host. I don’t think it makes much
sense trying to establish a CD-ROM as
virtual CP/M drive - the driver would
be too complex, and would need addi-
tional hooks for accessing the different
directory levels of the CD-ROM. That
transfer shell could be about the same
style as my “MSDOS Disk Emulator”
for CP/M-Plus, which performs the
same task for MS-DOS diskettes on
any CP/M-Plus computer. However,
those Linux CD-ROM driver sources
surely are a good source of informa-
tion!

Wow, this is a rather long
letter - more like a mini article. BTW,

hopefully I will find the time to ex-
plain and describe GIDE in detail in a
future issue of TCJ.

Greetings, Tiimann Reh

Ed: The Zilog databooks list the
Z8S180 as operating to 20MHz. See
also Jonathan Taylor's message about
GIDE and CD-ROM.

From: wayne sung
<wsung@jessica.Stanford EDU>
Subject: Re: Z80 SIO

It’s been a while back, at a
different job, that I did the SIO circuit,
so this is from memory. What I was
doing was trying to generate a stream
of pulses to run a number of time
clocks. These used a data format com-
pletely unlike rs232. T had a single
board computer with a Z80 and SIO,
so I took the incoming data from a
radio clock into one of the SIO ports,
changed the format, and was going to
use the other port to generate the pulse
stream to the clocks.

The clocks needed something
like a pulse-width modulated signal at
about a 2 kHz bit rate. This was where
I found that using break didn’t work.
The clocks would never see the data.
Using a scope I saw that the pulse
widths were completely unpredictable.
Changing to a control lead solved the
problem. I seem to remember a state-
ment in the data sheets that said some-
thing like break can be toggled at any
time. Apparently it was not meant to
say break will actually show up when
I asked it to.

One interesting part of this
project was that there is no ram at all.
Since I didn’t do any subroutine calls,
and I didn’t need many variables, ev-
erything was done in the registers
(don’t remember if I used the alternate
set or not) and a 2 kbyte rom.

Another interesting part had
to do with two different sources of
timing information. Originally the
clocks were driven from a generator
which was “synced” to WWYV. The
reason the quotes are there is that it
took a human to do the sync, i.e. some-
one listened to the WWYV radio and
pushed a set button to lock the clock.

After we obtained a WWVB
clock to do NTP with, someone asked
me if I could use it to run the building
clocks as well. Being the gadget freak

I am, of course I tried it. Now the
original generator put out a continu-
ous signal, even though the digits were
latched. So I decided I would put out
only two updates a second (the time
is..., I repeat the time is...)

Somewhere in the building
there is a bit of crosstalk between the
clock drive line and an intercom sys-
tem. So by listening to the intercom
one can tell which generator was driv-
ing the clocks. The original generator
had a continuous 2 kHz tone, mine
had two clicks close together every
second. So I told them one was an
analog clock and one was a digital
clock.

Ah, the IDE project. Please
forgive the long-winded introduction
here, but the whole thing hinged on
TCJ so hopefully you’ll not be too
bored.

I first “met” John Baker on
the net. Still have never spoken to him
personally, though there has been much
email. What happened was somehow
we got talking about something (don’t
even remember what now) and wound
up fixing his Epson QX-10 completely
via email.

I would ask him to try this or
that, send measurements etc (boy it’s
hard to simulate a scope on email).
Eventually we zeroed in and by faking
one pin the machine came up. Turns
out the caps in the power supply had
dried out causing a lot of ripple on the
5v line so the power supply was keep-
ing reset active.

John wrote a letter to TCJ
about himself and included this par-
ticular episode as part of it.

At the same time, Tilmann
Reh had also written up his IDE de-
signin TCJ. It turns out one Mr Roche
in France wanted some kind of HD
adapter for his QX-10, and approached
Reh about converting his design. Reh
said he did not have a QX-10, hence
couldn’t do it, but that John Baker had
one and to check there.

Of course John sends the re-
quest to me. I had a large bag full of
registered high-speed eproms that were
pulled from some comm equipment. I
wanted to try using these for lookup
table logic design, and this proved to
be a workable project.

I was using mostly Reh’s
writeup for IDE description, but there
was no feel for whether one polarity or
the other of several pulses that might

The Computer Journal / #77

work better. Rather than put in extra
inverters, I put all the sequencing stuff
(except one flip-flop) in the eprom. It
also decoded whichever range of bus
addresses I wanted.

This way I could just change
the eprom bits to change polarities.
Indeed two pulses wanted to be oppo-

- site what I assumed.

The final design had one
LS08, one LS107, two LS646 and the
eprom. Of course a pal design is just
as possible, but I personally have had
bad results with them. I think some
other people I have corresponded with
might have made pal designs.

One of the few times I beat
Murphy to the finish line, but just
barely. My QX-10 was already limp-
ing, having lost one floppy drive. Al-
most the very moment I got the first
bios that really worked the second
floppy died also, and I couldn’t even
reboot. I wrote up what I did, and John
polished the bios. What I had done
was change the sizes of the drives from
2 x 5 MB, which is what the bios had,
to 2 X 8 MB. I did not think to expand
the allocation vector, and eventually
there would have been some funnies.
John caught this and finished the
changes.

Roche did not have email, a
lot of this was done USPS, so it took
maybe a year end-to-end. In the mean-
time I changed coasts and now don’t
even have any space to do 8-bit stuff
any more.

John’s link has been produc-
ing a steady stream of interest. The
funniest request I got was from some-
one who wanted directions to build an
IDE for a pc.

Ed: I received this next message
Jfrom John very early one Saturday
morning.

From: “John D. Baker”
<jdb8042@blkbox. COM>
Subject: GIDE BIOS!

Just ten minutes or so ago, I brought
up the first iteration of a CP/M 2.2
BIOS extension to support the GIDE
on my Davidge DSB 4000 single-board
computer!

I’ve just barely started test-
ing. I’m going to bring up ZCPR-D&J
as a minimum and then move to
NZCOM to make the testing process
nicer. Naturally, my BIOS extension

The Computer Journal / #77

includes a ZDDOS clock driver...

The Davidge CP/M system has
to be relocated for a 62K system and
the GIDE extension is loaded at the
top of memory and patched into the
standard floppy-disk BIOS (DSB 4000
v1.3). I'm able to save quite a bit of
space by using the data areas of the
floppy-disk BIOS and only have to du-
plicate the disk-handling code (but it’s
greatly simplified).

As I’ve implemented it now,
the floppy disks remain A: through D:
and the hard disk is E: through I..
Naturally, I have to boot from the
floppy disk at cold-start.

More as things develop, or as
I develop things.

John D. Baker
http://www.blkbox.com/~jdb8042/
And this one is about a CD-ROM
interface with the GIDE.

From: johntayl@spuddy.mew.co.uk
(Johnathan Taylor)

Subject: Re: CP/M with alternate
BDOS support

(This message is in response to a
message posted by Herb Johnson
about the GIDE.)

Here’s confirmation that
Tilmanns G-IDE interface that Herb’
speaks of not only handles big AT-
IDE hard-drives flawlessly but it also
works fine on ATAPI-IDE CD-ROM
drives at the same time! I’m currently
working on porting a POSIX CD-ROM
reader util to z80-CP/M so that G-IDE
users can access the CP/M and C-UG
CD-ROMs directly! NO bios support
will be required as it’ll contain it’s
own driver. I've yet to decide how to
implement the user definable 1/O loca-
tion, there’s three choices:-

1/ End user edits sources and
recompiles.

2/ Incorporate a patch table ic a
cut down ZMP15 style jobby

3/ use the Hi-Tech C 3.09
“ENVIRON” file to store the custom
settings in plain text form for the
really non-technical!

I think 3 would be the most
user friendly but 2 would be the most
rugged across search search paths, etc.,
and 1 means that the end user must
have Hi-Tech C and enough TPA/

floppy storage to perform the compile.
For now all I need is a UK source for
the CP/M CD-ROM itself as the CD-
ROM’s I’ve got were donated, bought-
in-error, games-console CD’s so don’t
have much of an iso-filesytem to test
the utility ie. they only have 4 files
and it’s easier just to read the dir-
block and manually load the 4 files!

Regards, Johnathan.

Ed: 1 received this note from
Johnathan also.

I have obtained a copy of the
CP/M CD-ROM and have manually
retrieved a couple of files using raw
block reads to decipher the CD-ROM
directory structures and simply spool-
ing consecutive blocks to a file to re-
trieve the actual file. Next comes the
task of teaching the computer to search
the CD-ROM itself.

And GIDE on the TRS-80.

From: Pete Cervasio
<cervasio@airmail.net>
Subject: Got the GIDE (mostly)
working

Hi, Dave.

As the subject says, I man-
aged to get the TRSDOS hard disk
driver modified to work with the GIDE.
It needs a lot of work before I would
call it finished, but I’ve got data on a
340 meg drive as I type. I haven’t
fixed it to allow a logical drive to start
at any physical cylinder, and there’s
still the limit of 202 tracks (with 2
physical = 1 logical), 8 heads and 32
sectors per track. The cylinder offset
will fix the track limit, while the oth-
ers will take fundamental changes to
the way the drive control table is de-
fined. I think there are enough bits
that aren’t used with hard drives that
I can fix it.

I just started to write a bunch
of stuff about the inner workings of
TRSDOS, explaining what I'm run-
ning into. It’ll be better in the article,
which I’ve started on. How many
words should I shoot for as a maxi-
mum before I split it into two or more
parts? If you want to print all the
code.. the driver winds up at 30 pages,
and the “formatter” is about the same.
Most of the driver listing is asking the
user questions, and the same is true of
the formatter. Icould chop those parts

out for the article and just say what
they need to accomplish.

How about a couple of photos
of the completed machine, with the
extra power supply and the GIDE and
IDE drive installed? I had to apply a
hacksaw to the RF shielding to make it
fit over the GIDE. There’s not a lot of
clearance there. I had an old 63 watt
IBM-PC power supply that I liberated
from it’s case (the circuit board, I
mean). That’s mounted in the bottom
of the computer and powers the hard
disk and the two floppy drives. The
supply that powers the rest of the
machine seems happier now that the
floppies have “disappeared”. :-) The
PC supply just squeaks in under the
monitor, with maybe 1/2" clearance
between a big resistor and the tube.
The hard drive (and a 3.5" 720k floppy)
are taking the place of one of the 5.25
floppy drives. Personally, I think it
looks great.

Well, I better get to bed. It’s
way too late and I'm getting “punchy”.
I just had to tell someone about this
first. :-)

Talk to you later., Pete C.
From: Steven Young
<syoung@nucleus.com>

To: tcj@psyber.com
Subject: Greetings!

Greetings!

A few CP/M users and I have
recently founded a fledgling organi-
zation - the CP/M Programmer’s Or-
ganization, or CPO. The goal of this
organization is to breathe some fresh
life into the CP/M scene. After all,
most software is at the least six years
old, and has, on the whole, become
just a wee bit stagnant.

The two major goals of the
CPO are to:

1) Bring current public domain soft-
ware up to speed with current develop-
ments. Obviously, nothing too flashy,
since CP/M does only allow sixty-four
K ram, but, for example, grafting OOP
onto a C compiler, or even creating a
C++ compiler, might be nice.

2) To create new software to fill the
void of new software which has
occcurred. For example, porting vi to
CP/M is one of the projects we’re look-

ing into.

Mind you, it’s still, as I say,
fledgling, and as of yet, we’re still in
the process of getting organized. But
nevertheless, initial interest has been
amazing, and I seriously think the CPO
will prove to be, at the very least, an
educational exercise. (and a bit of
nostalgia for the greybeards, of course.

)

Ed: I don't know who he could be
talking about. We haven't published
any photos of any greybeards.

From: Ron Anderson
<RWilAnders@aol.com>

To: tcj@psyber.com
Subject: Antique Laptop

Someone gave me a non-working
Toshiba Laptop model T1200. I have
it working but I would be happy to
find any documentation for it. It has
a 10 Mhz 8086, one floppy drive 3.5"
720K, an LCD screen, a NiCad battery
pack and a charger/power supply. Hav-
ing the 8086 ought to qualify it for
antique status. I’m thinking of offer-
ing $20 for it. I can use some of my
“antique” software and use it as a word
processor. I have used that same an-
tique editor to write columns. If no-
body there knows anything about it
maybe you could put in a “letter” ask-
ing for help.

Thanks, Ron Anderson

Ed: Here you are, Ron.
From: Stephen Stone
<stephen@silcom.com>
Subject: Re: WTB: CP/M
Formfilling Software

1 was one of the original mem-
bers of the KayPro Users Group of
Santa Barbara in 1983. In 1987, our
membership combined with that of the
Osborne Santa Barbara Users Group
and became the Santa Barbara Classic
Computer Society. Our meetings still
take place in the Goleta Library at 7
p.m. on the second Tuesday of each
month. Attendance ranges from 8 to
14 persons. We had an anniversary
celebration in 1993 with 25 people
attending. Most discussion in meet-
ings is mix of 8 bit nostalgia and dis-
cussion of what we consider to be ideal
use of computer technology and tech-

nology in general. We actively help
newcomers and oldtimers seeking in-
formation and help with older com-
puters. We charge dues only when we
find our treasury running low. Our
monthly newletter survives because CP/
M programming genius Al Paarman
continues to write interesting and ir-
reverent articles for it.

My garage has more than 10
and less than 20 old 8 bit machines
stored in nooks and crannies at any
time. One of our members must have
close to 200 old computers!

I still use my KayPros for word
processing and keep my small busi-
ness accounting with Checks And Bal-
ances. In the last year, I introduced
one of our department managers in my
hospital to one of my KayPros because
our non-profit budget will not allow
the purchase of computers for our de-
partment and her correspondence load
was overwhelming our unit secretrary.
The manager endured all kinds of gaff
from visitors to the department for
having this strange box on her desk —
she actually put the machine away
because she was embarrassed to be seen
with it! Then the burden of increasing
work convinced her to try WordStar
on the KayPro again. Now she loves
it and won’t part with the loaned 4-84

one less machine in my garage,
I guess.

I’ve never gotten into ZCPR
— but have used all of Plu*Perfect
Systems’ enhancements. While I am
not a computer professional, my back-
ground in CP/M machines has taught
me to think about computers in an
meaningful and evolutionary way: see-
ing computer science as more repre-
sentative of what people can do with
extensions of their knowledge about
the need to work and communicate,
than as a means to create appliances to
be bought for the short-lived thrill of
gee wiz features.

My latest desire for some of
my 8 bit machines is to have them
help me and my friends at work com-
plete the mass of charting on preprinted
forms which is now required in any
health care setting. If I can find the
form filling software for the KayPro
which will allow us to type rather than
handwrite our medical record entries,
it will allow so much more time for
care to patients.

Please read Stephen's ad in the
Classified's too.

The Computer Journal / #77

Real

Computing

By Rick Rodman

FreeBSD 2.0

It took some doing, but I managed to
collect together enough components
from various computers to build one
that will ran FreeBSD 2.0. FreeBSD
only supports a couple of SCSI host
adapters - Adaptec and Buslogic.

As with most experimental operating
systems, the installation process is
nightmarish. Nothing is automated at
all. There is a Readme file which
explains the mysterious “Disklabel”
procedure - but you can only see it
from MS-DOS. Once you begin the
installation, you can only see a very
limited “tutorial” - which is a cruel
misnomer, since it gives neither step-
by-step instructions nor examples.

Why is it so hard to write installation
programs? There are two well-known,
commonly accepted principles: First,
show all choices to the user at each
decision point, with automatic defaults
which clearly show the most likely user
choice. Second, the user should make
all the decisions up front. The user
should not have to make a choice, wait
five minutes, make another choice, wait
five minutes, and so on. The FreeBSD
installation procedure flunks both of
these principles. Is this because Unix
gurus are elitist snobs who feel that
neophytes must be forced to struggle?
Or because their brains are so warped
by repeated mystic incantations that
they truly believe that small letters and
uppercase letters are totally different
and unrelated? Or are they unable to
write an installation procedure because
their computers already have umpteen
copies of FreeBSD already on them? 1
think it’s the latter. Actually, the
FreeBSD folks really did try - they
made an install script that automates
some of the work - but they have a
much longer way to go.

The Computer Journal / #77

The installation has four parts: Fdisk,
Disklabel, rebooting, and installing
“distributions”.

The Fdisk program is pretty standard,
with one little gotcha. There is a com-
mand for writing a boot record and
another for writing an “MBR”. To
me, MBR stands for Master Boot
Record and so these ought to be the
same, but they aren’t. The MBR re-
fers to a multiple-operating-system
boot routine which doesn’t appear to
work, so just use the regular “w”.

Here’s the story behind the Disklabel
part: FreeBSD calls disk partitions
“slices” and subdivides these with a
program called “disklabel”. There are
eight subdivisions which are named
“a” through “h”, but on a fresh disk
they initially contain garbage. You
need to delete “e” through “h” first,
then do a (W)rite. Next, you need to
(E)dit “a” for about 18 megabytes, “b”
for about 16 megabytes, and “e” for
what’s left. You can’t change “c” or
“d”. Do another (W)rite. Next, you
need to (A)ssign “a” to mountpoint “/
”, (A)ssign “b” but you don’t enter a
mountpoint, and (A)ssign “c” for “/
usr’. Then do a (W)rite and a (Q)uit.

When you say (P)roceed, the machine
has to reboot. This is a surprisingly
iffy step. Actually, most of the 32-bit
OSs have a reboot halfway through,
including OS/2 and NT, and it’s a sort
of checkpoint as to whether things are
going to continue to work.

Installing the distributions is a very
long process, requiring you to make a
decision, wait anywhere from a few
minutes to half an hour or more, make
another decision, wait another long
time, and so on.

The installation crashed on me while
installing Xfree86. Once this hap-
pened, I couldn’t find any way to re-
sume it. I didn’t want to start com-
pletely over because I'd already spent
over 4 hours on the process. I logged
in as root and poked around. The
mystic incantation to mount the CD-
ROM is:

mount -t cd9660 /dev/cd0a /mnt

Which is similar, but of course com-
pletely different in all the details, to
mount commands used under Linux or
SunOS. This is one of the pitfalls of
Unix: Because so much is installation-
dependent, you can be a Unix expert
and yet not be able to find or do any-
thing in a different version.

The file INSTALL, which can be read
from the CD, mentions briefly that the
installation can be resumed with /sbin/
sysinstall, or that a “package” (same
as a distribution?) can be added with
pkg_add (which turns out to be in /
usr/sbin). Both of these statements
appear to be wrong; there’s no appar-
ent way to resume an installation. So,
I couldn’t test X Window. The text-
mode OS works fine, but I didn’t see
anything new or different. In fact,
much of what you get with FreeBSD is
exactly identical to what you get with
Linux, with the same source code.

In summary, FreeBSD has little to rec-
ommend it over Linux. Linux costs
less, includes more, and is much easier
to install. I hate to denigrate
somebody’s labor of love, but it needs
less love and more labor.

NextStep
NextStep is another 32-bit OS which

doesn’t include source code. Since I
went through the hassle of attempting

to install, I thought I'd warn the un-
wary who might be suckered in by the
OOH (Object-Oriented Hype). The
first thing to know is that NextStep
supports only two SCSI host adapters:
the Adaptec 154x, and a DPT EISA
caching host adapter. You must have
one or the other. And get this: You’re
_only allowed to have a single 1.44
megabyte floppy attached. You’re not
permitted to have a second floppy!

I was going to install version 3.2, but
its installation procedure crashed ev-
ery time at the point of trying to talk to

_the Adaptec board. Version 3.1 hung
every time, usually at the beginning,
sometimes a little further on. The
manual says: “You may need to rerun
the installation several times before it
works.” Can you believe that they
print such an admission of incompe-
tence right in the manual?

Instead of requiring you to do a mys-
terious Disklabel, NextStep always asks
you questions along the line of “Do
you want to install NextStep? Press 1
for yes, 2 for no.” You get asked this
question several times. The manuals,
even the installation manuals, while
full of beautiful screen shots, are al-
most devoid of any technical informa-
tion. Next has a fax-back system for
anyone who needs to know anything
technical. They have an email system
“too, but you have to have NextStep
" installed to use it. Like most software
companies these days, they picture
information exchange as only flowing
in the outward direction.

1 never did get NextStep to work.
Evidently its marketplace obscurity is
well-deserved.

After this installment, I’m not going
to review any more operating systems,
for a while at least. I recommend only
three operating systems for PCs: Linux
(Slackware or Yggdrasil), Windows
NT, and OS/2 Warp. [I’li probably
recommend Minix 1.7 when the re-
lease comes out.

Peer-to-peer networking under DOS

In version 6 of MS-DOS, Microsoft
quietly slipped in a two-station LAN.
It consists of two EXE files, which are
also device drivers, INTERLNK.EXE
and INTERSVR.EXE. Connections

can be made via serial or parallel ports.
You put DEVICE=INTERLNK.EXE
in the CONFIG.SYS files of both ma-
chines, then run the command
INTERSVR on the server and
INTERLNK E:=C: (for example) on
the client. Presto, the client can ac-
cess the server’s drive.

This got me to thinking about the
small-machine network. File transfer
is not really very convenient. Yetdrive
mapping is complicated and very OS-
specific, involving interception of file-
level OS calls. But what if we trapped
BIOS calls instead? There’s only a
couple of calls that would need to be
intercepted, and performance would
actually not be much worse. The prob-
lems would be related to file sharing,
directory entries, and block allocation
(allocation vector bits). Yet, in the
CP/M case at least, these involve data
which is accessible to the BIOS. Fur-
thermore, in a small-machine network,
we can restrict who has write access,
giving all but one user read-only ac-
cess if desired.

I was thinking about this in the con-
text of the wonderful CP/M CD-ROM
from Walnut Creek. Right now, get-
ting files from it to a CP/M system is
cumbersome. There ought to be a way
that I could map a group of files, let’s
say a subdirectory, to a virtual CP/M
drive (which is limited to only 8 mega-
bytes), and access it through a serial
port as though it were a hard drive.

A small LAN or OS simply can’t af-
ford the space to do it the way the big
guys do. We’ve got to cut corners and
get away from the layers which, while
making big systems more reliable, re-
duce efficiency and increase code size.

The Intronics Pocket Programmer

Just a brief mention of this product,
which works really well. This is an
EPROM programmer which attaches
to a PC’s parallel port - no board re-
quired - and costs only $130. It has a
ribbon cable and a YAWT (Yet An-
other Wall Transformer), and a dis-
kette containing the software. It’ll
program any single-supply EPROM;
you can get adapters for MCUs, too,
but they cost almost as much as the
programmer itself. Anyway, this is a
great product. [was afraid it’d be
slow, going through the parallel port,

but it’s just as fast as my old program-
mer, and a lot more convenient. Now
I can easily take the programmer and
my laptop to the equipment and copy
or reburn PROMs right there. If you're
in the market for a PROM program-
mer, think hard about it.

Next time

Next time we’ll move from the Mall to
the small. I’ll show you how to use
Small-C to generate a firmware pro-
gram to run from PROM. Plus, we’ll
have some words about the joys of
computer telephony.

For more information

Real Computing BBS/Fax:
+1-703-759-1169

E-mail: ricker@erols.com
Mail:

1150 Kettle Pond Lane
Great Falls, VA 22066-1614

Walnut Creek CD-ROM
(Manufacturer - FreeBSD 2.0 and
CP/M CD-ROM)

1547 Palos Verdes Mall Suite 260,
Walnut Creek CA 94596

+1 510 676 0783

Next Computer, Inc.

(Manufacturer - NextStep)

900 Chesapeake Drive, Redwood City
CA 94063

Intronics, Inc.

(Manufacturer - Pocket Programmer)
P.O. Box 13723

Edwardsville KS 66113

+1 913 422 2094

@ LINUX)

InfoMagic 5 CD Setcccueeeee $21.95
Yggdrasil $29.95
Linux man Pages..........uuun.e. $29.95
The New Book of Linux........... $29.95

Call for other titles
www justcomp.com
on the World Wide Web

JUST COMPUTERS!'!

(800) 800-1648

Fax (707) 586-5606 Int1 (707) 586-5600
P.O. Box 751414, Petaluma, CA 94975-1414
E-mail: sales@justcomp.com
Visa/MC/Int'l Orders Gladly Accepted
For catalog, send e-mail : info@justcomp.com
Include "help” on a single line in the message.

/

The Computer Journal / #77

Mr. Kaypro

By Charles B. Stafford

BARRY COLE ROMs

Since we last conversed, in issuec 74,
(mea cullpa, mea culpa) there has been
a great deal of excitement. I actually
got to meet and talk with Barry Cole.
For those of you to whom this doesn’t
mean anything, don’t feel bad! Up
until about a year ago I didn’t know
anything about Barry either.

Back in 1983, the dark ages, when the
’84 series Kaypros were but a gleam
in Andy Kay’s eye. Barry was repair-
ing about 20 K-IIs and K-4s a week
and modifying quite a few of them.
When the ’84s came out he decided
that since they had a larger monitor
rom and the appropriate signals were
close by, that booting from disk was
for the birds and other computers.
Reality was just a few short days
" (weeks) away with the birth of the
Barry Cole Rom. He used a 27128
(16k), twice the size of the stock 2764
(8Kk), 4 times the size of the K-4s 2732
and 8 times the size of the 2716 in the
original design (Kaycomps and K-IIs).
The code included not only the bios
(basic input/output system) and bdos
(basic disk operating system) but also
a CCP (console command processor)
based on ZCPR 2. This meant that he
was completely free of Digital Re-
search’s copyrights and patents, and
the term “boot disk” became mean-
ingless. In fact, according to Barry’s
promotional literature, a machine with
his rom will boot with a piece of card-
board in the drive.

Barry has included a version of ZCPR,
as well as bdos changes that will
accomodate two 10meg hard drives or
one 20meg hard drive. You’ll still need
to make the hardware changes, of
course, but the support is there. The
command set understood by the CCP

The Computer Journal / #77

has not only the original 6 embedded
ones, (DIR, ERA, SAVE, USER,
TYPE & REN) but also:

LIST (sends the file to the
printer)

GO (re-executes a previously
loaded program)

GET (loads a program at a
specified address)

JUMP (executes a program at a
specified address other
than 0100h)

SAFE (parks a hard drive if
installed)

DISK (a built-in copy, era etc
utility)

D (a super directory clone)

BOOT (boots from a floppy in
drive A)

NORM (initiates “protected”
mode disabling most
commands, for bbs or
similar use) and

PASS (+ a password, undoes the
effect of NORM).

The modifications also specifically
report disk malfunctions and elimi-
nate most resets (such as aborting a
faulty disk write).

The bad news is that I haven’t got the
ROMs yet. The good news is that 1
expect to get them in the 1st quarter
of 1996. Watch this space for notifi-
cation.

ON TO MORE TANGIBLE STUFF

Herewith, the promised follow-up to
the external composite video project
we did in TCJ #74.

Our objective is to understand the
project sufficiently to be able to modify
it to fit all CP/M Kaypros, and use

both composite and TTL monitors
(DB-9 connections).

THEORY

The circuit actually consists of five
stages; the input signals, the buffers,
the mixer, a driver and the output
signal(s). See figure 1.

In the last project we took the input
signals as well as ground and 5V from
the pins of Ul, a 7406 that we re-
moved and out in a wirewrap socket.
This works very well for the 83 K-
10s and all the 84 models, but not so
well for the *83 K-IIs and K-IVs. These
machines, however, have a row of test
points, labeled E1-E6, just toward the
front of the computer from the
Centronics connector for the parallel
port. They have all the signals we need
with the exception that the vertical
sync is inverted. If the solder in these
test points were removed, (easily done
with a small soldering iron and a “sol-
der sucker” or wick), we could mount
a six pin header, and use it to plug on
a “daughter” board. To take care of
the vertical sync the connections to
pins 1 and 4 must be switched with
the vertical sync signal from E4 going
to pin 4 and pin 1 being tied “high”.
See Figure 2.

Since the ’83 K-IIs & K-IVs use the
same vertical and horizontal sync fre-
quencies as standard composite (&
close to TTL Monochrome, by the way)
monitors, no tweaking or “monkeying
around” is needed. We can now use
this circuit in any CP/M Kaypro.

Our next trick is to adapt this circuit
to TTL monitors using a DB-9 output
connector so we can use “standard”
external monitors. The advantage of
this is that an EGA monitor will “sync”

right up to an ’84 K-anything or an
’83 K-10 without any tweaking, and a
CGA monitor will “sync” right up to
an ’83 K-II or K-IV without tweak-
ing. A monochrome monitor, though,
may need a “Sync” adjustment, but
the stock K-II or K-IV frequency
should be within the monitor’s range.

" The 741s00 that was used in the last
circuit, has 4 inverting “nand” gates.
Buffering a signal, and getting it right
side up, requires the use of two gates.
Since there are three signals involved
(Horizontal sync, Vertical sync and

~ video) six gates would be necessary,
two more than are available. If, how-
ever, a 741s86 is used, our problem is
solved. A 741586 is a four section ex-
clusive “or” gate, which, with one in-
put tied “low” (to ground), becomes a
non-inverting buffer. This means that
signals can be picked up from either
the 7406 (in the case of an '84 ma-
chine or an ’83 K-10) or E1-E6 (in
the case of the “83 K-IIs or K-IVs),
run through one section each of the
741586 and then to the appropriate pin
of a female DB-9 connector. Use of a
jumper on the vertical buffer to select
inverting or non-inverting provides for
those monitors that expect inverted
vertical sync. See Figure 3.

Which signal goes on which pin de-
pends on the monitor the circuit is
. intended for.

_Pin Mopo CGA EGA

1 gnd gnd gnd

2 gnd gnd open
3 - open open
4 - open open
5 - open open
6 open video open
7 video open video
8 Hsync Hsync Hsync
9 -Vsyn¢c -Vsync Vsync

Mixing and Matching choices of the
input signal methods, buffering meth-
ods and output signal schema will re-
sult in an easily constructed circuit
customized just for your machine, and
will probably be the only one like in
existance for miles around.

EXECUTION (or CONSTRUC-
TION, if you prefer)

After you have made the appropriate
choices, and drawn or copied the a

10

schematic diagram, a parts list can be
compiled. Almost all the resulting
parts lists will include a couple of 100
ohm resistors, an IC (741s00 or
741s86), at least one socket perhaps
two, an output connector, some ribbon
cable or coax, a six pin header and
female connector or wire wrap socket,
and a prototype printed circuit board
to build it on. The same sort of proto-
type board that was used in the first
project will work here as well.

Connector mounting can be a chal-
lenge. On the first project, a panel
mount RCA socket was used. It was
the type that is supposed to go into a
hole from the front of the panel and
have a nut put on from the rear. Flats
were filed on two sides of the connec-
tor, so that it just fit in one of the
ventilation slots on the back of the
case. The slot could have been en-
larged, but that would have involved
cutting on the case and this solution
seemed cleaner. Mounting a DB-9
female connector is a little more in-
volved. If a slot is filed just a little
wider, the DB-9 will fit just fine. A
hole can be drilled just below the slot
to accomodate one of the mounting
screws, and a small piece of scrap
metal can be fashioned and drilled to
accomodate the other. A simpler solu-
tion is to find a standard “IBM” type
slot cover which has been punched for
a DB-9 connector, cut the ends off 3/
8" outside the mounting holes, drill
two more 3/16"holes (one at each end)
and mount this adapter over a ventila-
tion slot using screws and nuts with
washers to bridge the slot on the in-
side.

CUTTING THE CASE

If you decide to file, drill or cut the
case, the safest way is to remove all
the electronics, modify the case, clean
it of all chips and filings and then
reinstall the electronics.

There is, however, an easier alterna-
tive which, if done carefully, is equally
as effective. Using Duct Tape (two
inch or three inch width), fasten two
or more strips edge to edge about six
inches long with a 1/4" overlap at the
edges, sticky side up, on the work-
bench. This should result in a single
piece about six inches by four or six

inches. Stick one end on the inside of
the case, parallel to the bottom of the
case about an inch above the area to
be cut, filed or drilled and the other
end, also parallel to the bottom of the
case about one inch below the area to
be cut, filed or drilled. Now pinch the
sides together, forming a tent over the
work site, on the inside of the case.
Cut, file or drill to your hearts con-
tent, and when you are satisfied with
the result, smash the tent down on the
inside of the case to pick up all the
stray metal chips inside, and remove
it carefully. Then inspect the area to
insure that you didn’t let any chips
escape.

This procedure sounds complicated,
and takes a lot longer to describe than
do, but read it first and you’ll see how
simple it really is.

NEXT PROJECT

An internal modem (you pick the
speed) for ALL the CP/M Kaypros.

A LITTLE COMMERCIAL

Recently I have been fortunate enough
to find a limited supply of Kaypro
monitors which include both the CRT
and the Video board, as well as, mother

‘boards (both *83 and ’84 varieties) and

a few WD1002-05 hard drive control-
lers. Monitors are $50.00 but the
mother boards vary depending upon
condition.

s
Advent Kaypro Upgradesj

TurboROM. Allows fiexible configu-

ration of your entire system, read/

write additional formats and more,
only $35.

Replacement Floppy drives and
Hard Drive Conversion Kits. Call or
write for availability & pricing.

Call (916)483-0312
eves, weekends or write

Chuck Stafford

4000 Norris Ave.
Sacramento, CA 95821
\ J

The Computer Journal / #77

Figure 1. vee
Composite Video — "83 K—-10, 84’s

VCC

!
| ! [
!] N§§
! [Fow :
u1:.D u1:.c Q1 €
' 12 9 ! R1 |
| s 11 0),: 8 AANA ° B (E 2N3904 |
VIDED y——p—— 1 220 |

| 7 !

| 4.500 74500 | o1 W I____|

| | 3

| veC i| 1N914 1Ng14 : COMPQSITE
U1:B {

: U1 ! . | o3 i VIDEO OUT

1INO14 R4

vosme L1 . . :>Ds_<._+4
A—SYNC ——+——2)
e 741500 74500 | ©

[&éi’

| L

!

Figure 2.

| VvCC

2N3904
VIDEO
| [
| I o1 | b2 | _ |
V-SYNC E4 0— ! [
| vee (| 1Ng14 IN914 : COMPOSITE
T ut1:B | (T
: 1 UTA \ . | D3 i 68 VIDEO QU
_ ! 2 2 IN914 e
- o—t——2
H-SYNC EZ 741509

[74500

R3
100
'IT
2

Figure 3.
X Discrete/TTL Video
~
P 28 V-SYNC
V=SYNC W R8 -
AAAY
—4s 2))__/ 22
JP1 74586
H_SYNC 4 u2:8 H-=SYNC
H-SYNC \ R9 - DB9F
S)T\ & AN
S oS 22 51 o
JP2 741586 2—
0 22 VIDEO 38—0 ©
VIDEO A\ R1Q
,,))r\ 8 AN I o
——o o /L__/ 22 s ° °
JP3 74LS86 ﬁﬂ
= ™ u2:D RiQ Intensity = J?

Intensity _\ “ R2
13
L_)'I’_/ 22
741586

The Computer Journal / #77

The European Beat

by Helmut Jungkunz

Finally - Hi-Tech for the looneys !

Well, well, if history doesn’t go strange ways! I used to
dream with my friends of the wonderful things happening
in the US and we used to feel pretty lousy about our impos-
sible situation: no RS232C on our computers (by default),
very little or poor local programming, and very expensive
hardware, by far higher priced than the equivalent in
“Amerika”.

Many of us were also suffering from being unable to under-
stand enough English and none of the documentation and
source code were available in German, French, Spanish at
all.

Then, after all these years, we see the American standards
drop next to zero almost overnight! What a shock. Here is,
where our typical European “being behind” finally works
out: the continuing industrial use of Z80 based equipment
has brought up some new products, like Tilmann Reh’s
CPU280.

A small board that (besides it’s outstanding, innovative
design) is based on a very common industrial bus system,
the “ECB-Bus”. This allowed people to develop peripheral
devices that would also be usable in other machines. This
concept was probably the reason why Tilmann developed
not only a nifty Hercules terminal and an IDE interface to
make AT-BUS (IDE) hard disks available to CP/M users,
but he also decided to take up the concept of a Generic IDE
interface (GIDE) from an idea of a couple people. So
Tilmann sat down and did the work!

The results are overwhelming:

A small board plugs into the (Z80) CPU socket of any Z80
CP/M computer, where the Z80 itself is then sitting on top
of the GIDE, in the extension socket present there. At the
Trenton Computer Festival *95 I was able to make a (poor,
but successful) demonstration of how to mount the GIDE in
a KAYPRO 4/10, a computer I, so far, only knew from
books. The failing point was a defective hard drive I had
purchased at the Trenton flea market. Still, the ease of the
procedure could be shown.

12

Despite the bad condition of the drive, I could make all
connections and use the test program once(!). It showed the
drive identification (an IDE standard) and did some efforts
to read randomly selected sectors. Then the drive died.

1 was very upset at that day, having traveled all the way
from Germany only to be ripped by some cat in the flea-
market, since it was impossible for me to bring along an
IDE drive, and neither I nor Jay were able to arrange for one
for the demo.

I got back to Tilmann after my return and told him, that his
interface was basically a great success. I got people from
our AMSTRAD user group (SCUG) interested and also the
people from the JOYCE USER AG, a German PCW group.
The thing is, besides the easy hardware side, implementing
a hard drive into the BIOS is a different story. We still
don’t have an implementation for the CPC. What a shame!
But, at the same time, I want to report that the implemen-
tation by the JOYCE USER AG people was already suc-
cessful.

I planned to show the PCW GIDE at our club’s 10th anni-
versary. Unfortunately, the drive kit arrived late. The only
good thing was, that a few days afterwards, our regular club
meeting took place. I then arranged to have the important
people there and I brought my PCW along.

After a test run of the PCW showed that it was working, we
went to disassemble the machine. It turned out, that some
of the screws were much longer than expected. Then we
carefully marked all the wires and took off the sheet metal
screen that is used as a high-frequency shielding. Then we
slid out the Main board (right next to the drive(s)) and
removed the Z80 CPU. The kit we had received from
Reiner Seitz contained all of the cables and connectors
necessary. The only thing one has to supply is the power.
No problem, if you only have one drive, simply use the
second drives power supply.

identical to the standard 3.5 inch connectors - but are
reversed between 5 and 12 Voltst!!!

The Computer Journal / #77

Anyway, once the Z80 was plugged into the GIDE, we
immediately fired up the PCW (still without the hard disk
connected), to see if it was all working. It came up fault-
lessly, so we became more audacious and hooked up the
IDE drive. Then we used the special startup disk supplied
by Reiner Seitz. It uses a more up-to-date BIOS version
(1.8) that allows the use of special loader files, a similar
technique like the IMP overlays or such. The big advantage

" with the PCW’s CP/M Plus here is that the banked system

can be hidden and overlaid if enough memory is available.
Thus, the PCW’s TPA stays practically unaltered. This is
fantastic, since all the programs run in no time at all and
behave well. One has to know, there is lots of rubbish about
that uses absolute addresses in the PCW system memory.

Naturally, we used the HDFORM tool from Reiner to see
what it did. It performed a flashy clean-up of the hard disks
directory to allow proper CP/M Plus data entry. Then I
wanted to see more and copied an existing installation of
Z3PLUS onto the hard disk. What shall I say, it ran “out
of the box” in no time at all. The drive in the PCW is
implemented in a superfast environment. It’s performance
may well be compared to 486 speed. Amazing!

I was so impressed, I was smashed to bits. (8)

Then, to top this, a week later, Joerg Linder calls me and
tells me, the KC user group had decided to throw their
“MicroDOS”, a cheap and dirty CP/M clone with added
features, overboard, in order to achieve true CP/M capabili-
ties. We discussed different alternatives and I had sent him
a copy of Hal Bower’'s CHEAPLAN TALK, that I had
filmed on location at Trenton in April *95. So he agreed,
that ZSDOS might be a good choice. I arranged for a

‘package deal, and it seems, the KC85/4 (remember TCJ

back issue #75) will be the first European Computer to use
ZSDOS by standard! Imagine, over 50 people will be using
ZSDOS! Then, I also recommended that they implement
ZCPR34 and got another package agreement with Jay Sage
for the lot.

They had been fiddling about with the garbled operating
system of the KC85/4 in order to not only resource it, but
to finally separate the mixed codes for BIOS, BDOS and
part of the CCP, that by then couldn’t be overwritten!
When they were about to give up, Mario Leubner, the chief
assembler programmer of the KC User Group, found a few
clues that allowed him to rewrite large parts and rethread,
what was going on.

So, to my amazement (again), I got a message from Joerg,
announcing not only the successful implementation of
ZSDOS, but also a new CCP that could be overwritten and
- a fully implemented GIDE drive! They also rewrote the
RAM access and the CPU sharing, which makes the new
KC85/4 practically a new computer. I am pleased to report
all these happy events, that took place in the same period

The Computer Journal / #77

when Bill Gates tried to sell Windows 95 to the Germans.
Do I have to say, his success was poor here?

With all these happy thoughts in mind, I want to wish you
all a successful and happy 1996! (no, it is never too late,
I just proved it above!)

Regards,
Helmut Jungkunz
ZNODE 51

P.S: I filmed the KC85/4 presentation at Z-Fest 95, some of
our 10th SCUG anniversary and also the PCW GIDE test on
Hi-8. I copied this to VHS NTSC and sent a copy to Don
Maslin and Michael Crafton. I don’t know if anyone of
them can duplicate VHS cassettes in decent quality, but if
so, they are welcome to do so.

13

Hands on with PLD's

by Robert Brown

INTRODUCTION

The introduction of programmable logic devices (PLDs)
was a great boon to the field of digital hardware design.
The second generation PLD, the GAL (which stands for
Generic Array Logic, a trademark of Lattice Semiconduc-
tor) is particularly suited for the small scale hardware de-
signer. GALs offer the following benefits to the hardware
designer:

Flexibility - GALSs are very flexible devices, they can imple-
ment both combinatorial logic functions (AND, OR, NAND
etc.) and registered logic functions (counters, shift registers
etc.) on the same chip.

PAL replacement- The GAL16V8 and GAL20V8 each can
directly replace over 20 of the common PAL (Program-
mable Array Logic - the first generation PLD) types each.
This means you only need to stock 2 GAL types to handle
your PLD needs.

. Space savings - In my experience each GAL has typicaily
replaced between 2 and 4 standard TTL chips, saving a
large amount of board space.

Speed - GAL:s are fast devices with propagation delay down
as low as 7 ns. Typical GALs have a propagation delay of
only 15 ns - faster than standard 7400 or 74LS series logic.

Reprogrammability - Not only are GALs programmable
giving the ability to correct design errors and make board
layout easier, they can be reprogrammed up to 100 times.
Erasing and programming takes only a few seconds.

Cost - In addition to the savings in PC board real estate,
standard speed GAL16V8s and GAL20V8s (25 and 15 ns)
cost only a few dollars even in small quantities.

There are several varieties of GALs but I will limit this
article to the GAL16V8 and GAL20V8. They are easy to
design with and are the least expensive and most readily
available GAL devices. Rather then get bogged down with
the internal details of the devices, we’ll cover what is
needed to use these PLDs in your designs and then look at
a real life design example.

14

The Device Architecture

The GAL16V8 is commonly packaged in a standard 20 pin
DIP and the GAL20V8 is commonly packaged in a 24 pin
skinny DIP (a 24 pin skinny DIP is 0.3 inches wide, the
same width as a 20 pin DIP and half the width of a standard
24 pin DIP). The pinout for both devices is shown in figure-
1. For the GAL16V8 pin 10 is the ground pin and pin 20
the +5 volt pin (VCC). Pins 12 through 19 are each
connected to Output Logic Macro Cells (OLMC). The
OLMC allows these pins to act as inputs, combinatorial
outputs, registered outputs and input/output pins. Pins 2
through 9 are always general purpose input pins. If any of
the OLMC are configured as registered outputs then pin 1
is a Clock input and pin 11 is the Output Enable for the
registered outputs. If none of the OLMC are registered then
pins 1 and 11 are general purpose inputs. Internal to the
chip is an array of and/or logic that is configured with each
OLMC when the chip is programmed. The 20V8 has a
similar design, the main difference from the 16 V8 is the
four additional input pins.

The Design Tools

In addition to your PC you will need only three tools to do
design work with PLDs, a text editor, a logic compiler and
a device programmer. A logic compiler is a program that
translates a high level design file, in which the relationship
between inputs and outputs is expressed in the form of
equations, to a low level file device specific file for the
programmer. The low level file used by the programmer is
called a JEDEC file and is sometimes referred to as a ‘fuse
map’. (Earlier PLDs were programmed by literally blowing
up fuses internal to the device leaving only the desired
connections - of course they could not be reprogrammed -
you threw away your mistakes.) National Semiconductor
used to offer a FREE logic compiler before they got out of
the PLD business. You can still get a copy of their PLAN
or OPAL logic compilers off of many BBSes (including
TCJ’s). For the 16V8 and 20V8 you can use either PLAN
or OPAL. The high level design file for PLAN is called an
equation file and uses the extension .EQN, the output JEDEC
file uses the extension . JED’. Since PLAN is available to
everyone I will use it in the examples, the concepts however
are universal, not specific to PLAN. The equation file is a
standard ASCII text file and can be produced using any text
editor.

The Computer Journal / #77

Figure 1.
GAL16V8 and GAL 20V8 Architecture
INPUT 1
or - --=--- +5 VOLTS
CLOCK |
2 1
INPUT I/0
3
INPUT I/0
4
INPUT I/0
AND/OR
s|| ARRAY
INPUT I/0
6
INPUT I/0
7
INPUT I/0
8
INPUT I/0
9
INPUT INPUT
10 INPUT
GROUND —— or
OUTPUT
ENABLE
16V8

INPUT 1
oo —}------ +5 VOLTS
cLOCK '
2 I
INPUT INPUT
3
INPUT 1/0
4
INPUT 1/0
5
INPUT 1/0
AND/OR
6 ARRAY
INPUT 1/0
7
INPUT 1/0
8
INPUT I/0
e
INPUT 1/0
10
INPUT 1/0
11
INPUT INPUT
12 INPUT
GROUND —1 or
OUTPUT
ENABLE
20Vv8

Designing with Equations

If you normally design with standard TTL devices, shifting
to design using GALs might take a slight adjustment.
However the underlying concepts are the same. In the
equations a + is used to represent OR, a * to represent AND
a / for NOT or inversion. In figure 2a show the equation
represent by an AND gate. - Each group of signals ANDed
together is referred to as a product term. Figure 2b shows
the equivalent representation for a two input OR gate. In
figure 2c a more complicated piece of logic is represented,
it includes the use of the / symbol to show inversion. Notice
how the equation is organized. The equations are written
in a sum of products format, a useful convention is to list
each product term on a separate line. The inversion can
also occur on the output as shown is in figure 2d. In the
16V8 and 20V8 up to eight outputs can be defined in this
way (each of the eight OLMC). The inputs for the equa-
tions can come from any of the input or output pins either
normal or inverted. A maximum of seven or eight product
terms are allowed for each OLMC, this depends on the
exact configuration of the OLMC. Given this, it is obvious
that a single GAL can replace several packages of AND,
NAND, NOR and OR gates. But this is only the start.

So far all the examples have used combinatorial logic, in
addition GALs can also handle sequential logic such as
shift registers and counters. To do this the OLMC is
configured as a register (D flip flop). If any of OLMC are
configured as registered then pin 1 is the clock input to the

The Computer Journal / #77

register. Where as an = symbol is used to show a combina-
torial output in an equation, a := symbol is used to show a
registered equation output. For example:

Q := D

The :=indicates that the output Q is registered. This means
that Q will take on the value of D following the rising edge
of the clock on pin 1. Two or more outputs can be combined
to form counters and shift registers as shown in figure 3. In
this case it shows a two bit counter with a terminal count.
The two outputs Q0 and Q1 will count from 0 to 3 continu-
ously and the terminal count indication will be active when
the count is at its maximum value of 3.

The registered outputs have a common output enable at pin
11 on a 16V8 and pin 13 on a 20V8. When output enable
is low the registered outputs are all enabled. If output
enable goes high all the registered outputs will be disabled
(tri-stated). Even when the outputs are tri-stated the regis-
ter outputs are still available internally as feedbacks (so the
counter would continue to work even if the outputs were
disabled). Combinatorial outputs can each have an output
enable defined, this is limited to a single product term. For
example:

X.0eE=8B*C

This would indicate that output X should be enabled when
B AND C are high.

15

. Ut:A
A
B -2 X
7408
X=A=*B
(a) Two Input AND Gate
U2:A
A
X
B
7432
X=A+B

(b) Two Input OR Gate

7408
X=/A*B+ /C*D
(c) AND, OR, and NOT (inversion)
U8:A

U6:A

7404

us:B

4
7404 7432 740

/X = [A*B+ /C

(d) Inversion on the Output (Active Low Output)

FIGURE 2 - COMBINATORIAL LOGIC EQUATIONS

16

A Real Design Example

To illustrate the use of GALSs in a real design, I will use the
main board from a high speed, low cost 16 channel logic
analyzer. The logic analyzer main board uses a total of 17
ICs, of these 2 are static RAMs, 4 are octal latches, 4 are
octal buffers and the remaining 7 are programmed
GAL16V8s. All standard logic was handled by the 7 Gals,
they replace about 20 high speed TTL ICs and make the
logic analyzer buildable. (For more information on the
logic analyzer design download RGBLOGIC.ZIP from the
TCJ BBS, the schematic and all of the EQN files are in-
cluded in the file, so you can review the complete design.)

Central to the logic analyzer is the clock selection GAL.
This allows the analyzer clock to be selected from 5 differ-
ent internal clocks, an external clock or a software con-
trolled clock. The PLAN equation file, CLOCK.EQN is
shown in figure 4. The lines that start with a ; are comment
lines, they are ignored by the compiler and are used for
documentation. The equation file must contain two sec-
tions, the declaration section and the equation section. The
declaration section should appear first and is indicated by
the keyword CHIP. The line:

CHIP clock 16v8

begins the declaration block, it gives the chip a name
(clock) and selects the device type (16 V8). The next part of
the declaration block is optional, but will be needed in most
cases. In this section we assign symbolic names to each pin
on the chip, as follows:

clk nc ext self s2 s1 sO dir wr gnd
/oe sysclkl wrdat sysclkO g4 q3 q2 q1 q0 vce

U3:A _l‘i‘* COUNTING SEQUENGE
. 2 LI E 1 a1 a0 TC
b & 0 Qo o o 0
7404 ilec, spi- o 1 0
£ 1 0o o
T‘ 111
¢ , UBA 7474A
u3:8 .
3 {>¢4 7408 , M4 l‘U“B
3
7404 — 3 2 Jo p ot ai
u3.c UB:B 7432 D bc, gpt— EQUATIONS
P 8 4 L
1 Q0 := /Q0
7404 7408 3747 4A
@1 := Q0 * /a1 +
/G0 * Q1
P, use Jeuza TC := Q0 * Qf
I3
{>° :) 2 o k of-2 TC
7404 -
7108 ilbe. apE—
5
CLOCK T‘7474A
FIGURE 3 - REGISTERED LOGIC COUNTER

The Computer Journal / #77

The symbolic names start with pin 1 and are assigned in
order through pin 20. In this case pin 1 is assigned the
name clk, pin 9 the name wr, pin 12 the name sysclkl and
pin 19 the name q0. If we later need to change the pin
assignments, we simply rearranged the names given here.

The equation section of the file is indicated by a line with
the word EQUATIONS. Outputs q0, q1, q2, g3 and g4 form
"a 5 bit counter (a straight forward expansion of the 2 bit
counter used before). This counter provides several refer-
ence frequencies at the outputs, ql is half of q0, q2 is half
of ql etc. With a crystal oscillator of 40 Mhz connected to
pin 1, q0 provides a 20 Mhz clock, ql a 10 Mhz clock, q2
a 5 Mhzclock, q3 a 2.5 Mhz clock and g4 a 1.25 Mhz clock.
The outputs sysclk0 and sysclk1 use identical equations, so
I refer to them together as sysclk. The sysclk outputs are
combinatorial, they allow the system clock to be selected
from q0, ql, q2, q3, q4 or the inputs self or ext. The inputs
s0, s1 and s2 select which clock is output to sysclk. From
the equations you can see that if s0, sl and s2 are all 0 then
sysclk is the same as the input self. If s0, s1 and s2 are all
1 then the last product term will apply and sysclk will
follow q0. The final output defined in the equations is
wrdat, this is obviously just a simple two input OR function.
I remember that Bill Kibler said he wanted to see the
equivalent circuit in standard logic for all programmable
logic used in TCJ. It is not always possible, but in this case
I had first looked at designing the logic analyzer using
standard logic. The equivalent circuit to this GAL is shown
in the schematic in figure 5, notice the savings in chip count
and cost.

The equation file is compiled with the command line:

EQN2JED -N CLOCK

EQN2JED is the PLAN program that produces the JEDEC
file, this will take our CLOCK.EQN file check it for errors
and if error free produce the JEDEC file CLOCK.JED. The
-n in the command line tells the program to produce a new
log file, rather then append to the existing log file. The log
file produced is CLOCK.LOG. The log file has a lot of
interesting information about the programmed device the
use of each device pin, the product term usage and the
device pinout.

A Memory Decoder

Let’s take a look at a real life example that was suggested
to me by Dave Baldwin. Let’s say that we are designing a
Z80 based system and we would like the memory map to
include an 8K EPROM at address 0000h, a 2K EEPROM at
address 2000h and have the remainder of the 64K address
space filled with static ram (2 32K devices). So a table of
our memory map looks like:

Address (hex) Device
0000- 1FFF EPROM
2000-27FF EEPROM
2800-7FFF SRAMO
8000-FFFF SRAM1

This type of decoding is a pain in the butt if we use standard
TTL devices. We would need several devices and have to
deal with the problems of propogation delays through the
several levels of devices. If we use a 16V8 or 20V8 we can
easily handle this decoding with one 20 or 24 pin device.
Our total propogation delay will be the single propogation
delay of the chip. This means we can have a propogation
delay as low as 5 ns with a GAL rated at § ns. In addition
we can include the decoding of the I/O space on the same
chip.

Figure 4.

; GCLK.EQN Logic Analyzer Ui§
; This is the declaration section
CHIP GCLK 16Vv8

; Pin labels here
CLK NC EXT SELF S2 S1 SO DIR WR GND
OEN SCt WRDAT SCO Q4 Q@3 G2 Q1 Q0 vCC

; Next is the equation section
EQUATIONS

; Q0 - Q4 form a 5 bit binary counter
Q0 := /QO

Q1 := Q0 * /a1 +
/Q0 * Q1

Q2 := Q0 * Q1 * /02 +
Q2 * /Q0 +
Q2 * /a1

Q3 := QO * Q1 * Q2 * /Q3 +
Q3 * /Q0 +
Q3 * /Q1 +
Q3 * /Q2

Q4 := QO * Q1 * Q2 * Q3 * /Q4 +
Q4 * /Q0 +

Q4 * /A1 +
Q4 * /Q2 +
Q4 * /Q3

; SCO and SC1 output the system clock as selected
by
; S0, S1 and S2

SCO = /SO * /S1 * /S2 * SELF +
SO * /S1 * /S2 * EXT +
SO * S§1 * /S2 * Q4 +
/SO * /S1 * 82 * Q3 +
SO * /ST * S2 * Q2 +
/SO * S1 * S2 * Q1 +
SO * St * 82 * QO

SCt = /SO * /S1 * /S2 * SELF +
SO * /S1 * /S2 * EXT +
SO * S1 * /S2 * Q4 +
/SO * /St * S2 * Q3 +
SO * /S1 * S2 * Q2 +
/SO * S1 * 82 * Q1 +
SO * 81 * S2 * Q0

; WRDAT is a simple OR function of WR and DIR

WRDAT =WR +
DIR

The Computer Journal / #77

17

U3
CLR
=% .|
ENT RCO
ENP
ak
A8 o8
C oc
D Q0
74F161
U4
[rcgg% reop—12-
ENS uz
cLK o 74F151
J—a QA
! Enr e
[o]0) D4 w
n74F‘|61 gg Y 8YSCLK
I o1
X1 [0e
SELE
§2 Ac
8 A=)
5
u1eA g
74F32 -
Wi L J—_‘\\ 3
WRDAT
DIR 2 2__//
TTL EQUIVALENT TO CLOCK
us
GCLK
CLK oel—3
$—INC A f—5
EXT 02—Z
s+ Qsf—18
2152 04—
S0 o1
IDIR SCi
—2 WrRe OFs

GAL EQUIVALENT

FIGURE 5 - TTL and GAL CIRCUIT COMPARISON

In this case defining the equations for each chip select
output is very straight forward. We want the EPROM chip
select to be active when address lines A15, A14 and A13 are
low and the Z80 MREQ signal is low. Since the active state
of the EPROM chip select is low we would express the
equation as:

/EPROM = /A15 * [A14 * /A13 * /MREQ

The EEPROM chip select is only slightly more involved.
The address range 2000-27ff is selected when Al5, Al4,
Al2, All and MREQ are low, while Al3 is high. This
gives the equation:

J/EEPROM = /A15 * [A14 * A13 * /A12 * /A11 * [MREQ

The first static ram has the most complicated equation (but
still well within the capabilities of the 16V8). The 2800-
7FFF address space can be thought of as three regions 2800-
2FFF, 3000-3FFF and 4000-7FFF. The product terms defin-
ing each of these regions is then ORed together to define the
complete equation as follows:

18

/SRAMO = /A156 * [A14 * A13 * /A12 * A11 * /MREQ +
/A15 * [A14 * A13 * A12 * /MREQ +
/A15 * A14 * /MREQ

It is obvious that the equation for the second static RAM’s
chip select is:

/SRAM1 = A15 * /MREQ

The complete equation file with the I/O decoding using a
16V8 is printed above. If we wanted finer granularity on the
I/0 decode we could use a 20V8, this would give us 4
addition inputs for address lines, that could be included in
the equations. If we wanted to have a 10 chip select outputs
we could use a GAL22V10. Note that the pin out selected
is arbitrary, in this case we could swap any of the input pins
or any of the output pins just by redefining the pin list. This
is a great aid if you do your own PC board design.

I think this example shows you why I use programmable
logic wherever I can. We have reduced our decode logic to
one 20 pin device. In doing so we have reduced the number
of interconnects, saved PC board space, saved money and
saved both circuit and PC board design time. In addition we
have increased our design flexibility and helped our parts
inventory. If we later find that we must have a 16K EPROM
instead of the 8K EPROM, we can change our decode
circuit by just reprogramming the GAL16V8. We can also
replace our bin of spare TTL chips with few 16V8s. Once
you start using programmable logic you can see the advan-
tages continue to pile up.

; 280 memory and I/0 decoder example - TCJ
; R. G. Brown - ALTA ENGINEERING (860) 489-8003
; Memory Map
; 0000-1FFF EPROM
s 2000-27FF EEPROM
; 2800-7FFF SRAMO
; 8000-FFFF SRAM1
CHIP decode 16V8
; set pinout - can be altered later if needed
MREQ A15 A14 A13 A12 A11 IOREQ A7 A6 GND
A5 EPROM EEPROM SRAMO SRAM1 I00 IO01 I02 I03 VCC
EQUATIONS
/EPROM = /A15 * [A14 * [A13 * [MREQ
/EEPROM = /A15 * /A14 * A13 * JA12 * [At1 * /MREQ
/SRAMO = /A15 * /A14 * A13 * JA12 * A11 * /MREQ +
JA15 * JAt14 * A13 * A12 * /MREQ +
/A15 * A14 * [MREQ
/SRAM1 = A15 * [MREQ
/100 = /A7 * /A6 * [A5 * [IOREQ
/101 = /A7 * [A6 * A5 * [IOREQ
/102 = /A7 * A6 * (A5 * [IOREQ

/103 = /AT * A6 * A5 * [IOREQ

The Computer Journal / #77

Circuit Layout

When using PLDs you must use the same care in circuit
layout as you would neced to with any high speed logic
device. Completely covering the topic of high speed circuit
design would fill a book, but here are some things to look
for. Be careful with the ground and power layouts to reduce
the impedance of these signals to the chip. Use a decoupling
-capacitor as close as possible to each chip’s power and
ground pins.

Device programmers

The device programmer will program the device with logic
as defined in the JEDEC file. Several companies produce
universal programmers in the $500 range. For getting
started with programmable logic the lowest cost program-
mer that I know of is my ALTA ENGINEERING PLD
programmer kit (check the file RGBPLD21.ZIP on the TCJ
BBS for more info). Check the resource list for information
on programmer companies.

If you would like to see more on Programmable Logic in
TC]J, please let me (and Dave Baldwin) know what topics
would be of greatest interest.

Robert G. Brown has authored many articles for other
technical publications. His company, ALTA ENGINEER-
ING specializes in the use of programmable devices to
produce low cost, high quality electronic kits. He can be
reached at (860) 489-8003 (Voice/FAX/FAX Back) or via
EMAIL at 72477.2616@compuserve.com. You can visit
the ALTA ENGINEERING web site at cither: http:/
ourworld.compuserve.com/homepages/alta or http://
www.gutbang/alta.

THE LOWEST COST!!
PLD PROGRAMMER

Get started with Programmable Logic without the
high costs! Partial kits start as low as $40.00.
Complete kit as shown $179.00. Plans and SW
on disk (PC format) $10.00.

Programs the GAL16V8, 20V8 and 22V10.
Call or use our FAX-BACK for more information.

ALTA ENGINEERING
(860) 489-8003 VISAIMC

http://www.gutbang.com/alta

Resource list

Advin Systems Inc.
1050-L East Duane Ave.
Sunnyvale, CA 94086
(408) 243-7000

Alta Engineering

58 Cedar Lane

New Hartford, CT 06057-2905
(860) 489-8003
http://www.gutbang/alta

B&C Microsystems Inc.
750 North Pastoria Avenue
Sunnyvale, CA 94086
(408) 730-5511

Bytek Corporation

543 NorthWest 77th St.
Boca Raton, FL 33487
(407) 994-3520

The Computer Journal / #77

Lattice Semiconductor Corporation
P.O. Box 2500

Portland, Oregon 97208

(503) 681-0118

(800) FAST GAL

Link Computer Graphics, Inc.
4 Sparrow Drive

Livingston, NJ 07039

(201) 994-6669

Logical Devices, Inc.
130 Capitol Drive
Golden, Colorado 80401
1-800-331-7766

System General Corporation
1603-A S. Main St.
Milpitas, CA 95035

(408) 263-6667

Xeltek

757 North Pastoria Avenue
Sunnydale, CA 94086
(408) 524-1929

19

Dr. S-100

By Herb R. Johnson

Introduction

For this month’s column, I’ll discuss
how the S-100 bus accesses and man-
ages memory. This column will also
be an exercise in how to read old sche-
matics! Follow along with the sche-
matics from your S-100 system or from
back issues of TCJ. If you have my
previous column, it will give you a
brief description of the S-100 bus and
its revision as the IEEE-696 bus. A
technical description of the Intel 8080,
8085, or Zilog Z80 will also be help-
ful: the original S-100 bus is based on
these processors.

Mow the Snow & other stuff

Well, nature has replaced the fall grass
with early winter snow, so despite my
hopes that I could stop mowing to work

" on S-100 stuff, I had to clear the drive-
way of snow! There seems to be no end
to home maintenance! Speaking of
home, please note my change of ad-
dress - actually, just a change from
my Princeton office box to my Ewing
NJ home address, as a convenience to
me. Hope your holidays were pleasant
and that the new year is a good year.
Santa got me some boots, a faster com-
puter, and some new engineering work
very nearby!

I’d like to thank Jeffrey Doerschler of
Wethersfield CT for providing his
Cromemco system to the pile o’ com-
puters. It’s a Cromix system
(Cromemco’s 1985 answer to Unix)
and a pile of docs. It will eventually
make for a good TCJ column or two.
And thanks to Keith Andress for con-
tributing a Big Board Z80 system,
some Fulcrum (IMSAI reincarnation)
cards and docs, and various sets of
electronics parts, in exchange for some

20

8-inch diskette file conversion. The
“Dr.” does take in some homeless com-
puters from time to time, or at least
I’ll refer other people to them. For
instance, any takers on the Big Board?
Meanwhile, progress on the GIDE
(IDE hard drive to Z80 interface)
project is discussed in another article
in this issue.

Help: Monitor Dynamics docs?

I’ve had a couple requests recently for
documentation for a Monitor Dynam-
ics hard disk controller. I have a few
of these, and some software, but no
manuals. Anyone out there with a
copy?

Topic: memory and the $-100 bus

Memory management is no small is-
sue, as the S-100 bus started out in
1975 when the biggest memory chips
were 256 bytes (not kilobytes) by one
bit, namely the 2101 chip. So the origi-
nal Altair/IMSAI bus address space of
64 Kbytes was plenty of room. Of
course, the original 8080 processor had
only 16 address lines and could only
address 2**16 address locations,
namely 64K. Memory cards came in 1
kbyte sizes: then 4 KBytes, then 8
Kbytes (sixty-four 2102 chips at that!).
But in just a few more years, larger
memories were available, and bigger
programs were written to fill them up.
Then other processors appeared for the
S-100 bus: the Motorola 68000, the
Intel 8086 and 8088 most notably,
processors that could address more
than 64K locations AND processors
that could read 16 bits at a time. So
how did S-100 designers deal with
these issues? And do it without a lot of
expensive (at the time) chips and cir-
cuit board space?

The Old Days

The original S-100 bus was based on
the signals and timing of the Intel 8080
microprocessor. For instance, lets 1ook
at the control circuits of a Morrow
memory card, the SuperRam 16K of
1978. The short version of a memory
read sequence is: set up the address,
set up the memory read status, and
strobe the data! Each operation corre-
sponds to a bus cycle, as timed by the
bus clock signal (phi)2; but in the old
days the clock signal was not always
used! And, the working practice of the
day was to consider hardware gates as
producing “high” or “low” values, and
a gate was “active” when the inputs
satisfied the logical conditions of the
gate. So, we’ll use that methodology
here as well.

Memory read

To do a memory read, first the address
lines A0-A15 are enabled (Figure 1)
with the proper address. This memory
card uses exclusive OR gates to read
each upper address line and to com-
pare it to a switch setting for that line.
If the state of the line (high or low) is
different from the state of the switch,
the gate is inactive and the output is
high. Note that the four gates have
their outputs tied together: these chips
(74LS266) have what is called an “open
collector” output which allows such a
connection. But a common collector
output can only pull a line down: if
the gate is not active, a resistor must
pull the line up. So for the select line
to remain high, all four outputs must
be high; so each address line must not
match the state of its corresponding
switch. So, a single four-gate TTL chip,
and four switches and several resistors
can select one of sixteen addresses.

The Computer Journal / #77

The last four address lines, A15-A12,
select one of 16 4-K banks of memory:
this card has four sets of such circuits,
for four bank of memory, for a total of
16K of memory. But this signal alone
cannot select a memory board, because
the address lines can be used anytime:
for memory read or write, I/0 read or
write, interrupts, or even “between”
bus activities!

To be read, the memory card must
know the bus operation to be performed
is a memory read. Figure 2 shows the
circuits that examine the bus status
lines. For a memory read, SMEMR
(memory read status) is active and
high, SWO* (write status) is inactive
and high, and SOUT (/O write) is
inactive and low (again, these are how
the 8080 processor works!). So, the
NOR gate which examines SWO* and
SOUT is active, the output is low, and
thus has no effect on the next NOR
gate. But SMEMR is high, so the next
NOR gate is active and low. The fol-
lowing NOR gate has an input from an
inverter connected to the PHANTOM
line. We will presume that input is
Iow, so the NOR now has both inputs
low: consequently, it’s output is inac-
tive and high for the period when
SMEMR is active.

Figure 3 shows a NAND gate that
combines the SELECT signal from one
of the address NOR gate sets (when
the correct address is on the bus) and
the signal from the NOR gates just
described (when memory read status
is on the bus). When both these sig-
nals are active high, the output of the
NAND gate is active low: this /BANK
signal is used to select the memory
bank (via the memory chip’s chip se-
lect line, not shown).

At this point, we’ve satisfied two con-
ditions: a good address, and a good
bus status. So the memory card can
determine this is a memory read, and
that it has been selected. The memory
chips can now take the time to access
their data. But, to actually put the data
from memory on the bus, we need the
bus “read strobe” signal. Figure 4
shows a NAND gate with bus signal
PDBIN as one input, and a NAND
gate with /BANK signal inputs as the
other input. When any of the /BANK

The Computer Journal / #77

signals are active low, the corre-
sponding NAND gate output is inac-
tive and high - that’s good! That be-
comes the input to the NAND gate
with PDBIN. When PDBIN is active
high, and the /BANK gate is inactive
high, the NAND output is active low!
The output is used to enable (Figure
S) the 74LS367 tristate buffer, which
connects the data outputs from memory
(MEM DO signals) to the data input
lines of the bus, DI7, DI6, DIS, and
DI4. Another chip performs similar
service for the other four bus data in-
put lines, DI3, D12, DI1 and DIO.

Memory Write

Whew! That completes the memory
read cycle. Before we forget all this
logic, we may as well run through the
memory write cycle! In this case, the
sequence of operations are: set up the
address, set up the memory write sta-
tus, and then strobe the data into the
memory!

The address lines are set up as before,
no change here. In Figure 2, this time
the SMEMR signal is inactive low,
the /SWO signal is active low, and the
SOUT signal is inactive low. So the
SWO signal makes the NOR output
active low, the following NOR goes
inactive high, and once again this high
selects the bank (Figure 3). Instead of
aread strobe, the bus provides a “write
strobe” signal. When MWRITE
(memory write) is active high, the NOR
gate is active low. This output becomes
the “write enable” active low signal to
the memory chips.

But, before it reaches the RAM chip, it
passes through a 74L.S32 OR gate (Fig-
ure 7), which also has a switch as its
other input. For each bank, a corre-
sponding switch acts as a “write en-
able” switch to otherwise write protect
the contents of that memory bank. This
may seem to be an odd feature, but it
was not unusual in its time.

When MWRITE becomes active, the
processor has already put the data onto
the bus: Figure 6 shows that bus data
out lines DO7 and DO6 are connected
via tristate buffers to the memory chip
data input lines; and that those buffers
are always enabled (the /ENBL line is

tied low).
Bank switching

We have described a scheme to allow
any memory card to take a position in
the 64K memory space of the S-100
bus. Memory cards are selected by
banks, some part of the 64K memory
addressed by 16 address bits. What if
you had more memory? For example,
some ROM that you only used on
power-up? Or some pieces of programs
that you only needed part of the time?
Or a memory mapped video card, that
you only addressed when you needed
to update the display? Then 64K is not
enough memory space!

Solution: since memory is already in
banks anyway, create a scheme to
switch memory under program con-
trol. You need two pieces of circuitry
to accomplish this: a scheme to “ini-
tialize” or “reset” memory to some
original state, like on power-up; and a
scheme to selectively disable and en-
able different memory banks in the
same area of memory. We’ll first de-
scribe this bank switching scheme;
then we’ll discuss the how it gets ini-
tialized.

We saw in the previous section that a
bank of memory can be selected by
address and bus status. Why not make
this selection conditional, by adding a
circuit we can programmatically ad-
dress? Figure 8 shows such a circuit
from an IEEE-696 reference book. This
circuit is accessed with I/O read and
writes, which operate similarly to
memory reads and writes only with
different bus status and strobe signals.
The port address - almost always 40H
and only the first 8 address lines in the
S-100 world - is read from lines A0
through A7 in a circuit similar to Fig-
ure 1. This port address signal, active
low, is inverted (to active high) and is
AND’ed with inverted bus signal
PWR?* (active low for bus writes) and
bus signal SOUT (active high for /O
writes). Therefore, the NAND gate is
active low when the port address is
active and the bus status is an /O
write. This gate signal clocks the
74LS74 flip-flop - er, data latch -
latches the state of its data line D, and

continued on Page 24

21

oo G>— L
IR ——t F Tas20\.6
o >:
10
2] e P o — > W
1oy —1 Figure 4 o o, m,\s__w "e
«
w? L oy | wnorr et s on > u
s B> l:un;r" L ot rem 2w, o, P—(T> 4 ¢
18 Sx ") g“’ Fi 5
. — o,
= Figure 6 igure
ws E>——{m P wos e 00 3 L, o P—ef@> 0
we PO>——t{m, ooy P i s Koo 2 "'ln“'"z"s—_® or2
Ky [@>—— S, o wnord *n o0 1 Ay M:—,—ﬁ-‘>°"
w02 D———in,“m.—"——— "N 01 2 v 00 0 = '::ts:’"n’ > o
w1 @———-—"—l:mw’ni-—— " 01 1 L_l‘m‘
g Oy
PR - S— 1 T S) L -
f o, .
TR > S——_ PRI T
Al0 D—-—J x::u,:v.-L-— " 10 Y
1) o
r : St N
PR AT R -
n B> 18 PS50 C] Sddidd Mt s = A —
s
M0 L) .
i . n bra Y
w > {>c i s 04
45
WU
I B ’{>°u e mﬂtgﬁi St
Bonk Solect
" o> L 9‘%‘ Y oovD._:: ¢ o-o-
o il 3 [w] mc 3 /
3 ’ . WD'—” sivne 0 0=
2 L WD— trverting (i
~cll Il 4
" = L] |1 — 002 - -—O/ . I
omDJ—— -0 Qe rew
. .
v B> >0 i woD>——Po——"o-0 Figure 8

22

The Computer Journal / #77

DIP SWITCH 11

P Y

P SELECT A

S Ve
)

a3 ‘

p——— SELECT B

v Figure 1

NP WITHH N

RS [T>— % \o—<m ;

naire [
R[>

DIP SWITCH #2
AlS
Ald
AL
Al2
B———— SELICT €
AlS
AL
Al13
AR
e SELECT 0
L3
Figure 3
[
SELECT C 1
raLs00 3 g
;.LJ 2
.9
SELECT O 4
sl W b
2
! v
DIP SWITOH £3 e

\
&_?_ssu-x
3 v
1§ ~— 2 I 2 4] cc
F%-"'" ' ’ ::EE e WIES
12 ‘-J C

- " 4 e
s
]
A ¥,
B~ I 10 - o
-4 4083 [] 4)
L

Figure 7

SUPERRAR 16K-A STATIC S-100 MEMORY PAGE T OF 2

BARK SELECT 8 WRITE ENABLE LOGIC COPYRIGHY 1978 &. MORAM

The Computer Journal / #77

23

sets the output Q to that state. This Q
output, labeled “EXMEMADR?”, gives
us a programmable signal to enable or
disable a memory card’s address logic!

And where does the data for this latch
come from? The bus data out lines, DO
through D7. The circuit shows the

. data out lines are tied through invert-
ing buffers to “bank select” switches,
one per data line. All switches are
connected to the inputs of an 8-input
NAND, the 74LS30, inputs that are
otherwise tied high. If a bus data line
is high, the corresponding switch in-
‘put is low. IF the switch is closed, that
low pulls down the corresponding in-
put to the NAND gate. As all the other
inputs are presumably high, the gate
becomes inactive and the NAND gate’s
output goes low. Consequently, when
a switch-selected data line is high, the
NAND output - and the data input to
the latch! - is high. And, if this occurs
when the port is “addressed”, the
latch’s output goes high and stays high
until the latch is addressed and pro-
grammed low.

We’ve now got a mechanism for pro-
gramming a memory bank to be con-
tinuously available or unavailable. Now
we need to initialize this circuit. On
power-up, the bus signal RESET* is
active low. Our bank select circuit
.provides switches to conduct this sig-
nal to the latches’ \PR to set the latch
(enable the bank) or to \CLR to clear
the latch (disable the bank). Now, on
power-up or reset we can establish an
initial memory configuration - say,
with a ROM memory bank enabled.
We can have a ROM program to dis-
able itself and to enable a RAM bank,
after the ROM program has done its
business.

Your mileage may vary

I should note: while this memory bank-
ing scheme was common, it was not
universal! Cromemco, and I think
NorthStar, used similar but not identi-
cal schemes. Check your docs and sche-
matics (or software, if you have
source!) to confirm this scheme. The
reader is welcome to send me an ex-
planation of his or her system’s meth-
ods!

24

Phantom and other methods

But there are other conditions where
memory must be managed that are not
appropriate to bank selection and reset
defaults. How do you tell the processor
to execute a ROM at power up? Or
how does a front panel control the
bus? You jam a jump or other instruc-
tion on the bus. So how do you tell a
memory card to get out of the way of
such an event? Look again at Figure
2, at the /PHANTOM line. When this
line is active low, and the switch con-
nected to it is closed, the signal is
inverted to active high and sent to the
OR gate to disable the memory card’s
read and write strobe decoding. Con-
sequently, the card can be selected to
be disabled (or not disabled) during
PHANTOM operation. I'll leave de-
tails of such operations to another col-
umn.

In addition, really really old memory
cards (IMSAI, Altair, Godbout, etc.)
used the S-100 lines PROT (pin 70)
and UNPROT (pin 20) to set or clear
a latch. The output of this latch would
disable or enable (respectively) memory
write operations for the addressed bank
of memory. The latch would also make
active the /PS (Protect Status) bus line.
This method was a “memory-mapped”
way to provide write protect, much
like the “I/O mapped” bank select, and
was generally performed by a front
panel.

An important note: these lines became
obsolete pretty quickly, and pins 20
and 50 are often grounded on most S-
100 cards. Beware! this will disable
your front panel, so you need to either
unground these pins, or slip a piece of
tape over the pins to isolate them from
the bus connector.

When 16 address bits (or 8 data
bits) are not enough

By the early 1980’s, memory was
cheaper and programs were bigger.
And, as I mentioned earlier, the 8086
and other processors were available
that could address more than the 64K
of memory provided by a 16-bit ad-
dress. Compupro and other companies
began to produce card to an expanded
version of the S-100 bus, which be-

came the IEEE-696 bus. For this dis-
cussion, I"ll simply note that eight
more address lines were added, A16
through A23. It is a simple matter to
decode these lines, using circuits simi-
lar to the ones just described, and to
add the result to the address selection
logic. In the Compupro RAM 17 64K
memory card, (not shown) the eight
lines are compared to eight switches
with a single chip, the 25L.S521 octal
comparator, producing an active low
signal when the upper address bits
match the switch settings. By now, I
think you have the idea.

I’m afraid space does not permit me to
discuss how the IEEE-696 bus sup-
ports the real-time_conversion of the
two 8-bit unidirectional data lines into
a 16-bit bidirectional data path. It’s
kinda neat. I should also note the IEEE-
696 specification includes another bus
signal, PSYNC, that is active high at
the start of every bus cycle (like
memory read or write); and pSTVAL¥*,
which is active low when the address
and status lines are active and stable
on the bus. Maybe next time.

Graphics

Figure 1 through 7 are from the Mor-
row Designs Superram 16K-A manual.
Figure 8 is from the book “Interfacing
to S-100/IEEE-696 Microcomputers”
by Mark Garetz and Sol Libes, M&T
Publishing Inc, 1988 (previously by
Osborne/McGraw-Hill), courtesy of
Supermicro Magazine, Provo UT. Are
they still around?

S-100/1€€€-696

IMSAI Altair
Compupro Mormrow

Cromemco

ond morel

AL RIS S L R

Cards« Docs «Systems

Dl‘. S'IOO

Herb Johnson,
59 Main 8ivd.
€wing, NJ 08618
(609) 771-1503
hjohnson@gluto.njcc.com

The Computer Journal / #77

TCJ Center Fold

CPU280

Tilmann Reh

Now it’s been exactly four years since I described the CPU280
in TCJ issue #53. In that early article, I described the
circuit principles and also some details, but we didn’t in-
clude a schematic of the board (though in TCJ #54, a
photograph of the CPU280 board was printed (p.6), which
was taken at our club meeting in Germany). Now Dave, our
new editor, has suggested to include these drawings as the
Centerfold of this TCJ issue, to give you an example of
current 8-bit computer technology.

So you should now see the circuit drawing of the CPU280,
along with the PCBs part layout and some accompanying
information like bus connector pinout and GAL contents,
on these Centerfold pages.

To give our new readers a first impression: the CPU280 is
a powerful single-board computer using the Z280 proces-
sor, which is an enhanced Z80 core with extended instruc-
tion set (about twice as much instructions and addressing
modes) and many on-chip peripherals. The CPU280 is
build on a standard EuroCard (100x160 mm, or about 4x6.2
inches) and connects to the ECB bus (a european standard
8-bit bus using VME-type connectors).

As mentioned in that early description, the circuit design of
the CPU280 is really straightforward, though it might not
seem so at the first glance. The drawing might appear
rather complex because it is all combined on a single sheet,
while the functional circuit blocks are much simpler. We
might devide the circuit into five parts:

1. CPU basics

2. Memory interface
3. Onboard I/O

4. ECB bus interface
5. Glue logic & GALs

1. CPU basics

On the CPU280, the Z280 processor is used in 16-bit mode.
This means we’ll have a 16-bit multiplexed address/data
bus, and “Z-bus” type control signals (as used by the Z8000).
So we definitely have to latch the 16 lower address bits on
each memory or I/O access (IC2,IC3) to get a static 24-bit
address, and we also have to decode the Z-bus lines (espe-
cially its status lines STO0..3) to get appropriate access sig-
nals. Upon reset, some basic operating parameters of the
Z280 processor can be set up by asserting /WAIT during the
rising edge of /RESET and placing the configuration data

The Computer Journal / #77

on the lower data bus. After /WAIT is released, the proces-
sor starts operation. This configuration is done by the
circuit around IC5, with /WAIT delayed by R1/CS, while
RN2, RN6, and R4..7 supply the configuration data to the
processor (depending on the jumpers J1..4). Note that the
reset signal to the Z280 itself is fed through a GAL to
satisfy the CPUs rise time needs. The 2280 chip also
contains a serial interface (UART) and a four-channel DMA
controller, which are used within the CPU230.

2. Memory interface

All memory accessible by the Z280 is located onboard.
Since the Z280 supports different timing for two memory
areas, EPROM memory and RAM memory each use a dif-
ferent area. There are two EPROMs (1C9..10) to hold the
16 bits of data, while four 4-bit RAMs are connected “in
parallel” for 16 bit. Interfacing to the EPROMs is as simple
as can ever be, however the RAM circuit is somewhat more
complex. It uses a fully synchronous timing chain (IC30,I1C4)
and some glue logic contained in GALs (IC21..22) to pro-
vide the necessary signals for the dynamic RAMs (IC11..18)
and their address multiplexers (IC19..20). (The principle
of the timing chain is that a logic ‘1’ is shuffled through the
chain with each clock pulse during memory accesses.) To
support the Z280s burst mode (used to fill up the internal
cache memory), the GALs also contain logic to increment
the lower address bits and generate separate /CAS pulses
for each in-burst access.

3. Onboard 1/O

The I/0 circuit is rather simple again. All decoding is done
in a GAL, which provides differently sized address areas for
each select signal. The on-board I/O consists of the floppy
controller (IC28), a second serial interface (IC31), and a
real-time clock with non-volatile RAM (IC27). There fur-
ther are two general purpose ports for bitwise input and
output, GPI resp. GPO (IC26,IC25). The floppy controller
uses one channel of the Z280s DMA controller to transfer
data to/from memory.

4. ECB bus interface

The interface to the ECB bus supports 1/0 transactions
only. Due to the speed limits of the bus, I/O accesses are
stretched to meet the standard 6 MHz Z80 timing, while
appropriate Z80-type control signals are generated. The
processor clock is also divided by two for the bus, and the

Center Fold Section 25

CN1

858828328 gel2zreel

g
IIIJ (BegaldszBdsdanny FEEEE =%
63 6] 013 “i"g"" ; T B ENIEY O
88| |s8 - V8 o0 .
kX o
ol ol x| sls aas«.aslnietljv 2 (N)
EOEE E aHERTIIERYRIpE S 2
) a -
ggg ufE) €1 J"‘ F -5~ O
OREd .« U EglE
§ 52 Qggg =58 58%esanaaR2n | " ¥ £
o AR Clelee &[] I
E] - ”Q “255 a -
54_, 5l¥ QLEL‘@&@L@ 2t g 832 EQ 3
o 2 ~ferfe h k Eg
S eH §H§r ?ﬁj%a § X0 i%’j LELELLEERSH
H M S H B B] b ..“'“..2'.:: n] vlolale Al E g
<52 : " l [s8858:88 QJ‘J%“J'“'J JJ@J"] e
gs3 - 8% cgﬁu.'ﬂ:l i 5]
I '!M%Ltug slatalalslal Blololelel .
- % ool el Nalelelol 2
8{"(5(3[5? 2fa Brarasalsaa gﬁrf(gs’e[ﬂ S oo
R5EE5BAD aséfz‘ssaé 220
a1 o131 :I (')OG
ZIS/9PETILT 019601 Siwam 3 8§$ ——
gzyotereeedEIIovY T 8j5sle| 2|8)3)a] l8|2)z] 2)2))
SQIQE® !{mt%‘:sazﬁ%g z ﬁ@kﬁﬁlﬁ% ELE gL %w o :im?:ns 552%“3 ;ilgt?:lg Eév»?:ng
ol 4 (o (0 - 2V ®
efcfolefz/efele ofefel(ofo(cle e gg —I: o
SN2 nlo] THal2le/e!®l~) 4
88 By i a e
-—3 onfe[n -.'.av."svnln ’!W L 'ﬁj ﬂ: N
T T :’:: iaw ‘—'_::M @ﬁ
slelplatateiabl 8 slalslelolglslel pee—en 52 , o DH
e s {1 & N [w3 SR O x
i J_H“M%‘ e T -+
3 ;E[;r <Jsfcl|nlxlsfsi~|s|afs]€ ';I_ y 3888 %
d zli EEEERRIINREE = -
Sl L8
l4.d
o
DeaN~0 L [.‘_E o §
GegaaahBpdBenysg ¥ S
«Ialulnlzl‘:ﬂ:l:tmwe S[R[[N] I8 Fq
b llsleisbletel |8)
n
o *R [
i — &
§
dq 4§ 3

26 Center Fold Section The Computer Journal / #77

ECB-bus pinout:

Physical connector: VME-type 64-pin;, rows a+c used.

A7
D8 (A16)
- IEI o
D9 (M17/A18) L
,.;;’mo (A18/A20/- 12V)

-12v :
. TEO
. AT
A0 v
D13 (A16)
{INT
/WR
D12 (A21)
/RD
JHALT
/RESOUT |
A2
AtS
oK
- /MRa s
JRESIN
GND

The 13 pms marked thh an asterisk have dlﬁ'erent mean-
ing, depending on the maker of the boards. The original

Note that Kontron'dcﬁned the bus with

- data lines. When more memory address

o forZSO-based computers “people simply
o from Al6 up, using some of the “free”

_ nately, each maker took different b‘nes""M_a‘j

* of the (common) philosophy to prevent bay

: Lucklly most of the miore sxmple {or th
~ need the bus only for simple tasks; like the
7 only the common subset of the bus; so ther

--where no problems arise.

_ processor signals, since this is where thi
~ from. So, for timing and meaning of th
. _refer to the Z80 CPU data sheet. Bmides t

additional signal lines are just the p

meaning defined by Kontron (the company which in
duced the ECB-bus) is always printed first. Addition
redefinitions by other makers are printed i
The dxﬁ‘erences concern three sxgual types

dnﬁ'erent makers are combmed'

purchasmg anythmg from another maker

rupts (IEI/IEO) and DMA (BAI/BAO/RDY)

N
hd CcK2 ofd % ¥ M
0r3 L0 dyica .Lz ‘i U'L‘-é
- & b2e han 53 T A
*73 S ok LIS i — e
914 1c29 2 \ R R7 —
F1Y 1134 10
14
oF CKigy 245 %_
85 — | Z
Z
N o= ICé h—
N S hz« J%-_ o
1c8 .
& M =
sk |g 288 5] | @
S B e = |8
. 3 VIS o
i 3 —
8 ?xcza
| (1sv8 ¢sys E]czz —_—
<o 2| |2a| [ge 16U8 (c::) i_
22 1c32 jadny == i 20—k 5—-
:"Flz 5 —ms 8 @ N r r ——
R2CEFOOR1o g l121518 1815181 (5he1 e —
_Wpﬁ § g I g ¥ I S :[LA 1L —
l wile wljo ©|in ol hys -—
1 1 =1, 8 ——
oA .
- = rwelEllEl sliel sl ellz] 2 L
« c3 —‘_gj) o :J j) o _Zy o
g2 BB BE BIE ¢ e H

The Computer Journal / #77 Center Fold Section 27

divider flipflop is synchronized for every I/O access to CPU260 GAL EQUATIONS

exactly reproduce the Z80s phase relationship between con-

: : TITLE CPU280 RAM-TIMING NI MODE
trol signals and clock. To provide support for external auton gl AND NIBBLE fozn
interrupts from the bus, some extras were added (/M1 to DAV R I n g0

simulate interrupt acknowledge, special I/O decoding to

simulate RETI instruction fetch for the bus). External

interrupts might use external vectors (Z80 peripherals) or £308 &0 A M e O o ¢FR voe

an internal (fixed) vector. The non-maskable interrupt also
_is connected to the bus. Note that there also is a refresh

signal (BRF) generated for the bus, although there is no ¥ . oA +'53 + MOA * /MUX * AT + WUX * /MAD

external memory support. This signal is to support L/O- '/‘:;n:' 14 » a4 sdaa + M A2 ¢ MUX * MAD + MUX * MAI
S

CHIP Z280RAM PALCE16V8

EQUATIONS
JOE * /DS

based RAM-disks built with dynamic RAM. CPURES = RES
5. Glue logic & GALs

TITLE CPU280 CAS-DECODER 1C22
‘Looking at the four GALs containing all the “glue logic”, % 50,08, 1962

I must admit that it took some time to design this part of the
circuit. When designing a complex circuit like the CPU280,
I first make drafts of all the main functions I need, and SLk B¥ 8% RBFSH 20 A A AZ2 GOn CASIH VCC
don’t care much about the glue logic which is necessary to
make them work. After all functional blocks are designed,

I collect all the glue logic and try to combine it in a senseful B ‘/‘gf: * oA

manner. This results in some standard TTL parts (like

flipflops, multiplexers, inverters, buffers etc.) and some b L e T L o AP Ao B
remaining “glue” which I then try to fit in as few GALs as { GLK + NCK + /AW) + RFSH * /MUX * MOA

possible. I could also have used a larger PLD, but I Still /CASOM = MUX * /RFSH * jA22 * JA21 * [A20 * [A10 * BW * [AD
+ MUX * JRFSH * [A22 * [AZ1 * [A20 * [AIG * /BN *

CHIP Z2B0CAS PALCE16V8

EQUATIONS

prefer the smaller GALs for some reasons. So after I knew (CLK + NCK + /RW) + RFSH * /MUX * MGA
the functions which should be programmed into GALS, I i\ . wux « jarsm + jazz * /A21 * /A20 * A19 * BN * AD
started puzzling inputs and outputs to need a minimum + MUX * /RFSH * JA22 * /A21 * [A20 * A1 * /oW *

. . . 0 *
number of GALs. This surely is more work than is obvious (/LK + NGK + JRW) + RFSH © /WX * MOA

;] i JCASTH = MUX * /RFSH * /A22 * /A21 * [A20 * A19 * BW * /AO
when seeing the final result! Though much more versatile N s REE o R2h At A2t e IA20 + AYS * [EW *

than PALs, GAL:s are restricted in what you can do, mostly (CLK + NCK + /RW) + RFSH * /MUX * MQA
because there are only eight outputs per chip. Some times

I thought I had found the optimum combination just to ;¢ CPU280 SYSTEM-SIGNALS 1623
realize that one of the GALs would necd nine output lines ~ AuTHoR TILMANN REH

for it (of course two outputs were free at another GAL then, il R ST os0

.or even some inputs at the particular one!). Oneof the main 1, ;o000vs paLCE16VS
rules when optimizing GAL circuits is to connect any given
signal to a minimum number of GALs. For this, you 3;: "On RAS how 'é?o"ﬁ,‘%}sﬁzﬁuﬁé“x‘fg"vcc
sometimes have to “cascade” two or more GALSs, like Idid o arions
with the I/O decoder on the CPU280: the system decoder
GAL (IC23) decodes that there is an on-board 1/O access, :ﬁis
while the I/O decoder GAL (IC24) uses this signal to fur- ,/‘32"
ther decode which 1/0 device was selected. (When cascad-

/AS

AS

ST3 * JA23 * /DS

ST3 * A23 * /A22 * (/AS + NAS + NNAS)

/ST3 * /ST2 * /ST1 * STO * { /AS + NAS + NNAS)

: MOA
ing GALs, however, you must keep an eye on the overall grsu = ys1a + /s12 + /5T1 * 8TO
timing) During GAL optimization, sometimes you also /810 7 /318 [8]2,7 ST L ISTO Az3 * jAz2 /A21 * /DS

modify the functional block circuits to make more efficient /x10
use of the glue logic. At that point, you have to enter the ju
loop again and restart collecting and optimizing all “glue”

/ST3 * /ST2 * STi /STO * JA23 * A22 * [A21
/ST3 * 872 * /STt
/ST3 * /ST2 * ST

/ST0
/STO * [A23 * [A22 * A21

+ R EN DU+ + BN

.
- L]
» x*

/ST3 * /ST2 * ST1 * /STO * /A23 * [A22 * A21
* *
* »
L] *

needed. I did this with the CPU280 several times, before
the circuit made perfect use of all TTL parts and GALs, TITLE CPU280 10-ADRESS-DECODER IC24
. minimizing total chip count. But the result can be seen, at ER, iy
least in my opinion: With four cheap standard GALs, the bate 24.03.1092
total parts costs are much lower, the PCB layout much cup zz8010 paLceteve

easier, and support is much better, than with a single large o o y10 ps a6 A5 A7 0E 1€ oND

PLD! NC UART GPO GPI RTC DACK LDOR LDASR FDC VCC
] EQUATIONS
Tilmann Reh, Dec 1995 [RTC = /XIO * /A7 * /A8
JFDC = /XIO * JA7 * A6 * [AS
- . - DAC = - * A6 *
Ed: Just after Tilmann sent me this, Zilog announced that L A e i s
i i JLDRSR = /XIO * A7 * /AB * A5
they would stop making the Z280 in early 1996. prrtliial ot A et
JGPI = /XIO * A7 * A6 * A5 * /IE * /0S
= * *

/GPO /X10 A6 * A5 * JOE * /DS

28 Center Fold Section The Computer Journal / #77

R i o]

The First TRS-80

By Gary Ratliff

Older iz ystems

All Readers
TRS-80 Model 1

INTRODUCTION

The Radio Shack line of computers was one of the most
prolific lines ever manufactured. They made computers for
the Z-80, the 6809, the 68000, and the 80x86 lines of chips.
These of course utilized many different operating systems
and offered many varying flavors of the BASIC computer
language. XENIX was offered on the computers which used
the 68000 chip, while 0S-9 was offered on the COCO with
the 6809 chip set. The Z-80 chip had several operating
systems available for it including the CP/M system with its
vast line of business software. But there was also TRSDOS,
and LDOS among many others from Radio Shack.

For this article, we’ll concentrate on the TRS-80 Model
1 where it all began. The Model 1 is the oldest model of the
TRS-80 line and therefore the most likely computer to lack
support and documentation. This was (with the Apple I and
the Commodore PET) the very first of the ‘ready to use’
computers. Other computers at this time were assembled
from kits while these were immediately usable once they had
been removed from the box and connected.

The December 1975 issue of Popular Electronics ush-
ered in the computer age for the masses which makes the
personal computer twenty years old. These first kits came
with 256 bytes of RAM, and a set of toggle switches for
entering programs. They used an 8080 microprocessor chip
and were mostly built from scratch by the purchaser of the
system.

There were those who were fascinated by the new com-
puter, but unwilling or unable to build their own computer.
So once the new computer kits began to sell like hotcakes,
other manufacturers began to enter the market with ready-
to-use computers. The PET, Apple, and the TRS-80 domi-
nated the market for these types of computers.

The material for this article was gathered from the
books listed in the Bibliography. A 1978 guide to buying
one of these new computers called THE HOME COMPUTER
HANDBOQOK states that all three of these companies’ com-
puters (PET, Apple, and the TRS-80) have the S-100 bus
while none of them did. So some of the books of this era will
contain errors.

The Computer Journal / #77

THE TRS-80 MODEL 1

So what was the Model 1 and what was available in the
Level 1 instruction set? The smallest configuration for the
Model 1 computer consisted of the screen display, a key-
board, a cassette tape recorder, and 4K RAM. Radio Shack
soon offered the following line of expansion kits for this
computer:

1) 16K RAM (Up to 3 of these for a total of 48K RAM max.)
2) Level I to Level I ROM (added many BASIC statements
and made the computer suitable for business use.)

3) Lower Case Kit (at first only Upper case letters were
available.)

4) Numeric Keypad Kit

5) RS-232C Interface Board (this added the ability to link
your Model 1 to other computers and data services.)

6) Double Density Kit.

All that was required to use the Model 1 was to plug it
in and connect the keyboard and screen display cables. A
cassette unit was required for storing and retrieving pro-
grams. There were initially problems with both the key-
board and the cassette unit. There were also different model
cassette and keyboard units. The CTR-40 and CTR-41 tape
units which came with the first Model 1’s required that the
lead into the ‘REM’ jack be un-plugged prior to reposition-
ing the tape in the cassette unit. The CTR-41 also needed to
have a dummy plug in the MIC jack at all times. The CTR-
80 which was introduced by Radio Shack in early 1980
corrected this problem and does not require the use of the
dummy plug at all.

Another common problem with the earliest cassette units
was selecting the proper recording level. Cassette units
made prior to 1980 were offered a free repair to correct this
problem. This repair was to install a small capacitor to filter
out a noise spike and make the cassette unit less sensitive.
It was recommended that you try to save some programs and
re-load them. If this doesn’t work, adjust the volume level
in tiny increments and, once a reliable setting is found, mark
the setting with “white out”. The recommend volume set-
ting for the CTR-40 and CTR-41 unit was between 4 and 6,
for the later CTR-80 unit was between 3.5 and 4.5.

After much use, the cassette unit required de-magnetiz-
ing. There were special wands for this. Whether this was
actually needed was debated. Anyway, the process was quite
a bit of fun. The cassette unit was opened and the buttons

29

pushed so that the head was protracted. Then and only then
was the wand plugged in. You started at about 18 inches
from the cassette unit and passed the want in a path overt the
length of the cassette unit. On each pass the wand was
brought a little closer to the read-write heads. The wand was
passed at a slow steady pace and eventually reached as close
to the heads as you would dare come. Some wands had a
clear plastic cover to prevent the tip from scratching the
read-write heads should they inadvertently make contact.
‘Now the process was reversed and the wand was slowly
moved further away from the heads until the starting dis-
tance was reached. Here the wand was un-plugged and the
cassette unit declared de-magnetized.

Another common problem was keyboard de-bouncing.
There was a special tape which was loaded upon first start-
ing the computer session. This tape was also supplied free
to purchaser’s of the first Model 1 units. This problem was
eliminated from the later models of the TRS-80.

The use of the Model 1 TRS-80 is almost the same as
knowing how to program in the BASIC computer language
which this model used. For completeness, we will introduce
the Level 1 commands. But if someone was serious about
developing useful computer programs, they needed the up-
grade to install the Level II ROM set or to buy a Model 1
with it already installed.

The Level One BASIC command set was limited to
these instructions:

LET, IF, THEN, REM, MEM, ABS, INT, RND, RND(0), AT,
CLOAD, CSAVE, DATA, INPUT, INPUT “ (Prompt Message.)
« INPUT#, PRINT, PRINT AT, PRINT TAB, PRINT#, READ,

RESTORE, TAB, USING, CLS, POINT, RESET, SET, CONT,
LIST, LIST # (list program from line number # to
end, or from start # to end #), NEW, RUN, RUN # (Run
from line number #), END, FOR, GOSUB, GOTO, NEXT,
ON, RETURN, STEP, STOP, TO.

In addition, Level I BASIC supported the logical opera-
tions AND and OR, but used the symbols ¢ and + respec-
tively. A Level II BASIC Statement like “IF A AND B”
could be coded in Level I as “IF A * B” and the statement “IF
A OR B” would be coded “IF A + B”. The common math
operations addition (+), subtraction (-), multiplication (*),
and division (/) were supported. The logical operations less
than (<), greater than (>), equals (=), not equal (<>), less
than or equal (<=), and greater than or equal (>=) were also
supported.

An interesting feature of the Level I BASIC system was
that it supported a method of entering these keys using
shorthand. (The Commodore PET also had a shorthand
method for key entry and these were detailed in an early
article I wrote for MICROCOMPUTING called “PET Short-
hand COMPLEAT”.)

These were achieved mostly by entering the first letter
of the keyword followed by a period. The complete list of
keywords which could be entered via the shorthand method

is as follows:

PRINT P., NEW N., RUN R., LIST L., END E., THEN T.,
GOTO G., INPUT IN., MEM M., FOR F., NEXT N., STEP

30

S., STOP ST., CONT C., TAB T., INT I., GOSUB GOS.,
RETURN RET., READ REA. (both are four key strokes so
there are no net savings) DATA D., RESTORE REST, SET
S., RESET R., POINT P. PRINT AT P.A.

As I mentioned earlier, the information comes from printed
sources which may contain errors. This source lists an A.
without any clue as to which command is being given short-
hand. Also is list RESET as R. and RND as R. while also
having RUN as R. logically these can not be true. The other
inconsistency was that S. could be used for both SET and
STEP while R. is given for RUN, RND and RESET. One of
the disadvantages of writing about antique computers would
seem to be the fact that the data supplied by books which are
long out of print may not be verified unless the antique
computer in question is part of you computer collection.
Although I did shop in the flea markets and other outlets for
a Radio Shack computer to use to verify the article, the
oldest I could locate was a Model 4 computer. The only
consolation I can offer for the possible fact that the material
may not be correct is that I have seen the rumor to the effect
that a mint condition Apple I computer commands $25,000.
If you have a mint condition Level I BASIC Model I TRS-
80 it may also command a high price.

MODEL I LEVEL II BASIC

After the Model 1 Level 1 BASIC, there was LEVEL 11
BASIC. Level 11 BASIC gives the user a very complete set
of the BASIC instructions which may be used for math and
business. Level I BASIC was not even able to be ported to
LEVEL II BASIC without the use of a special program
called CONV. There were several differences in the syntax
of statements. An example of these differences are: Change
the Level I PRINT TAB(5), “HELLO” to PRINT TAB(S)
“HELLO” or PRINT TAB(5); “HELLO”. This is the pur-
pose of the CONV program.

The easiest way to determine if you have the Level I or
Level 11 Model 1 ROM set is to use PRINT AT and PRINT
@. The first is acceptable with LEVEL I while the latter is
acceptable using Level I ROM’s. The encyclopedia men-
tions that there is very much upward compatibility between
this and the other BASIC’s offered by Radio Shack. Hence,
the examples presented should be usable on any Radio Shack
computer using the Z-80 chip.

Since this article can’t be a complete course in using the
BASIC language for the Model 1, we will concentrate on
some specific areas. These will be the use of the graphic
commands, using the EDIT mode to correct errors, and the
use of machine language with the Model 1.

GRAPHICS

The key to graphics is the use of the SET, RESET,
POINT, CLS and PRINT @ commands. The screen of the
Model 1 is divided into 16 rows of 64 columns; this is a total
of 1024 elements. The first line would be numbered from 0
to 63; the second from 64 to 127; the sixteenth from 960 to
1023. (A Basic program to obtain the address of the first
location of the 16 screen lines would be as follows:

The Computer Journal / #77

10 FOR I = 0 TO 1023 STEP 64
20 PRINT I
30 NEXT I

A run of this yields these addresses: 0, 64, 128, 192, 256,
320, 384, 448, 512, 576, 640, 704, 768, 832, 896, 960.)

For the purposes of the SET, RESET, and POINT com-
mands, these are broken into finer areas. Each location is
broken into 2 vertical units and 3 horizontal units. These
range from 0-127 in the vertical direction and from 0 to 47
in the horizontal direction. The SET command will turn
that specific screen area to white and the RESET command
will turn that area to black. The POINT command is a
logical operator which returns the value true if the location
is SET and false if the location is RESET.

You can use the CHRS function to obtain much faster
graphics than from setting and resetting individual loca-
tions. The non-standard ASCII characters from 128 to 191
are used for graphic characters which could otherwise be
generated by the set and reset commands. Each character
location is divided into two by three locations. These would
be assigned weights 1, 2, 4, 8, 16, and 32. To these a base
number of 128 is added. Therefore, the command SET (0,0)
which lights the extreme left hand corner pixel could be
obtained by the alternate command:

PRINT @ 0,CHR$(129).

The form of SET, RESET and POINT is SET(X,Y)
where X is the vertical coordinate and Y is the horizontal
coordinate. Our example SET(0,1) would light the block in
the second row in the extreme left. A check of the above
weights shows that the value to add is 4. And since 128 +
4 is 132, this would be achieved with PRINT @ 0 CHR$(132).
Where the savings is realized is if a graphic were to be
constructed which would use the SET(0,0) to be followed
with the SET(0,1) command. Here two pixels are to be lit
in the same “character”. These have weights of 1 and 4. So
lighting these two areas is realized by the command PRINT
@ 0 CHR$(133) where 133 = 128 plus the combined weights
of 1 plus 4.

This result may also be obtained by using the screen
address and the POKE commands. The weight to use is
calculated in the same manner as the value to use in the
CHRS statement (128 plus the individual weights). For the
Model 1 computer the beginning address of the screen is
15360. So the same effect may be obtained from PRINT @
0 CHR$(129) as from POKE 15360,129. And from the
second example PRINT @ 0 CHR$(132) would be POKE
15360,132.

The range of the screen is the same 1024 screen posi-
tions. The addresses which the screen occupy are from the
initial address which is 15360 to the initial address plus the
screen length or 16383. Since the PRINT @ and POKE in
this example perform the same task, using the above infor-
mation it is easy to translate from one form to another.

One common task is to fill the screen with all set items.

This is to “white out” the screen. Since we want all six
blocks set and these have weights as explained in an above

The Computer Journal / #77

section, we combine the weights and add to that the initial
128 to obtain the value: 191.

The following statements each will “white out” the
screen:

FOR I = 0 TO 1023: PRINT @ I CHR$(191); : NEXT I.

FOR I = 15360 TO 16383: POKE I,191 : NEXT I.

Note that in this example another feature of LEVEL II
BASIC is demonstrated; that is the use of the : to allow for
many statements on the same line. This technique is often
used to save computing time in statements. However, it also
makes the programs more difficult to follow. From the
structured programming standpoint each statement should
have one command and be on a separate line.

Creating graphics as you can see from the details pre-
sented above requires much patience and planning. A sheet
of graph paper will aid in determining which blocks should
be set or reset to create your work of art.

BASIC AND MACHINE LANGUAGE USE

As the last section introduced an important memory
address and demonstrated how to manipulate that address
directly via the POKE statement, the next area we wish to
explore is the use of linking to machine language.

The important commands in this type of task will be:
PEEK, VARPTR, USR(x), SYSTEM, and POKE. VARPTR
is used to find the location of a variable in memory. Its form
is B = VARPTR(AS), B = VARPTR (C) etc. The USR
function is used to run a machine language routine. Its
address must first have been POKED into memory locations
16526 and 16527. It must have also been converted into
proper Z-80 address format.

At this time it would be appropriate to discuss the
memory layout of the Model 1 Level II BASIC TRS-80
computer. This example will assume the full 48K comple-
ment of RAM memory. The memory addresses from 0 to
12287 are used for the 12K ROM which contains the Level
11 BASIC Interpreter. As previously mentioned 15360 to
16383 contain the video screen. At 16384 is the start the
Working Storage area used by the interpreter. This area is
followed by the area used to store the program itself. Then
this area is followed by the area reserved for storing the
variables and arrays used by the program and the area used
by the system stack. The rest of memory is free memory.

If you intend to use machine language routines, the first
step would be to reserve an area in the top of memory which
will not be altered by the BASIC interpreter. In the 48K
RAM system we have just described the memory runs from
addresses of 0 to 65535. To reserve memory, just enter an
address value when the Level 1I system asks for “MEMORY
SIZE?”. Here entering 64000 would reserve memory loca-
tion addresses from 64000 to 65535 for use in the machine
language routines.

31

The machine language program may be entered by using
the Editor/Assembler tape, by hand assembling the program
and poking it into the system, or by forming the assembly
routine into a string which is built up using the CHRS
command. Each of these methods is covered in the book by
William Barden Jr cited in the bibliography. Since it’s
probably impossible to obtain a tape based assembler/editor
at this date in time, the POKE method will be demonstrated.

~ For doing this a complete reference to the Z-80 instruction

set is mandatory. Two works which have very complete
appendixes are cited in the bibliography.

The routine we will code is the machine language ver-
sion to “white out” the screen which was presented in the
previous discussion of graphic statements. As mentioned

_earlier, this article is a compilation of information gathered
from various books which I was able to locate. The routine
presented below is from the book by Barden. (It is not wise
to try to paraphrase machine language programs!!):

H COMMENT (Decimal Code}

WHITE

LD HL,15360 ;Screen address 33 0 60

LD DE,1024 ;fill count 170 4
LooP

LD A,191 ;white char 62 191

LD (HL),A ;white screen 119

INC HL ;bump screen 35

DEC DE ;decrease count 27

LD A,D ;get msb 122

OR E ymerge lsb 179

JR NZ,LOOP ;loop if not done 32 247

RET ;jreturn to basic 201

Let us now create a simple basic program to read the
above machine language program into the memory area we
have previously reserved, set up the machine language point-
ers for the USR function, and call the machine language
routine to “white out” the screen. This is presented below:

10 DATA 33,0,60,17,0,4,62,191

20 DATA 119,35,27,122,179,32,247,201
30 FORI = 0 TO 15

40 READ X

50 POKE 64000 + I, X

60 NEXT I

70 POKE 16526, 0

80 POKE 16527, 250

90 A = USR(0)

100 GOTO 100

The above program has the decimal values for the ma-
chine language program which was hand assembled placed
in data statements. These are poked into the 16 memory
locations starting at 64000. This area was previously re-
served when the machine was first turned on. The next two
pokes in the program set up the memory locations 16526 and
16527 to hold the address of the assembly routine we have
just assembled. Addresses in the Z-80 are stored least
significant byte first followed by the most significant byte.
Here the concept of page addressing may make this clearer.

The 65535 byte address space may be thought of as 256
pages of memory each of which contains 256 bytes of memory.
The proper form for storing an address would be byte fol-
lowed by page. Here the address 64000 is very easy as it is

32

an even multiple of 256. (64000 /256 = 250 with a remain-
der of 0) So the byte value is 0 and the page value is 250.

Once the addresses for the USR function have been set,
we call the machine language routine and then we enter an
infinite loop to avoid having the READY message disturb
the freshly drawn screen. Pressing the Break key will get
you back to the interpreter.

The Barden text also shows how to place the routines
into a dummy string and use the VARPTR to find this
address and then call the assembly language routine.

The advantage of the assembly language is that it is
much faster than the earlier examples of BASIC code to
accomplish the same function. Because the Z-80 chip uses
relative branching instructions which the earlier 8080 chip
did not have, it is easier to code routines which are able to
be located anywhere in memory. Also as this example
shows, machine code is generally shorter than the equivalent
BASIC statement. This is especially true if you get a full
memory map and utilize the power of the assembly routines
which are already in the Level II ROM’s.

EDIT MODE COMMANDS

This brings us to the third and final area which we are
going to discuss in some detail. That is using the BASIC
EDIT command to correct syntax errors. If the lines are
short and have only one instruction it is perhaps easier to re-
type the line, but when multi-statement lines or long lines
are used the EDIT command provides a convenient method
to correct program code.

Let us now create a short program with some errors to
illustrate the use of some of the EDIT commands:

10 FOT I = 1 TO 25
20 PPRUNT I
30 NIXT I

Now when the ‘RUN’ command is issued, the BASIC
Interpreter reports ‘?SN ERROR IN 10’ and types the
‘READY’ message and automatically enters EDIT mode by
typing the offending line number on a separate line: *10_’
(Where the _ shows the position of the cursor as it waits for
our command to use the EDIT commands to correct the
line). Here hitting the ‘L’ key will list the offending line as
10 FOT I=1TO 25'. We observe that the ‘T’ is the culprit
of this particular error message so we press the ‘S’ key
followed by ‘T’ to search the line for the first occurrence of
the letter ‘T°. The cursor advances to the ‘T’ in ‘FOT’.
Next, press the ‘C’ key followed by the ‘R’ key to change the
offending ‘T’ to ‘R’. Now that we have corrected the
offending line, press the ENTER key to exit from EDIT
mode.

We can now list the program again by typing in the

command LIST. And the Basic Interpreter will follow these
instructions to produce:

The Computer Journal / #77

10 FORI = 1 TO 25
20 PPRUNT 1
30 NIXT I

Running the “corrected” program will now produce a
‘2SN ERROR IN 20’ followed by the ‘READY’ message and
the EDIT mode will be invoked with the cursor on line
’20_’. Here we again use the ‘L’ key to list the offending
line 20 PPRUNT I’. The command ‘2SP’ will search out

-the second occurrence of the letter ‘P’ in the word ‘PPRUNT”.

Here pressing the ‘D’ key will delete the ‘P’ character
changing ‘PPRUNT"’ effectively to ‘PRUNT’. However, the
computer will display ‘P!P!’ to show that the letter sur-
rounded by the exclamation points will be deleted when the
enter key is pressed. Continue to correct the line by entering
the ‘S U’ keys to search for the letter ‘U’ followed by ‘C I’
to correct this letter to ‘I’. The entire line should be correct
now, so exit the EDIT mode by pressing the ENTER key.

Re-listing and running the program as before yields
another and the final syntax error message. We know that
this is the final error since there are no more lines in the
program. In any event, this line is corrected in the same
manner.

The cursor waits at “30_". We enter ‘L’ and then ‘ST’
and ‘C E’ followed by the ENTER key. By now we know
that this command sequence will search the line for the ‘I’
in the word ‘NIXT’ and change it to an ‘E’ yielding this
program when listed:

10 FOR I = 1 TO 25
20 PRINT I
30 NEXT I

As mentioned, it is often easier and less time consuming to
just key in the line again. However, this shows how the
EDIT mode may be used to correct program lines within the
program.

The EDIT mode may also be invoked directly by enter-
ing the command EDIT followed by the line number you
wish to change. The EDIT mode allows for these com-
mands. Each obtained by pressing a single key or key
sequence. The ENTER key is pressed to exit from edit
mode.

CONCLUSION

This article has now covered all the areas which we have
outlined. As mentioned earlier, an understanding of Level
I1 BASIC should be readily usable on another version of
BASIC in the later Models of the TRS-80 which followed
the introduction of the computer in 1977. Many of the books
which explained the use of this computer when it first
appeared have long gone out of print. In fact, many of the
articles mentioned in the bibliography were obtained from
libraries discard sales.

So where can you turn for help? The BASIC language
is fairly standard and there are many books to teach BASIC,

continued on page 38

The Computer Journal / #77

TABLE OF EDIT MODE chMm

Qe.mm.m! mssm ‘
EDIT linc#This enters EDIT modc
entered.

o

nC

nSc

5 This ends the edxt'sessa
e command mode.

: End edxtmg, Save ch

. Quit editing, Cancel change,
- mand mode.

_ Delete from cursdf to end

. A)

' Delete n characte’rs"!at the :

* Delete character at cursor)

-with the sequence of thie next'n

mode‘ v

Insert sub-command functxon.

Change next n characters repl

Search for the nth
ter ¢.

Search for the first occurrence ¢
entered character‘

Delete au Characters from
position up to the ntb ocmlrrence
character ¢.’

33

Small System Support
By Ronald W. Anderson

“This is an “aside” column. It is here because it is a typical
example of a computer project that I find to be pure recre-
ation. I am going to include some C program source
listings in the hopes that we have gone far enough with the
series that you will be able to understand them. I think
now that we have covered pointers, that will be the case.
These listings are in the ANSI “C” style with the slightly
different function parameter declaration syntax, though I
haven’t bothered with function prototypes since there are
only a few functions.

In the course of preparing the column with the C lesson
that covered pointers, I made some remarks about how it
seemed that every program I have written lately in C would
be done running by the time I got my finger off of the
ENTER key after typing in the command to run the pro-
gram.

That got me thinking about something I had done a long
time ago and so I did some digging. I found some copies
of columns that I did years ago for ‘68’ Micro Journal...
'some information on a project to write a program to find
prime numbers.

Just in case you haven’t run across the term or the problem
before, let me explain. A prime number is a number that is
not evenly divisible by any integer other than 1 and itself.
Any number can be “factored” until all of the factors are
prime numbers. For example 15 is S X 3. Neither 5 nor 3
are divisible by another number (I won’t repeat the “except
1 or themselves” but you will understand me to have said
it). 16 is divisible by 2, and it’s prime factors are 2,2,2,and
2. Obviously 1 is a prime number. Sois 2. All other even
numbers are divisible by 2, so all the remaining primes are
odd. The list of primes begins:

1235711131719232931..

93X3)
15(3X5)
213X7)
25(5X5)
273X3X3)

The non primes are:

You can see that a pretty healthy slug of small numbers are
primes. The ratio of primes to non-primes thins out quite

34

a bit as the numbers get larger, approaching something in
the area of 6% of the numbers less than 16,000,000.

The obvious approach is to test all the odd numbers in the
desired range by dividing them by all the other odd num-
bers up to the one being tested. Of course as soon as we
find an even divisor (remainder or MOD function = 0) we
have proven the number not to be prime so we can stop
there.

Though this certainly works, it is very inefficient as we will
see shortly. Let’s test the number 15 for example. We can
start our test at 3 and of course 3 is a divisor, so we can
stop there. Now let’s look at 169. It turns out that 169 is
13 X 13 so we will test for 3, 5, 7, 9, and 11, and then find
that 13 is a divisor. This is a “worst case” non-prime, a
perfect square. Now let’s test 167. We test 3 through 11
again, and find that 13 fails too. The insight is that 167
divided by 13 yields a result less than 13. If 167 were
divisible by an integer less than 13 we would have already
found it! The result of this thought exercise is that we have
found that we only have to test divisors up to the square
root of the number being tested. That is, when the test
divisor squared is greater than the number being tested we
can stop and we have proved the number to be prime.

This is an enormous saving. To test 1001, for example, we
only have to use test divisors from 3 up to 31. There are
only 15 such numbers. If we were to test all odd numbers
up to 999 we would have to make 500 tests.

There is a smaller saving that can be realized, which I
didn’t do on my first try at the program. Only prime
numbers need be tested as test divisors. We can show this
simply. If a number is not divisible by 3, for example, it
won’t be divisible by any multiple of 3 either, since if it
were divisible by, say 9, it would also be divisible by the
prime factors of 9 (i.c. 3).

The list of primes through 31 is given above. We don’t, of
course have to test 1 or 2, so we only have to test 10
divisors.

I just timed the C program on my office 486 system. It
found 6324 primes between 1 and 65535 in 1.25 seconds as
nearly as I can estimate. This time is just for calculating
them without printing them out.

The Computer Journal / #77

Looking at my old programs, I found that to find the primes
less than 1000 took some 43 seconds in TSC extended
basic on a 6809 system. In the best (read that the fastest)
compiled language I had at the time it took 4 seconds.
These times arc for a 2 MHz 6809 system.

The point of all this is that back then I spent a month of
evenings fine tuning a program to make it run faster. Find-
ing primes to the limit of 10,000 still took three or four
minutes. Now with a simple, only slightly optimized algo-
rithm I can find primes to the limit of unsigned integers in
less time than it takes me to type in the command line. If
I want to print them out I can do so in a little more time.
The first try program listing using integers and a limit of
10000 is in Listing 1.

I’ve included the print statements to print out the primes,
but I have commented them out. They need to be printed to
insure that the program is working properly, but then can
be commented out to test the speed of the calculations only.

This just emphasizes my note of last time that it used to be
possible to write a program that took a significant amount
of computer time to execute. That doesn’t seem to be true
anymore.

We can do something else. If the program runs too fast
make the problem bigger. What if we use long integers?
(Have we discussed all the C data types yet? Long integers
are 32 bit integers). I set the limit at 65535 using long ints
and the program ran 5 seconds. Obviously we are paying

il prlme numbers by division

#1nclude <std10 h>
#include <math.h>

#def1n0”¥RUE i
#define: FALSE Q

void maxn()
,int n d, prme count;

count = 3;

I prxntf(123 %;
for{n=5;n<=10000; n+-2)
prime = TRUE::

for -(d=3; d*d<=n; d +=2)
{ i

if (n%d == Q)

{ S

prime = FALSE;

break;

} :

} , :

if-(prime)

£

11/ S printE(*%d T, n);
count++}:

}

Yoo L .
printf(“\nnumber of primes %d\n",count);

a penalty for the long int divides, a factor of about 4. The
question then is what are the times for larger limits. Below
is a table:

Limit Number of primes Time(seconds)

65,635 6,543 5
125,000 11,735 35
250,000 22,045 118
500, 000 41,539 340

Obviously, even using a fixed long int arithmetic, the times
get longer faster than the increase of the limit. Increase
factors for doubling the limit seem to get smaller as the

»Luting 2.

71 prime nunbors by tost divis
#includs <stdio.h> o
#include <tine.hv” S
#define TRUE 1

#dofxnc FALSE 0
'clock t start tzno, ond’t
'int iq_prxno(long nunbor)
int “inumber; tst~d1v;’

xnumbﬁﬁjn {int) humbof,
for (tst_ div-s test div'tst'div<£n bi

it (mtmbar%tst cuv -= 0} rFeturn FA

”roturn TRUE.

vdidfﬁain()

float timeval:
unsignod lonq candxdatc, tos div, pr

“przntf('t 2”'3'),
count = 3;: :
for (candxdato ='5; candidato <j256

{

prine = TRUE; :

for {test d1v = 3; tost d1v % test
<=cand1dats, tast 61v+-2)

{
xf(is przno(tost div))
if (candxdato % test div ma OL) .

{

prime = FALSE,
break;

}

}

if(pr;ho)

prxntf('%ld ‘,candzdato), :
count*+‘ i

end_ txno = clock(), e
timeval = (end_time - start tx Ld
printf(*\ninFolnd primes to lxlxt £ %1d
candidate);
printf{*There were %ld primas \n' coul
printf(~execution time %f\n” ,tinoval)'”

The Computer Journal / #77

35

numbers get bigger. Doubling the number from 65,000 to
125,000 took 7 times longer. Going double again took
about 3.3 times longer, and doubling the last time took
about 3 times longer again. I'll add a bit of code to read
starting and ending times and run this overnight sometime
for a really large limit. Before doing that however, I
decided to look harder at the algorithm. I decided to test
the test divisors to see whether they are prime, and skip
- them if they are not (See Listing 2).

I did that, and the time for 500,000 items was reduced to

227 seconds from 340, enough to have made the complica-
tion worthwhile. Here is a table of further results:

Limit Number of primes Time (seconds)

250,000 22,045 80

500,000 41,539 227
1,000,000 78,499 602
2,000,000 148,934 1621
4,000,000 283,147 4391
8,000,000 539,788 9360 *
16,000,000 1,031,131 25456 *

* with the 66 Mhz processor. Others run with 50

I ran tests for primes doubling the range each time again,
and found that at 2,000,000 it took 27 minutes. Based on
that and the continuingly smaller ratio of time for doubling
the range, I predicted that 4,000,000 limit would take 73
minutes. It timed at 73 minutes and 12 seconds. I ran
limit of 16,000,000 overnight. It ought to take between 7
and 8 hours on the 486SLC 50/2 in my office. I've added
the software to read the clock and count seconds, so I'll run
that test tonight here at home. When I run something that
long I like to have something happen on the screen once in
a while, but I can’t figure out what to do that won’t involve
.a lot of testing and consequently add to the execution time.
It would be nice to print a star for every 100,000 numbers
tried, but I'd have to test every number! — Later, test run
and results reported above. 25456 seconds translates to 7
hours, 4 minutes and 16 seconds.

Having gotten this far I was really hooked on trying to find
a few more improvements. I set up the table of primes to
use as test divisors and found that it made a considerable
improvement. There are some 6500 primes less than 65000.
However, 6000 squared is 36,000,000 so the primes less
than 6000 will do for all the tests I am prepared to make.
There are 781 primes that need to be stored for this case so
the array for test divisors and for them squared can be
dimensioned at 800. I used 1000.

The first part of the program finds those first 800 or so
primes the hard way. It only takes a second, so who cares
if that part is not optimized?

Now I can calculate the primes between 0 and 16,000,000
in 9644 seconds! That is 2 hours, 40 minutes, and 44
seconds. After some hard thinking I suspect I see what is
going on. As I said earlier, as the range of numbers gets
larger and larger the fraction of the numbers that are primes
continually decreases. As we calculate for higher and

36

Listing 3.

#include <stdio.h>
#include <time.h>
#define -TRUE 1
#dofinn FALSE 0

‘int test_divs[1000];
’Iong‘tostsqr[1000l.

void celc. dxvs() (

fzn pr;no, i;

fprxno-TRUE}

{ .
vprxﬁbmn FALSE:}jE
break; . oo

Yo
“if(prine)

ey

: t
cale. dxva(), i :
”pr;ntf(‘fznxshtd ca
.gfflprxntf('s

break;

{1 prine numbers by test division

& start tims, end time:
‘74 ¢lock t is a data type dofi

':gunugnod candidate - dVlSOP'i

7for (dvxsorna dvisor*dvxsor<-candzdato'

test dive[i] = candidate;
ﬁtastsqr[zi - (long)candxdato * (long)ctn i

1'g"'(candmato % tost m.vs[k lH
prime = FALSE i

fprmtf('Thoro were %ld pi*més \n ,coll
pr;ntf('oxocutlon time %fin" txmoval),

The Computer Journal / #77

higher limits, using only primes for test divisors keeps
increasing the efficiency of the program. I suspect that at
some point doubling the range will less than double the
time required. Supposing I could print 10 prime numbers
to a line and 50 lines per page (i.e. 500 numbers to a page),
this last effort would result in 2060 pages of printout of
prime numbers! The final program is in Listing 3.

- The commented out print statements were used for debug.
I like to leave them in place for further debug when I make
a change. I switched from array notation to pointer nota-
tion in the big main loop of the program in the hope that
pointer notation would generate more efficient code. The
times did not change measurably. Note the mod function

“which uses the % symbol in C. The mod function returns
the remainder of a division. Thus if the division was even,
the mod function returns 0. 6%3 = 0. 7%3 = 1, the
remainder of the division. I’ve always thought it was too
bad that the originators of C were so “symbol minded” that
they had to use the same symbol for more than one mean-
ing in different contexts. The % as we learned before, has
a special meaning in a format string for the printf function.
Outside of that function it means “mod”.

Time for a little reality check here. I calculated the primes
to the limit of 1,000,000 with this new algorithm on the 66
MHz system. It finished within a fraction of a second of 4
minutes. Just for fun I ran the same program on a 12 Mhz
286 system. That took 29 minutes and 17 seconds, a bit
more than 7 times slower.

There is another algorithm that is considerably faster. It is
called the “Sieve of Erastosthenes” named after the Greek
mathematician who invented it. Basically, you set up an
array of bytes, one location for each of the integers you will
‘be testing. To find all primes less than 10000 requires an
array of dimension 5000. You write “TRUE” into all the
locations. Then you start eliminating non-primes. The
first array location represents 1 and the second 3. If you
count odd numbers on your fingers you find that the 5th
location contains 9 which we know is a multiple of 3.
Starting there and every third location beyond, we write
“FALSE”. We’ve essentially crossed out all multiples of 3.
Now starting at the location 5 past the contents 5, we cross
out every 5th location eliminating the multiples of 5. We
continue this process until we have crossed out the mul-
tiples of the square root of the limit.

When we’re done, we scan the array and use a little arith-
metic on the indices to recover the primes. Though it
sounds complex it is very fast. Of course there is one
drawback. If we want to find primes to the limit of 2
million, we need 1 million array locations. We soon would
run out of memory even on an 8 or 16 Megabyte PC. You
end up using the HUGE memory model in which things
run a lot slower but you can have an array larger than 64K.

I was re-reading some old columns from ‘68’ Micro Jour-

nal a couple of days ago and I found that I had some times
for a sieve program with a limit of 10000. One person had

The Computer Journal / #77

found them in 0.256 seconds, and another that found them
in 0.187 seconds, both on a 2 MHz 6809 system. One
reader ran the algorithm on an IBM 3033 and found it to
run in under 0.005 seconds. I got hooked and coded a
simple implementation of what I described above and it ran
and reported 0.00000 seconds. I put a loop around it to
make it run 1000 times and it reported 2.97 seconds. That
means that the program found the 1230 primes between 0
and 10,000 in 0.00297 seconds, a bit faster than the IBM
mainframe of ten or eleven years ago! The erroneous 0.00000
time reported above is because the clock ticks aren’t that
close together. The time is accurate for the 1000 times
loop. See Listing 4.

Do you see a problem here? We count the primes after we
say we are done with the calculation. If I wanted to print
them out I would have to calculate the value of each prime
from the array index of each location containing a TRUE
value. In this case the value represented by index n is
2n+1. That is array location 5 represents the number 11.
Where does the calculation of primes stop? Is it with the
crossing out phase? Should we include the counting phase?
Should we include calculating the actual number values
(whether we print them out or not)?

#includa <stdio h>
#include <time.h>

#define TRUE 1

#doflnc FALSE 0

clock t start tmo, cn,
char pnus(SOOO] H

void‘na;n() ----- '

{

float t;nuval, :
unsigned long candidato, prina -
int k, 1, n;

start time = clocu(),.]
Ilprmtf('1 ‘).
It do 1t 10
1] -the execution time
fc’:r(l-o' 1<1000° 1+4)

i xnxtxalzzc the array
for (k-o, R<5000'-k++} pnus

/ I crosa out the non- prim
for (k=3; k<100; k*-2) /1 ou

{
for (n-k+k12, n <5000 n+-k) pr
Y 11 dono generating pru\as

end_ time = clock(): e

timeval = {end_time - start tino)
printf(*execution time %f\n" tinova.l)
/1 count them

count = 2: :

for{k=1; k<5000; k++) if (prinost

printf (‘thore ars %d primoe’loss than:
10000\n", count}); =

37

While the divide method is clearly not as fast as the sieve
of Erastosthenes, that method would require 8 megabytes
of memory for the array plus space for the program to find
the primes to 16,000,000! It appears that it would not be
feasible to use it for finding very large primes. We could
probably devise a method to find primes from 0 to 100,000,
then from 100,000 to 200,000, etc. Actually at the expense
of some “bit fiddling” we could define an array of charac-
ter, i.c. 8 bit entities, and use each bit as a flag. We have
8 * 64K or 512K bits in that 64K byte array. We could use
this method without resorting to the large memory models
to find primes up to 1,048,575.

Turn a fast computer loose for a week or so (even with the
“slow” divide algorithm), and one could really find some
big primes. I calculate roughly that I could get to the limit
of long integer arithmetic (that is about 2,000,000,000) for
signed integers and twice that for unsigned ones) and find
all the primes by runing the program for about 600 times as
long as it took to find the primes to 16,000,000 (that
number for the signed long int limit). That is about 1650
hours, about 69 days. Going all the way to the unsigned
long integer limit would take about 2.5 times as long again,
or about 170 days. I guessI’ve found a problem big enough
to keep my computer busy for more than a few seconds!

Incidentally, as I understand them, the public key encryp-
tion schemes make use of prime numbers in the range of 50
to 100 digits. They use a number that is the product of two
huge primes. Finding the key would involve finding the
prime factors of this product. It would take a very long
time on a current PC, but the way things are going, such
things may get to be easy to solve. My system is already
slower by a factor of 3 or so than the latest high speed
Pentium systems. They could solve the above 69 day prob-
lem in 23 days. Next year it will be 8 days, then 3, and
then ... That is, unless this continued increase in computer
performance finally levels off somewhere. -

Speaking of leveling off, some 20 months ago I found a
best buy 170 megabyte hard drive for $325. Last week I
bought a 420 megabyte for a neighbor for $219! The com-
puter store had advertized a 210 for $169 a week earlier,
but they were sold out. “We replenish our stock every week
because the prices are coming down so fast we’d lose money
if we bought too many.” The performance may be leveling
off, but the cost certainly is not, and the performance per
dollar invested is certainly soaring upward endlessly. Note:
January ’95: I saw a 730 Mbyte drive advertized for $270!

Whatever computer equipment I buy today will be obsolete
in a year or two. Somehow that doesn’t worry me a lot. I
generally buy two or three year’s ago state of the art for
about 1/4 of what this year’s would cost.

If anyone reading this has any good ideas or suggestions
for faster algorithms, as Ross Perot said, “I’m all ears”.

Well, next time it will be back to C and Assembler plus '

whatever miscellaneous thoughts come to mind.

38

The First TRS-80 continued from page 33

You can also call the technical services of Radio Shack by
dialing 1-800-THE-SHACK (1-800-843-7422).

From the technical rep I spoke with, I learned that
you can find out if Radio Shack has a service manual or
users Guide in stock by calling 1-800-442-2425. Also I
was able to verify the original configuration of the Model 1
which has not been sold in many a year. By calling the 800
number, | was able to learn that these service and informa-
tion volumes are still in stock for the venerable Model 1
TRS-80 computer:

1) Model 1 User’s Guide $210
2) Model 1 Tech Manual $13.89
3) Model 1 Tech List Ref. $26.99

The tech explained that these would contain full schemat-
ics and theory of operation etc. for the computer. The
following bibliography may also contain pointers to where
much more info on the Radio Shack line of computers may
be obtained.

The HOME COMPUTER HANDBOOK
by: Edwin Schlossberg, John Brockman, and Lyn
Horton.

1978, Bantam Books Inc.

THE HOME COMPUTER BOOK
by: Len Buckwalter.
1978, Pocket Books Inc.

PROGRAMMING TECHNIQUES for Level I BASIC
by: William Barden Jr.

1980, Radio Shack.

EXPLORE COMPUTING with the TRS-80 (& common_sense)
by: Richard V. Andree and Josephine P. Andree.
1982, Prentice-Hall, Inc.

THE TRS-80 User’s Encyclodepia (Models I, I, and 4)
by: Gary Phillips and James E. Potter.
1984, Arrays Inc.

THE TRS-80 User’s Encyclopedia (Model 100}
by: Gary Phillips, Jacquelyn Smith and Julia Menapace.
1984, Arrays Inc.

THE TRS-80 User’s Encyclopedia
(Color Computer and MC-10)
by: Gary Phillips and Guler S. Wright III.
1984, The Book Company (a division of Arrays Inc.)

HOW TO PROGRAM THE Z-80
by: Rodney Zaks.
1980, SYBEX Inc.

Z-80 ASSEMBLY LANGUAGE PROGRAMMING
by: Lance A. Leventhal.
1979, McGraw Hill Inc.

The Computer Journal / #77

Program This!
The Z80 SIO

By Dave Baldwin

Ed: This is the first installment of a new column in TCJ.
Program This! will feature a different chip or device each
issue and go through the steps necessary to program it and
make it work. The intention isn’t to give you a complete
application, but to give you enough information and code
Jfor you to copy and adapt it to your own requirements.

The Z80 SIO is used in many single board Z80 CP/M
systems like the Ampro Z80 Little Board, the Kaypro’s, the
Big Boards (1 and II), the Xerox 820’s and many network
interfaces including the old 2 Megabit Lantastic boards.
It’s a very versatile chip with a number of operating modes.
It also drives many people nuts trying to program it.

Parts of two programs for ‘asynchronous’ operation are
shown here, on¢ for polled mode operation, and one for
interrupt mode operation. The polled mode program,
PCDN.Z80, is a complete XMODEM download program
that operates up to 19.2kb and has been tested on a Davidge
DSB-4000 and a Big Board 1. The interrupt mode pro-
gram, DIBSIO.Z80, is a demo program that runs at 9600
baud that’s been tested on a 2.5Mhz Z80 SBC. The com-
plete source code for these programs is too long to print
here, but it will be available on the TCJ Web page and the
TCJ/DIBs BBS.

The Simple Facts

The Z80 SIO is the Serial Input/Output chip in the Z80
peripheral family. It includes two complete serial channels
including modem control signals and can operate in ‘asyn-
chronous’ or ‘synchronous’ modes. Like the other Z80
peripheral chips, it implements the Z80 Mode 2 interrupt
structure and daisy chain and it’s designed to work prop-
erly with the narrow pulses from the Z80 CTC for the
Receive and Transmit clock inputs.

The R/T clock inputs are limited to the system clock di-
vided by 5. This means that the maximum ‘baud rate’ for
a 4 MHz part in asynchronous mode with a 16x clock is 50
kilobaud and the highest standard rate would be 38.4kb.

When the SIO was designed, they ended up with 41 con-

nections that they had to fit into a 40-pin DIP package.

They decided to release three different versions with slightly
different pin connections. The first member, the SIO/0, is

The Computer Journal / #77

Z80 SI10/0
o1] 1 — 40/ Do
D3 (] 2 39 [D2
Ds] 3 38 [1 D4
D7] 4 371 D6
/INT] 5 36 [NORQ
IEI] 6 351 ICE
IEO] 7 34 BJ/A
M1] 8 333 C/Ib
vcc] 9 323 RD
MW-/RDYA (] 10 31 7 GND
SYNCA] 1 30 [J M-/RDYB
RxDA [12 29 1 SYNCB
RxCA] 13 28 3 RxDB
TxCA] 14 27 1 RxTxCB
TxDA (] 15 26 [TxDB
/DTRA [16 25 3 /DTRB
IRTSA [17 24 1 /RTSB
ICTSA (] 18 23 /CTSB
/DCDA] 19 2 /DCDB
CLK [20 21 /RESET

shown. It combines the receive and transmit clocks for
channel B together on pin 27. The SIO/1 has separate
clocks, but SYNCB connection. The SIO/2 leaves off the
DTRB connection. When newer packages came, the SIO/
3 and SIO/4 were released. The SIO/3 is in a 44-pin Quad
Flat Pack and is available only in CMOS. The SIO/4 is in
a 44-pin Chip Carrier (PLCC) and is available in both
NMOS and CMOS as are the SIO/0, 1, and 2.

Programmers’ View

Each channel of the SIO has two port addresses, one for
data and one for control. The control port is set up so you
can use the Z80 block output instruction, OTIR, to load the
control registers. There are 7 Write Registers (WRx) in the
A channel and 8 in the B channel. WR2 is the interrupt
vector register and exists only in channel B. For this
article, we don’t need to do anything with WR6 and WR7
because they are only used in ‘synchronous’ mode. To
access any register other than WRO, you must first put the

39

register number in WRO and then send the data for that
register. WRO also has other functions including ‘reset
channel’ and resetting some of the interrupt functions.

There are 2 Read Registers (RRx) for status in the A chan-
nel and 3 in the B channel. Once again, RR2 is the
interrupt vector register and is available only in channel B.

. SIO Initialization

After power-up and to set the SIO into a known state, you
have to ‘initialize’ or ‘setup’ the SIO by writing all the
necessary data to the Write registers. Listing 1 shows a
normal initialization routine for polled mode operation and
the sequence that’s required. The difference between polled

" and interrupt mode initialization is in the data that is sent.
Note that the ‘channel reset’ command doesn’t attempt to
address a second register. A ‘channel reset’ also resets
WRO so the address would be discarded anyway.

Commands other than the ‘channel reset’ can be combined
with the address for the next register. In Listing 1, the
‘reset ext/status interrupts’ command is combined several
times with the addressing for the next register. This is one
of the most used commands for the SIO because, in addi-
tion to resetting the ext/stat interrupts, it also unlatches the
status inputs like CTS and DCD. These inputs are latched
on an up or down transition so you can detect changes.
Since several changes may have occurred since they were
latched, you have to ‘unlatch’ them to get the current state.
For the details of all of the Write registers, you need to get
the manual or databook. There isn't room here.

Polled Mode

In polled mode, the program is written as loop that checks
each item that needs attention on each pass. The main loop
in PCDN checks first for a char from the console. If there’s
no char from the console, it skips down to check for a char
from the ‘modem’. If there is a character available from
the console, it checks to see if it is a command character. If
it is, it does the command. If not, the character is sent to
the modem. Then it falls through to the modem receive
test. If there isn’t a char available from the modem, it
jumps back to the top of the loop and starts all over again.
If there is a char from the modem, it’s echoed to the
console and then the program jumps back to the top of the
loop.

The main loop is the ‘terminal’ part of PCDN. When a
‘AR’ (control-R) is received from the console, the program
goes to the XMODEM file transfer routines. In the file
transfer routines, there are several loops for the different
parts of the XMODEM protocol because the data received
gets handled in several different ways.

Polled Read/Write

In PCDN, the serial read and write routines are written
with the status tests as subroutines. Listing 2 is an in-line
version of the SIO read and write routines. If you need
routines that don’t wait, change the ‘jp nz, xx’ to ‘ret nz’.
The 1/0 routines used don’t change the flags so your call-
ing routine just tests for 0 for success.

ST point to imtnlizing strmg
8, INI'ENDJNITST gt langth in b -

C, SIOCTL ,sm control/status port

B, INTEND- INITST HLA of bytoslconnands

:'channcl rosat '
o =,salect wr4 and reset oxt/ ;
e stat interrupts

»H,16x alock, 1 stop bxt, no
3 parity’ ; L
-,sulsct wr1
"'allow vectored xnterrupts,
syadop’t use any
"soloct wrd and’ roset oxtl
~gtat interrupts
x,reoczver 8:data bits,

receive ‘enabled :
,,select wr§ transmit -
3 controls . .
".,dtr on;j 8 data bits,
; transmit enabled, rts on
sreset ext/stat interrupts
;and again, just because

LISTING #2 G
:: §imple polled receive and transmit routxnes” ------- e

: Status equates

“Bx roady status nask’,

rx_mask -equ 00000001b -
rX_ready equ ~00000001b ; recv char:availables =
tx_mask - equ - 00000100b. . ;. *Tx ready” status mask
tx_ready ‘equ- - 00000100b

transmit buffer empty

;- 'Simple receive char routine,
3 loops until char received

3. - exit with received char in A
: :
rovehr: >
Coodn o a4y (STOCTL)

: got the modem st
and - rx_mask

mask out all but the
modem got a char

loop until char |
get the characte

cp rx_ready
jp i nz revchr
in a, (SIODAT)
ret

DR T R ROy R

yi Simple transmit char routine;:
1> ~loops until char sent

; enter with transmit char in A ;
t

rnchr'
ld b,a
~dn ey (ST0CTL)
and tx mask

3 store Char ln b tei
;- get: the modem status =

7 mask: out all: but the bits i
3 we want .
1
3
’
1

cp tx_ready ; ‘transmit buffcr enpty?»ﬂJ -

jp nz,trnchr loop until transmit raady
1ld a, b ;- char back in'a
out (SIODAT) a ; send the character

ret

The Computer Journal / #77

Interrupt Mode

Before you can use the SIO in interrupt mode, you have to
set up Mode 2 interrupts and the interrupt vector table.
There is no sense in trying to use Mode 0 or 1. The SIO
(along with the other Z80 peripheral chips) is designed for
Mode 2 and has the hardware for Mode 2 built-in. Listing
3 shows the setup routine.

In interrupt mode, the serial read and write routines have
to be written differently. One of the major differences is
that you almost always have to use buffers in memory to
store the data so the routines have a fixed place to put and
get the data. In the DIBSIO demo program, I use 256-byte
buffers on a page boundary so I can use simple pointers and
counters. The buffers are organized as FIFO’s (First In,
First Out). Data goes into the buffers at the head
(tbhed,rbhed) and is taken out at the tail (tbtal,rbtal). The
byte counters (tblng,rblng) are 0 when the buffers are empty
and 255 when they’re full.

At the beginning of the Interrupt Service Routines (ISRs,
Listing 4), all of the registers that are going to be used have
to be preserved. Pushing them on the stack is one way.
The routines here use the Z80 alternate registers for the
ISR’s. At the end of the ISR, the registers need to be
restored to their previous state, either by popping them off
the stack or by swapping the alternate registers back like is
done here. The last two things in the ISR must be ‘EI’ to

re-enable the interrupts (they were disabled when this in-
terrupt was acknowledged) and the ‘RETI’ return from
interrupt instruction. The SIO and the other Z80 periph-
eral chips monitor the data bus and the /M1 signal and
when the RETI instruction is seen on the bus while /M1 is
active, the interrupt daisy chain is reset so that another
interrupt can occur.

Because interrupts can occur at any time in a program, you
need to be careful how you access any that has to do with
the interrupts and the ISRs.

The first example is in the ‘snd1st’ routine which is shown
in Listing 5. That routine needs to access the status of the
SIO and act accordingly. If you allow interrupts to occur
while the routine decides what to, the status fetched at the
beginning may have changed by the time something is

LISTING #3

i~ setup 1/0 and interrupts

; :
begin: :

di ;interrupts off during setup
;- clear pointers, counters, and buffers

xor a ,mako 0

1d h1,6000h ;start ‘address

1d: de,600th ;destination

1d:be,3ffFh ;length

1d (hl),a ;clear first

1dir : ;clear rest

;set ‘17 reg, high byte of interrupt vector
idooa, hlgh(xvtab),

1d ia
;set interrupt mode :
im 2 ;nodo 2 interrupts

; -serial interrupt ‘vectars for port B
1d hl,isrwrt ;transmit isr
-1d {siobtv);hl :;init vectors
1d hl,isrred ;recv isr
1d - {siobrv},hl--;
1d hl,isrerr
1d (siobev),hl
1d hl,isrspv
1d.. (s1obsv) hl
call sioint

14

yerror isr

:

’

;Special vector

s
;initialize sioB for
7 interrupts
;- init recv fifo params

1d hl,rcvbuf H

1d (rbhed) ,hl -

1d {(rbtal), hl H
;- setup trans fifo params

1d hl,trnbuf ;transmit buffer

1d (tbhed),hl ;start of fifo

1d {tbtal),hl ;save next char pointer
; ready to go now

oi ;enable interrupts

3

LISTING #4

'+*+00*#+#0+#§##0#+++##&+%##040

+++++0+ﬁ+++++++++++++*+#+0+#++++ +#+

;
; serial writo ISR :
isrwrt:

ox. . af,af’

‘XX :
" 1d - .a,00101000b

outs (sioctl),a
1d a, {tblng)

SOP. -8
jpiioz,isrwerd
dec

a 3
1d = - {tblng);a
1d hl,(tbtal)

1d a,{hl)
out (smdat) s
inc :
1d (tbtal) hl
Lsrwrs
ax af,af’
oxXX
el
reti
L
; serial read ISR
isrred:
ox af,af’
oxXX »v

-

1d 7 hl, (rbhed)
in a;{sioctl) H
1d b,a jput-in by not
1d a1 ;point: to RRY

out (sioctl),a M
in a, (sioctl)
1d c;a

1d . - a,80h

out . ({sioctl),a

in a,(siodat)

1d {hl},a

;d a,(rblng) ;got longth“

inca i

ld . (rblng),a °savo ‘new coun

inc. - L : ,point to next availi

14 - (rbhed),hl " ;save next ptr:

isrreS5: ‘ex af,af’ ,restora
. eXX :
ei F i
reti ;end of isrred

The Computer Journal / #77

41

done with it. Matter of fact, I can guarantee that, at some
time, it will. To make sure that we’re acting on valid
information, we disable interrupts (DI) at the beginning of
the routine so that an interrupt can’t occur and change the
status in the middle of the routine. If the status check
shows that the transmit buffer is currently empty, we jump
to the ISR and fill it which restarts the transmitter if nec-
essary. If the transmit buffer is full, we just re-enable
interrupts (EI) and return.

A second example is in the routines that read and write
from the buffers. The byte counts stored in memory are
used both by the read/write routines and the ISRs. We get
the byte count at the beginning of the read routine to see if

_ there is anything in the buffer. If there is, we get the data.
Now we need to decrement the byte count because we’ve
removed a byte from the buffer. As before, we need to
make sure that an interrupt can’t interfere. In this case, we
do it with a single instruction ‘INC (HL)’. This works
because interrupts occur between instructions, not in the
middle of them. Except for repeating block move instruc-
tions. See next paragraph.

Also note that any access to SIO registers other than WR0/
RRO takes at least two separate instructions and you must
disable interrupts before access and re-enable afterwards.
This includes the repeating block I/O instructions because
on the Z80 they are interruptible between repetitions.

a

address of byte countor

get byte: countar -

buffer full: i
“fa ansnxt to catcﬁ,

vinsfoad ‘of rogistar Lo
25 avoxd boing screwed up -

get sio status e
mask off ...

check for: the + 7 L
“ssend char with isr.

42

Conclusions

The XMODEM program, PCDN, could be written with
interrupt driven routines, but they wouldn’t be as simple as
the DIBSIO demo program. The data received with the
XMODEM protocol has to be handled in several different
ways while the interrupt demo just puts the data in a buffer.

The XMODEM protocol has a start phase, a block transfer
phase, an end-of-block phase, and error signals that have to
be recognized. Only during the block transfer does the
data go into a buffer and in PCDN, the buffer is all of free
memory which would require more complicated calcula-
tions to determine whether the buffer was full and where
the next byte would go. In the start and end phases,
something else has to be done with the received data. The
elegant, but more complicated way to do this is to keep
track of the current state or phase, and have the current ISR
change the ISR vector to point to a different ISR when the
next phase is required. .

References

Z80 Microprocessor Family Databook, DC 8321-00
1994, Zilog Inc.

Z80-SIO Technical Manual, 03-3033-01
1977, Zilog Inc.

The Computer Journal / #77

Morrow MD-3P Repair

By Jay Huddleston

In a past user group article the MOR-
ROW computer has been compared to
the Volkswagen bug. The bug was in-
expensive, reliable, functional, and
easy to have fixed. As the old VW put
on miles and lost value for resale,
owners started doing many of their
own repairs to better understand the
machine and to save money which the
repair people were embarrassed to
charge for such a devalued machine.
Books came out such as the VW RE-
PAIR MANUAL FOR THE COM-
PLETE IDIOT. This probably derived
from the much older work by Izaak
Walton called THE COMPLET AN-
GLER and foreshadowed more recent
works such as THE INTERNET FOR
DUMMIES. My wife pointed out that
all these books had been written spe-
cifically for me as could be inferred
from the synonyms in the titles. The
MD-3 (desk top model) is easily re-
paired. The MD-3P (portable model)
is not.

Just getting into the MD-3P is a bit of
a trick. There are two types of cases
manufactured for the portable. Un-
plug the power cord, keyboard cord,
parallel ribbon, and serial cord to your
printer/modem. Note that the serial
and parallel connections are upside
down compared to MD-3 desk model
because the mother board has been
turned with the soldered components
inward to offer greater protection since
the housing is plastic rather than metal.
Use a permanent marker across the
seams on one side to show how the
cabinet, front and keyboard best mate
when putting it back together. Two
out of three portables that I've seen
have a unit shell housing which is

The Computer Journal / #77

fastened by three small machine screws
on the front and three on the back near
the scam. Remove these six screws
and with the video display facing down,
slide the casing up and off. The other
style casing is a split design which
comes in halves like a clam shell. It is
snapped together into the chassis frame
by four plastic bayonet type prongs
closest to the video screen end of the
machine. If anyone has ever had it
apart before, it probably has one or
more of these prongs broken off. On
the back end of the case (handle end)
are two slots in the seam on either side
where a large straight slot screw driver
can pry apart the two halves. This
pulls the two male/female plastic con-
nectors in the back end apart opening
the clam shell. Then carefully use the
same large screw driver to outwardly
and upwardly pry the two triangular
prongs of each half shell out of the
chassis with out breaking the front
housing lip into which the clam shell
inserts.

At this point the insides are revealed.
Let’s assume that the machine is face
down, i.e. the video screen facing
down. So looking down at the metal
back, the handle, power plug socket,
keyboard socket, on-off switch, and on
some models the 115/220 volt selector
switch are visible. On either side of
the back are screened intake and out-
flow fans. On some models at the
bottom is an access slot for the video
logic board’s dip switch. This switch
is factory set to have the #1 and #8
switches off and the others on. At the
top of the back are two twenty-five pin
RS-232 male sockets. The outboard
one is not used as it is directly wired
for the terminal, and the inboard one

is the one used for serial printer or
modem. A male parallel centronics
connector is inboard of the RS-232
sockets and is used for the printer.
The male sockets are all on the mother
board which is the top side of the
machine when running. The mother
board has on the opposite or front side
of the machine two more parallel male
sockets for the disk drives, A: drive
outboard and usually blue and B: drive
inboard and usually white. On the
bottom side of the machine is the video
logic board which contains the 6512
microprocessor for decoding the key-
board signals; 68B45 video controller
for the vertical and horizontal sync
pulses, character RAM address sig-
nals, display enable signals, and cur-
sor signals; and the 8251A UART for
serial communications with the video
terminal. The left side facing the ma-
chine when running has the analog
video board which contains the high
voltage transformer, and adjusting
controls for the video screen width,
height, and focus. In the front are the
two Shugarts SA455 5.25 inch DSDD
disk drives. The older clam shell model
had 5.25 inch Qume QUMETRACK
142 drives which were belt driven. To
the left of these is the video terminal
itself which is a ZENITH 1.4 amp 13.0
volt 9 inch amber terminal which cor-
responds to an ADM-31 type termi-
nal.

The last major modular component is
the power supply which is attached to
the chassis and the back metal plate.
The power supply is the same found
on the hard disk MORROW model #
PS-640 by SHEO SHIN. MORROW
service and sales literature variously
says this power supply is a switching

43

power supply rated at either 80 watts
or 100 watts depending on the the lit-
erature. According to Silicon Valley
Surplus’ Fred Whittaker the MD-3P
uses the MD-11 power supply without
its metal case. He further elaborates
that the voltages are the same but the
wattage is higher to handle the video
terminal. According to the service
literature the terminal itself normally
has a 40 watt power supply as a stand
alone terminal. These power supplies
are no longer available, but it shouldn’t
be hard to find a switching power sup-
ply rated at 100 to 120 watts in elec-
tronic supplies catalogs. The diffi-
culty is the fitting into the MD-3P.
The outer dimensions are 4.37 X 8.75
X 2.5 inches. The actual regulator
board inside the support frame is 7.75
X 3.87 inches. The voltages required
are +5, +12, and -12 volts. If you
replace the power supply, even with
one cannibalized from a hard disk
MORROW, you will still need to sol-
der the wiring harnesses from the old
supply onto the new one.

To remove the back metal plate, re-
move six machine screws from the
motherboard RS-232s and video logic
board RS-232. There are four
selftapping screws to remove from the
power supply. Loosen the nut and bolt
combination to release the keyboard
socket. If the 115/220 volt switch is
present, remove the two screws, wash-
ers and nuts to release the switch. Pull
apart the the two fan quick disconnect
plugs. Gently pry the three wire bayo-
net power plug from the power supply
and lift the back off by the handle.
Although the power supply is now im-
mediately before you, it is difficult to
remove without clearing away the
mother board and video logic board.

At this point a few cautions are war-
ranted. The video terminal can main-
tain capacitance for a long time of
upwards to 20,000 volts. Use a length
of copper wire with an alligator clip at
either end. Attach one end to the
metal chassis and the other to a very
small straight slot screw driver. Hold-
ing the screw driver by the insulated
handle, gently pry the rubber boot of
the video tube away enough to insert

44

the screw driver to the high tension
wire in the center. This discharges
the voltage often with an audible snap
and visible arc of light. The printed
circuit boards are susceptible to dam-
age from static electricity so touch
something metal such as the chassis
each time before handling the PCBs.
Use a permanent marking pen liber-
ally to mark how things should go
back together. It is helpful to use cups
which nest into each other such as
Dixie cups to put the screws for each
assembly as it is removed in order. It
is worthwhile to use safety glasses
when clipping wires, soldering, or
handling the video tube which could
shatter.

To remove the mother board unplug
the four wire power supply plug. Note
that this plug connects to the bottom
of the five posts projecting from the
mother board labeled # 1 through #4.
Pull apart the two wire quick discon-
nect plug in the middle of the board
labelled JR to the reset button. Re-
move the black wire at post #2 on JP3,
the red wire on post #2A on JPA, and
the yellow wire on post #1B on JPA.
Remove the two floppy drive 34 wire
parallel ribbons from the bottom of the
board. Note that as you remove them
the red line is on the right. The out-
board ribbon plug is blue and goes to
the A: drive. Slide the mother board
up and out of the plastic track sup-
ports. Mark on the chassis where the
plastic supports go and remove them
too.

To remove the video terminal logic
board gently pry with a small screw
driver the seven wire bayonet plug
loose from the the eight prong recep-
tacle on the board at P2 from the power
supply. Remove a similar plug on the
other side at P1 to the video terminal.
Gently slide the board up and out of its
plastic track. Mark the chassis at the
track base and remove the plastic tracks
too. It is very easy to break loose one
of the six fine wires from the keyboard
to the solder connections on the video
terminal logic board at J1. These wires
are close to the top of the board and
seen from the inside where all the sol-
dered components face, the order from

the top is yellow, red, black and below
these blue, green, and white left to
right. Use 30-35 watt soldering iron
and solder braid with solder paste flux
to remove the solder from the hole
where the broken wires must go. Then
carefully touch solder back into place.
It helps to use .032 inch thin wire 60/
40 rosin core light duty solder. Judi-
cious use of clamp-on heat sinks can
help to prevent heat damage to com-
ponents nearby.

To remove the power supply remove
the four wire power plugs from the
disk drives, unscrew the four machine
screws from the power supply support
frame, and lift it out. This may be all
the disassembly required if the power
supply is at fault.

To remove the disk drives, label and
remove the 34 pin ribbon connectors.
Remove the two chassis support rails
secured by three 1/4 inch hex nuts on
each rail. Note that the rails are L-
shaped and open toward the inside and
up. This clears the way to remove the
six front cover 1/4 inch hex screws
and remove the front. Unscrew the
four machine screws for each disk drive
frame support (two on either side) and
slide each disk drive out the front.

To remove the analog video board,
remove the four screws with spacers
and nuts. Use a 3/8 inch open wrench
under the dimmer button and gently
pry the button loose with a straight
slot screw driver from the post to which
it is glued. Unscrew the retaining nut
and remove the dimmer switch from
the body of the machine. Use a small
screw driver to gently pry up the rub-
ber boot on the video tube and using a
pair of needle nose pliers squeeze the

two prongs together at the center of

the high tension wire and remove from
the hole in the tube. Gently lift the
cannon plug off the end of the video
tube after having marked its position
with a permanent marker. Lift the
video board away.

To remove the video tube remove the
four screws from the video screen sup-
ports and lift away. Note that a ground-
ing wire is fastened to one of the

The Computer Journal / #77

screws. The machine is completely
disassembled. As they say, reassem-
bly is in the reverse order of disassem-
bly as though all your problems are
over.

To test the power supply out of the
machine, remove the power plug from
" the metal back of the machine and
plug its bayonet plug into the power
supply. Use the wall plug cord to plug
into that. Clip the ground wire for
your multimeter to the the metal chas-
sis of the power supply and the probe
-into the various harness plugs to check
voltages. I like to leave the power
switch on and simply plug or unplug
the wall cord between settings to be
measured. The voltages shouldn’t be
off by more than 1 volt from the chart
below. For testing in the machine
(primarily for the analog video board
voltages) you must leave the outer case
off and measure with the machine run-
ning, the ground to the chassis and
probe the wire at the board carefully.

UNLOADED POWER SUPPLY VOLTAGES
(measured off the machine)

MOTHER BOARD PLUG DISK
DRIVE PLUGS

black 0O0v blue +128v
yellow +55v black 0.0v
pink +13.0v black 00v
blue #1214V red +55v

TERMINAL LOGIC BOARD (to P2) FAN1
black 00v hotwire +13.0v
2red +55v ground 00v
3missing N/A

4 black 00v

Sblue -120v

6 black 00v

7 pink +150v

8pink +13.0v

LOADED VOLTAGES TO ANALOG VIDEO
BOARD (from P1)

5 +1.5mv

6 +08v

7 +118v

8 +300. mv
9 +49v
10 +25. mv

There are MORROW service manuals
for reference in repairs which go into
great detail including schematics. So
I won’t try to improve upon their work
by paraphrasing it all here. This ar-
ticle contains supplementary informa-
tion not included in the manuals.

The Computer Journal / #77

There are a few more pearls to note
however.

On the mother board has a jumper
connection at JP4 on the Japanese
board (or E5 on the Korean) when
jumpered will boot up to an internal
ROM diagnostics menu for trouble
shooting. There are eight tests. The
first three transmit a “barber pole”
pattern to screen, serial printer and
parallel printer respectively. The
fourth checks the integrity of the 8251
USART which requires sticking a wire
between pins 2 and 3 and also between
5 and 20 at the serial port plug. The
fifth tests the RAM and displays any
bad addresses. The sixth does a read
and write floppy disk test (so use a
blank disk!). The seventh does a floppy
disk seek test. The ninth requires an
oscilloscope to measure frequency. The
last menu item is boot to normal oper-
ating system.

While you have access to the mother
board it would be worthwhile to add
the capacity to use a modem by adding
a slip- on connector (as Radio Shack
calls them) at the unoccupied jumper
connection on JPB. Note that all the
jumper pins are jumpered 1A-1B
through 8A-8B with a conspicuous gap
at 4B-5B. Put the jumper pin there.
There is also a jumper pin at 12B-13B
which should give nine jumpered con-
nections when you’re finished. This
has no other effect on your computer
and you can’t run a modem without it.

Itis also very easy to install a real time
clock DS1216-E available for about
$25 from JDR Microsystems in San
Jose, California. You simply pry out
the ROM chip on the mother board
and insert the clock chip in between
the ROM and mother board sandwich
style. Complete instructions and all
the software needed to run it on the
MORROW are available on the MACK
DISKETTE supplied by MOR. It runs
Z80DOS which is a rewritten BDOS
for the MD-3 and the prompt shows
the current time in [brackets]. For the
MD-3P however there is little space
available to piggy back the two chips.
I found that the thin metal plate sepa-
rating the floppy disk drives from the

mother board can be marked for the
position of the ROM chip against it,
cut with tin snips vertically to form a
tab which bends the metal inward to-
ward the floppy disk drive about a 1/4
inch and bent again downward to re-
form the barrier between the mother
board and disk drives. This allows the
double thickness of chips to have the
room necessary to fit comfortably in
the machine. You use sysgen to in-
stall the new system tracks and you’re
set. You can return to your old CP/M
anytime and the machine will work
unaware of the clock. I will supply the
diskette to the editor if you can’t find
it.

One of the two most common mala-
dies of computing with the MORROW
is non-working keys on the keyboard
(the other is failed power supply, of
course). To clean the keys gently pry
the key cap up with dental floss or a
couple of small screw drivers. Under
the cap is a three pronged plastic de-
vice which remains in place by way of
tiny barbs facing away from the cen-
ter. Insert a length’of paper clip into
the prong forcing it back toward the
center and while holding it askew to
prevent re- hooking the barb, work the
other two free as well. Lift it out.
There is a little rubber donut under
this. The black spot in the middle
makes the contact necessary with the
two metal strips below it to signal the
key stroke. The contacts become cor-
roded and dirty. Clean them with a
cotton swab and rubbing alcohol. Dry
it and put it back together.

Only a hobbiest could find this article
interesting. Just like fishing,
Volkswagen repair and the Internet
you have to find tinkering worthwhile
for its own merit. There is still a lot
of tinkering to be done yet don’t you
tink?

45

SUPPORT GROUPS FOR THE CLASSICS

TCJ Editor: Dave Baldwin, Voice (916)722-4970, FAX
(916)722-7480 or TCJ BBS (916) 722-5799 (use “computer”,
“journal”, pswd “subscriber” as log on), Internet
dibald @netcom.com, CompuServe 70403,2444,
tcj@psyber.com.
TCJ Adviser: Bill D. Kibler, PO Box 535, Lincoln, CA 95648,
(916)645-1670, GEnie: B Kibler, CompuServe: 71563,2243, E-
mail: kibler @ psyber.com.
32Bit Support: Rick Rodman, 1150 Kettle Pond Lane, Great
Falls, VA 22066-1614. Real Computing BBS or Fax: +1-703-
759-1169. E-mail: ricker @erols.com
Kaypro Support: Charles Stafford, 4000 Norris Ave., Sacra-
mento, CA 95821, (916)483-0312 (eves). Also sells Kaypro
upgrades, see ad inside back cover. CompuServe 73664,2470
(73664.2470@compuserve.com).
S-100 Support: Herb Johnson, CN 5256 #10S5, Princeton, NJ
08543, (609)771-1503. Also sells used S-100 boards and sys-
tems, see inside back cover. E-mail: hjohnson @pluto.njcc.com.
6800/6809 Support: Ronald Anderson, 3540 Sturbridge Ct.,
Ann Arbor, MI 48105.
Z-System Support: Jay Sage,1435 Centre St. Newton Centre,
MA 02159-2469, (617)965-3552, BBS: (617)965-7046; E-mail:
- Sage@ll.mit.edu. Also sells Z-System software.

REGULAR CONTRIBUTORS:

Brad Rodriguez, Box 77, McMaster Univ., 1280 Main St. West,
Hamilton, ONT, L8S 1C0, Canada, E-mail: bj@headwaters.com..
Frank Sergeant, 809 W. San Antonio St., San Marcos, TX
78666, E-mail: pygmy @ pobox.com.

Tilmann Reh, Germany, E-mail: tilmann.reh@hrz.uni-
siegen.d400.de. Has many programs for CP/M+ and is active
with Z180/280 ECB bus/Modular/Embedded computers.
Microcontroilers (8051).

Helmut Jungkunz, Munich, Germany, ZNODE #51, 8N1, 300-
14.4, +49.89.961 45 75, or CompuServe 100024,1545.

USER GROUPS

Connecticut CPM Users Group, contact Stephen Griswold, PO
Box 74, Canton CT 06019-0074, BBS: (203)665-1100. Spon-
sors Z-fests.

Sacramento Microcomputer Users Group, PO Box 161513, Sac-
ramento, CA 95816-1513, BBS: (916)372-3646. Publishes news-
letter, $15.00 membership, meetings at SMUD 6201 S st.,
Sacramento CA.

CAPDUG: The Capital Area Public Domain Users Group, News-
letter $20, Al Siegel Associates, Inc., PO Box 34667, Betherda
MD 20827. BBS (301) 292-7955.

46

NOVAOQUG: The Northern Virginia Osborne Users Group,
Newsletter $12, Robert L. Crities, 7512 Fairwood Lane, Falls
Church, VA 22046. Info (703) 534-1186, BBS use CAPDUG’s.

The Windsor Bulletin Board Users’ Group: England, Contact
Rodney Hannis, 34 Falmouth Road, Reading, RG2 8QR, or
Mark Minting, 94 Undley Common, Lakenheath, Brandon, Suf-
folk, IP27 9BZ, Phone 0842-860469 (also sells NZCOM/
Z3PLUS).

NATGUG, the National TRS-80 Users Group, Roger Storrs,
Oakfield Lodge, Ram Hill, Coalpit Heath, Bristol, BS17 2TY,
UK. Tel: +44 (0)1454 772920.

L.LS.T.: Long Island Sinclair and Timex support group, contact
Harvey Rait, 5 Peri Lane, Valley Stream, NY 11581,

ADAM-Link User’s Group, Salt Lake City, Utah, BBS:
(801)484-5114. Supporting Coleco ADAM machines, with
Newsletter/BBS.

Adam International Media, Adam’s House, Route 2, Box 2756,
1829-1 County Rd. 130, Pearland TX 77581-9503, (713)482-
5040. Contact Terry R. Fowler for information.

AUGER, Emerald Coast ADAM Users Group, PO Box 4934,
Fort Walton Beach FL. 32549-4934, (904)244-1516. Contact
Norman J. Deere, treasurer and editor for pricing and newsletter
information.

MOAUG, Metro Orlando Adam Users Group, Contact James
Poulin, 1146 Manatee Dr. Rockledge FL 32955, (407)631-0958.
Metro Toronto Adam Group, Box 165, 260 Adelaide St. E.,
Toronto, ONT M5A INO, Canada, (416)424-1352.

Omaha ADAM Users Club, Contact Norman R. Castro, 809 W.
33rd Ave. Bellevue NE 68005, (402)291-4405. Suppose to be
oldest ADAM group.

Vancouver Island Senior ADAMphiles, ADVIS A newsletter by
David Cobley, 17885 Berwick Rd. Qualicum Beach, B.C., Canada
VIK IN7, (604)752-1984.

Northern Illiana ADAMS User’s Group, 9389 Bay Colony Dr.
#3E, Des Plaines IL 60016, (708)296-0675.

San Diego OS8-9 Users Group, Contact Warren Hrach (619)221-
8246, BBS: (619)224-4878.

The San Diego Computer Society (SDCS) is a broad spectrum
organization that covers interests in diverse areas of software
and hardware. It is an umbrella organization to various Special
Interest Groups (SIGs). Voice information recordings are avail-
able at 619-549-3787.

The Dina-SIG part of SDCS is primarily for Z-80 based comput-
ers from Altairto Zorba. The SIG sponsored BBS - the Elephant’s
Graveyard (619-571-0402) - is open to all callers who are inter-
ested in Z-80 and CP/M related machines and software. Contact
Don Maslin, head of the Dina-SIG and the sysop of the BBS at
619-454-7392. Email: donm@cts.com.

The Computer Journal / #77

ACCESS, PO Box 1354, Sacramento, CA 95812, Contact Bob
Drews (916)423-1573. Meets first Thurdays at SMUD 59Th St.
(ed. bldg.).

Forth Interest Group, PO Box 2154, Oakland CA 94621 510-
89-FORTH. International support of the Forth language, local
chapters.

The Pacific Northwest Heath Users Group, contact Jim Moore,
1554 - 16th Avenue East, Seattle, WA 98112-2807. Email:
be483 @scn.org.

The SNO-KING Kaypro User Group, contact Donald Ander-
son, 13227 2nd Ave South, Burien, WA 98168-2637.

SeaFOG (Seattle FOG User’s Group, Formerly Osborne Users
Group) PO Box 12214, Seattle, WA 98102-0214.

OTHER PUBLICATIONS

The Z-Letter, supporting Z-System and CP/M users. David AJ.
McGlone, Lambda Software Publishing, 149 West Hillard Lane,
Eugene, OR 97404-3057, (541)688-3563. Bi-Monthly user ori-
ented newsletter (20 pages+). Also sells CP/M Boot disks, soft-
ware.

The Analytical Engine, by the Computer History Association of
California, 3375 Alma, Suite 263, Palo Alto, CA 94306-3518.
An ASCII text file distributed by Internet, issue #1 was July
1993. Home page: http://www.chac.org/chac/ E-mail:
engine@chac.org

Z-100 LifeLine, Steven W. Vagts, 2409 Riddick Rd. Elizabeth
City, NC 27909, (919)338-8302. Publication for Z-100 (an S-
100 machine).

The Staunch 8/89’er, Kirk L. Thompson editor, PO Box 548,
West Branch IA 52358, (319)643-7136. $15/yr(US) publica-
tion for H-8/89s.

The SEBHC Journal, Leonard Geisler, 895 Starwick Dr., Ann
Arbor MI 48105, (313)662-0750. Magazine of the Society of
Eight-Bit Heath computerists, H-8 and H-89 support.

Sanyo PC Hackers Newsletter, Victor R. Frank editor, 12450
Skyline Blvd. Woodside, CA 94062-4541, (415)851-7031. Sup-
port for orphaned Sanyo computers and software.

the world of 68' micros, by FARNA Systems, PO Box 321,
Warner Robins, GA 31099-0321. E-mail: dsrtfox @delphi.com.
New magazine for support of old CoCo’s and other 68xx(x)
systems.

Amstrad PCW SIG, newsletter by Al Warsh, 6889 Crest Av-
enue, Riverside, CA 92503-1162. $9 for 6 bi-monthly newslet-
ters on Amstrad CP/M machines.

Historically Brewed, A publication of the Historical Computer
Society. Bimonthly at $18 a year. HCS, 2962 Park Street #1,
Jacksonville, FL. 32205. Editor David Greelish. Computer His-
tory and more.

IQLR (International QL Report), contact Bob Dyl, 15 Kilburn
Ct. Newport, RI 02840. Subscription is $20 per year.

QL Hacker’s Journal (QHJ), Timothy Swenson, 5615 Botkins
Rd., Huber Heights, OH 45424, (513) 233-2178, sent mail & E-
mail, swensotc @ss2.sews.wpafb.af.mil. Free to programmers of
QL’s.

Update Magazine, PO Box 1095, Peru, IN 46970, Subs $18 per
year, supports Sinclair, Timex, and Cambridge computers.

SUPPORT BUSINESS:

Hal Bower writes, sells, and supports B/PBios for Ampro, SB180,
and YASBEC. $69.95. Hal Bower, 7914 Redglobe Ct., Severn

The Computer Journal / #77

MD 21144-1048, (410)551-5922.

Sydex, PO Box 5700, Eugene OR 97405, (541)683-6033. Sells
several CP/M programs for use with PC Clones ("22Disk’ for-
mat/copies CP/M disks using PC files system).

Elliam Associates, PO Box 2664, Atascadero CA 93423,
(805)466-8440. Sells CP/M user group disks and Amstrad PCW
products. See ad inside back cover.

Discus Distribution Services, Inc. sells CP/M for-$150, CBASIC
$600, Fortran-77 $350, Pascal/MT+ $600. 8020 San Miguel
Canyon Rd., Salinas CA 93907, (408)663-6966.
Microcomputer Mail-Order Library of books, manuals, and pe-
riodicals in general and H/Zenith in particular. Borrow items for
small fees. Contact Lee Hart, 4209 France Ave. North,
Robbinsdale MN 55422, (612)533-3226.

Star-K Software Systems Corp. PO Box 209, Mt. Kisco, NY
10549, (914)241-0287, BBS: (914)241-3307. SK*DOS 6809/
68000 operating system and software. Some educational prod-
ucts, call for catalog.

Peripheral Technology, 1250 E. Piedmont Rd., Marietta, GA
30067, (404)973-2156. 6809/68000 single board system. 68K
IS A bus compatible system.

Hazelwood Computers, RR#1, Box 36, Hwy 94 @Bluffton,
Rhineland, MO 65069, (314)236-4372. Some SS-50 6809 boards
and new 68000 systems.

AAA Chicago Computers, Jerry Koppel, (708)681-3782. SS-50
6809 boards and systems. Very limited quanity, call for infor-
mation.

MicroSolutions Computer Products, 132 W. Lincoln Hwy,
DeKalb, IL 60115, (815)756-3411. Make disk copying pro-
gram for CP/M systems, that runs on CP/M sytems, UNIFROM
Format-translation. Also PC/Z80 CompatiCard and UniDos prod-
ucts. Web page: http://www.micro-solutions.com.

GIMIX/0S-9, GMX, 3223 Arnold Lane, Northbrook, IL. 60062,
(800)559-0909, (708)559-0909, FAX (708)559-0942. Repair
and support of new and old 6800/6809/68K/SS-50 systems.

n/SYSTEMS, Terry Hazen, 21460 Bear Creek Rd, Los Gatos
CA 95030-9429, (408)354-7188, sells and supports the MDISK
add-on RAM disk for the Ampro LB. PCB $29, assembled PCB
$129, includes driver software, manual.

Corvatek, 561 N.W. Van Buren St. Corvallis OR 97330,
(503)752-4833. PC style to serial keyboard adapter for Xerox,
Kaypros, Franklin, Apples, $129. Other models supported.

Morgan, Thielmann & Associates services NON-PC compatible
computers including CP/M as well as clones. Call Jerry Davis
for more information (408) 972-1965.

Jim 8. Thale Jr., 1150 Somerset Ave., Deerfield IL 60015-2944,
(708)948-5731. Sells I/O board for YASBEC. Adds HD drives,
2 serial, 2 parallel ports. Partial kit $150, complete kit $210.

Trio Company of Cheektowaga, Ltd., PO Box 594, Cheektowaga
NY 14225, (716)892-9630. Sells CP/M (& PC) packages:
InfoStar 1.5 ($160); SuperSort 1.6 ($130), and WordStar 4.0
($130).

Parts is Parts, Mike Zinkow, 137 Barkley Ave., Clifton NJ
07011-3244, (201)340-7333. Supports Zenith Z-100 with parts
and service.

DYNACOMP, 178 Phillips Rd. Webster, NY 14580, (800)828-
6772. Supplying versions of CP/M, TRS80, Apple, CoCo, Atari,
PC/XT, software for older 8/16 bit systems. Call for older cata-
log.

47

7

N

AN\

AV ERR

Yolume Nymber 1;
sissues 1 t0 9
o Serial interfacing and Mod
 Floppy disk formats, Print spooler.
« Adding 8087 Math Chip, Fiber optics
* S-100 HI-RES graphiocs.

. » Controlling DC motors, Multi-user column.
* VIC-20 EPROM Programmer, CP/M 3.0.
¢ CP/M user functions and integration.

Yolyme Number 2;

+ issues 10to 19

* Forth tutorial and Write Your Own.
* §8008 CPU tor S-100.

"

44%%
14345

%) 2

055592,

* Using the Hitachi hd64180: Embedded
Processor Design

* 88000: Why use a new OS and the 680007

« Detecting the 8087 Math Chip

* Floppy Disk Track Structure

* Double Density Floppy Controller

* 2CPR3 IOP for the Ampro Little Board

* 3200 Hackers' Language

* MDISK: Adding a 1 Meg RAM Disk to
Ampro Little Board, Part 2

* Non-Preemptive Multitasking

* Software Timers for the 68000

« Lilliput 2-Node

* Using SCSI for Generalized 1/0

* RPM vs CPM, BIOS Enh t

* Poor Man's Distributed Processing.

» Controlling Apple Stepper Motors.

_* Facsimile Pictures on a Micro.

* Memory Mapped YO on a ZX81.

Yolyme Nymber &

< issues 20 to 28

* Designing an 8035 SBC

« Using Apple Graphics from CP/M

« Soldering & Other Strange Tales

« Build an S-100 Floppy Disk Controller.
WD2797 Controller for CP/M 88K

+ Extending Turbo Pascal: series

* Unsoldering: The Arcane Art

= Analog Data Acquisition & Control:
Ci cting Your Computer to the Real

World

* Programming the 8035 SBC

* NEW-DOS: series

* Variability in the BDS C Standard Library

* The SCSI Interface: series

* Using Turbo Pascal ISAM Files

* The Ampro Little Board Column: series

* C Column: series

+ The Z Column: series

* The SCSI Interface: Introduction to SCSI

« Editing the CP/M Operating System

* INDEXER: Turbo Pascal Program to
Create an Index

» Selecting & Building a System

« Introduction to Assemble Code for CP/M

+ Ampro 186 Column

« ZTime-1: A Real Time Clock for the Ampro
Z-80 Little Board

Volume Number &
.* issues 26 to 31
* Bus Sy Selecting a Sy
« Using the SB180 Real Time Clock
* The SCSI Intertace: Software for the SCSi
Adapter
 inside Ampro Computers
« NEW-DOS: The CCP Commands
(continued)
+ ZSIG Comer
* Affordable C Compilers
« Concurrent Multitasking: A Review of
DoubleDOS
* 68000 TinyGiant: Hawthorne's Low Cost
18-bit SBC and Operating System
* The At of Source Code Generation:
Y pling 7-80 Sof
* Feedback Control System Analysis: Using
Root Locus Analysis & Feedback Loop
Compensation
* The C Column: A Graphics Primitive
Package
* The Hitachi HD64 180: New Life for 8-bit
Systems
* ZS1G Corner: C
and Aliases
« A Tutor Program in Forth: Writing a Forth
Tutor in Forth
* Disk Parameters: Modifying the CP/M Disk
Parameter Biock for Foreign Disk Formats
* Stating Your Own BBS
« Build an A/D Converter for the Ampro Little
Board
« HD64180: Setting the Wait States & RAM
Refresh using PRT & DMA
* Using SCSI for Real Time Control
* Open Letter to STD Bus Manufacturers
« Patching Turbo Pascal
s Ch ing a Language for M
» Better Software Filter Design
* MDISK: Adding a 1 Meg RAM Disk to
Ampro Littie Board, Part 1

d Line G«

hine Control

48

oC ting with Floppy Disks: Disk
P ters & their variati

* XBIOS: A Replacement BIOS for the
SB180

* K-OS ONE and the SAGE: Demystitying
Operating Systems

¢ Remote: Designing a Remote System
Program

* The ZCPR3 Corner: ARUNZ
Documentation

Issue Nymber 32;

* 15 copies now available -

Issue Number 33:

* Data File Conversion: Writing a Filter to
Convert Foreign File Formats

* Advanced CP/M: ZCPR3PLUS & How to
Write Self Relocating Code

* DataBase: The First in a Series on Data
Bases and Information Processing

* SCSI| tor the S-100 Bus: Another Example
of SCS!'s Versatility

* A Mouse on any Hardware: Impiementing
the Mouse on a ZBO System

* Systematic Elimination of MS-DOS Files:
Part 2, Subdirectories & Extended DOS
Services

* ZCPR3 Comer: ARUNZ Shelis & Patching
WordStar 4.0

issue Number 34;

» Developing a File Encryption System.

* Database: A continuation of the data base
primaer series.

* A Simple Multitasking Executive:
Designing an embedded controller
multitasking executive.

* ZCPR3: Relocatable code, PRL files,
ZCPR34, and Type 4 programs.

* New Mi s Have Si : Chips
with BASIC or Forth in ROM are easy to
program.

* Advanced CP/M: OS extensions to BDOS
and BIOS, RSXs for CP/M 2.2.

s Macintosh Data File Conversion in Turbo
Pascal.

Issue Number 35;

« All This & Modula-2: A Pascal-like
alternative with scope and parameter
passing.

¢ A Short Course in Source Code
Generation: Di bling 8088 softy

to produce modifiable assem. source code.

* Real Computing: The NS32032.

¢ $-100: EPROM Bumer project for S-100
hardware hackers.

o Advanced CP/M: An up-to-date DOS, plus
details on file structure and formats.

« REL-Style Assembly Language for CP/M
and Z-System. Part 1: Selecting your
assombier, linker and debugger.

{ssue Number 3€;

* Information Engineering: Introduction.
* Modula-2: A list of ref: books.
» Temperature Measurement & Control:

« ZCPR3 Corner: Z-Nodes, Z-Plan,
Amstrand computer, and ZFILE.

* Real Computing: NS32032 experimenter
hardware, CPUs in series, software
options.

¢ SPRINT: A review.

* REL-Style Assembly Language for CP/M
& ZSystems, part 2.

» Advanced CP/M: Environmental
programming.

Knfwa

tssue Number 37;

* C Pointers, Arrays & Structures Made
Easier: Part 1, Pointers.

s ZCPR3 Corner: Z-Nodes, patching for
NZCOM, ZFILER.

-« information Engineering: Basic Concepts:

fields, field definition, client worksheets.

* Sheils: Using ZCPR3 named shell
variables to store date variables.

* Resident Programe: A detailed look at
TSRs & how they can lead to chaos.

* Advanced CP/M: Raw and cooked console
VO.

* ZSDOS: Anatormy of an Operating System:
Part 1.

Issye Nymber 38:

¢ C Math: Dollars and Cents With C.

* Advanced CP/M: Batch Processing and a
New ZEX.

* C Pointers, Arrays & Structures Made
Easier: Part 2, Arrays.

» Z-System Comer: Shells and ZEX, Z-Node

Central, system security under Z-Systems.

v AR N

9 g: The p

Information Age.

Forth.

* The Z-System Comer: Genie, BOS Z and
Z-System Fundamentals.

* §8705 Embedded Controller Application: A
singie-chip mi troll. pplicati

¢ Advanced CP/M: PluPerfect Writer and
using BDS C with REL files.

Issus Number 43;

« Standardize Your Floppy Disk Drives.

* A New History Sheli for ZSystem.

* Heath's HDOS, Then and Now.

* The ZSystem Comer: Software update
service, and customizing NZCOM.

* Graphics Programming With C: Routines
for the IBM PC, and the Turbo C library.

* Lazy Evaluation: End the evaluation as
soon as the result is known.

* $-100: There's stilt life in the old bus.

« Advanced CP/M: Passing parameters, and
complex error recovery.

Issue Number 44;

* Animation with Turbo C Part 1: The Basic
Tools.

¢ Multitasking in Forth: New Micros
FEBFC11 and Max Forth.

¢ Mysteries of PC Fioppy Disks Reveailed:
FM, MFM, and the twisted cable.

* DosDisk: MS-DOS disk emulator for CP/M.

¢ Advanced CP/M: ZMATE and using lookup
and dispatch for p g P {

* Forth Column: Handling Strings.

* Computer Aided Publishing: Introduction to
publishing and Desk Top Publishing.

* Shells: ZEX and hard disk backups.

* Real Computing: The National
Semiconductor NS320XX.

¢ ZSDOS: Anatomy of an Operating System,
Part 2.

tssue Number 39

* Z-Sy Comer. MEX and telecommuni-
cations.
Issue Number 43;

for the Tenderf:
Getting started with the 8031.

* 2-System Corner: Using soripts with MEX.

* The Z-System and Turbo Pascal: Patching
TURBO.COM to access the Z-System.

o Embedded Syst

¢ Programming for Performance: A y
Language techniques.

« Computer Aided Publishing: The HP
LaserJet.

¢ The Z-System Comer: System
enhancements with NZCOM.

* Generating LaserJet Fonts: A review of
Digi-Fonts.

* Advanced CP/M: Making old programs Z-
System aware.

* C Pointers, Arrays & Structures Made
Easier, Part 3: Structures.

¢ Shells: Using ARUNZ alias with ZCAL.

* Real Computing: The National
Semiconductor NS320XX.

issue Number 40;

* Programming the LaserJet: Using the
escape codes.

* Beginning Forth Column: introduction.

* Advanced Forth Column: Variant Records
and Modules.

* LINKPRL: Generating the bit maps for PRL
files from a REL file.

* WordTech's dBXL: Writing your own
custom designed business program.

* Advanced CP/M: ZEX 5.0xThe machine
and the language.

* Programming for Performance: Assembly
language techniques.

o Programming Input/Output With C:
Keyboard and screen functions.

* The Z-System Comer: R t
systems and BDS C.

» Reai Computing: The NS320XX

issue Number 41;

* Forth Column: ADTs, Object Oriented
Concepts.

* Improving the Ampro LB: Overcoming the
88Mb hard drive limit.

* How to add Data Structures in Forth

¢ Advanced CP/M: CP/M is hackers haven,
and Z-Sy Ci d Scheduler.

¢ The Z-System Comer: Extended Multiple
[of d Line, and ali

« Disk and printer functions with C.

e LINKPRL: Making RSXes easy.

* SCOPY: Copying a series of unrelated
files.

Issue NI 7 42;

« Dy M v Allocation: Allocating
memory at runtime with examples in Forth.

* Using BYE with NZCOM.

¢ C and the MS-DOS Character Attributes.

« Forth Column: Lists and object oriented

* Embedded Appli Designing a 280
RS-232 communications gateway, part 1.

* Advanced CP/M: String searches and
tuning Jetfind.

* Animation with Turbo C: Part 2, screen
interactions.

+ Real Computing: The NS32000.

Issue Number 46;

* Build a Long Distance Printer Driver.

* Using the 8031's built-in UART .

« Foundational Modules in Modula 2.

* The Z-System Comer: Patching The Word
Plus spell checker, and the ZMATE macro
text editor.

¢ Animation with Turbo C: Text in the

graphics mode.
*280C Gateway:
Prototyping and using the Z80 CTC.
issue Number 47;

* Controlling Stepper Motors with the
68HC1 {F

« Z-System Comer. ZMATE Macro Language

* Using 8031 interrupts

* T-1: What it is & Why You Need to Know

¢ ZCPR3 & Moduia, Too

« Tips on Using LCDs: Interfacing to the
68HC705

* Real Computing: Debugging, NS32 Multi-
tasking & Distributed Systems

* Long Distance Printer Driver. correction

* ROBO-SOG 90

Issu; mber 48:

« Fast Math Using Logarithms

« Forth and Forth Assembler

* Modula-2 and the TCAP

* Adding a Bemoulli Drive to a CP/M
Computer (Building a SCS| interface)

* Review of BDS "Z"

¢ PMATE/ZMATE Macros, Pt. {

+ Z-System Comer: Patching MEX-Plus and
TheWord, Using ZEX

Issue Number 49;

* Computer Network Power Protection

« Floppy Disk Alignment wRTXEB, Pt. 1
* Motor Control with the F68HC 11

* Home Heating & Lighting, Pt. 1

* Getting Started in Assembly Language
* PMATE/ZMATE Macros, Pt. 2

* Z-System Comes/ Z-Best Software

Issue Number 50:

 Offioad a System CPU with the 2181
* Floppy Disk Alignment wRTXEB, Pt. 2
¢ Motor Contro! with the FES8HC 11

The Computer Journal / #77

* Modula-2 and the Command Line

* Home Heating & Lighting, Pt. 2

« Getting Started in Assembly Language,
Pt.2

* Local Area Networks

 Using the ZCPR3 10P

¢ PMATE/ZMATE Macros, Pt. 3

+ 2-System Comer, PCED/ Z-Best Software

« Real Computing, 32FX 16, Caches

Issue r

* introducing the YASBEC
* Floppy Disk Alignment w/RTXEB, Pt 3
. * High Speed Modems on Eight Bit Systems
* A Z8 Talker and Host
* Local Area Networks—Ethemet
« UNIX Connectivity on the Cheap
* PC Hard Disk Partition Table
* A Short Introduction to Forth
+ Stepped Inference in Embedded Controi
+ Real Computing, the 32CG160, Swordfish
* PMATE/ZMATE Macros
-+ Z-System Comer, The Trenton Festival

* The Bumbling Mathmatician
* YASMEM

issue Number $6:

¢ TCJ - The Next Ten Years

* Input Expansion for 8031

* Connecting IDE Drives to 8-Bit Systems
* 8 Queens in Forth

» Kaypro-84 Direct File Transfers

¢ Analog Signal Generation

issue Number 87

* Home Automation with X10
« File Transfer Protocols

* MDISK at 8 MHZ

¢ Shell Sort in Forth

* Introduction to Forth

*DA. S-100

® ZAT Last!

* Multitasking Forth
« Computing Timer Values

« Z-Best Software, the Z3HELP Sy

" Issu i
* YASBEC, The Hardware
* An Arbitrary Waveform Generator, Pt. 1
* B.Y.O. Assembier...in Forth
« Getting Started in Assembly Language, Pt.

3

* The NZCOM I10P

* Servos and the F68HC 11

* Z-Sy Corner, Prog ing for
Compatibility

+ Z-Best Software

* Real Computing, X10 Revisited

* PMATE/ZMATE Macros

« Home Heating & Lighting, Pt. 3

* The CPU280, A High Performance SBC

Issue Number S3:

* The CPU280

* Local Area Networks

* An Arbitrary Waveform Generator

* Zed Fest '91

* Getting Started in Assembly Language
* The NZCOM 10P

Issue Number S4:

* B.Y.O. Assembler
 Local Area Networks
¢ Advanced CP/M

* Atfordabie D P Tools
* Mr. Kaypro
* DR. $-100

issue Number 59:

* Moving Forth

* Center Fold IMSAI MPU-A
» Developing Forth Applicati
* Mr. Kaypro Review

*DA. S-100

issue Number 60:

* Moving Forth Part il

s Center Fold IMSAI CPA

* Four for Forth

* Debugging Forth

* Support Groups for Classics
* Mr. Kaypro Review

*DA. S-100

Issye Number 61;

* Multiprocessing 6809 part |
* Center Fold XEROX 820

* Quality Control

* Real Computing

* Support Groups for Classics
* Operating Systems - CP/M
* Mr. Kaypro SMHZ

issue Number 62;
« SCS| EPROM Programmer

issue r

« Small-C?

« Center Fold last XEROX 820
* DR S-100

* Moving Forth Part IV

¢ Small Systems

* Mr. Kaypro

* IDE Drives Part lli

Issue Number 65:
* Small System Support

s Center Fold ZX80/81

* DA S-100

« Real Computing

* European Beat

¢ PC/XT Comer

o Little Circuits

¢ Levels of Forth

* Sinclair ZX81

issue Number 66;

* Small System Support

* Center Fold: Advent Decoder
* DR S-100

« Connecting IDE Drives

* PC/XT Comer

o Littie Circuits

* Muitiprocessing Part lIl

* Z-System Comer

issue Number 87;

* Small System Support

« Center Fold: SS-50/SS-30
* DA S-100

« Serial Kaypro interrupts

* Little Circuits

* Moving Forth Part 5

* European Beat

Issue Number 68;

« Small System Support

* Center Foid: Pertec/Mits 4P10
« Z-System Comer |l

* PC/XT Comer

o Little Circuits

¢ Multiprocessing Forth Part 4
* Mr. Kaypro

issue N r

* Small System Support
s Center Fold: S-100 IDE
« Z-System Comer |

* Real Computing

Issue Number 74;

* Computing Hero of 1964

* Small System Support

« Center Fold: Hayes 80-103A

* Power Supply Basics

* PC/XT Comer: Stepper Motors
* DR. S-100

« Moving Forth Part 7

* Mr. Kaypro

* 8048 Emulator Part 1

issue Number 72

* Beginning PLD

* Small System Support

* Center Fold: Rockwel R66F 11
* Playing With Micros

* Real Computing

* Small Tools Part 1

*DR. §-100

« Moving Forth Part 7.5

* 8048 Emulator Part 2

issye Number 73;

*«$10 XT

* Small System Support

* Center Fold: 640K XT

*IDE Part 8

* Real Computing

* Small Tools Part it

* DR. 8-100

* Mr. Kaypro

* PC/XT Comer

* 8048 Emulator Part 3

issue Number 74;

« Antique or Junk

* Small System Support

* Center Fold: $-100 Power Supply
« Moving Forth part 8

* Real Computing

* AMSTRAD PCW Now

*DR. $-100

* Mr. Kaypro

* Paimtech CPUZ180

¢ Disk VO in Forth

Issye Number 78;

* The European Beat

+ Small System Support

« Center Fold: Standard Bus 110
* Moving Forth part 8

* Real Computing

« Embedded Control Using the STD Bus

+ ZCPR on a 16-Bit Intel Platform . * PC/XT Comer *DR. S-100

* Real Computing . g;"';_; ’(;00“ XEROX 820 * DR. $-100 « EPROM Simulator

« interrupts and the 280 « Moving Forth part il « Moving Forth Part 6 * High-Speed Serial /O for the Applicard

: :I:::‘fa‘:: ;:!'\':::' * Programming the 6526 CIA * Mr. Kaypro : Disk IIOs;n Forth, Pt. 2

* What Zilog never told you about the * Reminiscing and Musings X mber 70; T8600 Source Code

Supers * Modem Scripts * Small System Support Issue Nymber 7¢:

* An Arbitary Waveform Generator Issue Number 63; * Center Fold: Jupiter ACE * Real Computing

¢ The Development of TDOS - SCSI EPROM Programmer part i * Z-System Comer il * PC/XT Comer

Issue Number 88: « Center Foid XEROX 820 * PC/XT Comer. Stepper Motors * The European Beat

» Fuzzilogy 101 *DR 5"°° . : mitii;lggning Part 5 : 3,0‘1“;-.1%- to the XT

* The Cyclic Redundancy CheckinForth » WERTocestnd Zal ! * European Beat « Center Fold: JADE Bus Probe

* The Intemetwork Protocol (IP) « Reminiscing and Musings « PC Time Clook

* Hardware He_aven « IDE Drives Part I * PC Security System

. :ea' Com{gpi Drives through Virtual - Smail System Support

* Hemapping Dis nves roug! nuas .

BIOS Floppy Disk Problems
(us. Canada/Mexico Europe/Other Name \

Subscriptions (CA not taxable) (Surface) (Air) (Surface) (Air) Address:
1year (6 issues) $24.00 $32.00 $34.00 $34.00 $44.00
2 years (12 issues) $4400 $60.00 $64.00 $6400 $84.00
Back Issues (CA tax) Shipping + Handling for each issue ordered
Bound Volumes $20.00e6a +$3.00 +$3.50 +$650 +$4.00 +$17.00
#32thru #43 are $3.00ea. +$1.00 +$1.00 +$1.25 +$1.50 +$250 CreditCard# - - - exp___ /[
#44 and up are $4.00ea. +$125 +$125 +$175 4$200 +83.50 Paymentis accepted by check, money order, or Credit Card (W/C,
tems: VISA, CarteBlanche, Diners Club). Checks must be in US funds,

drawn on a US bank. Credit Card orders can call 1(800) 424-8825.

Back Issues Total
California Residents add 7.25% Sales TAX

TC! The Computer Journal

Shipping Total
Subscription Total P.O. Box 3900, Citrus Heights, CA 95611-3900
Total Enclosed

9 _ Phone (916) 722-4970 / Fax (916) 722-7480)

The Computer Journal / #77 49

The Computer Corner

By Bill Kibler

Forth Day 1995

"~ Well Forth Day came and went again,
pretty much un-announced and un-
der attended. Each year on a Satur-
day in November, FIG sponsors a
full day event discussing Forth. This
year’s event happened on November
18 at Dr. Ting’s place of work in San
Mateo California. I drove down with
three others from the Sacramento
Forth group.

Our trip down was filled with dis-
cussions ranging from politics to
Forth and embedded projects. The
day started with donuts and social
discussions. About 10 AM the offi-
cial meeting started and short intro-
ductions from John Hall, president
of FIG, and several chapter leaders,
brought attendees up to date on Forth
happenings. One visitor from Tai-

. wan said their FIG chapter has over
300 members and is developing a
commercial Forth (he can be reached
at cchin@simon.pu.edu.tw).

After introductions, the first of sev-
eral speakers started talking about
their projects. Jeff Fox gave an up-
date on F21, the mpu2l version for
handling Fiber communications.
There are a number of bugs and er-
rors in this prototype run, but Chuck
Moore says he has been able to work
around them for testing purposes.
Speeds are looking good and some-
time early in *96 a chip with less
bugs will be available. A European
company is apparently funding and
pushing the project on a fast track of
development.

John Hall then talked about a RF
signal tracking system using Forth
Inc’s ChipForth on a Innovative In-
tegration SBC. They use VME style
boards with TMS320C31 as the con-
troller and signal processor. This is

50

for UHF signal tracking with high
speed switching between horn an-
tennas mounted on a dome.

Dwight Elvey talked about DSP fil-
tering in Forth. He indicated you can
do 36Khz filtering on 486/33Mhz
system, all using FPC and integer
math. He provided sample code and
extensive explanation of how it
works.

After our lunch break, Alred Tang
presented ideas on doing Exact Ra-
tional Math using forth. Leonard
Morgenstern presented his latest Red-
Tress: a way to achieve balanced bi-
nary trees. Al Mitchel from AMR
(see back page) talked about using
and selecting microprocessors for
embedded control. Al compared price
to performance and pointed out some
of the good and bad features of those
he uses and sells.

Mosaic’s Patrick Campbell talked
about the QED industrial controller
which has been getting some good
exposure lately. Bob Nash related his
experience with using Express and
Forth Inc’s polyFORTH at SMUD
(Sacramento Municipal Utility Dis-
trict). Bob has done things others
gave up on and in times most thought
impossible, all because of Forth’s
tools and his learned philosophy.
Those concepts he uses are: keeping
it small; modular projects; bottom
up design; having a vision about the
project; and making sure your de-
sign and concept is sound. In two
years they have put on 6 systems
using Express (the industrial control
version of polyFORTH, a high level
PLC type program) and leveraging
their knowledge from the first suc-
cessful project onto the next one.

John Baumgarner talked about a
Forth project he is doing to augment

pilots ability to navigate. The idea is
to have visual images projected into
the pilots view from navigation de-
vices, a form of virtual reality for
pilots, Dave Jaffe, our last year’s
Programmer of the year recipient,
gave an update on the Finger Spell-
ing hand. Three companies are in-
vestigating development: one in West
Virginia to do the hand itself; a col-
lege in Israel on using the hand as
proteus or hand replacement; as a
device to do hand therapy - to move
a hand and thus exercise the muscles;
possible use in remote or dangerous
situations needing tactile operations.

Chuck Moore gave his normal Fire-
side chat in which he updated and
explained more about his progress
with the F21. He covered his bad
errors and how testing hadn’t un-
covered them. He discussed some
design considerations and his options
in dealing with them. Chuck also
commented on a recent product re-
lease shboom, which may be an ille-
gal copy of his previous work. As
usual it was a very enlightening last
talk of the day and got us already for
the evening dinner.

As one of the day’s events, the din-
ner speaker, Skip Carter, was able to
draw over 25 members to a local
Chinese restaurant to hear him speak.
Skip talked about where he consid-
ers Forth is going and some consid-
erations of changes needed. From
there a round table discussion con-
tinued and eventually spilled out onto
the street as we out ran our welcome
in the restaurant.

Skip’s feelings are based on his per-
sonal experience and his two ways of
using Forth. He has used and is con-
tinuing to use it in embedded oceano-
graphic projects. He came with a
working six legged bug like robot

The Computer Journal / #77

that spawned many jokes. Skip also
found he still uses Forth to perform
many scientific data projects and as
tools to solve special problems. He
see’s forth making it’s way into the
new operating systems and is cur-
rently looking for Forth for his Linux
system.

Skip Carter’s WEB site currently
holds most of the FIG’s library of
material, and he is also the librarian
for the FIG Forth Scientific Library
project. This is a project to collect
library routines that are used in the
Forth community and are all ANSI
Forth compatible. It is the first of
many ANSI standard projects.

I asked the question as to what is
going on with ANSI and if any com-
mercial vendors are selling one. Skip
said he had talked with three ven-
dors at Rochester and two of the three
were interested, but later decided not
to change from their current direc-
tion. That means there is a Forth
ANSI standard, but no commercial
versions available for use. A public
domain version was suggested but
nothing more than that.

Lunch Program Contest

I skipped over lunch in order to ex-
plain it better here. For many years
FIG meetings have had lunch time
contests or seminars. This year a pro-
gramming contest was presented and
three groups tried their hands. Bob
Nash, Charlie Shattuck and myself
comprised one team attempting to
program traffic signals. I have in-
cluded the circuit since I think it is
an easy way of learning how to do
real life problems using simple tools
and devices.

As you can see the diagram is rather
simple and shows just how a parallel
port can do real I/0. The contest
handout says this comes from Dr.
Ting’s “The Second Course” which
is the second book of learning Forth
(can be bought from FIG). The par-
allel or printer port has 12 output
bits and 5 input bits.

This simple design limits the cross-
ing signal operations to having both
sets of light work the same. By that
I mean the north south set of inter-
section lights will operate the same

The Computer Journal / #77

and force the left turn signals to cycle
for both directions before turning on
the green.

The contest went something like this,
turn on all stop lights at power up.
With no traffic turn on E-W green
and N-S Stop. Then the fun starts,
when traffic approaches you must use
various amounts of delay with cau-
tion, stop, left turn, then go and so
on. Basically you make it work as
traffic signals normally do, all pro-
grammed in less than an hour.

Well our Sacramento group did fairly
well against the other two groups.
No group got it fully working, but
we all got some amount of operation
to happen. We had a couple of on-
lookers who where very much inter-
ested in seeing how we went through
the design and programming stages.
We basically did a bottom up ap-
proach. Create a basic set of words
that control the numerous possible
light combinations. If you analyze
the possible conditions it quickly
becomes apparent that you have only

8 output commands to the port.

Once the basic commands are set,
the next step is tying them together
with timing loops and then integrat-
ing it all into the possible traffic
switch conditions. This last onc is
where we had the most problems and
ran out of time doing. Overall I felt
it is an excellent learning project and
recommend you try this on your own.
We have done similar things at local
meetings and find it a great way to
get others into Forth and just doing
things for fun.

Overall I felt the Forth day this year
a bit weak, definitely under adver-
tised, and if nothing else shows a
small lack of direction in the FIG
organization. A number of new board
members were to meet after Thanks-
giving and discuss making changes.
I have placed a request to hear what
went on, but as yet haven’t heard a
word.

So till next time, keep hacking. Bill.

Paraliel Port 5V FasT— sv
_— ; 1w d G5 2200m 4
A 2 JA_ 3 <] GrSEN
3 4 -

Y 2. 5 s > yE£LLons

Q s = o] 7405 [a | ANAAN—] Q:p

N . T o ﬁ*d-Q/v\/\— C N/~ ToRA

g, s 1 12 > NN V-5 Fovrar p

Y —] W5 =L Do

\';s‘ MNORTHK

&

{; . 7 K] NV-5=-SToP

\J < NS L F7 Tewns
E Y 7405

NG +

(\Q <
y Seu7H
AR — ~]
k'] A

@ Q 7405 3

o —

R — X e FLV

Ex = 4437 /Se::so‘;s

13 BT 4 [=1 norTr/
7

Q e | &Néép
\w‘ 12BN S | — | Soo7 \,EL

N olBre [wers7r ern

<] S BN
!S " B\ 7 —] =EAST l;vthl

Switches =
Traffic Controller

51

TCJ CLASSIFIED

CLASSIFIED RATES!
$5.00 PER LISTING!

TCJ Classified ads are on a prepaid
basis only. The cost is $5.00 per ad
entry. Support wanted is a free service
to subscribers who need to find old or
missing documentation or software.
Please limit your requests to one type
of system.

Commercial Advertising Rates:

Size Once 4+

Full $150 $90
1/2 Page $80 $60
1/3 Page $60 $45
1/4 Page $50 $40

Market Place $30 $120/yr
Send your items to:
The Computer Journal
P.O. Box 3900
Citrus Heights, CA 95611-3900

Historically Brewed. The magazine
of the Historical Computer Society.
Read about the people and machines
which changed our world. Buy, sell

" and trade "antique" computers. Sub-
scriptions $18, or try an issue for $3.
HCS, 2962 Park Street #1, Jackson-
ville, FL 32205.

Start your own technical venture! Don
Lancaster's newly updated INCRED-
IBLE SECRET MONEY MACHINE
II tells how. We now have autographed
copies of the Guru's underground clas-
sic for $21.50. Synergetics Press, Box
809-J, Thatcher AZ, 85552.

THE CASE AGAINST PATENTS
Throughly tested and proven alterna-
tives that work in the real world.
$33.50. Synergetics Press, Box 809-J,
Thatcher AZ, 85552.

Wanted: Form filling software for
the KayPro CP/M computer. Trying to
find “Formation” by PBT software once
of Grand Rapids, MI, or “StanForm”
by MAP, Micro-Art Programmers.
Other software capable of filling out
preprinted forms considered. Help give
a KayPro meaningful work! Please
reply to Stephen Stone -Tel. (805)569-
8329 or stephen@silcom.com

Wanted: Intel SDK-85 documenta-
tion. This is a single board design kit
with the 8085 CPU, includes a hex
keypad and 7 segment LED readout. I
have several of these units and would
consider trading for interesting older
computers. Ron Wintriss, 100 High-
land Ave., Lisbon, NH 03585.

f TCJ ADS WORK! \

Classified ads in TCJ
get results, FAST!

Need to sell that special older
system - TRY TCJ.
World Wide Coverage
with Readers interested in what
YOU have to sell.
Provide a support service,
our readers are looking for
assistance with their older
systems - all the time.
The best deal in magzines,

TCJ Classified
\. J

it works!

FOR SALE: Kaypro hard disk con-
troller cards, WD series for 2/4/10s.
Motherboards for all models now in
stock. Complete replacement monitors
and other new items for your Kaypro
needs. Mr. Kaypro, Chuck Stafford.
(916) 483-0312, eves/weekends.

fK i

bler Electronics

Hardware Design &
Software Programming

8051, 6805, Z80, 68000, x86
PLC Support and
Documentation

Bill Kibler
P.O. Box 535
Lincoln, CA 95648-0535
(916) 645-1670
e-mail: kibler@psyber.com

k http://www.psyber.com/~kibler)

DIBs

Electronic Design

Dave Baldwin

6619 Westbrook Dr.

Citrus Heights, CA 95621
Voice (916) 722-3877
Fax (916) 722-7480
BBS (916) 722-5799

~

(TCJ

Library
Subscriptions

Thank you to our subscriber's that
have donated subscriptions to
their public libraries around the
world.

Paul MacDiarmid
has contributed a
subscription to the
Rotorua Public Library
in Rotorua, New Zealand.
This is an excellent way to
support TCJ and spread the word,l

52

Tke Computer Journal / #77

TC

The Computer Journal

D iscover

the only publlcatxon
/M and the Z-System.
fs and -Spellbinder
ed CP/M distributor.

, OR 974043057
) 688-3563

Advent Kaypro Upgrades

f

TurboROM.. Allows flexible
configuration’ of your entire
system, read/write additional
formats and more, only $35.

Replacement Floppy drives and
Hard Drive Conversion Kits. Call
or write for availability & pricing.

Call (916)483-0312
eves, weekends or write
Chuck Stafford
4000 Norris Ave.
Sacramento, CA 95821

.

TCJ MARKET PLACE h
Advertising for small business
First insertion: - $30
Reinsertion: $25
Full Six issues $120
Rates include typesetting.
Payment must accompany order.
VISA, MasterCard, Diner's Club,
Carte Blanche accepted. Checks,
money orders must be US funds.
Resetting of ad consitutes_a new
advertisement at first time
insertion rates. Mail ad or
contact
The Computer Journasl

P.O. Box 3906 .
Citrus Heights, CA 96811-3000
(918) 722-4970
Fax (918) 722-74%0

SOFTWARE
tublic Domain Catalog,
$1.50 shipping and|
~“New CP/M 2.2
«i’ 95 plus shipping.
DOS software. - Disk
including AMSTRAD.
dressed, stamped
for free Flyer, Catalog

Associates

ox 2664
dero, CA 93423
805-466-8440

VINTAGE COMPUTERS
‘ IBM Compatibles
Tested - Used Parts for
- PCIXT AT PS/2
‘Working systems from $50
-~ All parts including
cases monitors floppies
hard drives MFM RLL IDE
Technical Specs
Send 5x7 SASE to:
Vintage Computers
Paul Lawson
1673 Litchfield Turnpike
- Woodbridge, CT 06525
or call for a faxed list
203-389-0104

4

MO

68HC11, 80C51 & 80C1606

& More Microcontrollers.
i1 Faster Hardware.

i Faster Software.

B More Productive.

&1 More Tools and Utilities.

For brochure or applications:
AM Research
P.O. Box 43
Loomis, CA 95650-9701
1(800) 949-8051
http://www.AMResearch.com

E 80C32 AND 68HC11
1 *Akn COMPUTERS

THE FORTH SOURCE

Hardware & Software

MOUNTAIN VIEW
PRESS

Glen B. Haydon, M.D.
~ Route 2 Box 429
La Honda, CA 94020

' (415) 747-0760

.95 681{(:11
.- Single Board

$7

8K EEPRO' for More

A Compiete 68HC11 Devilopment Systam.

© | New *Codeload+ 2.0" and Sample Pregrame.
INo EPROMS - EPROM

300 Pages of Menuals, 3.5* Disk..

LDG Electronics @K

1445 Parran Road Volos / Fex
St. Leonard, MD 20686 410-566-2177

